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Abstract Observed variations in the tropical phytoplankton community structure and biogeochemical
processes have been linked to the El Niño Southern Oscillation, a driver of large‐scale natural climate
variability on interannual timescales. Satellite bio‐optical algorithms have allowed us to derive complex
biological parameters from the surface ocean via remote sensing, providing a scientific platform to
investigate biological relationships with climate indices. Studies have focused in‐depth on contrasting
types of the ENSO types with various physical parameters with only a few recent studies focusing on
satellite‐observed chlorophyll‐a, with however none focusing on phytoplankton biomass itself. Here we
review the types of ENSO and its effect on backscattering‐based biomass using different statistical
techniques, over the 1997‐2007 period. We also contrast the responses of phytoplankton biomass with those
of chlorophyll‐a and their physical drivers in various types of ENSO. Signatures of various ENSO
types are observed in the physical and biological fields.

1. Introduction

Phytoplankton are microscopic cellular organisms omnipresent in the surface ocean. The photosynthetic
activity of phytoplankton is the level one of the marine food chains and supports trophic web. Moreover,
phytoplankton affect the water column's optical properties via light absorption and backscattering
(Mobley et al., 2002; Stramski & Kiefer, 1991), which allows for their detection via passive ocean‐color
remote sensing (Gordon & Morel, 1983; Sathyendranath & Platt, 1989). Remote sensing is a reliable tool
(in addition to in situ data) for gathering observational data on spatio‐temporal scales to characterize the
structure and function of global marine ecosystems and to achieve predictive understanding.
Phytoplankton adjusts its pigment composition to changes in environmental conditions such as light.
Consequently, chlorophyll‐a (Chl‐a) may not be the best indicator for phytoplankton community structure
and abundance. Therefore, we need independent estimates for phytoplankton biomass. Bio‐optical
algorithms have previously been applied to detect phytoplankton biomass separately from Chl‐a
(Behrenfeld et al., 2005; Kostadinov et al., 2009, 2010, 2016). Results from recent studies show that variations
in ocean biogeochemical processes in the tropics are linked to the El Niño Southern Oscillation (ENSO)
phenomenon (Gierach et al., 2012; Radenac et al., 2012).

ENSO phenomenon oscillates between a warm (El Niño) and a cold (La Niña [LN]) phase.
Tropical‐extratropical interactions, atmospheric pressure teleconnections, and ocean‐atmosphere feedback
stimulate anomalous variations in trade wind strength and sea surface temperature (SST). The evolution
of ENSO events is well documented since the past two decades (Wang & Weisberg, 2000). The scientific
literature has been well established on the different types of El Niño and their characteristics that contrast
the classic Eastern Pacific El Niño (EPEN). El Niño Modoki (Ashok et al., 2007) is one of the recent El
Niño types that have been discovered with multiple nomenclatures, such as the “Warm‐Pool El Niño”
(Kug et al., 2009) “Central Pacific El Niño” (CPEN; Kao & Yu, 2009), or “Dateline El Niño” (Larkin &
Harrison, 2005a, 2005b).

The maximum SST anomalies confined in the central‐eastern equatorial and dominantly in the central
equatorial tropical Pacific region contrast the EPEN and CPEN, respectively. Multiple studies have focused
on distinguishing EPEN and CPEN using SST (Ashok et al., 2007), sea surface salinity (Ashok et al., 2007;
Singh et al., 2011), precipitation (Feng & Li, 2011; Zhang et al., 2011), and subsurface temperature (Yu &
Kim, 2010), while a couple of new studies discuss the impacts of EPEN and CPEN based on
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satellite‐derived Chl‐a (Messié & Chavez, 2013; Radenac et al., 2012; Turk et al., 2011) and primary produc-
tion (PP) and phytoplankton growth (Racault et al., 2016, 2017). However, no study has characterized differ-
ent types of El Niño using backscattering‐based phytoplankton biomass.

In this manuscript, we use novel backscattering‐based phytoplankton biomass data to diagnose further and
contrast El Niño types and their characteristics over the 1997‐2007 period. For the first time, we also define a
biological index for EPEN and CPEN. Section 2 of the manuscript describes the data sets and statistics uti-
lized in the paper. Section 3 is a comparison of the Chl‐a and phytoplankton biomass anomalies in the
Pacific equatorial region. Section 4 contrasts the EPEN and CPEN signatures of biomass using different sta-
tistical techniques. In section 5, we document the likely mechanisms responsible for observed ENSO‐related
biomass variations. The main findings are summarized in section 6.

2. Data and Methodology
2.1. Data Sets

The monthly 9‐km horizontally gridded biomass product derived from a backscattering‐based algorithm
(Kostadinov et al., 2009, 2010, 2016) is used and is available from https://doi.pangaea.de/10.1594/
PANGAEA.859005. The backscattering spectral slope and the magnitude are used as the inputs to the
algorithm to retrieve the parameters of an assumed power law particle size distribution (PSD). The
volume concentrations for different plankton size classes are calculated, using the PSD and its assumed
relationship with backscattering spectral slope and additional assumptions, such as that relative
proportions of biovolume are roughly constant across size classes (Kostadinov et al., 2016). One of the
strengths of the assumption is that the particles are less sensitive to the physiological variability
(Kostadinov et al., 2016, 2017; Mouw et al., 2017). However, the particle size class includes all particle
sizes. Then, the existing allometric relationships (Menden‐Deuer & Lessard, 2000) are applied to convert
the biovolumes to the total carbon concentrations. We also used 9‐km Chl‐a (OCI: R2014) maps for the
SeaWiFS period 1997‐2010. The magnitudes of Chl‐a have changed slightly from the standard (STD)
algorithm (R2010) processing to the OCI algorithm processing. Chl‐a and biomass are expressed
in mg/m3.

Physical variables used are 10‐m daily wind speed (Berrisford et al., 2011), OSCAR ocean currents (Bonjean
& Lagerloef, 2002), TOA/TRITON isothermal depth (Z20°C: depth of the 20°C; Michael J. McPhaden et al.,
1998), and Hadley Centre Sea Ice and Sea Surface Temperature analysis version 1 (HadISST1) SST. Table
S1 in the supporting information provides details on data sources and resolution. The Multivariate El
Niño Index was acquired from the National Center of Atmospherics Research climate data portal at
https://climatedataguide.ucar.edu/. Time series of EPEN and CPEN indices (NCT and NWP, respectively)
were constructed as in Ren and Jin (2011) using the HadISST1 data set. The piecewise linear combination
of the climate indices, Niño‐3 and Niño‐4, are used to construct the EPEN and CPEN indices with
conditioned by the ENSO phase. All the spatial data sets were obtained for the tropical Pacific region
[30°S‐30°N, 120°E‐70°W] over the 1997‐2010 period.

2.2. Preprocessing and Statistical Techniques

Seven monthly maps (in 2008 and 2009) had less than 60% of the data available for biomass and Chl‐a over
the 1997‐2010 period; therefore, we only analyze data for the 1997‐2007 period that had 100% temporal cov-
erage. For Chl‐a, the possibility was to adapt the Radenac et al. (2012) method and temporally replace the
monthly maps with Aqua‐Moderate Resolution Imaging Spectroradiometer (MODIS) ocean color maps.
However, there are no other satellite data available for biomass using specifically Kostadinov et al. (2009,
2010) algorithms to replace the missing maps in our biomass data. Daily data sets were converted to monthly
resolution. The 9‐km resolution Chl‐a and biomass products were regridded on a 1° grid using two‐
dimensional convolution with a 12×12 top‐hat averaging kernel (Kostadinov et al., 2017). Nearest neighbor
linear extrapolation was applied to fill in the data gaps due to sparse clouds.

To obtain the interannual signal, all data sets were first detrended over their respective periods to remove
any long‐term variability. Anomalies were calculated with respect to 1998‐2007 period as some data sets
were available only from September 1997 by removing the mean monthly climatology. The anomalies were
then filtered using 13‐month Hanning‐filter to remove any remaining high‐frequency signals. Filtering was
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performed on all the variables except Chl‐a, as empirical orthogonal function (EOF) analysis on filtered and
unfiltered Chl‐a anomalies show similar ENSO patterns and loadings for the first three modes. This allowed
for an additional 5 months of data at the beginning and end of the Chl‐a time series. The Chl‐a EOF patterns
are consistent with Radenac et al. (2012) except for the magnitudes, which can be explained by the improved
algorithms used to derive Chl‐a. Biomass and Chl‐a anomalies are lognormally distributed, as biological
indices can span up to 3 orders of magnitude (Racault et al., 2016).

3. Chl‐a and Biomass in the Equatorial Pacific Region

The 10‐year mean phytoplankton biomass (Figure 1b) shows relatively low concentrations in the oligo-
trophic subtropical gyres ([Chl‐a] <0.11 mg/m3 (natural‐log value of ‐0.96 mg/m3; see Figure 1a), and com-
paratively high levels in the Central and South America ocean margins and the equatorial upwelling
systems. The high biomass in these areas is due to the cold nutrient‐rich water upwelled at the equatorial
and coastal ocean surface waters supporting phytoplankton growth. Despite the nutrient concentration
being high in the upwelling systems, the phytoplankton biomass is less than the time‐averaged biomass con-
centration for the equatorial region (<1.2 mg/m3, natural‐log value) due to iron‐limited and grazing main-
taining (Lundry et al., 2003; Radenac et al., 2012). We observe robust biomass features near Papua New
Guinea (PNG) and Solomon Islands coastal areas. Messié and Radenac (2006) suggest that elevated biomass
concentrations are possibly due to the oceanic islands that deflect the deep ocean currents, flow, and wind
circulation that allows horizontal advection and intermittent upwelling. The mean biomass pattern is simi-
lar to the mean Chl‐a structure in Figure 1a and in Radenac et al. (2012); see their Figure 1): maxima in the
tropical‐tongue region and minima in the northern and southern subtropical gyres.

The interannual biomass variability (Figure 1d) mimics the Chl‐a variability (Figure 1c; see Radenac et al.,
2012, their Figure 1b) with maximum variability encompassed from the American coasts along curving tra-
jectories toward 170°E at the equator. High variability is seen off the Californian coast and in the South
American upwelling systems and around PNG and Solomon Islands. The interannual variability pattern
for Chl‐a is relatively higher and pronounced at the southern edge of the tropical tongue then biomass varia-
bility (Figure 1b). This variability is possibly due to the contraction and expansion of the tropical
tongue/subtropical gyres during ENSO events.

Figure 1. Mean and standard deviationmaps for the (a and c) chlorophyll‐a and (b and d) phytoplankton biomass for the September 1997 to December 2007 period.
The three regions R1, R2, and R3 in black are regions with maximum variability chosen using Figure 1d.
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4. ENSO Signatures of Biomass
4.1. EOF Analysis

An EOF analysis of logarithmic phytoplankton biomass anomalies (Figure S1a in the supporting informa-
tion) shows that the first EOF mode explains 29.3% of the variance. The spatial structure exhibits negative
loadings extending from the coast of California, along the Intertropical Convergence Zone region toward
the equator to 180°E. This feature is somewhat mirrored at the equator with the negative loadings outspread-
ing from the coast of South American along curving trajectories toward the equator to about 170°E. Positive
loadings are found north of PNG and surrounding NewCaledonia. Its principal component (PC) is positively
correlated with the EPEN index (R= 0.71) suggesting that the negative loadings on EOF1 show a decrease of
biomass during EPEN events. Our result is consistent with Messié and Chavez (2012), who performed an
EOF analysis on Chl‐a as a proxy for biomass.

The second and third EOF modes (Figures S1c and S1e) explain 17.8% and 13.0% of the variance, respec-
tively. Although both these EOFmodes explain a total of 30.8% of the variance of biomass anomalies, a north
test (North et al., 1982) verifies that the second and third EOF modes cannot be distinguished in a statisti-
cally significant way indicating that the signals are not well separated and cannot be physically explained.
These limitations using the EOF procedure were also encountered by Singh et al. (2011) for sea surface sali-
nity anomalies. Consequently, to effectively extract the dominant modes of variability, a combined
regression‐EOF (CR‐EOF) analysis was performed on the biomass anomalies.

In performing the CR‐EOF analysis, the CPEN index was first regressed onto the biomass anomalies. An
EOF analysis was then carried out on the residuals of the regression values (residual is the variable minus
the reconstructed variable that is derived from regression coefficients) to obtain the EP signature of ENSO
(Singh et al., 2011). This method was applied to SST anomalies by Kao and Yu (2009) to separate EP and
CP ENSO events. The first EOF explains 28.26% of the total variance in biomass anomalies (Figures S2a
and S2b). The corresponding PC time series is positively correlated with NCT (R = 0.81). The spatial pattern
is similar to the EOF1 on the biomass anomalies in Figure S1a giving us confidence in the method applied to
characterize El Niño types.

Using EPEN index as the regressor, the first EOF has a spatial structure of a large negative biomass pattern
encompassed between 155°E–170°W, 5°S–5°N and explains 23.90% of the variance (Figures S2c and S2d).
Positive biomass loadings are observed at the eastern outer edges of the tropical tongue and in the far north-
western Pacific. Its PC is positively correlated with NWP (R = 0.79) indicating a decrease (increase) in bio-
mass in the western‐central (eastern) Pacific during CPEN events. The spatial feature is consistent with
the second mode of EOF analysis of Chl‐a in Messié and Chavez (2013).

4.2. AHC Analysis

The dominant patterns for both EPEN and CPEN events were obtained using the CR‐EOF analysis.
However, to better discriminate between El Niño types, due to possible limitations in using the EOF proce-
dure (see Singh et al., 2011), we choose to use the agglomerative hierarchical clustering (AHC) technique to
resolve El Niño types better.

Five clusters were identified using the AHC technique out of 124 monthly maps during 1997‐2007 for the
biomass anomalies. These five clusters represent intermediate CPEN, CPEN, LN, equatorial recovery, and
EPEN conditions explaining 28.8%, 15.32%, 20.72%, 19.8%, and 15.32% of the variability, respectively
(Figures 2a–2e). The extracted time series with cluster maps are shown in Figure 2f. Our cluster patterns
for the biomass are similar to the five clusters identified by Radenac et al. (2012) but for Chl‐a over the
1997‐2010 period. We chose to keep the terminologies of the clusters similar as Radenac et al. (2012) for a
consistent comparison.

Spatial patterns of Clusters 1 and 2 exhibit the intermediate CPEN and CPEN signals, respectively
(Figures 2a and 2b). In cluster 1, the minimum biomass anomaly (less than ‐0.08 mg/m3) is located between
150 and 160°E at the equator with curving trajectories of negative biomass anomalies extending toward the
eastern Pacific along about 10°N‐15°S. As the intermediate CPEN develops into CPEN (see Figure 2f), the
negative core in the western Pacific grows and occupies a more extensive region [150°E‐170°W, 5°N‐5°S].
The two curving trajectories of negative biomass anomalies are replaced with positive anomalies in the
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eastern Pacific. The timing of biomass cluster 2 from AHC analysis are consistent with the previously
documented CPEN events in 2002‐2003 and 2004‐2005 (Ashok et al., 2007; Kao & Yu, 2009; Kim & Yu,
2012; Kug et al., 2009; McPhaden et al., 2011; Radenac et al., 2012; Singh et al., 2011; Yeh et al., 2009),
however noting that the 2004‐2005 event is classified as an intermediate CPEN due to the magnitude of
the biomass anomalies. The CPEN pattern from AHC is comparable to the spatial pattern obtained from
the CR‐EOF analysis (see Figure S2b).

Cluster 3 captures the spatial feature of LN, and the timing coincides with events in 1999‐2000, and 2000‐
2001 (Figure 2c). The maximum biomass concentration is 10°N off the equator near the Central American
coast, extending to the central Pacific Ocean between 0 and 5°N. The southern curving trajectory seen during
cluster 1 and remain in cluster 3 albeit with dominantly positive biomass anomalies. Negative biomass
anomalies are observed in the far western Pacific above PNG. During LN, the Eastern Pacific equatorial high
biomass/Chl‐a tongue is at its maximum extent due to the steepening of the basin‐wide gradient of thermo-
cline and nutricline across the region resulting in more upwelled nitrate and iron concentrations in the
euphotic layer, preconditioning the waters for phytoplankton growth (Christian et al., 2001). Cluster 4 shows
equatorial recovery with a spatial structure similar to that during LN (cluster 3) but with significantly
reduced anomalies in the eastern Pacific.

Cluster 5 represents the EPEN event in 1997‐1998 and 2006‐2007 (Figure 2e). Cluster 5 spatial feature resem-
bles the spatial feature in Figure S2a. A few studies characterized the 2006‐2007 event as a CPEN event
(Radenac et al., 2012, their Table 1).

Figure 2. Phytoplankton biomass spatial maps for the (a) EPEN, (b) equatorial recovery conditions, (c) La Niña (LN), (d) intermediate Central Pacific El Niño
(CPEN), (e) CPEN events, and the (f) cluster time series from agglomerative hierarchical clustering analysis. Three monthly December–February (DJF)
composites of biomass anomalies for the years: (g) 2003‐2004 intermediate CPEN, (h) 2002– 2003 CPEN, (i) 1999‐2000 LN, (j) 1998–1999 equatorial recovery, and
(k) 2006‐2007 EPEN event. The units are mg C/m3
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Representative examples of DJF (December to the following January) composites of biomass anomalies
(Figures 2g–2k) give confidence that the clusters are not artifacts from the AHC analysis, rather they depict
accurate instances biomass distribution. The subtle differences between the clusters and composites remind
us of the uniqueness of each event.

5. Possible Drivers Responsible for EPEN and CPEN‐Related Biomass Variations
5.1. Biomass in the Equatorial Region

Figure 3 illustrates the time‐longitude distributions of the SST, zonal wind, thermocline (represented by the
Z20°C), Chl‐a, and biomass anomalies averaged between 5°N and 5°S. Maximum positive SST anomalies are
observed during El Niño events in 1997‐1998 and 2002‐2003, 2004‐2005, and 2006‐2007 (Figure 3a). During
EPEN, anomalous westerly winds (Figure 3b) drive the strong anomalous eastward currents (not shown)
advecting the nutrient poor (Figures 3d and 3e) warm pool waters eastward. As a result, tropical Pacific
encounters long and persistent positive SST anomalies that enhances the vertical stratification and deepens
the thermocline in the eastern tropics (Figure 3c) that weakens the upwelling. Overall, a flattened thermo-
cline results over the basin (Chavez et al., 1998; Christian et al., 2001; Radenac et al., 2001; Stone et al., 1999;
Strutton & Chavez, 2000; Turk et al., 2001).

The nitracline and equatorial undercurrent (EUC) deepening and weakened upwelling of cold nutrient‐rich
waters due to aforementioned process (nitrate‐depleted surface layer; see Figure 3 schematics in Messié &
Chavez, 2012) causes the decline in the phytoplankton growth in most of the tropical tongue region
(Messié & Chavez, 2012; Radenac et al., 2012, and references therein). The primary driver of the anomalous
biological changes is due to variations in the nutricline depth (depth where the nutrient concentration
declines rapidly), decreasing nitrate content in the eastern Pacific during El Niño events and vice versa for
LN events (Messié & Chavez, 2012). Deepening of the nutricline/thermocline or phytoplankton mixing
length scales dilutes the phytoplankton in the surface ocean (Brody & Lozier, 2014) and thus allowing less
sunlight to penetrate to the deeper water for photosynthesis. The lack of light in the deep water column lim-
its the photosynthesis and phytoplankton growth, that is reflected in our biomass distribution (Figure 3e)
during EPEN event. Messié and Chavez (2012) and Park et al. (2011) report similar changes but in Chl‐a
and also suggest that the light and nutrients drive the changes in the equatorial Pacific.

Studies have shown deeper ferricilne (depth at which iron concentration changes rapidly) than nutricline
(Gordon et al., 1997) in the iron‐limited equatorial Pacific (Martin et al., 1994). The ferricilne and

Figure 3. Time‐longitude map for the (a) sea surface temperature (SST), (b) zonal wind speed (positive eastwards), (c) isothermal depth (positive deepens), (d)
chlorophyll‐a, and (e) biomass anomalies averaged between 5°S and 5°N. Note that we chose to show the surface chlorophyll‐a thresholds lower than 0.1mg/m3

as in Radenac et al. (2012) for comparison (in black contour lines). The vertical solid lines indicate the Niño3 (150°W, 90°W) and Niño4 (160°E, 150°W) boxes.
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nutricline are coupled during El Niño when the ferricilne and EUC deepens (Barber et al., 1996; Johnson
et al., 2002; Wilson & Adamec, 2001), thus reducing the vertical transfer of nutrient and iron concentration
in the region (Chavez et al., 1999; Wang et al., 2005). Low supply of nitrate and iron suppresses the phyto-
plankton growth. Consequently, we observe Chl‐a and biomass decrease during the 1997‐1998 EPEN
(Figures 3d and 3e, respectively), in agreement with previous work showing decreased Chl‐a and PP during
the same period (Behrenfeld et al., 2006; Christian et al., 2001; Messié & Radenac, 2006; Radenac et al.,
2012). We also report similar declines in Chl‐a in the ESA Ocean Color CCI product (Figure S3). A decrease
in PP, ranging between 0.056 and 0.9 PgC/year has been reported in previous studies during the 1997‐1998
EPEN event using different PP algorithms (Carr et al., 2006; Messié & Chavez, 2012; Racault et al., 2017).

Consistent with Kug et al. (2009) and Radenac et al. (2012), we report 1998‐1999, 1999‐2000, and 2000‐2001
as LN years. Figure 3b shows an enhancement of the easterlies during LN events, driving strong westward
currents (not shown), and pushing the warm‐pool further west. In the central‐eastern equatorial Pacific,
the surface water is colder than normal (Figure 3a). The thermocline/nitracline tilt across the equatorial
Pacific becomes steeper (deeper [shallower] in the west [east]). The intensified upwelling in the eastern
Pacific is nutrient abundant, which preconditions the surface waters for phytoplankton growth and elevates
the Chl‐a and biomass concentrations (Figures 3d and 3e). The prolonged 1998‐2001 LN event had excep-
tionally strong SST anomalies and was reported as an event that triggered significant phytoplankton blooms
along the equatorial Pacific (Chavez et al., 1999; Martin et al., 1994; Messié & Radenac, 2006; Murtugudde
et al., 1999; Ryan et al., 2002, 2006).

CPEN impacted the 2002‐2005 period. The anomalous westerly winds are constricted to the western‐central
region extending the warm‐pool to the central Pacific region only. The magnitude of the eastward extension
of the warm‐pool and the anomalous SST during EPEN is stronger than that of CPEN (Figure 3a). Radenac
et al. (2012) suggested that zonal wind does not affect the eastern equatorial upwelling since its impact is
confined within the central Pacific region. Therefore, nutrients are in excess in the eastern equatorial region,
and the vertical movement of the thermocline will possibly not impact the biological activity. Instead,
Radenac et al. (2012) proposed that the iron supply reduction due to EUC deepening terminates the phyto-
plankton growth, in agreement withMessié and Chavez (2012). In contrast, Messié & Chavez, 2013 using the
second mode of the EOF analysis, which has similar spatial features as CPEN show that the Chl‐a decrease
in western‐central region is due to an increase in barrier layer (“the layer between the mixed layer and the
top of the thermocline”; Vialard & Delecluse, 1998) thickness and occurrence. The location and variations in
barrier layer characteristics are governed by multiple mechanisms such as strengthened subtropical conver-
gence due to intensified zonal winds, strong halocline between the warm‐pool and cold tongue front and
high rates of precipitation (Messié and Chavez (2013).

Furthermore, our characterization and response of biomass and physical parameters to CPEN and EPEN
events over the 1997‐2010 period are consistent with previous studies in the Equatorial Pacific (Gierach
et al., 2012; Racault et al., 2017; Radenac et al., 2012; Turk et al., 2011). Notably, the composites reveal that
the southern and northern edges of the negative biomass and Chl‐a anomalies closely match the meridional
extent of the anomalous eastward current. We observe that Chl‐a and biomass are coupled during CP and EP
ENSO between 10°N and 10°S. In the subtropics, Chl‐a and biomass are decoupled mostly owing to photo-
acclimation (the ability of the phytoplankton to adjust to light levels; Siegel et al., 2013). In summary, a
majority of the studies observed that decreases in tropical biological activity are governed by the disturbance
in wind circulation that affects the vertical and horizontal transfer efficiency of nutrient content to the sur-
face ocean (Ashok & Yamagata, 2009; Gierach et al., 2012; Messié & Chavez, 2012, 2013; Racault et al., 2017;
Radenac et al., 2012).

5.2. Defining ENSO Metrics With Biomass

The distinctly different ENSO patterns observed using biomass anomalies allow us to define metrics to cap-
ture the different ENSO phases. We identify three most variable regions: the first region (R1) is delimited
between 2.5°N‐2.5°S and 147°E‐170°W, the second region (R2) is between 4.5‐12.5°N and 85‐112°W, and
the third region (R3) is between 13.5‐20.5°S and 75‐87°W. We empirically define the normalized biomass
and Chl‐a El Niño index (Figures S4a and S4b), using an empirical relationship as defined by the
following equation:
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Biomass El Ni ̃no index ¼ PhytoA½ �R1−0:3* PhytoA½ �R2−0:3* PhytoA½ �R3

PhytoA is the area‐weighted average biomass anomalies (or Chl‐a anomalies) in the defined region boxes.
The biomass and Chl‐a El Niño index can distinguish between EPEN and CPEN events and has the high cor-
relation of 0.71 and 0.92, respectively, with the Trans‐Niño Index (TNI‐defined as “the normalized difference
between the normalized SST anomalies averaged in the Niño1+2 and Niño4 regions”; Trenberth &
Stepaniak, 2001).

Since the biomass and Chl‐a signatures are different during the El Niño and LN episodes, we define a bio-
mass ENSO index using normalized sum between the area‐weighted average biomass anomalies in the first
two regions (R1+R2). The biomass ENSO index allows separating the warm and cold phase of ENSO
(Figures S4a and S4b). Biomass and Chl‐a ENSO indices are highly correlated with Southern Oscillation
Index (SOI) of 0.77 and 0.81, respectively. The cluster time series fairly correspond with the biomass El
Niño index and biomass ENSO index (Figure S4) that can be used to identify CPEN, EPEN, and LN events.

6. Summary

The objective of this research was to contrast EPEN and CPEN events in the tropical Pacific using satellite
backscattering‐derived phytoplankton biomass for the 1997‐2007 period for the first time. Considering that
the data from single SeaWiFs mission have several maps missing in year 2008, and the Kostadinov et al.
(2010) product is not available for an extended period, we restricted our analysis from year 1997‐2007.
Using EOF, CR‐EOF, and AHC on biomass, we showed that EPEN events in biomass are evident in 1997‐
1998 and 2006‐2007, intermediate CPEN and CPEN events between 2002 and 2005, and LN events in
1999‐2001. We report similar drivers for biomass and Chl‐a, as indicated by Radenac et al. (2012) for Chl‐a
only. During the CPEN events, changes in the vertical supply of iron concentrations due to EUC vertical dis-
placement (Radenac et al., 2012) and the strength of subtropical gyres (Messié & Chavez, 2013) drawdowns
the biological activity in the iron‐limited region. During EPEN, anomalous westerly winds drive strong
anomalous eastward currents. The nutrient‐deprived western warm waters extend to 130°W reducing the
upwelling and deepening the nitracline and EUC. Reduced surface nutrients reduce the biological activity,
lowering the biomass and Chl‐a concentrations. Each EPEN and CPEN event will impact the phytoplankton
abundance differently, affecting the fish abundance and thus fisheries industries (Racault et al., 2017).

This study focused on using satellite derived ocean‐color products to understand the variability of biomass
on ENSO timescales. We also acknowledge the biases and uncertainties present in the Kostadinov et al.
(2016) biomass due to the assumptions and sensitivity of the carbon product inputs in the algorithm. One
of the quantified partial uncertainties is higher estimate for the total phytoplankton C biomass in the pro-
ductive regions, for example, equatorial upwelling region and high latitudes. The resulting is due to the large
sources of error in inputs (e.g., number of particles and PSD) due to the natural variability of the complex
index of refraction and the maximum diameter of the particles considered and uncertainties in the coeffi-
cients used in algorithms.

Possible mechanisms to explain biomass distribution have been highlighted. What remains to be investi-
gated is how the frequency of different ENSO types and their amplitude affect the long‐term biomass trend.
It should be noted however that a clean separation is required to distinguish the natural forcing's from
anthropogenic forcing's (Henson et al., 2010). Another interesting question to be addressed is how the differ-
ent ENSO types affect the phytoplankton biomass in the subpolar regions.
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