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Aim of the thesis 

High-throughput sequencing technology has enabled us to explore the whole transcriptome                     

of biological systems even at single cell resolution by producing billions of short reads. There                             

are many applications of RNA-sequencing (RNA-seq), such as expression profiling to                     

compare genetically modified systems, studying evolution of traits across species or                     

understanding disease mechanisms in an individual (Shendure and Lieberman Aiden 2012).                     

The aim of this work is to develop and optimise computational strategies to minimize                           

unwanted technical noise and thus improve relative quantification using bulk or single-cell                       

RNA-seq within or across species. 
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Summary 

The generation of cDNA libraries from RNA transcripts and its subsequent sequencing                       

using high throughput sequencers is called RNA-seq. While it has become the dominant                         

technology to quantify expression levels genome-wide, its experimental and computational                   

methods are still rapidly evolving. To make optimal use of this data, it is necessary to                               

quantify sources of technical noise, benchmark different experimental and computational                   

methods and generate new tools where necessary.  

In the first study of this thesis, we investigated the technical noise introduced by PCR                             

amplification of cDNA during library generation when handling small amounts of starting                       

material. To address this question, we analysed datasets generated from Universal Human                       

Reference RNA (UHRR) using different library preparation protocols and a publicly available                       

single-cell dataset. We find that read duplicates emerging during amplification can not be                         

correctly identified computationally. However, if 4-10bp random barcodes (Unique                 

Molecular Identifiers - UMIs) are used to tag each cDNA molecule before amplification, it                           

enables correct identification of duplicate reads. Additionally, early pooling of samples                     

before amplification using sample barcoding helps to overcome variable amplification rates                     

across samples. Using simulations I show that the power to detect differential expression is                           

negatively correlated with the number of PCR cycles used. Furthermore, pooling samples                       

prior to PCR, increases the power while controlling the False Discovery Rate (FDR).  

We confirm this finding in the second study of this thesis where we compared six                             

scRNA-seq library preparation methods for their sensitivity to detect genes, accuracy to                       

estimate expression levels, precision of measurements, power to detect differential                   

expression and cost efficiency. The power simulation framework designed to evaluate the                       

impact of amplification and comparison of various scRNA-seq protocols for detecting                     
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differential expression was published in a third study describing our software package,                       

powsimR. When benchmarking different scRNA-seq protocols, we found that available                   

UMI- processing pipelines were lacking desirable features for the analysis of scRNA-seq                       

experiments implemented in zUMIs include: adaptive downsampling, automatically               

identifying intact cell barcodes and additionally also counts and collapses intron-mapping                     

reads. Therefore, in the fourth study of this thesis- I developed zUMIs, a fast and flexible                               

pipeline that incorporates all the above features.  

In the fifth study, we investigated on a set of challenges that arise when using RNA-seq to                                 

study expression profiling across diverged species. To this end, I developed a simulation                         

framework to model mammalian whole genome sequence evolution together with gene                     

expression profiles. Using simulations we could show that a common well resolved genomic                         

reference can be used 1) to compare gene expression changes between closely related                         

species 2) to compare expression changes between conditions within non-reference species                     

and 3) to compare expression changes between species relative to conditions. Moreover, by                         

simulating expression profiles in different sequencing layouts, we could show that longer                       

reads increase sensitivity and that a single-end (SE) sequencing layout is sufficient for                         

quantitative gene expression studies. This study allows to improve gene expression                     

quantification among species and also shows that species-specific genome annotations                   

become crucial at divergence levels above ~10%. 

All in all, we have shown that, for quantitative RNA-seq, the utility of noise reduction due to                                 

UMIs is indeed a function of the amount of amplification and is especially important for low                               

input applications such as scRNA-seq. Moreover, using simulations, we could measure the                       

impact of varying genomic resources quality on relative quantification between diverged                     

species. In conclusion, I used simulations to identify and correct for possible sources of bias                             

through computational methods to improve gene expression quantification using RNA-seq. 
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Introduction 

Gene expression profiling 

The instructions for a biological system are ultimately contained in DNA. The cell is the basic                               

unit of any living system and cells within an organism can have different functions, although                             

they contain the same DNA. This is achieved because cells with different functions                         

transcribe different parts of their DNA into RNA, which in turn serves as a template for                               

proteins. This process of information transfer from DNA to RNA to protein is known as the                               

central dogma of molecular biology (Crick 1970; Strasser 2006) and puts transcription and                         

the abundance of RNAs at the root of cellular processes. Hence, determining the abundance                           

of all transcripts in a cell or group of cells is highly informative. Such measurements of gene                                 

expression profiles have provided numerous insights into biological systems ranging from                     

the evolution of phenotypic traits (Sousa et al. 2017; Brawand et al. 2011), cellular identity                             

(GTEx Consortium et al. 2017; Lonsdale et al. 2013), functioning of various tissues and                           

organs in disease condition (Emilsson et al. 2008; Delgado and León 2006), and population                           

scale studies to understand variation in expression profiles (Stranger et al. 2007), to name                           

just a few recent examples. 

Various methods have been developed and evolved for mRNA quantification over time.                       

About 40 years ago, quantification of transcripts was done using northern blotting, where                         

RNA molecules are size separated using gel electrophoresis, transferred onto a nylon                       

membrane and detected by hybridisation to radioactively labelled complementary probes                   

specific to the gene of interest (Alwine, Kemp, and Stark 1977). Later, a more sensitive                             

method called ribonuclease protection assay (RPA) came into light (Azrolan and Breslow                       

1990; Sambrook and Russell 2001). In RPA, the hybridisation of mRNA with the probe                           
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takes place in solution; after enzymatic degradation of unspecific hybrids, the remaining                       

product is electrophoresed on a polyacrylamide gel and visualised by phosphorimaging or                       

radiography. Gradually, two polymerase chain reaction (PCR) based techniques were                   

employed to characterize and quantify mRNA levels, namely reverse transcription                   

polymerase chain reaction (RT-PCR) (Chelly et al. 1988; Rappolee et al. 1988) and                         

quantitative or real-time polymerase chain reaction (qPCR) (Becker-André and Hahlbrock                   

1989; Weis et al. 1992; A. M. Wang, Doyle, and Mark 1989). Quantification by qPCR is                               

done by measuring signals of fluorescent dye incorporated into a complementary DNA                       

(cDNA) molecule reverse transcribed from mRNA during amplification in real time. However,                       

the above mentioned techniques are time consuming and limited only to selected genes.  

The idea of randomly sequencing cDNA clones to discover genes was first coined in 1982                             

(Putney, Herlihy, and Schimmel 1983; Sutcliffe et al. 1982) and such sequences were later                           

called expressed sequence tags (EST) (Adams et al. 1991); however, it was not a                           

quantitative measure of expression levels. In 1995, the first sequencing-based quantitative                     

gene expression profiling was attempted using serial analysis of gene expression (SAGE)                       

(Velculescu et al. 1995), where restriction enzyme digested 11bp short tags of cDNA are                           

sanger sequenced. Many variants of SAGE have been developed to overcome the ambiguity                         

issue due to short tags (Saha et al. 2002; Matsumura et al. 2005; Gowda et al. 2004).                                 

However, this technique is dependent on the presence of restriction enzyme sites                       

preventing global profiling of whole transcriptomes. Eventually, the development moved                   

towards on array hybridisation of the entire transcriptome using predetermined probes                     

called “DNA microarrays” (Schena et al. 1995). Microarrays are solid surface chips with                         

microscopic spots containing oligonucleotide probes that are designed complementary to                   

cDNA sequences of known genes. A set of probes for each gene are designed taking into                               

account the properties for optimum hybridisation like GC content, melting temperature, self                       

hybridisation, and cross hybridisation with other targets in the genome (Liu, Bebu, and Li                           
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2010). After the probes are immobilised on the array surface, fluorescently labelled cDNA of                           

samples are added onto the array to hybridise with their complementary probes. A washing                           

step is performed to remove non-specifically bound cDNA and the fluorescent signal is                         

measured. This signal corresponds to the amount of cDNA molecules for each gene                         

enabling relative quantification of gene expression across samples (Duggan et al. 1999;                       

Schulze and Downward 2001). With the increasing popularity of microarray technologies,                     

there was a pressing need for more stringent quality controls. Thus, a MicroArray Quality                           

Control (MAQC) was initiated to address concerns of technical performance by assessing                       

various methods on the same reference RNA performed in different labs (MAQC                       

Consortium et al. 2006; Shippy et al. 2006). A relatively high level of inter and intra-platform                               

concordance in differential gene expression measures were observed. The second phase of                       

MAQC project (MAQC-II) (Shi et al. 2010) focused on generating and benchmarking                       

predictive models to reliably anticipate the clinically relevant outcome from patient data. The                         

conclusions from MAQC-II project assumed that integrating other types of biological data at                         

the DNA, micro-RNA and protein levels would increase the prediction accuracy of clinical                         

data. Moreover, MAQC data sets provided a platform for benchmarking newly developed                       

protocols and analysis pipelines (Kerr 2007; Bullard et al. 2010). Nevertheless, using                       

microarrays for gene expression profiling comes with certain disadvantages: 1) cross                     

hybridisation of probes with multiple targets; 2) the probes are designed based on                         

predetermined sequences, limiting the usability of microarrays only to the species with well                         

resolved sequence and gene models; 3) with the fluorescence intensity-based measures,                     

genes with low expression levels are affected by the presence of background noise and high                             

expression levels are affected by signal saturation. Sequencing-based gene expression                   

profiling using RNA sequencing (RNA-seq) (Mortazavi et al. 2008) overcomes these                     

limitations by measuring the expression levels via digital counting of sequenced reads per                         

gene. With the increased sensitivity, specificity and the ability to detect novel genes and                           
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isoforms, RNA-seq provides practical solutions for a broad range of experimental designs,                       

making it the state-of-the-art method for gene expression studies. 

Scope of sequencing 

There have been phenomenal advancements in the field of sequencing technologies since                       

the first draft of the human genome sequence (Lander et al. 2001; Venter et al. 2001).                               

Historically, studying a biological system by decoding the nucleotide base order began with                         

the chain termination method proposed by Frederick Sanger (Sanger, Nicklen, and Coulson                       

1977). Gradually, technological variations in this method brought about many automated                     

DNA sequencers leading to the birth of the first commercial first-generation DNA sequencer                         

(Hunkapiller et al. 1991). Methods like PCR and recombinant DNA technology slowly led to                           

further development in the sequencing technology leading to parallel sequencing of                     

hundreds of samples by ABI PRISM, which aided in the completion of the first draft of                               

human genome sequence (C.-Y. Chen 2014; Ansorge 2009). The 454 GS 20 was the first                             

machine that brought massively parallel sequencing easily available to users in 2005                       

(Margulies et al. 2005) which was later upgraded to 454 GS FLX with better per base                               

sequencing quality (Voelkerding, Dames, and Durtschi 2009). This was a major                     

breakthrough in the field of High-Throughput Sequencing (HTS).  

Ever since the National Human Genome Research Institute (NHGRI) started a race to                         

achieve a 1000$ human genome (Schloss 2008), a boom in massively parallel sequencing                         

technology development emerged with different read length, throughput and base quality                     

(Kircher and Kelso 2010). These technologies were then overruled by Illumina sequencing                       

with its remarkably reduced cost, higher throughput and increasing speed with rapid                       

improvements in sequencing quality (Zimmerman 2014). Illumina sequencing works on the                     

principle of “sequencing by synthesis” using cyclic reversible termination (Bentley et al.                       

2008). In this technology, the sequencing templates are immobilized on the surface of a                           
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flow-cell by incorporating adapters into fragmented DNA. These templates are then                     

amplified into several copies on the flow-cell by “bridge amplification” (Fedurco et al. 2006)                           

followed by adding all four nucleotide bases. The bases are modified for a single fluorophore                             

and a chain terminator incorporating only one base at a time. The fluorescence signal is                             

recorded and base-calling is done from the images generated at every cycle (Kircher,                         

Stenzel, and Kelso 2009).  

Apart from costs, features like sequencing layout, depth and read length should be taken                           

into consideration for different applications (Metzker 2010; Reuter, Spacek, and Snyder                     

2015; Kircher and Kelso 2010). DNA fragments can be sequenced from one end                         

(single-end) or both (paired-end). Choosing the ideal sequencing layout depends on the                       

goal of the study. Depending on the machine used, up to 600bp (300bp paired-end)                           

sequencing reads can be generated using Illumina technology (Goodwin, McPherson, and                     

McCombie 2016). Paired-end sequencing layout is preferable for detecting genomic                   

rearrangements, de novo transcript detection and differential isoform expression analysis                   

(Garber et al. 2011; Katz et al. 2010). For quantitative gene expression studies of model                             

organisms, cost efficient single-end sequencing is sufficient (Conesa et al. 2016). On the                         

other hand, longer reads improve mappability, novel splice-site detection (Łabaj et al. 2011)                         

and the comparative analysis of diverged species with poorly resolved gene models. 

Rapid advancements in the technologies bring new challenges like sources of noise,                       

sequencing quality, and the development of computational methods to tackle                   

application-related issues (Kircher, Stenzel, and Kelso 2009; Stegle, Teichmann, and Marioni                     

2015). In this work, we focus on investigating potential sources of noise and discuss about                             

possible optimisation for gene expression profiling using RNA-seq generated using the                     

Illumina platform.  
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RNA sequencing 

RNA-seq enables us to characterize and quantify the whole transcriptome of a system.                         

Apart from mRNA quantification, RNA-seq can be used for novel gene discovery, fusion                         

transcript detection, detecting alternative splicing events, variant discovery and allele                   

specific expression (Z. Wang, Gerstein, and Snyder 2009; Ozsolak and Milos 2011). There                         

are various library preparation methods established with distinct features (van Dijk,                     

Jaszczyszyn, and Thermes 2014). The major steps involved in library preparation are RNA                         

extraction, reverse transcription to cDNA, fragmentation, adapter ligation and sequencing                   

(Figure 1).  

 

 

Figure 1: Basic steps of RNA-sequencing. Depicted here are the basic steps from sample to short                               

read sequencing, going from left to right. 

 

Different protocols feature distinct ways of fragmentation, required amount of starting                     

material, number of PCR cycles, strand specificity, mRNA enrichment and sample pooling                       

(Levin et al. 2010; Ziegenhain et al. 2017; Parekh et al. 2016). The first step of any RNA-seq                                   

protocol is to extract RNA. The major fraction (>80%) of a cells’ RNA is ribosomal (O’Neil,                               
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Glowatz, and Schlumpberger 2013); hence, in order to be able to quantify mRNA levels an                             

enrichment step is necessary. Therefore, most of the protocols have rRNA depletion using                         

magnetic beads or nuclease, or mRNA enrichment using Oligo-dT particles to pull down                         

poly-A+ mRNAs (Choy et al. 2015). Depending on the protocol, RNA is fragmented by                           

either heat or chemical hydrolysis as in TruSeq protocol (Mortazavi et al. 2008), or                           

enzymatic digestion or sonication after being reverse transcribed into cDNA (Adey et al.                         

2010; Picelli et al. 2013). In some protocols, the next step is adapter ligation and adding                               

sample specific barcodes to multiplex them into one tube to facilitate sequencing multiple                         

samples on the same run and reduce batch effects (Marioni et al. 2008).  

In RNA-seq experiments, known synthetic spike-in molecules (typically ERCCs) are also                     

added (External RNA Controls Consortium 2005; Jiang et al. 2011) during the library                         

preparation. These spike-in molecules have a wide range of expression levels with varying                         

length and GC content. They provide a ground truth to calculate standard curve to measure                             

the accuracy of quantification and technical biases during library preparation. However,                     

these spike-in molecules are often criticised for being influenced by biological signals and                         

thus not suggested to use for normalisation across samples (Risso et al. 2014; Tung et al.                               

2017).  

The final libraries are amplified before pooling for sequencing. The required number of PCR                           

cycles varies for each protocol depending on the amount of starting material and                         

requirements of the protocol (Parekh et al. 2016; van Dijk, Jaszczyszyn, and Thermes 2014).                           

These libraries are loaded onto the sequencer and a massive amount of short reads are                             

generated. The choice of sequencing layout and read length typically depends on the                         

application in question (Conesa et al. 2016; X. Zhou and Rokas 2014; Mortazavi et al. 2008). 
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RNA-seq data processing 

After sequencing, the basic data processing for any RNA-seq experiment involves                     

demultiplexing, mapping and counting. Typically, when the genomic resources are available,                     

short reads are mapped to the genome using a splice aware aligner. Mapped reads are then                               

converted into a count matrix with samples in columns and genes as rows (Figure 2). 

 

 

 

Figure 2: RNA-seq data processing. The genome is shown as a straight grey line and exons on the                                   

gene are depicted as coloured boxes. Reads are coloured in red and green to distinguish two samples                                 

whereas two genes are the dark and light shades of seagreen color. The dashed line in the read                                   

mapping shows reads spanning over intron-exon junctions. After mapping, reads assigned to                       

features are counted per gene per sample and tabulated as a gene count table. 
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Demultiplexing 

In a RNA-seq experiment, multiple libraries are pooled together using sample specific                       

barcodes before sequencing (Craig et al. 2008; Meyer et al. 2007). Pooling as many samples                             

as possible in the same sequencing run not only reduces experimental costs but also                           

prevents sequencing bias (Auer and Doerge 2010). During the library preparation for                       

Illumina sequencing technology, sample barcodes are added in one of the library adapters                         

and sequenced as index reads usually 6-8bp long. With the rapid increase in throughput,                           

Illumina introduced dual barcoding by incorporating barcodes in both library adapters.                     

Depending on the sequence length, up to 27 different barcodes were possible with single                           

indexing approach, whereas with the double indexing method, up to 384 different samples                         

could be multiplexed (Kircher, Sawyer, and Meyer 2012). Thus, RNA-seq data analysis                       

begins with demultiplexing the raw reads from pooled sequences based on their sample                         

barcodes sequenced as index reads (Renaud et al. 2015; Galanti, Shasha, and Gunsalus                         

2017).  

Quality Control (QC) 

Various Quality Control (QC) metrics are applied at every stage of data analysis. The QC of                               

raw reads informs about the issues with library preparation and sequencing. To this end the                             

per base sequence quality, GC content, the presence of undesirable sequences (primers or                         

adapters) and overrepresentation of certain fragments or contamination are evaluated.                   

Some of the QC metrics are observed after mapping. For a typical bulk RNA-seq                           

experiment, more than 65% reads are uniquely assigned to exonic regions for a species with                             

a well resolved genome assembly and gene models. Uniformity of read distribution across                         

gene body is another measure of quality check for full length RNA-seq libraries. Several                           

tools are available for deriving these QC metrics: FastQC (Bioinformatics 2011), kraken                       

(Davis et al. 2013), Qualimap (García-Alcalde et al. 2012; Okonechnikov, Conesa, and                       
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García-Alcalde 2016), NGS-QC toolkit (Patel and Jain 2012) and RNA-SeQC (DeLuca et al.                         

2012). 

Mapping and Quantification 

When it comes to mapping of RNA-seq reads, the researcher is confronted with many                           

choices that will influence all downstream analyses, starting with a decision about which                         

gene/transcript annotation and which mapper to use, ending with the fine-tuning of                       

mapping parameters (Baruzzo et al. 2016; Fonseca et al. 2012; Conesa et al. 2016;                           

Engström et al. 2013).  

First, there appears to be two major mapping strategies: 1) mapping to genome and 2)                             

mapping to transcriptome. Second, choosing which annotations to use: 1) focus on                       

well-known genes using the RefSeq (O’Leary et al. 2016) or HAVANA (Hancock, Hancock,                         

and Zvelebil 2004) curated annotation or 2) be inclusive and accept some level of incorrect                             

annotation and thus always use the most recent ENSEMBL (Zerbino et al. 2017) release and                             

map. The choice of reference and annotations strongly impacts the downstream analysis in                         

RNA-seq (Zhao and Zhang 2015; Nellore et al. 2016; Garber et al. 2011; Mortazavi et al.                               

2008). Generally, genome sequences are better resolved compared to gene models. In                       

addition, if the reads from unannotated regions of the genome are forced to map to the                               

reference transcriptome, it can lead to spurious mapping (Zhao 2014). Moreover, if the goal                           

is to identify novel splice junctions and fusion transcripts, mapping to a reference genome is                             

mandatory.  

On average, 12% of the reads mapped to a genome span exon-intron junctions. Hence, it is                               

important to use a splice-aware mapper for RNA-seq reads (Engström et al. 2013) such as                             

STAR (Dobin et al. 2013) or HISAT (Kim, Langmead, and Salzberg 2015). To obtain the                             

optimal alignment, it is necessary to adjust mapping parameters based on the nature of the                             

input data. For instance: 1) allowed number of mismatches per read depends on quality of                             
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sequencing; 2) in the case of paired-end sequencing, the range of insert size between two                             

reads of a fragment is important to set; 3) intron size should be adjusted based on the                                 

species sequenced; 4) the number of bases a read is allowed to span over intron-exon                             

junction site should be adjusted according to the read length. In the case of reference-based                             

RNA-seq quantification, trimming and filtering of low quality reads and adapter                     

contamination is not necessary, because low quality reads are unlikely to map at all (Dobin                             

et al. 2013; Baruzzo et al. 2016; Engström et al. 2013).  

With the increasing throughput, speed has become an important criterion for data                       

processing. Mapping free quantification known as “pseudo-alignment” methods have come                   

into light with more appealing run-time compared to full alignment methods (Patro et al.                           

2017; Bray et al. 2016; Srivastava et al. 2016). However, these methods utilise                         

transcriptome as a reference, which poses a problem for species where gene models are not                             

fully resolved and also for novel transcript detection. Table 1 lists important features of                           

different mapping and quantification tools frequently used for reference based RNA-seq                     

analysis. 

Tool  Alignment  Quantification  Reference type  Multimapping   Input format 

STAR  Full alignment  Yes 
Genome 
Transcriptome  UD,A,N,B 

fastq 
SAM 
BAM 

HiSAT  Full alignment  No  Genome 
Transcriptome 

UD,A,B  fastq 

GSNAP  Full alignment  No  Genome 
Transcriptome 

UD,A,N,B  fastq 

Mapsplice  Full alignment  No  Genome 
Transcriptome 

B  fastq 

RapMap  Pseudo-alignment  Yes  Transcriptome  H (<=200)  fastq 

Kallisto  Pseudo-alignment  Yes  Transcriptome  A  fastq 

Salmon 
Pseudo-alignment 
pre-aligned BAM  Yes  Transcriptome  A 

Fastq 
SAM 
BAM 

RSEM 

Full alignment by 
Bowtie 
Bowtie2 
STAR 

Yes  Transcriptome  A 
SAM 
BAM 
fastq 
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Express  Pre-aligned BAM  Yes  Transcriptome  A  SAM 
BAM 

featureCounts  Pre-aligned BAM  Yes  Genome  UD,N,A  SAM 
BAM 

HTSeq-count  Pre-aligned BAM  Yes  Genome  UD,N,A  SAM 
BAM 

ESAT  Pre-aligned BAM  Yes  Genome  N,A,ES  SAM 
BAM 

 
Table 1: Utilities of commonly used RNA-seq mapping and quantification tools. The tools with                           

light blue background are primarily used for mapping, light green background are used for                           

quantification and white background perform mapping free quantification. The type of alignment                       

algorithm a tool supports is given in “Alignment” column. The “Read assignment” column represents                           

if the tool uses Expectation Maximization (EM) algorithm to resolve reads assigned to more than one                               

isoforms of a gene to execute isoform level quantification. The data in column “Multi-mapping” shows                             

how the alignments are reported for multi-mapping reads: UD- user defined, A- all, N- none (only                               

uniquely mapped reads reported), B- randomly chosen one hit, ES- a read is assigned unique if one of                                   

the best hits is within a transcript, H- hard cutoff for number of multi-mapping hits to report. 

 

After mapping, expression estimates for each gene are calculated as the sum of reads                           

mapped to the exons using quantification tools such as featureCounts (Liao, Smyth, and Shi                           

2014) or HT-Seq (Anders, Pyl, and Huber 2014). By default, these tools count every read                             

with at least 1 base overlap with an exon, while reads mapped to the positions where two                                 

genes from different strands overlap are not counted. The reads mapping to more than one                             

loci are called multi-mapping reads. Different quantification tools employ different strategies                     

to deal with multi-mapping reads: 1) discard all the multi-mapping reads, 2) randomly                         

choose one loci, or 3) distribute equal weight among all the loci (Table 1). Dealing with the                                 

reads mapping to multiple locations on the reference (multi-mapping reads) is an open                         

question of RNA-seq data analysis. Various strategies have been implemented to “handle”                       

multi-mapping reads, but a comprehensive assessment of their impact on quantification                     

remains unresolved.  
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Amplification noise 

To accurately measure absolute or relative expression of genes, we require unbiased                       

quantification of their expression levels. One of the major concerns in RNA-seq is the over                             

amplification of certain transcript molecules that do not contribute to the actual expression                         

level estimation of genes. Amplification of transcript molecules generates duplicated                   

sequencing reads. Read duplicates in RNA-seq can be classified into three types: 1) read                           

duplicates arising from different RNA molecules fragmented at the same site, known as                         

“natural duplicates”, 2) PCR duplicates that originated from PCR amplification, and 3)                       

optical duplicates generated by the same cluster on a flow cell misread as a separate cluster                               

by the software (van Dijk, Jaszczyszyn, and Thermes 2014; Kozarewa et al. 2009;                         

Mamanova et al. 2010; X. Zhou and Rokas 2014). Studies have shown the effect of PCR                               

duplicates in the case of variant detection and ChIP-seq analysis and methods have been                           

proposed to computationally correct PCR duplicates (Baumann and Doerge 2014; Mezlini et                       

al. 2013; Ebbert et al. 2016; W. Zhou et al. 2014). However, the impact of presence of PCR                                   

duplicates had not been thoroughly studied in the context of quantification and differential                         

expression by RNA-seq. If PCR amplification of fragments were uniform, all fragments                       

should be amplified with the same efficiency. In reality, certain fragments are over-amplified                         

leading to non-uniformity of reads along the transcript (Figure 3). Given that PCR is                           

exponential, such variability in amplification rate propagates with more PCR cycles and can                         

ultimately distort expression profiles. Especially in single-cell RNA-seq experiments, the low                     

starting amount of mRNA is unavoidable and it leads to an increasing number of PCR cycles                               

during library preparation. Thus, it has been suggested to carefully optimize the number of                           

PCR cycles during library preparation (Picelli et al. 2014; Kolodziejczyk, Kim, Svensson, et al.                           
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2015). 

 

Figure 3: Schematic of variable PCR amplification rate. Depicted here are different cDNA molecules                           

in different colors (grey, green, red, orange and blue). Certain fragments may amplify very efficiently                             

(green), while others may be underrepresented (red) or lost (blue). 

 

Recently, molecular tagging technologies have enabled us to track real PCR duplicates                       

experimentally (Islam et al. 2014). Unique molecular identifiers (UMI) are random 4-10bp                       

oligos incorporated to each cDNA molecule during reverse transcription (Macosko et al.                       

2015; Hashimshony et al. 2012; Bagnoli et al. 2017; Zilionis et al. 2017). Since each cDNA                               

molecule most likely has a sequence of UMI, during amplification, several copies of each                           

cDNA molecule are generated with the same UMI sequence. Thus, after sequencing, each                         

initial cDNA molecule can be counted by collapsing the same UMIs per gene in each cell                               

(Figure 4). 
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Figure 4: Unique Molecular Identifiers. Two genes are shown here with their exonic parts as blocks                               

(dark and light cyan) on a genome (grey line). Short piled fragments are the cDNA reads (grey)                                 

starting with cell barcodes (magenta and dark green) and molecular barcodes (UMI) (light green and                             

yellow). Upper panel shows all the assigned cDNA reads to genes in two samples (above and below                                 

the genome). Right side of the genome depiction is a count table with samples as columns and genes                                   

as rows with the number of reads assigned to per gene per sample. Lower panel shows only uniquely                                   

retained reads based on their UMI sequences and a corresponding count table.  

 

The major challenge is to distinguish them from natural duplicates generated due to                         

fragmentation preference at similar sites to prevent overcorrection of reads (Adey et al.                         

2010; Baumann and Doerge 2014). A comprehensive analysis of read duplication                     

introduced by preferential fragmentation and/or PCR amplification is needed to understand                     

the impact of amplification on differential expression analysis. 

Single-cell RNA-sequencing (scRNA-seq) 

By measuring gene expression levels in the basic unit of biology, the cell, single-cell                           

RNA-seq allows to see information pertaining to every cell previously hidden in averages of                           

bulk RNA-seq (Wills et al. 2013). This higher resolution has been leveraged to understand                           

allele-specific transcription (Deng et al. 2014; Reinius and Sandberg 2015) and gene                       
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expression heterogeneity within tissues (Kolodziejczyk, Kim, Tsang, et al. 2015;                   

Martinez-Jimenez et al. 2017). Furthermore, it has become possible to discover new cell                         

types (Trapnell 2015) in various tissues, such as blood (Björklund et al. 2016; Villani et al.                               

2017), spleen (Jaitin et al. 2014), brain (Poulin et al. 2016; Zeisel et al. 2015; La Manno et al.                                     

2016; Gokce et al. 2016; Tasic et al. 2016) and others (Grün et al. 2015; Muraro et al. 2016;                                     

Macosko et al. 2015). Fueled by this new technology, the Human Cell Atlas initiative (Regev                             

et al. 2017) has begun with the goal of achieving a reference map for all human cell types.                                   

The basic steps in a scRNA-seq experiment involve tissue dissociation, cell isolation and                         

lysis, reverse transcription of RNA to cDNA, amplification and preparation of libraries of                         

cDNA fragments. Despite the fact that basic steps in scRNA-seq library preparation                       

methods remain the same, plethora of scRNA-seq protocols have been published in recent                         

years for specific applications (Kolodziejczyk, Kim, Svensson, et al. 2015). Most methods use                         

well plates or microfluidic droplets to encapsulate cells. An ideal scRNA-seq method                       

features 1) sensitivity to detect transcript molecules, 2) accuracy to measure expression                       

levels, 3) precision of measured expression levels, 4) cost efficiency. Two major studies have                           

shown comprehensive assessment of these protocols (Ziegenhain et al. 2017; Svensson et                       

al. 2017). Based on this evaluation, various variants of existing protocols are being                         

developed to optimise the performance of scRNA-seq (Bagnoli et al. 2017). 

scRNA-seq also comes with new computational challenges (Stegle, Teichmann, and Marioni                     

2015). First, with tens of thousands of cells being sequenced, minimizing cross cell                         

contamination has become more demanding. In most of the scRNA-seq protocols, cell                       

specific barcodes are added at the reverse transcription step to be able to pool more cells in                                 

a single reaction (Jaitin et al. 2014; Soumillon et al. 2014; Hashimshony et al. 2016; Macosko                               

et al. 2015; Klein et al. 2015; Picelli et al. 2014). There are various sources of errors coming                                   

from PCR, sequencing or spill-over from other samples. For droplet-based methods like                       

Drop-seq and DroNc-seq, cell barcodes are not known a priori but they are determined from                             
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the sequenced reads with the notion that intact cells have more reads compared to broken                             

or dead cells (Macosko et al. 2015; Zilionis et al. 2017; Habib et al. 2017). Filtering of low                                   

quality cells and reads prior to analysis is essential to avoid misinterpretations (Ilicic et al.                             

2016; Bacher and Kendziorski 2016; Guo et al. 2015; Finak et al. 2015; McCarthy et al.                               

2017).  

The variance in quality amongst cells of a single cell RNA-seq experiment is much larger                             

than in bulk data and it is highly recommended to filter non-informative cells prior to                             

downstream analysis (Ilicic et al. 2016; Bacher and Kendziorski 2016; Guo et al. 2015; Finak                             

et al. 2015; McCarthy et al. 2017). Reads with the same cell barcode that exhibit a high                                 

abundance of adapters, polyAs, overrepresented sequences and low quality reads may                     

indicate dead cell, debris, or low or degraded RNA content, and they should be marked for                               

removal from the downstream analysis (Ilicic et al. 2016). With the accelerated increase in                           

throughput and methods where visual inspection is not possible, computational methods to                       

identify such cells are inevitable (Macosko et al. 2015; Klein et al. 2015; Zheng et al. 2017).                               

Based on mapping statistics, we can gain a more detailed view on the problems that have                               

occurred during the processing of individual cells. Statistically the most sound method is to                           

examine the distribution of the maximal pairwise correlation coefficient of counts. Assuming                       

that each cell-type occurs at least twice and breaking cells is a random process, bad cells                               

are expected to have a lower correlation with other cells (Petropoulos et al. 2016;                           

Ziegenhain et al. 2017).  

Nowadays, quantitative scRNA-seq methods are pushed towards molecular counting where                   

each each transcript molecule is tagged with a short (4-10 bases) barcode (UMI). In most of                               

the early pooling end-sequencing methods (Jaitin et al. 2014; Soumillon et al. 2014;                         

Hashimshony et al. 2016; Macosko et al. 2015; Klein et al. 2015; Picelli et al. 2014), the                                 

cellular and molecular barcodes (UMI - Unique Molecular Identifier) are sequenced in the                         
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same read. Depending on the protocol, read length of cellular and molecular barcodes vary                           

(Table 2). 

 

Method  UMI / barcode 

read 

Illumina index  Cell barcode 

length 

UMI length 

SCRB-seq  read1   i7  6  10 

MARS-seq  read2  i7  6  8 

CEL-seq2  read1  i7  6  6 

Drop-seq  read1  i7  12  8 

inDrops  read2  i7  18  6 

10x Genomics  read2 / i7  i5  14  10 

Smart-seq2  NA  i5 & i7  -  - 

Smart-seq C1  NA  i5 & i7  -  - 

 
Table 2: Method specific barcode read information. 

For the cell barcodes, it is suggested to apply hard cutoff for filtering (Macosko et al. 2015)                                 

discarding reads where the barcode contains n (default n=1) low quality bases (default < 30                             

phred). However, for molecular barcodes, Islam et al (Islam et al. 2014) proposes to remove                             

UMIs with read counts under 1% of the mean of all UMIs at a given locus. UMI-tools (Smith,                                   

Heger, and Sudbery 2017) implements network-based adjacency and directional adjacency                   

methods which considers both edit distance and the relative counts of similar UMIs to                           

identify PCR/sequencing errors and group them together. Obviously, for deeper sequencing                     

longer UMIs are necessary for higher complexity measurements to capture different                     

transcript molecules of the same gene. The data processing of UMI-based protocols is                         

different compared to that of full length scRNA-seq especially accounting for UMI                       
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information during quantification (Figure 4). While existing quantification tools, such as                     

Kallisto (Bray et al. 2016) and ESAT (Derr et al. 2016) have implemented UMI-based                           

quantification, new pipelines such as the Drop-seq pipeline (Macosko et al. 2015), scPipe                         

(Tian et al. 2017) and Drop-est (Petukhov et al. 2017) have implemented a generic                           

approach to process the data from raw reads to the UMI/reads count tables. These pipelines                             

are either specific to certain methods, published as separate modules. In summary, there is a                             

need for a flexible pipeline accommodating the vast choice of new sequencing protocols and                           

providing useful features for various applications. 

Comparative transcriptomics across species 

In 1975, King and Wilson observed in their comparison of Human and Chimpanzee that the                             

two primates are highly similar at sequence level despite having major differences at                         

phenotypic levels (King and Wilson 1975). It is believed that the variations in gene                           

expression and regulation programs are more amenable to phenotypic differences among                     

species than the sequence itself (Cáceres et al. 2003; Carroll 2005; Gilad et al. 2006; Stern                               

and Orgogozo 2008; Romero, Ruvinsky, and Gilad 2012; King and Wilson 1975). Changes                         

in gene expression between species are thus of potential interest in understanding the                         

evolution of phenotypic traits. A comprehensive analysis of gene expression and regulation                       

patterns in diverged species gives insights into several applications: 1) the evolution of gene                           

expression in different organs (Enard et al. 2002; Brawand et al. 2011); 2) the effect of                               

diseases or food and nutrition in different animal models (Segal et al. 2005; Sweet-Cordero                           

et al. 2005; Rasche, Al-Hasani, and Herwig 2008; Ellis et al. 2013); 3) the process of ageing                                 

in different animals (McCarroll et al. 2004; de Magalhães, Curado, and Church 2009).  

Microarray technologies have been commonly used for the comparison of gene expression                       

dynamics across species (Uddin et al. 2004; Enard et al. 2002; Cáceres et al. 2003;                             

Khaitovich et al. 2005, 2004; Gilad et al. 2006, 2005; Fortna et al. 2004; Khaitovich et al.                                 
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2006). However, microarrays are available only for a limited number of species. This                         

limitation can be overcome by using available microarray from one species and restrict the                           

expression analysis only to orthologous genes (Enard et al. 2002). This approach raises an                           

issue of variability in affinity of probes to hybridise with their respective targets in different                             

species. To avoid such bias due to sequence divergence, only the probes with identical                           

sequences between species were used for the analysis (Khaitovich et al. 2005). However,                         

with distantly diverged species, this approach limits the search space to a handful of genes                             

to compare between species. In 2005, Gilad et al. showed that this issue can be handled by                                 

using multi-species cDNA array designed by using probes from all the species in                         

comparison (Gilad et al. 2005). Later an approach to correct for species differences by                           

modelling probe binding affinity came into light (Dannemann et al. 2009). 

Advancements in the Next generation sequencing technologies have opened exciting                   

opportunities and increased power to study evolution through gene expression profiling                     

using RNA-seq (Brawand et al. 2011; Khaitovich et al. 2006; Bakken et al. 2016; Blekhman                             

et al. 2010; Wunderlich et al. 2014). The vital part of an RNA-seq study is the good quality                                   

genome sequence and well resolved gene models (Pipes et al. 2013; Benjamin et al. 2014). 

In reality, for non-model organisms, the genome assembly and gene models often lack good                           

resolution. For instance, compared to human, the gene models of non-human primates have                         

various quality issues such as shorter 3’ UTRs, poorly resolved genic features or an absence                             

of a gene (Figure 5). Such technical issues can cause systematic bias in quantitative gene                             

expression analysis. Generally, the comparison across diverged species has been carried out                       

by stringent filtering of orthologous regions while mapping to the genome of origin                         

(Brawand et al. 2011; Villar et al. 2015; Pipes et al. 2013; Warnefors and Kaessmann 2013;                               

Zhu et al. 2014). These approaches are thus only suitable when both the genome and gene                               

models are available for all the species in comparison. An alternative to avoid the availability                             

and varying quality issues in genomic resources would be to generate de novo                         
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transcriptome assembly for each species. Nevertheless, it comes with an additional issue of                         

drawing significant functional information and defining comparable transcriptional units                 

across species. 

 

 

Figure 5: Annotation difference between species. The schematic here reflects how the gene models                           

are differently resolved in other species (purple) compared to Human (green). Going from left to right                               

we show difference in the length of 3’ UTR, a missing exon or completely unannotated gene. 

 

There is a scarcity of comprehensive assessment of methods for the usage of RNA-seq as a                               

tool to compare species with limited reference information. With the rapid increase in                         

RNA-seq based studies for evolutionary analysis, there is a pressing need for such                         

assessment of different methods. Using simulations for evolution of both expression levels                       

and sequence divergence in the primate phylogeny, we quantify the impact of varying                         

genomic reference quality on differential expression analysis among differently diverged                   

species. 

Computational simulation 

To evaluate the performance of any method, a gold standard is necessary to test                           

hypotheses. Generally, generating a gold standard dataset is not an easy task because of                           

the various sources of technical biases to account for, such as environmental effects,                         

human handling, availability of resources, etc. To optimise certain methods or a partially, all                           

the other factors are required to be stable to correctly assess the impact. Thus, one needs                               

to devise several experimental strategies to test all possible conditions, a highly time                         
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consuming and expensive task. Ideally, the ground truth is known and can be                         

computationally modelled to recapitulate the properties of the data. 

In the field of biology, researchers face a major question about how to get the most out of                                   

an experiment (Conesa et al. 2016). There are plenty of methods available for a wide range                               

of applications (Hrdlickova, Toloue, and Tian 2017; Shendure and Lieberman Aiden 2012)                       

for gene expression studies. It is crucial to systematically assess the impact of various                           

sources of technical noise such as amplification, quality of genomic resources, sequencing                       

layouts and computational strategy for analysis.  

For instance, flux simulator (Griebel et al. 2012) can model and generate a typical RNA-seq                             

dataset from a genomic reference and defined gene models for given error models of                           

sequencing quality. Such simulated datasets are useful for benchmarking various mapping                     

(Baruzzo et al. 2016) and quantification methods (Teng et al. 2016) for a range of                             

sequencing layouts. With computational simulations performed under the empirically                 

derived mean and dispersion of expression estimates, it is possible to determine the                         

required sample size between conditions in different levels of biological heterogeneity to                       

achieve optimal results (Poplawski and Binder 2017). In short, computational simulations                     

help to gain insights into possible sources of bias and optimise the analysis strategy cost                             

efficiently. 
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Results 

Assessing the impact of amplification noise in RNA-seq 

The impact of amplification on differential expression analyses by                 

RNA-seq   
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The impact of amplification on 
differential expression analyses by 
RNA-seq
Swati Parekh, Christoph Ziegenhain, Beate Vieth, Wolfgang Enard & Ines Hellmann

Currently, quantitative RNA-seq methods are pushed to work with increasingly small starting amounts 
of RNA that require amplification. However, it is unclear how much noise or bias amplification 
introduces and how this affects precision and accuracy of RNA quantification. To assess the effects 
of amplification, reads that originated from the same RNA molecule (PCR-duplicates) need to be 
identified. Computationally, read duplicates are defined by their mapping position, which does not 
distinguish PCR- from natural duplicates and hence it is unclear how to treat duplicated reads. Here, 
we generate and analyse RNA-seq data sets prepared using three different protocols (Smart-Seq, 
TruSeq and UMI-seq). We find that a large fraction of computationally identified read duplicates are 
not PCR duplicates and can be explained by sampling and fragmentation bias. Consequently, the 
computational removal of duplicates does improve neither accuracy nor precision and can actually 
worsen the power and the False Discovery Rate (FDR) for differential gene expression. Even when 
duplicates are experimentally identified by unique molecular identifiers (UMIs), power and FDR are only 
mildly improved. However, the pooling of samples as made possible by the early barcoding of the UMI-
protocol leads to an appreciable increase in the power to detect differentially expressed genes.

High throughput RNA sequencing methods (RNA-seq) are currently replacing microarrays as the method of 
choice for gene expression quantification1–5. For many applications RNA-seq technologies are required to become 
more sensitive, the goal being to detect rare transcripts in single cells. However, sensitivity, accuracy and precision 
of transcript quantification strongly depend on how the mRNA is converted into the cDNA that is eventually 
sequenced6. Especially when starting from low amounts of RNA, amplification is necessary to generate enough 
cDNA for sequencing7,8. While it is known that PCR does not amplify all sequences equally well9–11, PCR ampli-
fication is used in popular RNA-seq library preparation protocols such as TruSeq or Smart-Seq12. However, it is 
unclear how PCR bias affects quantitative RNA-seq analyses and to what extent PCR amplification adds noise and 
hence reduces the precision of transcript quantification. For detecting differentially expressed genes this is even 
more important than accuracy because it influences the power and potentially the false discovery rate.

RNA-seq library preparation methods are designed with different goals in mind. TruSeq is a method of choice, 
if there is sufficient starting material, while the Smart-Seq protocol is better suited for low starting amounts13,14. 
Furthermore, methods using UMIs and cellular barcodes have been optimized for low starting amounts and 
low costs, to generate RNA-seq profiles from single cells7,15. To achieve these goals, the methods differ in a num-
ber of steps that will also impact the probability of read duplicates and their detection (Fig. 1). TruSeq uses 
heat-fragmentation of mRNA and the only amplification is the amplification of the sequencing library. Thus all PCR 
duplicates can be identified by their mapping positions. In contrast, in the Smart-Seq protocol full length mRNAs 
are reverse transcribed, pre-amplified and the amplified cDNA is then fragmented with a Tn5 transposase12.  
Consequently, PCR duplicates that arise during the pre-amplification step can not be identified by their mapping 
positions. UMI-seq also amplifies full-length cDNA, but unique molecular identifiers (UMIs) as well as library 
barcodes are already introduced during reverse transcription before pre-amplification16. This early barcoding 
allows all samples to be pooled right after reverse transcription. The primer sequences required for the library 
amplification are introduced at the 3′  end during reverse transcription. Thus, PCR-duplicates in UMI-seq data 
can always be identified via the UMI. In summary, while PCR-duplicates can be unambiguously identified in 
UMI-seq, for Smart-Seq and TruSeq PCR-duplicates are identified computationally as read duplicates. However, 
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such read duplicates can also arise by sampling independent molecules. The chance that such natural duplicates, 
i.e. read duplicates that originated from different mRNA molecules, occur for a transcript of a given length, 
increases with expression levels and fragmentation bias.

That said, it is unclear whether removing read duplicates computationally improves accuracy and precision by 
reducing PCR bias and noise or whether it decreases accuracy and precision by removing genuine information. 
Here, we investigate the impact of PCR amplification on RNA-seq by analyzing datasets prepared with Smart-Seq, 
TruSeq and UMI-seq as well as different amounts of amplification. We investigate the source of read duplicates 
by analysing PCR bias and fragmentation bias, assess the accuracy using ERCCs - spike-in mRNAs of known 
concentrations17,18 - and assess precision using power simulations using PROPER19.

Results
Selection of datasets. We analyse five different datasets that represent three popular RNA-seq library 
preparation methods. We started with two benchmarking datasets from the literature2 that sequenced five rep-
licates of bulk mRNA using the TruSeq protocol on commercially available reference mRNAs: the Universal 
Human Reference RNA (UHRR; Agilent Technologies) and the Human Brain Reference RNA (HBRR, 
ThermoFisher Scientific). To ensure comparability, we also used UHRR aliquots to produce Smart-Seq and UMI-
seq datasets in house (Table 1). However, we also wanted to include a single cell dataset, representing the most 
extreme and the most interesting case for low starting amounts of RNA. To this end, we chose to reanalyze the 
first published single cell dataset from Wu et al.20 that sequenced the cancer cell line HCT116. The library prepa-
ration method used for the single cell data is also Smart-Seq and thus comparable to our UHRR-Smart-Seq data. 

Figure 1. Schematic of library preparation protocols and datasets. The upper panel details the steps for the 
three sequencing library preparation methods analysed in this study. In the UMI-seq flow-chart red and purple 
tags represent the sample barcodes and the green and yellow tags the UMIs.
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The only drawback that we have to keep in mind for this dataset, is that it also contains true biological variation 
that we cannot control for, whereas the bulk datasets using the reference mRNAs should only show technical 
variation.

All datasets contain ERCC-spike-ins, which allows us to compare the accuracy of the quantification of 
RNA-levels. Furthermore, all datasets except the UHRR-UMI-seq have paired-end sequencing, which should 
provide more information for the computational identification of PCR duplicates.

Natural duplicates are expected to be common. The number of computationally identified paired-end 
read duplicates (PE-duplicates) varies between 6% and 19% for the bulk data and 1% and 59% for the single cell 
data. Since single-end data is commonly used for gene expression quantification, we also consider the mapping of 
the first read of every pair. The resulting fractions of computationally identified duplicates from single-end reads 
(SE-duplicates) are much higher. For the bulk data, it ranges from 36–74% and for the single cell data from 6–94% 
(Table 2, Fig. 2a). Surprisingly, out of the bulk datasets, the UMI-seq data show on average the highest duplicate 
fractions with 66% (Range: 64–68%), whereas all those duplicates are bona-fide PCR-duplicates. In the UHRR 
Smart-Seq data, which is the most similar dataset to the UMI-seq data, we only identified 12% PE-duplicates 
computationally (Fig. 2a). Although these numbers are not strictly comparable due to some differences in the 
library preparation (e.g. 5 more PCR-cycles for the UMI-data see Table 1 and a stronger 3′  bias (Supplementary 
Figure S1)), it nevertheless strongly indicates that many PCR-duplicates in Smart-Seq libraries occur during 
pre-amplification and thus cannot be detected by computational means.

Generally, the fraction of read duplicates is expected to depend on library complexity, fragmentation method 
and sequencing depth. Sequencing depth is the factor that gives us the most straight-forward predictions and in 
the case of SE-duplicates they are by in large independent of other parameters such as the fragment size distri-
bution. As expected, we observe a positive correlation between the number of reads that were sequenced and the 
fraction of SE-duplicates (Fig. 2b,c). In order to test to what extent simple sampling can explain the number of 
SE-duplicates, we calculate the expected fraction of SE-duplicates, given the observed number of reads per gene 
and the gene lengths (see Methods, Fig. 2b,c). Note that in the case of Smart-Seq this approach will only evaluate 
the effect of the library PCR, but be oblivious to PCR duplicates that arose during pre-amplification. We find that 
for TruSeq and Smart-Seq the majority of SE-duplicates are expected under this simple model of random sam-
pling (Fig. 2b,c). For the TruSeq data our simple model underestimates the fraction of duplicates on average by 
10% (8.1–13.6%), for the single cell Smart-Seq data by 19% (0.3–67%) and for the bulk Smart-Seq data by 16.6% 
(11.5–22.3%). Thus, irrespective of the library preparation protocol a large fraction of computationally identified 
SE-duplicates could easily be natural duplicates (Fig. 2b,c).

In contrast to this simple sampling expectation for SE-duplicates, fragments produced during 
PCR-amplification after adapter ligation, will necessarily produce fragments with the same 5′  and 3′  end and 
consequently will have identical mapping for both ends. If the sampling was shallow enough so that we would not 
expect to draw the same 5′  end twice by chance, the 3′  end position should also be identical and no reads with 
only one matching 5′  end are expected. If same 5′  ends are more frequent due to biased fragmentation, we expect 
a higher ratio of SE- to PE-duplicates. Thus, the relationship between PE- and SE-duplicates contains information 
about the relative amounts of duplicates produced by fragmentation as compared to amplification. More specifi-
cally, we expect that the fragmentation component of the PE- vs. SE-duplicates should be captured by a quadratic 
fit with an intercept of zero (Fig. 3).

The only dataset for which the quadratic term is not significant is the UHRR-TruSeq dataset. This could be 
seen as an indication of a higher proportion of PCR-duplicates, but it is more likely due to the low sample size 
of only 5 replicates. More importantly, the quadratic term is significant and positive for the HBRR TruSeq, the 
UHRR Smart-Seq and the scHCT116 datasets, supporting the notion that at least for those datasets library PCR 

Study ID GSE-ID Lab
Sample 

size
Reads per sample 

(Mean ± SD million)
Read 

Length
PCR 

cycles
scHCT116 Smart-Seq GSE51254 Quake 96 1.8 ±  1.1 101 21* +  12
UHRR Smart-Seq GSE75823 Enard 10 1.5 ±  1.1 50 10* +  12
UHRR UMI-seq GSE75823 Enard 12 9 ±  1 46 15* +  12
UHRR TruSeq GSE49712 SEQC 5 125 ±  33 101 15
HBRR TruSeq GSE49712 SEQC 5 140 ±  29 101 15

Table 1.  Description of the datasets analysed. *preamplification PCR-cycles.

Study Name
Fraction PE-

duplicates
Fraction SE-

duplicates
HBRR TruSeq 0.06–0.16 0.62–0.71
scHCT116 Smart-Seq 0.013–0.59 0.064–0.94
UHRR Smart-Seq 0.081–0.18 0.36–0.47
UHRR TruSeq 0.087–0.18 0.66–0.74
UHRR UMI-seq 0.65–0.68*

Table 2.  Fraction of duplicates per sample. *Fraction of duplicates based on UMI counts.
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Figure 2. The Fraction of SE-duplicates increases with the total number of reads. In panel (a), we plot the 
fraction of computationally identified SE-duplicates (blue) and PE-duplicates (yellow) per sample. For the 
UMI-seq data, we identify duplicates only based on the experimental evidence provided by the UMIs. The black 
line marks the median for each dataset. If the correlation between sequencing depth and duplicates is due to 
sampling and fragmentation, we can quantify this impact. In (b), we plot the observed SE-duplicate fractions 
(red) and expected fractions (sampling–green, sampling +  fragmentation–blue). (c) The left panel shows the 
two Smart-Seq datasets (UHRR- blue, scHCT116- green) and the right panel the TruSeq data (HBRR- red, 
UHRR- purple). Filled circles represent the observed fraction of SE-duplicates. Open symbols represent 
simulated data: Open diamonds mark the expected fractions of SE-duplicates under a simple sampling model 
and open circles are the expectations for a sampling model with fragmentation bias. The lines are the log-linear 
fits between sampling depth and SE-duplicates per dataset.

Figure 3. The relation between SE- and PE-duplicates. The relation between SE- and PE-duplicates is 
expected to follow a quadratic function, if the majority of duplicates are natural, i.e. due to fragmentation and 
sampling. Here, we show a quadratic fit for the different datasets (UHRR-TruSeq–purple, HBRR-TruSeq–red, 
UHRR-Smart-Seq–blue, scHCT116–green).
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amplification is not the dominant source of duplicates. This is also consistent with our finding that most observed 
SE-duplicates are simply due to sampling (Supplementary Table S1 and Fig. 3).

Fragmentation is biased. The model above assumes that fragmentation does occur randomly. However, 
some sites are more likely to break than others and this might increase the fraction of SE-duplicates. To evaluate 
the impact and nature of fragmentation bias, we analysed ERCC spike-ins because they are exactly the same in all 
datasets. First, we test whether the variance in the frequency of 5′  end mapping positions of ERCCs in one sample 
can explain a significant part of this variance in other samples prepared with the same method. On average, we 
find R2s of 0.77 and 0.85 for the Smart-Seq and TruSeq protocols, respectively. Note, that this high R2 holds for 
samples that were prepared in different labs: for example the R2 between the Smart-Seq samples prepared in our 
lab and the single cell data from the Quake lab ranges between 0.56–0.90. In contrast, if the R2 is calculated for the 
comparison between one TruSeq and one Smart-Seq library, it drops to 0.0012 (Fig. 4a,b). Because the UMI-seq 
method specifically enriches for reads close to the 3′  end of the transcript, we cannot compare fragmentation 
across the entire length of the transcript. However, if we limit ourselves to the 600 most 3′  basepairs, we still 
find that the fragmentation pattern of the UMI-seq data shows a higher concordance with the two other data-
sets prepared also using the Smart-Seq protocol (mean R2 =  0.08) than with the TruSeq data (mean R2 =  0.002; 
Supplementary Figure S2). All in all, this is strong evidence that fragmentation reproducibly prefers the same sites 
given a library preparation protocol and thus read sampling is not random.

Figure 4. The fragmentation patterns of the ERCCs are highly reproducible for different samples 
prepared with the same RNA-seq library method. (a) Here, we plot the fraction of 5′  read ends per position 
of ERCC-00002. Because the TruSeq libries (blue) had read lengths of 100 bases, we do not consider the 
ends (grey dashed lines) for the calculation of the pair-wise R2 values. Also, note that UMI-seq creates a 
stronger 3′  bias. (b) Violin plot of the adjusted R2 of a linear model of 5′  read ends from different samples. 
The reproducibility of fragmentation is highest between Smart-Seq samples (orange), a little lower between 
the TruSeq samples and there is no correlation between samples from one Smart-Seq and one TruSeq sample 
(middle, green).
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To identify potential causes for these non-random fragmentation patterns, we correlated the GC-content of the 
15 bases around a given position with the number of 5′  read ends. This explained very little of the fragmentation 
patterns in the TruSeq-data (median R2 =  0.0064, 59% of the pair-wise comparisons significant with p <  0.05), 
and none in the Smart-Seq data (median R2 =  0.00002, 18% significant with p <  0.05, Supplementary Figure S3a 
and Supplementary Table S2). Next, we built a binding motif for the Transposase21 from our UHRR-Smart-Seq 
data and, unsurprisingly, found that the motif has a very low information content (Supplementary Figure S3b) 
and accordingly a weak effect on the 5′  read end count (median R2 =  0.0019, 48% & 58% significant with p <  0.05 
for scHCT116 & UHRR Smart-Seq, Supplementary Figure S3a and Supplementary Table S2).

Although we could not identify the cause for the fragmentation bias in the sequence patterns around the frag-
mentation site, we can still quantify the maximal impact of fragmentation bias on the number of SE-duplicates, 
simply by adjusting the effective length of the transcripts. For the TruSeq data, we estimate that a fragmentation 
bias that reduces the effective length by ~2-fold gives a reasonably good fit, leaving on average 1% (0.1–3.0%) of 
the SE-duplicates unexplained. For the UHRR-Smart-Seq data, a ~38.5-fold reduction in the effective length is 
needed and leaves only 3% (0.6–5.1%) of the duplicates unexplained. For the single cell data, the fragmentation 
bias that gives overall the best fit is a ~8-fold reduction, however the fit is worse since the fraction of unexplained 
duplicates is still at ~7% and varies between 0.3% and 61% (Fig. 2b,c). In summary, we find that fragmentation 
bias contributes considerably to computationally identified read duplicates and is stronger for Smart-Seq, i.e. for 
enzymatic fragmentation, than for TruSeq, i.e. heat fragmentation.

Removal of duplicates does not improve the accuracy of quantification. To evaluate the impact of 
PCR duplicates on the accuracy of transcript quantification, we use again the ERCC spike-in mRNAs. Although, 
the absolute amounts of ERCC-spike ins might vary due to handling, the relative abundances of these 92 reference 
mRNAs can serve as a standard for quantification. Ideally, the known concentrations of the ERCCs should explain 
the complete variance in read counts and any deviations are a sign of measurement errors. We calculate the R2 val-
ues of a log-linear fit of transcripts per million (TPM) versus ERCC concentration to quantify how well TPM esti-
mates molecular concentrations and compare the fit among the different duplicate treatments. In no instance does 
removing read duplicates improve the fit, but in most cases the fit gets significantly worse (t-test, p <  2 ×   10− 3) 
except for the computational PE-duplicate removal of the UHRR-Smart-Seq and the duplicate removal using 
UMIs (Fig. 5). These results also hold when we use a more complex linear model including ERCC-length and 
GC-content (Supplementary Figure S4).

Removal of duplicates does not improve power. Most of the time we are not interested in absolute 
quantification, but are content to find relative differences, i.e. differentially expressed (DE) genes between groups 
of samples. The extra noise from the PCR-amplification has the potential to create false positives as well as to 
obscure truly DE genes. In order to assess the impact of duplicates on the power and the false discovery rate 
(FDR) to detect DE genes, we simulated data based on the estimated gene expression distributions of the five 
datasets. For comparability, we first equalized the sampling depth by reducing the number of mapped reads to 3 

Figure 5. Removing duplicates does not improve the accuracy of expression quantification as measured 
using the ERCC spike-ins. Expression levels as quantified in transcripts per million reads (TPM) are a good 
predictor of the concentrations of the ERCC spike-ins. The log-linear fit of TPM vs. Molarity for one exemplary 
sample of the UHRR-TruSeq dataset is shown in (a). The most accurate prediction of ERCC molarity is the 
TPM estimator using all reads (grey). Removing duplicates as PE (yellow) makes the fit a little worse and 
removing SE-duplicates (blue) much worse. The adjusted R2 for all samples are summarized in (b), the median 
for each dataset is marked as black line. The R2 of the TPM estimate from the removal of PCR-duplicates using 
UMIs (green) is surprisingly similar to keeping PCR-duplicates (grey).
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million and 1 million for bulk and single cell data, respectively. Next, we estimated gene-wise base mean expres-
sion and dispersion using DESeq222.

There are no big differences in the distributions of mean baseline expression and dispersion estimates from the 
different duplicate treatments for the two Smart-Seq datasets, whereas there is a shift towards lower means and 
higher dispersions, when removing SE-duplicates for the TruSeq datasets. Dispersions shift only to lower values 
if we exclude duplicates based on identification by UMIs (Fig. 6a, Supplementary Figure S5). The empirical mean 
and dispersion distributions are then used to simulate two groups with six replicates for bulk-RNA-seq datasets 
and 45 replicates for the single cell dataset. In all cases we simulate that 5% of the genes are differentially expressed 
with log2-fold changes drawn from a normal distribution with N (0, 1.5)19. We analysed 100 simulations per 
data-set using DESeq2 and calculate FDR and power for detecting DE-genes with a log 2-fold change of at least 
0.5.

Except for the UHRR-UMI-seq dataset, the nominal FDR that we set to α =  5% is exceeded: the means vary 
between 5.4% and 10.1%, whereas the HBRR TruSeq has the lowest and the scHCT116 Smart-Seq data the high-
est FDR (Fig. 6d). Computational removal of SE-duplicates increases the FDR by ~2% in the HBRR-TruSeq and 
the UHRR-TruSeq, has no significant impact on the scHCT116 dataset and, surprisingly, improves the FDR by 

Figure 6. Duplicate removal has little influence on the power and FDR to detect DE-genes in comparison 
to the library preparation method. We estimated the distributions of mean expression and dispersion across 
genes for each dataset using DESeq2 after downsampling the datasets to 3 or 1 million reads. The distributions 
are estimated for the data including all reads (grey), removing PE-duplicates (yellow), removing SE-duplicates 
(blue) and for the UHRR-UMI-seq dataset removing duplicates using UMIs (green). We summarize 
distributions of dispersion/mean in (a). The estimated mean and dispersion distributions served as input for our 
power simulations using PROPER19. We did 100 simulations per dataset, whereas each dataset had two groups 
of six replicates (45 for scHT116) with 5% of the genes being differentially expressed between groups. In panel 
(b), we report the marginal power to detect a log2-fold change of 0.5 and in panel (d) the corresponding FDR, 
whereas the nominal FDR was set to α =  0.05 (dashed line). In panel (c), we plot our estimates of the marginal 
power against the number of PCR-cycles for each dataset. Error bars are standard deviation to the mean 
marginal power over 100 simulations. We find a surprisingly simple linear decline in power with the number 
of PCR-cycles, if we only consider datasets where PCR amplification was done separately for each sample of the 
dataset (violet). To confirm this simple fit we added two other datasets: (1) Bulk Smart-Seq dataset of mouse 
brain bulk RNA amplified using 20 PCR-cycles and (2) Single cell Smart-Seq dataset of 96 mouse embryonic 
stem cells that were amplified using 33 cycles. The only outlier is the UMI-seq dataset for which samples were 
pooled prior to amplification (green).
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1% in the UHRR-Smart-Seq data (Fig. 6d). The computational removal of PE-duplicates harbors less potential for 
harm, in that it leaves the FDR unchanged for both TruSeq datasets and even slightly improves the FDR for the 
Smart-Seq datasets. Again, the only substantial improvement is achieved by duplicate removal using UMIs, which 
reduces the FDR from 7% to 3%. (t-test, p <  1 ×   10− 15).

The differences in the power are more striking. As for the FDR, the major differences are not between dupli-
cate treatments, but between the datasets. For the TruSeq and the UHRR-UMI-seq datasets, the average power 
to detect a log2-fold change of 0.5 is ~80% (Fig. 6b). For those datasets the changes in power due to duplicate 
removal are only marginal and for the computational removal using PE-duplicates it actually decreases the power 
for the TruSeq datasets by 2%, while for the UMI-seq data duplicate removal increases power by 2%. The power 
for the UHRR-Smart-Seq and the scHCT116 Smart-Seq datasets is much lower with 52% and 27%, respectively, 
and duplicate removal increases the power by only 1%.

The large differences in power between the datasets are unlikely to be ameliorated by increasing the number of 
replicates per group. In addition to the 6 and 45 replicates for which the results are reported above, we also con-
ducted simulations for 12 and 90 replicates for bulk and the single cell data, respectively. This doubling in replicate 
number increases the power for the UHRR-Smart-Seq dataset only from 52 to 63% and for the single cell dataset 
from 27 to 34% (Supplementary Figure S6, Supplementary Table 3).

Discussion
RNA-seq has become a standard method for gene expression quantification and in most cases the sequencing 
library preparation involves amplification steps. Ideally, we would like to count the number of RNA molecules in 
the sample and thus would want to keep only one read per molecule. A common strategy applied for amplification 
correction in SNP-calling and ChIP-Seq protocols23,24 is to simply remove reads based on their 5′  ends, so called 
read duplicates. Here, we show that this strategy is not suitable for RNA-seq data, because the majority of such 
SE-duplicates is likely due to sampling. For highly transcribed genes, it is simply unavoidable that multiple reads 
have the same 5′  end, also if they originated from different RNA-molecules. We find that only ~10% (TruSeq) 
and ~20% (Smart-Seq) of the read duplicates cannot be explained by a simple sampling model with random frag-
mentation. This fraction decreases even more, if we factor in that the fragmentation of mRNA or cDNA during 
library preparation is clearly non-random, as evidenced by a strong correlation between the 5′  read positions of 
the ERCC-spike-ins across samples. Because local sequence content has little or no detectable effect on fragmen-
tation, we cannot predict fragmentation, but we can quantify the observed effect. For example, we find that a frag-
mentation bias that halves the number of break points can fit the observed proportion of duplicates for TruSeq 
libraries well. For the Smart-Seq datasets, fragmentation biases would have to be much higher to explain the 
observed numbers of read duplicates. Furthermore, the fit between model estimates and the observed duplicate 
fractions is worse than for the TruSeq data and the model estimates for fragmentation bias are also inconsistent 
between the datasets (38.5 for the UHRR and 8 for the scHCT116).

Since computational methods cannot distinguish between fragmentation and PCR duplicates, the removal of 
read duplicates could introduce a bias rather than removing it. Using the ERCC-spike-ins, we can indeed show 
that removing duplicates computationally does not improve a fit to the known concentrations, but rather makes it 
worse, especially if only single-end reads are available (Fig. 5). This is in line with our observation that most single 
end duplicates are due to sampling and fragmentation. Hence, removing duplicates is similar to a saturation effect 
known for microarrays25–27.

Moreover, the Smart-Seq protocol, which was designed for small starting amounts, involves PCR amplifica-
tion before the final fragmentation of the sequencing library. Thus in the case of Smart-Seq, computational meth-
ods cannot identify PCR duplicates that occur during the pre-amplification step. When we use unique molecular 
identifiers (UMIs), we find that 66% of the reads are PCR duplicates and only 34% originate from independent 
mRNA molecules. In contrast, when using paired-end mapping for a comparable Smart-Seq library, we identify 
13% as duplicates and 87% as unique. This might in part be due to the fact that in UMI-Seq we sequence mainly 
3′  ends of transcripts, thus decreasing the complexity of the library, which in turn increases the potential for 
PCR duplicates for a given sequencing depth (Fig. 4a, Supplementary Figure S1). However, it is unlikely that 
library complexity can explain the 53% difference in duplicate occurrence. This difference is more likely to be due 
to PCR-duplicates that are generated during pre-amplification and thus remain undetectable by computational 
means.

All in all, computational methods are limited when it comes to removing PCR-duplicates, but how much noise 
or bias do PCR duplicates introduce? In other words, we want to know how PCR-duplicates impact the power and 
the false discovery rate for the detection of differentially expressed genes. Both, power and FDR, are determined 
by the gene-wise mean expression and dispersion. Based on simulated differential expression using the empiri-
cally determined mean and dispersion distributions, we find that computational removal of duplicates has either 
a negligible or a negative impact on FDR and power, and we therefore recommend not to remove read duplicates. 
In contrast, if PCR duplicates are removed using UMIs, both FDR and power improve. Even though the effects in 
the bulk data analysed here are relatively small: FDR is improved by 4% and the power by 2%, UMIs will become 
more important when using smaller amounts of starting material as it is the case for single-cell RNA-seq6,28.

The major differences in power are between the datasets with the TruSeq and the UMI-seq data achieving a 
power of around 80%, the UHRR-Smart-Seq 52% and the single cell Smart-Seq data (scHCT116) only 27%. Note 
that this apparently bad performance of the single cell Smart-Seq data is at least in part due to an unfair compar-
ison. While all the other datasets were produced using commercially available mRNA and thus represent true 
technical replicates, the single cell data necessarily represent biological replicates and thus are expected to have a 
larger inherent variance and thus lower power.

However, also the UHRR Smart-Seq bulk data achieves with 52% a much lower power than the other bulk 
datasets. One possible explanation for the differences in power is the total number of PCR-cycles involved in 
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the library preparation. With every PCR-cycle the power to detect a log 2-fold change of 0.5 appears to drop by 
2.4% (Fig. 6c). The only exception is the UMI-seq dataset, that gives a power of 81%, even if duplicates are not 
removed, which is comparable to the power reached with TruSeq data despite the UMI-seq method having 12 
more PCR-cycles. Technically UMI-seq is most similar to the Smart-Seq method. The biggest difference between 
the two methods is that all UMI-seq libraries are pooled before PCR-amplification, suggesting that the PCR-noise 
is due to the different PCR-reactions and not due to amplification efficiency per-se.

We conclude that computational removal of duplicates is not recommendable for differential expression anal-
ysis and if sufficient starting material is available so that only few PCR-cycles are necessary, the loss in power due 
to PCR duplicates is negligible. However, if more amplification is needed, power would be improved if all samples 
are pooled early on, and for really low amounts as for single cell data also the gain in power that is achieved by 
removing PCR-duplicates using UMIs will become important.

Methods
Datasets. We used six datasets representing the TruSeq, Smart-Seq and UMI-seq protocols and varying 
amounts of starting material from bulk RNA or single cell RNA. All analysed datasets contain the ERCCs spike-in 
RNAs. This is a set of 92 artifical poly-adenylated RNAs designed to match the characteristics of naturally occur-
ring RNAs with respect to their length (273–2022 bp), their GC-content (31–53%) and concentrations of the 
ERCCs (0.01–30,000 attomol/µl). The recommended ERCC spike-in amounts result in 5–107 ERCC RNA mole-
cules in the cDNA synthesis reaction.

To reduce biological variation, we used the well-characterized Universal Human Reference RNA (UHRR; 
Agilent Technologies) for the two datasets produced for this study. We downloaded UHRR- and HBRR-TruSeq 
data from SEQC/MAQC-III2. Finally, we also analyse the single cell data published in Wu et al.20, for which the 
colorectal cancer cell-line HCT116 was used (Table 1). The input mostly being commercially distributed human 
samples, we expect all biological samples analysed in this study to have similarly high quality and complexity. All 
data that were generated for this project were submitted to GEO under accession GSE75823.

RNA-seq library preparation and sequencing. For the Smart-Seq libraries, 250 ng of Universal Human 
Reference RNA (UHRR; Agilent Technologies) and ERCC spike-in control mix I (Life Technologies) were used 
and cDNA was synthesized as described in the Smart-Seq2 protocol from Picelli et al.13. However, because we 
used more mRNA to begin with, we reduced the number of pre-amplification PCR cycles to 9 cycles instead of 
the 18–21 recommended in Picelli et al.13. 1 ng of pre-amplified cDNA was then used as input for Tn5 transposon 
tagmentation by the Nextera XT Kit (Illumina), followed by 12 PCR cycles of library amplification. For sequenc-
ing, equal amounts of all libraries were pooled.

For the UMI-seq libraries, we started with 10 ng of UHRR-RNA to synthesise cDNA as described in Soumillon 
et al.16. This protocol is very similar to the Smart-Seq protocol, however the first strand cDNA is decorated with 
sample-specific barcodes and unique molecular identifiers. The barcoded cDNA from all samples was then 
pooled, purified and unincorporated primers digested with Exonuclease I (NEB). Pre-amplification was per-
formed by single-primer PCR for 15 cycles. 1 ng of full-length cDNA was then used as input for the Nextera XT 
library preparation with the modification of adding a custom i5 primer to enrich for barcoded 3′  ends.

Library pools were sequenced on an Illumina HiSeq1500. The Smart-Seq libraries were sequenced using 50 
cycles of paired-end sequencing on a High-Output flow-cell. The UMI-seq libraries were sequenced on a rapid 
flow-cell with paired-end layout, where the first read contains the sequences of the sample barcode and the UMI 
sequence using 17 cycles. The second read contains the actual cDNA fragment with 46 cycles.

Data Processing. For Smart-Seq and TruSeq libraries, the sequenced reads were mapped to the 
human genome (hg19) and the splice site information from the ensembl annotation (GRCh37.75) using 
STAR(version:2.4.0.1)29 with the default parameters, reporting only the best hit per read. The genome index was 
created with –sjdbOverhang ‘readlength-1’. Because the ERCCs are transcript sequences no splice-aware mapping 
is neccessary and therefore we used NextGenMap for the ERCCs30. Except for three parameters, (1) the maxi-
mum fragment size which was set to 10 kb, (2) the minimum identity set to 90% and (3) reporting only the best 
hit per read, we also used the default parameters for NextGenMap. Note that we also included hg19 and did not 
map to ERCC sequences only. The mapped reads were assigned to genes [Ensembl database annotation version 
GRCh37.75] using FeatureCount from the bioconductor package Rsubread31 (see Supplementary text).

For UMI-seq data, cDNA reads were mapped to the transcriptome as recommended in Soumillon et al.16 
using the Ensembl annotation [version GRCh37.75] and NextGenMap30 (Supplementary text). If either the sam-
ple barcode or the UMI had at least one base with sequence quality ≤ 10 or contained ‘N’s the read was discarded. 
Next, we generated count tables for reads or UMIs per gene. Finally, mitochondrial and ambiguously assigned 
reads were removed from all libraries.

Duplicate detection and removal. We defined single-end (SE) read duplicates as reads that map to the 
same 5′  position, have the same strand and the same CIGAR value. Because we cannot determine the exact map-
ping position for 5′  soft clipped reads, we discard them. To flag paired-end duplicates (PE), we used the same 
requirements as for the SE-duplicates, those requirements had just to be fulfilled for both reads of a pair.

Model for the fraction of sampling and fragmentation duplicates. We obtain an expectation for 
the number of reads if duplicates are identified via their 5′  position and only one read per 5′  end position is kept. 
The only input parameters are the observed number of reads per gene (rG) and the effective length of the gene 
(LeG =  L −   2 ×   read-length). Then the expected number of unique reads can be estiamted as
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In order to estimate the level of fragmentation bias, we simply modified the effective length LeG by a factor 

f ×   LeG.

Fragmentation pattern analysis. To compare fragmentation sites across libraries, we counted 5′  read 
starts per position for the ERCCs across all datasets using samtools and in house perl scripts. To avoid edge effects 
in later analyses, we excluded the first and last 100 bases of each ERCC, whereas 100 bases is the maximum read 
length of datasets analysed here.

We generated a Position Weight Matrix (PWM) for the transposase (Tn5) motif by simply stacking up the 30 
bases of the putative Transposase binding sites from all UHRR-Smart-Seq reads. Those 30 bases are identified as 6 
bases upstream of the 5′  read end and the 24 downstream21. The resulting PWM was then used to calculate motif 
scores across the ERCCs using the Bioconductor package PWMEnrich32.

Power evaluation for differential expression. For power analysis, we estimated the mean baseline 
expression and dispersion for all datasets after downsampling them to 3 and 1 million reads for bulk and single 
cell data, respectively. This was done for all three duplicate treatments (keep all, remove SE and remove PE) using 
DESeq222 with standard parameters. Furthermore, genes with very low dispersions (< 0.001) were removed. We 
chose the sample sizes 3, 6 and 12 per condition for the bulk data and 30, 45 and 90 for the single cell dataset, 
because they seemed to be a good representation of the current literature. For the simulations, we use an in-house 
adaptation of the Bioconductor-package PROPER19. As suggested in Wu et al.19, we set the fraction of differ-
entially expressed genes between groups to 0.05 and the log2-fold change for the DE-genes was drawn from a 
normal distribution with N (0, 1.5). We generated 100 simulations per original input data-set and analysed them 
using DESeq2. Next, we calculated the power to detect a log2-fold change of at least 0.5 and the according FDR 
using α =  0.05.
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Figure S1: 3’ bias in fragmentation site is prominent in UMI-seq. The histogram showing distance of
the fragmentation site from 3’ end of the gene measured from ERCC spike-ins of length ⇠ 2kb. Colors represent
library preparation methods, ’blue’ - Smart-Seq, ’orange’ - TruSeq, ’green’ - UMI-seq.
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Figure S2: The fragmentation patterns of the most 3’ 600bp of ERCCs are relatively reproducible

between Smart-Seq and UMI-seq. Violin plots of the adjusted R2 from a linear model between fraction of
5’read ends from different samples. The adjusted R2 are calculated considering full length for Smart-Seq and
TruSeq methods whereas for comparison to UMI-seq the most 3’ 600bp are considered. The reproducibility of
fragmentation is highest within Smart-Seq (orange) and TruSeq samples (blue). Fragmentation reproducibility
between Smart-Seq and UMI-seq samples(green) is higher than compared to TruSeq(green), as both methods use
transposase tagmentation.
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Figure S3: Fragmentation does not appear to have a cutting site preference. Colors of the violin
plots represent library preparation methods, ’blue - Smart-Seq, ’orange’ - TruSeq and dots are colored by the
significance of the fit where ’red’ - pvalue  0.05 and ’black’ - pvalue > 0.05. a) The left panel shows violin plots
of the adjusted R2 of linear model fit between background corrected GC content of 15bases window and fraction
of 5’read ends of the middle base in the window for each ERCC spike-in and the right panel shows the adjusted
R2 of linear model fit between Tn5 motif score calculated for ERCC spike-in RNAs. b) Sequence logo of the Tn5
motif derived from UHRR Smart-Seq dataset.
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Figure S4: Removing duplicates does not improve the accuracy of expression quantification as

measured using the ERCC spike-ins. Expression levels as quantified in transcripts per million reads (TPM)
are considered to be good measure of ERCC spike ins. However, other factors like capture and sequencing
efficiency can not be explained by TPM. One exemplary sample of the UHRR-TruSeq dataset as shown in Figure
5 of the main text is shown in a). The dashed grey line shows the bisecting line. We calculated the log-linear
fit of counts per million (CPM) vs. Molarity also controlling for GC content and length of the transcript. The
adjusted R2 for all samples are summarized in b), the median for each dataset is marked as black line. The
colors represent different duplicates treatment. All reads (grey), removing PE-duplicates (yellow) and removing
SE-duplicates (blue).
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Figure S5: Empirical mean and dispersion distributions are used to estimate power to detect
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5



All rmdupPE rmdupSE UMI

scHCT116 Smart−Seq

UHRR Smart−Seq

UHRR UMI−seq

UHRR TruSeq

HBRR TruSeq

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Figure S6: Power to detect differential expression increases with increased sample size. The box-
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datasets.
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Supplementary text

Detailed commands used for mapping are given below.

STAR genome generate

STAR –runThreadN 10 –runMode genomeGenerate –genomeDir hg19STARindex –genomeFastaFiles hg19.fa –sjdbGTFfile

GRCh37.75.gtf –sjdbOverhang ‘readLen-1‘

STAR mapping

STAR –readFilesIn R1.fastq R2.fastq –runThreadN 10 –outFileNamePrefix samplename –outFilterMultimapNmax 1

–outSAMunmapped Within –outSAMtype BAM SortedByCoordinate –sjdbGTFfile GRCh37.75.gtf –genomeDir hg19STARindex

–sjdbOverhang ‘readLen-1‘ –outFilterType BySJout –outSJfilterReads Unique

NextGenMap mapping

For ERCC spike-ins

ngm.4.12 -1 R1.fastq -2 R2.fastq -t 10 -i 0.9 -X 10000 -r ERCCs.fa -o samplename.sam

For UMI-seq data

ngm.4.12 -q R1.fastq -t 10 -i 0.9 -r GRCh37.75.fa -o samplename.sam

Supplementary tables

Table S1: Summary of squared terms from quadratic fit between PE-dup and SE-dup (PE-dup ⇠ SE-dup+(SE-
dup)2+0)

Study name Beta2 Std. Error t value Pr(> |t|)
scHCT116 Smart-Seq 0.542 0.0302 17.94 0.0000

UHRR Smart-Seq 1.168 0.246 4.739 0.001
UHRR TruSeq 0.840 0.619 1.356 0.268
HBRR TruSeq 1.134 0.338 3.350 0.044

Table S2: Median R2 and percentage of significant ERCCs for the lm fit between GC content/Tn5 motif score
and 5’ read ends

Study name
GC Tn5

R2 %Significant* R2 %Significant*
scHCT116 Smart-Seq -0.00027 16% 0.00112 49%
UHRR Smart-Seq 0.00020 19% 0.00174 59%
UHRR TruSeq 0.00614 57% 0.00077 43%
HBRR TruSeq 0.00657 61% 0.00077 43%
*Percentage of ERCCS with p-value  0.05
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SUMMARY

Single-cell RNA sequencing (scRNA-seq) offers new
possibilities to address biological and medical ques-
tions. However, systematic comparisons of the per-
formance of diverse scRNA-seq protocols are lack-
ing. We generated data from 583 mouse embryonic
stem cells to evaluate six prominent scRNA-seq
methods: CEL-seq2, Drop-seq, MARS-seq, SCRB-
seq, Smart-seq, and Smart-seq2. While Smart-seq2
detected the most genes per cell and across cells,
CEL-seq2, Drop-seq, MARS-seq, and SCRB-seq
quantified mRNA levels with less amplification noise
due to the use of unique molecular identifiers (UMIs).
Power simulations at different sequencing depths
showed that Drop-seq is more cost-efficient for tran-
scriptome quantification of large numbers of cells,
while MARS-seq, SCRB-seq, and Smart-seq2 are
more efficient when analyzing fewer cells. Our quan-
titative comparison offers the basis for an informed
choice among six prominent scRNA-seq methods,
and it provides a framework for benchmarking
further improvements of scRNA-seq protocols.

INTRODUCTION

Genome-wide quantification of mRNA transcripts is highly infor-
mative for characterizing cellular states and molecular circuitries
(ENCODE Project Consortium, 2012). Ideally, such data are
collected with high spatial resolution, and single-cell RNA
sequencing (scRNA-seq) now allows for transcriptome-wide an-
alyses of individual cells, revealing exciting biological and med-
ical insights (Kolodziejczyk et al., 2015a; Wagner et al., 2016).
scRNA-seq requires the isolation and lysis of single cells, the
conversion of their RNA into cDNA, and the amplification of
cDNA to generate high-throughput sequencing libraries. As the

amount of starting material is so small, this process results in
substantial technical variation (Kolodziejczyk et al., 2015a; Wag-
ner et al., 2016).
One type of technical variable is the sensitivity of a scRNA-

seq method (i.e., the probability to capture and convert a
particular mRNA transcript present in a single cell into a
cDNA molecule present in the library). Another variable of in-
terest is the accuracy (i.e., how well the read quantification
corresponds to the actual concentration of mRNAs), and a
third type is the precision with which this amplification occurs
(i.e., the technical variation of the quantification). The combi-
nation of sensitivity, precision, and number of cells analyzed
determines the power to detect relative differences in expres-
sion levels. Finally, the monetary cost to reach a desired level
of power is of high practical relevance. To make a well-
informed choice among available scRNA-seq methods, it is
important to quantify these parameters comparably. Some
strengths and weaknesses of different methods are already
known. For example, it has previously been shown that
scRNA-seq conducted in the small volumes available in the
automated microfluidic platform from Fluidigm (C1 platform)
outperforms CEL-seq2, Smart-seq, or other commercially
available kits in microliter volumes (Hashimshony et al.,
2016; Wu et al., 2014). Furthermore, the Smart-seq protocol
has been optimized for sensitivity, more even full-length
coverage, accuracy, and cost (Picelli et al., 2013), and this
improved Smart-seq2 protocol (Picelli et al., 2014b) has also
become widely used (Gokce et al., 2016; Reinius et al.,
2016; Tirosh et al., 2016).
Other protocols have sacrificed full-length coverage in order

to sequence part of the primer used for cDNA generation. This
enables early barcoding of libraries (i.e., the incorporation of
cell-specific barcodes), allowing for multiplexing the cDNA
amplification and thereby increasing the throughput of scRNA-
seq library generation by one to three orders of magnitude
(Hashimshony et al., 2012; Jaitin et al., 2014; Klein et al., 2015;
Macosko et al., 2015; Soumillon et al., 2014). Additionally, this
approach allows the incorporation of unique molecular identi-
fiers (UMIs), random nucleotide sequences that tag individual

Molecular Cell 65, 631–643, February 16, 2017 ª 2017 Elsevier Inc. 631



mRNA molecules and, hence, allow for the distinction between
original molecules and amplification duplicates that derive from
the cDNA or library amplification (Kivioja et al., 2011). Utilization
of UMI information improves quantification of mRNA molecules
(Gr€un et al., 2014; Islam et al., 2014), and it has been imple-
mented in several scRNA-seq protocols, such as STRT (Islam
et al., 2014), CEL-seq (Gr€un et al., 2014; Hashimshony et al.,
2016), CEL-seq2 (Hashimshony et al., 2016), Drop-seq (Ma-
cosko et al., 2015), inDrop (Klein et al., 2015), MARS-seq (Jaitin
et al., 2014), and SCRB-seq (Soumillon et al., 2014).

However, a thorough and systematic comparison of relevant
parameters across scRNA-seq methods is still lacking. To
address this issue, we generated 583 scRNA-seq libraries from
mouse embryonic stem cells (mESCs), using six different
methods in two replicates, and we compared their sensitivity,
accuracy, precision, power, and efficiency (Figure 1).

RESULTS

Generation of scRNA-Seq Libraries
Variation in gene expression as observed among single cells is
caused by biological and technical variation (Kolodziejczyk
et al., 2015a; Wagner et al., 2016). We used mESCs cultured
under two inhibitor/leukemia inhibitory factor (2i/LIF) condi-
tions to obtain a relatively homogeneous cell population
(Gr€un et al., 2014; Kolodziejczyk et al., 2015b), so that biolog-
ical variation was similar among experiments and, hence, we
mainly compared technical variation. In addition, we spiked
in 92 poly-adenylated synthetic RNA transcripts of known con-
centration designed by the External RNA Control Consortium
(ERCCs) (Jiang et al., 2011). For all six tested scRNA-seq
methods (Figure 2), we generated libraries in two independent
replicates.

Figure 1. Schematic Overview of the Experimental and Computational Workflow
Mouse embryonic stem cells (mESCs) cultured in 2i/LIF and ERCC spike-in RNAs were used to generate single-cell RNA-seq data with six different library

preparation methods (CEL-seq2/C1, Drop-seq, MARS-seq, SCRB-seq, Smart-seq/C1, and Smart-seq2). The methods differ in the usage of unique molecular

identifier (UMI) sequences, which allow the discrimination between reads derived from original mRNA molecules and duplicates generated during cDNA

amplification. Data processing was identical across methods, and the given cell numbers per method and replicate were used to compare sensitivity, accuracy,

precision, power, and cost efficiency. The six scRNA-seq methods are denoted by color throughout the figures of this study as follows: purple, CEL-seq2/C1;

orange, Drop-seq; brown, MARS-seq; green, SCRB-seq; blue, Smart-seq; and yellow, Smart-seq2. See also Figures S1 and S2.
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For each replicate of the Smart-seq protocol, we performed
one run on the C1 platform from Fluidigm (Smart-seq/C1) using
microfluidic chips that automatically capture up to 96 cells (Wu
et al., 2014). We imaged captured cells, added lysis buffer
together with the ERCCs, and we used the commercially avail-
able Smart-seq kit (Clontech) to generate full-length double-
stranded cDNA that we converted into 96 sequencing libraries
by tagmentation (Nextera, Illumina).
For each replicate of the Smart-seq2 protocol, we sorted

mESCs by fluorescence activated cell sorting (FACS) into
96-well PCR plates containing lysis buffer and the ERCCs. We
generated cDNA as described (Picelli et al., 2013, 2014b), and
we used an in-house-produced Tn5 transposase (Picelli et al.,
2014a) to generate 96 libraries by tagmentation. While Smart-
Seq/C1 and Smart-seq2 are very similar protocols that generate
full-length libraries, they differ in how cells are isolated, their re-
action volume, and in that the Smart-seq2 chemistry has been
systematically optimized (Picelli et al., 2013, 2014b). The main
disadvantage of both Smart-seq protocols is that the generation
of full-length cDNA libraries precludes an early barcoding step
and the incorporation of UMIs.
For each replicate of the SCRB-seq protocol (Soumillon et al.,

2014), we also sorted mESCs by FACS into 96-well PCR plates

containing lysis buffer and the ERCCs. Similar to the Smart-
seq protocols, cDNA was generated by oligo-dT priming,
template switching, and PCR amplification of full-length cDNA.
However, the oligo-dT primers contained well-specific (i.e.,
cell-specific) barcodes and UMIs. Hence, cDNA from one plate
could be pooled and then converted into sequencing libraries,
using a modified tagmentation approach that enriches for the
30 ends. SCRB-seq is optimized for small volumes and few
handling steps.
The fourth method evaluated was Drop-seq, a recently devel-

opedmicrodroplet-based approach (Macosko et al., 2015). Here
a flow of beads suspended in lysis buffer and a flow of a single-
cell suspension were brought together in a microfluidic chip that
generated nanoliter-sized emulsion droplets. On each bead,
oligo-dT primers carrying a UMI and a unique, bead-specific bar-
code were covalently bound. Cells were lysed within these drop-
lets, their mRNAbound to the oligo-dT-carrying beads, and, after
breaking the droplets, cDNA and library generation was per-
formed for all cells in parallel in one single tube. The ratio of
beads to cells (20:1) ensured that the vast majority of beads
had either no cell or one cell in its droplet. Hence, similar to
SCRB-seq, each cDNA molecule was labeled with a bead-spe-
cific (i.e., cell-specific) barcode and a UMI. We confirmed that

Figure 2. Schematic Overview of Library Preparation Steps
For details, see the text. See also Table S1.
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the Drop-seq protocol worked well in our setup bymixing mouse
and human T cells, as recommended by Macosko et al. (2015)
(Figure S1A). The main advantage of the protocol is that a high
number of scRNA-seq libraries can be generated at low cost.
One disadvantage of Drop-seq is that the simultaneous inclusion
of ERCC spike-ins is quite expensive, as their addition would
generate cDNA from ERCCs also in beads that have zero cells
and thus would double the sequencing costs. As a proxy for
the missing ERCC data, we used a published dataset (Macosko
et al., 2015), where ERCC spike-ins were sequenced using the
Drop-seq method without single-cell transcriptomes.

As a fifth method we chose CEL-seq2 (Hashimshony et al.,
2016), an improved version of the original CEL-seq (Hashimsh-
ony et al., 2012) protocol, as implemented for microfluidic chips
on Fluidigm’s C1 (Hashimshony et al., 2016). As for Smart-seq/
C1, this allowed us to capture 96 cells in two independent repli-
cates and to include ERCCs in the cell lysis step. Similar to Drop-
seq and SCRB-seq, cDNA was tagged with barcodes and UMIs;
but, in contrast to the four PCR-based methods described
above, CEL-seq2 relies on linear amplification by in vitro tran-
scription after the initial reverse transcription. The amplified, bar-
coded RNAs were harvested from the chip, pooled, fragmented,
and reverse transcribed to obtain sequencing libraries.

MARS-seq, the sixth method evaluated, is a high-throughput
implementation of the original CEL-seq method (Jaitin et al.,
2014). In this protocol, cells were sorted by FACS in 384-well
plates containing lysis buffer and the ERCCs. As in CEL-seq
and CEL-seq2, amplified RNA with barcodes and UMIs were
generated by in vitro transcription, but libraries were prepared
on a liquid-handling platform. An overview of the methods and
their workflows is provided in Figure 2 and in Table S1.

Processing of scRNA-Seq Data
For each method, we generated at least 48 libraries per replicate
and sequenced between 241 and 866million reads (Figure 1; Fig-
ure S1B). All data were processed identically, with cDNA reads
clipped to 45bpandmapped usingSpliced TranscriptsAlignment
to a Reference (STAR) (Dobin et al., 2013) and UMIs quantified
using the Drop-seq pipeline (Macosko et al., 2015). To adjust for
differences in sequencing depths, we selected all libraries with
at least one million reads, and we downsampled them to one
million reads each. This resulted in 96, 79, 73, 93, 162, and 187 li-
braries for CEL-seq2/C1, Drop-seq, MARS-seq, SCRB-seq,
Smart-seq/C1, and Smart-seq2, respectively.

To exclude doublets (libraries generated from two or more
cells) in the Smart-seq/C1 data, we analyzed microscope im-
ages and identified 16 reaction chambers with multiple cells.
For the four UMI methods, we calculated the number of UMIs
per library, and we found that libraries that have more than twice
themean total UMI count can be readily identified (Figure S1C). It
is unclear whether these libraries were generated from two sepa-
rate cells (doublets) or, for example, from one large cell before
mitosis. However, for the purpose of this method comparison,
we removed these three to nine libraries. To filter out low-quality
libraries, we used a method that exploits the fact that transcript
detection and abundance in low-quality libraries correlate poorly
with high-quality libraries as well as with other low-quality li-
braries (Petropoulos et al., 2016). Therefore, we determined

the maximum Spearman correlation coefficient for each cell
in all-to-all comparisons that allowed us to identify low-quality
libraries as outliers of the distributions of correlation coefficients
by visual inspection (Figure S1D). This filtering led to the
removal of 21, 0, 4, 0, 16, and 30 cells for CEL-seq2/C1, Drop-
seq, MARS-seq, SCRB-seq, Smart-seq/C1, and Smart-seq2,
respectively.
In summary, we processed and filtered our data so that we

ended up with a total of 583 high-quality scRNA-seq libraries
that could be used for a fair comparison of the sensitivity, accu-
racy, precision, power, and efficiency of the methods.

Single-Cell Libraries Are Sequenced to a Reasonable
Level of Saturation at One Million Reads
For all six methods, >50% of the reads could be unambiguously
mapped to the mouse genome (Figure 3A), which is comparable
to previous results (Jaitin et al., 2014; Wu et al., 2014). Overall,
between 48% (Smart-seq2) and 30% (Smart-seq/C1) of all reads
were exonic and, thus, were used to quantify gene expression
levels. However, the UMI data showed that only 14%, 5%,
7%, and 15% of the exonic reads were derived from indepen-
dent mRNA molecules for CEL-seq2/C1, Drop-seq, MARS-
seq, and SCRB-seq, respectively (Figure 3A). To quantify the
relationship between the number of detected genes or mRNA
molecules and the number of reads in more detail, we down-
sampled reads to varying depths, and we estimated to what
extent libraries were sequenced to saturation (Figure S2). The
number of unique mRNA molecules plateaued at 56,760 UMIs
per library for CEL-seq2/C1 and 26,210 UMIs per library for
MARS-seq, was still marginally increasing at 17,210 UMIs per li-
brary for Drop-seq, and was considerably increasing at
49,980 UMIs per library for SCRB-seq (Figure S2C). Notably,
CEL-seq2/C1 and MARS-seq showed a steeper slope at low
sequencing depths than both Drop-seq and SCRB-seq, poten-
tially due to a less biased amplification by in vitro transcription.
Hence, among the UMI methods, CEL-seq2/C1 and SCRB-seq
libraries had the highest complexity of mRNA molecules, and
this complexity was sequenced to a reasonable level of satura-
tion with one million reads.
To investigate saturation also for non-UMI-based methods,

we applied a similar approach at the gene level by counting
the number of genes detected by at least one read. By fitting
an asymptote to the downsampled data, we estimated that
!90% (Drop-seq and SCRB-seq) to 100% (CEL-seq2/C1,
MARS-seq, Smart-Seq/C1, and Smart-seq2) of all genes pre-
sent in a library were detected at one million reads (Figure 3B;
Figure S2A). In particular, the deep sequencing of Smart-seq2 li-
braries showed clearly that the number of detected genes did not
change when increasing the sequencing depth from one million
to five million reads per cell (Figure S2B).
All in all, these analyses show that scRNA-seq libraries were

sequenced to a reasonable level of saturation at one million
reads, a cutoff that also has been suggested previously for
scRNA-seq datasets (Wu et al., 2014). While it can be more
efficient to invest in more cells at lower coverage (see our power
analyses below), one million reads per cell is a reasonable
sequencing depth for our purpose of comparing scRNA-seq
methods.
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Smart-Seq2 Has the Highest Sensitivity
Taking the number of detected genes per cell as a measure of
sensitivity, we found that Drop-seq andMARS-seqhad the lowest

sensitivity, with a median of 4,811 and 4,763 genes detected per
cell, respectively, while CEL-seq2/C1, SCRB-seq, and Smart-
seq/C1 detected a median of 7,536, 7,906, and 7,572 genes per
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Figure 3. Sensitivity of scRNA-Seq Methods
(A) Percentage of reads (downsampled to one million per cell) that cannot be mapped to the mouse genome (gray) are mapped to regions outside exons (orange)

or inside exons (blue). For UMI methods, dark blue denotes the exonic reads with unique UMIs.

(B) Median number of genes detected per cell (countsR1) when downsampling total read counts to the indicated depths. Dashed lines above one million reads

represent extrapolated asymptotic fits.

(C) Number of genes detected (countsR1) per cell. Each dot represents a cell and each box represents the median and first and third quartiles per replicate and

method.

(D) Cumulative number of genes detected as more cells are added. The order of cells considered was drawn randomly 100 times to display mean ± SD (shaded

area). See also Figures S3 and S4.
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cell (Figure3C).Smart-seq2detected thehighestnumberofgenes
per cell with a median of 9,138. To compare the total number of
genes detected across many cells, we pooled the sequence
data of 65 cells per method, and we detected !19,000 genes for
CEL-Seq2/C1, !17,000 for MARS-seq, !18,000 for Drop-seq
and SCRB-Seq, !20,000 for Smart-seq/C1, and !21,000 for
Smart-seq2 (Figure 3D). While the majority of genes (!13,000)
were detected by all methods, !400 genes were specific to
each of the 30 countingmethods, and!1,000 geneswere specific
to each of the two full-length methods (Figure S3A). This higher
sensitivity of both full-length methods also was apparent when
plotting the genes detected in all available cells, as the 30 counting
methods leveled off below 20,000 genes while the two full-length
methods leveledoff above20,000genes (Figure3D). Suchadiffer-
ence could be caused by genes that have 30 ends that are difficult
tomap.However,we found that genes specific toSmart-seq2and
Smart-seq/C1map as well to 30 ends as genes with similar length
distribution that are not specifically detected by full-length
methods (Figure S3B). Hence, it seems that full-length methods
turn a slightly higher fraction of transcripts into sequenceablemol-
ecules than 30 counting methods and are more sensitive in this
respect. Importantly, method-specific genes are detected in
very few cells (87% of genes occur in one or two cells) with very
low counts (mean counts < 0.2, Figure S3C). This suggests that
they are unlikely to remain method specific at higher expression
levels and that their impact on conclusions drawn from scRNA-
seq data is rather limited (Lun et al., 2016).

Next, we investigated how reads are distributed along the
mRNA transcripts for all genes. As expected, the 30 counting

methods showed a strong bias of reads mapped to the 30 end
(Figure S3D). However, it is worthmentioning that a considerable
fraction of reads also covered other segments of the transcripts,
probably due to internal oligo-dT priming (Nam et al., 2002).
Smart-seq2 showed a more even coverage than Smart-seq,
confirming previous findings (Picelli et al., 2013). A general differ-
ence in expression values between 30 counting and full-length
methods also was reflected in their strong separation by the first
principal component, explaining 37% of the total variance, and
when taking into account that one needs to normalize for gene
length for the full-length methods (Figure S4E).
As an absolute measure of sensitivity, we compared the prob-

ability of detecting the 92 spiked-in ERCCs, for which the num-
ber of molecules available for library construction is known (Fig-
ures S4A and S4B). We determined the detection probability of
each ERCC RNA as the proportion of cells with at least one
read or UMI count for the particular ERCC molecule (Marinov
et al., 2014). For Drop-seq, we used the previously published
ERCC-only dataset (Macosko et al., 2015), and for the other
five methods, 2%–5% of the one million reads per cell mapped
to ERCCs that were sequenced to complete saturation at that
level (Figure S5B). A 50% detection probability was reached at
!7, 11, 14, 16, 17, and 28 ERCC molecules for Smart-seq2,
Smart-seq/C1, CEL-seq2/C1, SCRB-seq, Drop-seq, and
MARS-seq, respectively (Figure S4C). Notably, the sensitivity
estimated from the number of detected genes does not fully
agree with the comparison based on ERCCs. While Smart-
seq2 was the most sensitive method in both cases, Drop-seq
performed better and SCRB-seq and MARS-seq performed
worse when using ERCCs. The separate generation and
sequencing of the Drop-seq ERCC libraries could be a possible
explanation for their higher sensitivity. However, it remains un-
clear why SCRB-seq and MARS-seq had a substantially lower
sensitivity when using ERCCs. It has been noted before that
ERCCs can be problematic for modeling endogenous mRNAs
(Risso et al., 2014), potentially due to their shorter length, shorter
poly-A tail, and their missing 50 cap (Gr€un and van Oudenaarden,
2015; Stegle et al., 2015). While ERCCs are still useful to gauge
the absolute range of sensitivities, the thousands of endogenous
mRNAs are likely to be a more reliable estimate for comparing
sensitivities as we used the same cell type for all methods.
In summary, we find that Smart-seq2 is the most sensitive

method, as it detects the highest number of genes per cell and
the most genes in total across cells and has the most even
coverage across transcripts. Smart-seq/C1 is slightly less sensi-
tive per cell and detects almost the same number of genes
across cells with slightly less even coverage. Among the 30

counting methods, CEL-seq2/C1 and SCRB-seq detect about
as many genes per cell as Smart-seq/C1, whereas Drop-seq
and MARS-seq detect considerably fewer genes.

Accuracy of scRNA-Seq Methods
To measure the accuracy of transcript level quantifications, we
compared the observed expression values (counts per million
or UMIs per million) with the known concentrations of the 92
ERCC transcripts (Figure S5A). For each cell, we calculated the
coefficient of determination (R2) for a linear model fit (Figure 4).
Methods differed significantly in their accuracy (Kruskal-Wallis
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See also Figure S5.
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test, p < 2.2e"16), but all methods had a fairly high R2 ranging
between 0.83 (MARS-seq) and 0.91 (Smart-seq2). This suggests
that, for all methods, transcript concentrations across this broad
range can be predicted fairly well from expression values. As ex-
pected, accuracy was worse for narrower and especially for
lower concentration ranges (Figure S5C). It is worth emphasizing
that the accuracy assessed here refers to absolute expression
levels across genes within cells. This accuracy can be important,
for example, to identify marker genes with a high absolute mRNA
expression level. However, the small differences in accuracy
seen here will rarely be a decisive factor when choosing among
the six protocols.

Precision of Amplified Genes Is Strongly Increased
by UMIs
While a high accuracy is necessary to compare absolute expres-
sion levels, one of the most common experimental aims is to
compare relative expression levels to identify differentially ex-
pressed genes or different cell types. Hence, the precision (i.e.,
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Figure 5. Precision of scRNA-Seq Methods
We compared precision among methods using

the 13,361 genes detected in at least 25% of all

cells by any method in a subsample of 65 cells per

method.

(A) Distributions of dropout rates across the

13,361 genes are shown as violin plots, and me-

dians are shown as bars and numbers.

(B) Extra Poisson variability across the 13,361

genes was calculated by subtracting the ex-

pected amount of variation due to Poisson sam-

pling (square root of mean divided by mean)

from the CV (SD divided by mean). Distributions

are shown as violin plots and medians are

shown as bars and numbers. For 349, 336, 474,

165, 201, and 146 genes for CEL-seq2/C1, Drop-

seq, MARS-seq, SCRB-seq, Smart-seq/C1, and

Smart-seq2, respectively, no extra Poisson vari-

ability could be calculated. See also Figures S6

and S7.

the reproducibility of the expression-level
estimate) is amajor factor when choosing
a method. As we used the same cell type
under the same culture conditions for all
methods, the amount of biological varia-
tion should be the same in the cells
analyzed by each of the six methods.
Hence, we can assume that differences
in the total variation among methods
are due to differences in their technical
variation. Technical variation is substan-
tial in scRNA-seq data primarily because
a substantial fraction of mRNAs is lost
during cDNA generation and small
amounts of cDNA get amplified. There-
fore, both the dropout probability and
the amplification noise need to be
considered when quantifying variation.

Indeed, a mixture model including a dropout probability and a
negative binomial distribution, modeling the overdispersion in
the count data, have been shown to represent scRNA-seq
data better than the negative binomial alone (Finak et al., 2015;
Kharchenko et al., 2014).
To compare precision without penalizing more sensitive

methods, we selected a common set of 13,361 genes that
were detected in 25% of the cells by at least one method (Fig-
ure S6A). We then analyzed these genes in a subsample of 65
cells per method to avoid a bias due to unequal numbers of cells.
We estimated the dropout probability as the fraction of cells with
zero counts (Figure 5A; Figure S6B). As expected from the num-
ber of detected genes per cell (Figure 3C), MARS-seq had the
highest median dropout probability (74%) and Smart-seq2 had
the lowest (26%) (Figure 5A). To estimate the amplification noise
of detected genes, we calculated the coefficient of variation (CV,
SD divided by the mean, including zeros), and we subtracted the
expected amount of variation due to Poisson sampling (i.e., the
square root of the mean divided by the mean). This was possible
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for 96.5% (MARS-seq) to 98.9% (Smart-seq2) of all the 13,361
genes. This extra Poisson variability includes biological variation
(assumed to be the same across methods in our data) and tech-
nical variation, and the latter includes noise introduced by ampli-
fication (Brennecke et al., 2013; Gr€un et al., 2014; Stegle et al.,
2015). That amplification noise can be a major factor is seen
by the strong increase of extra Poisson variability when ignoring
UMIs and considering read counts only (Figure 5B, left; Fig-
ure S7A). This is expected, as UMIs should remove amplification
noise, which has been described previously for CEL-seq (Gr€un
et al., 2014). For SCRB-seq and Drop-seq, which are PCR-
based methods, UMIs removed even more extra Poisson vari-
ability than for CEL-seq2/C1 and MARS-seq (Figure 5B), which
is in line with the notion that amplification by PCR is more noisy
than amplification by in vitro transcription. Of note, Smart-seq2
had the lowest amplification noise when just considering reads
(Figure 5B, left), potentially because its higher sensitivity requires
less amplification and, hence, leads to less noise.

In summary, Smart-seq2 detects the common set of 13,361
genes in more cells than the UMI methods, but it has, as ex-
pected, more amplification noise than the UMI-based methods.
How the different combinations of dropout rate and amplification
noise affect the power of themethods is not evident, neither from
this analysis nor from the total coefficient of variation that ignores
the strong mean variance and mean dropout dependencies of
scRNA-seq data (Figure S7B).

Power Is Determined by aCombination of Dropout Rates
and Amplification Noise and Is Highest for SCRB-Seq
To estimate the combined impact of sensitivity and precision on
the power to detect differential gene expression, we simulated
scRNA-seq data given the observed dropout rates and variance
for the 13,361 genes. As these depend strongly on the expres-
sion level of a gene, it is important to retain the mean variance
and mean dropout relationships. To this end, we estimated the
mean, the variance (i.e., the dispersion parameter of the negative
binomial distribution), and the dropout rate for each gene and
method. We then fitted a cubic smoothing spline to the resulting
pairs of mean and dispersion estimates to predict the dispersion
of a gene given its mean (Figure S8A). Furthermore, we applied a
local polynomial regression model to account for the dropout
probability given a gene’s mean expression (Figure S8B).
When simulating data according to these fits, we recovered dis-
tributions of dropout rates and variance closely matching the
observed data (Figures S8C and S8D). To compare the power
for differential gene expression among the methods, we simu-
lated read counts for two groups of n cells and added log-fold
changes to 5%of the 13,361 genes in one group. Tomimic a bio-
logically realistic scenario, these log-fold changes were drawn
from observed differences between microglial subpopulations
from a previously published dataset (Zeisel et al., 2015). Simu-
lated datasets were tested for differential expression using
limma (Ritchie et al., 2015), and the true positive rate (TPR) and
the false discovery rate (FDR) were calculated. Of note, this
does include undetected genes, i.e., the 2.5% (SCRB-seq) to
6.8% (MARS-seq) of the 13,361 genes that had fewer than two
measurements in a particular method (Figure S6B) and for which
we could not estimate the variance. In our simulations, these

genes could be drawn as differentially expressed, and in our
TPR they were then counted as false negatives for the particular
method. Hence, our power simulation framework considers the
full range of dropout rates and is not biased against more sensi-
tive methods.
First, we analyzed how the number of cells affects TPR and

FDR by running 100 simulations each for a range of 16 to 512
cells per group (Figure 6A). FDRs were similar in all methods
ranging from 3.9% to 8.7% (Figure S9A). TPRs differed consid-
erably amongmethods and SCRB-seq performed best, reaching
a median TPR of 80% with 64 cells. CEL-seq2/C1, Drop-seq,
MARS-seq, and Smart-seq2 performed slightly worse, reaching
80% power with 86, 99, 110, and 95 cells per group, respec-
tively, while Smart-seq/C1 needed 150 cells to reach 80%power
(Figure 6A). When disregarding UMIs, Smart-seq2 performed
best (Figure 6B), as expected from its low dropout rate and its
low amplification noise when considering reads only (Figure 5B).
Furthermore, power dropped especially for Drop-seq and
SCRB-seq (Figure 6B), as expected from the strong increase in
amplification noise of these two methods when considering
reads only (Figure 5B). When we stratified our analysis (consid-
ering UMIs) across five bins of expression levels, the ranking of
methods was recapitulated and showed that the lowest expres-
sion bin strongly limited the TPR in all methods (Figure S9B). This
ranking also was recapitulated when we analyzed a set of 19
genes previously reported to contain cell-cycle variation in the
2i/LIF culture condition (Kolodziejczyk et al., 2015b). The vari-
ance of these cell-cycle genes was clearly higher than the vari-
ance of 19 pluripotency and housekeeping (ribosomal) genes
in all methods. The p value of that difference was lowest for
SCRB-seq, the most powerful method, and highest for Smart-
seq/C1, the least powerful method (Figure S10D).
Notably, this power analysis, as well as the sensitivity, accu-

racy, and precision parameters analyzed above, includes the
variation that is generated in the two technical replicates
(batches) per method that we performed (Figure 1). These esti-
mates were very similar among our technical replicates, and,
hence, ourmethod comparison is valid with respect to batch var-
iations (Figures S10B–S10D). In addition, as batch effects are
known to be highly relevant for interpreting scRNA-seq data
(Hicks et al., 2015), we gauged the magnitude of batch effects
with respect to identifying differentially expressed genes. To
this end, we used limma to identify differentially expressed genes
between batches (FDR < 1%), using 25 randomly selected cells
per batch andmethod. All methods had significantly more genes
differentially expressed between batches than expected from
permutations (zero to four genes), with a median of 119 (Drop-
seq) to !1,135 (CEL-seq2/C1) differentially expressed genes
(Figure S10A). Notably, genes were affected at random across
methods, as there was no significant overlap among them
(extended hypergeometric test [Kalinka, 2013], p > 0.84). Hence,
this analysis once more emphasizes that batches are important
to consider in the design of scRNA-seq experiments (Hicks et al.,
2015). While a quantitative comparison of the magnitude of
batch effects among methods would require substantially more
technical replicates per method, the methods differ in their flex-
ibility to incorporate batch effect into the experimental design,
which is an important aspect to consider as discussed below.
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As a next step, we analyzed how the performance of the six
methods depends on sequencing depth. To this end, we per-
formed power simulations as above, but we estimated the
mean dispersion and mean dropout relationships from data
downsampled to 500,000 or 250,000 reads per cell. Overall,
the decrease in power was moderate (Figure 6C; Table 1) and
followed the drop in sensitivity at different sequencing depths
(Figure 3B). While Smart-seq2 and CEL-seq2/C1 needed just
1.3-fold more cells at 0.25 million reads than at one million reads
to reach 80% power, SCRB-seq and Drop-seq required 2.6-fold
more cells (Table 1). In summary, SCRB-seq is themost powerful
method at one million reads and half a million reads, but CEL-
seq2/C1 is the most powerful method at a sequencing depth
of 250,000 reads. The optimal balance between the number of
cells and their sequencing depth depends on many factors,
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Figure 6. Power of scRNA-Seq Methods
Using the empirical mean/dispersion and mean/

dropout relationships (Figures S8A and S8B), we

simulated data for two groups of n cells each for

which 5% of the 13,361 genes were differentially

expressed, with log-fold changes drawn from

observed differences between microglial sub-

populations from a previously published dataset

(Zeisel et al., 2015). The simulated data were then

tested for differential expression using limma

(Ritchie et al., 2015), from which the average true

positive rate (TPR) and the average false discov-

ery rate (FDR) were calculated (Figure S9A).

(A) TPR for one million reads per cell for sample

sizes n = 16, n = 32, n = 64, n = 128, n = 256, and

n = 512 per group. Boxplots represent the median

and first and third quartiles of 100 simulations.

(B) TPR for one million reads per cell for n = 64 per

group with and without using UMI information.

Boxplots represent the median and first and third

quartiles of 100 simulations.

(C) TPRs as in (A) using mean/dispersion

and mean/dropout estimates from one million

(as in A), 0.5 million, and 0.25 million reads. Line

areas indicate the median power with SE from

100 simulations. See also Figures S8–S10 and

Table 1.

including the scientific questions ad-
dressed, the experimental design, or the
sample availability. However, the mone-
tary cost is certainly an important one,
and we used the results of our simula-
tions to compare the costs among the
methods for a given level of power.

Cost Efficiency Is Similarly High for
Drop-Seq, MARS-Seq, SCRB-Seq,
and Smart-Seq2
Given the number of cells needed to
reach 80% power as simulated above
for three sequencing depths (Figure 6C),
we calculated the minimal costs to
generate and sequence these libraries.

For example, at a sequencing depth of one million reads,
SCRB-seq requires 64 cells per group to reach 80% power.
Generating 128 SCRB-seq libraries costs!260$ and generating
128 million reads costs !640$. Note that the necessary paired-
end reads for CEL-seq2/C1, SCRB-seq, MARS-seq, and Drop-
seq can be generated using a 50-cycle sequencing kit, and,
hence, we assume that sequencing costs are the same for all
methods.
Calculating minimal costs this way, Drop-seq (690$) is the

most cost-effective method when sequencing 254 cells at a
depth of 250,000 reads, and SCRB-seq (810$), MARS-seq
(820$), and Smart-seq2 (1,090$) are slightly more expensive at
the same performance (Table 1). For Smart-seq2 it should be
stressed that the use of in-house-produced Tn5 transposase
(Picelli et al., 2014a) is required to keep the cost at this level, as
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was done in our experiments. When instead using the Tn5 trans-
posase of the commercial Nextera kit as described (Picelli et al.,
2014b), the costs for Smart-seq2 are 10-fold higher. Even if one
reduces the amount of Nextera transposase to a quarter, as done
in the Smart-seq/C1 protocol, the Smart-seq2 protocol is still
four times more expensive than the early barcoding methods.
CEL-seq2/C1 is fairly expensive due to the microfluidic chips
that make up 69% of the library costs, and Smart-seq/C1 is
almost 13-fold less efficient than Drop-seq due to its high library
costs that arise from the microfluidic chips, the commercial
Smart-seq kit, and the costs for commercial Nextera XT kits.

Of note, these calculations are the minimal costs of the exper-
iment and several factors are not considered, such as labor
costs, costs to set up the methods, costs to isolate cells of inter-
est, or costs due to practical constraints in generating a fixed
number of scRNA-seq libraries with a fixed number of reads. In
many experimental settings, independent biological and/or tech-
nical replicates are needed when investigating particular factors,
such as genotypes or developmental time points, and Smart-
seq/C1, CEL-seq2/C1, and Drop-seq are less flexible in distrib-
uting scRNA-seq libraries across replicates than the other three
methods that use PCR plates. Furthermore, the costs are
increased by unequal sampling from the included cells as well
as from sequencing reads from cells that are excluded. In our
case, between 6% (SCRB-seq) and 32% (Drop-seq) of the reads
came from cell barcodes that were not included. While it is diffi-
cult to exactly calculate and compare these costs among
methods, it is clear that they will increase the costs for Drop-
seq relatively more than for the other methods. In summary,
we find that Drop-seq, SCRB-seq, and MARS-seq are the
most cost-effective methods, closely followed by Smart-seq2,
if using an in-house-produced transposase.

DISCUSSION

Here we have provided an in-depth comparison of six prominent
scRNA-seq protocols. To this end, we generated data for all six
compared methods from the same cells, cultured under the
same condition in the same laboratory. While there would be
manymore datasets andmethods for a comparison of the sensi-
tivity and accuracy of the ERCCs (Svensson et al., 2016), our
approach provides a more controlled and comprehensive com-

parison across thousands of endogenous genes. This is impor-
tant, as can be seen by the different sensitivity estimates that
we obtained for Drop-seq, MARS-seq, and SCRB-seq using
the ERCCs. In our comparison, we clearly find that Smart-seq2
is the most sensitive method, closely followed by SCRB-seq,
Smart-seq/C1, and CEL-seq2/C1, while Drop-seq and MARS-
seq detect nearly 50% fewer genes per cell (Figures 3B and
3C). In addition, Smart-seq2 shows themost even read coverage
across transcripts (Figure S3D), making it the most appropriate
method for the detection of alternative splice forms and for ana-
lyses of allele-specific expression using SNPs (Deng et al., 2014;
Reinius et al., 2016). Hence, Smart-seq2 is certainly the most
suitable method when an annotation of single-cell transcrip-
tomes is the focus. Furthermore, we find that Smart-seq2 is
also themost accurate method (i.e., it has the highest correlation
of known ERCC spike-in concentrations and read counts per
million), which is probably related to its higher sensitivity. Hence,
differences in expression values across transcripts within the
same cell predict differences in the actual concentrations of
these transcripts well. All methods do this rather well, at least
for higher expression levels, and we think that the small differ-
ences among methods will rarely be a decisive factor. Impor-
tantly, the accuracy of estimating transcript concentrations
across cells (relevant, e.g., for comparing the total RNA content
of cells) depends on different factors and cannot be compared
well among the tested methods as it would require known con-
centration differences of transcripts across cells. However, it is
likely that methods that can use UMIs and ERCCs (CEL-seq2/
C1, MARS-seq, and SCRB-seq) would have a strong advantage
in this respect.
How well relative expression levels of the same genes can be

compared across cells depends on two factors. First, how often
(i.e., in how many cells and from how many molecules) it is
measured. Second, with how much technical variation (i.e.,
with how much noise, e.g., from amplification) it is measured.
For the first factor (dropout probability), we find Smart-seq2 to
be the best method (Figure 5A), as expected from its high gene
detection sensitivity. For the second factor (extra Poisson vari-
ability), we find the four UMI methods to perform better (Fig-
ure 5B), as expected from their ability to eliminate variation intro-
duced by amplification. To assess the combined effect of these
two factors, we performed simulations for differential gene

Table 1. Cost Efficiency Extrapolation for Single-Cell RNA-Seq Experiments

Method TPRa FDRa (%) Cell per Groupb Library Cost ($) Minimal Costc ($)

CEL-seq2/C1 0.8 !6.1 86/100/110 !9 !2,420/2,310/2,250

Drop-seq 0.8 !8.4 99/135/254 !0.1 !1,010/700/690

MARS-seq 0.8 !7.3 110/135/160 !1.3 !1,380/1,030/820

SCRB-seq 0.8 !6.1 64/90/166 !2 !900/810/1,080

Smart-seq/C1 0.8 !4.9 150/172/215 !25 !9,010/9,440/11,290

Smart-seq2 (commercial) 0.8 !5.2 95/105/128 !30 !10,470/11,040/13,160

Smart-seq2 (in-house Tn5) 0.8 !5.2 95/105/128 !3 !1,520/1,160/1,090

See also Figure 6.
aTrue positive rate and false discovery rate are based on simulations (Figure 6; Figure S9).
bSequencing depth of one, 0.5, and 0.25 million reads.
cAssuming $5 per one million reads.
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expression scenarios (Figure 6). This allowed us to translate the
sensitivity and precision parameters into the practically relevant
power to detect differentially expressed genes. Of note, our po-
wer estimates include the variation that is caused by the two
different replicates per method that constitutes an important
part of the variation. Our simulations show that, at a sequencing
depth of one million reads, SCRB-seq has the highest power,
probably due to a good balance of high sensitivity and low ampli-
fication noise. Furthermore, amplification noise and power
strongly depend on the use of UMIs, especially for the PCR-
based methods (Figures 5B and 6B; Figure S7). Notably, this is
due to the large amount of amplification needed for scRNA-
seq libraries, as the effect of UMIs on power for bulk RNA-seq
libraries is negligible (Parekh et al., 2016).
Perhaps practically most important, our power simulations

also allow us to compare the efficiency of the methods by calcu-
lating the costs to generate the data for a given level of power.
Using minimal cost calculations, we find that Drop-seq is the
most cost-effective method, closely followed by SCRB-seq,
MARS-seq, and Smart-seq2. However, Drop-seq costs are likely
to be more underestimated, due to lower flexibility in generating
a specified number of libraries and the higher fraction of reads
that come from bad cells. Hence, all four UMI methods are in
practice probably similarly cost-effective. In contrast, for
Smart-seq2 to be similarly cost-effective it is absolutely neces-
sary to use in-house-produced transposase or to drastically
reduce volumes of commercial transposase kits (Lamble et al.,
2013; Mora-Castilla et al., 2016).
Given comparable efficiencies of Drop-seq, MARS-seq,

SCRB-seq, and Smart-seq2, additional factors will play a
role when choosing a suitable method for a particular ques-
tion. Due to its low library costs, Drop-seq is probably prefer-
able when analyzing large numbers of cells at low coverage
(e.g., to find rare cell types). On the other hand, Drop-seq in
its current setup requires a relatively large amount of cells
(>6,500 for 1 min of flow). Hence, if few and/or unstable cells
are isolated by FACS, the SCRB-seq, MARS-seq, or Smart-
seq2 protocols are probably preferable. Additional advantages
of these methods over Drop-seq include that technical varia-
tion can be estimated from ERCCs for each cell, which can
be helpful to estimate biological variation (Kim et al., 2015;
Vallejos et al., 2016), and that the exact same setup can be
used to generate bulk RNA-seq libraries. While SCRB-seq is
slightly more cost-effective than MARS-seq and has the
advantage that one does not need to produce the transposase
in-house, Smart-seq2 is preferable when transcriptome anno-
tation, identification of sequence variants, or the quantification
of different splice forms is of interest. Furthermore, the pres-
ence of batch effects shows that experiments need to be
designed in a way that does not confound batches with bio-
logical factors (Hicks et al., 2015). Practically, plate-based
methods might currently accommodate complex experimental
designs with various biological factors more easily than micro-
fluidic chips.
We find that Drop-seq, MARS-seq, SCRB-seq, and Smart-

seq2 (using in-house transposase) are 2- to 13-fold more cost
efficient than CEL-seq2/C1, Smart-seq/C1, and Smart-seq2
(using commercial transposase). Hence, the latter methods

would need to increase in their power and/or decrease in their
costs to be competitive. The efficiency of the Fluidigm C1 plat-
form can be further increased bymicrofluidic chips with a higher
throughput, as available in the high-throughput (HT) mRNA-seq
integrated fluidic circuit (IFC) chip. While CEL-seq2/C1 has
been found to more sensitive than the plate-based version of
CEL-seq2 (Hashimshony et al., 2016), the latter might be
more efficient when considering its lower costs. Our finding
that Smart-seq2 is themost sensitive protocol also hints toward
further possible improvements of SCRB-seq and Drop-seq. As
these methods also rely on template switching and PCR ampli-
fication, the improvements found in the systematic optimization
of Smart-seq2 (Picelli et al., 2013) also could improve the sensi-
tivity of SCRB-seq and Drop-seq. Furthermore, the costs of
SCRB-seq libraries per cell can be halved when switching to
a 384-well format (Soumillon et al., 2014). Similarly, improve-
ments made for CEL-seq2 (Hashimshony et al., 2016) could
be incorporated into the MARS-seq protocol. Hence, it is clear
that scRNA-seq protocols will become even more efficient in
the future. The results of our comparative analyses of six
currently prominent scRNA-seq methods may facilitate such
developments, and they provide a framework for method eval-
uation in the future.
In summary, we systematically compared six prominent

scRNA-seq methods and found that Drop-seq is preferable
when quantifying transcriptomes of large numbers of cells
with low sequencing depth, SCRB-seq and MARS-seq is pref-
erable when quantifying transcriptomes of fewer cells, and
Smart-seq2 is preferable when annotating and/or quantifying
transcriptomes of fewer cells as long one can use in-house-
produced transposase. Our analysis allows an informed
choice among the tested methods, and it provides a frame-
work for benchmarking future improvements in scRNA-seq
methodologies.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Esgro recombinant mouse LIF Millipore ESG1107

CHIR99021 Axon Med Chem 1386

PD0325901 Axon Med Chem 1408

2-Mercaptoethanol Sigma-Aldrich M3148

FBS Sigma-Aldrich F7524

Penicillin/Streptomycin Sigma-Aldrich P4333

MEM non-essential amino acids Sigma-Aldrich M7145

L-glutamine Sigma-Aldrich G7513

Dulbecco’s modified Eagle’s medium Sigma-Aldrich D6429

Perfluoroctanol Sigma-Aldrich 370533

Maxima H- Reverse Transcriptase Thermo Fisher Scientific EP0753

SuperScript II Life Technologies 18064071

Exonuclease I New England Biolabs M0293L

RNAprotect Cell Reagent QIAGEN 76526

RNase inhibitor Promega N2515

RNase inhibitor Lucigen 30281-2-LU

Phusion HF buffer New England Biolabs B0518S

Proteinase K Ambion AM2546

KAPA HiFi HotStart polymerase KAPA Biosystems KAPBKK2602

Phusion HF PCR Master Mix Thermo Fisher Scientific F531L

dNTPs New England Biolabs N0447L

Triton X-100 Sigma-Aldrich T8787

SDS Sigma-Aldrich L3771

Tn5 transposase Picelli et al., 2014a N/A

Critical Commercial Assays

C1 Single-Cell System Fluidigm N/A

C1 IFC for Open App (10-17 mm) Fluidigm 100-8134

C1 IFC for mRNA-seq (10-17 mm) Fluidigm 100-6041

Nextera XT DNA Sample Preparation Kit Illumina FC-131-1096

SMARTer Ultra Low RNA Kit for Fluidigm C1 Clontech 634833

MinElute Gel Extraction Kit QIAGEN 28606

Deposited Data

single-cell RNA-seq data This paper GEO: GSE75790

Drop-seq ERCC data Macosko et al., 2015 GEO: GSE66694

Experimental Models: Cell Lines

J1 mouse embryonic stem cells Li et al., 1992 N/A

Sequence-Based Reagents

Nextera XT Index Kit Illumina FC-121-1012

SCRB-seq P5 primer, AATGATACGGCGACCACCG

AGATCTACACTCTTTCCCTACACGACGCTCTTC

CG*A*T*C*T, * PTO bond

IDT N/A

SCRB-seq oligo-dT primer, Biotin-ACACTCTTTCCCT

ACACGACGCTCTTCCGATCT[BC6][N10][T30]VN

IDT ‘‘TruGrade Ultramer’’

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the corresponding author
Wolfgang Enard (enard@biologie.uni-muenchen.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

J1 mouse embryonic stem cells (Li et al., 1992) were maintained on gelatin-coated dishes in Dulbecco’s modified Eagle’s medium
supplemented with 16% fetal bovine serum (FBS, Sigma-Aldrich), 0.1mM b-mercaptoethanol (Sigma-Aldrich), 2mML-glutamine, 1x
MEM non-essential amino acids, 100 U/ml penicillin, 100 mg/ml streptomycin (Sigma-Aldrich), 1000 U/ml recombinant mouse LIF
(Millipore) and 2i (1 mM PD032591 and 3 mM CHIR99021 (Axon Medchem, Netherlands). J1 embryonic stem cells were obtained
from E. Li and T. Chen and mycoplasma free determined by a PCR-based test. Cell line authentication was not recently performed.

METHOD DETAILS

Published data
Drop-seq ERCC (Macosko et al., 2015) data were obtained under accession GEO: GSE66694. Raw fastq files were extracted using
the SRA toolkit (2.3.5). We trimmed cDNA reads to the same length and processed raw reads in the same way as data sequenced for
this study.

Single cell RNA-seq library preparations
CEL-seq2/C1
CEL-seq2/C1 libraries were generated as previously described (Hashimshony et al., 2016). Briefly, cells (200,000/ml), ERCC spike-
ins, reagents and barcoded oligo-dT primers (Sigma-Aldrich) were loaded on a 10-17 mm C1 Open-App microfluidic IFC (Fluidigm).
Cell lysis, reverse transcription, second strand synthesis and in-vitro transcription were performed on-chip. Subsequently, harvested
aRNA was pooled from 48 capture sites. After fragmentation and clean-up, 5 ml of aRNA was used to construct final libraries by
reverse transcription (SuperScript II, Thermo Fisher) and library PCR (Phusion HF, Thermo Fisher).

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

SCRB-seq template-switch oligo, iCiGiCACACTCTTTCC

CTACACGACGCrGrGrG

Eurogentech N/A

Drop-seq P5 primer, AATGATACGGCGACCACCGAGA

TCTACACGCCT GTCCGCGGAAGCAGTGGTATCAACG

CAGAGT*A*C, * PTO bond

IDT N/A

Drop-seq oligo-dT primer beads, Bead–Linker-

TTTTTTTAAGCAGTGGTATCAAC

GCAGAGTAC[BC12][N8][T30]

Chemgenes MACOSKO-2011-10

Drop-seq template-switch oligo, AAGCAGTGGTATCA

ACGCAGAGTGAATrGrGrG

IDT N/A

CEL-seq2 oligo-dT primer, GCCGGTAATACGACTCACTATA

GGGAGTTCTACAGTCCGACGATC[N6][BC6][T25]

Sigma-Aldrich N/A

ERCC RNA Spike-In Mix Ambion 4456740

Software and Algorithms

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

Drop-seq tools Macosko et al.,

2015

http://mccarrolllab.com/dropseq/

featureCounts Liao et al., 2013 https://bioconductor.org/packages/release/

bioc/html/Rsubread.html

R N/A www.r-project.org

Other

Drop-seq PDMS device Nanoshift Drop-seq

2% E-Gel Agarose EX Gels Life Technologies G402002
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Drop-seq
Drop-seq experiments were performed as published (Macosko et al., 2015) and successful establishment of the method in our lab
was confirmed by a species-mixing experiment (Figure S1A). For this work, J1 mES cells (100/ml) and barcode-beads (120/ml, Chem-
genes) were co-flown in Drop-seq PDMS devices (Nanoshift) at rates of 4000 ml/hr. Collected emulsions were broken by addition of
perfluorooctanol (Sigma-Aldrich) and mRNA on beads was reverse transcribed (Maxima RT, Thermo Fisher). Unused primers were
degraded by addition of Exonuclease I (New England Biolabs). Washed beads were counted and aliquoted for pre-amplification
(2000 beads / reaction). Nextera XT libraries were constructed from 1 ng of pre-amplified cDNA with a custom P5 primer (IDT).
MARS-seq
To construct single cell libraries from polyA-tailed RNA, we appliedmassively parallel single-cell RNA sequencing (MARS-Seq) (Jaitin
et al., 2014). Briefly, single cells were FACS-sorted into 384-well plates, containing lysis buffer and reverse-transcription (RT) primers.
The RT primers contained the single cell barcodes and unique molecular identifiers (UMIs) for subsequent de-multiplexing and
correction for amplification biases, respectively. Spike-in transcripts (ERCC, Ambion) were added, polyA-containing RNA was con-
verted into cDNA as previously described and then pooled using an automated pipeline (liquid handling robotics). Subsequently,
samples were linearly amplified by in vitro transcription, fragmented, and 30 ends were converted into sequencing libraries. The li-
braries consisted of 48 single cell pools.
SCRB-seq
RNA was stabilized by resuspending cells in RNAprotect Cell Reagent (QIAGEN) and RNase inhibitors (Promega). Prior to FACS
sorting, cells were diluted in PBS (Invitrogen). Single cells were sorted into 5 ml lysis buffer consisting of a 1/500 dilution of Phusion
HF buffer (New England Biolabs) and ERCC spike-ins (Ambion), spun down and frozen at "80#C. Plates were thawed and libraries
prepared as described previously (Soumillon et al., 2014). Briefly, RNA was desiccated after protein digestion by Proteinase K (Am-
bion). RNA was reverse transcribed using barcoded oligo-dT primers (IDT) and products pooled and concentrated. Unincorporated
barcode primers were digested using Exonuclease I (New England Biolabs). Pre-amplification of cDNA pools were done with the
KAPA HiFi HotStart polymerase (KAPA Biosystems). Nextera XT libraries were constructed from 1 ng of pre-amplified cDNA with
a custom P5 primer (IDT).
Smart-seq/C1
Smart-seq/C1 libraries were prepared on the Fluidigm C1 system using the SMARTer Ultra Low RNA Kit (Clontech) according to the
manufacturer’s protocol. Cells were loaded on a 10-17 mm RNA-seq microfluidic IFC at a concentration of 200,000/ml. Capture site
occupancy was surveyed using the Operetta (Perkin Elmer) automated imaging platform.
Smart-seq2
mESCswere sorted into 96-well PCR plates containing 2 ml lysis buffer (1.9 ml 0.2%Triton X-100; 0.1 ml RNase inhibitor (Lucigen)) and
spike-in RNAs (Ambion), spun down and frozen at"80#C. To generate Smart-seq2 libraries, priming buffermix containing dNTPs and
oligo-dT primers was added to the cell lysate and denatured at 72#C. cDNA synthesis and pre-amplification of cDNA was performed
as described previously (Picelli et al., 2014b, 2013). Sequencing libraries were constructed from 2.5 ng of pre-amplified cDNA using
an in-house generated Tn5 transposase (Picelli et al., 2014a). Briefly, 5 ml cDNA was incubated with 15 ml tagmentation mix (1 ml of
Tn5; 2 ml 10x TAPS MgCl2 Tagmentation buffer; 5 ml 40% PEG8000; 7 ml water) for 8 min at 55#C. Tn5 was inactivated and released
from the DNA by the addition of 5 ml 0.2% SDS and 5 min incubation at room temperature. Sequencing library amplification was per-
formed using 5 ml Nextera XT Index primers (Illumina) that had been first diluted 1:5 in water and 15 ml PCR mix (1 ml KAPA HiFi DNA
polymerase (KAPA Biosystems); 10ml 5x KAPA HiFi buffer; 1.5 ml 10mM dNTPs; 2.5ml water) in 10 PCR cycles. Barcoded libraries
were purified and pooled at equimolar ratios.

DNA sequencing
For SCRB-seq and Drop-seq, final library pools were size-selected on 2% E-Gel Agarose EX Gels (Invitrogen) by excising a range of
300-800 bp and extracting DNA using the MinElute Kit (QIAGEN) according to the manufacturer’s protocol.

Smart-seq/C1, CEL-seq2/C1, Drop-seq and SCRB-seq library pools were sequenced on an Illumina HiSeq1500. Smart-seq2
pools were sequenced on Illumina HiSeq2500 (Replicate A) and HiSeq2000 (Replicate B) platforms. MARS-seq library pools were
sequenced on an Illumina HiSeq2500 using the Rapid mode. Smart-seq/C1 and Smart-seq2 libraries were sequenced 45 cycles sin-
gle-end, whereas CEL-seq2/C1, Drop-seq and SCRB-seq libraries were sequenced paired-end with 15-20 cycles to decode cell
barcodes andUMI from read 1 and 45 cycles into the cDNA fragment. MARS-seq libraries were paired-end sequencedwith 52 cycles
on read 1 into the cDNA and 15 bases for read 2 to obtain cell barcodes and UMIs. Similar sequencing qualities were confirmed by
FastQC v0.10.1 (Figure S1B).

QUANTIFICATION AND STATISTICAL ANALYSIS

Basic data processing and sequence alignment
Smart-seq/C1/Smart-seq2 libraries (i5 and i7) and CELseq2/C1/Drop-seq/SCRB-seq pools (i7) were demultiplexed from the Illumina
barcode reads using deML (Renaud et al., 2015). MARS-seq library pools were demultiplexed with the standard Illumina pipeline. All
reads were trimmed to the same length of 45 bp by cutadapt (Martin, 2011) (v1.8.3) and mapped to the mouse genome (mm10)
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including mitochondrial genome sequences and unassigned scaffolds concatenated with the ERCC spike-in reference. Alignments
were calculated using STAR 2.4.0 (Dobin et al., 2013) using all default parameters.
For libraries containing UMIs, cell- and gene-wise count/UMI tables were generated using the published Drop-seq pipeline (v1.0)

(Macosko et al., 2015). We discarded the last 2 bases of the Drop-seq cell and molecular barcodes to account for bead synthesis
errors. For Smart-seq/C1 and Smart-seq2, features were assigned and counted using the Rsubread package (v1.20.2) (Liao
et al., 2013).

Power Simulations
We developed a framework in R for statistical power evaluation of differential gene expression in single cells. For each method, we
estimated the mean expression, dispersion and dropout probability per gene from the same number of cells per method. In the read
count simulations, we followed the framework proposed in Polyester (Frazee et al., 2015), i.e., we retained the observed mean-vari-
ance dependency by applying a cubic smoothing spline fit to capture the heteroscedasticity observed. Furthermore, we included a
local polynomial regression fit for the mean-dropout relationship. In each iteration, we simulated count measurements for the 13,361
genes for sample sizes of 24, 25, 26, 27, 28 and 29 cells per group. The read count for a gene i in a cell j is modeled as a product of a
binomial and negative binomial distribution:

Xij ! Bðp= 1" p0Þ & NBðm; qÞ:

Themean expressionmagnitude mwas randomly drawn from the empirical distribution. 5 percent of the genes were defined as differ-
entially expressed with an effect size drawn from the observed fold changes betweenmicroglial subpopulations in Zeisel et al. (Zeisel
et al., 2015). The dispersion q and dropout probability p0 were predicted by above mentioned fits.
For each method and sample size, 100 RNA-seq experiments were simulated and tested for differential expression using limma

(Ritchie et al., 2015) in combination with voom (Law et al., 2014) (v3.26.7). The power simulation framework was implemented in
R (v3.3.0).

ERCC capture efficiency
To estimate the singlemolecule capture efficiency, we assume that the success or failure of detecting an ERCC is a binomial process,
as described before (Marinov et al., 2014). Detections are independent from each other and are thus regarded as independent Ber-
noulli trials. We recorded the number of cells with nonzero and zero read or UMI counts for each ERCC per method and applied a
maximum likelihood estimation to fit the probability of successful detection. The fit line was shaded with the 95%Wilson score con-
fidence interval.

Cost efficiency calculation
We based our cost efficiency extrapolation on the power simulations starting from empirical data at different sequencing depths
(250,000 reads, 500,000 reads, 1,000,000 reads; Figure 6C). We determined the number of cells required per method and depth
for adequate power (80%) by an asymptotic fit to the median powers. For the calculation of sequencing cost, we assumed 5V
per million raw reads, independent of method. Although UMI-based methods need paired-end sequencing, we assumed a 50 cycle
sequencing kit is sufficient for all methods. We used prices in Euro as a basis and consider an exchange course of 1:1 for the given
prices in USD.

DATA AND SOFTWARE AVAILABILITY

The accession number for the raw and analyzed scRNA-seq data reported in this paper is GEO: GSE75790.
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Supplementary Figures

Figure S1
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Figure S2
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Figure S3
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Figure S4
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Figure S5
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Figure S6
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Figure S9
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Supplementary Figure Legends

Figure S1 (related to Figure 1) | Quality control and filtering. A Drop-seq species mixing 
experiment using human and murine T-cells. For each cell-barcode human- and mouse read 

numbers are plotted. B Per-base quality scores were summarized using FastQC. Lines 
indicate median Phred quality score with upper and lower quartile shaded. C Total UMI 

content per cell, with the filter cutoff (two times mean) shown as black lines. Violin plots 
indicate the density of the UMI content distribution per replicate. D Nearest-neighbor filtering 

based on the maximum pairwise Spearman’s rho for each cell. Violin plots indicate the 
density of rho distribution per replicate. Black lines indicate the employed cutoffs.

Figure S2 (related to Figure 1) | Downsampling of scRNA-seq libraries. A Detected genes 

(>= 1 count) in relation to indicated sequencing depths. The ranges of the boxes indicate the 
upper and lower quartiles of cells and horizontal bars indicate the medians. B Boxplots of 

the number of detected genes in high-depth sequencing of Smart-seq2 libraries, showing a 
plateau above 1 million reads. C Boxplots of the number of detected UMIs per cell in relation 

to indicated sequencing depths.

Figure S3 (related to Figure 3) | Sensitivity A The overlap of detected genes (>= 1 count) 
between methods for 65 random cells is displayed as a barplot. Colors indicate the level of 

overlap: Green (detected in all methods), dark blue (detected in five methods) ,yellow 
(detected in four methods), orange (detected in three methods), light blue (detected in two 

methods), grey (method-specific detection). B Gene body coverage (left to right equalling 5’ 
to 3’) of ~3000 genes detected by Smart-seq/C1 and/or Smart-seq2 (right panel) versus a 

random control set of 3000 genes detected by all methods. C Method-specific detected 
genes are shown as scatter plots with their rate of detection and mean counts over all cells. 

D For genes and their transcript variants of at least 2 kb length, we calculated the fraction of 
reads mapping to positions relative to the 3’ end. For each method, we show mapping 

positions and a fit line per replicate. The dashed line indicates theoretical even distribution of 
reads across the 2.5 kb window. (E) Gene expression values were normalized as transcripts 

per million TPM or UMIs per million UPM. Principal component analysis was performed on 
the 1000 most variable genes to display the major variance between single cells. The 200 

genes with the highest loading for PC1 were analysed and neither showed significant 
enrichment in GO categories (GOrilla) nor in technical properties such as gene length or GC 

content.



Figure S4 (related to Figure 3) | Detection probabilities were estimated from ERCC 

dropouts, where the RNA molecule number is known. A Thick lines indicate the maximum-
likelihood estimate of the detection probability with the thin lines showing the 

95% confidence interval of the fit. B Shown are per-method maximum-likelihood estimates of 
mRNA detection probabilities. C Sensitivity per method estimated as the 50% probability to 

detect a transcript. The 95% confidence interval of estimate is displayed as error bars.

Figure S5 (related to Figure 4) | A Exemplary correlations of ERCC expression values 
(transcripts per million TPM or UMIs per million UPM) with annotated concentrations. For 

each method, we chose a representative cell/bead with a linear model correlation coefficient 
close to the median of all cells. B Detection of ERCC genes (>= 1 count) in relation to 

sampling depth. Each boxplot represents the median, upper and lower quartile of all cells 
within each method. C Accuracy of scRNA-seq methods. ERCC expression values were 

correlated to their annotated molarity. Shown are the distributions of correlation coefficients 
(adjusted R2 of linear regression model) across methods for for bins of ERCC molarity. Each 

boxplot represents the median, first and third quartile for the R2 in the indicated bin.

Figure S6 (related to Figure 5) | Gene detection sparsity. A For all detected genes (>= 1 
CPM) per method, we calculated the rate of detection. Histograms show this measure for 

detection sparsity. Filled bars represent the genes detected in at least 25% of cells of each 
method along with the number of these reproducibly detected genes. B For genes detected 

in at least 25% of cells of any method, we calculate the rate of detection in 65 random cells.

Figure S7 (related to Figure 5) | Variation in scRNA-seq data. A Gene-wise mean and 
coefficient of variation from all cells are shown as scatterplots for all methods. The black line 

indicates variance according to the poisson distribution. The two populations of genes seen 
for read-count data are unamplified genes (close to Poisson, one or very few reads per UMI) 

and amplified genes (higher CV for a given mean, several reads per UMI). B Gene-wise 
coefficient of variation (CV) of scRNA-seq data were calculated for all cells including 

detection dropouts. Violin plots are shown for UMI and read-count based quantification 
indicating the density of the distribution.

Figure S8 (related to Figure 6) | A-B Power simulation parameters estimated from 1 million 

reads per cell. A Mean expression and size parameters were estimated for each method 
and their functional relation was approximated by a smooth spline fit. B The dropout 

probability p0 was calculated per gene and shown in relation to mean expression levels. We 



fitted this relationship using a local polynomial regression. C-D Validation of power 

simulation framework. C Gene-wise Extra-Poisson Variability was calculated from empirical 
data and simulated data without addition of differentially expressed genes. Shown are the 

distributions with the black line indicating the median. D Gene-wise dropout rate distributions 
are shown from empirical data and simulated data. The black line indicates the median 

dropout rate.

Figure S9 (related to Figure 6 and Table 1) | A FDR. Simulations were performed using 
empirical mean, dispersion and dropout relationships (see Figure S8). For variable sample 

sizes of n=16, n=32, n=64, n=128, n=256 and n=512, we show points representing the mean 
FDR of 100 simulations with standard error. B | Stratified analysis of power. Shown are TPR 

for 1 million reads per cell for sample sizes n=16, n=32, n=64, n=128, n=256 and n=512 per 
group. Genes are grouped in five percentiles of mean expression with lines representing the 

median TPR of 100 simulations.

Figure S10 (related to Figure 6) | A-D Batch effects A For each method, we test for 
differential expression between random subsets of 25 cells per group (left box) and subsets 

of 25 cells of each batch (right box) in 20 permutations using limma. Shown are the number 
of significantly differentially expressed genes (FDR <0.01) as boxplots. B Sensitivity is 

shown as the number of detected genes (>= 1 count) per batch. C Accuracy is shown per 
batch as the correlation coefficient of observed expression (TPM/UPM) to annotated ERCC 

molecule numbers. D Precision is shown per batch as the Extra-Poisson Variability for the 
common 13,361 genes. For 3’ counting methods, UMI quantification is shown. The 

distribution was only shown between values of 0 and 3 to make differences more visible. D 
Cell cycle analysis. For each method, we show the coefficient of variation (CV) for a set of 

19 cell cycle genes previously found to be variable in 2i/LIF cultured mESCs (Kolodziejczyk, 
2015) (left violin) compared to 19 ribosomal and pluripotency genes. Numbers above the 

violins indicate p-values of a t-test between the two groups.  



Supplementary Tables

Table S1 (related to Figure 2): Overview of single-cell RNA-seq methods.  
* in-house produced Tn5 / commercial Tn5  

Method CEL-seq2/C1 Drop-seq MARS-seq SCRB-seq Smart-seq/C1 Smart-seq2

Single-cell 

isolation

automated in 

the C1 

system

droplets FACS FACS automated in 

the C1 

system

FACS

ERCC  
spike-ins

yes no yes yes yes yes

UMI 6 bp 8 bp 8 bp 10 bp no no

Full-length 

coverage

no no no no yes yes

1st strand 
synthesis

oligo-dT oligo-dT oligo-dT oligo-dT oligo-dT oligo-dT

2nd strand 

synthesis

RNAseH / 

DNA Pol

template 

switching

RNAseH / 

DNA Pol

template 

switching

template 

switching

template 

switching

Amplification IVT PCR IVT PCR PCR PCR

Imaging of 
cells possible

yes no no no yes no

Protocol 

usable for 

bulk

yes no yes yes yes yes

Sequencing paired-end paired-
end

paired-end paired-end single-end single-end

Library  
cost /cell

~9.5€ ~0.1€ ~1.3€ ~2€ ~25€ ~3/30*
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Abstract
Summary: Power analysis is essential to optimize the design of RNA-seq experiments and to assess and
compare the power to detect differentially expressed genes in RNA-seq data. PowsimR is a flexible tool
to simulate and evaluate differential expression from bulk and especially single-cell RNA-seq data making
it suitable for a priori and posterior power analyses. Availability: The R package and associated tutorial
are freely available at https://github.com/bvieth/powsimR.
Contact: vieth@bio.lmu.de, hellmann@bio.lmu.de
Supplementary information: Supplementary data are available at Bioinformatics. online.

1 Introduction
RNA-sequencing (RNA-seq) is an establishedmethod to quantify levels of
gene expression genome-wide (Mortazavi et al., 2008). Furthermore, the
recent development of very sensitive RNA-seq protocols, such as Smart-
seq2 and CEL-seq (Picelli et al., 2014; Hashimshony et al., 2012) allows
transcriptional profiling at single-cell resolution and droplet devices make
single cell transcriptomics high-throughput, allowing to characterize thou-
sands or even millions of single cells (Zheng et al., 2017; Macosko et al.,
2015; Klein et al., 2015).

Even though technical possibilities are vast, scarcity of sample mate-
rial and financial consideration are still limiting factors (Ziegenhain et al.,
2017), so that a rigorous assessment of experimental design remains a
necessity (Auer and Doerge, 2010; Conesa et al., 2016). The number of
replicates required to achieve the desired statistical power is mainly deter-
mined by technical noise and biological variability (Conesa et al., 2016)
and both are considerably larger if the biological replicates are single cells.
Crucially, it is common that genes are detected in only a subset of cells
and such dropout events are thought to be rooted in the stochasticity of
single-cell library preparation (Kharchenko et al., 2014). Thus dropouts in
single-cell RNA-seq are not a pure sampling problem that can be solved
by deeper sequencing (Bacher and Kendziorski, 2016). In order to model
dropout rates it is absolutely necessary to model the mean-variance relati-
onship inherent in RNA-seq data. Even though current power assessment
tools use the negative binomial or similar models that have an inherent

mean-variance relationship, they do not explicitly estimate and model
the observed relationship, but rather draw mean and variance separately
(reviewed in Poplawski and Binder, 2017).

In powsimR, we have implemented a flexible tool to assess power
and sample size requirements for differential expression (DE) analysis of
single cell and bulk RNA-seq experiments. Even though powsimR does
not evaluate clustering of cells, we believe that powsimR can provide
information also for RNA-seq experiment with unlabeled cells: The power
for cluster analysis should be proportional the power to detect differentially
expressed genes. For our read count simulations, we (1) reliably model
the mean, dispersion and dropout distributions as well as the relationship
between those factors from the data. (2) Simulate read counts from the
empirical mean-variance- and dropout relations, while offering flexible
choices of the number of differentially expressed genes, effect sizes and
DE testing method. (3) Finally, we evaluate the power over various sample
sizes.Weuse the embryonic stemcell data fromKolodziejczyk et al. (2015)
to illustrate powsimR’s utility to plan and evaluate RNA-seq experiments.

2 powsimR
2.1 Estimation of RNA-seq Characteristics
An important step in the simulation framework is the reliable representa-
tion of the characteristics of the observed data. In agreement with others
(Grün et al., 2014; Mi et al., 2015; Lun et al., 2016), we find that the read
distribution for most genes is sufficiently captured by the negative bino-
mial.Weanalyzed18 single cell datasets usinguniquemolecular identifiers
(UMIs) to control for amplification duplicates and 20 without duplicate
control. The negative binomial provides an adequate fit for 54% of the
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Fig. 1. powsimR schematic overview. A) The mean-dispersion relationship is estimated from RNA-seq data, which can be either single cell or bulk data. The user can provide their own
count tables or one of our five example data sets and choose whether to fit a negative binomial or a zero-inflated negative binomial. The plot shows the mean-dispersion estimated, assuming
a negative binomial for the Kolodziejczyk-data, the red line is the loess fit, that we later use for the simulations. B) These distribution parameters are then used to set-up the simulations.
For better comparability, the parameters for the simulation of differential expression are set separately. C) Finally, the TPR and FDR are calculated. Both can be either returned as marginal
estimates per sample configuration (top), or stratified according to the estimates of mean expression, dispersion or dropout-rate (bottom).

genes for the non-UMI-methods and 39% of the genes for UMI-methods,
while the zero-inflated negative binomial was only adequate for 2.8% of
the non-UMI-methods. In contrast, for the UMI-methods a simple Poisson
distribution fits well for some studies (Ziegenhain et al., 2017; Soumillon
et al., 2014) (Supplementary File S2). Furthermore, when comparing the
fit of the other commonly used distributions, the negative binomial was
most often the best fitting one for both non-UMI (57%) and UMI-methods
(66%), while the zero inflated negative binomial improves the fit for only
19% and 1.6% (Supplementary Figure S4). Therefore the default sampling
distribution in powsimR is the negative binomial (Figure 1), however the
user has also the option to choose the zero-inflated negative binomial.

2.2 Simulation of Read Counts and Differential Expression
Simulations in powsimRcan be based on provided data or on user-specified
parameters. We first draw the mean expression for each gene. The expe-
cted dispersion given the mean is then determined using a locally weighted
polynomial regression fit of the observedmean-dispersion relationship and
to capture the variability of the observed dispersion estimates, a local vari-
ability prediction band (σ = 1.96) is applied to the fit (Figure 1A). Note,
that using the fitted mean-dispersion spline is the feature that critically
distinguishes powsimR from other simulation tools that draw the disper-
sion estimate for a gene independently of the mean. Our explicit model
of mean and dispersion across genes allows us to reproduce the mean-
variance as well as mean-dropout relationship observed (Supplementary
Figure S2, Supplementary File S2).

To simulate DE genes, the user can specify the number of genes as
well as the fraction of DE genes as log2 fold changes (LFC). Here, we
assume that the grouping of samples is correct. For theKolodziejczyk data,
we found that a narrow gamma distribution mimicked the observed LFC
distribution well (Supplementary Figure S3). The set-up for the expression
levels and differential expression can be re-used for different simulation
instances, allowing an easier comparison of experimental designs.

Finally, the user can specify the number of samples per group aswell as
their relative sequencing depth and the number of simulations. The simu-
lated count tables are then directly used for DE analysis. In powsimR,
we have integrated 8 R-packages for DE analysis for bulk and single cell
data (limma (Ritchie et al., 2015), edgeR (Robinson et al., 2010), DESeq2
(Love et al., 2014), ROTS (Seyednasrollah et al., 2015), baySeq (Hardca-
stle, 2016), DSS (Wu et al., 2013), NOISeq (Tarazona et al., 2015), EBSeq
(Leng et al., 2013)) and five packages that were specifically developed for

single-cell RNA-seq (MAST (Finak et al., 2015), scde (Kharchenko et al.,
2014), BPSC (Vu et al., 2016), scDD (Korthauer et al., 2016), monocle
(Qiu et al., 2017)). For a review on choosing an appropriate method for
bulk data, we refer to the work of others e.g. Schurch et al. (2016). Based
on our analysis of the single-cell data from Kolodziejczyk et al. (2015),
using standard settings for each tool we found that MAST performed best
for this dataset given the same simulations as compared to results of other
DE-tools.

2.3 Evaluating Statistical Power
Finally, powsimR integrates estimated and simulated expression differe-
nces to calculate marginal and conditional error matrices. To calculate
these matrices, the user can specify nominal significance levels, methods
for multiple testing correction and gene filtering schemes. Amongst the
error matrix statistics, the power (True Positive Rate; TPR) and the False
Discovery Rate (FDR) are the most informative for questions of experi-
mental design. For easy comparison, powsimR plots power and FDR for a
list of sample size choices either conditional on the mean expression (Wu
et al., 2014) or simply as marginal values (Figure 1). For example for the
Kolodziejczyk data, 384 single cells for each condition would be sufficient
to detect> 80%of the DE genes with a well controlled FDR of 5%. Given
the lower sample sizes actually used in Kolodziejczyk et al. (2015), our
power analysis suggests that only 60% of all DE genes could be detected.

3 Conclusion
In summary, powsimR can not only estimate sample sizes necessary to
achieve a certain power, but also informs about the power to detect DE
in a data set at hand. We believe that this type of posterior analysis will
become more and more important, if results from different studies are
compared. Often enough researchers are left to wonder why there is a lack
of overlap in DE-genes when comparing similar experiments. powsimR
will allow the researcher to distinguish between actual discrepancies and
incongruities due to lack of power.
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1 Single Cell RNA-sequencing Datasets

We analyzed RNA-sequencing data of 8 published studies that utilized 9 di↵erent RNA-seq library preparation

methods (Table S1). One of the major di↵erences between the methods is the use of Unique Molecular

Identifiers (UMIs) that allow for confident removal of PCR-duplicates (Grün et al. (2014); Ziegenhain et al.

(2017)). For all datasets, we evaluated the fit of 5 di↵erent distributions, namely the Poisson, negative

binomial (NB), zero-inflated negative binomial (ZINB) and Poisson (ZIP) and Beta-Poisson (BP). For the

vast majority the NB would be the distribution of choice. This is especially true for the UMI-methods: Here

no zero-inflation is needed for modeling the gene expression distribution. On the contrary, also a simple

Poisson often provides the best fit.
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2 Distributional Fitting per Dataset
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Figure S1: Buettner et al. 2015: Embryonic stem cells G1 cell cycle stage (SmartSeq/C1). A) Goodness-of-
fit of the model assessed with a chi-square test based on residual deviance and degrees of freedom. B) Akaike
Information Criterion per gene: Model with the lowest AIC. Model with the lowest AIC and passed goodness-
of-fit statistic test. C) Observed versus predicted dropouts per model and gene plotted without outliers. D)
Model Assessment based on Likelihood Ratio Test for nested models and Vuong Test for non-nested models.
NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative binomial; BP =
Beta-Poisson.
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Figure S2: Buettner et al. 2015: Embryonic stem cells G2M cell cycle stage (SmartSeq/C1). A) Goodness-
of-fit of the model assessed with a chi-square test based on residual deviance and degrees of freedom. B)
Akaike Information Criterion per gene: Model with the lowest AIC. Model with the lowest AIC and passed
goodness-of-fit statistic test. C) Observed versus predicted dropouts per model and gene plotted without
outliers. D) Model Assessment based on Likelihood Ratio Test for nested models and Vuong Test for non-
nested models. NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative
binomial; BP = Beta-Poisson.
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Figure S3: Buettner et al. 2015: Embryonic stem cells S cell cycle stage (SmartSeq/C1). A) Goodness-of-fit
of the model assessed with a chi-square test based on residual deviance and degrees of freedom. B) Akaike
Information Criterion per gene: Model with the lowest AIC. Model with the lowest AIC and passed goodness-
of-fit statistic test. C) Observed versus predicted dropouts per model and gene plotted without outliers. D)
Model Assessment based on Likelihood Ratio Test for nested models and Vuong Test for non-nested models.
NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative binomial; BP =
Beta-Poisson.
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Figure S4: Islam et al. 2014: Embryonic stem cells (STRT-UMI). A) Goodness-of-fit of the model assessed
with a chi-square test based on residual deviance and degrees of freedom. B) Akaike Information Criterion
per gene: Model with the lowest AIC. Model with the lowest AIC and passed goodness-of-fit statistic test.
C) Observed versus predicted dropouts per model and gene plotted without outliers. D) Model Assessment
based on Likelihood Ratio Test for nested models and Vuong Test for non-nested models. NB = Negative
binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative binomial; BP = Beta-Poisson.
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Figure S5: Islam et al. 2011: Embryonic stem cells (STRT). A) Goodness-of-fit of the model assessed
with a chi-square test based on residual deviance and degrees of freedom. B) Akaike Information Criterion
per gene: Model with the lowest AIC. Model with the lowest AIC and passed goodness-of-fit statistic test.
C) Observed versus predicted dropouts per model and gene plotted without outliers. D) Model Assessment
based on Likelihood Ratio Test for nested models and Vuong Test for non-nested models. NB = Negative
binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative binomial; BP = Beta-Poisson.
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Figure S6: Islam et al. 2011: Mouse embryonic fibroblast (STRT). A) Goodness-of-fit of the model assessed
with a chi-square test based on residual deviance and degrees of freedom. B) Akaike Information Criterion
per gene: Model with the lowest AIC. Model with the lowest AIC and passed goodness-of-fit statistic test.
C) Observed versus predicted dropouts per model and gene plotted without outliers. D) Model Assessment
based on Likelihood Ratio Test for nested models and Vuong Test for non-nested models. NB = Negative
binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative binomial; BP = Beta-Poisson.
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Figure S7: Kolodziejczk et al. 2015: Embryonic stem cells alternative 2i media + LIF (SmartSeq/C1).
A) Goodness-of-fit of the model assessed with a chi-square test based on residual deviance and degrees of
freedom. B) Akaike Information Criterion per gene: Model with the lowest AIC. Model with the lowest AIC
and passed goodness-of-fit statistic test. C) Observed versus predicted dropouts per model and gene plotted
without outliers. D) Model Assessment based on Likelihood Ratio Test for nested models and Vuong Test for
non-nested models. NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative
binomial; BP = Beta-Poisson.
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Figure S8: Kolodziejczk et al. 2015: Embryonic stem cells serum + LIF (SmartSeq/C1). A) Goodness-of-fit
of the model assessed with a chi-square test based on residual deviance and degrees of freedom. B) Akaike
Information Criterion per gene: Model with the lowest AIC. Model with the lowest AIC and passed goodness-
of-fit statistic test. C) Observed versus predicted dropouts per model and gene plotted without outliers. D)
Model Assessment based on Likelihood Ratio Test for nested models and Vuong Test for non-nested models.
NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative binomial; BP =
Beta-Poisson.

10



None

ZIP

Poisson

ZINB

NB

0% 25% 50% 75% 100%
Percentage

Di
st

rib
ut

io
n

Goodness of fit statistic

Lowest
AIC

Lowest
AIC + 
GOF 

p >0.05

0% 25% 50% 75% 100%
Percentage

NB ZINB Poisson ZIP BP

Akaike Information Criterion

BP

ZIP

Poisson

ZINB

NB

−250 0 250
Observed − Predicted Zeros

Di
st

rib
ut

io
n

Dropouts

ZINB 
> ZIP

ZIP 
> Poisson

NB 
> Poisson

ZINB 
> NB

0% 25% 50% 75% 100%
Percentage

Te
st

Model Comparisons

A B

C D

Figure S9: Kolodziejczk et al. 2015: Embryonic stem cells standard 2i media + LIF (Smart-seq/C1).
A) Goodness-of-fit of the model assessed with a chi-square test based on residual deviance and degrees of
freedom. B) Akaike Information Criterion per gene: Model with the lowest AIC. Model with the lowest AIC
and passed goodness-of-fit statistic test. C) Observed versus predicted dropouts per model and gene plotted
without outliers. D) Model Assessment based on Likelihood Ratio Test for nested models and Vuong Test for
non-nested models. NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative
binomial; BP = Beta-Poisson.
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Figure S10: Pollen et al. 2014: Primary epidermal keratinocytes (SmartSeq/C1). A) Goodness-of-fit
of the model assessed with a chi-square test based on residual deviance and degrees of freedom. B) Akaike
Information Criterion per gene: Model with the lowest AIC. Model with the lowest AIC and passed goodness-
of-fit statistic test. C) Observed versus predicted dropouts per model and gene plotted without outliers. D)
Model Assessment based on Likelihood Ratio Test for nested models and Vuong Test for non-nested models.
NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative binomial; BP =
Beta-Poisson.
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Figure S11: Pollen et al 2014: Induced pluripotent stem cells (SmartSeq/C1). A) Goodness-of-fit of
the model assessed with a chi-square test based on residual deviance and degrees of freedom. B) Akaike
Information Criterion per gene: Model with the lowest AIC. Model with the lowest AIC and passed goodness-
of-fit statistic test. C) Observed versus predicted dropouts per model and gene plotted without outliers. D)
Model Assessment based on Likelihood Ratio Test for nested models and Vuong Test for non-nested models.
NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative binomial; BP =
Beta-Poisson.
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Figure S12: Pollen et al. 2014: Cultured primary human neurons (SmartSeq/C1). A) Goodness-of-fit
of the model assessed with a chi-square test based on residual deviance and degrees of freedom. B) Akaike
Information Criterion per gene: Model with the lowest AIC. Model with the lowest AIC and passed goodness-
of-fit statistic test. C) Observed versus predicted dropouts per model and gene plotted without outliers. D)
Model Assessment based on Likelihood Ratio Test for nested models and Vuong Test for non-nested models.
NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative binomial; BP =
Beta-Poisson.
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Figure S13: Pollen et al. 2014: HCC1954 breast cancer cells (SmartSeq/C1). A) Goodness-of-fit of
the model assessed with a chi-square test based on residual deviance and degrees of freedom. B) Akaike
Information Criterion per gene: Model with the lowest AIC. Model with the lowest AIC and passed goodness-
of-fit statistic test. C) Observed versus predicted dropouts per model and gene plotted without outliers. D)
Model Assessment based on Likelihood Ratio Test for nested models and Vuong Test for non-nested models.
NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative binomial; BP =
Beta-Poisson.
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Figure S14: Pollen et al. 2014: HCC1954 B lymphoblastoid cells (SmartSeq/C1). A) Goodness-of-fit
of the model assessed with a chi-square test based on residual deviance and degrees of freedom. B) Akaike
Information Criterion per gene: Model with the lowest AIC. Model with the lowest AIC and passed goodness-
of-fit statistic test. C) Observed versus predicted dropouts per model and gene plotted without outliers. D)
Model Assessment based on Likelihood Ratio Test for nested models and Vuong Test for non-nested models.
NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative binomial; BP =
Beta-Poisson.
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Figure S15: Pollen et al. 2014: HL-60 human promyelocytic leukemia cells (SmartSeq/C1). A) Goodness-
of-fit of the model assessed with a chi-square test based on residual deviance and degrees of freedom. B)
Akaike Information Criterion per gene: Model with the lowest AIC. Model with the lowest AIC and passed
goodness-of-fit statistic test. C) Observed versus predicted dropouts per model and gene plotted without
outliers. D) Model Assessment based on Likelihood Ratio Test for nested models and Vuong Test for non-
nested models. NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative
binomial; BP = Beta-Poisson.
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Figure S16: Pollen et al. 2014: K-562 myelogenous leukemia cells (SmartSeq/C1). A) Goodness-of-fit
of the model assessed with a chi-square test based on residual deviance and degrees of freedom. B) Akaike
Information Criterion per gene: Model with the lowest AIC. Model with the lowest AIC and passed goodness-
of-fit statistic test. C) Observed versus predicted dropouts per model and gene plotted without outliers. D)
Model Assessment based on Likelihood Ratio Test for nested models and Vuong Test for non-nested models.
NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative binomial; BP =
Beta-Poisson.
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Figure S17: Pollen et al. 2014: Neural progenitor cells obtained by di↵erentiation of iPS line (Smart-
Seq/C1). A) Goodness-of-fit of the model assessed with a chi-square test based on residual deviance and
degrees of freedom. B) Akaike Information Criterion per gene: Model with the lowest AIC. Model with
the lowest AIC and passed goodness-of-fit statistic test. C) Observed versus predicted dropouts per model
and gene plotted without outliers. D) Model Assessment based on Likelihood Ratio Test for nested models
and Vuong Test for non-nested models. NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB =
Zero-inflated negative binomial; BP = Beta-Poisson.
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Figure S18: Pollen et al. 2014: Primary human neurons (SmartSeq/C1). A) Goodness-of-fit of the model
assessed with a chi-square test based on residual deviance and degrees of freedom. B) Akaike Information
Criterion per gene: Model with the lowest AIC. Model with the lowest AIC and passed goodness-of-fit
statistic test. C) Observed versus predicted dropouts per model and gene plotted without outliers. D) Model
Assessment based on Likelihood Ratio Test for nested models and Vuong Test for non-nested models. NB =
Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative binomial; BP = Beta-Poisson.
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Figure S19: Pollen et al. 2014: BJ Human Fibroblasts early passage, p6 (Smart-seq/C1). A) Goodness-of-
fit of the model assessed with a chi-square test based on residual deviance and degrees of freedom. B) Akaike
Information Criterion per gene: Model with the lowest AIC. Model with the lowest AIC and passed goodness-
of-fit statistic test. C) Observed versus predicted dropouts per model and gene plotted without outliers. D)
Model Assessment based on Likelihood Ratio Test for nested models and Vuong Test for non-nested models.
NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative binomial; BP =
Beta-Poisson.
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Figure S20: Soumillon et al. 2014: adipose-derived stem cells 1 day post-di↵erentiation (SCRB-seq).
A) Goodness-of-fit of the model assessed with a chi-square test based on residual deviance and degrees of
freedom. B) Akaike Information Criterion per gene: Model with the lowest AIC. Model with the lowest AIC
and passed goodness-of-fit statistic test. C) Observed versus predicted dropouts per model and gene plotted
without outliers. D) Model Assessment based on Likelihood Ratio Test for nested models and Vuong Test for
non-nested models. NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative
binomial; BP = Beta-Poisson.
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Figure S21: Soumillon et al. 2014: adipose-derived stem cells 2 days post-di↵erentiation (SCRB-seq).
A) Goodness-of-fit of the model assessed with a chi-square test based on residual deviance and degrees of
freedom. B) Akaike Information Criterion per gene: Model with the lowest AIC. Model with the lowest AIC
and passed goodness-of-fit statistic test. C) Observed versus predicted dropouts per model and gene plotted
without outliers. D) Model Assessment based on Likelihood Ratio Test for nested models and Vuong Test for
non-nested models. NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative
binomial; BP = Beta-Poisson.
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Figure S22: Soumillon et al. 2014: adipose-derived stem cells 3 days post-di↵erentiation (SCRB-seq).
A) Goodness-of-fit of the model assessed with a chi-square test based on residual deviance and degrees of
freedom. B) Akaike Information Criterion per gene: Model with the lowest AIC. Model with the lowest AIC
and passed goodness-of-fit statistic test. C) Observed versus predicted dropouts per model and gene plotted
without outliers. D) Model Assessment based on Likelihood Ratio Test for nested models and Vuong Test for
non-nested models. NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative
binomial; BP = Beta-Poisson.
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Figure S23: Zheng et al. 2017: Peripheral Blood Mononuclear Cells CD19+ B Cells (10XGenomics).
A) Goodness-of-fit of the model assessed with a chi-square test based on residual deviance and degrees of
freedom. B) Akaike Information Criterion per gene: Model with the lowest AIC. Model with the lowest AIC
and passed goodness-of-fit statistic test. C) Observed versus predicted dropouts per model and gene plotted
without outliers. D) Model Assessment based on Likelihood Ratio Test for nested models and Vuong Test for
non-nested models. NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative
binomial; BP = Beta-Poisson.
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Figure S24: Zheng et al. 2017: Peripheral Blood Mononuclear Cells CD14+ Monocytes (10XGenomics).
A) Goodness-of-fit of the model assessed with a chi-square test based on residual deviance and degrees of
freedom. B) Akaike Information Criterion per gene: Model with the lowest AIC. Model with the lowest AIC
and passed goodness-of-fit statistic test. C) Observed versus predicted dropouts per model and gene plotted
without outliers. D) Model Assessment based on Likelihood Ratio Test for nested models and Vuong Test for
non-nested models. NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative
binomial; BP = Beta-Poisson.
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Figure S25: Zheng et al. 2017: Peripheral Blood Mononuclear Cells CD34+ Cells (10XGenomics). A)
Goodness-of-fit of the model assessed with a chi-square test based on residual deviance and degrees of freedom.
B) Akaike Information Criterion per gene: Model with the lowest AIC. Model with the lowest AIC and
passed goodness-of-fit statistic test. C) Observed versus predicted dropouts per model and gene plotted
without outliers. D) Model Assessment based on Likelihood Ratio Test for nested models and Vuong Test for
non-nested models. NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative
binomial; BP = Beta-Poisson.
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Figure S26: Zheng et al. 2017: Peripheral Blood Mononuclear Cells CD4+ T Helper Cells (10XGenomics).
A) Goodness-of-fit of the model assessed with a chi-square test based on residual deviance and degrees of
freedom. B) Akaike Information Criterion per gene: Model with the lowest AIC. Model with the lowest AIC
and passed goodness-of-fit statistic test. C) Observed versus predicted dropouts per model and gene plotted
without outliers. D) Model Assessment based on Likelihood Ratio Test for nested models and Vuong Test for
non-nested models. NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative
binomial; BP = Beta-Poisson.
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Figure S27: Zheng et al. 2017: Peripheral Blood Mononuclear Cells CD56+ NK Cells (10XGenomics).
A) Goodness-of-fit of the model assessed with a chi-square test based on residual deviance and degrees of
freedom. B) Akaike Information Criterion per gene: Model with the lowest AIC. Model with the lowest AIC
and passed goodness-of-fit statistic test. C) Observed versus predicted dropouts per model and gene plotted
without outliers. D) Model Assessment based on Likelihood Ratio Test for nested models and Vuong Test for
non-nested models. NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative
binomial; BP = Beta-Poisson.
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Figure S28: Zheng et al. 2017: Peripheral Blood Mononuclear Cells CD8+ Cytotoxic T Cells (10XGe-
nomics). A) Goodness-of-fit of the model assessed with a chi-square test based on residual deviance and
degrees of freedom. B) Akaike Information Criterion per gene: Model with the lowest AIC. Model with
the lowest AIC and passed goodness-of-fit statistic test. C) Observed versus predicted dropouts per model
and gene plotted without outliers. D) Model Assessment based on Likelihood Ratio Test for nested models
and Vuong Test for non-nested models. NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB =
Zero-inflated negative binomial; BP = Beta-Poisson.
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Figure S29: Zheng et al. 2017: Peripheral Blood Mononuclear Cells CD4+/CD45RO+ Memory T Cells
(10XGenomics). A) Goodness-of-fit of the model assessed with a chi-square test based on residual deviance
and degrees of freedom. B) Akaike Information Criterion per gene: Model with the lowest AIC. Model with
the lowest AIC and passed goodness-of-fit statistic test. C) Observed versus predicted dropouts per model
and gene plotted without outliers. D) Model Assessment based on Likelihood Ratio Test for nested models
and Vuong Test for non-nested models. NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB =
Zero-inflated negative binomial; BP = Beta-Poisson.
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Figure S30: Zheng et al. 2017: Peripheral Blood Mononuclear Cells CD8+/CD45RA+ Naive Cytotoxic
T Cells (10XGenomics). A) Goodness-of-fit of the model assessed with a chi-square test based on residual
deviance and degrees of freedom. B) Akaike Information Criterion per gene: Model with the lowest AIC.
Model with the lowest AIC and passed goodness-of-fit statistic test. C) Observed versus predicted dropouts
per model and gene plotted without outliers. D) Model Assessment based on Likelihood Ratio Test for nested
models and Vuong Test for non-nested models. NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB
= Zero-inflated negative binomial; BP = Beta-Poisson.
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Figure S31: Zheng et al. 2017: Peripheral Blood Mononuclear Cells CD4+/CD45RA+/CD25- Naive T
Cells (10XGenomics). A) Goodness-of-fit of the model assessed with a chi-square test based on residual
deviance and degrees of freedom. B) Akaike Information Criterion per gene: Model with the lowest AIC.
Model with the lowest AIC and passed goodness-of-fit statistic test. C) Observed versus predicted dropouts
per model and gene plotted without outliers. D) Model Assessment based on Likelihood Ratio Test for nested
models and Vuong Test for non-nested models. NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB
= Zero-inflated negative binomial; BP = Beta-Poisson.
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Figure S32: Zheng et al. 2017: Peripheral Blood Mononuclear Cells CD4+/CD25+ Regulatory T Cells
(10XGenomics). A) Goodness-of-fit of the model assessed with a chi-square test based on residual deviance
and degrees of freedom. B) Akaike Information Criterion per gene: Model with the lowest AIC. Model with
the lowest AIC and passed goodness-of-fit statistic test. C) Observed versus predicted dropouts per model
and gene plotted without outliers. D) Model Assessment based on Likelihood Ratio Test for nested models
and Vuong Test for non-nested models. NB = Negative binomial; ZIP = Zero-inflated Poisson; ZINB =
Zero-inflated negative binomial; BP = Beta-Poisson.

34



None

ZIP

Poisson

ZINB

NB

0% 25% 50% 75% 100%
Percentage

Di
st

rib
ut

io
n

Goodness of fit statistic

Lowest
AIC

Lowest
AIC + 
GOF 

p >0.05

0% 25% 50% 75% 100%
Percentage

NB ZINB Poisson ZIP BP

Akaike Information Criterion

BP

ZIP

Poisson

ZINB

NB

0 20 40
Observed − Predicted Zeros

Di
st

rib
ut

io
n

Dropouts

ZINB 
> ZIP

ZIP 
> Poisson

NB 
> Poisson

ZINB 
> NB

0% 25% 50% 75% 100%
Percentage

Te
st

Model Comparisons

A B

C D

Figure S33: Ziegenhain et al. 2017: Embryonic stem cells (CEL-seq2). A) Goodness-of-fit of the model
assessed with a chi-square test based on residual deviance and degrees of freedom. B) Akaike Information
Criterion per gene: Model with the lowest AIC. Model with the lowest AIC and passed goodness-of-fit
statistic test. C) Observed versus predicted dropouts per model and gene plotted without outliers. D) Model
Assessment based on Likelihood Ratio Test for nested models and Vuong Test for non-nested models. NB =
Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative binomial; BP = Beta-Poisson.
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Figure S34: Ziegenhain et al. 2017: Embryonic stem cells (Drop-seq). A) Goodness-of-fit of the model
assessed with a chi-square test based on residual deviance and degrees of freedom. B) Akaike Information
Criterion per gene: Model with the lowest AIC. Model with the lowest AIC and passed goodness-of-fit
statistic test. C) Observed versus predicted dropouts per model and gene plotted without outliers. D) Model
Assessment based on Likelihood Ratio Test for nested models and Vuong Test for non-nested models. NB =
Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative binomial; BP = Beta-Poisson.
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Figure S35: Ziegenhain et al. 2017: Embryonic stem cells (MARS-seq). A) Goodness-of-fit of the model
assessed with a chi-square test based on residual deviance and degrees of freedom. B) Akaike Information
Criterion per gene: Model with the lowest AIC. Model with the lowest AIC and passed goodness-of-fit
statistic test. C) Observed versus predicted dropouts per model and gene plotted without outliers. D) Model
Assessment based on Likelihood Ratio Test for nested models and Vuong Test for non-nested models. NB =
Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative binomial; BP = Beta-Poisson.
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Figure S36: Ziegenhain et al. 2017: Embryonic stem cells (SCRB-seq). A) Goodness-of-fit of the model
assessed with a chi-square test based on residual deviance and degrees of freedom. B) Akaike Information
Criterion per gene: Model with the lowest AIC. Model with the lowest AIC and passed goodness-of-fit
statistic test. C) Observed versus predicted dropouts per model and gene plotted without outliers. D) Model
Assessment based on Likelihood Ratio Test for nested models and Vuong Test for non-nested models. NB =
Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative binomial; BP = Beta-Poisson.
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Figure S37: Ziegenhain et al. 2017: Embryonic stem cells (Smart-seq/C1). A) Goodness-of-fit of the model
assessed with a chi-square test based on residual deviance and degrees of freedom. B) Akaike Information
Criterion per gene: Model with the lowest AIC. Model with the lowest AIC and passed goodness-of-fit
statistic test. C) Observed versus predicted dropouts per model and gene plotted without outliers. D) Model
Assessment based on Likelihood Ratio Test for nested models and Vuong Test for non-nested models. NB =
Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative binomial; BP = Beta-Poisson.

39



None

ZIP

Poisson

ZINB

NB

0% 25% 50% 75% 100%
Percentage

Di
st

rib
ut

io
n

Goodness of fit statistic

Lowest
AIC

Lowest
AIC + 
GOF 

p >0.05

0% 25% 50% 75% 100%
Percentage

NB ZINB Poisson ZIP BP

Akaike Information Criterion

BP

ZIP

Poisson

ZINB

NB

0 50 100
Observed − Predicted Zeros

Di
st

rib
ut

io
n

Dropouts

ZINB 
> ZIP

ZIP 
> Poisson

NB 
> Poisson

ZINB 
> NB

0% 25% 50% 75% 100%
Percentage

Te
st

Model Comparisons

A B

C D

Figure S38: Ziegenhain et al. 2017: Embryonic stem cells (Smart-seq2). A) Goodness-of-fit of the model
assessed with a chi-square test based on residual deviance and degrees of freedom. B) Akaike Information
Criterion per gene: Model with the lowest AIC. Model with the lowest AIC and passed goodness-of-fit
statistic test. C) Observed versus predicted dropouts per model and gene plotted without outliers. D) Model
Assessment based on Likelihood Ratio Test for nested models and Vuong Test for non-nested models. NB =
Negative binomial; ZIP = Zero-inflated Poisson; ZINB = Zero-inflated negative binomial; BP = Beta-Poisson.
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Abstract

Single cell RNA-seq (scRNA-seq) experiments typically analyze hundreds or thousands of cells after ampli�cation of the
cDNA. The high throughput is made possible by the early introduction of sample-speci�c barcodes (BCs) and the
ampli�cation bias is alleviated by unique molecular identi�ers (UMIs). Thus the ideal analysis pipeline for scRNA-seq data
needs to e�ciently tabulate reads according to both BC and UMI. zUMIs is such a pipeline, it can handle both known and
random BCs and also e�ciently collapses UMIs, either just for exon mapping reads or for both exon and intron mapping
reads. Another unique feature of zUMIs is the adaptive downsampling function, that facilitates dealing with hugely varying
library sizes, but also allows to evaluate whether the library has been sequenced to saturation. zUMIs �exibility allows to
accommodate data generated with any of the major scRNA-seq protocols that use BCs and UMIs. To illustrate the utility of
zUMIs, we analysed a single-nucleus RNA-seq dataset and show that more than 35% of all reads map to introns. We
furthermore show that these intronic reads are informative about expression levels, signi�cantly increasing the number of
detected genes and improving the cluster resolution.
Availability: https://github.com/sdparekh/zUMIs

Key words: single-cell RNA sequencing, Digital gene expression, Unique Molecular Identi�ers, Pipeline

Introduction

The recent development of increasingly sensitive protocols al-
lows to generate RNA-seq libraries of single cells [1]. The
throughput of such single-cell RNA-sequencing (scRNA-seq)
protocols is rapidly increasing, enabling the pro�ling of tens
of thousands of cells [2, 3] and opening exciting possibilities
to analyse cellular identities [4, 5]. As the required ampli�-
cation from such low starting amounts introduces substantial
amounts of noise [6], many scRNA-seq protocols incorporate
unique molecular identi�ers (UMIs) to label individual cDNA
molecules with a random nucleotide sequence before ampli�-
cation [7]. This enables the computational removal of ampli-
�cation noise and thus increases the power to detect expres-

sion di�erences between cells [8, 9]. To increase the through-
put, many protocols also incorporate sample-speci�c barcodes
(BCs) to label all cDNA molecules of a single cell with a nu-
cleotide sequence before library generation [10, 2]. This allows
for early pooling, which further decreases ampli�cation noise
[6]. Additionally, for cell types such as neurons it has been
proven to be more feasible to isolate RNA from single nuclei
rather than whole cells [11, 12]. This decreases mRNA amounts
further, so that it has been suggested to count intron-mapping
reads originating from nascent RNAs as part of single cell ex-
pression pro�les [11]. However, the few bioinformatic tools
that process RNA-seq data with UMIs and BCs have limita-
tions. For example the Drop-seq pipeline is not open source
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Key Points

• zUMIs processes UMI-based RNA-seq data from raw reads to count tables in one command.
• Unique features of zUMIs:
– Automatic cell barcode selection
– Adaptive downsampling
– Counting of intron-mapping reads for gene expression quanti�cation

• zUMIs is compatible with all major UMI based RNA-seq library protocols.

[10]. While Cell Ranger is open, it is exceedingly di�cult to
adapt the code to new or unknown sample barcodes and other
library types. Other tools are speci�cally designed to work with
one mapping algorithm and focus mainly on transcriptomes
[13, 14]. Furthermore, to our knowledge, no UMI-RNA-seq
pipeline provides the utility to also consider intron mapping
reads [2, 15, 14, 13, 16]. Here, we present zUMIs, a fast and
�exible pipeline that overcomes these limitations.

Findings

zUMIs is a pipeline that processes paired fastq �les contain-
ing the UMI and BC reads and the cDNA sequence. Read pairs
are �ltered to remove reads with bad BCs or UMIs based on se-
quence quality and the remaining reads are then mapped to the
genome (Figure 1). To allow the quanti�cation of intronic reads
that are generated from unspliced mRNAs, especially when us-
ing nuclei as input material, zUMIs generates separate UMI and
read count tables for exons, introns and exon+introns. An-
other unique feature of zUMIs is that it allows for downsam-
pling of reads before collapsing UMIs, uniquely enabling the
user to assess whether a library was sequenced to saturation or
whether deeper sequencing is necessary to depict the full mRNA
complexity. Furthermore, zUMIs is �exible with respect to the
length and sequences of the BC and UMIs, supporting protocols
that have both sequences in one read [17, 18, 10, 14, 3, 2, 12]
or split across several reads, as is the case in the InDrops v3
[19, 20] and STRT-2i [21] methods. Thus, zUMIs is compatible
with all major UMI-based scRNA-seq protocols. Finally, zUMIs
can be easily installed as an application on any unix machine
or be conveniently deployed for cloud computing at Amazon’s
elastic compute service with a provided machine image.

Implementation and Operation

Pre-processing, Mapping and Counting
The input for zUMIs is a group of paired fastq �les, where one
�le contains the cDNA sequence and the other �le(s) the read(s)
containing the BC and UMI. The exact location and length of
UMI and BC are speci�ed by the user, thus zUMIs can process
sequences obtained from any scRNA-seq with UMIs. The �rst
step in our pipeline is to �lter reads that have low quality BCs
according to a user-de�ned threshold, this should eliminate
the bulk of spurious BCs. A similar sequence quality based cut-
o� can be applied to the UMI. Others have suggested to use
edit distances and frequencies of the UMIs to collapse spuri-
ous counts due to errors [16]. However, in the data that we
analyzed, quality �ltering of UMIs had no signi�cant impact
on the power to detect di�erentially expressed genes (Figure
2), implying that the computationally expensive distance �lter
will be mostly unnecessary.
The remaining reads are then mapped to the genome us-

ing the splice-aware aligner STAR [22]. The user is free to cus-
tomize mapping by using the options of STAR. Furthermore, if

the user wishes to use a di�erent mapper, it is also possible
to provide zUMIs with an aligned bam-�le instead of the fastq-
�le with the cDNA sequence, with the sole requirement that
only one mapping position per read is reported in the bam-�le.
Next, reads are assigned to genes and to exons or introns based
on the provided gtf �le, while ensuring introns are not overlap-
ping with any exon. Rsubread featureCounts [23] is used to �rst
assign reads to exons and afterwards to check whether the re-
maining reads fall into introns. The output is then read into R
using data.table [24] count tables for UMIs and reads per gene
per BC are generated. Only identical UMI sequences that were
mapped either to the exon or intron of the same gene are col-
lapsed. Note that only the processing of intron and exon reads
together allows to properly collapse UMIs that can be sampled
from the intronic as well as from the exonic part of the same
nascent mRNA molecule.

Cell Barcode Selection
In order to be compatible with well-based and droplet-based
scRNA-seq methods, zUMIs needs to be able to deal with known
as well as random BCs. As default behavior, zUMIs infers which
barcodes mark good cells from the data (Figure 3 A,B). To this
end, we �t a k-dimensional multivariate normal distribution
[25, 26] for the number of reads/BC, and reason that only the
kth normal distribution with the largest mean contains bar-
codes that identify reads originating from intact cells. We ex-
clude all barcodes that fall in the lower 1% tail of this distribu-
tion. The HEK dataset used in this paper contains 96 cells with
known barcodes and zUMIs identi�es 99 barcodes as intact, in-
cluding all the 96 known barcodes. Also for the single-nucleus
RNA-seq from Habib et al.[12] zUMIs identi�ed a reasonable
number of cells: Habib et al. report 10,877 nuclei and zUMIs
identi�ed 11,013 intact nuclei. However, if the number of bar-
codes or barcode sequences are known, it is preferable to use
this information. In the case that zUMIs is either given the
number of BCs or is provided with a list of BC sequences, it will
use this information and forgo automatic inference.

Downsampling
scRNA-seq library sizes can vary by orders ofmagnitude, which
complicates normalization [27, 28]. A straight-forward solu-
tion for this issue is to downsample over-represented libraries
[29]. zUMIs has an inbuilt function for downsampling datasets
to a user-speci�ed number of reads or a range of reads. By
default, zUMIs downsamples all selected barcodes to be within
three absolute deviations from the median number of reads per
barcode (Figure 3 C). Alternatively, the user can provide a tar-
get sequencing depth and zUMIs will downsample to the spec-
i�ed read number or omit the sample from the downsampled
count table. Furthermore, zUMIs also allows to specify multi-
ple target read number at once for downsampling. This fea-
ture is helpful, if the user wishes to determine whether the
RNA-seq library was sequenced to saturation or whether fur-
ther sequencing would increaset the number of detected genes
or UMIs enough to justify the extra cost. In our HEK-cell exam-
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ple dataset the number of detected genes starts leveling of at
one million reads, sequencing double that amount would only
increase the number of detected genes from 9,000 to 10,600,
when counting exon reads (Figure 3D). The saturation curve of
exon+intron reads runs parallel to the one for exon reads, both
indicating that a sequencing depth of one million reads per cell
is su�cient for these libraries.

Output and Statistics

zUMIs outputs three UMI and three read count tables: gene-
wise counts for traditional exon mapping, one for intron and
one for exon+intron counts. If a user chooses the downsam-
pling option, 6 additional count-tables per target read count
are provided. To evaluate library quality zUMIs summarizes
the mapping statistics of the reads. While exon and intron
mapping reads likely represent mRNA quantities, a high frac-
tion of intergenic and unmapped reads indicates low-quality
libraries. Another measure of RNA-seq library quality is the
complexity of the library, for which the number of detected
genes and the number of identi�ed UMIs are good measures
(Figure 1). We processed 227 million reads with zUMIs and
quanti�ed expression levels for exon and intron counts on a
unix machine using up to 16 threads, which took barely 3 hours.
Increasing the number of reads increases the processing time
approximately linearly, where �ltering, mapping and count-
ing each take up roughly one third of the total time (Figure
3 E). We also observe that the peak RAM usage for process-
ing datasets of 227, 500 and 1000 million pairs was 42 Gb,
89 Gb and 172 Gb, respectively. Finally, zUMIs could process
the largest scRNA-seq dataset reported to date with around
1.3 million brain cells and 25 billion read pairs generated with
10xGenomics Chromium https://support.10xgenomics.com/
single-cell-gene-expression/datasets/1.3.0/1M_neurons on a
22-core Intel Xeon E5-2699 processor in only 7 days.

Intron Counting

Assuming that intron mapping reads originate from nascent
mRNAs, zUMIs also counts and collapses intron mapping reads
with other reads mapping to the same gene with the same UMI.
To assess the information gain from intronic reads to estimate
gene expression levels, we analysed a publicly available DroNc-
seq mouse brain dataset ([12], https://portals.broadinstitute.
org/single_cell). For the ⇠ 11, 000 single nuclei of this dataset,
the fraction of intron mapping reads of all reads goes upto
61%. Thus, if intronic reads are considered, the mean num-
ber of detected genes per cell increases signi�cantly from 1041
for exon reads to 1995 for exon+intron reads (Welch two sam-
ple t-test: p-value < 2.2e-16). To assess the impact of intronic
reads on the inference of di�erential expression, we performed
power simulations using empirical mean and dispersion dis-
tributions from this dataset [9]. The simulations assumed a
balanced two-group comparison of variable sample sizes with
10% of the genes di�erentially expressed between groups. We
observed a 0.5% decrease of the marginal false discovery rate
(FDR) for exon+intron relative to exon counts for group sam-
ple sizes of < 250 cells, while the power to detect di�eren-
tially expressed genes was similar for exon and exon+intron
counts. Next, we investigated whether exon+intron count-
ing improves the identi�cation of cell types, as suggested in
[11]. Following the Seurat pipeline [30], we clustered the cells
of the DroNc-seq dataset based on the exon as well as our
exon+intron counts. The KNN-clustering reported 24 distinct
clusters for the exon+intron counts, while we could only dis-
criminate 15 clusters using exon counts (Figure 4). This analy-
sis shows, that the additional genes that were detected by also
counting intron-mapping reads are not spurious, but carry bi-
ological meaning.

Conclusion

zUMIs is a fast and �exible pipeline processing raw reads to ob-
tain count tables for RNA-seq data using UMIs. To our knowl-
edge it is the only open source pipeline that has a barcode and
UMI quality �lter, allows intron counting and has an integrated
downsampling functionality. These features ensure that zUMIs
is applicable to most experimental designs of RNA-seq data,
including single nucleus sequencing techniques, droplet-based
methods where the BC is unknown, as well as plate-based UMI-
methods with known BCs. Finally, zUMIs is computationally
e�cient, user-friendly and easy to install.

Availability of Source Code and Requirements

• Project name: zUMIs
• Project home page: https://github.com/sdparekh/zUMIs
• Operating system(s): UNIX
• Programming language: shell, R, perl
• Other requirements: STAR >= 2.5.3a, R >= 3.4, pigz >= 2.3
& samtools >= 1.1

• License: GNU GPLv3.0

Availability of supporting data and materials

All data that were generated for this project were submitted to
GEO under accession GSE99822.
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Figure 1. Schematic of the zUMIs pipeline. Each of the grey panels from left to right depicts a step of the zUMIs pipeline. First, fastq �les are �ltered according to
user-de�ned barcode (BC) and unique molecular identi�er (UMI) quality thresholds. Next, the remaining cDNA reads are mapped to the reference genome using
STAR. Gene-wise read and UMI count tables are generated for exon, intron and exon+intron overlapping reads. To obtain comparable library sizes, reads can be
downsampled to a desired range during the counting step. In addition, zUMIs also generates data and plots for several quality measures, such as the number of
detected genes/UMIs per barcode and distribution of reads into mapping feature categories.

False Discovery Rate True Positive Rate
0.025 0.050 0.075 0.100 0.5 0.6 0.7 0.8 0.9
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48 vs 48

90 vs 90

24 vs 24
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90 vs 90

no filter 1 < 17 UMI−tools
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Figure 2. Impact of UMI quality �ltering on Di�erential Gene Expression. We estimated the mean expression and dispersion of genes across the cells from our
HEK dataset without any UMI quality �lters (red); reads where the UMI has at least one base with a quality score < 17 (blue) and using the directional-adjacency
method implemented in UMI-tools[16] (yellow), that collapses UMIs based on their distance in a sequence graph also considering the frequency. The resulting
count matrices were then used for power simulations using powsimR [9] with balanced sample sizes of n in each group. We performed 50 simulations with 9000
genes where 10% of the genes are di�erentially expressed with log2 fold changes drawn from a normal distribution N(µ = 0,� = 1.5). We report here A) false
discovery rate (FDR) and B) true positive rate (TPR) to detect di�erential expression for each �ltering criterion.
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Figure 3. Utilities of zUMIs. Each of the panels shows the utilities of zUMIs pipeline. The plots from A-D are the results from the example HEK dataset used in the
paper. A) The plot shows a density distribution of reads per barcode. Cell barcodes with reads above the blue line are selected. B) The plot shows the cumulative
read distribution in the example HEK dataset where the barcodes in light blue are the selected cells. C) The barplot shows the number of reads per selected cell
barcode with the red lines showing upper and lower MAD (Median Absolute Deviations) cuto�s for adaptive downsampling. Here, the cells below the lower MAD
have very low coverage and are discarded in downsampled count tables. D) Cells were downsampled to six depths from 100,000 to 3,000,000 reads. For each
sequencing depth the genes detected per cell is shown. E) Runtime for three datasets with 227, 500 and 1000 million read-pairs. The runtime is divided in the
main steps of the zUMIs pipeline: Filtering, Mapping, Counting and Summarizing. Each dataset was processed using 16 threads ("-p 16").
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1 Characterization of zUMIs

To demonstrate the utility of zUMIs, we processed data generated from 96 HEK cells using the SCRB-seq

protocol [2, 3].

227 million read-pairs of sequencing data were processed on a linux workstation running at light load using

up to 16 threads. The processing was complete after 173 minutes (Figure S1). We observe that runtime for

zUMIs scales linearly, as does RAM usage. The peak RAM usage for processing datasets of 227, 500 and

1000 million pairs was 42 Gb, 89 Gb and 172 Gb, respectively.

0

5

10

15

200 400 600 800 1000
million read−pairs

ru
nt

im
e 

(h
ou

rs
) Counting

Filtering

Mapping

Summarizing

total

Figure S1: zUMIs runtime for three datasets with 227, 500 and 1000 million read-pairs. The
runtime is divided in the main steps of the zUMIs pipeline: Filtering, Mapping, Counting and Summarizing.
Each dataset was processed using up to 16 threads (”-p 16”).
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2 zUMIs example dataset

At the end of each run, zUMIs optionally generates statistical output and plots. Shown here are the generated

plots for the exemplary HEK cell dataset (Figure S2 and S3).
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Figure S2: Reads per barcode. Bars show the number of reads assigned to each sample barcode.
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3 Downsampling

zUMIs has inbuilt functionality for downsampling datasets to a user-specified number of reads. When the

option ”-d” is set, zUMIs will attempt to downsample all sample barcodes to the specified number. In case

the requested read number is not available for some of the barcodes, only those barcodes will be reported that

fulfilled the requirement. In any case, the full data will be output alongside the downsampled data. This basic

downsampling is useful to make the often hugely varying library sizes for single cell data more comparable

[1]. Another application of the downsampling function is to evaluate whether the current sequencing depth

was su�cient to reach saturation of gene and UMI detection. To illustrate the downsampling functionality,

we sample several fixed read depths for our exemplary HEK dataset and display the number of detected

genes at given depth per cell (Figure S4).
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are su�cient.
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Abstract

With the growing appreciation for the role of regulatory differences in evolution, re-

searchers need a quantitative measure of expression level differences between species.

However, differences in the reference genomes, due to assembly and annotation quality

or simply their inherent mappability can bias the inference of expression changes. Fur-

thermore, for non-model organisms there is often no reference genome available at all.

Here, we explore the possibility to map diverged RNA-seq reads to the one high quality

reference genome. To this end we produce in silico evolved genomes representing a small

primate phylogeny ranging from Human to Marmoset (12 % nucleotide divergence).

From those genomes we then simulate RNA-seq reads. The mapping of those reads to

the genome of origin (self-mapping) as well as to one common reference (cross-mapping)

allows us to quantify the effect of sequence divergence alone on differential expression

analysis. We also simulate RNA-seq reads based on Ensembl primate genomes to gauge

the impact of assembly and annotation quality. We find that for very closely related

species such as the great apes ( 4%) divergence bias due to cross-mapping is acceptable

and given the quality of the current great ape genomes, even preferable to self-mapping.

Introduction

Gene expression is an easily accessible phenotype that can help us bridge the gap between

evolutionary changes of the genome and more complex phenotypes such as of brain

size [e.g. 1]. Since the evolution of human-specific traits is a favorite issue in biological

research, the first high-throughput comparisons of gene expression across species focused

on primates and used oligonucleotide arrays that were designed based on human cDNAs

[1]. Hence one of the biggest criticisms of this study was that, due to sequence divergence,

between species expression differences could be confounded with hybridization differences.

When the Chimpanzee genome became available in 2005 [2], it became possible to only
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select oligonucleotides without any substitutions between Humans and Chimpanzees [3].

However, for slightly more distant species such as Macaques, this strategy turned out to

be less desirable, because the number of probes with identical sequence became too small.

To this end efforts to model probe binding affinities also for probes containing species

differences came underway [4]. Even though this was a viable approach, the emerging

next generation sequencing methods seemed preferable over microarrays. RNA-seq

promised to alleviate several problems due to the inherent reference bias of the common

one-species arrays. Using RNA-seq, at least the sampling of the transcriptome was

unbiased and the sequence information contained within the reads allowed for a more

detailed analysis and possibly a correction for divergence. Nevertheless, a quantitative

comparison of gene expression levels between species remains far from trivial.

For a quantitative comparison, we must be cautious about systematic technical

differences between species. Such systematic differences in RNA-seq studies can easily

be introduced by differences in our ability to associate reads with genes, which in the

simplest case could be due to the lack of a reference genome in one of the examined

species. However, even if a reference genome is available, mappability of RNA-seq

reads will depend on the quality of the reference genomes as well as the quality of the

gene annotation [5]. Indeed, the differences in genome quality are considerable and no

available primate genome comes close to the quality of the human genome. For example,

the N50 contig sizes of Chimpanzee, Gorilla, Orangutan, Marmoset and Macaque are

between 5 and 50 ⇥ smaller than hg38 and only one third as many exons are annotated

in Ensembl (Table 1).

However, the most difficult part is to define transcriptional units that are comparable

across species. Blekhman et al. [6] identified ortholgous exons as exons that were present

in all three species of that study, i.e. Human, Chimpanzee and Macaque. Going exon by

exon rather than attempting to align whole transcripts helped to avoid truncating genes

due to bad genome assemblies. In contrast, Brawand et al. [7] opted to find orthologous

transcripts. Because transcript annotation is biased due to the use of Human gene models

to annotate primate genomes, Brawand et al. [7] first used their RNA-seq data to improve

the annotation of primate transcripts, before intersecting the transcripts to then only

count reads from orthologous parts. This reduction to only common exons or transcript

parts also serves as a correction for differing gene lengths between species, however this

correction is only valid, if reads are evenly sampled across the transcript. Zhu et al. [8]

implemented several of the above ideas of identifying and filtering orthologous exons

in one pipeline and added an empirical measure of mappability. Finally, Wunderlich

et al. [9] used curated whole genome multiple alignments [10] to convert coordinates of

reads mapped to non-human primate genomes to Human coordinates and then used the

human gene annotation as comparable transcriptional unit.

In summary, efforts so far focused on finding and filtering orthologous genes/exons

and then map to the genome of origin, counting only reads mapping to the stringently

defined ortholgous set. So far, nobody has quantified the expected mapping bias, when

mapping to one genome, that is chosen according to assmbly and anntotion quality.
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With simulations of evolution whole genome sequences on a primate phylogeny as well

as gene expression levels, we show that mapping to common high quality reference is

a viable option for closely related species. Furthermore, our simulations allow us to

provide recommendations on sequencing and mapping strategies.

Results

Quality of six primate genomes

We downloaded human genome and the genomes of 5 non-human primates: Chimpanzee,

Gorilla, Orangutan, Macaque and Marmoset. The Chimpanzee is with a average

nucleotide divergence of 1.3% the most closely related species and with and the Marmoset

with 12.3% the most distant of the downloaded genomes [11]. The genomes also vary

with respect to assembly quality, whereas the Orangutan has with an N50 of 0.75Mb

the shortest scaffolds. Differences in the completeness of the annotation are even bigger,

while the human genome has ⇠ 43,000 genes and ⇠ 676,000 exons, Orangutan has only

⇠ 27,000 genes and 213,000 exons annotated (Table 1). Another, for our purposes, more

direct measure of genome quality is our ability to unambiguously map reads back to the

genome from which they were sampled. Assuming that the repeat content and thus the

uniqueness of kmers is expected to be similar, we expect most differences in mappability

to be due to ambiguous characters in the genome. We calculate the expected fraction of

unique and ambiguous 50mers in the genomes allowing for up to two mismatches [12].

In line with the other genome statistics, also mappablilty shows that no other primate

genome comes close to the quality of hg38: 85.13% of all exonic 50mers are unique

(Supplementary Figure S1). The other good genome is the Macaque with 85.45% unique

exonic 50mers, the other four primate genomes vary between 69-80%. Longer kmers

improve the mappability by average ⇠11%, but mappability still varies systematically

among genomes according to their quality. This wide variation in genome and annotation

quality, led us to explore the possibility to map all species to the best reference. This

strategy would be valuable for species without a genome assembly and might be suitable

alternative for very closely related species with large variation in genome and annotation

quality.

However, sequence divergence between species is also bound to interfere with mapping

and quantification of RNA-seq reads and in reality genome quality and divergence will

be convoluted. In order to clearly separate those effects, we decided to simulate genomes

corresponding to the primate tree. To this end we used evolver [13]. Evolver integrates

all of our knowledge about genome evolution, one can provide rates for various events

such as mutations affecting single nucleotides but also large chromosomal rearrangements

thus also allowing for gene duplication, the accept probability of the suggested events is

then determined by the amount of constraint on the affected sites. Thus mutations at

synonymous sites gene or within the 3’UTR of a coding gene are more likely to remain
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than mutations that change amino acids or the loss of an entire exon. Only events that

lead to a complete loss of a gene are forbidden, everything else can occur. We used the

human genome as the most complete genome with the most comprehensive annotation

as a starting point (root) and simulated six derived genomes from corresponding to the

primate phylogeny given in Figure 1. The simulated genomes allow us to track genes

throughout the tree, so that we know the orthologs and do not need to infer them,

which can be tricky [14]. Furthermore, the quality of all simulated genomes is identical,

allowing us to assess the effect of sequence divergence alone.

Mapping to a diverged genome

Using Ensemble biomaRt[15] we identified 9,257 human genes that have a one-to-one

orthologue in each of the five primate genomes. For those orthologous genes we simulated

RNA-seq reads [16]. We did the same for the evolver simulated genes with ⇠ 15,000

ortholgous genes (Figure 1).

We also evaluated four different sequencing strategies with respect to their mapping

to a diverged genome. We simulated reads with lengths of 50 and 100bp as well

as the sequencing of the cDNA fragment from either only one side (single-end, SE)

or from both sides (paired-end, PE). We then mapped to the human genome (cross-

mapping), using STAR, a splice-aware mapper that also uses existing annotation of splice

junctions to improve mapping [17]. In order to evaluate the mapping, we calculated the

fraction of reads that remained unmapped and the fraction of reads that were correctly

mapped. With only up to 2% the amount of reads that map to the wrong location

is small (Supplementary Figure S2), so that the fraction of correctly mapped reads is

approximately the inverse of the fraction of unmapped reads. At the first glance, it may

seem surprising that divergence in the simulated genomes has a larger effect on mapping

than for the Ensembl genomes. This is due to that we simulated expression only for

one-to one orthologs, which enriches for highly conserved genes.

Neverletheless, it remains that for both simulated and Ensembl genomes, the fraction

of unmapped reads notably increases in the two most diverged genomes (Macaque 2.3%

and Marmoset 8.4%), while mapping Chimpanzee (0.6%), Gorilla (0.9%) and Orangutan

(1.4%) reads to the human reference results in almost no loss due to divergence (Figure

2). Evaluating the different sequencing strategies, we find that longer reads improve

mapping to the more diverged genomes. The unmapped fractions were reduce for 100bp

by 1.8% and 4% for Macaque and Marmoset,respectively. Surprisingly, the mapping of

PE reads did not improve mapping, on the contrary the fraction of unmapped reads

increased. Closer inspection of our simulated data showed that mainly reads from

genes with exon gain or loss events were affected. Therefore, we loosened the criteria

for reporting proper pairing of PE reads, following an iterative mapping strategy (see

Methods) which improved the mapping of PE reads (Figure 2. However, compared SE

sequencing the optimally mapped PE sequencing only reduced the unmapped fraction

by 0.5% , which is not enough to justify the substantially higher sequencing costs. We

therefore focus on 100bp SE reads for the remainder of the study.
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Impact of gene-wise divergence on mapping

If the number of reads that is lost due to mapping to a diverged genome was evenly

distributed across all genes, this would have little impact on measures for differential

expression: The other genome would simply appear to have fewer reads in total and

standard normalization procedures would take care of such a discrepancy. Problems will

only arise, if due to divergence some genes lost more reads than others, i.e. it is not the

total divergence that is of interest, but the variance in divergence - and thus mapping

success - across genes.

To this end we use the cross-mapping data from the simulated genomes, whereas we

use the mapped reads from all replicates to estimate divergence (see Methods). Note that

estimating divergence from the RNA-seq data itself makes it possible to obtain divergence

estimates for species without other available genome or transcriptome sequences.

Indeed, we find that the fraction of correctly mapped reads has an inverse correlation

with gene-wise divergence and this correlation increases with species divergence (Figure

3). Chimpanzee and Human are so closely related that the little divergence has no

discernible effect on the mapping success (Pearson’s r = �0.01, p = 0.28), while for

Marmoset and Macaque the fraction correctly mapped reads strongly depends on the

sequence divergence of the gene (Cjac r = �0.50⇤⇤⇤, Mmul r = �0.39⇤⇤⇤).

Based on this result we would speculate that mapping Chimpanzee reads to the

human genome should not bias differential expression analysis, while there will be an

effect in Marmoset and Macaque. However, it might be possible to use the divergence

estimates to correct the counts.

DE-analysis across species for simulated genomes

The main goal of this study is to evaluate different strategies for DE-analyses in closely

related species. We used the flux simulator [16] to simulate 100bp SE reads for the known

orthologs from the six simulated primate genomes, keeping the expression levels fixed

across all species. To allow for a meaningful DE-analysis, we simulated 6 replicates/species

and we want to evaluate whether it is possible to detect expression changes between the

species. We use DESeq2 [18] and compare each of the five in silico primate RNA-seq

datasets to Human as a common reference.

Reads from non-human primates were mapped to both, the genome of origin (self-

mapping) as well as the simulated human genome (cross-mapping). Hence for self-

mapping we expect near perfect mappability, but because read counts from different

genomes are compared this strategy will be sensitive to genome and annotation quality.

Therefore, it is not surprising that the number of false positives for the in silico genomes

with known orthology and perfect quality is negligible (up to 0.1% Marmoset). With

cross-mapping, the false positive rate (FPR) increases with divergence. Chimpanzee and

Human are close enough, so that divergence does not increase the FPR. In fact, for both

Human and Chimpanzee we did not observe any false positive genes in our simulated

data (Figure 4). Also for Gorilla and Orangutan the FPR is with 0.04% and 0.34%,
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respectively, acceptable. Moreover, the FPRs are comparable for all three counting

strategies, self-mapping, cross-mapping and divergence corrected cross-mapping (see

Methods).

For the two more distant genomes Macaque and Marmoset cross-mapping clearly

produces more false positives than self-mapping (Macaque FPR cross 2% , self 0.09%;

Marmoset FPR cross 14%, self 0.11%). As shown in Figure 3, divergence to Human

in those two primates is high enough to effect the mapping probability. For genes

with a high divergence fewer reads can be recovered. This is also evident from the

observation that the log2-fold changes are biased towards a higher expression in the

Human, i.e. the reference species (⇠60%) (Figure 4A, Supplementary figure S4). In

order to correct for unmapped reads due to divergence, we use a log-linear model to

predict the number of sampled reads from the number of mapped reads per gene and

the divergence estimate (see Methods). This strategy halves reduces the FPR by ⇠ half

(Macaque 1.2%; Marmoset 7.9%), but the FPR still increases with species divergence

and is high compared to self-mapping. However, even though divergence to the reference

genome introduces detectable false positives, the effect size of those changes is small.

Most log2-fold changes are between 1 and -1, and thus smaller than an absolute 2-fold

difference (Figure 4B). If we require genes to have a significant absolute log2-fold change

of at least 1, the FPR for cross-mapping counts reduces to 0.3% in Macaque and to 1%

in Marmoset. Interestingly, divergence correction cannot improve this FPR, suggesting

that higher log2-fold changes are not caused by lower mapping rates due to sequence

differences. On the contrary, those genes show an enrichment for falsely mapped reads

(Supplementary Figure S2). Misplaced primate reads will also increase our divergence

estimates and thus over-correct the number of reads letting the expression of the gene

appear higher in the nh-primate (Supplementary Figure S3). In summary, our simulations

suggest that using some corrections, mapping to a diverged genome for quantitative

expression analysis is a viable option.

DE-analysis across species for Ensembl-genomes

Next, we wanted to investigate in how far we can generalize our findings to the more

realistic scenario, with varying genome quality and annotation. To this end we simulate

RNA-seq reads from the ’real’ primate genomes as downloaded from Ensembl (Table 1),

otherwise the experimental setup and the DE-analysis were the same as for the in silico

genomes and should thus be comparable.

To begin with, the self-mapping FPRs are much higher for the Ensembl than for the

in silico genomes (ensembl: 1.5-2.6% vs. in silico ⇠0.1%) . Part of this discrepancy

might be due to differences in gene models. Due to annotation problems, differences in

gene lengths appear exaggerated in the Ensembl genomes. For example, 3’UTRs are

consistently shorter in the non-human primates (Table 1). In order to correct for these

gene length differences, we only counted reads mapping to orthologous sequences that

were annotated in both the Human and the non-human primate [7, e.g.]. This helped to

reduce the FPR to ⇠1% in all comparisons (Figure 5 and Supplementary Figure S5).
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When using counts from cross-mapping, the FPRs for the great ape genomes are low:

With 0.6% (Chimpanzee), 0.7% (Gorilla) and 1% Orangutan, cross-mapping FPRs are

even lower than counts for self-mapping and counting of ortholgous sequences only.

As in the simulated genomes, the FPRs for Macaque (2%) and Marmoset (8.5%)

are much higher than in the great apes. The FPR for Macaque agrees with the level

estimated for the simulated genomes, while the FPR from the simulated Marmoset

genome (14%) is substantially higher. This suggests that the set of one-to-one orthologs

is biased towards conserved genes, and the Marmoset as the most diverged species in

the comparison is the limiting factor to find one-to-one orthologs across all species.

Using divergence estimates to correct cross-mapping counts does not reduce the FPR

in Macaque, and provides only a slight improvement by 2.2% for Marmoset (Figure 5,

Supplementary Figure S6). Finally, also the effect sizes of the false positives are low, as

for the simulated genomes, instating a cut-off for absolute log2-fold changes of at least 1

reduces the FPR for all cross-species comparisons to  0.5%.

Within species DE-analysis while mapping to a diverged refer-

ence

Although divergence somewhat impairs DE-analysis between species, it is unclear how

mapping to a diverged genome would impact DE-analysis within a species. This would

allow to conduct DE-analysis for species for which only a genome of a close relative

has been assembled. To test such an analysis strategy, we simulate RNA-seq data for

each of the six simulated genomes and two conditions for each species. 10% of the genes

are simulated to have a 4-fold change between conditions, whereas equal numbers of

genes are up and down regulated (Figure 7A). Again we map all reads to the Human

genome and analyze differential expression using DESeq2 to tabulate how many of the

simulated DE-genes can be recovered (=sensitivity, true positive rate, TPR) as well

as the proportion of false discoveries among all significant genes (=specificity, false

discovery rate, FDR). The mapping of human reads to the human genome yielded a

TPR of 99% and an FDR of 2.5% (Figure 6). This represents the best case scenario, i.e.

self-mapping to a high quality, well annotated genome. Chimpanzee reads yield similarly

good sensitivity and specificity. Mapping Gorilla, Orangutan and Macaque reads to

the Human genome also yields a sensitivity close to 99%, but the FDR appears slightly

increased to 3% in Gorilla and Orangutan and 4.5% for Macaque. Only for Marmoset

with an FDR of 6% exceeds the nominal level of 5% and also shows a noticeable drop

in TPR to 97% (Figure 6). Because both conditions are affected by divergence to the

same extend, divergence correction does not help to reduce the FDR but only decreases

sensitivity (Figure 7B). In the absence of of an adequate reference, mapping to diverged

reference for within species DE-analysis yields good sensitivity and only the FDR for

Marmoset starts being problematic.

7/21



Detecting relative expression changes between species

In many instances, changes in the regulation of a gene are easier to interpret than

expression differences measured under one condition [19]. For example, if one gene is

up-regulated during development in one species, but not in the other, the first time-point

serves as an internal reference that facilitates the detection of this regulatory difference.

This makes the inference of the interspecies difference more robust towards technical

bias, including systematic species differences.

For differential expression analyses tools based on (generalized) linear models [18, 20]

such a regulatory difference would be formulated as the interaction term between species

and condition, i.e. the expression change between conditions depends on the identity of

the species. In the previous chapter, we described the simulation of two conditions within

each species. Note that we simulated no expression changes between species, in other

words condition A, as condition B, should have identical expression profiles for both

species. Hence, also the expression changes between conditions occur in both species and

thus a significant interaction term species:condition represents a false positive regulatory

change.

Again in the comparison between Human and Chimpanzee, there are no false positives,

and the FPRs for the other great apes with 0.05% in Gorilla (7 genes) and 0.12% in

Orangutan (19 genes) are also very low. Even though Macaque (FPR=0.4%) and

Marmoset (FPR=0.6) have higher FPRs than the great apes, they are still low compared

to the FPRs for the comparison of absolute expression changes (Figure 4A). Furthermore,

divergence correction had no impact on the FPR, confirming that a relative model

efficiently corrects for species differences that are due to divergence.

Hence, even though also for relative expression changes, FPRs increase with divergence,

it is much better controlled than for absolute expression changes. Thus keeping an

cautious eye on the FPR levels, also comparisons for more distantly related species such

as Human and Marmoset will yield meaningful results.

Discussion

RNA-seq is a versatile tool that also has many applications in evolution and ecology

[21]. However, for many of the organisms of interest, no reference genome exists and

even if a reference genome is available, the quality of the genome and the annotation is

highly variable. One simple solution to this problem would be to use available reference

genomes from closely related species. Here, we investigate the biases that come through

mapping RNA-seq to a diverged genome for three different biological questions: 1)

Finding expression differences between species, 2) Finding expression differences within

the non-reference species and 3) Finding relative expression changes between species.

To this end, we use a small primate tree including Chimpanzee, Gorilla, Orangutan,

Macaque, Marmoset and Human. Neutral divergence ranges from 1.34 -12.1% (Figure

1). For all those species published genomes exist, however they largely vary in quality, in
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particular annotation of the Human genome is much more complete than the annotation

of any of the non-human primates. In order to distinguish between problems due to

annotation and actual evolutionary differences, we generated in silico genomes without

assembly or annotation errors. Furthermore, ortholgous genes in the in silico genomes

are known and hence do not show a bias to higher conservation as we saw in the inferred

orthologs in the real genomes.

We then simulate RNA-seq reads from real and in silico genomes and map them

to the Human reference. As expected, the fraction of reads that can not be mapped

increases logarithmically with divergence (Figure 2). Sequencing of longer reads improves

the mapping a little (3.9%), so that one might think that also paired-end could bring

a further improvement. However, our simulations show the assumed positioning of

the pair is not necessarily correct in the diverged species, thus leading to the loss of

reads from genes with rearrangements or exon gain or loss events. Hence given our

simulations, we think that 100bp single end reads are the best sequencing strategy

here. That being said, a genome-wide reduction in the number of mappable reads does

not necessarily introduce bias into expression analyses. Bias is only introduced, if the

fraction of correctly mapped reads varies systematically among genes and we can indeed

show that there is an inverse relationship between the divergence of a gene and the

fraction of correctly mapped reads (Figure 3). Therefore, for the first biological question

investigating between species expression differences, we expect that more diverged genes

will appear to have a lower expression in primates as compared to humans, which is

indeed the case (Figure 4), Supplementary Figure S2). Because we can also use mapped

RNA-seq reads to estimate gene-wise divergence to the reference genome, we attempted

to regress the effect of divergence on the read counts out. The FPR for these divergence

corrected read-counts was roughly half of what it was without divergence correction.

Furthermore the direction of change became more symmetric, in that false positives could

also appear to be down-regulated in Humans. However, especially for the more diverged

species (Marmoset and Macaque), some bias towards higher counts in Humans remains.

We believe that the reason for the remaining false positives and their directional bias

is an underestimation of the true divergence of a gene. Both Marmoset and Macaque

have genes that with a divergence of >10%, which is the threshold from which on STAR

begins to have problems with mapping. Because we cannot map to regions with high

divergence, those cannot be included in the divergence estimation, thus making our

correction insufficient. Furthermore, bad divergence estimates can also explain some of

the additional false positives with much higher counts in primates. Mismapped reads

will inflate our divergence estimates and trigger our regression model to increase the

count even more (Supplementary Figure S2 & S3). Fortunately, false mapping rates are

low, so that only a few genes will show this rather counter-intuitive pattern. Generally,

false positive DE-genes have low log2-fold changes, so that an additional restriction on

effect size gets rid of the vast majority of false positives, even for Marmoset (Figure 4).

Most of the results obtained using in silico genomes could also be recapitulated

with the Ensembl genomes, with the only exception of substantially higher FPRs for
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self-mapping, i.e. mapping reads to the genome of origin and counting only ortholgous

regions. Restricting the regions to only the ones that are also annotated in the primate

genome should theoretically correct for any gene-length differences, which are probably

the cause for the even higher FPRs if this correction is left out (Figure 5). However, this

correction assumes that RNA-seq reads are evenly sampled across the entire transcript

length, which in practise is rarely the case [22]. Thus, for very closely related species

such as Chimpanzee and Gorilla, cross-mapping actually produces fewer false positives.

For those two species the benefits of a good annotation and genome quality outweigh

the problems introduced by sequence divergence.

The second question that we investigated was in how far cross-mapping can be used

to analyze differential expression within the same species. To this end we simulated

RNA-seq reads for two conditions in which 10% of the genes were differentially expressed

with a log2-fold change = |2|. Mapping the primate reads to the Human genome yields a

high sensitivity of over 97% for all species and only the Marmoset had an FDR slightly

above the nominal level. This suggest that mapping bias is by in large consistent and

thus cancels out when contrasting the two conditions.

Following up on this notion, we investigated in how far relative differences between

species can be detected using cross-mapping. We re-used the simulations of two conditions

in each species, expression profiles differ between conditions, but not between species.

Thus we would not expect to detect any relative changes between species, i.e. if a gene is

upregulated under one condition in one species, the same change is expected to be seen

in the other (Figure 7 and Supplementary Figure S7). Even though the FPR for relative

expression changes between species increases with species divergence, it is ⇠ 10⇥ lower

than the FPR for absolute between species changes.

Hence, in the absence of a good genome assembly or annotation cross-mapping to a

closely related species to analyze expression differences between conditions within the

same species or to detect relative differences between species is a good alternative. As a

general rule of thumb, cross-mapping works as long as the divergence does not exceed the

limits of the mapper used. If divergence for all genes remains below this threshold, no

further corrections are necessary. However, if some genes exceed the divergence that can

be safely handled by the mapper, quantitative comparison between species will produce

more false positives, which can be dealt with by introducing an effect size cut-off.

Methods

Generating in silico Genomes

We used evolver [13] to simulate whole genome sequence evolution. Given an ancestral

genome, annotation of gene models, CpG islands, a repeat library as well as rates for

nucleotide and amino acid substitution, indels, tandem repeat expansion and contraction

evolver models sequence evolution of an entire genome. To simulate gene expression

of diverged species using RNA-seq it is important to explicitly model the evolution of
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coding regions, UTRs, start and stop codons and splice junctions. All possible types of

mutations can also affect functional regions, but evolver constrains their number based

on the set amount of selection on the affected sites. Hence genes can also be rearranged

or duplicated and exons can be gained or lost.

To evaluate the effect of mapping and quantification for diverged species on realistic

data, we used human genome (hg19) and gene models (GRCh37.75) as ancestral genome

because it is the best reference available. Starting with hg19 at the root, we generated

six in-silico genomes based on the neutral divergence estimates for a primate phylogeny

(Figure 1).

We used the hg19 parameter file provided by evolver to set up all the rates to model

evolution. To set up our simulations, we first replaced all ambiguous bases in hg19

by random bases using the ”evo –findns” module from evolver and converted them

to rev format using ”evolver cvt -fromfasta -torev”. We obtained gene models in gff

format from the UCSC genome browser [23] and filtered for non-overlapping genes using

”evolver evo -cvtannots”. We obtained 15,559 genes after filtering. Rest of the genomic

features required for the simulations were set according the default settings in evolver.

evolver has two major modules for inter and intra chromosomal evolution simulation.

Starting from a common ancestral genome and gene models, we run evolver for every

internal to leaf nodes on a given 6 primate tree (Figure 1). The inter chromosomal evolu-

tion is run by ”evolver evo -interchr” where between chromosomal events like segmental

moves, chromosomal fission and fusion take place. On these evolved chromosomes, we

simulate intra chromosomal events like substitutions and indels in parallel for each

chromosome using ”evolver evo -inseq”.

All the simulated genomes are converted from rev to fasta format ”evolver cvt

-fromrev -tofasta” and CDS-UTR features into exons using ”gff cdsutr2exons.py” pro-

vided in evolver script collection. These genomes and gtf files are then used for RNA-seq

simulation.

RNA-seq simulation

RNA-seq reads for all 6 primates were simulated using flux-simulator (Griebel et al.

2012) from in-silico as well as the Ensembl genomes [24] (Figure 1 and Table 1). The

reads were generated as single-end and paired-end with read lengths of 50 and 100 bp

each. The error models were built from bulk Smart-seq2 data sequenced on Illumina

HiSeq1500 (Supplementary figure S8) using ”flux-simulator -t errormodel –tech phred

-o mymodel.err -f gemmapping.map”. For all 6 primates from simulated and Ensembl

genomes, 10 million reads for 6 replicates were simulated totaling to 288 bulk RNA-seq

simulations. We simulate equal numbers of expressed molecules for each orthologous

gene across species. We first run flux-simulator once with ”-x (simulate expression)”

option and then modified the .PRO file to simulate the same number of molecules for

ortholgous genes. Using the modified .PRO files, we proceed library preparation and

sequencing steps with ”-l” and ”-s”, respectively.
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Mapping and Quantification

The simulated RNA-seq reads were mapped using STAR 2.5.3a [17] in ”–twopassMode

Basic” mode with default parameters, allowing up to 50 multi-mapping reads. Gene

models (GTF file) were provided on the fly at the mapping stage whereas the genome

index was generated without ”–sjdbOverhang or –sjdbGTFfile”. For paired-end layout,

we use an ”iterative mapping” strategy. First, the reads were mapped as paired-end and

unmapped reads were extracted using ”–outReadsUnmapped Fastx” option in STAR.

In the second iteration, the unmapped reads were mapped as single-end, ignoring the

information of their mate reads. The mapped files from both iterations were merged

using ”samtools merge”.

To address the question if we can use ”Human” as a reference for the nh-primate,

we employed two different mapping strategies. One being ”self-mapping” where reads

from different primates were mapped to their own genomes and gene models. Second,

”cross-mapping” where reads of all the primates were mapped to human genome. Reads

generated from in-silico simulated genomes and Ensembl genomes were mapped to the

simulated human genome or Ensembl GRCh38.82 genome, respectively.

In order to correct for the annotated gene length differences in the Ensembl genomes,

read counting was restricted only to the orthologous regions annotated in human and

nh-primates. The orthologous regions were derived using reciprocal liftOver [25] between

human and nh-primates and filtered for the genes used for simulations using ”bedtools

intersect” [26].

The mapped reads were assigned to genes using featureCounts from the bioconductor

package Rsubread [27].

Gene-wise Divergence estimation

We empirically estimate divergence of each nh-primate gene to its human ortholog

from reads cross-mapped to human. In order to reduce false mismatch calls due to

indels, we perform local realignment for indels using GATK ”IndelRealigner” with

default parameters. Prior to indel-realignment, we pre-processed the BAM files with

”AddOrReplaceReadGroups” and ”SplitNCigarReads”. Pre-processed BAM files are

merged using ”samtools.1.3.1 merge” and genotype likelihood is generated in VCF

format using ”samtools.1.3.1 mpileup -Q 0 -uv” parameters. We use a custom R script

to estimate gene wise divergence from VCF file. To incorporate sequencing quality in

our divergence calculation, back-calculate the probability of having the correct base

from the Phred score and sum them up across reads, sites and bases. Substitutions are

only counted for bi-allelic sites. To obtain divergence estimates, we us Kimuras two

parameter model to correct for multiple hits [28].
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Differential Gene Expression

We performed pairwise differential expression analysis of each nh-primate to human

from cross mapped counts on simulated data. Genes expressed in less than two samples

are filtered out and DESeq2 [18] was used to perform DGE with standard parameters.

We used Benjamini Yekuteili (BY) for p-value adjustment under nominal alpha 0.05 for

each nh-primate vs Human comparison.

To adjust the abundance level of genes for sequence divergence to equivalent human

loci, we used empirically estimated divergence to correct expression levels of each gene.

We used a log-linear fit between simulated counts (sim) and counts from cross-mapping

(cross) to human with estimated divergence(div) as an interaction term to cross mapped

counts (Equation 3).

log10(sim+ 1) ⇠ log10(cross+ 1) + log10(cross+ 1) : div (1)

We performed the same DGE analysis as explained above with the fitted counts from

this model and compared the rate of false positive calls.

Relative expression differences

We used unique molecule counts from 12 bulk UHRR samples from previously published

dataset [22] to estimate mean and dispersion and simulated a 2-group gene expression

profile with 6 replicates in each group with 10% differentially expressed genes at log2

fold-change of 2 and -2 symmetrically using powsimR [29]. These molecule counts are

further used to adapt the number of expressed molecules in .PRO files in flux-simulator

for each primate to simulate RNA-seq reads. In this simulation framework, we keep no

expression difference between species while within species between conditions the same

10% genes are differentially expressed (Figure 7A ). RNA-seq reads are generated from

each species but all the reads are cross mapped to human reference and DGE is performed

using DESeq2 with the design formula ”⇠species + condition + species:condition”. We

perform differential expression testing between condition in each species and the condi-

tion effect between species (interaction term). We used Benjamini Yekuteili (BY) [30]

for p-value adjustment under nominal alpha 0.05 for all the comparisons.

Supplementary Material

Supplementary figures S1-S8 and Supplementary table S1 are available at Molecular

Biology and Evolution online (http://www.mbe.oxfordjournals.org/).
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Species Assembly Ensembl Genome
109bp

N50
Scaf-
folds
Mbp

Genes/
1000

Exons/
1000

avg
3.UTR
length
(bp)

Human hg38 84 3.21 67.79 43 676 269
Chimpanzee Ptro2.1.4 85 3.31 9.14 27 203 83
Gorilla Ggor3.1 85 3.04 0.91 28 237 73
Orangutan Ppyg2 85 3.11 0.75 27 213 86
Macaca Mmul8.0.1 86 3.24 4.19 32 276 100
Marmoset Cjac3.2.1 85 2.91 5.17 30 313 84

Table 1. Genome assembly and annotation properties of 6 primates.
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cross-mapping self-mapping

Actual gene
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X

Non-human primate

MappingRNA-seq

288 Simulations
(Simulated + Real Genomes)

6 Primates * 4 Layouts * 6 replicates

100bp

Hsap Ptro Ggor Pabe Mmul Cjac

g1

g2

Human Non-human primate

1:1 orthologs

flux-simulator

n = 6
50bp

Ensembl Genome Gene 
models

Hsap hg38 84

Ptro Ptro2.1.4 85

Ggor Ggor3.1 85

Pabe PPYG2 85

Mmul Mmul8.0.1 86

Cjac Cjac3.2.1 85

Reference

+
0.121

Divergence to Human

Figure 1. Schematic overview of the study design. The first panel starting from
left shows two set of genome references used in this study 1) evolver genomes: in-silico
genome sequence evolution simulation using hg19 as a common ancestor and a 6 primate
tree. The primates are named as abbreviation of their scientific names (Cjac = Marmoset,
Mmul = rhesus Macaque, Pabe = Orangutan, Ggor = Gorilla, Ptro = Chimpanzee,
Hsap = Human). 2) Ensembl genomes: the table lists assembly and annotation versions
of genomes and gene models downloaded from Ensembl for 6 primates. The middle panel
shows RNA-seq simulation workflow. We simulate RNA-seq reads using flux-simulator
under no biological variance across 1:1 orthologous genes across primates. Reads are
simulated with 6 replicates and 4 sequencing layouts totalling to 288 RNA-seq datasets.
The last panel shows two mapping strategies employed in this study. 1) cross-mapping:
reads from all the primates are mapped to human reference and 2) self-mapping: reads
are mapped to species’ own genomic reference. The schematic here shows the under
representation of read counts in a gene with missing annotation in non-human primates.
”Actual gene” refers to a biologically present gene in the species and ”Annotated gene”
refers to available information annotated in a GTF (gene models) file in the databases.

15/21



real genomes sim genomes

TrueM
apped

U
nm

apped

Cjac Mmul Pabe Ggor Ptro Hsap Cjac Mmul Pabe Ggor Ptro Hsap

0.6

0.7

0.8

0.9

1.0

0.0

0.1

0.2

0.3

0.4

M
ap

pi
ng

 R
at

es

PE
PEpp
SE

100
50

Figure 2. Cross-mapping statistics for in silico and Ensembl genomes. Here
we plot the fraction of true mapped and unmapped reads (horizontal panels) with species
on x-axis arranged by the evolutionary distance from Human (Hsap). The left panels
show mapping statistics for reads sampled from Ensembl genomes, the right from evolver
simulated genomes. Squares are single-end and circles are paired-end layouts. Empty
circles represent the statistics if only proper pairs were kept, the filled circles represent
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Figure 4. False Positive DE genes for different analysis strategies for in-silico
genomes. We use simulated genomes with equal quality and known orthologous genes to
simulate 100bp SE RNA-seq reads for six in-silico genomes, whereas the expression levels
for orthologous genes were kept constant. Reads were either mapped to the genome
of origin (self-mapping) or to the in silico Human genome (cross-mapping). In the
cross-mapping scenario, we either took the read-counts or we corrected the read counts
for the divergence of the gene (see Methods). We then used DESeq2 [18] to find DE-genes
between Human and the non-human primate (FDR  0.05). Panel A shows the overall
% FPR for all nh-primate-Human comparisons for all three counting strategies. The
numbers give the numbers of false positives genes in the comparison. In panel B, we
stratify the FPR according to the estimated log2-fold change. A positive log2-fold change
indicates a higher and a negative lower expression in the Human (reference) as compared
to the nh-primate.
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Figure 5. False Positive DE genes for different analysis strategies for En-

sembl genomes. This plot is the same as Figure 5, except that here we simulate
RNA-seq reads from Ensembl genomes (hg38, Ptro2.1, Ggor3.1, Ppyg2, Mmul8.0.1,
Cjac3.2 ). Thus in contrast to Figure 5, the genomes differ in quality and orthology of
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mapping - Orange, cross-mapping - blue and cross-mapping with divergence correction -
green).
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Bontrop, and Svante Pääbo. Intra- and interspecific variation in primate gene expression patterns.

Science, 296(5566):340–343, April 2002.

2. Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and

comparison with the human genome. Nature, 437(7055):69–87, September 2005.

3. Philipp Khaitovich, Ines Hellmann, Wolfgang Enard, Katja Nowick, Marcus Leinweber, Henriette

Franz, Gunter Weiss, Michael Lachmann, and Svante Pääbo. Parallel patterns of evolution in the
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1 Supplementary Figures
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Figure S1: Varying quality of genomic resources. A) For 6 primates ensemble genomes, we plot
fraction of exonic regions having potential to map at more than one loci on the genome. The mappability
score is calculated for the whole genome using GEM-mappability for 50bp (light blue) and 100bp (dark blue)
read length with 4% mismatches allowed. B) We plot total number of genes annotated in each primate derived
from Ensembl database. The assembly and annotation versions are given in the first panel of Figure 1. The
primate names are abbreviated from their scientific names (Cjac = Marmoset, Mmul = Rhesus macaque,
Pabe = Orangutan, Ggor = Gorilla, Ptro = Chimpanzee, Hsap = Human).
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Figure S2: Estimated divergence and the fraction of falsely mapped reads for false positive
DE-genes. Panels from left to right represent estimated divergence, mean FPR of mapping in Human and
mean FPR of mapping in nh-primates. The data points are falsely detected DE-genes. Lower panel shows
DGE results from the model with only cross-mapped read counts while the upper panel shows DGE results
where cross-mapped read counts are corrected for the divergence.
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Figure S3: Average False Positive Mapping Rates. We plot the average fraction of falsely mapped
genes for cross-mapping of primate and human reads to the in silico Human genome. Dots in grey represent
genes that are not detected as DE. Blue are detected as down-regulated in the Human, red are up-regulated
in the Human relative to the primate expression. False mapping fraction for human and primate genes does
not correlate and it is higher for the primate reads. Upper panel shows DGE results from the model with
only cross-mapped read counts while the lower panel shows DGE results where cross-mapped read counts
are corrected for the divergence.

Figure S4: MA plots of di↵erential gene expression analysis from simulated genomes. We perform
DGE using DESeq2 and plot here log2 fold-change vs Average expression for each pairwise comparison
between nh-primate and human. Red dots are significantly di↵erentially expressed genes. Panels from left to
right are arranged by evolutionary distance of nh-primate to human. Upper panel shows DGE results from
the model with only cross mapped read counts while the lower panel shows DGE results with fitted counts
derived from the model with estimated divergence added as an interaction term with cross mapped counts.
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Figure S5: MA plots of di↵erential gene expression analysis from real genomes. This is the same
plot as ”Supplementary Figure S4” except that the read counts are simulated from Ensembl genomes.
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Figure S6: False Positive DE genes for di↵erent analysis strategies classified by the direction-
ality of expression di↵erences. Bar plots show the number of False Positive di↵erentially expressed genes
between nh-primate and Human. We classify the FPR according to the estimated log2-fold change in di↵er-
ent analysis strategies. The log2-fold changes in the left panel indicate lower expression and the right panel
higher expression in the Human (reference) as compared to the nh-primate.
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Figure S7: MA plot of relative expression di↵erences. We perform DGE using DESeq2 as described in
Figure 7 and plot here log2 fold-change vs Average expression for three DE tests in each pairwise comparison
between nh-primate and human. Red dots are significantly di↵erentially expressed genes. Panels from left
to right are arranged by evolutionary distance of nh-primate to human. Upper panel shows DGE results for
between condition di↵erences in Human, middle panel for condition di↵erences in nh-primate and the lower
panel for condition di↵erences relative to species.

A B

Figure S8: Per-base sequence quality of real and simulated data. The error models for RNA-seq
reads simulation in flux-simulator were built using Smart-seq2 data generated previously. We show here
the per-base sequence quality plots generated by fastqc of A) UHRR Smart-seq2 data and B) Human 50SE
RNA-seq data simulated by flux-simulator.
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2 Supplementary Tables

Node term estimate std.error statistic p.value Genome
Cjac Intercept 1.07E-01 4.06E-03 2.64E+01 1.65E-140 Real
Cjac log10(crossmapping+1) 9.43E-01 1.67E-03 5.66E+02 0.00E+00 Real
Cjac log10(crossmapping+1):estDiv 8.39E-01 1.77E-02 4.75E+01 0.00E+00 Real
Mmul Intercept 4.58E-02 2.93E-03 1.56E+01 1.23E-51 Real
Mmul log10(crossmapping+1) 9.83E-01 1.18E-03 8.33E+02 0.00E+00 Real
Mmul log10(crossmapping+1):estDiv 2.89E-01 1.98E-02 1.46E+01 1.20E-44 Real
Pabe Intercept 2.38E-02 2.41E-03 9.86E+00 2.16E-19 Real
Pabe log10(crossmapping+1) 9.95E-01 9.43E-04 1.06E+03 0.00E+00 Real
Pabe log10(crossmapping+1):estDiv 1.06E-01 2.70E-02 3.95E+00 1.34E-04 Real
Ggor Intercept 2.23E-02 2.35E-03 9.51E+00 3.81E-20 Real
Ggor log10(crossmapping+1) 9.96E-01 9.02E-04 1.10E+03 0.00E+00 Real
Ggor log10(crossmapping+1):estDiv -3.70E-05 4.71E-02 -1.11E-03 8.53E-01 Real
Ptro Intercept 1.59E-02 2.00E-03 7.96E+00 6.16E-13 Real
Ptro log10(crossmapping+1) 9.96E-01 7.58E-04 1.31E+03 0.00E+00 Real
Ptro log10(crossmapping+1):estDiv 1.01E-01 4.57E-02 2.22E+00 4.16E-02 Real
Hsap Intercept 2.15E-02 2.42E-03 8.81E+00 2.09E-14 Real
Hsap log10(crossmapping+1) 9.95E-01 8.12E-04 1.23E+03 0.00E+00 Real
Hsap log10(crossmapping+1):estDiv -3.13E+00 5.84E-01 -5.31E+00 1.16E-06 Real
Cjac Intercept 1.24E-01 5.77E-03 2.15E+01 8.44E-85 Simulated
Cjac log10(crossmapping+1) 8.74E-01 5.17E-03 1.69E+02 0.00E+00 Simulated
Cjac log10(crossmapping+1):estDiv 2.20E+00 8.71E-02 2.53E+01 5.06E-130 Simulated
Mmul Intercept 1.82E-02 3.64E-03 4.99E+00 1.73E-06 Simulated
Mmul log10(crossmapping+1) 9.68E-01 3.07E-03 3.16E+02 0.00E+00 Simulated
Mmul log10(crossmapping+1):estDiv 9.37E-01 7.09E-02 1.32E+01 2.59E-37 Simulated
Pabe Intercept -4.67E-03 2.52E-03 -1.86E+00 1.14E-01 Simulated
Pabe log10(crossmapping+1) 9.93E-01 1.99E-03 5.01E+02 0.00E+00 Simulated
Pabe log10(crossmapping+1):estDiv 4.95E-01 7.80E-02 6.39E+00 1.09E-08 Simulated
Ggor Intercept -5.76E-03 1.74E-03 -3.31E+00 2.87E-03 Simulated
Ggor log10(crossmapping+1) 9.98E-01 1.35E-03 7.45E+02 0.00E+00 Simulated
Ggor log10(crossmapping+1):estDiv 3.60E-01 1.03E-01 3.51E+00 8.87E-04 Simulated
Ptro Intercept -2.09E-03 9.81E-04 -2.12E+00 9.15E-02 Simulated
Ptro log10(crossmapping+1) 1.00E+00 5.24E-04 1.93E+03 0.00E+00 Simulated
Ptro log10(crossmapping+1):estDiv 3.03E-02 4.76E-01 3.42E-02 6.74E-01 Simulated
Hsap Intercept -2.82E-03 1.07E-03 -2.61E+00 2.88E-02 Simulated
Hsap log10(crossmapping+1) 1.00E+00 5.76E-04 1.76E+03 0.00E+00 Simulated
Hsap log10(crossmapping+1):estDiv 4.76E-01 5.16E-01 9.04E-01 3.88E-01 Simulated

Table S1: Model estimates of log-linear fit between simulated counts (sim) and cross-mapping (cross) counts
with estimated divergence(div) as an interaction term.
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Discussion 

Impact of amplification noise in quantitative RNA-seq 

Recent advances in sequencing technology have created incredible potential for biology and                       

biomedicine. RNA-seq has become a standard method to profile gene expression in various                         

applications (GTEx Consortium et al. 2017; Hrdlickova, Toloue, and Tian 2017). This                       

emerging technology also generates new challenges for computational analyses. For                   

example, to quantify gene expression levels by RNA-seq one needs to estimate the number                           

of transcripts per gene in a sample from the number of sequencing reads per gene. This                               

requires read numbers to be proportional to transcript numbers. However, PCR                     

amplification is a necessary step for essentially all RNA-seq protocols and hence many                         

reads can be generated from a single transcript. The noise introduced by PCR amplification                           

can then reduce the accuracy and precision of transcript quantification by RNA-seq. This is                           

especially relevant as when amplifying the small amounts of RNA from single cells (Stegle,                           

Teichmann, and Marioni 2015).  

It is still unclear how to treat read duplicates in RNA-seq data and how much do read                                 

duplicates impact the quantification. Here I perform such an analysis using available                       

benchmark datasets as well as data that were specifically generated for this study                         

generated by three major library preparation methods TruSeq (SEQC/MAQC-III Consortium                   

2014), Smart-seq2 (Picelli et al. 2013) and UMI-seq (Soumillon et al. 2014). These protocols                           

mainly differ by the fragmentation method, amount of starting material, number PCR cycles                         

performed and sample pooling before or after amplification. 

Computationally, duplicates are identified based on their 5’ mapping position, read                     

orientation and sequence identity. On the contrary, incorporating unique molecular                   
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identifiers (UMIs) (Kivioja et al. 2011; Shiroguchi et al. 2012) to the cDNA molecules before                             

amplification, as in UMI-seq, makes it possible to track original molecules.  

Various methods are available to flag the duplicate reads                 

(http://broadinstitute.github.io/picard, (Li et al. 2009) to account for bias in SNP calling or                         

peak calling (DePristo et al. 2011; Y. Chen et al. 2012; Li et al. 2009). However, it is difficult                                     

to computationally distinguish between natural duplicates and PCR duplicates in RNA-seq                     

for various reasons: 1) fragmentation can have a preference for cutting sites that produce                           

reads that look alike 2) some methods have a full length cDNA amplification step where                             

reads from duplicated cDNA molecules can have different 5’ mapping positions 3) highly                         

transcribed genes have higher chances of sampling fragments starting at the same site and                           

4) with increasing sequencing depth it is more likely to get the same fragments by chance                               

and hence it increases the probability of reads having the same 5’ mapping.  

Previous studies have also observed the high fraction of natural duplicates in RNA-seq data                           

(Lappalainen et al. 2013; Bansal 2017). Some tools have attempted to tackle such problems                           

by smoothing the read coverage such as eXpress (Roberts and Pachter 2013) or by                           

modelling probability of natural duplicates and adjust the observed number of PCR                       

duplicates (Mezlini et al. 2013 and Baumann et. al. 2013). However, this approach is not                             

applicable to situations in which systematic over-estimation of read counts on a large                         

fraction of genes exists. Bansal 2017 (Bansal 2017) proposed a model for estimating the                           

rate of PCR duplicates accounting for natural duplicates derived from heterozygous variant                       

sites. This approach becomes impractical for haploid genomes and genomes with fewer                       

heterozygous variants. Furthermore, we observed that the duplicates stemming from the full                       

length cDNA amplification step in Smart-seq2 can not be identified by their mapping                         

positions. This notion is corroborated by the observation that the standard curve between                         

our measure of expression, calculated to include duplicates, fits the initial concentrations of                         

the ERCC spike-ins better than those excluding duplicates. Clearly, computational methods                     
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of duplicate removal cannot accurately identify PCR duplicates, but the next question is how                           

much do duplicates affect relative quantification.  

We simulated differential expression between two groups using empirically estimating                   

mean and dispersion parameters for each dataset with and without duplicate removal using                         

an adapted simulation framework as described in PROPER (Wu, Wang, and Wu 2015),                         

later developed into an independent package, powsimR (Vieth et al. 2017). Confirming the                         

finding that computational removal of duplicate reads is inefficient, our results show that for                           

the UMI-seq dataset where samples are pooled before amplification, the TPR is much higher                           

even with more PCR cycles and the FDR is well controlled when duplicates are removed by                               

UMIs. 

Building on the fact that the TPR to detect differential expression is negatively correlated                           

with the number of PCR cycles used, amplification noise can be more severe in scRNA-seq                             

experiments. In our scRNA-seq methods benchmarking paper (Ziegenhain et al. 2017), we                       

identify upto ~95% of duplicated reads per cell from the UMI-based protocol. As the                           

variance of sampling reads for gene expression measurements is dependent on the mean                         

following the Poisson distribution in RNA-seq (Pachter 2011), additional amplification noise                     

can be expressed as Extra-Poisson Variability (Ziegenhain et al. 2017). Our results indicate                         

higher amplification noise for full length methods or when UMIs are not collapsed to count                             

unique molecule per gene. This data certainly adds to the growing evidence that confirm                           

UMIs are indeed capable of removing amplification noise as discussed in a technology                         

feature on PCR duplicates (Marx 2017).  

Compared to bulk RNA-seq, scRNA-seq data is sparser, and apart from mean and                         

dispersion, it is necessary to take into account dropout rates(p0) as a parameter when                           

simulating differential expression for scRNA-seq data. To fulfill this, powsimR, a power                       

simulation framework that implements most of the widely used scRNA-seq filtering,                     

normalisation and differential testing methods that capture specific characteristics of                   
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single-cell RNA-seq data generated by different methods, was developed (Vieth et al.                       

2017). Using powsimR, we show that for scRNA-seq data, the gain in power to detect                             

differential expression is much higher when UMI-based de-duplication is performed                   

compared to that of in bulk RNA-seq (Parekh et al. 2016; Ziegenhain et al. 2017). 

In summary, we clearly find that computational removal of read duplicates is not                         

recommended, because many of the read duplicates are due to sampling of independent                         

molecules (natural duplicates) and not PCR-duplicates. Moreover, the amplification rate is                     

variable across samples, and UMI-based early pooling methods lead to an appreciable                       

increase in power to detect differential expression especially for low starting material.  

Identifying and addressing computational challenges in single-cell             

RNA-seq data analysis 

Single-cell RNA sequencing (scRNA-seq) is a transformative technology that is rapidly                     

deepening our understanding of biology (Wagner, Regev, and Yosef 2016). Since the first                         

attempt of sequencing a whole transcriptome from a single cell (Tang et al. 2009), there has                               

been a boom in the development of scRNA-seq protocols for various applications                       

(Kolodziejczyk, Kim, Svensson, et al. 2015; Shapiro, Biezuner, and Linnarsson 2013;                     

Wagner, Regev, and Yosef 2016). During the handling of small starting amounts, it is very                             

important to minimize the loss of material and optimize the procedure to reduce technical                           

variation in the data. It is necessary to assess the performance of these protocols and point                               

out the advantages and disadvantages of every method to make an informed choice of a                             

protocol to use for an experiment. We analysed data from mouse embryonic stem cells                           

(mESCs) generated with 6 major scRNA-seq protocols (Smart-seq/C1 (Pollen et al. 2014),                       

Smart-seq2 (Picelli et al. 2013), SCRB-seq (Soumillon et al. 2014), CEL-seq2/C1                     
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(Hashimshony et al. 2016), MARS-seq (Jaitin et al. 2014) and Drop-seq (Macosko et al.                           

2015) to evaluate the performance of each protocol.  

The first measure of comparison used is the sensitivity of each protocol, i.e. the capacity to                               

capture transcriptome as fully as possible. Here, one of the limiting step is thought to be                               

reverse transcription (Picelli et al. 2013), with an estimated efficiency to capture mRNA                         

molecules of 10-50% (Islam et al. 2014; Grün, Kester, and van Oudenaarden 2014). We find                             

that out of the two full length methods, Smart-seq2 is much more sensitive compared to                             

Smart-seq/C1, whereas among the four UMI-based methods, SCRB-seq and CEL-seq2/C1                   

are significantly more sensitive compared to Drop-seq and MARS-seq. This finding is also                         

largely confirmed by the other recently publish scRNA-seq protocol comparison study                     

(Svensson et al. 2017). In Svensson et al. study, the comparison across 15 different                           

protocols is performed mainly based on the detection probability of ERCC spike-in                       

molecules. ERCC spike-in molecules are known to have different physical properties                     

compared to those of endogenous transcripts (Risso et al. 2014). Moreover, the datasets in                           

comparison exhibit different cell types generated in different labs at hugely varying library                         

sizes. Despite having inherent variance coming from different sources, the data generated                       

from their own laboratory show that Smart-seq2 is the most sensitive method. Moreover,                         

for some applications of RNA-seq like discovery of splice variants, fusion genes or variant                           

calling, full transcript length coverage is important. We observe that the Smart-seq2                       

protocol currently sequences full-length transcripts with the most even coverage. The                     

second metric for comparison is accuracy, which describes the capacity of a protocol to                           

represent the mRNA abundance levels in the expression estimates. We used ERCC                       

spike-ins (External RNA Controls Consortium 2005; Lichun Jiang et al. 2011; Paul et al.                           

2016) to compare the accuracy of six protocols. We observe that although Smart-seq2                         

demonstrates the highest accuracy, all the other protocols also achieve nearly the same                         

accuracy level at least for highly expressed genes. Smart-seq2 was also found to be the                             
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most sensitive protocol thus it has an advantage of measuring better correlation at broader                           

range of expression level. The next measure is precision, which is defined as the variability                             

of measured gene expression estimates around its mean expression. As discussed in the                         

previous chapter, we have shown that incorporation of UMIs makes it possible to distinguish                           

duplicates from original molecules and thus remove amplification noise. Obviously, the                     

UMI-based methods show better precision compared to full length methods, followed                     

closely by Smart-seq2 and other UMI-based methods. Our last measure of comparison is                         

the power to detect differential expression in a two-group comparison at different sample                         

sizes using powsimR (Vieth et al. 2017). We observe that SCRB-seq shows the highest                           

power at a sequencing depth of 1 million reads, most likely due to high sensitivity and low                                 

amplification noise with the use of UMIs. We also calculate the cost efficiency in terms of                               

power. As expected, the introduction of cell barcodes as early in the library preparation                           

process as possible reduces cost and labour time by pooling many cells. Nevertheless, when                           

applying this high level of multiplexing, care must be taken to avoid the assignment of reads                               

to the wrong barcode, such that transcriptomes remain at single-cell purity.  

Practically, it is not economical to sequence all the cells to saturation but the protocol that                               

captures the most transcripts at a certain depth is considered to be the most cost efficient.                               

We performed saturation analysis by downsampling all the libraries at different depths to                         

estimate the optimal depth to capture the most information. Apart from saturation analysis,                         

downsampling is suggested especially in scRNA-seq data to reduce complications at                     

normalisation (Vallejos et al. 2017; Evans, Hardin, and Stoebel 2017). Having said this, we                           

have implemented adaptive downsampling of over represented libraries within three                   

median absolute deviations suggested elsewhere (Grün and van Oudenaarden 2015) in                     

zUMIs (Parekh et al. 2017). In summary, while no single best scRNA-seq method exists,                           

different tradeoffs between sensitivity, accuracy, precision, throughput and costs should be                     
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considered when choosing the most appropriate method for the research question at hand                         

and new developments should be independently benchmarked for these parameters. 

When considering higher throughput experiments, library preparation methods using                 

pooled samples with integrated cell barcodes in the sequencing construct are on the rise.                           

For the well-based methods the barcodes are known and designed to have maximal error                           

distances, e.g. Illumina indices i5 & i7. Such barcodes are fairly straightforward to                         

demultiplex and some methods even provide a probabilistic assignment also considering                     

sequence quality thus allowing for an unbiased and rigorous quality assessment (Renaud et                         

al. 2015; Galanti, Shasha, and Gunsalus 2017). It is known that the sequencing quality                           

deteriorates with more cycles (Buermans and den Dunnen 2014; Laehnemann, Borkhardt,                     

and McHardy 2016). Hence, it is recommended to sequence the barcode read first since                           

barcode assignment is shorter and more sensitive to base call errors compared to mapping                           

of cDNA reads to a reference. In droplet-based methods, both the barcode sequences and                           

the total number of cells are unknown. This makes cell identification more difficult because                           

the identification of one cell is no longer independent from the identification of other cells in                               

the mix. Removing barcodes with low sequencing quality will reduce spurious associations                       

and is thus our recommended first step. Evidently, barcodes associated with intact cells                         

have significantly more reads compared to dead or broken cells or debris. Consequently, as                           

long as the sequenceable RNA-content does not vary by orders of magnitude, a read count                             

cut-off should be sufficient to distinguish cells from debris. We expect a bimodal                         

distribution, where the first peak probably consists of all the spurious barcodes and the                           

second peak has the barcodes of the viable cells (Macosko et al. 2015). In zUMIs (Parekh et                                 

al. 2017), we have implemented the possibility to choose barcodes based on a given list of                               

sequences, an expected number of cells and an automatic barcode selection method. We fit                           

a k-dimensional multivariate normal distribution to the number of reads per barcode and                         
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choose only the last peak with the largest mean to automatically select the barcodes with                             

the most number of associated reads. 

Apart from cellular barcodes, every transcript molecule is also tagged with unique molecular                         

barcodes (UMI). In principle, every UMI of a gene represents a transcript molecule but due to                               

PCR/sequencing errors some barcodes can be assigned as a different UMI molecule                       

resulting into over estimation of the transcript molecules. An evaluation of how best to                           

account for such errors in the barcodes is currently lacking. We have observed that normally                             

a sequence quality based cutoff can be applied to filter molecular barcodes as well (Parekh                             

et al. 2017). We compared our phred score based filtering method with directional                         

adjacency based UMI collapsing method implemented in UMI-tools (Smith, Heger, and                     

Sudbery 2017). Indeed, the power to detect differential expression increases after filtering                       

but there is no significant difference in power between the two UMI collapsing methods.                           

The theory behind this observation is that the spurious UMIs stem from sequencing errors                           

and a priori low base call quality filter of such reads reduces the chances of forming such                                 

nodes with one edit distance. 

To overcome the issue of utilizing frozen or preserved tissue dissociations, plate-based and                         

droplet-based methods are being developed to sequence from single nuclei (Habib et al.                         

2017, 2016; Lake et al. 2016; Lacar et al. 2016). The data from single nuclei contain a                                 

significant fraction of nascent mRNAs, which means a lot of unspliced introns are present.                           

Moreover, recently, a new method has been developed that measures RNA velocity by                         

measuring the abundance of unspliced and spliced RNA from scRNA-seq data (La Manno et                           

al. 2017). This method also relies on the use of intronic reads in the data. We show that                                   

using intronic reads in addition to exonic reads achieves an increased resolution of clusters                           

and this is probably helpful to increase the sensitivity and precision of scRNA-seq                         

quantification. zUMIs was the first pipeline that produced count matrices where UMIs are                         

collapsed from exonic or intronic specific reads as well as exonic plus intronic reads. 

187 



 

For the ease of analysis, several processing tools are available to carry out one or several of                                 

the processing steps to generate an expression profile from the raw data (Macosko et al.                             

2015; Guo et al. 2015; Ilicic et al. 2016; Tian et al. 2017; Smith, Heger, and Sudbery 2017;                                   

Mangul et al. 2017; Petukhov et al. 2017; Alonso et al. 2017). However, current pipelines                             

that process UMI-based RNA-seq data are normally designed for a specific protocol                       

(Macosko et al. 2015), not open source (Macosko et al. 2015), published as individual                           

modules for each processing step (Smith, Heger, and Sudbery 2017; Petukhov et al. 2017),                           

uses only transcriptome mapping (Svensson et al. 2017; Hashimshony et al. 2016). zUMIs is                           

the only pipeline that generates gene expression profiles from raw data in a single run and                               

at the same time has features like adaptive downsampling, intronic reads counting,                       

automatic cell barcode selection and it is compatible with all the UMI-based protocols. 

Optimising cross species differential expression analysis 

With dropping sequencing costs, RNA-seq is now becoming a common method to study                         

gene expression dynamics in various applications (Z. Wang, Gerstein, and Snyder 2009).                       

Today, quantitative transcriptomic technologies provide a global snapshot of transcription                   

under certain conditions which can be directly related to phenotypic information relevant for                         

understanding evolutionary dynamics across diverged species (Brawand et al. 2011;                   

Warnefors and Kaessmann 2013; Romero, Ruvinsky, and Gilad 2012). For the precise                       

estimates of expression levels, accurate placement of reads on the genome and assignment                         

to gene models is important. However, for non-model organisms, the major drawback is the                           

lack of good quality genomic resources. For certain species no genome reference and                         

annotations exist, while for other species they are poorly resolved. For inter-species                       

comparison of gene expression profiles, variation in mappability and annotations could                     

affect the power to detect differential expression between species. 
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Here, we investigate on the impact of underlying differences in the quality and availability of                             

the genomic resources on differential gene expression within and between species. Using a                         

well resolved closely related species as a reference could circumvent this issue. However,                         

available RNA-seq mappers (Baruzzo et al. 2016) assume low sequence divergence                     

between the subject and query sequences and can not handle sequence divergence above                         

~10%. Therefore, this mapping strategy brings another question of deconvoluting real                     

biological signal from mapping bias due to sequence divergence. Since every read can be                           

independently assessed for its mapping efficiency, mapping is one of the most amenable                         

process to study by computational simulations.  

In order to assess the impact of mapping bias between diverged species independent of                           

assembly and annotation errors, we simulated whole genome sequence evolution across a 6                         

primate phylogenetic tree (Marmoset, Macaque, Orangutan, Gorilla, Chimpanzee and                 

Human) without any annotation errors. Using these, we simulated RNA-seq expression                     

profiles under no biological variance in orthologous genes across species to quantify False                         

Discovery Rate (FDR) to detect expression differences between species due to mapping                       

bias. Such RNA-seq profiles were also simulated from the actual available primate genomes                         

and gene models obtained from the Ensembl database to directly compare biases                       

introduced by variable quality in the reference. Together, this allows us to assess the                           

“cross-mapping” strategy, where a common high quality genome sequence and gene                     

models are used for mapping diverged species. 

By simulating RNA-seq profiles with different read lengths (50bp and 100bp) and                       

sequencing layouts (single- or paired-end), we could show that while longer reads increase                         

the sensitivity, sequencing layout does not have high impact on mapping. Unsurprisingly,                       

our results show that the mapping efficiency is negatively correlated with the sequence                         

divergence between the species. These results indicate that if mapping bias due to                         

sequence divergence can be corrected at gene level quantification, the issue of uneven                         
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genomic reference quality can be resolved by cross-mapping. We developed a method to                         

empirically calculate gene-wise divergence to adjust the abundance levels of genes. We                       

carry out pairwise differential gene expression analysis between each nh-primate and                     

human. In this simulation scenario, any significant difference detected between the                     

orthologous genes of two species is a False Positive call. For highly diverged species, FPR                             

reduced by ~40% when sequence divergence correction was used to adjust the abundance                         

levels of each gene. As mentioned above, available RNA-seq mappers can not handle                         

divergence levels above 10% which is believed to be the reason for the remaining false                             

positive genes. We also show that RNA-seq simulations from Ensembl genomes produce                       

lower FPR for cross-mapping compared to the estimates derived from mapping to their own                           

genomes (self-mapping). This shows that the noise introduced by poor quality annotations                       

in closely related species is bigger than mapping bias due to sequence divergence. These                           

biases can be avoided by restricting the transcriptional units to only orthologous regions                         

annotated in both the species in comparison. Thus, correcting for gene length differences as                           

proposed previously can be used with caution for distantly related species (Zhu et al. 2014;                             

Wunderlich et al. 2014; Brawand et al. 2011). 

Generally, biologically interesting questions are not restricted to the direct comparison of                       

species but also to detect the relative differences between conditions across species (Enard                         

et al. 2002; Brawand et al. 2011; Khaitovich et al. 2006). To evaluate the impact of                               

cross-mapping in detecting relative changes of certain condition between species, we                     

simulated 10% symmetrically differentially expressed genes between two conditions in                   

each primate assuming no variance in conditions between species. We observed that the                         

False Positive Rate (FPR) to estimate relative differences between diverged species is                       

correlated with the sequence divergence. Nevertheless, the FPR is as low as 0.6% for                           

Marmoset, 0.4% for Macaque and 0.1% for Orangutan whereas for closely related species                         

(Gorilla and Chimpanzee) the cross-mapping strategy can be used without discernible loss                       
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of information. This simulation framework also enables us to investigate if a high quality                           

genomic reference can be used to detect expression changes within species whose                       

reference genome is not available. Our results show that the differential expression within                         

non-reference species can be detected using the cross-mapping strategy with a very high                         

sensitivity for most of the species with only Marmoset having slightly higher than nominal                           

FDR. This notion is corroborated with the finding that within-species differences could be                         

detected using microarrays from a high quality reference from a closely related species                         

(Oshlack et al. 2007). 

To summarize, the evaluated cross-mapping strategy is safe to use for the detection of                           

relative expression changes between conditions across species. Moreover, we can also say                       

that if genomic resources are not available, the closest most resolved species can be used to                               

perform differential expression analysis using RNA-seq within species. 
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Conclusions and Outlook 

In this work I focused on optimising quantitative RNA-seq data analysis for different                         

applications. I addressed the most pressing issues of how to handle read duplicates,                         

identified and addressed challenges pertaining to single cell RNA-seq data processing,                     

provided solutions for cross species differential gene expression by developing and                     

optimising computational strategies. RNA-seq techniques and their applications are                 

evolving at an accelerating rate giving rise to new computational challenges. Here, I                         

contributed to the field by carefully investigating the impact of amplification noise on                         

quantification. I have developed zUMIs, an all in one pipeline to address single cell RNA-seq                             

data processing issues, and contributed in the development of powsimR, a comprehensive                       

power simulation framework. I also extended our work to optimising RNA-seq for                       

evolutionary studies by systematically identifying the best computational strategy to handle                     

relative quantification of diverged species in an unbiased manner. 

The exciting possibilities of quantitative RNA-seq has led to international initiatives like the                         

Genotype-Tissue Expression (GTEx) consortium and the Human Cell Atlas (HCA). These                     

resources set out to provide a comprehensive reference framework for the whole human at                           

tissue and single cell resolution. Additionally, the substantial reduction in the cost of                         

sequencing and the increased development in computational methods has opened doors to                       

improvise genomic resources for many new species. To overcome the issue of loss of RNA                             

molecules at reverse transcription, methods are being developed by Nanopore Sequencing                     

to directly sequence RNA (Garalde et al. 2018); additionally, these methods will also                         

eliminate amplification bias. Such developments will bring a paradigm shift in our                       

understanding of cellular and molecular heterogeneity in a biological system. However, as                       

these methods are still in the early phases of development and are not yet widely used,                               

current RNA-seq quantification methods will be used for some time.  
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