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On Robust Estimation for Slope in Linear Functional Relationship Model
(Penganggaran Teguh bagi Kecerunan dalam Model Linear Hubungan Fungsian)
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ABSTRACT

In this paper, we propose a robust parameter estimation method for the linear functional relationship model. We improved 
the maximum likelihood estimation using robust estimators and robust correlation coefficients to estimate the slope 
parameter. The performance of the propose method, MMLE, is compared with the standard maximum likelihood estimation 
(MLE) and the nonparametric method in terms of mean square error. The results for simulation studies suggested the 
performance of the MMLE and nonparametric methods gives better estimate than the standard MLE in the presence of 
outliers. The novelty of the proposed method is that it is not affected by the presence of outliers and is simple to use. 
To illustrate practical application of the methods, we obtain the estimate of the slope parameter in a study of body-
composition techniques for children.

Keywords: Linear functional relationship model; mean square error; modified maximum likelihood estimation; outliers; 
robust

ABSTRAK

Dalam kertas ini, kami mencadangkan kaedah penganggaran parameter teguh bagi model linear hubungan fungsian. 
Kami menambah baik kaedah kebolehjadian maksimum menggunakan penganggar teguh dan pekali korelasi teguh 
bagi menganggarkan parameter kecerunan. Kuasa pretasi diukur bagi kaedah yang disyorkan iaitu MMLE, MLE dan 
kaedah tidak berparameter menggunakan ralat kuasa dua min. Keputusan simulasi menujukkan prestasi bagi kaedah 
yang disyorkan, MMLE dan kaedah tidak berparameter adalah lebih teguh daripada kaedah kebolehjadian maksimum 
apabila terdapat data terpencil. Kepentingan kaedah yang dicadangkan adalah ia tidak terjejas dengan kehadiran data 
terpencil dan juga mudah digunakan. Penggunaan kesemua kaedah yang dicadangkan ditunjukkan melalui data set 
sebenar dengan kaedah untuk menganggarkan kecerunan model bagi data komposisi badan untuk kanak-kanak.

Kata kunci: Kebolehjadian maksimum yang diubah suai; min ralat kuasa dua; model linear hubungan fungsian; teguh; 
terpencil

INTRODUCTION

Errors-in-variable model (EIVM) or measurement error 
model was first introduced in the 19th century by Adcock, 
R.J. Since then, many authors have worked on estimating 
the parameter of EIVM (Fuller 1987; Kendall & Stuart 1979; 
Lindley 1947). Suppose the variables X and Y  are related 
by Y = α + βX. If both X and Y are observed correctly, 
there is no statistical problem in obtaining values of α 
and β. If Y only is observed with error, then regression 
model is formulated. However, when both X and Y are 
subject to error, the errors-in-variable model is applied. 
In real situations, measurement errors arise when both the 
variables involved cannot be recorded exactly (Gençay 
& Gradojevic 2011; Ghapor et al. 2017; Patefield 1985). 
Ignorance of measurement errors directly affects the 
desirable criteria of an estimator in which in this case, EIVM 
is more applicable rather than regression model.
	 In this study, we focus on the linear functional 
relationship model (LFRM) which is one of the branch in 
errors-in-variable model. It is categorized as functional 
relationship model for X and Y, when X is a mathematical 

variable (Kendall 1951; Lindley 1947; Moran 1971). 
Linear functional relationship model (LFRM) can be 
expressed by,

	 Yi = α + βXi,    for i = 1, 2, 3, …, n	 (1)

where both the variables X and Y are linearly related but 
observed with error, with α is the intercept, and β is the 
slope parameters. For any fixed Xi, we observe xi and yi 
from continuous linear variable subject to errors δi and εi, 
respectively, i.e. 

	 xi = Xi + δi and yi = Yi + εi	 (2)

where the error terms δi and εi are assumed to be mutually 
independent and normally distributed random variables, i.e. 

	 δi ~ N(0, ) and εi ~ N(0, )	 (3) 
                                                                                                                                                                               
	 In LFRM, there are (n + 4) parameters that need to be 
estimated, namely α, β, the two error variances and the 
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incidental parameters X1, X2, …, Xn, respectively. The log 
likelihood function is given by, 

	 log L(α, β, , , X1, …, Xn;  x1, …, xn, y1, …, yn) =

             
	 - n log (2 π) -  (log   + log ) –   

	
	  (4)    
                                       

	 However, the estimation will lead to inconsistencies 
with the existence of this incidental parameters and an 
assumption must be made in order to avoid this problem 
which is the ratio of the two variances is known,   = λ  
(Abdullah 1989; Moran 1971; Solari 1969). In this case, 
the log likelihood function can be expressed as,

	 log L(α, β, , X1, …, Xn; λ, x1, …, xn, y1, …, yn) =

	                                                                                      
	 - n log (2 π) -  log λ –   

(5)   
                                 
	 Numerous methods of estimation of linear functional 
relationship model have been suggested using normality 
assumption namely Fuller (1987), Kendall and Stuart 
(1979) and Moran (1971). However, according to Al-
Nasser and Ebrahem (2005) and Ghapor et al. (2015), 
when data contain outliers, the normality assumption is 
invalid. To circumvent this problem, some methods such 
as nonparametric methods or robust method have been 
proposed where normality assumption can been ignored 
and can diminish the effect of the outliers in the data.  
	 In this paper, we propose a new parameter estimation 
method based on the robust estimator and robust coefficient 
correlation in estimating the slope parameter. This paper is 
organized as follows: Next section describes the maximum 
likelihood estimation including the nonparametric method 
(Ghapor et al. 2015) and the proposed modified maximum 
likelihood method. This is followed by subsequent 
section where a simulation study is conducted to compare 
existing methods of maximum likelihood estimation and 
nonparametric method (Ghapor et al. (2015) with the 
proposed method (MMLE). The results and discussion 
are given in the section that follows. A practical example 
is highlighted using published data set next. Lastly, 
conclusion is presented in the last section.

MAXIMUM LIKELIHOOD ESTIMATION METHOD (MLE)

Maximum likelihood estimation method (MLE) is the 
common method used in LFRM. Based on the assumption 
when the ratio of error variances is known,   = λ , 
there are (n+3) parameters to be estimated which are α, β, 

  and X1, …, Xn (Fuller 1987; Kendall & Stuart 1979). 
The parameters may be obtained by differentiating the log 

likelihood function as given in equation (5) with respect to  
, ,  and , respectively and equating to zero. Thus, 

we can obtain the parameters given by,

	  = 	  (6)                 

	  =  – ,  

	

	

where 

	 ,  

	 ,  

and

	  

	 However, as mentioned before, in the presence of 
the outliers, the value of the parameters using maximum 
likelihood estimation may be affected (Abdullah 1989). 

NONPARAMETRIC METHOD

The nonparametric method as proposed by Ghapor et al. 
(2015) uses median to obtain the estimated slope value, 

G. As mentioned earlier, in this method, the normality 
assumption can be ignored. The steps in estimating G are 
as follows (Ghapor et al. 2015):

Step 1 

The observations are first arranged in ascending order, 
based on x value namely  

       x(1) ≤ x(2) ≤ … ≤ x(n). 
	
The associated values of y which may not be in ascending 
order are taken namely,

	 y[1] ≤ y[2] ≤ … ≤ y[n]. . 

The new pairs will be (x(i), y[j])   

Step 2 

All the data are divided into m-subsamples. These 
subsamples contains r elements such that  m * r = n where 
m is the maximum divisor of n, such that m ≤ r. 
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Step 3 

Find all the possible slopes.

   

Step 4 

Repeat Steps 1 to 3 by interchanging y and x to get possible 
paired of by(k)ij  

Step 5 

Find the median of all slopes.

	 G = median {bx(k)ij, by(k)ij}
          
	 In this method, only the slope parameter G will be 
estimated. Other parameters will be estimate using the 
traditional method, MLE.

PROPOSED METHOD (MODIFIED MAXIMUM LIKELIHOOD 
ESTIMATION (MMLE))

In this section, a modification of maximum likelihood 
estimation method is proposed to overcome the presence of 
outlier. As mentioned earlier, some standard statistics such 
as mean, variance, covariance in the maximum likelihood 
estimation in (6) are sensitive to the outliers. To overcome 
the presence of outliers, we introduce a robust estimator  
Qn as proposed by Rousseeuw and Croux (1993) in the 
formulation of the MLE. 
	 To construct the modified maximum likelihood, we 
replace the sample variances  and  as given in (6) 
with a robust estimator  and  
respectively, where  Qn(x) = 1.0483 {|xi – xj; i < j|}(k) 
and Qn(y) = 1.0483 {|yi – yj; i < j|}(k) where 1.0483 is a 
constant factor chosen to provide consistency of estimation 
of the standard deviation of a normal distribution where 

k =  and h = (n / 2) + 1  is a roughly half the 

number of observations (Rousseeuw & Croux 1993). 
	 This means the sample covariance Sxy is replaced by  
which,  = rQn ×  ×  where rQn is the robust correlation 
coefficient proposed by Shevlyakov and Smirnov (2011) 
and  defined as, 

	

where u and v are the robust principle variables defined by, 

	   

and

	

	 Now, we have the new slope parameter MMLE and 
replace the estimation in (6) to obtain the modified 
maximum likelihood estimator given as:  

   

	 	 (7)

SIMULATION STUDY

A simulation study was carried out using R software 
in order to evaluate the performance of the proposed 
method, MMLE, with the existing method, MLE and 
the nonparametric method (Ghapor et al. (2015)), in 
the presence of the outliers. The observations are then 
simulated using our model,

	 Yi = 1 + Xi, xi = Xi + δi, yi = Yi + εi

where Xi = 10   and  δi, εi ~ N(0, 0.1).  

	 Without loss of generality, the slope and intercept 
parameters are fixed at α = 1 and β = 1. We also consider 
when the observation has no outlier, single outlier and 
certain percentages of outliers namely 10% and 20% 
outliers, respectively. Here, we contaminate data points as 
suggested by Al-Nasser and Ebrahem (2005) and Ghapor 
et al. (2015) using this relationship, yc = 1 + Xc + εc with          
εc ~ N(0, 25). Using 10000 trials, the performance of 
these three methods is measured based on mean square 
error (MSE) given by MSE =  where β is the 
slope parameter and s is the number of trials. In each 
trials, a sample size of 20, 50 and 100 are generated using 
relationship described earlier. Additionally, the errors term 
δi and εi are generated from three non-normal distribution 
namely, Beta (2,9) for right-skewed case, Beta (9,2) for 
left-skewed case and Beta (3,3) for non-normal symmetric 
case in order to investigate the robustness of the proposed 
method. Simulation results are presented in Tables 1-4. 

RESULTS AND DISCUSSION

For the simulation results in Table 1, where the errors δi and 
εi are normally distributed, as expected there is no much 
difference among the three methods in estimating the slope 
when the data have no outlier as the mean square error 
(MSE) of the proposed method, MMLE, the nonparametric 
method (Ghapor et al. (2015)) and the traditional method, 
MLE is somewhat similar to each other. However, when a 
single outlier is present, the MLE method starts to break 
down and has higher MSE value for the slope parameter 
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TABLE 2. MSE of the slope: right skewed-case: Beta (2,9)

Contamination Method n = 20 n = 50 n = 100

No outlier MLE
MMLE
NONPARAMETRIC

1.513E-04
1.441E-03
1.906E-04

6.083E-05
2.391E-04
6.648E-05

3.025E-05
8.523E-05
3.214E-05

Single outlier MLE
MMLE
NONPARAMETRIC

4.452E+01
5.701E-03
2.769E-04

6.477E-01
7.682E-04
7.999E-05

8.728E-02
2.193E-04
3.497E-05

10% MLE
MMLE
NONPARAMETRIC

1.596E+02
1.204E-02
6.009E-04

1.605E+02
8.465E-03
5.273E-04

1.604E+02
7.689E-03
4.731E-04

20% MLE
MMLE
NONPARAMETRIC

4.002E+01
1.979E-02
5.278E-03

4.008E+01
1.307E-02
4.016E-03

4.008E+01
1.092E-02
3.890E-03

TABLE 1. MSE of the slope: Normal-case (0,0.1)

Contamination Method n = 20 n = 50 n = 100

No outlier MLE
MMLE
NONPARAMETRIC

1.179E-05
1.362E-03
1.546E-04

4.614E-05
2.071E-04
5.567E-05

2.442E-05
7.479E-05
2.767E-05

Single outlier MLE
MMLE
NONPARAMETRIC

4.436E+01
5.607E-03
2.241E-04

6.474E-01
7.287E-04
6.697E-05

8.722E-02
2.073E-04
3.007E-05

10% MLE
MMLE
NONPARAMETRIC

1.581E+02
1.169E-02
4.864E-04

1.598E+02
8.499E-03
4.458E-04

1.601E+02
7.643E-03
4.067E-04

20% MLE
MMLE
NONPARAMETRIC

3.996E+01
1.930E-02
4.356E-03

4.006E+01
1.305E-02
3.349E-03

4.007E+01
1.087E-02
3.268E-03

TABLE 3. MSE of the slope: left skewed-case: Beta (9,2)

Contamination Method n = 20 n = 50 n = 100
No outlier MLE

MMLE
NONPARAMETRIC

1.505E-04
1.444E-03
1.909E-04

5.940E-05
2.408E-04
6.594E-05

2.996E-05
8.287E-05
3.178E-05

Single outlier MLE
MMLE
NONPARAMETRIC

4.452E+01
5.780E-03
2.758E-04

6.480E-01
7.634E-04
7.921E-05

8.730E-02
2.166E-04
3.505E-05

10% MLE
NONPARAMETRIC
NONPARAMETRIC

1.597E+02
1.213E-02
5.931E-04

1.605E+02
8.432E-03
5.240E-04

1.603E+02
7.650E-03
4.799E-04

20% MLE
MMLE
NONPARAMETRIC

3.997E+01
1.995E-02
5.284E-03

4.007E+01
1.299E-02
4.006E-03

4.008E+01
1.092E-02
3.909E-03

compared to the MMLE method and the nonparametric 
method. Furthermore, the MSE value are not much affected 
by 10% and 20% outliers using our proposed method, 
MMLE, and nonparametric method.
	 Next, from Table 2, where the errors term δi  and εi are 
skewed to the right with Beta (2, 9), when the data have 

no outliers, the MSE value for three methods are somewhat 
similar for each other. When the data gets contaminated, 
from single outlier to 10% and 20%, respectively, the value 
of MSE for MMLE method and the nonparametric method 
are much smaller compared to the MLE method. The 
value of MSE for MLE method become huge as the outlier 
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increases. This suggest the superiority of both MMLE and 
nonparametric methods. 
	 From Table 3, where the errors term δi and εi are 
skewed to the left with Beta (9, 2), the MSE value gives 
similar conclusion in which all three methods perform 
well. As data gets contaminated, MLE method fails to 
perform while MMLE and nonparametric methods remain 
unaffected. The same can be said for the case when error 
terms δi and εi are non-normal symmetric with Beta (3,3) 
distribution in Table 4.
	 In summary, in all cases, the MMLE and nonparametric 
methods are superior than the traditional MLE in estimating 
the slope parameter β, when there is a presence of 
outliers. This implies that both MMLE and nonparametric 
estimator are both robust to outliers. In comparison to the 
two superior methods namely MMLE and nonparametric 
methods, each has got its own merits and limitation. For 
nonparametric method for parameter estimation, it does not 
require any distributional assumption but it may lack of 
power and less efficient when the underlying populations 
are normal compared with traditional methods (Kendall 
& Stuart 1979). Also, the steps involved in getting the 
parameter estimate can be quite cumbersome.
	 The proposed MMLE method is very robust to outliers 
and provide efficient estimates of the parameters as the 
standard estimation such as mean and variance which are 
sensitive to outliers (Hampel et al. 1986). In our proposed 
model, a simple modification to the covariance and 
consequently to the slope estimate has made the estimator 
robust to outliers. 
	 In short, both methods provide viable alternatives 
when data are contaminated, when sample size is small 
or when the sampling distribution cannot be derived 
analytically. 

PRACTICAL EXAMPLE

To illustrate the practicality of the method, we used real life 
data that can be modelled using linear functional relationship 
model. The data is obtained from a study that measures the 
accuracy of some widely used body-composition techniques 

for children between the ages 4 and 10 years by two different 
techniques, namely skinfold thickness (ST) and bioelectrical 
resistance (BR) (Goran et al. 1996). As measurement error 
can occur in both variables for this experiment, we note 
that we can describe the relationship by LFRM as given 
in (1). Here, we assume that the error terms follow a 
normal distribution. The data consists of 97 observations. 
Nevertheless, in the nonparametric method particularly in 
step 2, the observations cannot be divided into m-subsamples 
as the n = 97 is a prime number. Thus, in this case, we choose 
m = 1 and proceed to step 5. In examining the slope effect 
by these three different methods, some original y values 
were replaced by the values of the outliers namely, single 
outlier, 10% and 20% outliers to create different situations 
by following Imon & Hadi (2008) and Kim (2000). The 
estimated slopes and standard deviations by these three 
different methods were shown in Table 5.
	 From Table 5, it can be seen that both the proposed 
method, MMLE and nonparametric are more robust than 
the MLE method when outliers are present in the data. The 
value of slope parameter of MLE, MMLE and nonparametric 
methods are quite similar when the data has no outlier. 
However, the slope parameter using MLE method starts to 
break down and change significantly when the percentage 
of data contaminated increased from single outlier to 10% 
and 20% outliers compared with the proposed method, 
MMLE, and the nonparametric method.

CONCLUSION

In this paper, we propose a robust method namely 
modified maximum likelihood estimation (MMLE) method 
in estimating the slope parameter for linear functional 
relationship model. The simulation studies suggest when 
there is an outlier or multiple outliers exists, both the MMLE 
method and the nonparametric method are robust to outliers 
unlike the MLE method. However, the nonparametric 
method has a limitation when the sample size is a prime 
number, the steps cannot be applied wholly. The proposed 
MMLE method, on the other hand is simple as it only 
requires some modification to the covariance estimate. 

TABLE 4. MSE of the slope: Non-normal symmetric-case: Beta(3,3)

Contamination Method n = 20 n = 50 n = 100
No outlier MLE

MMLE
NONPARAMETRIC

4.321E-04
1.823E-03
5.613E-04

1.706E-04
4.950E-04
2.028E-04

8.419E-05
1.938E-04
1.011E-04

Single outlier MLE
MMLE
NONPARAMETRIC

4.583E+01
5.278E-03
8.197E-04

6.501E-01
1.065E-03
2.440E-04

8.733E-02
3.363E-04
1.124E-04

10% MLE
MMLE
NONPARAMETRIC

1.629E+02
1.273E-02
1.769E-03

1.618E+02
9.024E-03
1.588E-03

1.611E+02
7.816E-03
1.483E-03

20% MLE
MMLE
NONPARAMETRIC

4.004E+01
2.409E-02
1.487E-02

4.009E+01
1.427E-02
1.149E-02

4.009E+01
1.168E-02
1.132E-02
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Additionally, we illustrate the relevance of the method 
using real data set. In summary, the proposed robust MMLE 
is a good when estimating the slope parameter of the linear 
functional relationship model. 
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