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Kurzfassung

Fluggesellschaften befinden sich in einem kompetitiven Markt, stark geprägt von andauernden

Preiskämpfen. Gleichzeitig steigt der Kostendruck durch Abgaben wie die Luftverkehrssteuer

und den Emissionshandel. Dadurch bedingt verringert sich die Marge, die Fluggesellschaften

durch den klassischen Transport von Passagieren erwirtschaften können. Dieser Entwick-

lung versuchen die Fluggesellschaften Rechnung zu tragen, indem sie durch das Angebot

zusätzlicher Leistungen (zum Beispiel eines vorzeitigen Sitzplatzreservierung) ihre Marge

erhöhen. Dabei muss man die Kunden besser verstehen, um nachgefragte Produkte zu

akzeptablen Preisen anbieten zu können.

Das Revenue Management ist eine relative junge wissenschaftliche Disziplin, die sich mit der

erlösorientierten Gestaltung von Absatzprozessen beschäftigt. Das Revenue Management hat

seinen Ursprung in der Luftfahrtindustrie und findet in den letzten Jahren zunehmenden

Anklang in weiteren Branchen, wie zum Beispiel der Transport- und Touristikbranche. Eine

der essentiellen Anwendungsvoraussetzungen für das Revenue Management ist ein hetero-

genes Nachfrageverhalten, welches sich abhängig von Zahlungsbereitschaft beziehungsweise

Preiselastizität quantifizieren lässt. Für die Einbettung der zusätzlichen Leistungen in das

bestehende Revenue Management, welches sich bisher nur der Kernleistung (Transport)

widmet, bedarf es daher einer adäquaten Modellierung des Nachfrageverhaltens für Zusat-

zleistungen.

Im Rahmen der vorliegenden Dissertation werden statistische Verfahren vorgestellt und ange-

wandt, die kundensegmentspezifische Präferenzen und Zahlungsbereitschaften für bestimmte

Zusatzleistungen datengetrieben identifizieren. Die kumulative Arbeit beinhaltet zwei anwen-

dungsorientierte Beiträge. Der erste Artikel beschäftigt sich mit einzelnen Zusatzleistungen,

während der zweite Artikel mehrere gebündelte Zusatzleistungen betrachtet. Basierend auf den

unterschiedlichen Datengrundlagen — von der granulären Buchungsebene bis zur aggregierten

Marktebene — werden verschiedene statistische Modelle verwendet. Diese liefern insbesondere

ökonomische Implikationen, zum Beispiel bezüglich potentieller Umsatzveränderung und die

daraus resultierenden strategischen Handlungsempfehlungen für Preisgestaltung und Revenue

Management. Daraus gewonnene Erkenntnisse lassen sich darüberhinaus direkt auf andere

Bereiche des Transports und der Touristik übertragen.





Abstract

In a competitive market, airlines are utterly influenced by ongoing price wars. At the same

time, the cost pressure increases through duties such as aviation tax and emissions trading.

As a result, the margin that airlines can generate through the classic transport of passengers

is reduced. Taking this into account, airlines attempt to increase their profits by offering

ancillary services; for example, advanced seat reservations. In doing so, one has to better

understand the customer, in order to offer demanded products at acceptable prices.

Revenue Management is a relatively young scientific discipline that deals with the revenue-

oriented organisation of sales processes. It has its origins in the airline industry and has

recently become increasingly popular in other businesses, such as the transport and tourism

industry. One of the essential requirements for the application of revenue management is

a heterogeneous demand behaviour, which can be quantified depending on willingness to

pay or price elasticity. For the embedding of the ancillary services in the existing Revenue

Management, which to date has been dedicated only to the core service (transport), an

adequate modelling of the demand behaviour for ancillary services is required.

In this thesis, data-driven statistical methods are introduced and applied to identify the

preferences and willingness to pay for certain additional services on a customer-specific

basis. The cumulative work includes two application-oriented contributions. The first

article deals with one single ancillary service, while the second article considers the bundled

ancillary services. Based on the different databases — from the granular booking level to

the aggregated market level — various statistical models are used. They provide particular

economic implications, for example, regarding the potential change in revenue and the

resulting strategic recommendations for pricing and Revenue Management. Moreover, some of

the findings gained thereof can be directly transferred to other areas of transport and tourism.
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Chapter 1

Introduction

1.1 Overview

In the era of big data, the data-driven mindset is reshaping all industries. The aviation

industry has been an excellent paragon on collecting and using data to achieve better

performance since its birth: for fuel efficiency, for plane maintenance and flight safety, as well

as for sales and after-sales. From a statistical perspective, one can find enlightening data

generating processes from pre-flight through in-flight to post-flight period. Indeed, it is not

an exaggeration to say that airlines are not only pushing planes through the clouds but also

terabytes of data.

The research questions in this cumulative thesis were initiated by a cooperation between the

Department of Statistics at Ludwigs-Maximilian-Universität and Lufthansa Group. The scope

of this work is to demonstrate the value of bespoke statistical methods which can make use

for airline Ancillary Pricing and Revenue Management. As the main contributing parts, two

related research articles can be read independently. These publications mainly focus on the

applications of statistical methods that are tailored to provide additional value on accessing and

quantifying the Willingness To Pay or rather Price Elasticity for ancillary services. In order

to connect the various components from both statistical and economic discipline mentioned

above, this chapter gives an elementary introduction to the different scientific fields: Providing

the background of the research and area of the application, Section 1.2 introduces the Revenue

Management as a decision support system in the perspective of an airline. Motivating the

research goals, Section 1.3 reviews the increasing relevance and status quo of ancillary services.

Moreover, Section 1.4 first presents the notation and general setup of basic statistical modelling;

advanced models and inference procedures are demonstrated in further steps with more details.

Last but not least, aspects of the data management are discussed in Section 1.5.
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1.2 Airline Revenue Management

As the core of every airline’s economic model, Revenue Management (RM) has been a success

story of transfer theory to practice since the deregulation of the U.S. airline market in 1978

(Morrison and Winston 1986). The earliest RM model was presented by Littlewood (1972).

Considered as a seminal work in RM, it introduced the idea of maximising the revenue1 instead

of the number of passengers on a particular flight and established the foundations of many

further models. Since then, various other industries adopted RM and contributed to it. The

spectrum does not only include traditional tourism industries such as cruise lines (Ladany and

Arbel 1991), car rentals (Geraghty and Johnson 1997) and hotels (Choi and Mattila 2004) but

also other businesses in the tertiary sector such as entertaining (Huntington 1993), retailing

(Vinod 2005) and advertising (Kimms and Müller-Bungart 2007). Due to many successful

implementations and economical results of RM, even the manufacturing industries from the

secondary sector – which traditionally has its main focus on supply chain management – are

recently groping for research and innovation in the direction of RM (Gruß 2008; Ruhnau 2012).

Whereas supply chain management has its focus primarily on the optimisation of internal

processes and hence the associated costs, RM spotlights the selling of products or services.

“[S]elling the right seats to the right customer at the right prices and the right time”, this

concise description of RM for the airline case in the annual report of American Airlines (1987)

gives us an idea of the exact goals. To achieve these goals, many decisions need to be made.

These decisions can be divided into three categories relating respectively to

• structure: which seats are right?

• price: what is the right price?

• quantity: who is the right customer (if and how many seats available for him)?

According to the laconic phrase of the Greek philosopher Heraclitus: “everything flows”(Beris

and Giacomin 2014), answering these above questions depends on the right time. As illustrated

in Table 1.1, structural decisions in RM are usually made on the strategic level and modified

on the tactical level, i.e., they are aimed at the mid- or rather long-term effect and thus will

not change frequently. In contrast, the timescale of the last two types of decisions depends on

the context and can even vary across firms within an industry. For instance, most traditional

airlines change their pricing structure infrequently and allocate the quantity to sell on an

operative level; budget airlines on the other hand, mainly use price as their tactical variable.

1Low variable costs and high fixed costs in the airline business make maximising revenue approximately
equal to maximising profits.
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� Revenue Management � Marketing and Production Management

Structure decisions Price decisions Quantity decisions

Strategical level

Program:

· Product/Service range
· ...

Market position:

· Luxury, premium or other
· ...

Resourcing:

· Fleet size and aircraft type
· ...

Tactical level

Design:

· Which selling format and channel
· How to bundle
· ...

Price differentiation:

· Segmentability
· How to price over time
· ...

Capacity adjustment:

· Number and location of hubs
· Fleet assignment
· ...

Operative level

Capacity steering:

· Whether to accept or reject a request
· Overbooking
· How to allocate capacity to segments
· ...

Table 1.1: Combination of objects (horizontal) and levels (vertical) of the business decision with
airline-specific examples.

The fundamental difference between quantity-based and price-based RM is that the former

focuses on controlling capacity and not the price. Here, price changes are the consequences of

the changing availability of each booking class, which have differently priced seat capacity. In

contrast, price-based RM adjust the prices dynamically to a pre-set capacity to maximise rev-

enue without booking classes. This antithesis comes from the different historical development

of business models and their corresponding segmentability of the market. Whereas traditional

airlines have a more comprehensive product and service range (hence, also often referred to

as Full-Service Carriers, FSC) and allocate their network’s capacity through product and

price differentiation, budget airlines focus on the price-sensitive customers (hence, also often

referred to as Low-Cost Carriers, LCC) and segment these through self selection along the

booking horizon (Müller-Bungart 2007); Some LCC also use simple models without product

and price differentiation, since their optimal pricing tactic is depending on the competing

FSC and they must offer lower prices than their competitor (Marcus and Anderson 2008).

More details on quantity- and price-based RM can be found in Talluri and van Ryzin (2004).

The crucial question of both price-based and quantity-based RM is, however, the same. It is the

decision to accept or reject booking request under uncertain demand and capacity restriction.

To sell or not to sell, that is the question. The RM system as decision support for this question

can be seen as a weighing scale which quantifies the marginal revenue on the demand side

and the opportunity cost on the supply side. If one requesting order will provide more

marginal revenue than the opportunity cost of the requested goods, then it should be accepted.
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As illustrated in Figure 1.1, these two factors are measured and optimised through two separate

apparatuses, namely pricing and capacity steering.
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Figure 1.1: An RM System typically follows four steps: 1. Data collection; 2. Demand modelling; 3.
Offer optimisation and 4. Inventory & Availability control. Quantity-based RM has more focus on
the capacity steering, whereas price-based RM often only uses pricing to steer pre-set capacities.
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The RM process typically involves cycling through four steps at repeated intervals. In the first

step, relevant data will be prepared as input data for the following step of demand modelling.

Diverse parameters of each model will be estimated in the second step and applied in the third

step to find the optimal set of controlling rules until the next re-optimisation. In the last step,

the availability or inventory of products will be controlled using the optimised controlling rules,

which is done either through the airline’s transaction-processing systems or shared distribution

systems. The frequency with which each step is performed depending on many factors such

as the volume of data, the speed that business conditions change, the modelling approach

and the optimisation methods used. The methodological task of statistics in RM is hence the

adequate modelling of demand in order to provide interpretable pricing or steering parameter.

In following, the scientific contributions to RM will be briefly summarised with more focus on

the statistical methods.

Overbooking

Initially, airlines could mainly use overbooking to increase their revenues. Some passengers

will cancel their ticket before departure; this is called cancellation. Some passengers, on

the other hand, do not show up on the day of departure; these are called no-shows. Ticket

cancellations and customer no-shows cause some of the seats to fly empty on the day of

departure, even if the number of seats sold equals the flight capacity. To avoid this spoilage of

capacity, airlines endeavour to utilise their resources efficiently and hence sell more seats than

the flight’s capacity. This excess booking above the capacity of the flight is called overbooking,

and it is the oldest RM practice. The first contribution of statistical methods on overbooking

dates back to Beckmann (1958); Rothstein (1985) discussed following efforts on characterising

cancellation and no-show distributions. Other early developments are listed in McGill and

van Ryzin (1999).

The downside of overbooking is the risk of oversales, where more passengers show up at check-in

as the available seats. In favourable cases where there is still capacity in the next higher cabin,

passengers are happy to be upgraded ; in critical cases, however, they will suffer from so-called

denied boarding which leads to negative customers experience and legal penalties for airlines.

Thus, the benefits of overbooking have to be considered with costs from oversales. Siddappa

et al. (2008) proposed to optimise profit through contrasting the revenue function estimated by

regression splines and the cost function motivated by a binomial distribution of customers’ show

up. The binomial distribution imposes the strong assumption, that cancellation probabilities

are memoryless and depend only on time to departure and not when the ticket was booked.

Iliescu et al. (2008) relax this assumption by using a discrete time model to predict cancellation

and also suggested further statistical methods such as competing risks.
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Arrival process

Motivated by the same reason as for overbooking, i.e., to avoid the spoilage of the seats,

The British Overseas Airways Corporation (BOAC, now British Airways) started in the

early 70s to offer “early bird” bookings with discounted price (hence often referred to as low

fare) to passengers who booked at least 21 days before departure. This innovation gave the

airline new potential of gaining revenue from seats that would otherwise fly empty. On the

other hand, the risk of spill full fare (also referred to as high fare) late booking customers

occurs. Soon, Littlewood (1972) at BOAC came up with the new twist on the old game

of demand and supply. He suggested to only accept bookings with the discounted fare, as

long as their revenue value (i.e. marginal revenue) exceeded the expected revenue of future

full fare bookings (i.e. opportunity cost). This simple inventory control rule (henceforth,

Littlewood’s rule) marked the beginning of airline RM. After the Airline Deregulation Act of

1978, airlines linked certain services and restrictions to respectively booking classes, which

creates product differentiation. The new main task of RM since this point has been the

allocation of inventory/availability and booking classes.

Belobaba (1987) extended Littlewood’s rule to multiple fare classes and introduced Expected

Marginal Seat Revenue (EMSR) for the general approach. Although this heuristic method

does not produce optimal booking limits except in the two-fare case, it became a widely used

practice because it is easy to implement. An overview of extensive research since then on the

allocation problem in quantity-based RM can be found in Chiang et al. (2007). From the

perspective of supply side, development has progressed from optimising single leg, to segment

and finally to origin-destination (Poelt 2016); to reflect the characteristics of the supply side,

the term “network RM ” is often used.

On the demand side, customer arrivals in RM are usually modelled using stochastic processes.

It is assumed that the state is only influenced by the latest event, and the arrival of demand

is regarded as not influenced by inventory/availability controls. Most of the early modelling

approaches assume that customers are passive, in other words: the decision-making process of

the customer was not considered, and they are merely governed by the demand profile specified

at the outset (Shen and Su 2007). Later, a typical convention is to distinguish the myopic

customers who make a one-time purchase decision at their arrival and the strategic customers

who may postpone their purchase to a future time point. Different demand streams are often

correlated; Stefanescu (2009) considered this pattern and proposed a class of multivariate

demand models that capture both the time and the product dimension of demand correla-

tion. Further developments in demand arrival modelling can be found in Cleophas et al. (2009).



1.2 Airline Revenue Management 7

Customer behaviour

Correlation of product demands arises because of heterogeneous customer behaviour. Demand

can be very erratic, and customers’ preferences may differ, e.g., depending on the purpose of

their travel. Hence, it is not a trivial task to match supply and demand. A common simplified

distinction for demand in the airline industry is among between time-sensitive (e.g. business

travellers) and price-sensitive (e.g. leisure travellers) types of customers. When these groups

of customers are offered the same set of products, they will usually make different choices. For

instance, if their preferred product is not available or priced over their Willingness To Pay

(WTP), they may show different substitution behaviour, e.g., switch to different products or

not purchase at all.

The crucial task for airlines to understand customer behaviour and develop different marketing

strategies to accommodate all types of customers is often referred to as “choice-based RM ”,

see Vulcano et al. (2010). Conventional modelling approaches in this area are based on

the framework of discrete choice models, which statistically relate the choice made by each

customer to the attributes of the customer and the attributes of the available alternatives to

the customer, see, e.g., Ben-Akiva and Lerman (1985) and Train (2009). These works track

back to the theoretical basis developed by McFadden (1973, 1981, 1984), who was awarded

the Nobel prize for it. The discrete choice models are usually derived under the assumption

of utility-maximising behaviour by the decision-maker (Fishburn 1970), which can also be

used to motivate categorical regression models (Tutz 2012). A detailed review of choice-based

methods in RM can be found in Strauss et al. (2018), and technical details of regression

models will be given in section 1.4.

The development of choice-based RM systems requires price information viewed by customers

at the time of booking. The goal is to forecast demand as a function of price and maximise

revenue by jointly determining what prices to offer in which market, as well as how many seats

to sell at each price. In turn, airlines need to develop methods that take price fluctuations

into account for estimating Price Elasticity (PE), which is the per cent change in demand

caused by a per cent change in price. This measurement of how customers respond to changes

in price can conveniently find its counterpart in the ceteris paribus interpretation of the price

variable in the context of statistical regression models in term of probability. In this thesis,

PE is accessed and quantified in the regression framework. Further methods for calculating

PE2 can be found in Han and Li (2009).

2For interpretation note the distinction between short-term and long-term PE: the immediate response
is radical but the permanent change could be less. Based on the aggregation level of data, the smoothed
short-term effect and the limited long-term interpretation must be considered, see Simon (1989).
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1.3 The motivation of research on Ancillary Pricing

Since the world economic crisis in 2008 reduced profits for many companies, they have carried

out cost reduction policies which have a substantial impact on business travel; simultaneously,

the demand on leisure travel has become more price sensitive, too. For the year 2009, a loss

of 70 billion dollars (ca. 15.8%) on passenger revenue was observed by the International Air

Transport Association (2018a). As a consequence, the fierce competition between low-cost and

traditional carriers has been further intensified, and they are both forced to seek opportunities

to generate additional revenues from other sources beyond the airfare: The former started

to create more additional supplements to upgrade service coverage; the latter unbundle their

products to provide more competitive price. Thus, one can say the most recent industry-wide

development on the strategical level has been to derive revenue from ancillary sources.

According to the global projection of IdeaWorks (2018), the percentage of ancillary revenue

in total revenue has been more than doubled since 2010 (see also Figure 1.2). Indeed, the

worldwide airline revenue in 2017 would be less than in 2015, if no ancillary revenue could

be additionally generated. These figures show the impact that ancillary revenue has on

the bottom lines of airlines. From the perspective of a passenger, ancillary service is also a

critically important element of customer experience.
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has been more than doubled since 2019. Data source: IdeaWorks (2018)
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Taking the definition of ancillary in Oxford Dictionaries (2018) “Providing necessary support

to the primary activities or operation of an organisation, system, etc.”, a clear definition of

primary activity/operation is necessary. As the core of the airline business, the primary service

is to transport passengers from origin to destination safely and on time, suiting their schedule.

Along the time horizon, Figure 1.3 illustrates various examples of ancillary services enveloping

this primary core and these can be divided into four categories, where only the unbundled “a

la carte” items are flight-related3 and can thus be easier incorporated into airlines’ existing

RM system. Thus, for this thesis, the focus lies on these flight-related ancillaries. Bearing

mind that other ancillary sources are also relevant as well to maximising revenue for airlines.

pre-flight                                                       in-flight               post-flight 

Safety 

Reliability 

Schedule

Food & Beverage

Priority Boarding

Advanced Seat Reservation

Baggage handling

WiFi & Entertainment

Cancellation fees

No-Show penalty

Airport parking

Travel insurance
Duty-free shopping

On-board magazines

Hotel
Rental cars

Tourist attractions

Lounge access

Airport transfers

Lounge area

Gate area      Primary service


     Unbundled

     “a la carte”

     items


     Advertising


     Frequent Flyer

     Program (FFP)


     Commission

     based third-

     party service

Figure 1.3: Airline primary and ancillary services on the time horizon: While primary service ranges
from short pre-flight to in-flight phase, ancillary services accompany customers in a broader stretch.

The recent practice of unbundling has led to a mixed result. On the one hand, the customers

can purchase the airfare at a competitive price and choose exactly additional services

depending on their preference; this can be seen as a development towards personalisation

of the tailor-made travel experience. On the other hand, passengers who were previously

accustomed to services that were traditionally included within the fare complain that the

airlines take every opportunity to nickel-and-dime their customers.

3In particular, only the data of ancillaries in this category are related to a (booking of a) flight, which can be
managed within the current RM systems. From a pricing perspective, while advertising and commission based
activities are priced on a business-to-business(B2B) level, FFP does also price on business-to-customer(B2C)
level. However, the target of FFP is rather to manage customer relationship than revenue.
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Garrow et al. (2012) reviewed the unbundling trends in the U.S. airline industry and anticipated

that whereas LCCs will more broadly adopt ancillary fees of unbundled items, many traditional

carriers will eliminate their ancillary fees due to negative impacts on customer perception.

Wittmer and Rowley (2014) conducted a survey of economy passengers from a European FSC

and found that they do perceive value in ancillary services and display a general intention

to purchase, especially for services with attribute “hospitality”, e.g., lounge access and seat

selection. Furthermore, the viability of (re)bundling the unbundled items was proven by their

study, because most of the respondents chose such packages in the simulated purchase situation.

Besides the geographical or rather cultural difference of preferences for ancillary service, there is

also a different recommendation for (un)bundling of services depending on airlines’ structure.

In a simplified combinational binary setting of high (e.g. business travellers) and low type

(e.g. leisure travellers) customer, Cui et al. (2018) show that uniform-pricing (respectively,

discriminatory-pricing) firm should unbundle the ancillary service if the fraction of high type

consumers who value the ancillary service is large (respectively, small) enough. Despite the

cultural and structural discussion, this thesis provides statistical modelling approaches for both

unbundled “a la carte” item and ancillary bundle focusing on the pricing insights and possible

application in RM. A short discussion on the research gaps and the goals of this thesis will be

outlined in following subsections.

1.3.1 “A la carte” pricing

As previously described, ancillary services as itself were historically less relevant to overall

profitability or were not offered at all. Airlines are seeking methods to help them understand

how passenger perceive ancillary services. In the economics literature, a la carte item is also

called as an add-on, regardless if new created or unbundled from the previous full-service.

Ellison (2005) showed that add-on pricing could be used as a price discrimination tool for

demand segmentation. Price discrimination stems from the fundamentals of WTP. For a

specific add-on on a flight, the WTP can differ from customer to customer, just as the WTP

for the flight differs between them. To date, the calculation of marginal revenue has been

based on the WTP for airfare only. With no doubt, there are inherent differences between

airfare and ancillaries. One is a necessity, and the other is an option. As such, customers have

different price expectations, sensitivities and motivations and thus different WTP to “must

have” versus “nice to have”. As an illustrative example with an opportunity cost at 90e, the

booking request of a passenger A who is willing to pay 100e for the airfare and nothing for

ancillary services would be accepted in contrast to a passenger B whose WTP for airfare is

80e but for ancillaries is 40e as the add-on.
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In order to improve the existing practice and incorporate the ancillary revenue into pricing

optimisation, airlines first need a reasonable estimate of the revenue potential of ancillary

services. This estimate can then be used to adjust fares to account for both ticket and ancillary

revenue when RM systems calculate availability. As will be described in more details in Chapter

2, most of the studies estimated WTP from Stated Preference (SP) via a questionnaire survey

and not from Revealed Preference (RP) via sales data. SP information from surveys has been

extensively used in literature to elicit WTP for ancillary services, see, e.g., Balcombe et al.

(2009), Correia et al. (2012), and Menezes and Vieira (2008). Despite the progress in survey

design and in results interpretation, it is difficult to avoid the intention-behaviour gap, i.e.,

the difference between “customer attitude” and “customer behaviour”, or in other words the

difference between what consumers claim they are “ready to pay” and what they “actually

pay”. Hence, one crucial task of the research article presented in Chapter 2 is to provide

pricing insights based on RP through sales data and suggest a general modelling approach for

unbundled ancillary items based on statistical methods.

1.3.2 Bundle pricing

Product bundling and unbundling by firms has been a focus of researchers in the industrial

organisation ever since the seminal contribution of Adams and Yellen (1976). The literature

identifies three bundling strategies. Under the pure components (or unbundling) strategy,

the seller offers the products separately; under pure bundling, the seller offers the bundle

alone; under mixed bundling, the seller offers the bundle as well as each single items. As

a strategy, bundling is most suitable for high volume and high margin (i.e. low marginal

cost) products, which makes it a perfect match for the business conditions of airline ancillary

services. Branded Fares were introduced to the airline industry by Air New Zealand in 2004

as a mixed bundling strategy. Since then, numerous airlines have adopted similar schemes

due to the double-edge of creating ancillary revenue sources, as discussed at the beginning

of this section. Besides offering a baseline brand which only including the primary service

transportation, selections of bundled ancillary services are provided as the so-called up-sell

brands. These up-sell brands (usually 2-3 incremental bundles) add a variety of ancillary

services to the baseline brand such as a combination of Advanced Seat Reservation (ASR),

baggage handling, onboard food & beverage or refund and rebook options for a discounted

amount. Because of the discounted amount, bundling can be seen as a value pricing strategy.

However, other strategic advantages of bundling should not be neglected. In particular, for

better brand awareness and passenger segmentation (Fiig et al. 2012; Vinod and Moore 2009),

as well as if certain (new) products require more publicity and need to be promoted.
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To date, the majority in the airline industry is still using bundling primarily as a strategic

tool to promote ancillary items. Hence, they follow a uniform-pricing approach for the up-sell

steps, i.e., the discounted amount. This homogeneous pricing strategy may not justify the

heterogeneous demand on ancillary items included in the bundle. While differential pricing

for up-sell steps can be made based on the length of haul and the corresponding utilities

for the customer, Chapter 3 proposes a statistical modelling approach to understand market-

specific customer behaviour, which does not need to be solely dependent on the length of haul.

Furthermore, the forecast for ancillary revenue can be achieved thereby.

1.3.3 The positioning of the contributing articles

The goal in RM is to maximise revenue: given a flight or a network of flights, allocate

availability to passengers who are willing to pay the most. The decision, whom to prioritise

availability to, depends on the forecast of the expected revenue contribution of different

passengers. Traditionally, the expected revenue is based on posted flight ticket fare which

mirrors the corresponding WTP. With the growing relevance of ancillary revenue, future RM

systems must be capable of considering these ancillary revenues as well. The diverse data

source and differences in price sensitivity create a complex task that today’s RM solutions

have yet to address.

In order to integrate the ancillary revenue into the RM system, airlines need to estimate the

ancillary revenue potential of the passenger. Subject to the level of detail in the available data,

these estimates can vary in granularity. Figure 1.4 illustrates a coordinate system based on

the horizontal dimension of data granularity and vertical dimension of product selling format.

The most extreme level on the data dimension is to estimate ancillary revenue potential by

each individual. If differential pricing based on individual data is also practised to individuals,

it is equivalent to the price differentiation on the first degree in the economic theory (Pigou

1932, Chap. XVII). As it is the case in most businesses4, first-degree price differentiation is an

(uncommon) ideal5 and is difficult to practise in the airline6 industry, too. The data collection

of individual customers is often compromised as the collection of individual booking data,

which can contain more than one individual and hence labelled as semi-individual data in this

thesis. On the other hand, the collection and storage of more granular data also require more

resources. Thus, the estimation based on aggregated booking class or market provides a more

available — especially more economical — alternative level of detail.

4Auctions are the most practised differential pricing methods near to first-degree price differentiation.
5See, e.g., Executive Office of the President of the United States (2015) for further discussion on this topic.
6Although exact individual data are available by some customer (e.g. frequent flyer), they are not the

majority affected by RM systems.
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Figure 1.4: Positioning of the contributing articles: Considering the pricing problem of “a la carte”
ancillary products, Chapter 2 applies statistical models to booking data. On the level of aggregated
data, Chapter 3 provides a model-based market-specific pricing approach for ancillary bundles.

In the current industry practice, prices of single “a la carte” ancillary items are set by pricing

experts in an ad hoc manner. The models presented in Chapter 2 can be used to discover the

additional potential in product pricing on the one hand, and improve the expected revenue

contribution through WTP (either fare or availability) adjustment on the other hand. For

demonstration, Chapter 2 uses ASR as an example, the possible application is however not

restricted to ASR only and can be extended to further flight-related ancillary items.

Given the need to (re)bundle the ancillary services and controversy situation on protecting

data privacy, Chapter 3 takes a step back on the data dimension and engages in the area of

bundle pricing. The estimated market-specific PE provides decision support for making and

evaluating bundle pricing policy.

Economically, both applications in Chapter 2 and 3 can be seen as differential pricing tools on

the second or third degree by providing their managerial implications and strategical recom-

mendation for airlines based on statistical models. To better understand the employed models,

the elementary foundation of statistical modelling is briefly sketched in the following section.
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1.4 Statistical methods

As will be shown in Chapter 2 and 3, the probability of a customer purchasing an ancillary

item or a bundle of ancillaries can be modelled in the regression context. Regression is the

most commonly practised statistical methodology for analysing empirical problems in many

scientific disciplines such as life sciences, social sciences and economics (McCullagh and

Nelder 1989). Since the first regression analysis by Galton (1886), the methodology has been

developed in many ways. In this section, the framework of regression is briefly summarised.

The general setup will be first described and then extended to different model classes. Further

details as well as practical examples can be found in Fahrmeir et al. (2013).

Following conventions of notation are used: random variables are denoted by upper case italic

letters and their observed values by the corresponding lower case italic letters, e.g., the obser-

vations y1, y2, ...yn are regarded as realisations of the random variables Y1, Y2, ..., Yn. Vectors

are written in bold, i.e., yyy represents a vector of observationsy1...
yn


and YYY is a vector of random variables Y1...

Yn

 ,

Note that a matrix is also written in bold upper case letters but not italic, e.g., X. The

superscript (·)T is used for a matrix transpose or when a column vector is written as a

row, e.g., yyy = (y1, ..., yn)T . Greek letters denote parameters, and the symbol ˆ is used for

estimators, e.g., the parameter vector βββ is estimated by β̂ββ.

Both the probability density function of a continuous random variable and the probability

mass function for a discrete random variable are referred to their distributions and denoted

by fθ(y), where θ represents the parameters of the distribution. The formulation P̂(Y |X) is

used for the predicted outcome probability, in particular with the focus on conditioning on

the model input X and not the probability distribution itself nor its (estimated) parameter.

The expected value and the variance of a random variable Y are denoted by E(Y ) and V(Y )

respectively.
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1.4.1 Regression models

In the setting of classical linear regression, it is assumed that the true expectation E(YYY ) = µµµ of

the response or dependent variable YYY = (Y1, ..., Yn)T ∈ Rn with realisations yyy = (y1, ..., yn)T is

linked to a linear combination of k explanatory or independent variables (or simply covariates)

and unknown parameter βββ = (β1, ..., βk)
T . This is given by

µµµ = ηηη = Xβββ, YYY ∼ Nn(µµµ, σ2In), (1.1)

where the design matrix X = (xxx1, ...,xxxk) contains k columns of covariates and n rows of

observation. The linear predictor ηηη results directly from the linear combination Xβββ. In is an

n-dimensional identity matrix and σ2 > 0 is the variance of the independent and identically

distributed (i.i.d.) errors, stemming from observing an erroneous version

yyy = Xβββ + eee, eee ∼ Nn(000, σ2In). (1.2)

It is assumed that the errors are uncorrelated amongst each other.

The usual estimation procedure for the parameters βββ follows by minimising the squared errors

β̂ββOLS = arg min
βββ

(yyy −Xβββ)T (yyy −Xβββ) (1.3)

and β̂ββOLS hence called the Ordinary Least Squares (OLS) estimator.

This setting provides a simple way to describe the relationship between explanatory variables

and a response variable. Together with the straightforward computation to obtaining

parameter estimates due to a closed-form solution β̂ββOLS = (XTX)−1XTyyy, as well as the

intuitive interpretation of the results, make the classical linear regression model an attractive

and frequently used approach in the empirical analysis.

As the famous aphorism of the British statistician Box and Draper (1987) states, “all mod-

els are wrong, but some are useful”, and models are more useful if they are tailored to the

characteristics of the nature of the investigating object. The adequate formulation and inter-

pretation of regression models require therefore explicit consideration of the different types of

the response variables as well as the explanatory variables. Following this principle, questions

from various scientific disciplines led to the need to extend the classical linear regression model,

mainly for the following two types of more general situations:
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Type I: The response variable follows a distribution different from a normal distribution, for

instance, the response variable can be binary or categorical.

Type II: The relationship between the response and explanatory variables is not linear.

Generalised Linear Model

Nelder and Wedderburn (1972) demonstrated the unity of many extended statistical methods

which overcome the limitation of OLS for both above-described situations. They created the

necessary concept with the introduction of Generalised Linear Models (GLM). The GLM is

characterised by two assumptions:

The distributional assumption constitutes that, given covariates xxxi, i = 1, ..., n, the response

Y1, ..., Yn are conditionally independent and the conditional distribution of these responses

belongs to a distribution family with densities of the form

fφ,θ(yi) = exp

[
yiθ − a(θ)

φ
+ c(yi, φ)

]
, (1.4)

which presents the exponential family when with a fixed dispersion parameter φ scaling the

variance. Note this scale parameter φ does not depend on the observation i = 1, ..., n.

Table 1.2 lists some well-known distributions in the exponential family. In this context, θ is

the natural or canonical parameter, and both a(·) and c(·) are functions corresponding to the

type of the distribution. The exponential family has many desirable properties that make it

useful for statistical analysis. One particular is the direct access to a sufficient statistics for

the parameter of interest (Barankin and Maitra 1963). For a collection of n i.i.d. random

variables sampled from the same exponential family distribution, the joint likelihood7 of θθθ can

be obtained by taking the product

Ly(θθθ)
i.i.d.
=

n∏
i=1

fθ(yi) =

[
n∏
i=1

c(yi)

]
exp

[〈
θθθ,

n∑
i=1

yi

〉
− n · a(θθθ)

]
(1.5)

with sufficient statistic t(y) =
∑n

i=1 yi summarising the data. Note that an exponential family

distribution can have a multidimensional parameter, i.e., θθθ ∈ Rd, d ≥ 1.

7Here, the roles of the data y and the parameter θ are interchanged. The likelihood is considered as a
function of θ for fixed data y, in contrast to the distribution as a function of y for fixed θ. However, both are
the same function of y and θ jointly.
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Normal N (µ, σ2) Bernoulli B(1, π) Binomial B(n, π) Multinomial M(n,πππ)

fθθθ(y) = 1√
2πσ

exp
[
− 1

2σ2 (y − µ)2
]

πy(1− π)(1−y)
(
n
ny

)
πny(1− π)(n−ny) n!

y1!···ym! exp(
∑M
m=1 ym log πm)

yi ∈ R {0, 1} {0, 1} {1, ...,M}

µ = µ π π (π1, ..., πM )T

θ(µ) = µ log
(

π
1−π

)
log
(

π
1−π

) [
log
(
π1

πM

)
, ..., log

(πM−1

πM

)
, 0
]T

a(θ) = θ2

2 log(1 + eθ) n log(1 + eθ) n log(
∑M
m eθm)

Table 1.2: Selection of well-known distributions belonging to the exponential family, for extensions
see Wood (2006, p. 61), Tutz (2012, p. 61) and Fahrmeir et al. (2013, p. 303).

The structural assumption determines the linear predictor ηi = xxxTi βββ as in classical linear

regression to the conditional expectation E(Yi|xxxi) = µi with a more general transformation

µi = h(ηi)⇐⇒ ηi = h−1(µi) = g(µi) = xxxTi βββ. (1.6)

The response function h(·) is required to be bijective and two times continuously differentiable.

The inverse h−1(·) = g(·) is called link function. Note that the natural parameter θi is also a

function of the expectation µi, i.e., θi = θ(µi). Furthermore, the mean is of the form

µi = a′(θi) =
∂a(θi)

∂θi
(1.7)

and the variance V(Yi|xxxi) = φν(µi) results from the second derivative ν(µi) = a′′(θi) = ∂2a(θi)

∂θ2i
.

If the natural parameter directly corresponds to the linear predictor, the link function is called

natural or canonical link function and is given by g(µi) = θ(µi) = ηi.

As shown in Table 1.2, both binary yi ∈ {0, 1} and categorial yi ∈ {1, ...,M} outcomes can

be modelled by GLM-type regression models. The binomial distribution is the sum of i.i.d

distributed Bernoulli random variables and the multinomial distribution is a generalisation of

the binomial distribution for multiple outcomes. A generic form of the (multinomial) logit

model is given by

µr = P(Yi = r|xxxi) = logit−1(ηi) =
exp(xxxTi βββr)∑M

m=1 exp(xxxTi βββm)
, (1.8)
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where additional side constraints have to be specified ensuring the parameters βββ to be

identifiable, e.g.,
∑M

m=1βββm = (0, ..., 0).

The parameter estimation in GLM is usually based on the Maximum Likelihood (ML) principle

β̂ββML = arg max
βββ

L(βββ) =
n∏
i=1

fθ(yi), (1.9)

where the likelihood L(βββ) is given as the product of exponential family distributions due to

stochastic independence of response variables Y1, ..., Yn. Following equation (1.7) and (1.6),

the canonical parameter θ in the exponential family distribution fθ(yi) is determined by µi =

h(xxxTi βββ) and hence ultimately by βββ. Maximising the likelihood is equivalent to maximising the

log-likelihood

l(βββ) =
n∑
i=1

log
[
fθ(yi)

]
(1.10)

due to the monotonicity of the log function. This estimating procedure is typically achieved

through iterative numerical methods such as Newton-Raphson or Fisher-Scoring, since an

explicit analytical solution in closed-form can only be found for some special cases. More

details and examples can be found in Knight (2000, Sect. 5.7).

Generalised Additive Model

Another extension of the class of regression models is the Generalised Additive Models (GAM)

proposed by Hastie and Tibshirani (1986). The idea is to combine the aspects of parametric

and non-parametric regression models, i.e., some covariates are modelled in the predictor by

linear combinations and others by the sum of J unknown functions additionally:

ηηη = ηηηlin + ηηηadd, with ηηηlin = Xβββ and ηηηadd =
J∑
j=1

fj(zzzj). (1.11)

These additive terms are particularly attractive to overcome the problems raised in general

situations of type II as described at the beginning of this subsection; for instance, to capture

the seasonality which plays a relevant role in the airline industry.
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For a given continuous covariate zzz = (z1, ..., zn)T , a smooth effect f is assumed and represented

by suitable basis function expansions, e.g.,

f(zzz) =
K∑
k=1

γkBk(zzz) (1.12)

for a univariate and

f(zzz1, zzz2) =
K∑
k=1

L∑
l=1

γk,lBk(zzz1)Bl(zzz2) (1.13)

for a bivariate smooth representing a tensor product, where the (marginal) basis dimensions

are given by K and L respectively. For the sake of easier illustration, the following examples

are in the univariate case. The basis functions B(·) are evaluated at the observed values zzz,

resulting an n × K-dimensional matrix B = [Bk(zi)]i=1,...,n;k=1,...,K . The corresponding basis

coefficient vector γγγ = (γ1, ..., γK)T can be estimated together with the parametric coefficients

in θθθ = (βββ,γγγ)T by using a composed design matrix (X,B1, ...,BJ). The resulting model is

linear in the parameters and can be estimated within the GLM class via Newton-Raphson-type

algorithm.

For the choice of suitable basis functions, Wood (2006, Sect. 4.1) provide a broad overview of

different options. Among others, B-splines introduced by Schoenberg (1946a,b) is a commonly

used basis representation. For sufficiently high basis dimension, resulting splines are continuous

and differentiable functions, which can be evaluated efficiently and provide mathematically as

well as numerically desirable properties (Boor 1972, 2001). The arbitrary choice of basis

dimensions K however, can lead to over-fitting if K is too large and flexibility loss if K is

not large enough. Eilers and Marx (1996) proposed a penalised version of B-Splines (hence

P-Splines) by estimating coefficients for a generous number of B-Spline basis functions with a

quadratic penalty based on a penalised log-likelihood

lp(θ) = l(θ)− 1

2

K∑
k=1

λγγγTPγγγ, (1.14)

where P represents a K ×K-dimensional penalty matrix and the smoothing parameter8

λ tuning the influence of the penalty and thus the smoothness of the resulting estimated

function f̂ = Bγ̂γγ. In particular for P = IK , f̂ → 0 when λ→∞ and f̂ unpenalised when λ = 0.

8Using this to penalise non-parametric terms is hence called semi-parametric approach.
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In contrast to the log-likelihood in the case of GLM, there are two kinds of the parameter to be

optimised in the case of GAM: the regression coefficient vector γγγ and the smoothing parameter

λ. For fixed λ, the estimation of γγγ can be performed using Penalised Iteratively Re-weighted

Least Squares (P-IRLS), see Wood (2006, Sect. 3.4) for details. For finding optimal λ, different

approaches are discussed in Wood (2006, Sect. 4.5). Among other common practices such

as the (Generalised) Cross-Validation (GCV) or the Akaike Information Criterion (AIC),

restricting the likelihood by decoupling the smoothing parameter λ (as variance parameter) and

the regression coefficients serves as another alternative. Technically, the variance parameter

is thereby fitted by the (scaled) average of the likelihood over all possible values of regression

coefficients. This approach can also be derived from the Mixed Model (MM) perspective,

which will be briefly introduced in following. Ruppert et al. (2003) provides fuller coverage on

the connection between GAM and MM.

Mixed Model

Both GLM and GAM can be extended to Generalised Linear Mixed Models (GLMM) and

Generalised Additive Mixed Models (GAMM) with random effects bbb, which, in contrast to

the fixed coefficients βββ, are assumed to be random variables following a normal distribution

N (000,R) with covariance matrix R. The (parametric) predictor results to

ηηη = Xβββ + Ubbb, (1.15)

and the marginal likelihood of θθθ for all observations can be written as

L(θθθ) =
w∏
i=1

∫ ni∏
j=1

f(yi,j|bbbi, θθθ)f(bbbi|R)dbbbi, (1.16)

where the random effects bbbi are shared by the (repeated) measurements yi,j within a cluster

i = 1, ..., w. This structure can be motivated by the heterogeneity of the clustered responses.

The clusters can be, e.g., different customer groups or diverse products. Specifying the

covariance matrix R account for correlations among measurements. Moreover, only the

variance parameter of the random effects need to be estimated, in comparison to estimating

models with fixed effects for each cluster.

For maximising equation (1.16), the model presented in Chapter 2 employs the Laplace approx-

imation (Breslow and Clayton 1993) as a special case in approximating the integral (Pinheiro

and Chao 2006). Approximating the data with quasi-likelihood (Wolfinger and O’Connell

1993) would be another option, which however does not allow inferential statements.



1.4 Statistical methods 21

1.4.2 Summary statistics

The main task in network RM is to find the revenue-optimal allocation of (future) booking

request on the total flight network. Hence, the dimension of the data used in the RM system

can be massive for airlines with a large network. In practice, analysing massive data is

often challenging due to either memory, storage or computation limitation. Confronting

such limitations, numerous researchers have been contributed to the application of statistical

models based on distributed data, see Caragea et al. (2004), Chu et al. (2013), Lee et al.

(2017). The techniques of data management in this area have been developed from dividing

the entire dataset into vertical fragments (reducing covariates/coefficients dimension k) or

horizontal fragments (reducing observations dimension n).

Taking the classical linear regression as in equation 1.2 for an illustrative example, directly

computing the “all data” estimate β̂ββOLS = (XTX)−1XTyyy from all observations may not be

feasible for large scale data, because the design matrix X with dimension n × k cannot be

constructed within memory as a whole. In order to solve this problem, the large scale data

can be partitioned into subsets s ∈ S, and the corresponding design matrices Xs with smaller

dimensions ns × k are created.

One strategy is to estimate each of these horizontal fragments and obtain β̂ββs = (XT
sXs)

−1XT
s yyys,

then weight the estimates to obtain
∑

sWsβ̂ββs/
∑

sWs with weighting matrix Ws = XT
sXs.

The use of this weighting matrix rewards data fragments with lower variability and vice versa.

Note that the estimation procedure must be performed |S| times.

A tempting alternative is to compress each data fragment into summary statistics ts,1 = XT
sXs

and ts,2 = XT
s yyys, with respective dimensions k × k and k × 1. Combining the compressed

summary statistics via
∑

s t
−1
s,1

∑
s ts,2 = (

∑
sX

T
sXs)

−1∑
sX

T
s yyys = β̂ββ is precisely equivalent

to the “all data” estimate due to the matrix properties and the estimating procedure only

requires to be run for only one time. For extended regression models such as GL(M)M

and GA(M)M, this convenient equivalence does not generally hold due to their non-linear

transformation and estimating equations. As a remedy, Xi et al. (2009) and Lin and Xi

(2011) proposed to linearise the likelihood with Taylor’s expansion and if the derivatives

only depend on sufficient statistics ts and β̂ββs, the aggregated estimate approaches the “all

data” estimate asymptotically. Note this estimating strategy with summary statistics avoids

accessing raw data from each of the fragments to a central location. In some applications,

this is an additional advantageous property to preserve data privacy. Further aspects of data

privacy will be discussed in the next section.
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1.5 Data management

The intense competition among airlines limits the amount of data shared within the industry

as well as to academia. Combined with inherent difficulties in linking purchase and pricing

data, most academic publications are either based on SP information as described in Section

1.3 or simulations studies, e.g., Bockelie and Belobaba (2017). Taking sales data as RP

information, certain technicalities of data management need to be clarified.

First of all, the collection and linkage of different data sources require a standardised procedure.

Airlines usually treat ancillary services with the same business rules as flight tickets (TKT)

on a supporting Electronic Miscellaneous Documents (EMD) and require association between

the flight tickets and EMD. For each specific ancillary service (e.g. ASR), further data sets

which contain detailed features, e.g., seat row and column, need to be acquired. Note that most

airlines only maintain TKT and EMD data but not specific ancillary data in the past (Ratliff

and Gallego 2013). The linkage between these data sets can be achieved through Passenger

Name Record (PNR), which is also commonly known as Booking Reference to the customer.

Table 1.3 illustrates the structure of the matched data.

Data set: PNR ... TKT ... EMD ... ASR

Variable:
Booking
reference

...
Number of
passengers

...
Flight
number

Orig. &
Dest.

...
Ticket
price

...
Ancillary

item
...

Ancillary
price

... Seat

ABC123 ... 1 ... 811 A-B ... 666 ... NA ... NA ... NA
... ... ... ... ... ... ... ... ... ... ... ... ... ...
XYZ789 ... 2 ... 111 A-C ... 999 ... ASR ... 30 ... 1A
XYZ789 ... 2 ... 111 A-C ... 999 ... ASR ... 30 ... 1B

Table 1.3: Structure of the matched booking data: PNR is the most practised matching variable.

PNR was originally used to compare flight passenger data (e.g. identity and flight destination)

against information held by security and border agencies. Note the information contained in

PNR are not only for the ordinary course of airline business (i.e. enabling reservations and

carrying out the check-in process) but also they can be sensitive personal information helping

to fight terrorism and other crimes (The European Parliament and of the Council 2016a).

Facing the General Data Protection Regulation (GDPR9), data set contains PNR as an

identifier arise a data privacy concern. De-identifying data by removing sensitive identifiers

(e.g. PNR) and apply disclosure control methods can not completely remove the risk of privacy

breach (Fienberg 2006; Hundepool et al. 2012). For future research with reproducible air-

line data, more privacy conscious matching procedures need to be standardised by the industry.

9See more details in The European Parliament and of the Council (2016b) and Tikkinen-Piri et al. (2018)
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From the data technical side, the program ONE Order from the International Air Transport

Association (2018b) visions a data communication standard to support secured and simplified

data management by the year 2021. It aims to supersede the current booking and ticketing

records including EMD and PNR as well as to combine the content of those records into a

single retail and customer oriented order. On the one hand, the data quality can be improved

by avoiding mismatch and redundant or overlapping records. On the other hand, more data

privacy protection can be achieved.

For the current and future data usage, although the pricing schemes in RM systems do

not base on personal data directly and are anonymous10 information, the practice of

differential pricing would generally fall under the scope of GDPR, despite the degrees of

price differentiation (Steppe 2017). Facing this and further challenges, it is suggested to

the airline industry to either apply models based booking data in a distributed manner

using summary statistics as discussed in Section 1.4.2 or consider the modelling approaches

based on aggregated data, e.g., as in Chapter 3. Both approaches make innovative changes

in the demand modelling step and the corresponding data collection step in the RM

system (recall Figure 1.1) and steer clear of the accessing of raw data which arise privacy con-

cern and still allow to access and quantify the WTP and PE of (and beyond) ancillary services.

Last but not least, for the completeness of use-case information, it is important to mention that

Chapter 2 analyses intercontinental flights due to higher relevance of ASR, whereas Chapter

3 examined continental markets, because branded fares were not available in intercontinental

markets yet at the time of the research. Thus, the generalisation of interpreted results must

consider this limitation, despite the modelling approach is universally applicable to the data

in the respective markets.

10These data are not related to an identified person and are anonymous from a statistical perspective, but
not necessarily from a data protection perspective.
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Shuai Shao, Göran Kauermann, Michael Stanley Smith

Submitted to

Transportation Research Part A: Policy and Practice

on
10. Sep. 2018
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Abstract

Motivated by the growing importance of ancillary revenues in the airline industry,

we propose a statistical model for the behavior of airline passengers making Ad-

vanced Seat Reservations (ASR). We focus on the questions of whether, when and

which seats are selected. To address these questions, we employ a discrete time

duration model, combined with a discrete choice model. Both employ unknown

smooth covariate effects, that are estimated using contemporary P-spline method-

ology. This is applied to a large database of bookings on five intercontinental routes.

By incorporating random effect terms to account for seat-specific heterogeneity, we

find strong evidence of “middle seat avoiding” and “front seat preferring” effects.

We also show that the willingness to pay for ASR depends on its price in relation

to the ticket price, as well as on the distribution channel. These and other insights

allow for product differentiation and variable pricing in ASR for each and every

seat. In addition, the statistical model can also be used for other ancillary products

— such as on-board dining and preferential baggage checking — allowing dynamic

pricing of ancillary products in general.

Keywords: Advanced Seat Reservation; Airline Ancillary Pricing; Customer Be-

haviour Analyis, Discrete Choice Model; Discrete Time Duration Model; Willingness

To Pay
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1 Introduction

In the age of internet-based search engines, airlines are confronted with increased price

transparency. For traditional airlines this has led to increased competition with low cost

carriers. Together with numerous other market changes, such as the global economic slow

down and new travel policies (mainly cost cutting) of companies, airlines have responded

by offering new ancillary services to increase revenues. Advanced Seat Reservation (ASR)

— the ability to select specific seats prior to check-in — is one of these services. The aim

of our study is explore the extent to which passengers are willing to pay for ASR using a

new and large booking dataset.

To our knowledge, Lee and Luengo-Prado [2004] made the first contribution in this

area by asking if passengers are willing to pay more for additional legroom by comparing

two different settings of increased seat pitch. They found that the Willingness To Pay

(WTP) is higher if seat pitches are increased for some rows which can only be reserved

by passengers who pay a full fare. This suggests that price discrimination is possible only

if there is heterogeneity in the product value. Until recently, there has been very limited

variability in airline seat selection, with only two products: legroom and standard seats.

We show in this paper that there is substantial heterogeneity in customer preference for

ASR at the individual seat level, which results in high variability in passengers’ WTP for

reserving each and every seat.

A number of studies have found heterogeneity in seat preference in other industries.

For example, for train travel Wardman and Murphy [2015] show that seats and their

configuration are fundamental part of the journey experience. They investigated how

seating preferences depend on factors such as travel distance and journey purpose. Taking

also the price component into account, Leslie [2004] studied profit implications of price

1
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discrimination for a Broadway play based on seat quality in theatres. Veeraraghavan

and Vaidyanathan [2012] also measured seat value perceived by consumers at baseball

stadiums.

However, before the recent introduction of ASR as an ancillary service in the airline

industry, airline seats within the same booking class had the same price, and seat location

in the plane was not considered. In direct contrast, it has long been the case that prices of

seats in stadiums or theatres are valued higher when they offer a better view of the event.

With different seat values based on seat location, the price of a selected seat (or more

generally an ancillary product) can indicate how much a passenger values a particular

seat. Espino et al. [2008] used an experiment in which Spanish travellers stated their

preferences in six service attributes, including additional legroom for a short haul flight

of two virtual airlines. Depending on the model specification, these authors found that

the WTP for additional legroom varied between 15e and 34e. In contrast, Garrow et al.

[2012] found that passengers of Delta Air Lines were unwilling to pay for extra legroom

on short flights, but were willing to purchase ASR on international markets. Balcombe

et al. [2009] applied a Bayesian model in a related survey and found a comparable WTP

for seats with more legroom. Studies from other scientific disciplines have also focused on

legroom, e.g. from the ergonomic aspect (see Kremser et al. [2012] and Vink et al. [2012]).

ASR does not only apply to seats with extra legroom, and customer preferences in

choosing between standard seats is also of interest. For instance Daft and Albers [2012]

took both standard and legroom-seats into their profitability calculation for long haul

flights of low-cost carriers. Caussade and Hess [2009] extracted WTP for some service

attributes including standard and preferential (similar to legroom) seats from stated pref-

erence data in a branded fare context. Mumbower et al. [2015] contributed to the literature

on ancillary fees by providing the first insights into the role of load factors and seat-map

2
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displays of all ASR-seats on customers’ purchasing behavior of seats with extra legroom

using revealed preference data.

In this paper, we contribute to this research by considering the probability of making

an ASR, as well as the preference for selecting between different seats. By focusing on

standard ASR, and not legroom ASR, we want to answer three questions: whether and

when passengers make use of standard ASR, and if so, which seats are preferred?

To shed light on these questions we consider a statistical modelling approach with

multiple components. The probability that passengers make a seat reservation is mod-

elled in the first part as a discrete time-to-event model, see e.g. Tutz and Schmid [2016].

We include non-parametric smooth terms in the model to accommodate the influence of

continuous covariates, such as time of year to capture seasonality and time to departure.

We make use of penalized spline estimation following the original ideas of Eilers and Marx

[1996] and the further developments of Ruppert et al. [2003] and Wood [2017]. The sec-

ond part of modelling focuses on seat selection, conditional on an ASR being made. For

this, we employ a multinomial choice model (see e.g. Train [2009] and Fahrmeir and Tutz

[2001]). Here, a random effect for seat number is included to account for seat heterogene-

ity. All models fall within the framework of generalized additive mixed models originally

proposed in Hastie and Tibshirani [1990] and extensively extended; see Wood [2017] for

a recent exposition.

A rich set of flight, booking and seat-specific factors are found to determine customer

preference for ASR. As for flight-specific factors, departure day of year is a strong seasonal

component. Moreover, bookings that include multiple passengers are more likely to reserve

seats in advance. Compared to bookings made via intermediaries, passengers who book

directly by airlines are more likely to reserve seats in advance. Seat-specific factors reveal

that passengers prefer front rows and avoid middle seats. Another key result is that the

3
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price sensitivity for seat reservation depends on ticket price and decays towards departure.

Last, we show that the revenue implications of adopting dynamic pricing for ASR based

on our statistical model are substantial in dollar terms.

The remainder of this paper is organized as follows. In Section 2 we introduce the

data using in the study. We outline the statistical model in Section 3, and provide an

overview of the estimation method employed in Section 4. In Section 5 we discuss the

empirical results, and run a comparison of the predicted and realised revenues as model

validation in Section 6. We focus on the implications for ancillary revenue generation in

Section 7 before concluding in Section 8.

2 Data

We analyse five intercontinental routes of a major European airline which wishes to remain

anonymous, so that throughout this paper we refer to it as “AirABC”. The data were

collected from destinations A, B and C in South-America, D in Asia and E in North-

America. All these routes were served by flights originating from the same European city

by the same aircraft type (Boeing 747-8) with an identical seat-map, which is depicted in

Figure 1.

The data were collected from economy class passengers who departed between Febru-

ary 2015 and December 2016. The data can be divided into two time periods. The first

period is between February 2015 and January 2016, where ASR was offered at a constant

price. From February 2016 to December 2016, the prices for ASR were experimentally

varied in route A and B in an attempt to access and quantify price elasticity. Such ex-

periments are rare in the airline industry and experimental pricing on a grand scale is

difficult and in our case conflicted with transparent pricing communication for customers.

4

39



Lufthansa Boeing 747-8 (8 First/80 Business/32 Premium Economy/244 Economy)
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Crewsitz/Crew seat

Treppe/Stairs

G
F
E
D

G
F
E
D

Länge/Length: 76,30 m/250 ft 4 in
Spannweite/Wingspan: 68,40 m/224 ft 5 in
Höhe/Height: 19,40 m/63 ft 8 in
Max. Startgewicht/Max. Take-off weight: 442 t/975.000 lb
Max. Reisegeschwindigkeit/Cruising speed: 
920 km/h/570 mph
Max. Flughöhe/Max. Cruising altitude: 13.100 m/43.000 ft
Reichweite: 13.100 km/8.140 miles 
Triebwerke/Engines: 4 x General Electric GEnx-2B67

Die abgebildete Sitzplananordnung entspricht der Mehrzahl der bei 
Lufthansa eingesetzten Maschinen dieses Typs, Abweichungen sind möglich.
The configuration shown is the one used in most of the Lufthansa aircraft
of this type, deviations are possible.
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Figure 1: Seat-map of the analysing economy cabin of Boeing 747-8 by AirABC.

We therefore use the log relative price for ASR as the price variable, that is defined as

p = log

Price of ticket + Price of ASR

Price of ticket


.

Treating the ticket price, and hence p, as an exogenous variable is problematic when

estimating price elasticity using demand data. This can lead to biased estimates, see e.g.

Davidson and Mackinnon [1993] Davidson and Mackinnon [1999], Wooldridge [2012] or

Petrin and Train [2010]. In this paper, however, we condition on bookings, because ASR

can only be carried out once a ticket is booked. This implies that the ticket price is fixed

and the endogenous relationship between booking process and price is accounted for. We

therefore can treat ticket price — and also p — as exogenous when modelling ASR.

The observational unit in our study is the booking of an itinerary. A single itinerary

booking can include multiple passengers, as well as multiple flight segments. Therefore,

the entire trip of a booking may include more than the considered intercontinental flight

(i.e. route A, B, C, D or E), such as a connecting flight before or after the intercontinental

flight. However, in this study we only consider the outbound flights for the five routes

(i.e. without inbound flights if there are any in this booking), so that no dependencies
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between the flights within one booking are considered. If we did not, we would have to

account for the dependence between the inbound and outbound legs of a return flight.

We are aware of the fact that this is a major simplification of ASR. But for the purpose

of presentation and model validation as well as interpretation, it is helpful to simplify the

task.

In total we have 485, 279 observations of bookings: 254, 849 from the data in Period I

(February 2015 to January 2016) and 230, 430 from the data in Period II (February 2016

to December 2016). The data for routes A and B, where the prices for ASR were varied in

an experimental setup, will allow us to check the validity of using the log relative price as

our price variable, by computing the out-of-sample prediction error for the experimental

data in Period II. In Table 1 we give the detailed numbers of booking for the different

routes in each and both data periods.

Route: A B C D E Total

Data
Period:

I 49,687 48,017 54,624 41,628 60,893 254,849
II 42,883 44,838 52,138 36,707 53,864 230,430
I & II 92,570 92,855 106,762 78,335 114,757 485,279

Table 1: Number of bookings in each data period (rows) and route (columns).

2.1 Covariate Variables

We include a number of covariates in our analysis in order to identify the driving factors

behind ASR. These covariates can be divided into three categories; namely flight-specific,

booking-specific and seat-specific quantities. To begin with the first, let f be the index
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for a particular flight and xflight
f be the flight-specific covariates. In our study these are

xflight
f = {departure day of year, departure day of week}

= {df ,WDAYf}.

Note that d ∈ {1, ... , 366} and WDAY has Monday as a reference category. Note that

our data covers 2016, which was a leap year with 366 days. Throughout this paper, we

label categorical variables (such as departure day of week) with capitalized abbreviations,

and other variables with single lower case letters. The specific levels of our categorical

variables are written in italics.

Let i = 1, ... , nf be the index of the bookings for a particular flight f and xbooking
f,i be

booking-specific covariates for bookings i = 1, ... , nf . We include:

xbooking
f,i = {days to departure when booking ticket, days to departure when selecting seat,

log relative price for ASR, multiple passenger booking, distribution channel}

= {tf,i, sf,i, pf,i,MULTIf,i,CHNLf,i}.

Days to departure is a negative ordinal variable ranging from −365 to 0, where 0 is the

day of departure. A seat can only be reserved if a booking has already been made, so

that tf,i ≤ sf,i, where tf,i = sf,i occurs if the booking and ASR have been carried out

at the same time. Depending on the route and airline, seat reservations are free for all

passengers via online check-in at some time point close to departure. In our data the

online check-in process starts two days before departure, after which seat selection is free

of charge. Thus, we do not include observations where the ticket is booked at tf,i > −2.

Furthermore, we consider all seats selected during the online check-in process as not ASR
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by definition. In this case we set sf,i = 0, indicating a booking without ASR. We give

more details subsequently. The covariate MULTI is a dummy variable for whether, or

not, there were multiple passengers in the booking. The covariate CHNL indicates the

distribution channel of the booking. There are four channels here: Direct, which means

the ticket was booked by AirABC directly1; Chains, which means the ticket was booked

through traditional travel chains; OTA, which means the ticket was booked by an Online

Travel Agency (OTA); and Others, which includes all other options. A summary of all

covariates except departure day of year2 is given in Table 2. Note that the total count by

variables for ASR differs from the total count by variables for bookings.

Finally, seat-specific covariates are denoted by xseat
l , where subscript l indexes the

possible seats for ASR, with l = 1, ..., L. We include the following seat-specific covariates:

xseat
l = {window, middle or aisle seat, plane section of seat, special seat}

= {WMAl, SECTl, SPECl}.

In our case there are L = 144 seats being offered for ASR on every flight. The number

of reservations recorded for each of these seats in our data are depicted in Figure 2. We

take the Middle seats as the reference category of covariate WMA. We also separate the

cabin into three sections, with reference category Front for rows 28 − 33, and categories

Middle and Back for rows 39− 44 and 45− 49, respectively. The seats B, C, H, and J in

rows 45− 47 are special seats because there are only two adjacent seats and they are not

in a row of three seats; see also Figure 1. We will discuss the effects of these and other

covariates in detail in Section 5.3.
1This includes bookings via call-center, city-office, official homepage or mobile application.
2A summary of this covariate would not be informative, since all routes were served on a daily basis.
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Numerical variables (booking-specific): Min. 1stQu. Median Mean 3rdQu. Max.

Time point of booking (t) -365.0 -81.0 -36.0 -58.7 -15.0 -2.0
Time point of ASR (s 6= 0) -362.0 -60.0 -25.0 -46.8 -10.0 -2.0
Log relative price (p in %) 0.0 1.3 2.3 2.1 3.1 5.7

Categorical variables for bookings (flight-specific): Count Prop.

Departure day of week (WDAY)
Monday 70150 14.5%
Tuesday 66365 13.7%
Wednesday 64204 13.2%
Thursday 65901 13.6%
Friday 69591 14.3%
Saturday 75007 15.4%
Sunday 74061 15.3%

Categorical variables for bookings (booking-specific):

Multiple passengers (MULTI)
No 369248 76.1%
Yes 116031 23.9%

Distribution channel (CHNL)
Direct 112712 23.2%
Chains 142073 29.3%
OTA 60988 12.6%
Others 169506 34.9%

Categorical variables for ASRs (seat-specific):

Window, middle or aisle seat (WMA)
Window 36376 27.3%
Middle 24452 18.4%
Aisle 72155 54.3%

Plane section (SECT)
Front 76029 57.2%
Middle 26017 27.1%
Back 20937 15.7%

Special seat (SPEC)
No 115587 86.9%
Yes 17139 13.1%

Table 2: Summary of covariates across all five routes. The upper rows present summaries
of the numerical covariates, which are all positively skewed. The lower rows present the
summaries for the categorical covariates. Bookings are dominated by single passengers.
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Figure 2: Total frequency of selected seats of all ASRs in our data. While in Figure 1
there are 198 seats, some are blocked out of the ASR-booking system because they are
reserved for customers with special loyalty status or who need mobility assistance.

2.2 Response Variables

The first response variable is whether ASR has been made or not, which we denote as

yf,i(s) =





1, if ASR is made at the time point s

0, otherwise,

where s ∈ {tf,i, ...,−2}. In our statistical model, we further distinguish bookings where

s = tf,i, i.e. an ASR and booking have been made together at the same time point (about

12% of all bookings) or tf,i < sf,i ≤ −2, i.e. an ASR was made after booking the ticket

(about 8% of all bookings).
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3 Model

As discussed in the introduction, we focus on the questions of: whether and when an ASR

is made, and if so, which seat(s) are selected. To this end, we decompose the model into

two parts. The first models the if and when an ASR is made, while the second accounts

for seat selection.

3.1 Timing of ASR

We consider yf,i(s) as a stochastic process taken as a discrete time duration model. This

accounts for the probability of making an ASR, given that an ASR has not been made

before. As we have stated previously, the majority of ASRs are made at the time of

booking, and we model these separately. This leads to a two component model for the

probabilities:

ASR Model 1 (ASR with booking): P[yf,i(tf,i) = 1] and (1)

ASR Model 2 (ASR after booking): P[yf,i(s) = 1|yf,i(t) = 0 for tf,i ≤ t < s; s ≤ −2],

(2)

where for simplicity, we omitted the covariates in the above notation. The ASR Model 1

is modelled using a logit model:

P[yf,i(tf,i) = 1] = logit−1(ηA
1 ), where

ηA
1 = β1,0 + ηflight

1 (xflight
f ) + ηbooking

1 (xbooking
f,i ). (3)

We use superscript A to refer to this aspect of the ASR model and the first subscript 1

represents being the first part of this model. As covariates we include flight- and booking-
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specific quantities. The first block of covariates enter the model in a semi-parametric

manner through

ηflight
1 (xflight

f ) = WDAYf · βββflight
1,1 +mflight

1 (df ), (4)

where mflight
1 is a smooth periodic function capturing seasonal variation. The dot between

WDAYf and the coefficients βββflight
1,1 denotes the usual expansion of a categorical variable

(omitting the reference category). In the second block, booking-specific covariates are

included through

ηbooking
1 (xbooking

f,i ) = 1{MULTIf,i=1} · βbooking
1,1 + CHNLf,i · βββbooking

1,2 +

pf,i · βbooking
1,3 +mbooking

1 (tf,i), (5)

where mbooking
1 is a smooth unknown function.

Of particular interest is to quantify how the log relative price pf,i influences the prob-

ability to reserve a seat, for which we expect a negative coefficient βbooking
1,3 . On the other

hand, the effect of multiple passenger is expected to be positive, because we assume the

passengers who travel together want to sit together, which can only be ensured through

making an ASR.

The ASR Model 2 applies if customers do not reserve a seat at the time point of

booking the ticket. They may do so at a later occasion. We model this by employing

a discrete time-to-event model. To be specific, we again make use of a conditional logit

model and set for s ≤ −2:

P[yf,i(s) = 1|yf,i(t) = 0 for tf,i ≤ t < s; s ≤ −2] = logit−1[ηA
2 (s)], where

ηA
2 (s) = β2,0 + ηflight

2 (xflight
f ) + ηbooking

2

[
xbooking
f,i (s)

]
. (6)
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Again, superscript A refers to the ASR model and the first subscript 2 represents being

the second part of this model. As with equation (4), the flight-specific effect ηflight
2 is

ηflight
2 (xflight

f ) = WDAYf · βββflight
2,1 +mflight

2 (df ). (7)

The booking-specific effect ηbooking
2 has a similar form to equation (5), but with the time

point of booking tf,i replaced by the time point of seat reservation sf,i, so that

ηbooking
2

[
xbooking
f,i (s)

]
=1{MULTIf,i=1} · βbooking

2,1 + CHNLf,i · βββbooking
2,2 +

pf,i · βbooking
2,3 +mbooking

2 (sf,i). (8)

Note that the log relative price pf,i is a time varying variable for routes A and B, where the

price for ASR has been varied. The smooth function mbooking
2 captures how the intensity

for ASR booking changes with the days to departure, and can therefore be seen as a

baseline intensity of an inhomogeneous process.

3.2 Seat Selection

If the passenger decides to reserve a seat, he or she needs to select one or more seats. This

selection is modelled by a discrete choice model, where the choice set changes over time,

because seats that have been reserved before are not any longer available. We make use of

a multinomial logistic model with a varying consideration set. We can describe the seats

with seat-specific covariates. But even if we do this, we observe from Figure 2 that some

seats are preferred, although they are in principle similar to other seats. This indicates

that we should not treat seats as homogeneous, but allow for seat-specific heterogeneity.

Let Cf (t) be the consideration set of available seats on flight f at time point t, where t
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denotes the time to departure. We define with Sf,i the set of seats reserved on flight f

by passengers with booking i. Note that Sf,i = ∅ if no ASR has been made (the most

common case) and we do not model seat selection for these bookings. The set Sf,i contains

a single element if a single seat has been reserved and multiple elements if multiple seats

have been reserved at the same time. Note also that Sf,i ⊆ Cf (s̃f,i), i.e. seats can only

be reserved from available seats, where s̃f,i refers to the time point just prior to the seat

reservation for booking i on flight f . We model the selection of seats for which ASR is

made as:

P(Sf,i) =
∏

l∈Sf,i

exp(ηS
l )

∑
r∈Cf (s̃f,i) exp(ηS

r ) , where

ηS
l = ηseat

0 (xseat
l ) + ηseat

l (xbooking
f,i ), (9)

and superscript S denotes the label Seat Selection Model. The linear components ηS
l

decompose to effects which depend on seat-specific covariates, i.e.

ηseat
0 (xseat

l ) = xseat
l · βseat

0 (10)

and two seat random effects

ηseat
l (xbooking

f,i ) = b0l + 1{MULTIf,i=1}b1l, (11)

that capture seat-specific heterogeneity. The random effect b0l is the seat preference,

while the random effect b1l captures seat preferences that occur when seats are reserved

for couples or groups; i.e. for multiple passengers.
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4 Estimation

The Log-likelihood of all model components together can now be written as

∑

f

∑

i

{
yf,i(s = tf,i) · ηA

1 − log
[
1 + exp

(
ηA

1
)]

+ (ASR Model 1)

1{yf,i(s=tf,i)=0}

min(sf,i,−2)∑

s=tf,i+1

{
yf,i(s) · ηA

2 (s)− log
{

1 + exp
[
ηA

2 (s)
]}}

+ (ASR Model 2)

1{Sf,i 6=∅}
∑

l∈Sf,i

{
ηS
l − log

[ ∑

r∈Cf,i(s̃f,i)

exp
(
ηS
r

)]}
}
, (Seat Selection Model)

(12)

where the linear predictors are given above. The maximizer of the separate likelihoods

equals the joint likelihood because of the separability of parameters in different com-

ponents. ASR Models 1 and 2 are both generalized additive models with both mixed

effects and semi-parametric smoothing components, which can be estimated using maxi-

mum likelihood. We use the mgcv package [Wood, 2011] for fitting in R [R Core Team,

2016]. The Seat Selection Model is a discrete choice model with varying choice set and

we outlined how to estimate it below. Note that

P(Sf,i) =
∏

l∈Sf,i

exp(xxxlβββ0 + bbb0l)∑
r∈Cf,i(s̃f,i) exp(xxxrβββ0 + bbb0r)

. (13)

The Log-likelihood for this component can be written as

l(θθθ) =
∑

f

∑

i

∑

l∈Sf,i

{
ZZZf,i,lθθθ − log

[ ∑

r∈Cf (s̃f,i)
exp(Zf,i,rθθθ)

]}
, (14)

where ZZZf,i,l = (xxxl,uuul,1{MULTIf,i=1}uuul), uuul is the indicator vector having entry 1 at the l-th

position and 0 otherwise and θθθ = (βββT0 , bbbT )T refers to the parameter of this component,

where bbb = (b01, b02, ..., b0L, b11, b12, ..., b1L). We consider vector bbb as random and impose a
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prior distribution on bbb, that is




b01

b02

...

b0L




∼ N(0, σ2
0IIIL) and




b11

b12

...

b1L




∼ N(0, σ2
1IIIL). (15)

This leads to the marginal likelihood of a generalized mixed model:

l(βββ0,σσσ
2) = log

∫
exp

[
l(θθθ)− 1

2θ
θθTDDDθθθ

]
·
∣∣∣σ2

0IIIL
∣∣∣
− 1

2 ·
∣∣∣σ2

1IIIL
∣∣∣
− 1

2 dbbb. (16)

where DDD is of block structure DDD = blockdiag(000, 1
σ2

0
IIIL,

1
σ2

1
IIIL) and σ2σ2σ2 = (σ2

0, σ
2
1). We rewrite

the exp(·) component to a penalized likelihood

lp(θθθ,σσσ2) = l(θθθ)− 1
2θ
θθTDDDθθθ. (17)

Following and extending Breslow and Clayton [1993] we integrate out bbb and obtain with

Laplace approximation the approximate likelihood

l(βββ0,σσσ
2) ≈ −L2 σ0 −

L

2 σ1 −
1
2 log

∣∣∣∣
∂2lp(θ̃θθ,σσσ2)
∂bbb∂bbbT

∣∣∣∣+ lp(θ̃θθ), (18)

where θ̃θθ = (βββ0, b̃bb) and b̃bb denote the solution to

∂lp(θθθ,σσσ2)
∂bbb

= 0. (19)

We thereby assume that the determinant in equation (18) depends only weakly on θθθ, see

Breslow and Clayton [1993]. Note that b̃bb implicitly depend on βββ0 and σσσ2. With θ̂θθ(σσσ2) we
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define the final estimate of

∂lp(θ̂θθ,σσσ2)
∂θθθ

= 0, (20)

so that θ̂θθ = (β̂ββ0, b̂bb). Following Kauermann et al. [2009] we can estimate σ2
0 and σ2

1 using

the approximation

σ̂2
0 ≈

b̂bb
T

0 b̂bb0

df0
, (21)

with

df0 = tr






(
∂2lp(θ̂θθ,σσσ2)
∂θθθ∂θθθT

)−1(
∂2lp(θ̂θθ,σσσ2 =∞)

∂θθθ∂θθθT

)


0



, (22)

where the index 0 extract the columns belonging to bbb0, see also Schulze Waltrup and

Kauermann [2017]. Note that (21) is not an analytic estimating equation since both sides

depend on σ2
0. An analogous formula holds for bbb1 and the estimation of σ2

1. The maximiser

θ̂θθ of equation (17) can be seen as a parameter estimate β̂ββ0 as well as a posterior prediction

for the random coefficients b̂bb. More details are given in the Appendix A.1.
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5 Empirical Analysis

We estimate the models for each of the five routes separately. For conciseness, we report

the results in detail for route A, and compare revenue implications for the five routes in

Section 7.

5.1 Factors Affecting ASR when Booking

The parameter estimates for the ASR Model 1 fitted to the bookings on route A during

data Period I, are given in Table 3. We see for departure day of week (WDAY), there are

significant positive coefficients for Friday, Saturday and Sunday, relative to the reference

category Monday. The effects of different distribution channels (CHNL) show that the

chance of making an ASR decreases when the ticket is not booked directly by the air-

line; especially when it was booked by an OTA. This is because many online agents do

not show ASR as an option for ancillary service to the customer. Moreover, customers

buying tickets from tour operators (which belongs to the category Others) often get an

all-inclusive offer, which may not have ASR as an option. Besides the common cost-based

argument described in Granados et al. [2012], this insight is another reason why airlines

increasingly require a distribution cost charge for bookings made through global distri-

bution systems, but not directly through airlines themselves. Furthermore, we observe

a significant positive effect of multiple passengers (MULTI). This shows that customers

who travel together (often couples and family members) are more likely to make an ASR

to ensure sitting together. The effect of log relative price (p) can now be interpreted as

the WTP, with an increase of 1% log relative price decreasing the chance of making an

ASR by almost a half (e−60.302×0.01 = 0.547). Except for WDAY, all estimated parametric

effects are similar for the five routes A-E, as shown in Table 7 of Appendix A.2.
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Parameter Est. SE
Intercept ***-0.413 0.057
Departure day of week (WDAY, Ref.: Monday)

Tuesday 0.023 0.061
Wednesday 0.072 0.062

Thursday -0.041 0.062
Friday ***0.221 0.057

Saturtay ***0.335 0.056
Sunday ***0.233 0.056

Multiple passengers (MULTI) ***0.220 0.037
Distribution channel (CHNL, Ref.: Direct)

Chains ***-0.817 0.041
OTA ***-2.738 0.095

Others ***-1.472 0.039
Log relative price (p) ***-60.302 1.700

Table 3: Coefficient estimates for ASR Model 1 fitted to the bookings on route A during
data Period I. The reference categories are also reported for the categorical variables.
Standard errors are also reported, and parameters that are significantly different from
zero at the 1% level are denoted with three stars.
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Figure 3: Estimated smooth effects for route A in ASR Model 1. The left panel gives the
departure day of year m2(d) effect, and the right panel gives the days to departure m2(t)
effect. The point estimates of the functions are given by the solid line, while the dashed
lines are 95% confidence bands.
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The estimated smooth semi-parametric effects for route A are plotted in Figure 3.

There is a strong seasonal component (departure day of year) for the propensity to make

an ASR at the same time as a ticket booking. This is mirrored for all other routes except

route C; see Figure 8 - 11 of Appendix A.3. For the days to departure (t) we observe a

oscillating effect with a strong propensity to make an ASR (joint with booking) between

50 and 10 days prior to departure. The same result is found for the other four routes in

our study.

5.2 Factors Affecting ASR after Booking

The parameter estimates for the ASR Model 2 fitted to the bookings on route A during

data Period I are given in Table 4. The intercept is much smaller than that found in Table

3, which indicates that the chance of making an ASR is much smaller if customers did

not make an ASR with their flight booking. In comparison to ASRs made at the time of

booking, the effect of MULTI remains similar, but the effects of CHNL are weaker. This

means that distribution channels play a less (negative) role here compared to the reference

category Direct. This is because AirABC can reach out to customers after the tickets are

booked and before the flight departs; e.g. via email advertisement. The baseline intensity

of booking time s of an ASR made after booking is illustrated on the right hand side of

Figure 4. It shows that most ASRs are made in the month prior to departure. On the

other hand, the seasonal effect is weaker than that for the ASR Model 1. The estimated

effects — both categorical and smooth nonlinear — are similar for the other four routes,

except for WDAY (see Table 8 and Figures 12 - 15 in Appendix A.2 and A.3).
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Parameter Est. SE
Intercept ***-6.433 0.055
Departure day of week (WDAY, Ref.: Monday)

Tuesday 0.002 0.055
Wednesday -0.048 0.056

Thursday -0.029 0.055
Friday ***0.266 0.052

Saturday ***0.293 0.052
Sunday ***0.180 0.054

Multiple passengers (MULTI) ***0.265 0.030
Distribution channel (CHNL, Ref.: Direct)

Chains ***0.686 0.049
OTA ***-0.205 0.060

Others ***0.505 0.045
Log relative price (p) ***-38.092 1.717

Table 4: Coefficient estimates for ASR Model 2 fitted to the bookings on route A during
data Period I. The reference categories are also reported for the categorical variables.
Standard errors are also reported, and parameters that are significantly different from
zero at the 1% level are denoted with three stars.

Departure Day of Year (d) Days to Departure (s)
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Figure 4: Estimated smooth effects for route A in ASR Model 2. The left panel gives the
departure day of year m2(d) effect, and the right panel gives the days to departure m2(s)
effect. The second can also be considered as the baseline purchasing intensity for this
model. The point estimates of the functions are given by the solid line, while the dashed
lines are 95% confidence bands.
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5.3 Factors Affecting Seat Selection

The parameter estimates for the Seat Selection Model are given in Table 5 and three

observations can be made. First, the significant positive effects of Aisle and Window

account for the preference of these seats compared to the reference category Middle. We

name this behaviour as “middle seat avoiding”. Secondly, the seats in the Middle section

of the plane have significantly smaller probability of being reserved, than those in the

Front of the plane. Moreover, this probability gets even smaller for the seats in the Back

of the plane. This phenomenon can be described as “front seat preferring” and it is quite

strong for intercontinental flights, presumably because passengers want to exit the plane

quicker after landing at their destination. Last, the significant positive effects of special

pair seats (SPEC) in the back of the plane can be explained by the generous extra space

on the fuselage side of the seats, as illustrated in Figure 1 and discussed in some frequent

flyer forums, e.g. Miller [2012] and Chan [2013].

Parameter Est. SE
Window, middle or aisle seat (WMA, Ref.: Middle)

Aisle ***1.812 0.042
Window ***1.614 0.045

Plane section (SECT, Ref.: Front)
Middle ***-0.862 0.033

Back ***-2.133 0.085
Special seat (SPEC) ***1.908 0.088

Table 5: Coefficient estimates for the Seat Selection Model fitted to the bookings on
route A during data Period I. The reference categories are also reported for the categorical
variables. Standard errors are also reported, and parameters that are significantly different
from zero at the 1% level are denoted with three stars.

Figure 5 gives the heat-map of the estimated seat random effects for ASRs made by

single passengers b1l, and multiple passengers b0l. The latter shows that the “middle

seat avoiding” effect is neutralised with multiple passenger bookings. Adding all effects
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Figure 5: Heat-map of estimated random intercepts b0l (upper panel) and b1l (lower panel)
in the Seat Selection Model for route A.
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Figure 6: The overall heat-maps from the Seat Selection Model for route A. The upper
panel gives the map for ASRs made by single passengers and the lower panel gives the
map for ASRs made by multiple passengers.
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(ηseat
0 , b0l and b1l) together provides an overall heat-map for the popularity of seats in

the aircraft. Figure 6 shows this for route A, and for a comparison with the routes in

both data periods see Tables 9 - 10 and Figures 16 - 19 in Appendix A.2 and A.3. As a

possible application to forecasting, one can weight the heat-maps of single and multiple

passengers depending on the expected mixture of future arrival demand in order to get a

generic heat-map of attractiveness of all the seats in the aircraft.

6 Model Validation

To validate the above model we investigate the out-of-sample predictive accuracy of fitted

ASR Models 1 and 2. We fit the models to the data in Period I and then predict the

expected revenue from ASR for the bookings in Period II by multiplying the predicted

probability of an ASR for each booking by the price pASR. Note that both the point

forecasts and prediction intervals can be computed. Our models break expected revenue

into two parts: that arising from customers who made an ASR at the time of booking

(ASR Model 1), and the revenue from customers who made an ASR afterwards (ASR

Model 2). An expression for overall expected revenues is therefore:

R̂EV =
∑

f

∑

i

[
P̂1
f,i · pASR

f,i + (1− P̂1
f,i) ·

−2∑

s=tf,i+1
P̂2
f,i · pASR

f,i (s)
]
, (23)

where P̂1
f,i and P̂2

f,i are the predicted probabilities from equation (1) and (2), respectively,

and the summation is over all flights and bookings in the out-of-sample period. Note,

for the expected revenues in ASR Model 2, we have to condition on the complementary

probability 1 − P̂1
f,i, and sum over the purchasing probabilities up to two days before

departure; i.e. exactly the last day before the check-in process begins and ASR becomes
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Figure 7: 95% prediction intervals of expected ASR revenue (vertical solid lines), and
realised (horizontal dashed lines) ASR revenue for bookings in Period II.

Figure 7 plots the resulting predicted values of revenue for each of the five routes

and the corresponding prediction variability based on the model. The realised revenues

are drawn as dashed lines in each route. Furthermore, there are three kinds of expected

revenue computations based on three different price variables, which are used to modify

our model for fitting and predicting. The first uses log relative price p = log
(
pTKT+pASR

pTKT

)

as the price variable. This is the variant introduced in this paper. The second uses the

ticket price pTKT as the price variable, while the third includes no price variable at all.

For the latter case, the predictive interval of expected revenue does not cover the realised

revenue for any of the five routes. Because the price of ASR pASR did not vary in Period

II for routes C, D and E, the predictions using the nominal and relative ticket prices

are the same. However, on routes A and B, the use of the log relative price instead of

the nominal price greatly improves the accuracy of the revenue prediction. These results
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suggest that it is useful to use the logarithm of the price of ancillary services, relative

to the ticket price, to estimate the WTP. This has the substantial advantage that it is

not necessary to run pricing experiments for ancillary products to obtain variation in the

nominal price. In particular, airlines can price the ancillary products dynamically relative

to the paid ticket price by combining our ASR Models 1 and 2.

7 Economic Insights and Managerial Implications

It has been more than three decades since American Airlines [1987] described revenue

management as the discipline “to maximize passenger revenue by selling the right seats to

the right customers at the right time”. The original definition has been extended to include

at least two more important factors: with the right price and in a right combination

by Cross [1997]. The key of this discipline is understanding customers’ perception of

product value, so that price can be varied in order to maximise revenue. Before ASR

was introduced, airlines were not selling the specific seat(s), but one or other seat(s). It

has become popular — including at AirABC — to sell legroom and standard ASR as an

ancillary product. In this section we will discuss the benefits of extending this to allow

for variable pricing based on the above models that use flight, booking and seat-specific

covariates, compared to a single pricing policy for standard seats.

Route: A B C D E
ASR Model 1: -60.302 -50.668 -72.656 -54.140 -83.431
ASR Model 2: -38.092 -30.151 -30.105 -41.962 -45.313

Table 6: Estimated effect of log relative price in all five routes in data Period I, which
can be interpreted as price elasticities.

We first look further at the price elasticities for ASR using the log relative price p.
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The negative coefficients of log relative price in ASR Models 1 and 2 can be interpreted

as transformed relative price elasticities, and are summarized in Table 6, where the first

column gives the effects already reported for route A in Tables 3 and 4 above. These

values can be used for predicting the demand for ASR. Before doing so, we stress an

interesting insight: the price elasticity is weaker in ASR Model 2 than in ASR Model 1.

That is, if an ASR is made after booking the ticket, passengers are less price sensitive.

This appears to be a behavioral effect, with the price paid for the ticket having a declining

effect over time on the subsequent decision of whether to make an ASR. Moreover, the

price of a flight ticket can be considered as a reference price, as defined by Fibich et al.

[2005], where its effect decreases with time.

A second insight is that the booking channel plays an important role. In particular,

tickets that are not sold directly by AirABC, rarely are combined with an ASR at the time

of booking. This suggests that management should endeavour to seek ways to increase

ASR for tickets booked via these channels. The program, “New Distribution Capability”,

recently launched by IATA is directed to meeting this objective (see Hoyles [2015]).

Finally, the third insight is that customers find that seats are heterogeneous. This is

partially due to variations in seat-specific features, and partially due to heterogeneity in

customer preferences. These are substantial as demonstrated by the heat-map in Figure 6.

In this figure, the overall seat effects are depicted on the logarithmic scale. For example,

ASR for seat 28A is approximately 20 times more attractive to single passengers than seat

43E (e2−(−1) = 20.09). The strategic implication for pricing and revenue management is

to give different prices to all seats for ASR according to their estimated value.
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8 Discussion

Understanding customers’ needs means that airlines can offer them the right product.

Therefore, product differentiation has become one of the key success factors in many

industries. The results of our analysis suggest that the ASR for standard seats — which

are currently sold at the same price — are valued differently by customers. By adopting

the characteristics of the seat heat-map, airlines have many possibilities to differentiate

these products. For example, they could bundle bookings for multiple passengers with

ASR, especially for those customers who seek to sit together in the special seats in rows

45 − 47 in this cabin configuration. Another example is to give different prices to aisle

or window seats, as well as for different plane sections. One result of doing so, is that

booking data can be collected where the price per standard seat varies. Such data can

be used to estimate our proposed ASR Model using the nominal ticket price, rather than

the relative price. This will enable us to compute nominal WTP for each seat.

In practice, airlines have pursued two forms of price discrimination. The first involves

adopting different prices for the same product through the use of booking classes and

fare rules that cater to different customer segments in the market. The second is product

differentiation through offering different products to different customers. For the new

rising star of ancillary services, adopting nuanced price discrimination can make it a ma-

jor driver of profitability. While we consider ASR in detail here, our work provides a

framework for modelling customer preferences for other ancillary products using flight,

booking and seat (or potentially other product) specific information. Particularly rea-

sonable is the use of log relative prices, rather than nominal prices. This is because it

exploits the variation in the already dynamically-varied ticket price to allow for estima-

tion of the (relative) WTP or price elasticity, without requiring experimental pricing of
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ancillary products. One interesting area for future research is to explore optimal pricing

of bundles of ancillary services. For this type of analysis, we suggest focusing on the data

generating process as we have done in this paper, but also considering the relationships

between products in a bundle.
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A Appendix

A.1 Derivations and algorithm for estimation

To maximize the penalized likelihood lp(θθθ,σσσ2), two derivations are requested.

Score Function:

sss(θθθ) = ∂l(θθθ)
∂θθθ

=
∑

f

∑

i

∑

l∈Sf,i

{
ZZZTf,i,l −

1∑
r∈Cf,i(s̃f,i) exp(ZZZf,i,rθθθ)

·
∑

r∈Cf,i(s̃f,i)

[exp(ZZZf,i,rθθθ) ·ZZZTf,i,r]
}

=
∑

f

∑

i

∑

l∈Sf,i

{
ZZZTf,i,l −

∑

r∈Cf,i(s̃f,i)

exp(ZZZf,i,rθθθ)∑
q∈Cf,i(s̃f,i) exp(ZZZf,i,qθθθ)

·ZZZTf,i,r
}

=
∑

f

∑

i

∑

l∈Sf,i

{
ZZZTf,i,l −

∑

r∈Cf,i(s̃f,i)

πr ·ZZZTf,i,r
}

(24)

where πr = exp(ZZZf,i,rθθθ)∑
q∈Cf,i(s̃f,i)

exp(ZZZf,i,qθθθ) and with penalization: sss(θθθ,λλλ) = sss(θθθ)−DDDθθθ where λλλ = ( 1
σ2

0
, 1
σ2

1
).

Fisher Information:

FFF (θθθ) = − ∂
2l(θθθ)

∂θθθ∂θθθT

=
∑

f

∑

i

∑

r

{∑
q exp(ZZZf,i,qθθθ) · exp(ZZZf,i,rθθθ)ZZZTf,i,r ·ZZZf,i,r − exp(ZZZf,i,rθθθ)ZZZTf,i,r ·

∑
q[exp(ZZZf,i,qθθθ) ·ZZZf,i,q]∑

q exp(ZZZf,i,qθθθ) ·
∑
q exp(ZZZf,i,qθθθ)

}

=
∑

f

∑

i

∑

r

{exp(ZZZf,i,rθθθ)ZZZTf,i,rZZZf,i,r∑
q exp(ZZZf,i,qθθθ)

−
exp(ZZZf,i,rθ)θ)θ)ZZZTf,i,r ·

∑
q[exp(ZZZf,i,qθθθ)ZZZf,i,q]∑

q exp(ZZZf,i,qθθθ) ·
∑
q exp(ZZZf,i,qθθθ)

}

=
∑

f

∑

i

∑

r

{
πrZZZ

T
f,i,rZZZf,i,r − πrZZZTf,i,r ·

∑

q

exp(ZZZf,i,qθθθ)∑
j exp(ZZZf,i,jθθθ)

·ZZZf,i,q
}

=
∑

f

∑

i

∑

r

{
πrZZZ

T
f,i,rZZZf,i,r − πrZZZTf,i,r ·

∑

q

πq ·ZZZf,i,q
}

=
∑

f

∑

i

∑

r

{
πrZZZ

T
f,i,r(ZZZf,i,r −

∑

q

πqZZZf,i,q)
}
. (25)

With Penalization: FFF (θθθ,λλλ) = FFF (θθθ) +DDD
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We use Newton-Raphson-Algorithm

θθθ(k+1) = θθθ(k) +FFF−1(θθθ(k),λλλ(k)) sss(θθθ(k),λλλ(k)) (26)

to estimate the parameters and for the asymptotic variance of estimation we use the sandwich estimator

ŝe(θθθ) =
√

diag[FFF−1(θθθ,λλλ) FFF (θθθ) FFF−1(θθθ,λλλ)], (27)

where

θ̂ − θ
ŝe(θ)

∼ t(n− p′, 0). (28)
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A.3 Additional Figures

Departure Day of Year (d) Days to Departure (t)

0 100 200 300 −300 −200 −100 0

−1.0

−0.5

0.0

0.5

−1.0

−0.5

0.0

0.5

co
ef

fic
ie

nt
s

Figure 8: Estimated smooth effects for route B in ASR Model 1. The left panel gives the
departure day of year m2(d) effect, and the right panel gives the days to departure m2(t)
effect. The point estimates of the functions are given by the solid line, while the dashed
lines are 95% confidence bands.
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Figure 9: Estimated smooth effects for route C in ASR Model 1. The left panel gives the
departure day of year m2(d) effect, and the right panel gives the days to departure m2(t)
effect. The point estimates of the functions are given by the solid line, while the dashed
lines are 95% confidence bands.
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Figure 10: Estimated smooth effects for route D in ASR Model 1. The left panel gives
the departure day of year m2(d) effect, and the right panel gives the days to departure
m2(t) effect. The point estimates of the functions are given by the solid line, while the
dashed lines are 95% confidence bands.
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Figure 11: Estimated smooth effects for route E in ASR Model 1. The left panel gives
the departure day of year m2(d) effect, and the right panel gives the days to departure
m2(t) effect. The point estimates of the functions are given by the solid line, while the
dashed lines are 95% confidence bands.
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Departure Day of Year (d) Days to Departure (s)
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Figure 12: Estimated smooth effects for route B in ASR Model 2. The left panel gives
the departure day of year m2(d) effect, and the right panel gives the days to departure
m2(s) effect. The second can also be considered as the baseline purchasing intensity for
this model. The point estimates of the functions are given by the solid line, while the
dashed lines are 95% confidence bands.
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Figure 13: Estimated smooth effects for route C in ASR Model 2. The left panel gives
the departure day of year m2(d) effect, and the right panel gives the days to departure
m2(s) effect. The second can also be considered as the baseline purchasing intensity for
this model. The point estimates of the functions are given by the solid line, while the
dashed lines are 95% confidence bands.
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Departure Day of Year (d) Days to Departure (s)

0 100 200 300 −300 −200 −100 0

−2

−1

0

1

−2

−1

0

1

co
ef

fic
ie

nt
s

Figure 14: Estimated smooth effects for route D in ASR Model 2. The left panel gives
the departure day of year m2(d) effect, and the right panel gives the days to departure
m2(s) effect. The second can also be considered as the baseline purchasing intensity for
this model. The point estimates of the functions are given by the solid line, while the
dashed lines are 95% confidence bands.
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Figure 15: Estimated smooth effects for route E in ASR Model 2. The left panel gives
the departure day of year m2(d) effect, and the right panel gives the days to departure
m2(s) effect. The second can also be considered as the baseline purchasing intensity for
this model. The point estimates of the functions are given by the solid line, while the
dashed lines are 95% confidence bands.
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Figure 16: The overall heat-maps from the Seat Selection Model for single passengers in
each route during data Period I.
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Figure 17: The overall heat-maps from the Seat Selection Model for single passengers in
each route during data Period II.
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Figure 18: The overall heat-maps from the Seat Selection Model for multiple passengers
in each route during data Period I.
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Figure 19: The overall heat-maps from the Seat Selection Model for multiple passengers
in each route during data Period II.
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Chapter 3

Bundle pricing with aggregated market

data

Chapter 3 presents a applied research article, which concerns the bundle pricing problem.

Considering the nature of customers’ choices between purchasing no ancillaries, single ancillary

items (“a la carte”) or multiple ancillaries in a bundle; a discrete choice model based on

multinomial distribution is proposed.

Contributing article:

Shao, S., Kauermann, G. (2019) Understanding price elasticity for airline ancil-

lary services. Journal of Revenue and Pricing Management, available at: http:

//link.springer.com/article/10.1057/s41272-018-00177-z.

Copyright:

Springer Nature Limited 2019

Author contributions:

Shuai Shao conceived the research question and was responsible for the experimental design

and implementation. He drafted the manuscript including examples and visualisations. Göran

Kauermann critically revised and contributed to the manuscript by giving valuable inputs on

modelling and interpretation approaches, as well as proofreading.

http://link.springer.com/article/10.1057/s41272-018-00177-z
http://link.springer.com/article/10.1057/s41272-018-00177-z
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Chapter 4

Final remarks

The success of airlines has always been accompanied by new challenges and opportunities,

as well as new methods and new disciplines. Given the new freedoms to set prices after the

deregulation of markets in the late 70s, airlines rapidly embraced the concepts of differential

pricing, in which different prices are offered not only for different physical products (e.g. First,

Business and Economy cabins), but also identical services within the same cabin. Differential

pricing involves both methods, product differentiation and price discrimination. Based on

these methods, RM has since then developed various innovations on network optimisation as

well as choice modelling, and established itself as a capacious discipline.

Since the beginning of this century, existing RM systems are facing new challenges. As

a major recent development in the airline industry, ancillary revenue opportunities bring

challenges in parallel with the big data revolution. This thesis encompassed different statistical

methods applied to airline RM. It is demonstrated that regression models can be modified as

tailor-made solutions for accessing WTP and quantifying PE. In the case of ASR, it is shown

how a single ancillary item can be embedded in current RM systems with differential pricing

based on semi-individual booking data. Furthermore, models based on aggregated market

data are proposed to evaluate revenue-oriented ancillary bundle pricing policy. In this spirit,

models applied in this thesis can also be utilised in other industries (e.g. hotels, car rentals,

cruise companies) with the need for incorporating ancillary revenue to their RM systems. As

the contributions in each chapter already contain specific remarks and research perspectives,

global remarks on applying statistical methods to the transportation and tourism industry in

connection to big data are given in following.
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Originally1, big data are defined by its big volume, velocity and variety (Laney 2001). Modern

transportation and tourism as information-intensive industries are predestined to be affected

by big data seeing that

• volume: the extensive network of destinations leads to large databases;

• velocity: booking data are often available on a real-time basis;

• variety: a rich set of ancillary services provides different types of information.

As King (2016) notes, “big data is not about the data”, but much more about extracting

valuable information from them. To achieve this goal, multiple scientific disciplines are

in demand, or even competitive in a certain way. For instance take the generative and

algorithmic culture defined by Breiman (2001): The former is more concerned with the data

generating process from the statistical point of view; the latter has more focus on predictive

capability and is more present in computer science.

While the majority of academical research in statistics is dedicated to further methodological

development in a very advanced and sophisticated way, it is also essential to make use of

the opportunities in interdisciplinary applications. In the action plan proposed by Cleveland

(2001), it is even suggested to give interdisciplinary investigations the most resources. At

long last, the benefits of the developed statistical methods cannot be demonstrated without

application.

Finally, the author would like to emphasise the cited aphorism from Box and Draper (1987)

again: since “all models are wrong, but some are useful”, both generative and algorithmic

culture can be useful for real-world problems in the big data era, depending on the research

question, goal and complexity. Indeed, the emerging scientific discipline data science can

also make valuable contributions to RM, since it combines but not replaces both cultures

(Kauermann and Seidl 2018). For the collaboration with RM, statistical methods can be

more useful by offering not only models but also the theoretical foundation behind, which

can find their equivalence in the quantitative branches of economics; or more importantly,

their equivalence in the standard steering parameter in RM systems (recalling the success

story of RM stems from transferring theory to practice). With no doubt, developments in

interpretable machine learning from the algorithmic culture can be useful in this way as well,

see more details in Molnar (2019). In this spirit, this thesis can also be seen as an appealing

research invitation to applying interpretable machine learning to RM.

1The original definition of big data with 3 Vs has been since then extended in many versions, e.g., additionally
with veracity, value, validity, variability and volatility. Here, the respective justification is disclaimed. Instead,
the focus lies on demonstrating how the transportation and tourism industry is affiliated with big data.
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