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ABSTRACT 

This chapter presents the modelling and optimization techniques commonly used in 

engineering applications especially in Laser Micromachining process. Design of Experiment 

DOE (Response Surface Method and Taguchi), Artificial Neural Network (ANN), Genetic 

Algorithm (GA), and Particle swarm optimization (PSO) and mixed techniques are explained 

briefly. Furthermore, a review of laser micromachining processes parameters optimization was 

studied. Recent researches which used different approaches for modelling and optimization 

was presented. 
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1.1 Introduction 

Modelling and optimization techniques which are a set of mathematical and statistical techniques 

are useful for modelling and predicting the desired responses in different processes. Also selecting 

the process input parameters in order to obtain a high quality process is desirable. Conducting 

experiments based on a trial-and-error method is time-consuming and does not consider the 

interaction effects of the parameters, and causes a great deal of errors. In laser materials processing 

especially laser machining as an old methods of laser processes, modelling and optimization 

methods have widely used. Therefore the aim of this chapter is to present applied techniques for 

modelling and optimization in the laser machining process.  

In this chapter book Design of Experiment DOE (Response Surface Method and Taguchi), 

Artificial Neural Network (ANN), Genetic Algorithm (GA), and Particle swarm optimization 

(PSO) and mixed techniques (ANN+GA and FEM+DOE+GA+ANN) are explained briefly. At 

the last section, a review of laser micromachining processes parameters optimization is 

surveyed. Recent researches which used different approaches for modelling and optimization 

in advanced engineering machining processes is presented. 

1.2 Design of Experiment  

Experimental design or Design of Experiments (DOE) is the design of any information-

gathering experiments where variation is present in the system under investigation. DOE is an 

organised methodology for examination of a system or process. A series of organised tests are 

designed in which systematic changes are made to the input variables of a process or system. 

The effects of these changes on a predetermined output are then evaluated. 

1.2.1 Introduction 

Typically, experiments are carried out in the industry to enhance the understanding and 

knowledge of different manufacturing processes with the objective of manufacturing high-

quality products. To ensure a continuous progress in process quality, it is important to be aware 

of the process behaviour, the extent of variability, and its influence on the process outputs. 

Usually, experiments are often carried out, in the engineering arena, to explore, estimate, or 

confirm. Exploration denotes the understanding the data from the process. Estimation denotes 

the specification of the effect of the process variables on the output characteristics. 

Confirmation involves verifying the predicted results obtained from the experiment [1].  



 

 

DOE is an organised methodology for examination of a system or process. A series of organised 

tests are designed in which systematic changes are made to the input variables of a process or 

system. The effects of these changes on a predetermined output are then evaluated. DOE is 

significant as a formal way of maximising information acquired while minimising resources 

needed. Since it allows a conclusion on the significance to the output of input variables acting 

in combination with one another, as well as input variables acting alone, DOE offers more 

conclusions than 'one change at a time' experimental approaches. 

One of the conventional and regular approaches utilised by manufacturing engineers in industry 

is one-variable-at-a-time (OVAT), where the engineer varies one variable at a time keeping all 

other variables involved in the experiment fixed. OVAT testing always holds the chance that 

the person who is conducting the experiments may discover that one input variable will have a 

significant effect on the response (output) while failing to find that changing another variable 

may modify the effect of the first (i.e. where there is dependency or interaction). This OVAT 

approach needs considerable resources to acquire a limited amount of information about the 

process. Usually, OVAT experiments are time-consuming, unlikely to yield the optimal 

condition and do not examine the interaction between the process variables [1]. 

Methods that have statistical foundations can replace OVAT methodology. The design of 

Experiment (DOE) methodology plays a major role in planning, conducting, analysing, and 

interpreting data from experiments. If a certain quality feature of a product (the output or 

response) is being affected by several variables, the best tactic is to design an experiment in 

order to attain valid, reliable, and sound conclusions in an economical, effective, and efficient 

manner. It is essential to know that some factors may have strong effects on the output, others 

may have modest effects, and some have no effects at all. Consequently, the objective of a 

well-designed experiment is to determine which set of factors in the process affects the process 

performance most, and then the best levels for these factors to reach the sought after quality 

level can be determined [2].  

DOE designs and arranges for all possible dependencies in the first place, and then proposes 

exactly what data are required to assess them i.e. whether input variables change the response 

when combined, on their own, or not at all [1]. DOE can be used to answer questions like "what 

is the key contributing factor to a problem?", "how well does the system/process carry out in 

the existence of noise?", "what is the best pattern of factor values to minimise variation in a 

response?" etc. In general, these questions are given tags as specific kinds of studies. For the 



 

 

type of problem-solving questions mentioned above, DOE can be used to find the answer. 

Taking into account, DOE requires different experimental factors to answer a different 

question.  

The order of tasks to using this tool begins with identifying the input variables and the response 

(output) that is to be evaluated. For each input variable, a number of levels are determined that 

represent the range for which the effect of that variable needs to be known. An experimental 

design is developed which tells the person who is conducting the experiments where to set each 

test parameter for each run of the experiment. The response is then quantified for each run. The 

technique of analysis is to look for variances between response (output) readings for different 

groups of the input changes. These variances are then accredited to single effect (the input 

variables acting alone) or an interaction (in combination with another input variable) [3].  

Since a variety of backgrounds (e.g. design, manufacturing, statistics etc.) should be involved 

when identifying factors and levels, DOE is team oriented. Moreover, the team should have a 

full understanding of the difference between control and noise factors because this tool is used 

to answer particular questions. From each performed experiment, it is crucial to obtain the 

maximum amount of information. Therefore, a full matrix is needed which contains all possible 

combinations of factors and levels. Well-designed experiments can produce significantly more 

information and often require fewer runs than random or unplanned experiments. Furthermore, 

a well-designed experiment will ensure that the assessment of the effects that had been 

identified as important. For instance, if there is an interaction between two input variables, both 

variables should be considered in the design rather than doing a “one factor at a time' 

experiment. An interaction occurs when the effect of one input variable is affected by the level 

of another input variable [1, 3, 4].  

Sir R. Fisher introduced DOE in the early 1920s to determine the effect of various fertilisers 

on a range of land plots [1]. Since then, DOE has been employed in many domains such as 

engineering, physics, chemistry, etc. The use of DOE has grown rapidly in the last two decades 

and has been adapted for many industrial processes such as chemical mixing, welding, and 

micromachining to find out the optimal conditions. Responses surface methodology (RSM) is 

the most known type of DOE design; the concept of RSM was introduced in the early 50's by 

Box and Wilson [5, 6].  



 

 

Thoughtful planning helps to avoid problems that can occur during the accomplishment of the 

experimental design. For example, personnel, tools availability, funding, and the mechanical 

characteristics of the system may affect the ability to complete the experiment. The preparation 

needed before starting experimentation relies on the nature of the problem. Some of the steps 

that may be essential are problem definition, objective definition, developing an experimental 

plan, and finally, making sure the process and measurement systems are in control. 

In terms of problem definition, picking a good problem statement helps make sure that the 

correct variables are considered. This step is used to identify the questions that need to be 

answered. While in terms of objective definition, a well-defined objective will guarantee that 

the experiment answers the right questions and produces practical, usable information. This 

step is used to define the goals of the experiment.  

Then the experimental plan should be developed in such a way, it will provide meaningful 

information. At this step, it is essential to make sure that the relevant background information 

has been studied, like theoretical principles, and knowledge obtained through observation or 

previous experimentation. For instance, correct identification of which factors or process 

conditions affect process performance and contribute to process variability is necessary. 

Alternatively, if the process is already established and the influential factors have been 

identified, it may be required to determine the optimal process conditions.  

Ideally, both the process and the measurements should be in statistical control as measured by 

a functioning statistical process control (SPC) system. This will guarantee that the process and 

measurement systems are in control. Even if it does not have the process completely in control, 

it must be able to reproduce process settings [7]. In addition, it is necessary to determine the 

variability in the measurement system.  

In many process development and manufacturing applications, potentially influential variables 

are many. Screening reduces the number of variables by identifying the significant variables 

that affect product quality. This reduction allows process improvement efforts to be focused on 

the key variables. Screening may also propose the “optimal” or best settings for these factors, 

and indicate whether curvature exists in the responses. Then, it can use optimisation methods 

to determine the best settings and define the nature of the curvature. General full factorial 

designs (designs with more than two levels) may be particularly useful for screening 

experiments.  



 

 

1.2.2 Response Surface Methodology (RSM) 

RSM is a group of statistical and mathematical techniques that are useful for modelling and 

predicting the output of interest influenced by some input variables with the objective of 

optimising this output [8-11]. RSM also describes the relationships among one or more 

measured outputs and the vital controllable input factors [12]. If all independent variables are 

measurable and can be repeated with negligible error, the response surface (output surface) can 

be expressed by Equation Error! Reference source not found..  

 𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑘) 1 
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+ ∑ 𝑎𝑖𝑖𝑥𝑖𝑖
2 + 𝜀 
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where k is the number of independent variables. 

Usually, engineers search for the conditions that would optimise the process of interest. It 

means that they want to find the values of the process input parameters at which the responses 

reach their favourable outcome or “optimum”. The optimum could be either a minimum or a 

maximum of a particular outcome in terms of the process input parameters. RSM is one of the 

optimisation techniques currently in widespread usage to describe the performance of the 

micromachining process and find the optimum of the responses of interest. Therefore, it is 

essential to find an appropriate approximation for the true functional relationship between the 

independent variables and the response surface, in order to optimise the response "y". 

Generally, RSM uses a second order polynomial mathematical equation similar to Equation 

Error! Reference source not found.. A description of the general RSM procedure can be 

found in Error! Reference source not found. respectively. 

1.2.3 Taguchi 

Recent industrial applications have been particularly associated with the name of the Japanese 

engineer, G. Taguchi. The Taguchi method optimizes design parameters to minimize variation 

before optimizing design to hit mean target values for output parameters. The Taguchi method 

uses special orthogonal arrays to study all the design factors with minimum of experiments. 

One of the novel design aspects of Taguchi's contributions is the emphasis on the study and 



 

 

control of product variability, especially in contexts where achievement of a target mean value 

of some feature is relatively easy and where high quality hinges on low variability. Factors 

which cannot be controlled in a production environment but which can be controlled in a 

research setting are deliberately varied as so-called noise factors, often in split-unit designs. 

Another is the systematic use of orthogonal arrays to investigate main effects and sometimes 

two factor interactions. An example of Taguchi orthogonal array is denoted by L18 (36) to 

indicate eighteen runs, and six factors with three levels each. It should be noted that the full 

factorial of six factors with three levels will be 729 runs which is decreased to 18 runs by using 

Taguchi method. Signal to noise (S/N) ratio is defined in the Taguchi approach to determine 

optimal levels of each parameter and also analyzing the parameter variation. Two equations 

are presented which are known as standard ratio and are more applicable. In these equations Yi 

is the response value and n is the number of repeat observations. To optimize the system when 

the response is maximum, “Larger is better” state is considered that can be calculated by 

Equation (3), SNL. To optimize the system when the response is minimum, “Smaller is better” 

state is considered that can be calculated by Equation (4), SNS.  

 𝑆𝑁𝐿 =-10 log[
1

𝑛
∑

1
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𝑖=1 ] 3 
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1.3 Artificial Neural Network (ANN) 

Artificial Neural Network is a type of Artificial Intelligence (AI) originally designed to mimic 

the massively parallel operations of the human brain and aspects of how we believe the brain 

works. Neural network nodal functions can be evaluated simultaneously, thereby gaining 

enormous increases in processing speed [13].  

A neural network can be considered as a black box that is able to predict an output pattern when 

it recognises a given input pattern. Once trained, the neural network is able to recognise 

similarities when presented with a new input pattern, resulting in a predicted output pattern. 

In the fields of artificial intelligence, Artificial Neural Network (ANN) is a mathematical model 

that simulates the biological neural networks. A neural network is an assembly of 

interconnected processing elements, known as nodes or artificial neurones. 



 

 

1.3.1 Introduction 

Frequently, ANN is used to model complex relationships between inputs and outputs. The 

ability of an ANN to make predictions is based on the inter-neurons connection strengths, 

known as “weights”, which are acquired through a set of training data by a process of 

adaptation called “supervised learning” [14].  

The ANN has similar principle to that of a biological neural network where each node 

represents a biological neurone. Figure  displays a biological and artificial neurone. 

Furthermore, this figure shows the obvious resemblance between the two types of neurone.  

 

 

Figure 1: (a) Biological neurone and (b) artificial neurone. 

There is a weight associated with the incoming synapse of a biological neurone. The weight of 

each synapse, times its input, is summed for all incoming synapses and the neurone then fires, 

sending a signal (electrical activity) to another neurone in the network. In ANN, almost the 

same principle applies. Each node in the ANN has a set of inputs (analogous to the synapses in 

a biological neurone). Each input connection has a quantity (the connection strength or weight) 

(a) 

(b) 



 

 

associated with it. Bias is a constant input with a certain weight. Each node has a summing 

function for computing the weighted sum of the inputs. Moreover, it has an “activation 

function” (or transfer function) for limiting the amplitude of the neurone output [15]. Figure  

shows a mathematical representation of a single neurone. 

 

Figure 2: A single neurone may be represented mathematically. 

The mathematical output value of a single neurone may be calculated according to formulas 

from Equation Error! Reference source not found. to Equation Error! Reference source 

not found.. 
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where x is a neurone with m inputs and one output y(x), and wj are weights determining how 

much each input should be weighted. φ is an activation function that weights how influential 

the output (if any) should be from the neurone, based on the sum of the input.  

In order to introduce non-linearity to the neural network, the proper transfer or activation 

function should be selected. Activation functions vary from simple threshold functions to 

sigmoid or hyperbolic tangent functions. It is essential to introduce non-linearity to the ANN, 

as this is what provides the computational power to the network. Without this non-linearity, 

the network turns into a basic matrix multiplication operation.  
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The sigmoid transfer function is a mathematical function having an "S" shape (sigmoid curve). 

It takes the input, which may have any value between minus and plus infinity, and provides an 

output in the range 0 to 1. The sigmoid function may be written as Equation 8.  

 𝑓(𝑥) =
1

1 + 𝑒−𝑡
 8 

This transfer function is commonly used in back-propagation networks of the type used in this 

study due to its differentiability [16]. The learning rate parameter, which is the training 

parameter that controls the size of weight and bias changes during learning, can be set during 

simulation to control the magnitude of weight and bias updates. The selection of this value 

significantly affects the training time of the ANN. The “momentum” technique is often utilised 

to decrease the likeliness for a back-propagation network to be stuck in local optima [15]. 

1.3.2 ANN Structure 

The nodes in ANN are arranged in layers. Each of the nodes in a given layer is connected to 

nodes in another layer. Typically, there are three types of layers to an ANN: an input layer, one 

or more hidden layers, and an output layer. Figure  shows typical three-layered feed forward 

neural network architecture, where there are three inputs, four neurones in the hidden layer, 

and two outputs.  

The input layer is where the data vector is fed into the network. This feeds into the hidden 

layer, which in turn feeds into the output layer. The processing of the network occurs in the 

nodes of the hidden layer and the output layer. There are numerous ANN structures; however, 

the feed forward and recurrent structures are the most frequent. Since neural networks of feed 

forward structure and back-propagation algorithm offer better prediction capability [17, 18], 

this specific type of ANN was employed in this work. 

  



 

 

 

 

Figure 3: Typical three-layered feed forward neural network architecture. 

1.3.2.1 Feed-forward networks 

Signals, in the feed-forward structure, travel one-way (forward), from inputs to output(s) 

without any backtracking along the way. Figure  shows a typical feed-forward neural network. 

In the feed-forward network, data are uniformly processed in one direction from the input 

towards the output layer. Therefore, all links are unidirectional, and no cycles are present in 

ANNs of the feed-forward structure. 

 

Figure 4: A representation of a feed-forward neural network. 

Input Layer Hidden Layer Output Layer 



 

 

Multi-layered perceptron is an ANN feed forward structure with one or more hidden layers 

between the input and output nodes. The advantage of multilayer perceptrons is that the number 

of nodes in the hidden layer can be varied to adapt to the complexity of the relationships 

between input and output variables [15]. One of the experimental aims of this work was to 

determine the number of hidden layers and the size (number of neurones) of these hidden layers 

that produce the best predictive performance.  

1.3.2.2 Recurrent Neural Networks (RNNs) 

Signals, in the recurrent structure, can travel in all directions with loops, allowing its output to 

be used in previously used “neurones”. Therefore, these are models with the bi-directional data 

flow. While feed-forward network propagates data from input to output, RNNs propagate data 

from ‟downstream” processing units to earlier units. Thus RNNs, have feedback connections 

between units of different layers or loop type self-connections [19, 20]. This implies that the 

output of the network not only depends on the external inputs but also on the state of the 

network in the previous time step as is shown in Figure . 

 

 

Figure 5: A representation of a recurrent neural network. 

1.3.3 Learning Paradigms 

Although it is not possible to model a human brain exactly with its enormous complexity, an 

ANN can be used to solve problems of considerable complexity. Learning can be achieved by 

proper ANN training. There are several ANN learning methods. The supervised and the 

unsupervised learning methods are the most common learning methods for ANN. However, 

the supervised ANN learning method was adopted for this work. 



 

 

1.3.3.1 Supervised Learning  

This method is the most common ANN learning method. In this learning method, the output of 

a neural network is compared to the actual output. Weights, which initially are set to random, 

are adjusted by the network so that the next iteration will yield a closer match to the actual 

output. The learning method attempts to minimise the current errors of all neurones. This global 

error reduction is made over time by continuously modifying the weights until acceptable 

network accuracy is reached. In this learning method, the ANN must be trained before it 

becomes useful. Training consists of presenting input and output data (training set) to the 

network. Supervised learning is an ideal process for prediction of an input/output functional 

relationship. 

1.3.3.2 Unsupervised Learning  

Unsupervised learning differs from supervised learning in describing data rather than 

predicting. This learning method, sometimes called self-supervised learning, is not common 

and limited to networks known as self-organizing maps. In this learning method, the network 

observers their performance internally and no external effects are used to adjust its weights. 

The network looks for uniformities (trends) in the input signals and makes adaptations 

according to the function of the network. Even without being told whether it is right or wrong, 

the network still must have some information about how to organise itself. This information is 

built into the network topology and learning rules [15, 21]. Unsupervised learning is an ideal 

process for clustering similar data.  

1.3.4 The Back-Propagation algorithm 

Back-propagation algorithm is the most common supervised learning algorithm. The concept 

of this algorithm is to adjust the weights minimising the error between the actual output and 

the predicted output of the ANN using a function based on delta rule. It involves working 

backwards from the output layer to adjust the weights accordingly and reduce the average error 

across all layers. This process is repeated until the output error is minimised. The basic back-

propagation algorithm adjusts the weights in the steepest descent direction [22-24]. 

Using this algorithm, the network training consists of three stages: (a) feed-forward of the input 

training pattern; (b) calculation and back-propagation of the associated error; and (c) the 

adjustment of the weights. By starting from the output layer, backwards pass propagates the 



 

 

error. This process continues until the minimum error is reached. In weight update phase, input 

activation level and output delta are multiplied to get the gradient weight. Then weights are put 

in the reverse direction of the gradient by subtracting the ratio of it from the weight [25]. Since 

data normalisation minimises the chances of convergence to a local minimum on the error 

surface, convergence is more readily achieved through normalisation of the input and output 

data [26]. 

1.3.5 ANN Training, Validation and Testing 

At the start of the training phase, the weights and the biases in the neural network are initialised 

to small random values between -0.1 and +0.1. The training process involves feeding the ANN 

known inputs and outputs, which gradually modify the connection weights. The back-

propagation learning algorithm is implemented to modify the values of the weights. The 

weights eventually converge to values, which allow them to be used in predicting an unknown 

output.  

In order to use a neural network as a predictive tool, the available data is divided into three 

subsets, for training, validation and testing. Overtraining (or over fitting) begins when the 

network starts to memorise and this render it unable to generalise due to being overtrained. To 

avoid over training, an early stopping mechanism should be incorporated into the ANN. As the 

weights and biases of the network are updated continuously to minimise the MSE (Mean 

Squared Error) of the training data, the error of the validation data is also calculated, and if the 

MSE of the validation data starts to increase, training is stopped. This is known as “cross-

validation”. After the training phase, the ANN is used to simulate the output of a set of test 

data. If the ANN returns values of the output for the test data within an acceptable margin, then 

the ANN can be said to be successfully trained, and may be used as a predictive tool [16, 27, 

28].  

1.4 Genetic Algorithm (GA) 

Genetic algorithm was developed based on the features of natural biological evolution and 

Darwinian struggle for survival. GAs are search algorithms to mimic the principles of 

biological evolution and also known as stochastic sampling methods. They can be used to solve 

difficult problems in terms of objective functions that possess ‘bad’ properties, such as multi-

modal, discontinuous, non-differentiable, etc. These algorithms maintain and manipulate a 



 

 

population of solutions and implement their search for better solutions based on ‘survival of 

the fittest’ strategy. GAs solve linear and non-linear problems by exploring all regions of the 

solution space and exploiting promising areas [29]. 

1.4.1 Introduction 

The genetic algorithm is a method for solving optimization problems that is based on natural 

selection, the process that drives biological evolution. The genetic algorithm repeatedly 

modifies a population of individual solutions [30]. At each step, the genetic algorithm selects 

individuals at random from the current population to be parents and uses them to produce the 

children for the next generation. Over successive generations, the population "evolves" toward 

an optimal solution. 

The basic steps of a genetic algorithm are expressed as follows [31]: 

(1) Problem definition. 

(2) Initialization of the population: A population is a set of vectors which called a chromosome. 

Each chromosome contains optimizing parameters. 

(3) Calculation of fitness: The fitness of each chromosome in the generation is assessed by 

determining its fitness function. 

(4) Selection: At this step, reproduction occurs, and this means which chromosomes are chosen 

according to their fitness and use as parents 

(5) Crossover: A new chromosome is generated from the parents by combining these two 

halves of the genetic code. 

The new chromosome gains its characteristics from both parents. 

(6) Mutation: A new chromosome is generated by a small change in the randomly selected bits 

of old genes. 

(7) Go to step 4, if the solution is not suitable  

Therefore, GA is an aggressive search technique that quickly converges to find the optimal 

solution in a large solution domain.  

1.4.2 Particle swarm optimization (PSO) 

Particle Swarm Optimization (PSO) is one of the population-based stochastic optimization 

technique inspired by social behaviour of bird flocking developed by Kennedy and Eberhart 

[29]. PSO is a parallel evolutionary computation technique and shares many similarities with 



 

 

other evolutionary techniques such as Genetic Algorithms (GA). A population of random 

individuals is initially generated and these individuals probe the search space during their 

evolution to identify the optimal solution. Compared to GA, PSO does not employed evolution 

operators such as crossover and mutation and does not need information about the objective 

function gradient [31].  

Particle swarm optimization can be used across a wide range of applications. Areas where PSOs 

have shown particular promise include multimodal problems and problems for which there is 

no specialized method available or all specialized methods give unsatisfactory results.  

In PSO, the individuals, called particles, are collected into a swarm and fly through the problem 

space by following the optima particles. Each individual has a memory, remembering the best 

position of the search space it has ever visited. In particular, particle remembers the best 

position among those it has visited, referred to as pbest, and the best position by its neighbours 

[32]. 

Suppose that the search space is n-dimensional, and then the particle i of the swarm can be 

represented by an n-dimensional vector 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖3). The velocity of this particle can 

be represented by another n-dimensional vector 𝑉𝑖 = (𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑛). The fitness of each 

particle can be evaluated according to the objective function of optimization problem. The best 

previously visited position of the particle i is noted as its individual best position  𝑃𝑖 =

(𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑛). The position of the best individual of the whole swarm is noted as the global 

best position𝐺 = (𝑔𝑖1, 𝑔𝑖2, … , 𝑔𝑖𝑛). At each step, the velocity of particle and its new position 

will be assigned according to the following two equations: 

𝑉𝑖 =  𝜔 ∗ 𝑉𝑖 + 𝑐1 ∗ 𝑟1 ∗ (𝑃𝑖 − 𝑋𝑖) + 𝑐2 ∗ 𝑟2

∗ (𝐺 − 𝑋𝑖)                                                                       (9) 

𝑋𝑖 =  𝑋𝑖 +

𝑉𝑖                                                                                                                                                  (10)  

where, x is called the inertia weight that controls the impact of previous velocity of particle on 

its current one. r1;r2 are independently uniformly distributed random variables with range (0,1). 

c1;c2 are positive constant parameters called acceleration coefficients which control the 

maximum step size. 



 

 

In PSO, Eq. (9) is used to calculate the new velocity according to its previous velocity and to 

the distance of its current position from both its own best historical position and the best 

position of the entire population or its neighbourhood. Generally, the value of each component 

in V can be clamped to the range (-vmax;vmax) to control excessive roaming of particles outside 

the search space. Then the particle flies toward a new position according Eq. (10). This process 

is repeated until a user-defined stopping criterion is reached [33]. The PSO algorithm includes 

some tuning parameters that greatly influence the algorithm performance, often stated as the 

exploration–exploitation tradeoff: Exploration is the ability to test various regions in the 

problem space in order to locate a good optimum, hopefully the global one. Exploitation is the 

ability to concentrate the search around a promising candidate solution in order to locate the 

optimum precisely. The user can thus take well-informed decisions according to the desired 

exploration–exploitation tradeoff. 

1.5 Mixed techniques 

Mathematical function approximators and evolutionary computation techniques are able to be 

combined to solve complicated optimization problems in order to give a functional assessment 

of the process characteristics for forecasting and decision making. 

ANN can be mathematically shown to be universal function approximators. This means that 

they can automatically approximate whatever functional form best characterizes the data. 

While this property is of little value if the functional form is simple (e.g. linear), it allows ANN 

to extract more signal from complex underlying functional forms. ANN can also partially 

transform the input data automatically [34]. 

Particle swarm optimization is one of evolutionary computation techniques that simulates 

social behaviours such as bird flocking or fish schooling. The principle of this technique is 

based on the social interaction of birds in the group which thinking is not only personal but 

also social to search randomly for food in the area. Each bird is a single solution, and each 

solution can be illustrated as a particle in the swarm. Each particle moves in the search space 

to look for the most favourable solutions. Therefore, each particle is specified by its position 

and velocity in the search space which updates them based on its personal and its neighbour 

experiences [35]. 



 

 

Genetic algorithms (GAs) are also randomized search and optimization techniques guided by 

the principles of evolution and natural genetics, having a large amount of implicit parallelism. 

GAs perform search in complex, large and multimodal landscapes, and provide near-optimal 

solutions for objective or fitness function of an optimization problem. 

1.5.1 Introduction 

Approximation ability of modelling tools such as ANN and the robust evolutionary searching 

performance of optimizing algorithms like GA or PSO make it possible to mix these techniques 

to be more effective in solving combinatorial optimization problems. It also has the primary 

advantage of being used for optimization of processes without explicitly knowing the forms of 

objective functions. The application of this strategy is recently finding increased applications 

in many different scientific and engineering disciplines owing to its accuracy in 

prediction/optimization and flexibility. 

 The mixed optimization method can be a systematic approach using Computer Aided 

Engineering (CAE), applied statistical methods such as Design of Experiments (DOE), 

modelling tools like Neural Network (NN) and also optimization algorithm namely Genetic 

Algorithm (GA) [36-38].  

Numerical Analysis of engineering phenomena should be used to gain a comprehensive 

understanding of the engineering phenomena. CAE software like Abaqus or ANSIS utilize 

Finite Element Method (FEM) to carry out the Numerical Analysis.  

 DOE is an approach to evaluating relationships between input parameters and response 

variables. DOE involves determining the significant input variables influence on response 

variables. 

 ANN has shown remarkable performance when have been used for modelling complex linear 

and nonlinear relationships. Using ANN model with GA is a promising natural computation 

technique for optimization because ANN has become a practical method for predictive 

capability to very complex non-linear systems. One of the benefits of applying DOE before 

modelling with ANN is possibility of using data acquired from DOE experiments to train ANN. 

GA, is one of the evolutionary algorithms to solve optimization problems.  Therefore, hybrid 

system of Computer Aided Engineering (CAE), modelling tools like Neural Network (NN) and 



 

 

optimization algorithms namely Genetic Algorithm (GA) is a scientific approach to solve 

complicated problems [39, 40]. 

The optimization approach includes the following steps: 

1) Determine the optimization objectives. 

2) Identify the significant input variables using DOE. 

3)  Modelling by ANN  

4) Optimization by GA or PSO 

Figure 6 shows the flowchart of a hybrid optimization algorithm using Finite Element, Design 

of Experiment (DOE) and (GA-ANN). Figure 7 presents the flowchart of genetic algorithm 

hybrid with artificial neural network (GA-ANN).  

 

Figure 6: Flowchart of a hybrid optimization algorithm (FEM, DOE, GA and ANN) 



 

 

 

Figure 7: The flowchart of ANN optimized with genetic algorithm (GA-ANN) 

1.6 Review of laser micromachining processes parameters optimization 

review 

Conventional machining processes are not able to produce new materials which are being 

introduced to industrial applications. Modern machining processes play a significant role in 

industrial growth of new materials due to their ability to produce quality components. The 

industries are widely using various modern machining processes to tackle new usage 

requirements. Electric discharge machining (EDM), abrasive jet machining (AJM), ultrasonic 

machining (USM), electrochemical machining (ECM) and laser beam machining (LBM) are 

most usable modern machining processes. These processes are much more suitable for special 

applications and every particular principle of these modern machining process puts some 

limitations on their uses. 



 

 

For instance, application of hard and brittle materials, typically represented by advanced 

ceramics, for a number of high-performance components have recently generated high interest 

because they have superior mechanical, thermal and physical properties. Because of these 

special qualities, advanced ceramics are used in wide verity of applications such as turbine 

blades, valves and valve seats, bearing, heat exchanger and many engineering components. 

As a matter of fact, modern machining of new materials is always difficult because of their 

intrinsic properties like hardness and brittleness. When attempting to machine new materials it 

is important to carry out damage free machining operations. Since there are numerous 

parameters that could influence machining processes, it becomes much more complicated to 

attempt to optimize modern machining processes.  

Previously, production engineers used trial-and-error to determine optimal process parameters 

setting for various process parameters. Trial-and-error method is costly and time consuming. 

Besides, the optimum process parameters may not be achievable by this method. Application 

of Trial-and-error method is unsuitable when one of the process parameter variables is 

continuous and it cannot help engineers to obtain optimal results for process parameter settings.  

Deep understanding of modern machining processes and fine tuning various process 

parameters are two key points to gain damage free products. Therefore, a comprehensive 

optimization methodology should be done to ensure achieving desired properties. 

Table 1 shows different optimization methodologies which researchers have utilised to enhance 

various modern machining processes. 



 

 

Authors Materials 
Machining 

Type 

Optimization 

Techniques 
Optimization Goal(s) Year Ref 

Kansal et al. AISI-D2 die steel 
Powder-mixed 

EDM 
Taguchi method Machining rate 2007 

41 

Dhar et al. 
Aluminium alloy and SiCP 

composite 
EDM 

Linear programming, 

DOE 

MRR Tool wear rate 

Radial over cut 
2007 

42 

Tzeng and 

Chen 
Tool steel SKD11 EDM 

Taguchi-fuzzy-based 

Approach 
Precision and accuracy 2007 

43 

Yan and Fang - Micro-Wire-EDM 
GA-based fuzzy logic 

Controller 

Wire tension 

Wire feed 
2008 

44 

Tzeng EDM Tool steel SKD11 EDM Taguchi method 
Surface roughness 

Geometrical accuracy 
2008 

45 

Salman and 

Kayacan 
DIN 1.2379 grade cold work steel EDM 

Genetic expression 

programming (GEP), 

Taguchi method 

Surface roughness 2008 

46 

Sundaram et al A2 tool steel Micro-EDM Taguchi method 
MRR 

Tool wear 
2008 

47 

Markopoulos et 

al 

Mild steel, alloyed steels (C45 and 

100Cr6), micro-alloyed steel and 

dual-phase steel 

EDM 
Artificial neural network 

(ANN) 
Surface roughness 2008 

48 

Chiang Al2O3 + TiC mixed ceramic EDM 
Response surface 

methodology (RSM) 

MRR 

Electrode wear ratio 

Surface roughness 

2008 

49 

Assarzadeh and 

Ghoreishi 
BD3 steel Die-sinking EDM 

ANN and augmented- 

Lagrange multiplier 

algorithm 

MRR 2008 

50 

Kanagarajan et 

al 
WC/Co cemented carbide Die-sinking EDM RSM 

MRR 

Surface roughness 
2008 

51 

Saha et al 
Tungsten carbide–cobalt 

Composite 
WEDM ANN 

Cutting speed 

Surface roughness 
2008 

52 

Rao and Pawar 
Oil hardened and nitride steel 

(OHNS) 
WEDM ABC Cutting speed 2009 

53 

Chattopadhyay 

et al 
EN-8 carbon steel Rotary EDM 

Taguchi method and linear 

regression analysis 

MRR 

Electrode wear ratio 

Surface roughness 

2009 

54 

Rao et al 
Ti6Al4V, HE15, 15CDV6 and M-

250 
EDM ANN and GA Surface roughness 2009 

55 



 

 

Saha and 

Choudhury 
EN32 Mild steel Dry EDM RSM 

MRR 

Surface roughness 

Tool wear rate 

2009 

56 

Habib Al/SiC MMC EDM RSM 

MRR 

Tool wear rate 

Response gap size 

2009 

57 

Sohani et al Medium carbon steel EDM RSM 

Surface roughness 

MRR 

Tool wear rate 

2009 

58 

Kung et al 
Cobalt-bonded tungsten 

carbide (94WC-6Co) 

Powder-mixed 

EDM 
RSM 

MRR 

Electrode wear ratio 
2009 

59 

Taweel CK45Steel Die-sinking EDM RSM 
MRR 

Electrode wear ratio 
2009 

60 

Patel et al 
Al2O3/SiCw/TiC ceramic 

Composite 
EDM 

RSM and trust region 

method 
Surface roughness 2009 

61 

Pradhan and 

Bhattacharyya 
Titanium super alloy Ti- 6Al-4V Micro-EDM ANN and RSM 

MRR 

Tool wear rate 

Overcut 

2009 

62 

Maji and 

Pratihar 
Mild steel Die-sinking EDM 

Adaptive network-based 

fuzzy inference system 

MRR 

Surface roughness  
2010 

63 

Chen et al Pure tungsten WEDM 
ANN integrated with SA 

approach 

Surface roughness 

Cutting velocity 
2010 64 

Pradhan and 

Biswas 
AISI D2 steel Die-sinking EDM 

ANN and neuro-fuzzy 

approach 

MRR 

Tool wear rate 

– Radial overcut 

2010 
65 

Patel et al Al2O3–SiCw–TiC EDM 
Taguchi method and grey 

relation analysis 

MRR 

Surface roughness 
2010 66 

Kao et al Ti–6Al–4V alloy EDM 
Taguchi method and grey 

relation analysis 

Electrode wear ratio 

MRR 

Surface roughness 

2010 
67 

Ponappa 
Microwave-sintered 

magnesium nano composite 
EDM Taguchi method 

Surface finish 

Hole taper 
2010 68 

Kumar et al EN-24 tool steel 
Abrasive-mixed 

EDM process 
Grey relational analysis 

MRR 

Surface roughness 
2010 69 

Chen et al 
ZrO2 

Ceramic 
EDM Taguchi method 

MRR 

Electrode wear rate 

Surface roughness 

2010 
70 

Joshi and 

Pande 
AISI P20 mold steel Die-sinking EDM 

Integrated approach of 

finite element method 

(FEM), ANN and GA 

Crater size 

MRR 

Tool wear rate 

2011 

71 



 

 

Prabhu and 

Vinayagam 
Inconel-825 material EDM Taguchi method Surface roughness 2011 72 

Sanchez et al AISI-1045 steel EDM RSM 

MRR 

Electrode wear rate 

Surface roughness 

2011 
73 

Maji and 

Pratihar 
Mild steel Die-sinking EDM GA, NSGA-II 

MRR 

Surface roughness 
2011 74 

Kondayya and 

Krishna 
Hard metal alloys and MMC WEDM 

Genetic programming and 

NSGA-II 

MRR 

Surface roughness 
2011 75 

Amini et al TiB2 nano-composite Ceramic WEDM 
Combination of Taguchi 

method, ANN and GA 

MRR 

Surface roughness 
2011 76 

Tzeng et al Pure tungsten WEDM 
RSM, back-propagation 

neural network and GA 

MRR 

Surface roughness 
2011 77 

Rao and 

Kalyankar 

Oil hardened and nitride steel 

(OHNS) 
WEDM TLBO Cutting speed 2012 78 

Singh 
6061Al/Al2O3p/20P aluminium 

MMC 
EDM 

Taguchi method and grey 

relational analysis 

MRR 

Tool wear rate 

Surface roughness 

2012 
79 

Ay et al 
Nickel-based Inconel 718 

super alloy 
Micro-EDM Grey relational analysis 

Hole taper ratio 

Hole dilation 
2012 80 

Yang et al Tungsten WEDM 
Combination of RSM, 

ANN and SA algorithm 

MRR 

Average roughness 

Corner deviation 

2012 
81 

Lingadurai et al AISI 304 stainless steel WEDM DOE 

MRR 

Kerf width 

Surface roughness 

2012 
82 

Azad and Puri Titanium alloy Micro-EDM Taguchi method 

MRR 

Tool wear rate 

Overcut 

2012 
83 

Mahardika Polycrystalline diamond Micro-EDM Taguchi method 

MRR 

Tool electrode wear 

Surface roughness 

2012 
84 

Fonda et al 
Polycrystalline diamond 

Microtools 
WEDM DOE 

Productivity 

Surface roughness 
2012 85 

Somashekhar Aluminium Micro-EDM SA algorithm 

MRR 

Overcut 

Surface roughness 

2012 
86 

Lin et al SK3 carbon tool steel Micro-EDM RSM 

Electrode wear 

MRR 

Overcut 

2012 
87 



 

 

Paul et al γ-titanium aluminide alloy 
Dry micro-EDM, 

Oil micro- EDM 
Taguchi method Overcut 2012 88 

Kumar and 

Agarwal 
High-speed steel (M2, SKH9) Die-sinking EDM ANN and NSGA 

MRR 

Surface roughness 
2012 89 

Bhattacharya et 

al 

EN31, H11, and high carbon high 

chromium (HCHCr) die steel 
WEDM Taguchi method 

MRR 

Surface roughness 
2012 90 

Puertas and 

Luis 

Hot-pressed B4C, cobaltbonded 

tungsten carbide ceramic 
Die-sinking EDM 

DOE and multiple linear 

regression analysis 

Surface roughness 

Volumetric electrode wear 

MRR 

2012 
91 

Shrivastava and 

Dubey 
Copper–iron–graphite MMC 

Electric discharge 

diamond grinding 

ANN, GA and grey 

relational analysis 

MRR 

Wheel wear rate 
2012 92 

Baraskar et al EN-8 carbon steel die-sinking EDM RSM and NSGA-II 
MRR 

Surface – roughness 
2012 93 

Mukherjee and 

Chakraborty 

Die Steel  

Particle reinforced 

aluminium alloy 

matrix composite 

EDM 

Biogeography-based 

optimization (BBO) 

algorithm 

Surface roughness 

Surface crack density 

White layer thickness 

 MRR 

Tool wear rate 

Gap size 

Surface finish 

2012 

94 

Shahali et al DIN 1.4542 stainless steel Alloy Micro-GA Shahali et al 
Surface roughness 

Thickness of white layer 
2012 95 

Kuar et al. zirconia (ZrO2) ceramics 
Laser  

Microdrilling 
RSM 

HAZ thickness  

Taper 
2006 

96 

Kuar et al. 
alumina-aluminium 

interpenetrating phase composite 

Laser  

Microdrilling 
RSM 

HAZ Thickness 

Taper 
2007 

97 

Dhupal et al. Al2TiO5 ceramic 
Laser 

Microgrooving 
RSM, ANN 

Upper Width 

Lower Width 

Depth of Trapezoidal 

Microgrooves. 

2007 

98 

Dhupal et al. Aluminum oxide ceramic Al2O3 
Laser turned 

Microgrooving 
RSM 

Upper Deviation 

Lower Deviation 

Depth Characteristics 

2008 

99 

Dubey and 

Yadava 
Aluminum oxide ceramic Al2O3 Laser Cutting Taguchi method 

Kerf Deviation 

Kerf Width 
2008 

100 

Dhupal et al. 
aluminum titanate (Al2TiO5) 

ceramics 

Laser 

Microgrooving 
RSM 

deviation of taper 

deviation of depth characteristics 
2008 

101 

Caydas and 

Hascalık, 
St-37 steel Laser Cutting Grey Relational Analysis 

Surface Roughness 

Top kerf Width 

Width of HAZ 

2008 

102 



 

 

Ciurana et al. Hardened AISI H13 Steel 
Laser 

Micromachining 
ANN, PSO 

Surface Roughness 

Volume Error 
2009 

103 

Dhupal et al. Ceramic 
Laser turned 

Microgrooving 
RSM, ANN, GA Square Micro-grooves 2009 

104 

Rao and 

Yadava 
nickel-based superalloy Laser Cutting Grey Relational Analysis 

Kerf Width 

Kerf Taper 

Kerf Deviation 

2009 

105 

Sivarao et al. mild steel Laser Machining RSM Surface Roughness 2010 106 

Doloi et al. aluminium titanate (Al2TiO5) 
Laser 

Microgrooving 
RSM Taper Angles of Micro-grooves 2010 

107 

Kuar et al. die steel 
Laser 

Micromachining 
RSM 

Height of the Recast Layer 

Depth of 

the Microgroove 

2010 

108 

Sharma et al. nickel based superalloy Laser Cutting Taguchi method 

Kerf Width 

Kerf Taper 

Kerf Deviation 

2010 

109 

Biswas et al. gamma-titanium aluminide Laser Microdrilling RSM 
Hole Circularity at Exit 

Taper of the hole 
2010 

110 

Kibria et al. alumina ceramic 
Laser Micro-

turning 
Experimental Analysis 

Depth of Cut 

Surface Roughness 
2010 

111 

Biswas et al. Tin-Al2O3 composites Laser Microdrilling RSM 
Hole Circularity 

Taper 
2010 

112 

Biswas et al. TiN-Al2O3 composites Laser Microdrilling RSM Hole Circularity  2010 113 

Panda et al. high carbon steel Laser Microdrilling Grey Relational Analysis 

HAZ 

Hole Circularity 

MRR 

2010 

114 

Kuar et al. die steel 
Laser 

Micromachining 
RSM 

Recast Layer 

Depth of the Microgroove. 
2010 

115 

Sibalija et al. Ni-based superalloy Laser Microdrilling 
Taguchi method, ANN, 

GA 
quality characteristics of the holes 2011 

116 

Teixidor et al. AISI H13 tool steel Laser Milling PSO 
Surface Quality 

Dimensional Accuracy 
2012 

117 

Phipon and 

Pradhan 
Al-alloy sheet 

Laser 

Micromachining 
RSM, GA 

Kerf Taper 

Surface Roughness. 
2012 

118 

Satapathy et al. medium carbon steel Laser Drilling Taguchi method 

Hole Circularities 

HAZ 

Aspect Ratio 

Spatter Deposition 

2012 

119 



 

 

Teixidor et al. 316L Stainless Steel Laser Milling DOE 

Diameter 

Depth 

Volume Error 

2013 

120 

Mukherjee et 

al. 
zirconia (ZrO2) ceramics 

Laser 

Micromachining 

Artificial Bee Colony 

Algorithm 

HAZ thickness 

Taper 
2013 

121 

Madić et al. 
structural steel S355J2G3 EN 

10025 sheet 
Laser Cutting 

Taguchi method 

Dual Response Surface 

Methodology 

Average Surface Roughness 2014 

122 

KantRishi et al. 
PMMA (Poly methyl metha 

acrylate) 

Laser 

Micromachining 
RSM 

Dimensional Precision 

Surface Roughness 
2015 

123 

Tshabalala et 

al. 
Si3N4 

Laser 

Micromachining 

Numerical and 

Experimental Approaches 

Surface Interaction Time 

Surface Roughness. 
2015 

124 

Stolberga1 et 

al. 

SUS304 stainless steel, 

polycarbonate polymer 
Laser Cutting Experimental Analisis 

Edge Quality 

Ablation Rate 
2015 

125 

Biswas et al. 
alumina-aluminium 

interpenetrating phase composite 
Laser Microdrilling RSM 

Hole Diameter at Entry 

Hole Diameter at Exit 

Hole Taper 

2015 

126 

Giorleo et al. titanium sheet 
Laser 

Micromachining 
Regression Model Bottom Surface Quality 2015 

127 

Butkus et al. soda-lime glass and stainless steel 
Femtosecond 

Ablation 
DOE Fabrication Duration for Cutting 2015 

128 

Madić et al. AISI 304 stainless Laser Cutting  
Taguchi method, ANN, 

GA 

Surface Roughness 

Kerf Width 

HAZ 

2015 

129 

Rao et al. T700S CFRP Laser Cutting  RSM 

Kerf Width 

Taper Percentage 

HAZ 

2016 

130 



 

 

1.7 Conclusion 

Modelling and optimization techniques such as DOE (Response Surface Methods and 

Taguchi), ANN, GA, and PSO and mixed techniques are commonly used in engineering 

applications especially in laser micromachining process. These approaches are presented and 

explained in this chapter. By presenting different applied modelling methods in Table 1 it is 

obvious that these techniques are widely used in different engineering processes. The 

adaptation of these methods is rising as a useful tool for modelling, predicting and optimizing 

the processes.  
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