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ABSTRACT 

The present Ph.D. Thesis is focused on applications and developments of chemometrics. After a short 

introduction about chemometrics (Chapter 1), the present work is divided in three Chapters, reflecting  the 

research activities addressed during the three-year PhD work: 

 Chapter 2 concerns the application of classification tools to food traceability (Chapter 2.1), plant 

metabolomics (Chapter 2.2), and food-frauds detection (Chapter 2.3) problems. 

 Chapter 3 concerns the application of design of experiments for a bio-remediation research (Chapter 

3.1) and for machine optimization (Chapter 3.2). 

 Chapter 4 concerns the development of the net analyte signal (NAS) procedure and its application to 

several analytical problems. The main aim of this research is to face the matrix-effect problem using 

a  multivariate approach. 

Chemometrics is the science that extracts useful information from chemical data. The development of 

instruments and computers is bringing to analytical methodologies ever more sophisticated, and the 

consequence is that huge amounts of data are collected. In parallel with this rapid evolution, it is, therefore, 

important to develop chemometric methods able to handle and process the data. Moreover, the attention is 

also focusing on analytical techniques that do not destroy the analyzed samples. Chemometrics and its 

application to non-destructive analytical methods are the main topics of this research project. 

Several analytical techniques have been used during this project: gas-chromatography (GC), 

bioluminescence, atomic absorption spectroscopy (AAS), liquid chromatography (HPLC), near-infrared 

spectroscopy, UV-Vis spectroscopy, Raman spectroscopy, X-ray powder diffraction (XRPD), attenuated 

total reflectance (ATR) spectroscopy. 

Moreover, this research activity was carried out in collaboration with several external research groups and 

companies:  

 University of Bologna: Department of Statistical Sciences (Prof. Giuliano Galimberti); Department 

of Biological, Geological and Environmental Sciences (Prof. Annalisa Tassoni); Department of 

Pharmacy and Biotechnology (Prof. Stefano Girotti)  

 Cornell University (Ithaca, NY): Plant Biology and Horticulture Sections (Prof. Peter J. Davies) 

 COOP Italia, cooperative society (Casalecchio di Reno, Bologna, Italy): quality control laboratory 

(Mr. Fernando Gottardi and Dr. Sonia Scaramagli) 

 Industria Macchine Automatiche, IMA S.p.A. (Ozzano dell’Emilia, Bologna, Italy): IMA-Active 

division for solid-dose pharmaceutical formulations (Dr. Caterina Funaro, R&D Manager) 

 Council for Agricultural Research and Economics (Bologna, Italy): Dr. Francesca Corvucci and Dr. 

Gian Luigi Marcazzan 

 IZSLER, Zooprophylattic Experimental Institute of Lombardy and Emilia Romagna “Bruno 

Ubertini” (Brescia, Italy): Dr. Giorgio Fedrizzi 
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CHAPTER 1: INTRODUCTION TO CHEMOMETRICS 

A general definition of chemometrics was given by Svante Wold [1]: “How to get chemically relevant 

information out of measured chemical data, how to represent and display this information, and how to get 

such information into data”. In other words, the aim of chemometrics is to extract useful information from 

chemical data, which sometimes could mean obtaining a “single” number, or a single explicative graph, from 

a huge amount of data. Its purpose is to use mathematical, statistical, and numerical analyses applied to 

chemical problems in order to obtain mathematical models able to explain and, possibly, to “solve” it. 

Svante Wold and Bruce Kowalski, the pioneers of this discipline, on June 10
th
, 1970 founded the informal 

Chemometrics Society, whose “primary function is communication” [2]. The aim of that Society was to give 

a landmark to chemist researchers that were starting to use statistical methods for their analytical problems. 

The new Society could help researchers in publishing their results in journals that, perhaps, were still not 

ready to accept the new point of view of chemometrics, even if most of the mathematical tools were already 

common in other areas such as econometrics and psychometrics. Anyway, the most important advice given 

by these pioneers was to use the mathematical tools, but maintaining always the point of view of the chemist. 

Since then, chemometrics has grown and evolved, and the contemporary evolution of computers has been a 

strong help. At now, there are several national Societies (for example in Great Britain, Spain, Sweden, 

Russia, Belgium, etc.) and there are also several Groups (for example, the Italian Group of Chemometrics, 

which is a section of the Italian Society of Chemistry). There are also two dedicated journals, Journal of 

Chemometrics (John Wiley & Sons, NJ) and Chemometrics and Intelligent Laboratory Systems (Elsevier, 

Netherland). Several companies have been developing software and tools for chemometrics (e.g. CAMO, 

Norway; R Core Team, Austria; Minitab Inc., USA; MathWorks, USA). 

The use of chemometrics has involved many other scientific fields: besides analytical chemistry, from which 

it started and in which it is normally used, for instance, in spectroscopy [3] and chromatography [4], it is 

commonly used in metabolomics [5, 6], QSAR [7], bioengineering [8], polymer science [9], environmental 

chemistry [10], industrial chemistry [11], and so on. Up to now, a research on Scopus with the only keyword 

“chemometrics” gives more than 11000 results: this number did not reach 400 in 1990 (15 years after the 

first paper by Kowalski [2]), and reached more or less 2000 in 2000, with a peak of 954 papers published in 

2017 only. Figure 1.1 shows the number-per-year published papers with “chemometric” as keyword, up to 

August 2018. 
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Figure 1.1: Number of papers published by year, concerning chemometrics (source: Scopus) 

Wold and Kowalski were initially mainly interested in pattern recognition [2], which is still one of the main 

topics in chemometrics, but new frontiers have been opened.  

For sure, the most known and used chemometric technique is principal component analysis (PCA) [12]. 

Looking for “PCA” on Scopus gives almost 88000 results (~200 of which dating back to before 1970). The 

role of PCA goes far beyond chemistry: it easily finds applications also in very different sciences, as social 

science [13] and psychology [14, 15]. PCA is the most typical example of explorative analysis. PCA does 

not give any quantitative or classification result. PCA’s only goal is to visualize data, by simple 2D- or 3D- 

plots, starting from data having any number of dimensions (variables). By PCA plots, it is easy to visualize 

similarities and dissimilarities between samples and variables. The present Thesis will not discuss PCA in 

detail; however, some basic concepts could be useful to better understand what will be shown in the 

following chapters. PCA starts from a dataset matrix of dimensions n x v, where n is the number of samples, 

and v the number of variables. It computes a linear combination of the original variables in order to convert 

them into new variables, the principal components (PCs), which have the characteristics of being orthogonal 

to each other and ordered to have, in each PC, the maximum possible quantity of information, or explained 

variance (EV). In practice, PCA rotates the original space (spanned by the original variables) to the PC-

space. The coordinates of samples in this new space are the scores, while the coordinates of variables are the 

loadings. Therefore, 2D- or 3D- scores and loadings plots often carry most of the EV, and are useful to 

examine several properties:  

 Similarities between samples and variables: samples or variables that are close to each other in 

scores or loadings plot are considered similar 

 Outliers: samples with scores far from all the others 

 Relevant or not relevant variables: loadings far or close to the origin 

 Role of variables in describing samples: scores and loadings that are in the same quadrant of the 

respective plot  
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The most important advantage of PCA is that, in general, PC1 vs PC2 plot is sufficient to describe the entire 

dataset, sacrificing only some percent of information. On the contrary, when proceeding in univariate mode 

starting from a dataset of v variables, all plots of each pair of variables should be studied to have a complete 

vision of the dataset. Figure 1.2 shows an example of scores and loadings plot. 

 

Figure 1.2: example of a) scores plot, and b) loadings plot 

Hence, PCA scores and loadings may be used for further analyses. Chemometrics, in fact, has been 

developed in other areas, such as pattern recognition (or classification) [16], regression [17] and noise 

reduction [18]. 

Pattern recognition means to recognize an object as pertaining to a specific class by some chemical 

properties (for example, to classify an oil as Italian or not, based on its volatile fraction analysis [19]). For 

such analyses, a dataset containing samples from all classes under study is needed. “Classes” may be any 

characteristic joining groups of samples, such as geographical origin [19], commercial category [20], quality 

level [21], presence or absence of a disease [22] or of defects [23]. The mathematical model computed with 

such datasets has the first aim of discriminate the classes and recognize the training samples in the proper 

class. Then, new samples may be projected onto the model and assigned to a specific class. Several 

techniques are used with this aim, the most common of which is probably linear discriminant analysis (LDA) 

[19, 22]. However also artificial neural network (ANN) [24] received great interest, and other algorithms 

have been developed [25–27].  

Also quantitative analysis is extremely important, and regression methods are largely used by 

chemometricians [28]. The classical regression method is ordinary least squares (OLS), that is the one used 

to compute common univariate calibration lines, which can somehow be extended to the multivariate field 

(multivariate linear regression, MLR). Among the others, OLS is very useful to perform computations for the 

design of experiments (DoE), a technique that will be discussed and applied in Chapter 3. Besides OLS, the 

two most important chemometric tools for regression are principal component regression (PCR) [29] and 

partial least squares (PLS) [17]. PLS will be discussed in detail Chapter 4.  

Another important issue is noise reduction, which means removing, or at least reducing, the analytical noise 

present in every chemical analysis. It is a very complex issue, and there are dozens of chemometric tools 

aimed at noise reduction. These can be roughly divided into two categories: data pre-processing [30] (some 

of these techniques will be used further on in this Thesis) and variable selection [31].  
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Although all these analyses seem to have different goals, it is very easy to mix them to reach the desired 

result. For example, a noise reduction technique is often used to improve the results of a subsequent 

classification or regression analysis; the same PLS can be sometimes used for variables selection, and a 

technique combining PLS regression and classification has been developed: PLS-DA [32]. Moreover, all 

these methods can start from PCA scores and loadings, instead of original variables. For instance, PCR 

performs regression starting from PCA scores. Therefore, one can think chemometrics as a series of 

statistical and mathematical methods applied to chemical data, which can be independent of each other, but 

also inter-related. Sometimes, the solution of a specific problem could derive from a chemometric analysis 

completely different from the one decided at the beginning, or from several analyses used one after the other, 

starting from results of the previous one. Therefore, it often does not exist a specific chemometric way for 

solving a specific problem, and the obtained results can be probably always improved using other tools. 

The present Ph.D. Thesis is divided into two parts. The first one (Chapters 2 and 3) shows the application of 

chemometric tools, in particular, LDA, PLS-DA, and design of experiments (DoE), to specific problems. 

Issues spanning from pure chemistry to biology, and also to an industrial process are discussed. For the 

industrial process, also a chemometric analysis for the on-line quality control will be shown. The second part 

(Chapter 4) will concern the development of net analyte signal (NAS) algorithm, in order to face up matrix 

effect and to develop a way for using standard addition method (SAM) in a multivariate field. In this second 

part, applications of the NASSAM algorithm will be shown for several different analytical techniques, again 

dealing with specific problems. 

Besides chemometrics, the guiding principle of these two parts is, in general, direct analysis. Direct analysis 

means obtaining the desired result through chemical analyses that do not destroy the analyzed samples, 

possibly allowing some further chemical analyses. Although such principle has been not always followed 

(for example, for some DoE results a destructive analysis was necessary), most of the results obtained, and 

all of the NAS ones, derived from direct analyses. 
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CHAPTER 2: PATTERN RECOGNITION 

As already stated in the previous chapter, pattern recognition (or classification) was one of the main interests 

of Wold and Kowalski at the beginning of chemometrics. 

The following Chapters 2.1, 2.2, and 2.3 will show some applications of pattern recognition. 

The first one concerns the application of LDA to honeys analyzed by head-space gas-chromatography, with 

the aim of discriminating the twelve botanical classes from which samples came. This work was carried out 

in collaboration with Coop Italia (Casalecchio di Reno, Bologna, Italy) and the Council for Agricultural 

Research and Economics (CREA, Bologna, Italy). It was published on European Food Research and 

Technology (reference: 2018, 244(12):2149-2157). 

The second one concerns LDA applied to a metabolomic profile of grapevines. The aim of that study was to 

use metabolites concentration as a fingerprint to discriminate between common plants and grapevines made 

resistant to illnesses. This work was carried out in collaboration with Prof. Annalisa Tassoni (Department of 

Biological, Geological, and Environmental Sciences, University of Bologna, Italy) and Prof. Peter J. Davies 

(Departments of Plant Biology and Horticulture, Cornell University, NY). It was published on Plant 

Physiology and Biochemistry (reference: 2019, 135:182-193). 

The last work concerns again honey, but the aim was to discriminate natural honeys from adulterated ones. 

LDA was applied to variables whose analysis is mandatory for the Italian law, while PLS-DA was applied 

for an alternative method of discrimination, based on bio-luminescence of bacteria put in contact with honey 

samples. Also this work was carried out in collaboration with the Council for Agricultural Research and 

Economics (CREA, Bologna, Italy). It was published on European Food Research and Technology 

(reference: 2019, 245:315-324). 
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CHAPTER 2.1: BOTANICAL TRACEABILITY OF UNIFLORAL HONEYS 

BY CHEMOMETRICS BASED ON HEAD-SPACE GAS- 

CHROMATOGRAPHY 

The present work was published by the journal “European Food Research and Technology” (reference: 2018, 

244(12):2149-2157; https://doi.org/10.1007/s00217-018-3123-3). The experimental work was carried out in 

the laboratory of Coop Italia (Bologna, Italy), under the supervision of Mr. Fernando Gottardi and Dr. Sonia 

Scaramagli. Samples were collected both by Coop Italia and by Dr. Gian Luigi Marcazzan, from CREA 

institute (Bologna, Italy). Dr. Antonia Zelano prepared all samples for analysis. I analyzed the samples, 

performed all chemometric analyses and, together with my PhD co-Tutor (Prof. Dora Melucci), wrote the 

manuscript paper. 
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CHAPTER 2.2: SEASONAL CHANGES IN AMINO ACIDS AND PHENOLIC 

COMPOUNDS IN FRUITS FROM HYBRID CROSS POPULATIONS OF 

AMERICAN GRAPES DIFFERING IN DISEASE RESISTANCE 

The present work was published by the journal “Plant Physiology and Biochemistry” (reference: 2019, 

135:182-193; https://doi.org/10.1016/j.plaphy.2018.11.034). The experimental work was carried out in 

Cornell University (NY) by Prof. Peter J. Davies, Prof. Annalisa Tassoni, and Prof. Bruce I. Reisch. Data 

was collected by Prof. Tassoni and plant literature review was compiled by Prof. Davies. Prof. Melucci and I 

performed all chemometric analyses. All the cited authors contributed to write the manuscript paper, each 

one describing his part of the work.  
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CHAPTER 2.3: CHECKING SYRUP-ADULTERATION OF HONEY 

USING BIOLUMINESCENT BACTERIA AND CHEMOMETRICS 

The present work was published by the journal “European Food Research and Technology” (reference: 2019, 

245:315-324; https ://doi.org/10.1007/s0021 7-018-3163-8). All the experimental work was carried out in the 

Department of  Pharmacy and Biotechnology of the University of Bologna (Bologna, Italy), in CREA-API 

(Bologna, Italy) and IZSLER (Brescia, Italy) institutes. Prof. Melucci and I performed all chemometric 

analyses. All cited authors contributed to write the manuscript paper, each one describing his part of the 

work. 
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CHAPTER 3: DESIGN OF EXPERIMENTS 

The term “design of experiment” was created by the British statistician Sir Ronald Aylmer Fisher, who 

published a book with this title in 1935 [1] (in which, besides, he also introduced the concept of null 

hypothesis). His basic idea was simple: in order to get conclusive, or at least reliable, conclusions from the 

results of an experiment, this experiment has to be well designed and logically structured. 

Over time, this idea of properly designing an experiment has been conjugated with the need of industry and 

laboratories of saving time and money (e.g. chemicals) while performing the experiment. This brought to the 

development of a series of methods which overall go under the name “design of experiments” (DoE). The 

main purpose of DoE is to obtain the maximum, or most robust, amount of information, using the lowest 

possible number of experiments or keeping a limit in terms of time or cost [2]. 

Like the other chemometric tools, also DoE has found several applications both in chemistry [3–6], but also 

in many other fields, such as: chemical engineering [7, 8], computer science [9], engineering [10, 11], 

medicine [12], psychology [13], and many others, such as health services organization [14]. 

The principle on which DoE is based is that the answer(s) generated by a system can be influenced by 

several parameters, called factors. For instance, an answer might be the yield of a reaction or the degree of 

satisfaction of a customer. In order to optimize the answer(s) of interest [2], a DoE can be built if some 

conditions are satisfied: factors (that is, variables) have to be controllable; these can assume at least two 

different levels; factors can be controlled each one independently of the others. In such a situation, the 

traditional strategy would be univariate, which means to vary the level of a single factor until the best 

solution has been achieved. Then, the first factor is kept constant at the optimal level, and a second one is 

varied, until a better solution is achieved. Then these two factors are left at their “optimal” level and the other 

ones are varied, one at a time. This situation is shown, for two factors, in Figure 3.0.1.  

 

Figure 3.0.1: The “one at a time” strategy, each point is an experiment.  

Green points indicate the optimal solutions for factors 1 and 2 

However, this strategy suffers from two enormous drawbacks: 

 As it can be seen from Figure 3.0.1, only a small portion of the experimental space is explored. If, 

for example, the overall best solution was situated above the second black point of factor 1, by this 

method it would never be achieved. 
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 In general, this strategy requires a higher number of experiments than a proper DoE, which means 

higher costs and much more time. 

On the contrary, DoE fixes the lower and the higher limits of each factor, and executes only the experiments 

at the extreme points of the experimental space, as shown in Figure 3.0.2 (again for 2 factors) 

 

Figure 3.0.2: DoE strategy 

By comparing Figure 3.0.1 and Figure 3.0.2, the main general consideration is that DoE requires a lower 

number of experiments, with the already cited advantages. However, from an analytical point of view, the 

most important advantage is that the experimental space not covered by the experiments can be “explored” 

by computing a mathematical linear model in the form 

 𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏12𝑥1𝑥2 (eq. 3.0.1) 

where y is the answer of interest, xi are the factors, bi are the regression coefficients, and b0 is the intercept. 

Once created the model, any value of y can be calculated by inserting in eq. 3.0.1 the combination of interest 

of x1 and x2. Moreover, eq. 3.0.1 contains the term b12, that is another interesting characteristic of DoE, which 

cannot be studied with the “one at a time” method. This term, indeed, takes into account the interaction 

between the two factors, which means that the two factors could influence together the behavior of y, making 

the mathematical model not perfectly addictive [15]. By adding levels to DoE, and degrees of freedom to the 

model, other effects can be studied. The most common is the square effect of factors, by adding a third level 

to the design, as shown in Figure 3.0.3 

 

Figure 3.0.3: DoE strategy with three levels 
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In this case, the model becomes: 

 𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏12𝑥1𝑥2 + 𝑏11𝑥1
2 + 𝑏22𝑥2

2 (eq. 3.0.2) 

The squared terms 𝑏𝑖𝑖𝑥𝑖
2 allow to study the curvature in the behavior of y, thus finding minima and maxima, 

if present. However, this obviously increases the required experiments. 

The number N of experiments considered in a DoE (“cubic”) scheme with F factors and L levels is N=L
F
; 

thus, N increases rapidly with the number of factors. In general, the interaction between more than two 

factors or terms higher than the second order are considered not influential, therefore L commonly assumes 

value 2 or 3. If all the possible experiments are carried out, which means all the possible combinations of 

factors’ levels, the resulting DoE is called “full factorial”. However, several methods, that will not be 

discussed in detail, exist to reduce the number of experiments without losing the possibility of computing the 

model of interest with all the needed terms. 

At this point, it is important to underline that the success of a DoE method strongly depends on its initial 

building phase. As stated before, DoE could be applied to whichever optimization problem in whichever 

field; however, the most important phase is that of selecting the correct variables that might be influential for 

the response to be optimized, and the proper levels. In such phase, it is very important to well know the 

studied problem and to take into account the available time and resources to carry out the experiments, which 

means also to decide how many experiments can be actually carried out in order to have enough information 

without exceeding the fixed limits. Moreover, it is important to decide how to properly collect the 

response(s), because it could require more analyses (which means again time and costs), and an erroneous 

procedure could make the entire project fail, giving misleading information. Therefore, this preparation part 

is the most important for the entire DoE procedure, also more than properly carrying out the experiments. In 

fact, in general, DoE is somehow robust, which means “resistant”, to small errors in the experimental phase. 

DoE is also very useful to understand which of the selected variables actually are the most important to 

describe the problem. Once created the linear model, each term is considered “important” if its regression 

coefficient b is significantly different from 0 [2]. In other words, a variable, or an interaction, can be 

considered influential for the answer if the p-value associated to its regression coefficient is lower than the 

selected significance level (usually 0.05 or 0.1). To create the linear model, the levels assumed by each factor 

are “scaled”, so that the minimum has value -1 (“level -1”), the maximum is “level +1”, and the central is 

“level 0”. In this way, the computation of the model is simpler, but it also allows to eventually evaluate 

which variable is the most important for the problem, by considering the magnitude of the absolute values of 

b coefficients, together with the corresponding standard deviations. 

Therefore, there are two main results that can be obtained by interpreting the DoE linear model: 

 The calculated behavior of the response (y) variable in the entire experimental space. This can be 

visualized by a response surface plot, as the one reported in Figure 3.0.4. In this graph, the calculated 

value of the response is shown as a function of two factors. This allows to find the combination of 
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factor levels that optimize the response (if squared terms has been put in the model, maxima and 

minima could be visualized). Therefore, if the required result was to find such a combination, future 

experiments would be carried out at those levels, which will “guarantee” (in the limits of 

experimental error) the best result. 

 
Figure 3.0.4: Example of response surface.  

Each line represents a region with the same response value 

 The most significant factors for describing the problem, which are the ones with low p-values. The 

ones with p-value higher than the significance level are probably not relevant for the problem; 

therefore, for an optimization problem, their level can be left at whichever value (generally, at the 

more convenient one). 

Once terminated a DoE, if the results are not satisfactory, it can be decided to go on with a second DoE. In 

the subsequent DoE, the not relevant factors can be discarded or some new factors can be introduced, that 

were not taken into account before. Moreover, the experimental domain might be changed (for example, 

centering it around the optimal region found by the first DoE). Many strategies are available to perform a 

DoE. For example, some kind of design (as the Plackett-Burmann [16]) are considered only as preliminary, 

using few experiments to reduce the number of factors when it is too high at the beginning. Some other 

designs (as the Doehlert one [17]) allow to start with a low number of experiments, and then to simply 

extend the experimental domain by adding few more (this design is useful when it is not sure on which limits 

one should assume the factors). The choice again depends on available time and costs. 

The following chapters will present two applications of DoE. In both cases, we had the possibility to perform 

a full factorial design. The first one concerns a study about the ability of a plant (Polygonum aviculare L.) to 

absorb some toxic metals while growing, with the aim of using it for bio-remediation of soils. This work is 

part of another PhD project in collaboration with the department of biological, geological, and environmental 

sciences of the University of Bologna. The second work concerns the optimization of work conditions of an 

industrial machine, and it is carried out in collaboration with the company IMA S.p.A. (Ozzano dell’Emilia, 

Bologna, Italy). 

  



16 
 

References 

1.  Fisher RA (1935) The design of experiments 

2.  Cela R, Claeys-Bruno M, Phan-Tan-Luu R (2010) Screening Strategies. In: Comprehensive 

Chemometrics. pp 251–300 

3.  Hibbert DB (2012) Experimental design in chromatography: A tutorial review. J. Chromatogr. B 

Anal. Technol. Biomed. Life Sci. 910:2–13 

4.  Denmark SE, Butler CR (2008) Vinylation of aromatic halides using inexpensive organosilicon 

reagents. Illustration of design of experiment protocols. J Am Chem Soc 130:3690–3704 . doi: 

10.1021/ja7100888 

5.  Carter CW, Baldwin ET, Frick L (1988) Statistical design of experiments for protein crystal growth 

and the use of a precrystallization assay. J Cryst Growth 90:60–73 . doi: 10.1016/0022-

0248(88)90299-0 

6.  Roosta M, Ghaedi M, Daneshfar A, et al (2014) Optimization of the ultrasonic assisted removal of 

methylene blue by gold nanoparticles loaded on activated carbon using experimental design 

methodology. Ultrason Sonochem 21:242–252 . doi: 10.1016/j.ultsonch.2013.05.014 

7.  Gui MM, Lee KT, Bhatia S (2009) Supercritical ethanol technology for the production of biodiesel: 

Process optimization studies. J Supercrit Fluids 49:286–292 . doi: 10.1016/j.supflu.2008.12.014 

8.  Elsayed K (2015) Optimization of the cyclone separator geometry for minimum pressure drop using 

Co-Kriging. Powder Technol 269:409–424 . doi: 10.1016/j.powtec.2014.09.038 

9.  Simpson TW, Peplinski JD, Koch PN, Allen JK (2001) Metamodels for computer-based engineering 

design: Survey and recommendations. Eng. Comput. 17:129–150 

10.  Deloach R, Denver J (2000) The Modern Design of Experiments : A Technical and Marketing 

Framework 21st AIAA Advanced Measurement Technology and Ground Testing Conference. In: 

21st Aerodynamic Measurement Technology and Ground Testing Conference 

11.  Wilson J, Sgondea A, Paxson DE, Rosenthal BN (2007) Parametric Investigation of Thrust 

Augmentation by Ejectors on a Pulsed Detonation Tube. J Propuls Power 23:108–115 . doi: 

10.2514/1.19670 

12.  Qvist V, Stoltze K (1982) Identification of Significant Variables for Pulpal Reactions to Dental 

Materials. J Dent Res 61:20–24 . doi: 10.1177/00220345820610010401 

13.  Westfall J, Kenny DA, Judd CM (2014) Statistical power and optimal design in experiments in which 

samples of participants respond to samples of stimuli. J Exp Psychol Gen 143:2020–2045 . doi: 

10.1037/xge0000014 

14.  Syam SS, Côté MJ (2012) A comprehensive location-allocation method for specialized healthcare 

services. Oper Res Heal Care 1:73–83 . doi: 10.1016/j.orhc.2012.09.001 

15.  Pigeon JG (2006) Statistics for Experimenters: Design, Innovation and Discovery. Technometrics 

48:303–304 . doi: 10.1198/tech.2006.s379 

16.  Plackett RL, Burman JP (1946) The Design of Optimum Multifactorial Experiments. Biometrika 



17 
 

33:305 . doi: 10.2307/2332195 

17.  Doehlert DH, Klee VL (1972) Experimental designs through level reduction of the d-dimensional 

cuboctahedron. Discrete Math 2:309–334 . doi: 10.1016/0012-365X(72)90011-8 

 



18 
 

CHAPTER 3.1: DoE FOR BIO-REMEDIATION 

Introduction 

The present chapter shows an application of DoE to a biological study. It is part of a larger research project, 

carried out in collaboration with the department of biological, geological, and environmental sciences of the 

University of Bologna, whose aim is to find new plants able to absorb high concentrations of dangerous 

metals from soils, thus resulting useful for bio-remediation purposes. 

The ability of plants to absorb metals from soils is a topic of great interest for biologists [1]. Indeed,  

depending on their accumulation capacity, plants could be used for bio-indication [2, 3] (i.e. using them as 

analytical tool to monitor the presence of metals), or for bio-remediation [4, 5]. Bio-remediation (or 

phytoremediation if plants are used) means to use living organisms to accumulate pollutants, and then 

removing the pollutants from the area of interest by simply removing the organisms containing them. The 

advantages of using plants are that these can accumulate metals in several parts of their organism [6] (most 

of all in leaves [7, 8]), they can be easily removed, and they are adaptable to live in many different 

environments, even polluted ones [9]. Moreover, plants may be engineered to increase their accumulation 

capacity [10, 11]. It is under study also how metal accumulation influences plant life and growth [12]. 

Several plants have been studied for bio-monitoring and bio-remediation purposes, as for example dandelion 

(Taraxacum officinale) [6, 8], chicory (Cichorium intybus L.) [13], and Plantago major [14]. The present 

study focused its attention on common knotgrass (Polygonum aviculare L.), a plant that was already studied 

for its capacity of hyper-accumulating Hg [15], but never studied for the other metals. 

In particular, we were interested in studying the bio-accumulation of Cu, Cd, Pb, Zn, and Cr, that are very 

common pollutants, in particular in urban areas [16, 17]. The previous part of the project, that will not be 

discussed in details here, proved that the Polygonum aviculare has the ability to absorb these metals; 

however, it seems not able to hyper-accumulate them. Anyway, it demonstrated to be useful for revealing 

actual levels of metals in the soil; thus, it could be considered as a bio-monitoring species.  

The design of experiments (DoE) was applied to study how the presence of each metal at different 

concentrations affects the absorption of the others [18]. DoE was already applied for studying metal 

accumulation; however, in general, attention was focused on the effects of metals in biochemical 

development of the plant [19]. It has been already reported that metal accumulation depends on several 

characteristics of the soil, like pH, composition, and granulometry [18]. However, for the present study, the 

attention was focused only on metals; in fact, plants were cultivated in a growth chamber in hydroponic 

conditions (which means without the use of solid ground), with a standardized culture medium in which only 

metals in proper concentrations were added. Although the biology of plants by itself could be a great source 

of variability, it was therefore possible to “standardize” the plant cultivation. Hence, it was possible to check 

whether the different concentrations of Cd, Pb, and Cr (that were used as independent variables, while the 

concentrations of Cu and Zn were kept constant for all samples), and their interactions, can influence the 
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quantity of metals absorbed by Polygonum aviculare. Such a study can be useful to understand how this 

plant reacts in the presence of several metals in its environment, which is the situation of a polluted soil. In 

fact, a soil is not generally contaminated by a single chemical species. If performed also for other plant 

species, it could be useful also for finding the optimal plant for the bio-remediation of each specific soil. 

Materials and Methods 

Plants growing and DoE 

As already stated, plants were grown in a growth chamber in hydroponic conditions. Hoagland medium [20] 

was used, with the following composition: KNO3 (2 mM); Ca(NO3)2•4H2O (2 mM); NH4NO3 (0.5 mM); 

MgSO4•7H2O (0.5 mM); KH2PO4 (0.25 mM); Fe(Na2)-EDTA (40 μM); KCl (50 μM); H3BO3 (25 μM); 

MnCl4•4H2O (2 μM); ZnSO4•7H2O (2 μM); CuSO4•5H2O (0.5 μM); (NH4)6Mo7O24•4H2O (0.075 μM); 

CoCl2•6H2O (0.15 μM); pH was adjusted to 5.8-6 with KOH. All chemicals were purchased by Sigma 

Aldrich (Merck, Darmstadt, Germany). 

To this standard medium, the proper amount of metals was added, following the concentration decided for 

the experimental design. Constant concentrations of Cu (0.5 μM) and Zn (2 μM) were added to all samples.  

Plants were grown for 4 weeks (1 for germination + 3 of treatment), and the liquid medium was replaced 

every week, in order to maintain “constant” characteristics. The first week (germination phase), seeds were 

put in Hoagland medium only, without metals, in order to let them sprout. Then, starting from the second 

week, metals were added to the medium. Some trials carried out by growing the plants for six weeks, instead 

of three, showed no significant differences in metal absorption; therefore, three weeks was chosen as 

growing time. 

Sample preparation and analysis 

After three weeks of treatment, plants were harvested, weighed, and frozen with liquid N2, in order to grind 

them homogeneously. Samples were then dried and grinded again, in order to obtain a thin powder. 100 mg 

of that powder was put in a ceramic capsule, 1 ml of HNO3 0.5 M was added and then put in a muffle 

furnace at 500°C for 5 h. This procedure was aimed at destroying and removing the organic matter (that 

should evaporate as H2O and CO2), leaving only the inorganic matter in the ashes. Ashes, which are soluble 

in water, were solved in 4 ml of HNO3 0.5 M, and then analyzed by atomic absorption spectrometry (AAS). 

The instrument used is a Perkin Elmer AAnalyst 400 (Perkin Elmer, Waltham, MA, USA), controlled by the 

software WinLab 32, by Perkin Elmer. Table 3.1.1 shows the experimental conditions of AAS used for each 

analyzed metal. 

Metal Wavelength (nm) Pyrolysis T (°C) Analysis T (°C) 

Cadmium 228.80 850 1650 

Chromium 357.80 1650 2500 

Copper 324.75 1000 2300 

Lead 283.31 700 1800 

Zinc 213.86 700 1800 

Table 3.1.1: AAS experimental conditions for metals analyses 



20 
 

For each of the five analyzed metals (Cd, Cr, Cu, Pb, Zn), a calibration line was created. Standards for 

calibration lines were purchased by Merck (Darmstadt, Germany). Standard ranges were selected in order to 

stay in the linear range of each analyte, as tabulated in the software WinLab 32. Therefore, three standards 

were prepared for each metal, with the following concentrations: 

 Cd: 2, 4, 6 ppb 

 Cr: 2, 10, 25 ppb 

 Cu: 2.5, 10, 25 ppb 

 Pb: 5, 20, 40 ppb 

 Zn: 0.1, 0.5, 0.8 ppm 

Peak area was used as analytical signal, after verifying that peak height never overcame 0.6 AU, in order to 

always stay in the absorbance linear range. Before each analysis, a blank sample was analyzed, and the peak 

area of the sample was subtracted to the previous blank one. For each calibration line, the limit of detection 

(LoD) was computed, and it was verified that it never overcome the lowest standard concentration. When 

analyses had to be carried out in several days, every day three standards were analyzed and projected on the 

calibration line, to verify its validity. Three replicates were analyzed for each standard and sample. The 

injected volume was 20 μL for each analysis. Samples were properly diluted in order to obtain a signal in the 

calibration range, and the dilution factor was kept into account to calculate the metal concentration in the 

plant (expressed as ppm). 

In order to analyze Cd, Cr, and Pb by AAS, some matrix modifiers are necessary. In particular Mg(NO3)2 

(Perkin Elmer) for Cd and Cr, PdCl2 (Fluka, Honeywell, Morris Planes, NJ, USA) for Cd, and NH4H2PO4 

(Sigma Aldrich) for Pb. 20 μL/mL of a solution containing all of them were added to each sample, final 

concentrations: 200 mg/L for Mg(NO3)2, 2.3 mg/L for PdCl2, 4 mg/L for NH4H2PO4. It was also verified that 

the presence of an unnecessary modifier did not influence the measurements of other metals (as Cu and Zn, 

that do not require any modifier). 

Results and Discussion 

A full factorial design was carried out with three factors (Cd, Pb, and Cr) and three levels, resulting in 27 

total experiments. For each experiment, three plants were grown. This means that 81 plants were grown with 

different concentrations of Cd, Cr, and Pb in the culture medium. Nine of these samples were analyzed two 

times (without re-growing the plant but repeating the extraction procedure) due to uncertain results. The 

following Table 3.1.2 summarizes the DoE levels 

Level -1 0 +1 

Concentration μM ppb μM ppb μM ppb 

Cd 0.01 1.6 0.07 8 0.14 16 

Pb 1.83 380 14.48 3000 28.96 6000 

Cr 6.92 360 23.08 1200 46.16 2400 

Table 3.1.2: Metals concentrations according to DoE 
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DoE levels were chosen according to a previous study carried out by our group in the context of this project, 

which showed that urban soils, sampled in different places of Bologna and Milan, have, on average, the 

concentrations reported as level 0, while natural soils, sampled in countryside near the same two cities, have 

the concentrations reported as level -1. Level +1 was chosen as two times the concentrations of level 0, 

simulating a strongly polluted soil. 

Appendix A shows the results obtained by the experiments carried out. 

The execution of all 81 experiments (plus 9 replicates) made it possible to compute a linear model 

considering all the effects: individual variables, interactions between variables and square effects. Five linear 

models were computed, one for each dependent variable (the absorbed concentrations of Cd, Cr, Cu, Pb, Zn) 

The following Table 3.1.3 shows the linear coefficients and the corresponding standard deviations estimated 

by the linear models 

 
Cd Cr Cu Pb Zn 

 
Coeff. Std. dev. Coeff. Std. dev. Coeff. Std. dev. Coeff. Std. dev. Coeff. Std. dev. 

b0 1.34 2.39 -0.0810 0.319 3.97 2.64 4.86 5.58 32.1 5.32 

b1 2.25 1.14 -0.0479 0.153 0.560 1.26 -1.81 2.67 0.520 2.54 

b2 1.34 1.16 0.0768 0.155 -0.0943 1.28 3.41 2.71 4.07 2.58 

b3 -1.22 1.19 0.477 0.159 0.398 1.31 -2.56 2.77 0.903 2.64 

b12 1.77 1.40 -0.0695 0.187 -2.78 1.55 -3.01 3.27 -0.00117 3.11 

b13 -2.37 1.41 -0.172 0.188 0.509 1.56 5.10 3.29 -2.25 3.13 

b23 -2.25 1.47 -0.124 0.196 -1.27 1.62 0.334 3.43 -4.91 3.27 

b11 1.13 1.97 0.219 0.263 4.26 2.17 3.77 4.59 10.5 4.37 

b22 1.17 1.97 0.501 0.263 4.51 2.17 2.50 4.59 12.0 4.37 

b33 0.692 1.98 0.375 0.264 0.985 2.19 6.22 4.62 8.96 4.40 

Table 3.1.3: coefficients and standard deviations estimated by linear models for plant DoE;  

b0 is the intercept; 1: Cd; 2: Pb; 3: Cr 

The following Table 3.1.4 shows, instead, the p-values of each regression coefficient 

 
Cd Cr Cu Pb Zn 

b0 0.633 0.932 0.197 0.446 0.00 

b1 0.0709 0.727 0.667 0.509 0.814 

b2 0.285 0.750 0.944 0.233 0.0834 

b3 0.339 0.00940 0.772 0.377 0.698 

b12 0.235 0.674 0.0898 0.371 1.00 

b13 0.119 0.347 0.751 0.138 0.410 

b23 0.164 0.390 0.461 0.926 0.100 

b11 0.607 0.332 0.0828 0.452 0.0146 

b22 0.589 0.118 0.0626 0.610 0.00540 

b33 0.747 0.247 0.672 0.209 0.0303 

Table 3.1.4: p-values estimated by linear models for plant DoE; b0 is the intercept; 1: Cd; 2: Pb; 3: Cr.  

The most significant p-values are highlighted in yellow 
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Table 3.1.4 shows which variables are the most significant for the absorption of each metal, that is, which 

one have a p-value lower than a significance level of 0.1 (or 0.05). From the observation of Tables 3.1.3 and 

3.1.4, some remarks can be drawn for each metal (each linear model is independent from the others). 

 CADMIUM 

In Cd model, only the coefficient b1 can be considered significant (p = 0.07), which is the coefficient 

corresponding to the independent variable Cd. Its coefficient is positive, which means that, in the explored 

space, Polygonum aviculare tends to absorb more Cd when its concentration in the medium increases, while 

the presence of other metals does not influence its absorption. This could mean that Cd may have some role 

in plant growth, therefore, it tends to accumulate this metal. The following Figure 3.1.1 represents the 

response surface for Cadmium with Cadmium and Chromium as independent variables. Cr has been chosen 

because its interaction with Cd (b13) is slightly significant (p = 0.119). Figure 3.1.1 confirms that the 

absorption of Cd increases by increasing its presence in the medium. 

 

Figure 3.1.1: response surface for Cd dependent variable as a function of Cd (independent) and Cr 

 CHROMIUM 

Also in this case, the absorption of Cr is affected only by its presence in the medium (b3, p = 0.00940), and 

again its absorption increases by augmenting the concentration in the medium, without any influence due to 

other metals. Cr (most of all Cr(VI), while Cr(III) was used for the present work) is known for its toxicity in 

plants [21], because it interferes with the photosynthetic path and causes other damages. However, it is 

absorbed by non-specific channels, while other essential ions pass through specific paths [22]; therefore, it 

can be easily absorbed by plants. This characteristic, however, makes the use of plants interesting for the bio-

remediation of soil contaminated by this metal [23]. The following response surface (Figure 3.1.2) shows the 

calculated absorption of Chromium as a function of Chromium and Lead. Pb has been chosen because its 

square effect (b22) is slightly significant for Cr absorption. 
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Figure 3.1.2: response surface for Cr dependent variable as a function of Cr and Pb 

 COPPER 

Copper, together with Zinc, is one of the two metals whose concentration was not varied in the present DoE, 

because their effects on plants have been widely studied [24] (and, until a certain level, these are also 

essential metals). Thus, we were interested only in studying how the presence of other metals influenced the 

absorption of these two. Table 3.1.4 shows that none of the three variables is significant by itself, however 

Cd and Pb influence Cu both as squares (b11 and b22, p11 = 0.0828 and p22 = 0.0626) and with their interaction 

(b12, p = 0.0898). Figure 3.1.3, therefore, represents the influence of these two metals on Copper. 

 

Figure 3.1.3: response surface for Cu dependent variable as a function of Cd and Pb 

The response surface in Figure 3.1.3 shows that there is a minimum of absorption when both Cd and Pb are 

in their 0 levels, while maxima (for the explored space) are present when one of them is at the highest and 

the other one at the lowest level. Higher absorption is present also when both Cd and Pb are at the highest or 

lowest level. We do not have any explanation for such behavior; however, for maximizing the absorption of 

Cu, it seems only important that Cd and Pb do not stay at the urban (0) level. 
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 LEAD 

In the case of Pb, none of the considered variables seem significant for its absorption. Interestingly, neither 

the Pb concentration in the medium is significant. It could mean that the studied plant is somehow “resistant” 

to the presence of Pb, and it never absorbs it beyond a certain limit. If such hypothesis was confirmed, it 

would mean that Polygonum aviculare would not be useful for bio-remediation of Pb pollution. Moreover, it 

is possible that Pb precipitates in the medium as PbSO4 or Pb3(PO4)2, or chelated by EDTA, being no more 

available for plant absorption, therefore it would be useful to study its behavior in other conditions (and, 

consequently, also its behavior with regard to the other metals, for which its concentration seems 

significant). 

 ZINC 

Zinc is the second metal that was not varied in the experiments. Table 3.1.4 shows that all the square effects 

are significant for its absorption (b11, p = 0.0146; b22, p = 0.00540; b33, p = 0.0303). Figure 3.1.4, therefore, 

reports all the combinations of the three variables. 

 

Figure 3.1.4: response surfaces for Zn dependent variable. a) Pb vs Cd; b) Cd vs Cr; c) Pb vs Cr 

As in the case of Cu, also the absorption of Zn shows a minimum in the 0-levels of all variables, while it 

increases away from these central points. In particular, it has a local maximum when the concentration of Pb 

is highest.  

Conclusions 

A full factorial DoE with three factors and three levels was applied to the study of metal absorptions by 

Polygonum aviculare. Five metals were studied (Cd, Cr, Cu, Pb, and Zn), and the concentrations of three of 

them were varied in the growing medium. Some significant effects on the presence of one metal for the 

absorption of the others were observed. 

This is only a preliminary study. As already stated, the biology of plants could have a great variability: 

therefore, replicates of the growths could be carried out to evaluate the repeatability of these results. 

Moreover, the toxicity and the effects of these metals on Polygonum aviculare have to be evaluated, as 

already studied for other plants [12]. The present study highlighted that, in general, high levels of metal 
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concentrations correspond to high absorbed concentrations. Therefore, a second DoE may be carried out 

starting from the concentrations here considered as high (+1), varying also Cu and Zn, and checking which 

concentrations would bring to plants death. 
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CHAPTER 3.2: DoE FOR MACHINE OPTIMIZATION 

Introduction 

The present chapter shows a second application of DoE for the optimization of working parameters of an 

industrial type rotary bin blender for powder mixtures. Moreover, as a second part of the same work, a 

chemometric approach for exploiting a NIR probe, connected to the machine for evaluating the mixing 

quality over time, will be discussed. This study was carried out in collaboration with IMA S.p.A. (Industria 

Macchine Automatiche, Ozzano dell’Emilia, Bologna, Italy), a company that designs and manufactures 

automatic machines for processing and packaging pharmaceutical, cosmetic, and food products. 

Design of experiments finds, probably, its best application in the optimization of industrial processes [1, 2]. 

Indeed, most industrial machines are aimed to perform always the same procedure (for producing, mixing, 

packaging, etc. the same product), without changing the working conditions. DoE, therefore, can be used 

before starting the production to find the optimal machine settings giving the best possible product with a 

small number of preliminary experiments [3]. For this reason, the American FDA suggests the use of DoE to 

control quality attributes and process parameters [4]. 

In the literature, several applications of DoE to industrial processes are present, going from optimization of 

pharmaceutical formulations for drug delivery [5], to membranes for recycling wastewater [6], to cement [7]. 

Also a helicopter rotor that minimizes vibrations was optimized by DoE [8]. 

Powder blending is another topic of interest, most of all in the pharmaceutical industry [9, 10], where the 

mixing performances may have a direct influence on drug effectiveness [11]. In this field, besides using DoE 

for machine optimization, it is also interesting to have an analytical technique able to follow in-line (i.e. 

directly inside the machine) the blending progress. The alternative (that is in any case important) is to 

analyze the product only at the end of the process. However, most of all if the process requires several steps, 

if some critical issue is found on the final product, such method is not able to understand at which point of 

the process it emerged. Another possibility could be to get a sample from different points of the process and 

analyze all of them; however, in general, this requires a great amount of time and analyses, and, in the worst 

case, also to stop the process for sampling. Therefore, the in-line approach is simpler, cheaper, and non-

destructive. The ability to analyze without altering the sample is another important characteristic for an 

industry. Obviously, the preferred analytical technique for such purpose is spectrophotometry, in particular 

near infra-red (NIR) spectroscopy [10]. Indeed, most of the molecules, in particular those of pharmaceutical 

interest, are somehow active to NIR radiation. The problem of using such in-line approach is that a huge 

amount of data may be collected for every single batch, and therefore chemometrics has to be applied to 

extract the required information. 

These practices for optimizing all aspects of industrial processes goes under the name of “quality by design” 

(QbD) [12]. 
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The main goal of a powder blending process is to obtain a homogeneous distribution of drug’s components, 

with uniform properties in the entire batch. In particular, for a pharmaceutical formulation, the content of 

active pharmaceutical ingredients (APIs), the molecule(s) with the required pharmaceutical properties, is the 

most important. Indeed, an inhomogeneous powder would bring to dosages which are not compliant with the 

therapeutic window, with the possible consequence of being harmful or without effects on the patient. Such 

problems in mixing may imply, for the industry, expensive reworks or recalls of the product. Powder 

homogeneity depends on several factors [13], as, for example, quality of raw materials, geometry of blender, 

blending speed and time. Some of these factors may be difficult to control (as the geometry of blender and 

the quality of raw material, if provided from an external company), while others can be optimized by DoE. 

In the present study, IMA company, the machine supplier, was interested in finding the optimal working 

conditions of its rotatory bin blender, with the aim of offering a better service to its customers. The purpose 

of DoE optimization was to obtain a powder mixture characterized by homogeneity and with good 

flowability. Moreover, a NIR probe was connected to the blender: the second request of IMA was to develop 

a general chemometric method to use such a probe for following the process in place. The aim was to in time 

decide whether the batch mixing was going fine or not, even without any other information about the mixture 

(because a supplier may not have the same instruments used in this work for the optimization section). 

Riboflavin (vitamin B2) was used as an example of API. 

Materials and Methods 

Machine settings and DoE 

The machine under study, manufactured by IMA S.p.A. (Ozzano dell’Emilia, Bologna, Italy), is a laboratory 

type rotatory bin blender, Cyclops Lab™, with a total volume capacity of 15 L. The following Figure 3.2.1 

shows the studied blender. 

 

Figure 3.2.1: Cyclops Lab™ bin blender (image provided by IMA website 

https://ima.it/pharma/machine/cyclops/) 

This machine rotates on its horizontal axis, and the micro-NIR spectrophotometer (MicroNIR 

spectrometer™, VIAVI Solutions inc., San Jose, CA, USA) is set on the top of the bin (at the top of the 
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“cubic” part, not visible in Figure 3.2.1). A NIR spectrum is registered for each rotation, every time the 

probe is at the bottom of the chamber and the powder “falls” over it by gravity. 

The composition of the powder to be mixed was maintained constant for all experiments: riboflavin, 3%w/w 

(BASF, Ludwigshafen, Germany); pregelatinized starch, 48.5%w/w (Colorcon, Harleysville, PA, USA); 

microcrystalline cellulose (MCC), 48%w/w (Avicel
®
 PH-101 and Avicel

®
 PH-102, Merck, Darmstadt, 

Germany); sodium stearyl-fumarate, 0.5%w/w (PRUV
®
, JRS Pharma, Rosenberg, Germany). Powders were 

put into the machine bin following a sandwiching method [14]: first of all, half of the total starch, then half 

of the total MCC, riboflavin, sodium stearyl-fumarate (used as a lubricant), the second half of MCC, and, 

finally, the second half of starch. Working always with these conditions allowed to focus the study only on 

the effects of DoE variables, thus reducing other sources of variability. Sandwiching is useful for blending 

because it increases the contact area between API and excipients, facilitating the diffusion process of the 

former into the latter. 

The independent variables and levels for DoE were decided in agreement with the machine experts of IMA 

company; these are: bin filling level, rotation speed, total mixing time, and particle size of MCC. Three 

levels were used for bin filling, rotation speed, and mixing time, while MCC was provided with two different 

particle sizes (PH-101, 50 μm, and PH-102, 100 μm); therefore, it is a qualitative variable with two levels. 

Therefore, a full factorial design was carried out with 58 experiments (3
3

• 2+4 replicates of the central points, 

two for each level of particle size). Table 3.2.1 summarizes the DoE levels 

Level -1 0 +1 

Bin filling (%) 30 52.5 75 

Rotation speed (rpm) 10 15 20 

Mixing time (min) 15 20 25 

Particle size (μm) 50 - 100 

Table 3.2.1: DoE factors and levels for blender optimization 

As it can be seen from Table 3.2.1, bin filling never reaches 100%, as recommended by IMA manufacturers, 

and the number of rotations (thus the number of IR spectra collected for each experiment) can be obtained 

multiplying rotation speed and mixing time (ranging from 150 to 500). 

The final mixture powders were characterized in terms of homogeneity and flowability. 

Homogeneity was evaluated by HPLC analysis. For each experiment, one sample was taken from inside the 

bin, as soon as the rotation stopped, and two more were taken from random points when the powder was 

discharged (common guidelines suggest to take at least three sample from inside the machine in different 

positions; however, the geometry of the bin did not permit to take more than one). 50.0 ± 0.1 mg of each 

sample were solved in a 50 ml solution. The solvent was H2OMilliQ grade : Methanol : Acetonitrile = 40:30:30; 

sonication was employed to facilitate dissolution. 100 μL of this solution was diluted in 1 mL of mobile 

phase before HPLC analysis, in order to facilitate riboflavin elution. Therefore, the expected riboflavin 

concentration for an ideal 3%w/w powder is 3 ppm. Each solution was analyzed three times; thus, for each 

experiment, nine HPLC analyses were performed. Five standards of pure riboflavin were prepared with the 
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same solvents, ranging from 1 ppm to 5 ppm, and a calibration line was computed with peak areas as 

independent variables (R
2
 = 0.998; slope = 14.0 ± 0.4; intercept = 0.8 ± 1.2, LoD = 0.3 ppm). HPLC analyses 

were carried out with an Agilent 1260 Quaternary Infinity LC (Agilent Technologies, Santa Clara, CA, 

USA) equipped with a C18 chromatographic column (Agilent ZORBAX Eclipse Plus C18). The mobile 

phase was composed by 70% H2O buffered with 0.05 M formic acid (pH = 3.75) and 30% acetonitrile 

(isocratic conditions), with a flow rate of 1 mL/min. For each analysis, a 5-μL aliquot of solution was 

injected. HPLC detector was a UV-Vis spectrophotometer, set to 266.5 nm (where riboflavin has a maximum 

of absorption). Chromatographic peaks were integrated by the software controlling the instrument, Agilent 

ChemStation (Agilent Technologies). Homogeneity was evaluated by the mean concentration of the nine 

analyses carried out for each experiment (which has to be close to 3, indicating a powder sample with an 

average concentration of 3%w/w), and by the relative standard deviation (RSD, which has to be minimized, 

indicating low variability between the replicates of the same experiment). 

Flowability, instead, was evaluated by calculating the Carr Index (ICarr) [15] by: 

 𝐼𝐶𝑎𝑟𝑟 =
𝜌𝑡𝑎𝑝𝑝𝑒𝑑−𝜌𝑏𝑢𝑙𝑘

𝜌𝑡𝑎𝑝𝑝𝑒𝑑
 

(eq. 3.2.1) 

where ρbulk is the bulk density. Bulk density is obtained by putting a known mass of powder in a 100-mL 

graduated cylinder and calculating mass/volume. The tapped density ρtapped is calculated in the same way as 

the bulk, but pressing the powder inside the cylinder before reading the volume [16] (pressing can be 

performed by different methods and goes on until no further changes in the volume are observed). 

Flowability is considered optimal when ICarr is low. In fact, the less compressible a material is, the more 

flowable it will be [15]. Carr put a borderline between free-flowing and non-free-flowing materials at 20-

21% of ICarr, considering powders as non-free-flowing [15]. Thus, DoE has to look for a minimum of ICarr, 

which should be around 20-21%. 

Chemometric approach for IR data analysis 

As already stated, one NIR spectrum is collected for each rotation of the blender. Thus, for each experiment 

of the planned DoE, 150-500 spectra are collected, in the range 908-1676 nm, with steps of 6 nm. This brings 

to have 58 datasets (the number of DoE experiments) with dimensions (150-500) x 125. Those data, with a 

proper chemometric procedure, can be useful to follow the mixing process in-line, in particular if such 

chemometric process can be automated and performed directly during spectra acquisition. 

The idea of the following method is to use the spectra by themselves to analyze every single experiment, but 

also in a combined manner to create a sort of control chart which could detect experiments that seem going 

well by themselves, but with an overall “strange” behavior. 

The first step is to study the NIR spectra of each experiment. This can be done by the moving block method 

(MBM), a well-known method [9, 17] and very suited for in-line IR analyses [18]. MBM starts from a group 

of spectra (of a selectable number), called “window”, and, for each variable, it computes mean and standard 



32 
 

deviation, reducing the window into two calculated spectra. Then a mean value is calculated for each of these 

two spectra, further reducing the window into two values. At this point, the window moves to a second group 

of spectra (for instance, the first window could take spectra from 1 to 5, the second from 2 to 6) and the 

computation is repeated. The window continues to move until all the spectra are considered. At the end of 

the computation, all the couple of values can be plotted in function of window number, and some 

information about the process can be obtained by the observation of such graphs, in particular from the 

values derived from the standard deviation spectra (MBSD). In general, if MBSD plot is flat and does not 

have discontinuity points, it means that no differences are present in the NIR spectra, thus the process is 

proceeding without trouble. 

The second possibility considered for exploiting NIR spectra is computing a control chart, basing on an idea 

of Wold et al. [19]. As it is normal for a control chart, this procedure requires a training set of successful 

experiments; thus, a group of experiments-spectra is gathered in a single dataset. In this case, a progress over 

time has to be studied, therefore a PLS model is computed using NIR spectra as predictors (X) and “time” as 

response (y). The variable “time” can be considered as the experimental time at which the corresponding 

NIR spectrum was collected. However, if the lengths of the experiments are different (as in this specific 

case), timescales will be shifted from one experiment to the other (some experiments stop after 15 min, some 

other after 25 min, and also the spectra are collected with different scan time, due to different rotation 

speeds). So, the simple variable “time” would no longer be correct. Therefore, the “time” variable can be 

somehow scaled and converted to a progress percentage (PP%), in order to have all the NIR spectra in the 

range 0-100% of experimental progress. Then, PLS is computed and X-scores are stored. In general, only X-

scores from the first PLS-factor may be used. However, depending on explained variance and RMSE, there 

might be cases in which also higher factors are useful, then also the corresponding X-scores can be stored. In 

any case, from now on the procedure works on a single factor at a time. Basing on PP% variable (or time, if 

possible), scores are divided in subsets of specific PP% intervals: in this case, it was chosen to divide X-

scores into 10 intervals of 10% PP% each. In general, any interval is possible, and even different intervals for 

each subset. For each interval, then, mean and standard deviation of X-scores are computed, and the control 

chart is created by considering as the acceptability region mean ± standard deviation (or some multiple of 

standard deviation, Wold [19] suggests 3 standard deviations). The acceptability of a new sample can be 

evaluated by projecting its NIR spectra on the PLS model, and the calculated X-scores are divided into the 

same subsets. Then the mean of each subset is projected on the control chart, and it can be easily seen 

whether the new experiment is inside the acceptability region or not, and also whether there is a particular 

moment in which the experiment has a particular behavior. 

Results and Discussion 

DoE 

Appendix B shows the results of the 58 experiments-full factorial design obtained for this work. 
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The execution of all experiments of the full factorial design made it possible to compute a linear model with 

all interaction and square effects, except for the square effect of particle size, because that variable has only 

two levels. The following Table 3.2.2 shows the regression coefficients and the corresponding standard 

deviations estimated by the linear models for all responses 

 
HPLC mean HPLC std dev iCarr 

 
Coeff. std. dev. Coeff. std. dev. Coeff. std. dev. 

b0 3.26 0.0692 0.456 0.0726 22.3 0.284 

b1 -0.0125 0.0320 0.0150 0.0336 0.0578 0.132 

b2 0.00806 0.0320 -0.00806 0.0336 0.152 0.132 

b3 -0.0647 0.0320 0.00583 0.0336 0.00806 0.132 

b4 -0.0217 0.0261 0.0235 0.0274 -1.06 0.107 

b12 0.0196 0.0392 0.0425 0.0411 0.0667 0.161 

b13 0.00833 0.0392 -0.0217 0.0411 -0.366 0.161 

b14 -0.0464 0.0320 -0.00333 0.0336 0.186 0.132 

b23 0.0225 0.0392 -0.0517 0.0411 0.183 0.161 

b24 0.0119 0.0320 -0.000278 0.0336 -0.100 0.132 

b34 -0.0608 0.0320 0.0114 0.0336 -0.158 0.132 

b11 0.00139 0.0554 -0.104 0.0582 0.266 0.228 

b22 -0.00361 0.0554 -0.110 0.0582 -0.364 0.228 

b33 -0.0419 0.0554 0.0486 0.0582 0.236 0.228 

Table 3.2.2: Coefficients and standard deviations estimated by the linear models; b0 is the intercept;  

1: bin filling; 2: rotation speed; 3: mixing time; 4: particle size 

Table 3.2.3, instead, shows the estimated p-values for each regression coefficient 

 
HPLC 

mean 

HPLC  

std dev 
ICarr 

b0 0.00 0.00 0.00 

b1 0.698 0.658 0.663 

b2 0.803 0.812 0.256 

b3 0.0499 0.863 0.952 

b4 0.412 0.396 0.00 

b12 0.620 0.308 0.681 

b13 0.833 0.601 0.0286 

b14 0.155 0.922 0.165 

b23 0.569 0.217 0.263 

b24 0.711 0.993 0.452 

b34 0.0646 0.736 0.238 

b11 0.980 0.0818 0.251 

b22 0.948 0.0666 0.118 

b33 0.454 0.408 0.306 

Table 3.2.3: p-values estimated by linear models for blender DoE; b0 is the intercept;  

1: bin filling; 2: rotation speed; 3: mixing time; 4: particle size. 

The most significant p-values are highlighted in yellow 
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Table 3.2.3 shows which predictors are significant for each response (the ones with p-value lower than the 

significance level 0.1 or 0.05). Some remarks can be drawn for each response. 

 HPLC MEAN 

HPLC mean is the mean value of the replicates of each experiment analyzed by HPLC. Considering that the 

samples concurring to this mean came from different point of the batch, HPLC mean is thought as a measure 

of the mixing ability of the machine, because each point should have a riboflavin concentration of 3%w/w, 

which correspond to an HPLC concentration of 3 ppm. Mixing time (b3) seems to be the only significant 

variable for this response (p = 0.0499), with a certain significance in correlation with particle size (b34, p = 

0.0646). Therefore, it is useful to look at the response surface showing the calculated behavior of HPLC 

mean as a function of these two variables (Figure 3.2.2). 

 

Figure 3.2.2: Response surface for HPLC mean as a function of mixing time and particle size 

As it can also be seen from the table in Appendix B, HPLC mean is almost always higher than 3, and also in 

the response surface of Figure 3.2.2, the expected value 3 is never reached. This computation does not take 

into account the experimental error (one should take into account all the steps necessary to perform the 

HPLC analysis). However, Figure 3.2.2 clearly shows that better result can be obtained using the highest 

level of particle size of MCC (which means 100 μm instead of 50 μm) and increasing the mixing time (but 

this would mean to increase the experimental time). 

 HPLC STANDARD DEVIATION 

Also HPLC standard deviation derives from the replicates of the experiments, and it is thought as an 

estimation of the homogeneity of the powder: each HPLC sample should have more or less the same 

concentration value (3 ppm); thus, the overall standard deviation should be as low as possible. In this case, 

only the squared effects of bin filling (b11) and mixing time (b22) are slightly significant (p11 = 0.0818; p22 = 

0.0666). The fact that few variables are significant is, nevertheless, encouraging: indeed, this could mean that 

the calculated standard deviations are mainly due to experimental errors occurring during HPLC analysis, 
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and this variability, that should be in any case low, is anyway enough to cover the variability due to the 

machine. Therefore, this means that the machine produces homogeneous mixing, no matter which the factor 

levels are. Figure 3.2.3 shows, anyway, the behavior of HPLC standard deviation as a function of bin filling 

and mixing time, and it can be seen that some improvement could be obtained by putting one of the two 

factors at the highest level and the other one at the lowest. 

 

Figure 3.2.3: Response surface for HPLC standard deviation in function of bin filling and rotation speed 

 CARR INDEX 

As already stated, Carr index (ICarr) is a direct measure of powder flowability, a very important parameter 

for pharmaceutical powders: a high flowability (low ICarr) eases the tableting process. For ICarr, there is an 

enormous influence of particle size (b4, p = 0), and also the interaction of bin filling and mixing time is 

significant (b13, p = 0.0286). Figure 3.2.4 shows the response surface for ICarr as a function of particle size 

and bin filling. 

 

Figure 3.2.4: Response surface for ICarr in function of particle size and bin filling 



36 
 

From Figure 3.2.4, it is worth noting that the importance of particle size covers any possible effect of the 

other variables (in this case bin filling, although no other variable is significant by itself). It is clearly stated 

that the best level of particle size of MCC for minimizing ICarr is the highest (100 μm). Figure 3.2.5 shows 

the other significant effect: the interaction between bin filling and mixing time. 

 

Figure 3.2.5: Response surface for ICarr as a function of bin filling and mixing time 

Figure 3.2.5 (that is reported at level +1 of particle size), shows a minimum for ICarr in a region around the 

central level of mixing time (20 min) and comprised between the lowest and the central level of bin filling 

(30-52.5%). It also confirms manufacturers recommendation to not fill too much the bin blender for a better 

mixing. 

NIR data 

The following Figure 3.2.6 shows an example of NIR spectra pattern for one experiment (DOE 43, the first 

carried out). 

 

Figure 3.2.6: Example of NIR pattern  

In Figure 3.2.6, it is interesting to note that the lower blue line and the higher red line correspond 

respectively to first and second rotation (125 total rotations were carried out in this experiment). The 
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difference from the other spectra, visible on first sight, is due to the fact that, at the beginning of mixing, 

powders are still separated (“sandwiched”), thus not totally comparable with the following rotations, in 

which the mixing begins. Although this is an obvious remark, it demonstrates that a visual inspection of data, 

also without any chemometric computation, could give some information about the dataset. Moreover, it 

confirms that NIR spectroscopy can be a good analytical tool for studying the mixing progress, even without 

knowing which species produce the NIR signal. 

On these NIR patterns, MBM analysis was carried out. All MBM computations were carried out with a 

window of 10 spectra and a step of 1. Figure 3.2.7 shows moving block mean (MBM) and standard deviation 

(MBSD) for DOE 1 (because it has some interesting characteristics, but its spectra are a bit more confusing 

than that of DOE 43). 

 

Figure 3.2.7: MB mean (red line) and MBSD (blue line) for DOE 1 experiment 

As already stated before, MBSD is especially useful to understand the experimental behavior: if its graph is 

flat, and no discontinuity points are present, the experiment is going on without problems. However, the blue 

line of Figure 3.2.7, representing MBSD, shows three peaks on the left part of the graph. The first one, which 

is also the highest, is not a real problem: it can be easily interpreted by considering that it comes from the 

first rotations of the blender, when powders are starting to be mixed. It is not strange that, in the starting 

period, NIR spectra have a “great” variability. The other two peaks, however, may indicate some problem. In 

fact, the machine expert following the experiment said, even before looking at these results, that during that 

mixing some lumps were formed inside the blender. This is another demonstration that NIR is useful to in-

line follow the mixing process (and that the chemometric analysis goes in the right way). 

Before performing any computation, NIR spectra could be somehow pre-treated; however, there are no 

general guidelines about which pre-treatment should be used. Figure 3.2.8 shows the same MB mean and 

MBSD for DOE 1 experiment, but pre-treated by Savitzky-Golay (SG) first derivative, standard normal 

variate (SNV), and SG first derivative followed by SNV. 
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Figure 3.2.8: MBM (red line) and MBSD (blue line) for DOE 1 spectra pre-treated by 

a) SG first derivative; b) SNV; c) SG first derivative followed by SNV 

Figure 3.2.8 shows that the use of SG first derivative enhances a bit the importance of MB mean, because 

here it also shows a peak at the beginning, while, with the original data, it only shows an increment at the 

beginning, and then it has a flat graph. SNV, instead, both with and without SG derivative, produced a too 

optimistic situation: in fact, the two peaks indicating lumps become very low, and it is difficult to distinguish 

them from the “baseline” of the graph. Therefore, it was decided to carry out all MBM analyses with original 

data, without any pre-treatment, because also the improvement given by SG derivative seems not so 

important to justify the addition of variability given by pre-treatment. In appendix B, MBM analyses for all 

DoE experiments are reported.  

Some analyses (as for example DOE 28, reported in appendix B) show strong discontinuity points, generally 

due to a single biased spectrum, which has an effect on ten windows, producing a sort of square peak. Such a 

problem may arise, for instance, if a lump of material remains attached to the NIR probe from the previous 

rotation (which could indicate in any case a mixing problem). However, removing the biased spectrum, 

which, in general, is detectable also by a visual inspection, brings MBSD and MBM back to a normal 

behavior. From the graphs reported in appendix B, it is also interesting to note that the processes that seem to 

have some problems are mainly DOE 19, DOE 28, and DOE 37. All these samples (together with the already 
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cited DOE 1) have in common the bin filling and the rotation speed at the lowest levels -1. This could 

indicate that such combination of levels may bring, in general, to some mixing problems. 

MBM analysis, in a daily routine, might also be useful to understand when to stop the mixing: if a 

discontinuity point is present after a certain time, it could mean that the blending was too long and has to be 

stopped before. Powders, indeed, may undergo a segregation process, if blending time is too long or 

experimental conditions are not optimal [20]. 

A control chart should be built with a set of experiments carried out with the same conditions and that gave 

good and replicable results. During this work, no particular criticisms were observed in any of the final 

products, and HPLC analyses showed that all of them were well mixed by the blender. However, 

experimental conditions were decided based on a DoE, so these are all different. Thus, in order to have a 

“homogeneous” dataset, experiments were divided into six subsets based on their level of particle size and 

bin filling, which seemed two of the most significant factors for DoE. Moreover, in this case, NIR spectra 

were pre-treated by SG first derivative followed by SNV, in order to further homogenize them, enhancing at 

the same time (by deriving) the differences. Several control charts may be created from each dataset, some 

examples are reported below, with the aim of explaining the method and to give some details. 

A typical control chart created with NIR spectra obtained in the present work is shown in Figure 3.2.9. 

Samples with bin filling at level +1 and particle size +1 were used (nine samples in total, 2759 NIR spectra). 

As already stated, control charts are created independently from scores of each PLS-factor, Figure 3.2.9 

reports the first three. 

 

Figure 3.2.9: Example of control chart for a) Factor 1; b) Factor 2; c) Factor 3. Points are mean values of  

scores-blocks, lines represent mean ± standard deviation, the limits of acceptability region 

The main difference with respect to univariate control chart is that the limits of acceptability are dynamic and 

change for each considered point, also because points represent different PP%, thus different analysis times, 

while, in general, a control chart is used for evaluating a final product. In this case, PP% was divided in 

subsets of 10% each, so ten points are present in these charts, but points may be augmented by reducing 

PP%-steps (increasing also the chart complexity), in order to have a more detailed vision of the process. At 

the same time, the acceptability region may be enlarged by using multiples of standard deviation (in this 

case, one standard deviation was used because there is already much variability in the original data coming 
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from a DoE). On these control charts, experiments external to the dataset can be projected. Figure 3.2.10 

shows the projection of five batches with different combinations of levels of bin filling and particle size, but 

at 0 level of rotation speed and mixing time. 

 

Figure 3.2.10: External samples projection on control charts. a) Factor 1; b) Factor 2; c) Factor 3 

As it can be seen from Figure 3.2.10, samples have different behavior on different PCs: batches 13 and 15 

(blue and green points), for instance, are outside acceptability for factor 1 and factor 3, except at the 

beginning of experiments, while they are totally inside for factor 2. Moreover, batch 14 (red points), which, 

compared to training set samples, has a totally different combination of levels of bin filling and particle size 

(0 and -1 respectively), so it was expected to be considered outside acceptability, is, instead, always inside. 

This is to demonstrate that, for such analysis, it is very important to have a trustable training set (and 

probably a group of experiments derived from DoE is not suitable) and to properly evaluate the PLS model 

to decide which PLS-factor is the more useful for the control chart. In this specific case, the cumulative 

explained variance reaches 70% only at  factor 7 (at  factor 3 it is 49%), so maybe it would be better to show 

that control chart. However, here the aim was simply to show the applicability of the proposed method to 

NIR spectra obtained by the blender probe, without pretending to be a conclusive work. 

Conclusions 

A full factorial design of experiments was carried out for the optimization of the mixing process in an 

industrial blender, and interesting results were obtained about the optimal parameters to improve 

homogeneity and flowability of the mixed powder. 

Moreover, a possible chemometric approach for exploiting a NIR probe connected to the blender was shown. 

Although, particularly as for control chart, this work is not conclusive, it has been demonstrated that NIR 

spectra may be used to in-line control the mixing process, detecting possible faults in real-time. In fact, 

MBM analysis may be computed while the process is running, because it requires a window of ten (or also 

less) spectra at a time, and the step forward can be calculated while new spectra are acquired. Control charts 

may also be used to project new spectra in the proper PP% region during their acquisition. The hardest 

problem in this sense could arise from PLS computation, because the computational cost may be high if the 
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dataset becomes too large (the addition of one experiment brings to add 150-500 NIR spectra); however it 

has to be carried out only one time (or periodically, if the control chart has to be updated). 

Therefore, a blender user may choose its operating conditions by DoE, particularly for flowability 

optimization. Then, a series of products with optimal characteristic may be produced, and their mixing may 

be monitored by MBM applied to NIR spectra registered in-line. Control charts can be created, while 

“traditional” control techniques are also applied for comparison and validation purposes. Then the blending 

process might be controlled in real-time by MBM and control chart projection. 

From a chemometric point of view, the NIR data pre-treatment (for both MBM and control chart) and the 

PLS model interpretation still have to be optimized, in order to be able to create the best possible control 

chart. However, such optimizations can be made only with a proper set of trustable samples.  
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CHAPTER 4: NET ANALYTE SIGNAL 

Introduction 

The idea of Net Analyte Signal (NAS) was firstly proposed in 1980 by Boumans [1] in order to solve a 

problem of spectral interferences in ICP-AES. However, the mathematical development of NAS is due to 

Lorber [2], who in 1986 introduced the concept of NAS as “the part of the signal that is orthogonal to the 

spectra of the other components” [2], and proposed a way to compute figures of merit for this field. Since 

then, up to 2018, 240 papers have been published about further developments or applications of NAS. 

The basic idea of NAS is extracting that part of the analytical signal (which can be whatever type of spectral 

signal) that is directly related and only due to the analyte of interest [3]. Therefore, in general, the NAS of 

the kth analyte of interest in a mixture may be computed as the part of the spectrum orthogonal to the 

contribution of the other coexisting species [3]. Mathematically speaking, “orthogonal” means also 

“independent”, thus the NAS of the kth analyte is also independent from the signal of the other species. 

Therefore, the NAS, due to its dependence only on the analyte of interest, can be used for quantification 

problems. In fact as the original signal from which it is calculated, NAS should increase linearly with the 

concentration of the analyte. It was again Lorber [3] who developed this idea in 1997. He also solved another 

important problem: in most of the cases, the signal due to the other species (orthogonal to NAS) is partially 

or totally unknown; therefore, it also has to be calculated. 

A simple graphical representation of how the NAS algorithm works is represented in Figure 4.0.1, which is 

simplified because it does not take error vectors into account. In this figure, an example spectrum is reported 

as the black diagonal vector (si). This vector is mathematically decomposed into the orthogonal blue 

(horizontal) and red (vertical) vectors. These represent the calculated signal due to interfering species and the 

net signal due to the analyte of interest only (si
*
) respectively. 

 

Figure 4.0.1: graphical representation of the NAS algorithm 

Once obtained the NAS vector, its Euclidean norm can be used as a pseudo-univariate signal for 

quantification purposes [4]. 



45 
 

The NAS procedure for quantification was firstly derived for the external-standard method. However, an 

interesting field of application is that of the standard addition method (SAM). The advantage of SAM, with 

respect to external standard, is that the matrix in which the analyte is dissolved can be totally unknown. 

Possible problems of overlapping signals between the analyte of interest and the other species in the matrix 

can be solved by the application of NAS (NASSAM). The first study which applied this procedure was that 

of Hemmateenejad [5], who also developed the mathematical treatment. 

It is also interesting that, since its first development for ICP-AES [1], the NAS procedure has been 

successfully applied to several analytical techniques: UV-Vis spectroscopy [6], NMR [7], NIR spectroscopy 

[8, 9], spectrofluorimetry [10]. The NASSAM method has also been more recently applied to several fields: 

UV-Vis spectroscopy [5], polarography [11], spectrofluorimetry [12]. 

However, most of the application reported in the literature concern the analysis of solutions, where it is 

easier, with respect to solid samples, to apply the SAM. In fact, in preparing the liquid standard-added 

samples, there is not the problem of mass balance and, above all, if the analyte is soluble in the chosen 

solvent, the samples are always homogeneous. The main topic of the present work is to develop and apply 

the NASSAM method to solid samples, with the aim of quantifying both “artificial” analytes (in samples 

entirely prepared in laboratory, as feasibility studies), and real analytes in real samples. Hence, the problem 

of strong matrix effect in solids is faced. Application to different analytical techniques will be presented, 

showing the applicability of the developed method in different analytical fields. 

The work is organized as follow. First of all, the developed algorithm for the present work will be explained. 

Next, an application of NASSAM to liquid home-made samples, analyzed by UV-Vis spectroscopy, will be 

presented. These samples, although not relevant for the topic of this work, are used to link this work with 

what is already present in the literature, and to show the applicability of the developed NAS procedure. 

Then, an application to home-made samples of beeswax, analyzed by Raman spectroscopy, and another one 

applied to home-made saffron samples, analyzed by gas-chromatography, will be shown. Next, two 

applications to pharmaceutical samples analyzed by X-ray powder diffraction, one home-made and one real, 

will be presented. Finally, an application to sediments (real samples) analyzed by NIR spectroscopy in ATR 

mode will be presented. 

NAS Algorithm 

The algorithm used in the present work starts from the ones of Lorber [3] and Hemmateenejad [5]. 

Obviously, the starting point is to prepare and analyze the standard added samples. Preparation and analysis 

of samples will be shown case by case for each type of sample in the proper following section. In general, 

once analyzed all the samples, a data-matrix is obtained, called S, in which the rows (or vectors si) represent 

the samples and the columns represent the spectral variables (e.g. wavelengths). The matrix S will have 

dimensions n x v, where n is the total number of i samples (1 ≤ i ≤ n), and v is the number of spectral 
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variables. Besides, to each sample an added concentration value is associated, and all these values form the 

cadd vector. 

The first step of the mathematical procedure is to perform a partial least square (PLS) regression [13]. PLS is 

a well-known chemometric modeling method that computes a regression between a matrix of independent 

variables (in this case S) and a matrix, or vector, of dependent variables (cadd). Put simply, PLS searches the 

directions of maximum variance of the S matrix (which means that it computes principal components, PCs, 

as PCA) and corrects (rotate) them to achieve the maximum possible correlation with the dependent variable. 

In such a way, the final regression model takes into account both the variance included in independent and 

dependent variables, and their covariance, aiming to describe the original data as better as possible. The 

advantages of PLS over other regression methods [13] (as for example the traditional multiple linear 

regression, MLR) is that it gives good results even when the number of variables exceeds the number of 

samples (v >> n) and when the variables are strongly co-linear. Both of these problems are present when 

spectral variables are used as independent variables. 

PLS computation [14] starts by performing a singular value decomposition (SVD) [15] on the cross-product 

matrix 𝑸 = 𝑺𝑡𝒄𝒂𝒅𝒅 (where superscript t indicates matrix transpose). The first left singular vector of SVD can 

be seen as the direction of maximal variance in the cross-product Q and is indicated as “weight”, w. This 

vector is used to calculate the scores (t) of the first PLS-factor (the equivalent of the first PC in PCA)  

 𝒕 = 𝑺𝒘 (eq. 4.0.1) 

This vector is used to calculate the loadings for both independent (p) and dependent (q) variables 

 𝒑 = 𝑺𝑡𝒕 (𝒕𝑡𝒕)⁄  

𝒒 = 𝒄𝒂𝒅𝒅
𝑡𝒕 (𝒕𝑡𝒕)⁄  

(eq. 4.0.2) 

(eq. 4.0.3) 

Finally, the original data matrix is deflated: this means that the information included in this first factor is 

subtracted from the original data 

 𝑬 = 𝑺 − 𝒕𝒑𝑡 

𝒇 = 𝒄𝒂𝒅𝒅 − 𝒕𝒒𝑡 

(eq. 4.0.4) 

(eq. 4.0.5) 

E and f are then used iteratively in place of S and cadd: the PLS cycle starts again from eq. 4.0.1 to compute 

the second PLS-factor, and, when it arrives at eq. 4.0.4 and 4.0.5, it calculates new E and f matrices that are 

used to compute the third factor. The cycle goes on until the operator decides that the number of PLS-factors 

is sufficient, or until all the possible factors are computed. The vectors w, t, and p are collected during the 

computation into the weights (W), scores (T), and loadings (P) matrices. 

The regression coefficients are calculated starting from the scores, firstly by performing a regression between 

these and the independent variables (to obtain β), then by converting them to the original variables (B): 
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 𝜷 = (𝑻𝑡𝑻)−1𝑻𝑡𝒄𝒂𝒅𝒅 

𝑩 = 𝑺𝜷 

(eq. 4.0.6) 

(eq. 4.0.7) 

PLS can be used to remove part of the analytical noise from data. In fact, it can be decided to keep a number 

A of PLS-factors and discard the others, in order to keep only the information retained by these first factors. 

In general, the higher factors report spurious information or noise, so these can be discarded. The optimal 

number of PLS-factors depends on the dataset; a general rule is to stop to that factor that minimizes the root 

mean squared error (RMSE). However, sometimes RMSE continuously decreases by adding factors; thus, 

the choice for the present work has been to compute the NAS procedure with all the possible components 

and to select the optimal component only at the end, taking into account not only RMSE. 

Matrices T and P from PLS are then used to start the NAS procedure [5]. The first step consists in rebuilding 

the S matrix (Sreb) from scores and loadings 

 𝑺𝒓𝒆𝒃 = 𝑻𝐴𝑷𝐴
𝑡 + 𝒎 (eq. 4.0.8) 

m is the mean vector of the original S matrix and it is added to the product to remove the automatic mean 

centering performed by the PLS algorithm. Subscripts “A” indicate that this computation can be performed 

for each A number of PLS-principal components. The advantage of using Sreb instead of S is that part of the 

analytical noise has been removed by PLS. Sreb is then used to mathematically calculate the matrix signal, 

which is that part of the analytical signal due to all the species present in the mixture, except the kth analyte 

of interest (this step is called “rank annihilation”) 

 𝑺−𝒌 = 𝑺𝒓𝒆𝒃 − 𝛼𝒄𝒌𝒔𝑡 (eq. 4.0.9) 

where 

 𝒄𝒌 = 𝑺𝒓𝒆𝒃𝑺𝒓𝒆𝒃
+ 𝒄𝒂𝒅𝒅 

𝛼 = 1/(𝒔𝑡𝑺𝒓𝒆𝒃𝒄𝒌) 

(eq. 4.0.10) 

(eq. 4.0.11) 

In equations 4.0.9, 4.0.10, and 4.0.11 s is a vector which is recommended to contain information about the 

pure analyte. It can be calculated as a linear combination of the row of S. However the simpler way to obtain 

this vector is to use the spectrum (or its equivalent signal) of the pure analyte of interest (or a mean of some 

replicates of such signal). ck is the added concentration vector projected onto the PLS space, and α is a scalar 

that is used as a correction factor; superscript “+” indicates the Moore-Penrose pseudo-inverse of a matrix 

[16]. 

What happens in practice in equation 4.0.9 is that to each spectrum a quantity is subtracted, which is 

calculated as the signal of the pure analyte “corrected” by multiplying it for its added concentration in the 

sample and for α. In such a way, the signal of the analyte of interest (or at least most of it) is removed from 
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the total signal, and what remains in S-k is only that part of the signal due to the other constituents of the 

sample (i.e. the matrix or the interfering signal, the blue line in Fig. 4.0.1). 

At this point, a problem arises regarding the zero-added sample. Although the cadd vector is modified to ck, 

the differences between the two vectors are slight. Therefore, the value of ck for the zero-added sample is not 

so different from 0. This brings the product 𝛼𝒄𝒌𝒔𝑡 to be negligible, and so 𝒔−𝒌,𝟎 ≅ 𝒔𝒓𝒆𝒃,𝟎. The effect of this 

is that the zero-added samples have, sometimes, an anomalous behavior with respect to the other samples. 

This anomaly affects the final standard addition line (by reducing R
2
, even dramatically). Hence, in some of 

the cases shown in the present work, the zero-added sample will be removed from the computation from the 

beginning. 

Anyway, S-k can be used to compute a projection matrix (H) that will be used to calculate that part of the 

original signal that is orthogonal to the interfering signal, as shown in Fig. 4.0.1 

 𝑯 = 𝑰 − 𝑺−𝒌𝑺−𝒌
+  (eq. 4.0.12) 

where I is an identity matrix with proper dimensions (in this case v x v). 

At this point, the original spectra can be projected on the NAS space, spanned by H, by simply multiplying 

the ith spectrum (si) for H 

 𝒔𝒊
∗ = 𝑯𝒔𝒊 (eq. 4.0.13) 

The 𝒔𝒊
∗ vectors are the net analyte signal ones. The information reported by them is orthogonal to the 

interfering signals, so it is only related to the analyte of interest. Therefore, the Euclidean norm of these 

vectors (‖𝒔𝒊
∗‖) can be used as a pseudo-univariate signals to create a classical standard addition line, with 

general equation ‖𝒔∗‖ = 𝑎 ∙ 𝒄𝒂𝒅𝒅 + 𝑏, from which the concentration of the analyte of interest in the original 

sample can be directly extrapolated by: 

 𝑐𝐸 = 𝑏 𝑎⁄  (eq. 4.0.14) 

As already stated before, a different solution (cE) is obtained for each Ath PLS-factor. The selection of the 

optimal factor can be made upstream by considering only RMSE, or it can be made at this point by taking 

that factor that optimizes both RMSE and the determination coefficient (R
2
) of the standard addition line. If a 

reliable reference value for cE is present, it could be chosen also the PLS-component that optimizes cE. 

However, in most of the real cases, such a reference is not present, thus it is better to try to optimize only 

RMSE and R
2
. In any case, in order to not include too much noise in the model, it is preferable to use a value 

of A as low as possible, even if it often happens that RMSE decreases and R
2
 increases continuously by 

adding factors without any minimum and maximum. There are also cases in which RMSE and R
2
 are in 

conflict. For example at some Ath component there may be a minimum (often relative) of RMSE with a bad 

R
2
 (< 0.9). In such cases it is often preferable to optimize R

2
 “sacrificing” a bit the optimization of RMSE. 
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Hence, and a greater value of A is taken; alternatively, if possible, the best compromise between the two 

parameters (again with the lowest possible A) has to be found. 

Improvements to NAS Algorithm 

Depending on the specific case, the so far presented algorithm requires some improvements in its 

computation, in order to optimize the final results. First of all, as it will be shown later, the results are 

strongly dependent on the data-pretreatment carried out before the application of NAS. Therefore, for each 

specific case presented, the required data-pretreatment will be shown. 

In this chapter, some specific improvements for the NAS algorithm will be presented. 

The most important was developed by Ferré [17], and regards a correction applied to matrix S before 

projecting the spectra on the NAS space. This correction has been introduced to include also in S the 

information derived only from the A selected latent variables. This is obtained by converting si to si,A by: 

 𝒔𝒊,𝐴 = 𝑷𝐴𝑺𝑊,𝐴
𝑡 𝒔𝒊 (eq. 4.0.15) 

The matrix 𝑺𝑊,𝐴 is calculated by [18]: 

 𝑺𝑊,𝐴 = 𝑾𝐴(𝑷𝐴𝑾𝐴)+ (eq. 4.0.16) 

Now si,A belongs to the space spanned by the columns of PA, therefore eq. 4.0.13 can be modified to include 

this information also in the NAS vectors 

 𝒔𝒊,𝑨
∗ = 𝑯𝒔𝒊,𝐴 (eq. 4.0.17) 

Another improvement to the algorithm was developed by Bro [19] who derived a method that does not 

require assumptions about the structure of data and does not require the computation of the matrix S-k. 

Therefore, Bro proposed to compute the H matrix by: 

 𝑯 = 𝒃𝐴(𝒃𝐴
𝑡 𝒃𝐴)−1𝒃𝐴

𝑡  (eq. 4.0.18) 

where superscript “-1” indicates matrix inversion and bA is the PLS-coefficients vector for A factors. This 

method skips the steps from eq. 4.0.8 to eq. 4.0.11 and substitutes eq. 4.0.12 passing directly from the PLS 

model to the computation of the projection matrix. Then, NAS vectors are calculated as in equation 4.0.13. 

It is worth noting that the original algorithm of Lorber with the addition of Ferré variant, and the Bro method 

give exactly the same results (for A PLS-factors). Thus, in the present work two possible ways to obtain NAS 

have been studied: by the original Lorber procedure, and by the Ferré-Bro method. Most of the results that 

will be shown afterward have been obtained by the Ferré-Bro procedure, but the method used will be made 

explicit in any presented case. 

Hemmateenejad [5] proposed also another improvement that has been demonstrated to be useful for liquid 

samples only, because it is based on the Beer-Lambert law, which probably is not totally applicable to the 

analytical methods applied for solid samples. It is a correction applied to the S matrix and cadd vector at the 
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beginning of the procedure. The basic idea is that the spectra in S (si) are the sum of the signal of the zero-

added sample (the original one, s0) and that of the standards added to the sample (Ssm):  

𝑺 = 𝒔𝟎 + 𝑺𝒔𝒎; therefore, the signal of the standard can be obtained by:  

 𝑺𝒔𝒎 = 𝑺 − 𝒔𝟎 (eq. 4.0.19) 

Moreover, considering that also the matrix signal is addictive and that the addition of pure analyte (in 

solution) does not influence it, in Ssm the matrix signal has been removed. Thus, Ssm can be decomposed 

according to the Beer-Lambert law by multiplying the signal of the pure analyte for a proper concentration 

vector: 

 𝑺𝒔𝒎 = 𝒄𝒔𝒔 (eq. 4.0.20) 

This vector cs is the correction applied to the original cadd for this procedure, and it can be obtained by 

inversion of eq. 4.0.20 

 𝒄𝒔 = 𝑺𝒔𝒎𝒔(𝒔𝑡𝒔)−1 (eq. 4.0.21) 

Once obtained Ssm and cs, these are used instead of S and cadd in the NAS procedure, already for computing 

the PLS model. It is obvious that such a correction can be used only when the signal of all the present species 

may be considered addictive, which can be a possible approximation for solutions analyzed by UV-Vis 

spectroscopy (and only in the linear range of Beer-Lambert law). This correction cannot be considered for 

solid samples, where the addition of standards also modifies the concentrations of the other species (unless 

specific precautions are used), especially when the analytical techniques that do not follow the Beer-Lambert 

law (e.g. X-ray powder diffraction) are employed. Therefore, the “Hemmateenejad-correction” will be used 

in the present work only in the application of NASSAM to liquid home-made samples. 

Figures of Merit 

The figures of merit are those parameters that indicate if a chemometric model is reliable. For the NASSAM 

model, two of these figures of merit are the already cited RMSE of the PLS model for A factors, and the 

determination coefficient, R
2
, of the NAS standard addition line. The former has to be minimized, while the 

latter has to be as close as possible to 1. 

Another important figure of merit that has to be taken into account is the standard deviation of the 

extrapolated value because it indicates the precision of that value: a low standard deviation indicates a high 

precision. If a reference value is present, the standard deviation is also useful to evaluate the accuracy, that is 

the “closeness” of the calculated to the expected value. In the present work, two possible ways of estimating 

the standard deviation of cE (sC,E) have been used. The first possibility is simply to compute the standard 

deviation in the final univariate NAS standard addition line [20] by: 
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𝑠𝐶,𝐸 =
𝑠𝑦/𝑥

𝑏
√

1

𝑛
+

𝑁𝐴𝑆̅̅ ̅̅ ̅̅ 2

𝑏2 ∑ (𝑐𝑎𝑑𝑑,𝑖 − 𝑐𝑎𝑑𝑑̅̅ ̅̅ ̅̅ )2𝑛
𝑖=1

 (eq. 4.0.22) 

where sy/x is the RMSE of the standard addition line and 𝑁𝐴𝑆̅̅ ̅̅ ̅̅  and 𝑐𝑎𝑑𝑑̅̅ ̅̅ ̅̅  are the mean value of the calculated 

NAS Euclidean norms and of the added concentrations respectively. Such a computation, however, does not 

take into account all the multivariate analysis used to arrive at the NAS values: it uses them as these were 

simple univariate signals, losing most of their complexity. Therefore, this kind of estimation is not 

satisfactory. 

A second way for estimating sC,E is by using the jackknife method [21]. The jackknife method performs the 

computation of the NAS algorithm by leaving one sample at a time out from the computation. In practice, a 

first NAS model is computed (with all the samples, either with Lorber or Ferré-Bro method), in order to find 

the optimal number A of factors and the cE value. In a further step, all the computation is repeated starting 

from PLS and keeping the chosen A as the optimal number of components, but leaving out from the 

computation the first sample. Then the computation is repeated in the same way by reintegrating the first 

sample and leaving out the second, and so on. At the end of “jackknifing”, as many cE values as the number 

of samples are obtained (each representing a dataset in which the ith sample has been left out). The 

estimation of the standard deviation of the NAS extrapolated value is obtained as the standard deviation of 

this vector of cE values. In this way, sC,E estimation is obtained by keeping into account at least part of the 

variability due to NAS computation, because changing the original dataset, also by adding or subtracting a 

single sample, changes (sometimes also dramatically) the H matrix, hence strong differences in 𝒔𝒊,𝐴
∗  and their 

Euclidean norms may be observed. The jackknife method may also be used by leaving out more than one 

sample at a time; however, due to the relatively small number of samples, in this work the jackknife has been 

applied in “leave-one-out” mode. From the mean of the jackknife cE values, also an estimation of the 

extrapolated value can be derived; however, numerically, no significant differences have ever been observed 

between this mean value and the original extrapolated one, so it has been preferred to show the latter as the 

result of NAS computation. 

Two other important figures of merit are sensitivity (Sn) and limit of detection (LoD). 

Sn of a calibration line is, in general, its slope; therefore, the Sn of the NAS standard addition line could be 

considered simply as its b. However, Bro [19] suggested that Sn can be computed from the vector of 

regression coefficients of PLS at the chosen A component as: 

 
𝑆𝑛 =

1

‖𝒃𝐴‖
 (eq. 4.0.23) 

As for sC,E, such computation takes into account the multivariate nature of the NAS procedure, also because, 

when using the Ferré-Bro method, the vector bA is the only one used to calculate the H matrix. Therefore, 

when presenting NAS results, both the slope of the final standard addition line and Sn computed by eq. 
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4.0.23 will be shown. It will be interesting to note that very slight differences are in general obtained for 

these two values. 

The limit of detection is defined as “the minimum quantity of analyte that shows a signal significantly 

different from the blank” or “the analyte concentration giving a signal equal to the blank signal, plus three 

standard deviations of the blank” [22]. In practice, it is the lower detectable concentration by any method. 

For a calibration line in the univariate field, estimation of LoD is in general obtained by 

 
𝐿𝑜𝐷 = 3

𝑠𝑦/𝑥

𝑏
 (eq. 4.0.24) 

However, it is still not so well established how to compute LoD for a multivariate model, and several 

methods to extend eq. 4.0.24 to the multivariate case have been proposed [23, 24]. 

Even for the NAS procedure, there is not an univocal way to estimate LoD. Lorber [3] proposed a method 

that requires the numerical computation of a further statistical parameter. A simpler way to estimate LoD 

(and the one chosen for the present work) has been proposed again by Hemmateenejad [5], who partially 

extended eq. 4.0.24 to the NAS procedure: 

 
𝐿𝑜𝐷 = 3

‖𝜺‖

𝑆𝑛
 (eq. 4.0.25) 

The ε vector (of which the Euclidean norm is calculated) is obtained by registering spectra of several blank 

samples (e.g. empty sample holders) and by projecting them onto the NAS space (by multiplying these 

spectra for the H matrix). ε is the mean of the so obtained NAS vectors. In this procedure, the blanks are 

treated as unknown samples and projected onto the NAS space spanned by the samples of interest. Their 

signals are used as the minimum signal detectable by the technique. The multiplication by 3 (and dividing by 

Sn) brings to the minimum concentration that gives a signal significantly different from the blank, which is 

the definition of LoD. For the external standard method, the LoD should be lower than the lower standard 

concentration analyzed. In SAM case, the lower concentration is the extrapolated one, so the LoD should be 

lower than cE. 

All the computations for the present work were performed with the software “R” version 3.4.3 (R Core 

Team, Vienna, Austria) [25]. PLS was computed with the package “pls” [26]. Moore-Penrose pseudo-inverse 

was computed with the package “MASS” [16]. NAS algorithm and its extensions were written by the author, 

the R code is reported in Appendix C. Any signal pre-processing was carried out with the software “The 

Unscrambler” version 10.4 (CAMO, Oslo, Norway) and the resulting signals were imported in “R”. 

Further Considerations 

Considering what has been said until now, there are two main critical points in using NAS procedure: the 

selection of both the method (between the original Lorber’s or the Ferré-Bro variant, and sometimes also the 

Hemmateenejad variant could be introduced) and the number of PLS principal components. The R algorithm 

developed for the present work, reported in Appendix C, is thought for performing NAS with both 
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procedures, and with each PLS-factor for each procedure, in order to obtain all the possible results. 

Therefore, the selection of the best result is made a posteriori following the previously cited rules of 

optimization of RMSE and R
2
. 

As an example of the differences in the possible results, the following Table 4.0.1 reports the ones obtained 

by the two procedures as a function of the number of PLS-components in a specific case. This work regards 

the quantification of a home-made adulteration of paraffin in a beeswax sample and will be discussed in 

detail in Chapter 4.2. What is important for the present discussion is that the expected value is 1.5%w/w. 

Standard deviations are not presented here. 

 
 

Lorber procedure Ferré-Bro procedure 

PLS-

factor 
RMSE 

cE 

(%w/w) 
R

2
 

cE 

(%w/w) 
R

2
 

1 4.50 172 -0.020 116 -0.060 

2 4.20 12.9 0.108 60.8 0.523 

3 2.70 7.72 0.408 52.1 0.757 

4 1.31 3.86 0.878 42.3 0.956 

5 0.713 2.58 0.976 50.5 0.997 

6 0.646 2.26 0.979 42.2 1.000 

7 0.645 2.09 0.985 41.7 1.000 

8 0.646 1.45 0.984 41.8 1.000 

9 0.646 0.871 0.997 42.2 1.000 

10 0.646 0.775 0.997 42.2 1.000 

11 0.646 0.483 0.997 42.2 1.000 

12 0.646 0.379 0.997 42.2 1.000 

Table 4.0.1: Lorber and Ferré-Bro procedures comparison for the example case. 

R
2
 are referred to the final NAS regression line 

Some comments can be made based on Table 4.0.1. First of all, the first factor has the highest RMSE and the 

worst predicted value for both procedures. A minimum of RMSE can be found at factor 7, a good result is 

found at this factor for the Lorber procedure, while it is still poor for Ferré-Bro (although with a better R
2
). 

The extrapolated values decreases at higher components for Lorber, while they are close to each other (at 

least starting from factor 4) for Ferré-Bro. R
2
 are always higher for Ferré-Bro.  

All these trends can be observed in general when working with these NAS procedures in solid samples: the 

lower is RMSE, the better is the extrapolated concentration. Lorber cE decreases by augmenting the number 

of factors, while Ferré-Bro values are “more stable”. Usually Ferré-Bro procedure shows better R
2
. 

The stability of results and the better R
2
 of Ferré-Bro method are probably due to the fact that (thinking to the 

Bro algorithm), it uses only the PLS-regression coefficients to calculate the H matrix and, then, NAS 

vectors. Therefore, in this situation, it is like that the “linearization” of samples, that brings to R
2
 close to 1, 

is already made by PLS, and the following procedure takes advantage of the PLS work. Lorber procedure, 

instead, starts from scores and loadings; consequently, it cannot take advantage of the work of PLS. 

However, if the starting spectra do not have a good linear behavior (which means, for example, that peak 

intensities do not increase linearly with added concentration), like in this case, PLS model could not be 

optimal, and, therefore, Ferré-Bro procedure could bring to totally unexpected and erroneous results, while 
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Lorber method may be better. This is the main drawback found in the present work in using the NAS 

procedure (and the most problematic for validation): the choice of the optimal procedure is case-dependent, 

and, up to now, it is difficult to provide a general rule to a-priori understand which of the two procedures 

should be used. 

Anyway, in the presented example case, the Lorber procedure is chosen because, in general, it gives results 

closer to the expected one. Then, the optimal PLS-factor is chosen “blindly” by looking at the minimum 

RMSE and the maximum R
2
 (or the better compromise between the two), with the minimum number of 

factors, in order not to include noise. In this specific case, 7 factors were chosen, because the absolute 

minimum of RMSE (0.645) and a relative maximum of R
2
 (0.985) is obtained. This brings to cE = 2.09%w/w, 

which is in good agreement with the expected value. However, cE could be improved by taking 8 

components (1.45 %w/w), sacrificing a bit both RMSE and R
2
. In general, for the present work, the “blind” 

selection of PLS-factors is preferred, in order to not add too much subjectivity to the final results. 
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CHAPTER 4.1: NAS APPLIED TO UV-VIS SPECTROSCOPY 

Introduction 

The net analyte signal procedure has been already successfully applied several times to samples analyzed in 

solution by UV-Vis spectroscopy [1–4]. Therefore, the work that will be shown in this chapter is not 

intended to offer a new development of NAS but is useful to understand how the NAS algorithm works, 

which applications already existing in the literature can be the starting point for the ones developed in the 

present work, and which new applications and results can be obtained. For the following work, the Ferré-Bro 

[5, 6] algorithm will be used with the addition of the Hemmateenejad variant [2], as explained in the former 

chapter. Hemmateenejad variant can be used because, as it will be shown later, the work is developed to stay 

in the linear range of the Beer-Lambert law. 

The basic idea is very simple: to prepare a solution of an “analyte” of interest with the addition of a second 

substance playing the role of interfering species, and to quantify the analyte of interest. In order to have a 

better control on this study, the chosen compounds were colored inorganic salts, which gave colored 

solutions. Thus, a “visual” control is also possible. Three cases were studied: 

 For the first one (the simpler) the chosen analyte of interest was copper sulfate, CuSO4 (blue), and 

the interfering was potassium dichromate, K2Cr2O7 (yellow). In this case, the concentration of 

K2Cr2O7 was maintained constant in the added samples, what generally happens in the SAM 

method in solution. Moreover, the different colors of these salts give different and well 

distinguishable signals. This case will be called from now on “Cu-1” 

 For the second case, the same CuSO4 and K2Cr2O7 were chosen as the analyte of interest and 

interfering, but, in this case, the concentration of K2Cr2O7 was reduced while CuSO4 increased with 

the additions. This simulates what happens in solid samples, where the addition of the analyte of 

interest, in general, reduces the relative concentration of the interfering substances. This case will 

be called “Cu-2” 

 For the third case, again K2Cr2O7 was used as interfering, but the analyte of interest was chromium 

chloride, CrCl3 (green). The green color of CrCl3 gives a signal overlapping with that of K2Cr2O7, 

which is useful to stress the algorithm and check if it is able to remove the interfering signal. This 

case will be called “Cr” 

Materials and Methods 

CuSO4•5H2O (MW = 294.6 g/mol), K2Cr2O7 (MW = 249.19 g/mol), and CrCl3•6H2O (MW = 266.45 g/mol) 

were purchased by Merck (Darmstadt, Germany). All these salts were weighted with a 0.1 mg precision 

weight scale. Mother solutions of all salts were prepared in 50 mL flasks, while the starting solutions of the 

analytes of interest and the standard added solutions were prepared in 10 mL flasks. All solutions were 

prepared with distilled water. All analyses were carried out with a Cary 60 UV-Vis Spectrophotometer 
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(Agilent, Santa Clara, CA), in plastic cuvettes, the wavelength range was 1000-300 nm with 1 nm step. All 

samples were analyzed three times. 

For “Cu-1” case, 0.9988 g of CuSO4•5H2O were solved in 10 mL of distilled water (C = 0.0800 mol/L). This 

is the “unknown” solution, which concentration has to be evaluated by NAS. Then, two 50 mL-solutions 

were prepared, the first one with 1.2512 g of CuSO4•5H2O (C = 0.501 mol/L), and the second one with 

0.0120 g of K2Cr2O7 (C = 9.63⸱10
-4

 mol/L). These were used to prepare the standard added solutions. The 

standard added solutions were prepared by putting 5 ml of the unknown solution, and 1 ml of the K2Cr2O7 

solution, plus an added volume of the second CuSO4 solution as reported in Table 4.1.1. Distilled water was 

then added to these solutions to reach 10 ml. 

 

Added 

volume of 

CuSO4 (mL) 

Added 

concentration 

(mol/L) 

add.0 0 0 

add.1 0.2 0.0100 

add.2 0.4 0.0150 

add.3 0.6 0.0200 

add.4 0.8 0.0250 

Table 4.1.1: standard added solutions for “Cu-1” case 

Therefore, the concentration of CuSO4 in the add.0 solution, which is also the expected value from 

NASSAM, is 0.0400 mol/L. 

For “Cu-2” case, 0.9960 g of CuSO4•5H2O were solved in 10 mL of distilled water (C = 0.0798 mol/L). 

Again, this is the “unknown” solution. For the standard added solutions, two 50 mL-solutions were prepared, 

the first one with 1.2240 g of CuSO4•5H2O (C = 0.490 mol/L), and the second one with 0.0146 g of K2Cr2O7 

(C = 0.00117 mol/L). The standard added solutions were prepared as reported in Table 4.1.2, by 5 mL of the 

unknown solution mixed with increasing concentrations of CuSO4 and decreasing concentration of K2Cr2O7. 

Also in this case, distilled water was used to reach 10 mL. 

 

Added 

volume of 

CuSO4 (mL) 

Added 

concentration 

(mol/L) 

Volume of 

K2Cr2O7 

(mL) 

Concentration 

of K2Cr2O7 

(mol/L) 

add.0 0 0 1 1.17⸱10
-4

 

add.1 0.2 0.0100 0.8 9.37⸱10
-5

 

add.2 0.4 0.0150 0.6 7.03⸱10
-5

 

add.3 0.6 0.0200 0.4 4.69⸱10
-5

 

add.4 0.8 0.0250 0.2 2.34⸱10
-5

 

Table 4.1.2: standard added solutions for “Cu-2” case 

In this case, the expected value in add.0 sample is 0.0399 mol/L. 

For the “Cr” case, the “unknown” solution was prepared by 0.4020 g of CrCl3•6H2O solved in 10 mL (C = 

0.0301 mol/L). For the standard added solution, two 50 mL-solutions were prepared, the first one with 

0.2665 g of CrCl3•6H2O (C = 0.100 mol/L), the second one with 0.0125 g of K2Cr2O7 (C = 0.00100 mol/L). 
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The standard added solutions were prepared by putting 5 ml of the unknown solution mixed with 1 mL of 

K2Cr2O7 solution and the added volume of the second CrCl3•6H2O solution as reported in Table 4.1.3. 

 

Added 

volume of 

CrCl3 (mL) 

Added 

concentration 

(mol/L) 

add.0 0 0 

add.1 10 0.0100 

add.2 15 0.0150 

add.3 20 0.0200 

add.4 25 0.0250 

Table 4.1.3: standard added solutions for “Cr” case 

The expected extrapolated concentration from NASSAM in this case is 0.0151 mol/L. 

Results and Discussion 

 “Cu-1” and “Cu-2” cases 

As already stated, Cu-1 is the simpler case that will be shown. Five samples were prepared as reported in 

Table 4.1.1 in which the concentration of CuSO4 was increased, while the concentration of the interfering 

K2Cr2O7 was maintained constant. The following Figure 4.1.1 shows the UV-Vis spectra obtained by these 

samples. 

 

Figure 4.1.1: UV-Vis spectra of “Cu-1” samples, the legend is according to Table 4.1.1 

The same procedure was adopted for the “Cu-2” samples: five samples increasing the concentration of 

CuSO4 as reported in Table 4.1.2. The difference is that the concentration of the interfering K2Cr2O7 

decreases in each sample, simulating what happens in a solid sample. Figure 4.1.2 shows the original spectra 

of these samples. 
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Figure 4.1.2: UV-Vis spectra of “Cu-2” samples, the legend is according to Table 4.1.2 

CuSO4 and K2Cr2O7 have two well distinct absorption peaks: the former (blue) with a maximum at ~807 nm, 

the latter (yellow) with a maximum at ~352 nm. Therefore, there is no signal-overlap and the standard 

addition problem could be solved also in a univariate mode by using the absorbance of the CuSO4 maximum, 

ignoring the presence of K2Cr2O7. Therefore, these cases are most of all useful to show how the NAS 

procedure works because the results of the passages shown in the previous chapter are calculated “spectra”, 

which are displayable and helpful to understand what is happening to data. 

As already stated for the liquid case, the Hemmateenejad variant [2] can be used. It consists in subtracting 

the zero-added sample signal from the others, according to eq. 4.0.19. As a result, for “Cu-1” the signal of 

K2Cr2O7 is removed in all samples (because it has the same magnitude for all samples), and the signal of 

CuSO4 is reduced, while, for “Cu-2”, the interfering signal becomes negative in the added samples, as shown 

in Figure 4.1.3 

 
Figure 4.1.3: Calculated Ssm spectra for “Cu-2” samples, according to eq. 4.0.19 
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The application of Hemmateenejad variant gives slight differences on the final results. Therefore, it is more 

useful to show the NAS procedure on the original spectra, in order to better follow the computations. The 

differences in results between the two possible modes (with or without Hemmateenejad variant) are shown 

only at the end. In any case, the Ferré-Bro method was chosen for both “Cu-1” and “Cu-2” for its better 

results, and the zero-added sample was removed from the dataset. 

The first step is always to compute a PLS regression by using the spectra as independent variables, and the 

added concentrations as dependent ones. For both “Cu-1” and “Cu-2” data, a minimum in RMSE was 

observed at the third PLS-component; thus, 3 factors were used for the following computations. From scores 

and loadings, the original spectra are recalculated and the result is shown in Figure 4.1.4 

 

Figure 4.1.4: PLS-rebuilt spectra for a) “Cu-1” and b) “Cu-2” cases 

As it can be observed by comparing Figure 4.1.4 with Figures 4.1.1 and 4.1.2, no significant differences are 

displayable between the original and the rebuilt spectra. For this reason, in some particular cases, the PLS 

regression may be also skipped, or substituted with a simpler PCA or PCR. However, for the present work, 

the PLS regression was always applied, because the differences between original and rebuilt spectra, even if 

difficult to be seen with the naked eye, may be dramatic for the final result. Moreover, if the Bro method [6] 

has to be used, according to eq. 4.0.18, the regression coefficient vector is required, thus PLS is necessary. 

According to eq. 4.0.9, the matrix spectrum has to be calculated. For this purpose, a pure spectrum is 

necessary. For solid samples, this pure spectrum is simply obtained by analyzing the pure analyte added to 

the other samples. Similarly, in the liquid cases, as a “pure” spectrum it was used the one obtained from the 

solution used for the additions; a different solution was prepared for each case, but the concentration was 
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always ~0.08 mol/L, so the spectrum was similar for both cases. Figure 4.1.5 shows the second right term of 

eq. 4.0.9, which is the pure spectrum multiplied for ck and α (𝛼𝒄𝒌𝒔𝑡) 

 
Figure 4.1.5: Calculated pure spectra according to eq. 4.0.9 for a) “Cu-1” and b) “Cu-2” cases 

A different “calculated pure” spectrum is present for each addition because the value of cadd and, 

consequently, the value of ck changes (eq. 4.0.10). These pure spectra are subtracted from the rebuilt one, 

according to eq. 4.0.9. The results of these subtractions are shown in Figure 4.1.6 

 
Figure 4.1.6: Matrix calculated spectra according to eq. 4.0.9 for a) “Cu-1” and b) “Cu-2” cases 
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The theory of NAS states that, at this point, in the matrix spectra only the signal due to interfering species 

should be present, and the one due to the analyte has been removed. However, in this case, the added 

concentration has been used to compute the matrix spectrum, and not the total one (and also the “pure” 

spectrum is not totally pure, but it has its own concentration). Therefore, what should be seen in Figure 4.1.6 

are spectra in which the signal due to added concentration has been removed, which means spectra close to 

the zero-added one. This is the case of “Cu-1” (Figure 4.1.6a) where the calculated spectra are close to each 

other and similar to the zero-added one of Figure 4.1.1. For “Cu-2”, however, the situation is totally 

different: matrix spectra are not close to each other, they are different from the zero-added one and there is 

also an inversion of the CuSO4-peak trend (the lower addition has the higher peak). This is probably due to 

the presence of the interfering peak at different concentration: the difference between “Cu-1” and “Cu-2” is 

in the values of α (0.932 and 2.41 respectively) that are calculated from the rebuilt matrix (eq. 4.0.11). 

Therefore, differences in the product 𝛼𝒄𝒌𝒔𝑡 are amplified in “Cu-2”. This is a general behavior, also for solid 

samples: it is very difficult to find a case in which the matrix spectra are sharp as that of “Cu-1”; there is 

always some effect that makes them deviate from “ideality”. 

The matrix spectra are then used to compute the projection matrix H (eq. 4.0.12) and, finally, the original 

spectra are projected on the NAS space (eq. 4.0.13). The results of this projection are the net spectra shown 

in Figure 4.1.7 

 

Figure 4.1.7: Net spectra for a) “Cu-1” and b) “Cu-2” cases 

What is important of these spectra is their Euclidean norm, which means that it is not important if the 

reported signal is positive or negative, because a sum of squares will be computed. It is interesting, from 
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Figure 4.1.7, that “Cu-1” shows both a signal in the CuSO4 region and a second signal in K2Cr2O7 region. 

“Cu-2”, instead, shows an intense signal, no matter how confused it may be, in CuSO4 region and a much 

less intense signal in K2Cr2O7 region. This means that, for “Cu-2”, the net signal is more reliable than for 

“Cu-1”, because the signal of the interfering K2Cr2O7 has been more effectively removed, which is the 

objective of NAS. In both cases, anyway, the net signal increases while increasing the added concentration 

(for “Cu-2”, it is the absolute value of each point that increases). 

At this point, the Euclidean norms of each net spectrum were computed and used as a pseudo-univariate 

signal to create a pseudo-univariate standard added line, from which the concentration of interest was 

extrapolated. 

The following Figure 4.1.7 and Table 4.1.4 show the NAS-standard addition line and the corresponding 

figures of merit for “Cu-1” and “Cu-2” cases. 

 
Figure 4.1.8: NAS-standard addition line for a) “Cu-1” and b) “Cu-2” cases.  

The red vertical line indicates the extrapolated concentration 

 
"Cu-1" "Cu-2" 

Expected 

concentration 
0.04 0.04 

cE 0.0423 0.0413 

sC,E 2.32⸱10
-4

 4.92⸱10
-4

  

b 7.66 6.65 

sb 0.0551 0.0909 

a 181 161 

sa 2.91 4.95 

R
2
 0.997 0.990 

PLS-factor  3 3 

RMSE 1.39⸱10
-5

 1.31⸱10
-4

 

Sn 15.0 13.9 

LoD 0.02 0.03 

Table 4.1.4: Results and figures of merit for “Cu-1” and “Cu-2” cases 
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Table 4.1.4 shows a very good agreement between the expected concentration value and the one obtained by 

extrapolation from the NAS-standard addition line for both “Cu-1” and “Cu-2”. Moreover, R
2
 of the two 

lines are very close to the ideal value of 1 indicating good models and LoDs are lower than the extrapolated 

values (even if in the same order of magnitude). In general, it can be stated that, although the examined cases 

are very simple, and in some steps the behavior of NAS procedure is different for the two cases, the NAS 

method successfully predicted the concentrations of the analytes of interest. These results are encouraging 

for applying NAS to more complex and real cases. 

 “Cr” case 

The complication present in “Cr” case, with respect to “Cu-1” and “Cu-2”, is that the analyte of interest, 

CrCl3, has two UV-Vis maxima: the first one at ~615 nm, the second one at ~430 nm. This second peak 

partially overlaps the absorption band of the interfering K2Cr2O7 (maximum at ~352 nm), as shown in Figure 

4.1.9 

 

Figure 4.1.9: UV-Vis spectra of CrCl3 (black) and K2Cr2O7 (red) 

For univariate purposes, the first-peak maximum could be taken to compute a standard addition line. 

However, in order to stress the NAS algorithm, both the entire spectrum and only the second CrCl3-peak 

were used to compute a NAS standard addition line. This case is interesting because, for the second analyte-

peak, the Beer-Lambert law, due to the overlap, is not fully respected; therefore, the Hemmateenejad variant 

should not be applicable. The following Table 4.1.5, indeed, shows the results of NAS procedure on the 

entire spectra with and without Hemmateenejad variant. 
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With 

Hemm. variant 

Without 

Hemm. variant 

Expected 

concentration 
0.015 

cE 0.0189 0.0133 

sC,E 3.63⸱10
-4

 7.36⸱10
-4

 

b 4.48 1.99 

sb 0.193 0.0605 

a 218 150 

sa 10.5 3.43 

R
2
 0.975 0.995 

PLS-factor 3 2 

RMSE 3.38⸱10
-4

 5.52⸱10
-4

 

Sn 7.10 151 

LoD 0.3 0.004 

Table 4.1.5: Results and figures of merit for “Cr” case using full spectra 

It is interesting to note that, without Hemmateenejad variant, the extrapolated concentration is closer to the 

expected value, the R
2
 is higher, and, most of all, LoD is much lower and it is lower than the extrapolated 

value, while, with Hemmateenejad variant, it is much higher. This result can be considered as a 

demonstration that Hemmateenejad variant is useful for the liquid case (it gave very good results for “Cu-1 

and “Cu-2”, and even in this case the extrapolated concentration is close to the expected one), but its results 

are reliable only when the Beer-Lambert law is completely respected. 

Table 4.1.6, instead, shows the results obtained using only the second peak of CrCl3 (the one with the 

maximum at ~352 nm) 

 
With 

Hemm. variant 

Without 

Hemm. variant 

Expected 

concentration 
0.015 

cE 0.0213 0.0144 

sC,E 4.96⸱10
-4

 1.08⸱10
-3

 

b 3.35 1.53 

sb 0.107 0.0491 

a 157 106 

sa 6.06 2.78 

R
2
 0.985 0.993 

PLS-factor 2 2 

RMSE 7.35⸱10
-4

 5.66⸱10
-4

 

Sn 5.07 107 

LoD 0.2 0.003 

Table 4.1.5: Results and figures of merit for “Cr” case using the second peak of CrCl3 

Besides the confirmation of what already stated before about cE, R
2
, and LoD, what is interesting here is that, 

without the variant, the extrapolated value is closer to the expected one with respect to that obtained before. 
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Figure 4.1.10 shows the passage from the original to the net spectra in “Cr” case (second peak only). It 

should be noted that the original spectra are noisier than the ones reported for “Cu” cases, but the NAS is 

efficient in managing also this noise. Moreover, net spectra show a negative peak where the interfering 

signal is present in the original ones; it is a general behavior of NAS: for managing the interfering signal, 

sometimes it appears as a negative peak in the net spectra.  

 

Figure 4.1.10: Original (a) and Net (b) spectra for the “Cr” case using only the second CrCl3 peak  

Conclusions 

The present chapter showed an application of NAS to simple home-made solutions analyzed by UV-Vis 

spectroscopy. This was simply an exercise, however, it is useful from a theoretical point of view, to better 

understand how NAS algorithm works, and how the signal is managed through the procedure. Such graphic 

visualization can be obtained also for the other cases, which will be shown in further chapters. However their 

meaning would be more difficult to explain and understand, thus, in general, it will not be shown. 
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CHAPTER 4.2: NAS APPLIED TO RAMAN SPECTROSCOPY 

Introduction 

Regarding the application of net analyte signal procedure to Raman spectroscopy, several studies are 

reported in the literature, where it was used for the computation of figures of merit [1–4]. There is also one 

study in which the combination Raman spectroscopy – NAS was used to create a control chart for quality 

control purposes [5]. However, at the author knowledge, only one study was carried out in which NAS was 

applied to Raman spectroscopy for quantification [6]: in that work, a NAS-calibration line was created by 

analyzing several ethanol aqueous solutions in order to quantify the concentration of ethanol in beverages as, 

for instance, wine. 

The aim of the present work is to show an application of NAS procedure for quantification purposes in solid 

samples analyzed by Raman spectroscopy: the specific study concerns the quantification of paraffin in 

beeswax samples. 

Beeswax is one of the products of bees (Apis Mellifera) and, besides honey, probably the most important. 

Bees use beeswax as a structural material for their hives: they use it for building honeycombs (hexagonal cell 

structure into which pollen, honey, and larvae are placed), and to close any hole in the structure (both 

internal and external). Bees use beeswax also for defense: if some insect enters in the hive, bees cover it with 

beeswax until it suffocates. Humans are very interested in this product, too. Although the most known 

beeswax products are candles [7], humans use beeswax since ancient times for art [8, 9], but also for coating 

[10]; ancient Egyptians used beeswax also for their mummies [11]. Besides candles, also today beeswax has 

several applications, for example in food packaging [12], food preservation [13], and also in drug and 

cosmetic formulations [14]. Moreover, a recent study [15] used the composition of beeswax as bio-monitor 

for the presence of pesticide residuals in the environment. These uses of beeswax, in particular for food and 

drugs, makes it important to study and characterize this product. Therefore, several studies were carried out 

about its biosynthesis [16, 17] and composition [18–20]. 

Composition of beeswax, analyzed by GC-MS [18] and Raman spectroscopy [21], has been found to be a 

mixture of hydrocarbons (~15%), esters (mono-, ~35%, di-, ~14%, tri-, ~3%, and hydroxy-, ~12%), free 

acids (~12%), acid esters (~3%) and other compounds (~7%). All these hydrocarbons and esters are 

characterized by medium-length linear carbon chains (up to 34-35 atoms). Such a composition makes 

beeswax a white (or yellow-brown, depending on impurities of pollen or honey) solid with a characteristic 

texture soft and plastic (but sometimes also hard and crumbly), a low melting point (~40°C), and low 

viscosity when melted. 

The large employment of beeswax makes this product subject to frauds, the principal of which is by the 

addition of paraffin [22]. Paraffin is a class of linear alkanes, with carbon chains that can have different 

length, determining different properties [23], derived from petroleum processing. Its physical properties are 
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similar to beeswax ones: it is white, soft and with a low melting point. Therefore, it is easy to mix paraffin 

with beeswax, obtaining a product with characteristics very similar to the pure beeswax. 

Mostly due to the food and pharmaceutical uses of beeswax, the adulteration control is important. Although 

also the use of pure paraffin in these fields (most of all in cosmetics) is studied and controlled [24], there is 

mainly an economic problem: paraffin is cheaper than pure beeswax, so mixing it to beeswax and sell the 

product as “pure beeswax” brings to an illicit profit for the producer. The official analytical method for this 

kind of control is gas-chromatography coupled with mass spectrometry (GC-MS) [22, 25]. Some alternatives 

are the study of physical and chemical parameters [26] or the use of FTIR spectroscopy [27, 28]. However, 

the biggest problem of GC-MS [25] is the variability of paraffin composition. The presence of paraffin-

adulteration can be detected by finding hydrocarbons with an even number of carbons (occurring in trace 

amounts in beeswax) or with more than 35 atoms of carbon in the structure (not present in beeswax [20]). 

Moreover, GC-MS is a destructive technique, that requires some sample pre-treatment (at least, it has to be 

solved in heptane) and long analysis time. 

As already stated, the alternative approach for quantification of paraffin-adulteration in beeswax is based on 

Raman spectroscopy and NASSAM method. The advantage of Raman spectroscopy, over the official GC-

MS method, is that it is not-destructive for the sample and the analysis is more rapid and cheaper. For the 

present work, a beeswax sample was adulterated in laboratory with paraffin and the amount of the adulterant 

was quantified by NAS. 

Materials And Methods 

Beeswax and paraffin samples were furnished by beekeepers to the CREA-API institute (Consiglio per la 

Ricerca in Agricoltura e l’Analisi dell’Economia Agraria – Unità di Ricerca in Apicoltura e Bachicoltura, 

Bologna, Italy). To obtain pure beeswax, old and broken honeycomb (entirely produced by bees) were 

melted. 

Standard-added samples were prepared by melting a proper quantity of beeswax and paraffin and mixing 

them once in the liquid state. In melting phase, the temperature was controlled to not exceed 62-64°C in 

order not to decompose beeswax (at ~85°C it tends to lose color, while at 120°C it burns). Five samples were 

prepared with an increasing concentration (%w/w) of paraffin, according to Table 4.2.1. The sample with 

lower concentration was used as the zero-added one, and the added concentrations of the others were 

calculated according to this one. Samples were prepared in beakers covered with an aluminum sheet, 

previously washed with hexane. The total weight of each sample is 2.00 ± 0.05 g. 
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Paraffin total 

concentration 

(%w/w) 

Added 

concentration 

(%w/w) 

add.0 1.5 0.0 

add.1 3.9 2.4 

add.2 6.4 4.9 

add.3 9.0 7.5 

add.4 12.9 11.4 

Table 4.2.1: Paraffin-adulterated standard added samples 

Each sample, plus a pure paraffin one, was analyzed three times with Raman spectroscopy. In order to carry 

out Raman analyses, a portion of the sample was melted on a watch-glass and placed on a hot plate. Once the 

sample is liquefied, a drop is placed on a glass slide (18 x 18 mm
2
) and covered with another slide. In order 

to avoid the solidification of the sample in contact with the cold surface of the slides, it was continuously 

heated and an extremely thin layer was melted between the two slides to avoid beeswax stratification. 

Instrumental analyses were carried out by a DXR Raman Microscope (Thermo Fisher Scientific, Waltham, 

MA) with a laser source (wavelength 532 nm). OMNIC for Dispersive Raman software (Thermo Fisher 

Scientific, Waltham, MA) was used to handle all the acquisition parameters specified in Table 4.2.2. 

Parameter Value 

Laser wavelength 532 nm 

Laser power (max 10 mW) 10.0 

Aperture 25 µm pinhole 

Grating 900 lines/mm 

Estimated resolution 2.7-4.2 cm
-1

 

Estimated spot size 1.3 µm 

Min range limit 50 cm
-1

 

Max range limit 3500 cm
-1

 

Accessory Microscope 

Objective 20x 

Table 4.2.2: Raman operative conditions 

Raman spectra were collected in the interval 100-3500 cm
-1

, with steps of 1 cm
-1

. 

Results and Discussion 

The starting dataset is composed of 18 rows (3 replicates of samples in Tab. 4.2.1 and 3 replicates of a pure 

paraffin sample) and 3527 columns (Raman shifts). Figure 4.2.1 shows the Raman spectra of a pure sample 

of beeswax and a pure sample of paraffin. 
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Figure 4.2.1: Raman spectra of pure beeswax and paraffin 

What can be stated from figure 4.2.1 is that there are very slight differences between the spectra of beeswax 

and paraffin. This is not surprising: indeed, most of the peaks present in these spectra are due to stretching 

and bending of C-H and C-C bonds, which are predominant in both beeswax and paraffin. From a qualitative 

point of view, the peaks at 1735 cm
-1

 and 1656 cm
-1

 are very important. These are due to the stretching of 

C=O bond in, respectively, esters and amides. Although not intense, these peaks are present in beeswax and 

totally absent in paraffin, that is composed of alkanes only [28]. These peaks are highlighted in Figure 4.2.1 

in the green rectangle. Figure 4.2.2, instead, shows the original Raman spectra for the added samples. 

 

Figure 4.2.2: Raman spectra of the added samples, the legend is according to table 4.2.1 

Looking at Figure 4.2.2, it is interesting to note that the (evident) peaks are not linearly increasing with the 

concentration of paraffin: add.0 (black) has the less intense signal (for almost all peaks), then, in ascending 
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order, there are add.3 (blue), add.4 (light blue), add.2 (green), and add.1 (red) is the most intense. Therefore, 

a univariate quantification seems impossible (at least without pre-treating data). However, the NAS 

procedure was applied to the raw data, and the best results were obtained by the original Lorber procedure, 

without Ferré-Bro variant. In this case, also the zero-added sample was kept in the computation. Table 4.2.3 

reports the results obtained for this case. 

Expected 

concentration 
1.5 

cE 2.09 

sC,E 0.258 

b 20.8 

sb 2.17 

a 9.94 

sa 0.331 

R
2
 0.985 

PLS-factor 7 

RMSE 0.645 

Sn 12.5 

LoD -- 

Table 4.2.3: Results and figures of merit for the beeswax-Raman case 

In this case, a blank sample was not available for the computation of LoD. The extrapolated concentration 

(2.09%w/w), also considering the relative standard deviation (0.258%w/w), is not significantly different from 

the expected value (1.5%w/w, the total concentration of paraffin present in add.0 sample, as reported in Table 

4.2.1), and the R
2
 (0.985) is close to its ideal value. Figure 4.2.3 shows the NAS standard addition line 

obtained in this study, Figure 4.2.4 shows the corresponding net spectra. 

 

Figure 4.2.3: NAS-standard addition line for the beeswax-Raman case.  

The red vertical line indicates the extrapolated concentration 
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Figure 4.2.4: Net spectra for the beeswax-Raman case 

Net spectra in Figure 4.2.4 (as the standard addition line in Figure 4.2.2) show that the NAS procedure has 

been able to obtain a linear behavior of samples, even if the starting spectra seemed not to have it. Looking at 

the peaks (no matter if positive or negative), the increasing order is now correct, the lowest signal (with 

almost no peaks) is the one of add.0, and the highest one is add.4. 

Conclusions 

NAS procedure was applied to samples of beeswax artificially adulterated with paraffin and analyzed by 

Raman spectroscopy. Although from the original Raman spectra it was difficult to qualitatively detect the 

presence of paraffin, the concentration extrapolated from NAS procedure is in very good agreement with the 

expected value.  
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CHAPTER 4.3: NAS APPLIED TO GAS-CHROMATOGRAPHY 

Introduction 

The present chapter will show an application of NAS procedure to gas-chromatography in head-space mode. 

Although gas chromatography (GC) is often used as a quantitative method, in particular when coupled with 

mass spectrometry (MS) [1, 2], at the author knowledge it is the first time that NAS procedure is applied to 

GC for quantification purposes. Moreover, in general, GC is used to quantify a single analyte at a time, 

while, in the present work, the aim is to quantify a product, which produces several signals in the 

chromatogram. In fact, the specific case will regard the quantification of a home-made turmeric impurity in a 

saffron sample. 

Several studies demonstrated that both saffron and turmeric (as other spices) may be used to fight diseases as 

cancer [3–5], diabetes [3], Alzheimer [6], depression [7], or as antibacterial [8, 9]. Therefore, probably, no 

health problems are associated with the addition of one of these spices to the other. 

However, saffron is obtained by the dried red stigmas of the flower of Crocus sativus L., which is cultivated 

only in some regions of Asia (Kashmir, northern Iran) and Europe (Castilla la Mancha, Spain, Kozani, 

Greece, Abruzzo, Sardinia, and Sicily, Italy) [10]. The limited areas of production and the laborious process 

required to obtain this spice makes it one of the most expensive in the world. This motivates the interest in 

economical frauds by adding less expensive spices to the market product [11, 12]. The authenticity of saffron 

is protected by the Standard ISO 3632-1 (2011) and by the presence of several PDO designations (as, for 

example, the Italian “Zafferano dell’Aquila”, the major in terms of production and global exports) [10].  

Due to their yellow color (even if with a totally different flavor), three of the most important adulterants for 

saffron are turmeric (Curcuma longa), safflower (Carthamus tinctorius), and marigold (Calendula 

officinalis) [13]. Several studies were carried out concerning saffron adulteration with different analytical 

techniques. The most important in this field is DNA analysis [10] to detect botanical species different from 

Crocus sativus. However, such technique is time-consuming and requires specialized personnel to produce 

and interpret reliable results. Therefore, chemical analyses are developing: FTIR spectroscopy [14], nuclear 

magnetic resonance [15], laser-induce breakdown spectroscopy [13], and liquid chromatography coupled 

with mass spectroscopy [16]. 

GC has been widely used for studying saffron. Coupled with MS, it allowed to identify the components of 

saffron volatile fraction [17, 18]. All studies identified safranal (2,6,6-trimethyl-1,3-cyclohexadiene-1-

carboxaldehyde) as the most powerful aroma-active and abundant compound. Amanpour et al. [18] 

quantified safranal with a concentration of  ~2200 μg/g over a total aromatic concentration estimated in 

~8700 μg/g, as the sum of all the identified aromatic compounds. Therefore, safranal is considered as the 

molecule which mostly contribute to the typical saffron aroma. Other aroma-active compounds are most of 

all aldehydes, alcohols, and ketones. Two of the most important of these are isophorone (3,5,5-trimethyl-2-

cyclohexene-1-one) and 4-ketoisophorone [17, 18]. However, the volatile fraction of saffron strongly 
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depends on its geographical origin. Volatile fraction, indeed, has been used as a fingerprint for the 

geographical discrimination of saffron samples by GC-MS [19, 20]. In all these cases, chemometrics was 

used to manage GC data, in particular LDA [19], in a work analogous to that showed in chapter 2.1 for 

honey discrimination. 

Another work [21] used chemometrics, in particular partial least squares discriminant analysis (PLS-DA) for 

the same purpose of geographical discrimination. Moreover, they used other chemometric tools to select the 

most important compounds for such discrimination (finding, again, safranal, isophorone, and 4-

ketoisophorone, plus 20 other compounds). However, they carried out these analyses on GC data collected 

with a flame ionization detector (FID). GC-FID has the disadvantage, over GC-MS, of not being able to 

directly identify molecules, unless comparing the retention times with certified standards. Therefore, GC-

FID is useful for collecting a fingerprint of the volatile fraction, but not to identify the specific molecules. 

The aim of the present chapter is to use the GC-FID fingerprint of some artificially adulterated saffron 

samples, with increasing amounts of turmeric, to quantify, with the NASSAM procedure, the turmeric 

concentration of the less adulterated one, used as zero-added concentration sample. GC data were obtained in 

head-space mode, by the same ultra-fast gas chromatograph (flash-GC), Heracles II (AlphaMOS, Toulouse, 

France), already used in chapter 2.1 for honey. The present work was carried out in collaboration with Coop 

Italia (Casalecchio di Reno, Bologna, Italy), that provided samples and the analytical instrumentation. 

Materials and Methods 

Saffron and turmeric samples were collected in a Coop Italia supermarket. The problem for such study is that 

no pure standards of the two spices exist, most of all pulverized (powders are necessary to properly mix the 

two species). Therefore, two commercial samples were collected and their purity was confirmed before 

sample preparation and GC-analysis by a DNA analysis, again carried out in Coop Italia laboratory. The 

trademark of the saffron sample is Zaffy
®
 (Aromatica S.r.l., Milan, Italy), while that of turmeric one is 

Cannamela (Cannamela S.r.l., Bologna, Italy). 

Four aliquots of saffron were manually adulterated with a proper quantity of turmeric according to table 

4.3.1. All samples had a total weight of 100 ± 1 mg, thus, total concentration values reported in table 4.3.1 

are also the milligrams of turmeric weighted and mixed to saffron. 

 

Turmeric total 

concentration 

(%w/w) 

Added 

concentration 

(%w/w) 

add.0 5 0 

add.1 10 5 

add.2 15 10 

add.3 20 15 

Table 4.3.1: turmeric-adulterated standard added samples 

Powders were mixed by a Vortex mixer (Thermo Fisher Scientific, Milan, Italy) keeping them under 

agitation for 3 min, in order to homogenize samples. Each added sample was prepared two times. 
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30 ± 1 mg of each prepared sample was then put in a 20 mL vial and sealed with a magnetic cap. Two 

replicates of each sample were analyzed; thus, four replicates of each added sample were available for NAS 

analysis. Moreover, four replicates of pure saffron and four of pure turmeric were analyzed. The description 

of the flash-GC Heracles II (AlphaMOS, Toulouse, France) has been already provided in Chapter 2.1 about 

botanical discrimination of honey. Table 4.3.2 shows Heracles’ operating conditions. 

Parameter Value 

Oven conditions 20 min at 50 °C, 500 rpm 

Syringe temperature 60 °C 

Injected volume 5 mL 

Trap temperature 40 °C 

Trapping time 65 s 

Trap desorption 240 °C 

Columns temperature program 40°C (2 s) to 270 °C (21 s) by 3°C s
-1

 

FID temperature 270 °C 

Acquisition duration 100 s 

Digitalization of the signal 0.01 s 

Table 4.3.2: Heracles II operating conditions for saffron analysis 

Results and Discussion 

The starting dataset matrix has dimensions 16 x 20000. The number of variables, however, is too high and is 

not easy to manage for a common personal computer. Therefore, in order to reduce data dimensions 

maintaining a good representability, one variable every ten was taken, and the remaining were discarded. 

This brought to a 16 x 2000 matrix. Figure 4.3.1 shows the chromatograms of pure saffron and turmeric, 

appending the signal of the second column subsequent to the first one (as it will be used for NAS 

computations). Figure 4.3.2, instead, represents samples chromatograms; the signal from the two columns 

are separated, for the sake of readability. 

 

Figure 4.3.1: Pure saffron and turmeric chromatograms.  

The vertical blue line divides column 1 (on the left) from column 2 (on the right) 
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Figure 4.3.2: chromatograms of the added samples for a) MXT5 and b) MXT1701 columns.  

Legends are according to table 4.3.1 

Some consideration can be drawn from Figures 4.3.1 and 4.3.2. In Heracles, the head-space of the same 

sample is split into the two columns before the analysis. Therefore, the two columns analyze the same 

molecules. Moreover, the two columns have a slight difference of polarity: this is why the two 

chromatograms may seem similar at first sight. However, in this study, no peak recognition was carried out 

(also because the FID detector makes it possible with good reliability only by comparison with standards). 

Therefore it is not so simple to recognize the correspondence of a peak from the first column to one on the 

second column. Moreover, Figure 4.3.1 shows that, at least for the higher peaks, there is a slight overlap 

between chromatograms of saffron and turmeric. Thus, a quantitative analysis might take advantage of such 

characteristic. However, in general, it is easy to have overlaps also in chromatography, and a pure sample 

may also not be available. Therefore the decision was to use the entire chromatograms, the second one 

following the first, for NAS quantification of turmeric. Another interesting information, that can be derived 

from a visual inspection, is that the intensity of peaks related to turmeric (starting at about 70 s for both 

columns) increases with the added concentration of the analyte, while the peaks related to saffron decrease 

correspondingly. 
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To these data, NAS was applied using Ferré-Bro method, without removing the zero-added sample. Table 

4.3.3 and Figure 4.3.3 report the results and figures of merit obtained by NAS procedure. 

 

Expected 

concentration 
5 

cE 3.58 

sC,E 0.726 

b 7603 

sb 69.9 

a 2125 

sa 7.47 

R
2
 0.999 

PLS-factor 9 

RMSE 1.06 

Sn 2031 

LoD 3.27 
 

 

Table 4.3.3: Results and figures of merit 

for saffron-GC case 

Figure 4.3.3: NAS-standard addition line for saffron-GC case. 

The red vertical line indicates the extrapolated concentration 

From Table 4.3.3, it can be seen that the extrapolated concentration (3.58%w/w) is underestimated compared 

to the expected value (5%w/w). However, the relative standard deviation (0.726%w/w) makes the extrapolated 

value not significantly different from the expected one, with p-value = 0.0687 (15 degrees of freedom). One 

problem that could be relevant is the limit of detection: in this case, it is very close to the extrapolated 

concentration (3.27%w/w). This is probably due to the fact that the chromatograms of blank samples (empty 

vials) are not flat, but show some peaks due to laboratory air. These peaks, although of low intensity, are 

summed to sample peaks and may have some influence on the projection (H) matrix of NAS. Then, when the 

blank chromatograms are projected on the H matrix, the effect of blank signals may be in some way 

amplified, increasing LoD value. 

Conclusions 

NAS method was applied to saffron samples adulterated on purpose by turmeric, and analyzed in head-space 

mode by flash-GC. The extrapolated concentration of turmeric is a bit underestimated, but not significantly 

different from the expected value. Therefore, the concentration of the analyte of interest was obtained by the 

analysis of its volatile fraction, and not by the direct analysis of the powder, as it happens for the other cases 

presented in this Thesis. 
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CHAPTER 4.4: QUANTIFYING API POLYMORPHS IN FORMULATIONS 

USING X-RAY POWDER DIFFRACTION AND MULTIVARIATE 

STANDARD ADDITION METHOD COMBINED WITH NET ANALYTE 

SIGNAL ANALYSIS 

The present paper was published by the journal “European Journal of Pharmaceutical Sciences” (reference: 

2019, 130:36-43; https://doi.org/10.1016/j.ejps.2019.01.014). It presents an application of NASSAM to 

pharmaceutical ingredients analyzed by X-ray powder diffraction. The experimental work was carried out in 

our laboratories, under the supervision of Prof. Lucia Maini. Prof. Giuliano Galimberti (here and in the other 

chapters concerning NAS), helped with computations and development of NAS, while Dr. Rocco Caliandro 

developed and applied to these data the algorithm RootProf, that will be presented in the paper. Prof. Dora 

Melucci and I performed all NAS analyses. All the cited authors contributed to write the manuscript paper, 

each one describing his part of the work. 
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CHAPTER 4.5: NAS APPLIED TO IR-ATR 

Introduction 

The present chapter shows the application of NAS to data acquired by infrared spectroscopy in attenuated 

total reflection (IR-ATR) mode. The aim of this study is the quantification of biogenic silica in marine 

sediments. Thus, in this case, the matrix was natural and totally unknown, making almost impossible the use 

of a quantitative not-destructive method different from standard addition method. Some problems with NAS 

arose in this case; therefore, also an alternative method was applied to reach the goal.  

Biogenic silica (BSi) is produced by diatoms, unicellular microalgae present in oceans, waterways, and soils 

[1], that use silica for their cell wall, called frustule [2]. At diatoms death, frustules may resist and settle on 

the ocean floor (or in diatom living place) [3]. The interest in diatoms lays in the fact that these act as a 

“pump” for CO2, transferring it from air into the ocean [4, 5], and fix it to produce oxygen [6]. It has been 

estimated that diatoms produce 20% of the world oxygen by photosynthesis. Therefore, the study of diatoms 

may help to understand CO2 cycle in order also to understand (and forecast) climate changes [5]. To evaluate 

the presence of diatoms in past periods, most of all in oceans, the quantification of BSi in sediments has been 

thought as a good indicator. However, it suffers from some drawbacks [5]: most part of the frustules 

dissolves in water and, while “falling” from surface waters to sea floor, BSi is subjected to marine currents. 

As a consequence, it can be moved from one part of the ocean to another, and the sediments may not reflect 

anymore the diatom activity at the surface [7]. This is why other indicators of diatoms activity have been 

studied, such as organic carbon and CaCO3 [8], 
210

Pb [9], and barium [10]. Anyway, settled BSi stratifies 

over time and it can be collected and studied by coring sea (or lake) floor. Therefore, the quantification of 

BSi at different core-depth may give information about diatoms activity over time. 

The study of BSi is a challenge also from the analytical point of view. The greatest problem is the presence 

of lithogenic silica (aluminosilicates) in sediments [11, 12], derived from volcanic activity or transported by 

rivers, that is difficult to distinguish from BSi. The main difference between aluminosilicates and BSi is that 

the former is crystalline, while the latter is amorphous. Therefore, the official technique that was developed 

for BSi study is the so-called “wet method” [11]. The wet method is based on a different rate of dissolution 

of BSi and aluminosilicates in an alkaline solution, BSi being more rapid in solving. Thus, the sediment is 

solved in an alkaline solution, BSi is separated by aluminosilicates and it is collected in the supernatant of 

such solution. Finally, it can be analyzed without the interference of lithogenic silica. The wet method is 

economic because it only requires an alkaline medium. However, it is very time-consuming, because it 

requires several steps of dissolution and filtration to be sure to solve all the BSi. Moreover, results have 

shown a strong dependence on experimental conditions, and some lack of reproducibility [13]. These 

drawbacks obviously aggravate the destructivity of the technique. 

Therefore, some alternative techniques have been proposed for the quantification of BSi in sediments. For 

example, the direct analysis of sediments by X-ray powder diffraction [14]. The problem, in this case, is that 

BSi (amorphous) “signal” in XRPD is a “bulge” that, in general, is considered a non-signal. A possible 
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solution would be to heat the sample in order to convert BSi to crystalline cristobalite [15]. Another idea was 

to prepare a set of synthetic sediment mixtures and to calculate a PLS model in order to quantify BSi by 

interpolation [16]. It is, however, clear that such a method requires a prior knowledge of all chemical species 

present in the matrix. 

Besides XRPD, the two analytical techniques mostly used for this kind of research are X-ray fluorescence [8] 

and FTIR spectroscopy [8, 17]. In particular, the latter has gained attention because of its simplicity. FTIR 

has been used for quantification purposes, coupled with chemometrics and using the entire spectra [16], but 

also exploiting the Beer-Lambert law to quantify BSi and other minerals using their peculiar absorption 

bands [18]. Also in this case, however, the problem is signal overlapping. In fact, the main BSi IR absorption 

bands are [16]: ~470 cm
-1

, caused by asymmetric vibrations of SiO4 tetrahedron, ~800 cm
-1

, due to stretching 

vibrations of Si-O-Si group, ~945 cm
-1

, assigned to Si-OH vibration, and ~1100 cm
-1

, caused by asymmetric 

stretching of SiO4 tetrahedron. The problem is that only the band at ~945 cm
-1

 may be considered 

characteristic of BSi, because the others are shared with lithogenic quartz. Due to its crystallinity, quartz has 

a low presence of Si-OH groups, thus its absorption at ~945 cm
-1

 is low (quartz has also a characteristic band 

of absorption at ~695 cm
-1

, due to symmetric bending of SiO4 tetrahedron). 

In the present study, BSi was quantified in several sediment samples by the use of NASSAM method applied 

to FTIR spectra collected in ATR mode. Another problem of this kind of analysis is, in general, the scarcity 

of samples, due also to the difficulty in collecting them. For the NASSAM procedure, part of the sample is 

lost for producing the standard-added samples, but IR-ATR is totally non-destructive because it neither 

requires the preparation of a KBr tablet as in traditional FTIR analysis. Therefore, the prepared samples are 

preserved for possible further analyses. As already stated, NAS quantification showed some problems for 

some samples; therefore, also an alternative chemometric method was tried, based on orthogonal signal 

correction (OSC) [19], a pre-processing technique that seems very suitable for IR spectra [20]. 

Materials and Methods 

Sample Collection 

Sediment samples come from the Gondwana Station, the so-called “Site D” (Figure 4.5.1), an Italian 

research center located in the western sector of the Ross Sea, Antarctica, at 75° 06’ S and 164° 28’ 5” E.  

 

Figure 4.5.1: Location of Gondwana Station, Site D 
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The sediment core from which samples come was collected during 2003-2004 PNRA (Italian National 

Program for Research in Antarctica) Campaign at a depth of 972 m. To collect the sediment, a box corer was 

used, then a plastic cylinder (22 cm long, 12 cm of diameter) was inserted into the corer to obtain one core. 

Immediately after collection, the core was sub-sampled to obtain sections of 1 cm thickness, stored at -20°C 

in precleaned polycarbonate Petri capsules. Sub-samples were named with a two digits code: a letter 

indicating the sampling place, “D”, and a number, from 0 to 21, indicating the core height (0 indicating the 

top). Part of these samples were analyzed in situ, while another part was sent to CNR (Consiglio Nazionale 

delle Ricerche, Bologna, Italy) for BSi analysis. On five of these samples, a wet analysis was carried out by a 

CNR expert, giving some expected values for NASSAM method (due to the high time necessary, the wet 

analysis was not carried out on all samples). Another artificial sample was prepared and analyzed by a ring 

test, certifying its BSi content at 53%w/w.  

Samples Preparation and Analysis 

20 natural samples (from D0 to D21, D3 was not present) and the “53%” standard were prepared for the 

application of NASSAM method and analyzed always in the same way. For standard additions, 

diatomaceous flour (or diatomite) was used as a proxy of the analyte of interest, BSi. Diatomite was 

purchased by Sigma Aldrich (Merck, Darmstadt, Germany) under the commercial name Celite
®
. 

Each sample was manually ground in an agate mortar for two minutes before preparation, in order to have a 

powder as homogeneous as possible and to remove small pebbles. Then, it was heated at 105°C for 1 h in a 

ventilated oven to remove water traces. The same procedure was carried out for diatomite. Four aliquots of 

each sample were prepared by adding diatomite according to Table 4.5.1, in order to have a total weight of 

200 mg and added concentrations of 5%, 10%, and 15%w/w. Powders were weighted with a five decimals 

weight scale. 

 
Sediment weight 

(mg) 

Diatomite 

weight (mg) 

Added 

concentration 

(%w/w) 

add.0 200 0 0 

add.1 190 10 5 

add.2 180 20 10 

add.3 170 30 15 

Table 4.5.1: Biosilica standard added samples preparation 

Added samples were then homogenized with an MM200 ball mill (Retsch, Düsseldorf, Germany). Each 

sample was put in a 1.5 ml volume stainless steel cylinder and mixed for 1 h at 20 Hz. Then, samples were 

kept in a dryer until analysis. Some samples and standards were analyzed with a scanning electron 

microscope (SEM) to look for the presence of frustules. Figure 4.5.2 reports some of the obtained images, 

that demonstrate that the diatomite used and the 53% standard present frustules similar to the ones observed 

in sediment samples.  
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Figure 4.5.2: SEM images of samples: a) pure diatomite; b) 53% standard; c) D1 sample; d) D4 sample 

The spectrophotometer used for the present work was a Bruker ALPHA FT-IR (Bruker, Billerica, MA, USA) 

equipped with a Bruker Platinum ATR (Bruker) accessory. The ATR probe had a mercury-cadmium-

tellurium (MCT) detector of dimensions 0.6 x 0.6 cm and a single reflection diamond crystal. In order to 

improve spectra reproducibility (that is important for a quantitative analysis), powder samples were put 

inside a ring (1 cm diameter) and weighted before the analysis, with the aim of creating a sort of “tablet” of 

the same weight and dimensions for all samples. Samples were also subjected always to the same pressure 

given by the mechanical press of the ATR probe. IR spectra were collected in the range 4000-400 cm
-1

, with 

a resolution of 4 cm
-1

 and 64 scans for each analysis. Analyses were carried out at room conditions and a 

blank spectrum (air) was collected and automatically subtracted before each analysis. 4-6 replicates were 

analyzed for each sample, mixing the powder inside the ring between the replicates. 

Results and Discussion 

The IR range from 4000 to 1300 cm
-1

 does not contain any signal due to the samples, there is only a residual 

of the water signal, thus, it was discarded from all analyses. 

Previous to NAS computations, spectra were pre-processed by multiplicative scatter correction (MSC) [21]. 

MSC is a common pre-processing method for IR spectra, and has the aim of removing the scatter present in 
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spectra. The computation for this method is divided into two parts [22]. The first one regards the estimation 

of correction coefficients by: 

 𝒙𝒐𝒓𝒈 = 𝑏0 + 𝑏𝑟𝑒𝑓,1 ∙ 𝒙𝒓𝒆𝒇 + 𝒆 (eq. 4.5.1) 

where xorg is one original sample spectrum, xref is a reference spectrum, and e is the residual. In most of the 

applications, as a reference spectrum the average of all involved spectra is used. Then each spectrum is 

corrected using the correction coefficients b (scalars): 

 
𝒙𝒄𝒐𝒓𝒓 =

𝒙𝒐𝒓𝒈 − 𝑏0

𝑏𝑟𝑒𝑓,1
= 𝒙𝒓𝒆𝒇 +

𝒆

𝑏𝑟𝑒𝑓,1
 

(eq. 4.5.2) 

The result is that xcorr spectra are much more reproducible than the original ones. MSC was applied to the 

replicates of each added sample in order to obtain a correction as that reported in Figure 4.5.3. 

 

Figure 4.5.3: Example of sediment spectra a) original and b) after MSC pre-treatment  

Figure 4.5.3, shows that the original spectra have already a good reproducibility, obtained by the use of the 

ring during ATR analyses. However, MCS pre-treatment improves reproducibility and partially enhances the 

increase of signal intensity with the increasing of BSi concentration. Figure 4.5.4 shows the same spectra 

reported in Figure 4.5.3 (D10 sample) with the addition of diatomite spectra (after MSC pre-treatment). 

Figure 4.5.4 shows that the signal increasing in added samples is most visible where the diatomite has its 

absorbance peaks, that are the ones reported in the literature [16]. However, the band that should be 
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characteristic of BSi (~945 cm
-1

) is very flat also for the pure diatomite. Therefore, it neither could be used 

for qualitative purposes.  

 
Figure 4.5.4: D10 and pure diatomite spectra  

On MSC-pretreated spectra of all samples, the NAS method was applied, always with Ferré-Bro variant. The 

following Table 4.5.2 shows extrapolated concentrations, standard deviations, LoD, NAS R
2
, and expected 

values (if present) for all sediment samples. For all samples, the 2
nd

 PLS-factor was used. 

Sample 
CE 

(%w/w) 

sC,E 

(%w/w) 
LoD R

2
 

Expected 

Concentration 

(%w/w) 

Std 53% 53.6 6.02 126 0.992 53 

D0 3.23 0.903 10 0.996 
 

D1 3.24 1.92 30 0.993 
 

D2 10.4 1.85 24 0.994 
 

D4 12.0 1.16 18 0.988 13.9 ± 2.1 

D5 5.41 1.10 18 0.993 
 

D6 14.2 1.54 8 0.989 14 ± 2 

D7 5.87 1.27 7 0.999 
 

D8 9.45 0.671 13 0.993 
 

D9 < 0 - - - 9.0 ± 1.4 

D10 9.44 0.885 1 0.997 
 

D11 2.94 0.646 9 0.994 
 

D12 < 0 - - - 
 

D13 < 0 - - - 
 

D14 < 0 - - - 
 

D15 3.25 0.184 4 0.993 
 

D16 < 0 - - - 
 

D17 2.71 0.535 4 0.994 
 

D18 4.80 1.67 5 0.996 4.27 ± 0.65 

D19 4.04 0.332 5 0.998 
 

D20 2.31 0.579 14 0.999 
 

D21 3.12 1.86 9 0.998 3.48 ± 0.53 

Table 4.5.2: NAS results for sediment samples 
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As it can be observed from Table 4.5.2, some drawbacks appeared in these analyses. The most evident is that 

some samples (D9, D12, D13, D14, and D16) have been reported with extrapolated concentration “< 0”.  

These samples have two distinct behaviors: some of them (D9 and D11) have an R
2
 of the final NAS 

standard addition line always lower than 0.7, for any PLS-factor, therefore their results are not reliable at all; 

the others have, for all factors, good R
2
, but extrapolated values always negative. This means that, in the final 

NAS standard addition line, either slope or intercept was negative. As an example, in Figure 4.5.5 it is 

reported the NAS standard addition line for sample D16. 

 

Figure 4.5.5: NAS standard addition line for sample D16, with negative slope 

Such a behavior, with negative slope (or, sometimes, intercept), was already shown by NAS in other cases 

(although not cited), as for example when dealing with X-ray data. In those cases, however, the problem was 

solved by pre-treating data or by removing the zero-added sample (and this is one of the reasons that brought 

to those choices in some cases). In this case, however, no satisfactory solution was found for the five samples 

here reported as “< 0”: the removal of zero-added sample did not change the situation for D16-like samples 

and brought the others to the negative slope case. Further pre-treatments (SNV, area normalization) were in 

some cases even deleterious, because also the linearity was eliminated. Moreover, one of the goals of this 

work is to find a chemometric method that could be used for every sediment sample analyzed by IR-ATR, 

thus the use of a further pre-treatment (besides MSC) would be considered satisfactory if good results would 

be obtained for all sediment samples, which is not the case for any method used till now. A possible and 

simple explanation for the behavior of these samples could be a mistake occurred during sample 

measurements or the absence of signal linearity. However, the NAS method has already demonstrated being 

somehow “resistant” to such drawbacks (as in the case of Raman data). Therefore, the solution to this 

problem is still under study. 
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Another problem emerging from Table 4.5.2 is that of LoDs, that, except for D6 and D10, are always higher 

than the extrapolated values. This is probably due to the fact that the blank signal, although always lower 

than all sample signals, is not flat, thus it gives a NAS vector with a significant intensity. This problem could 

probably be solved by removing the baseline from all spectra, including blank ones, that in IR spectroscopy 

is due to scattering effects. However, the baseline-correction pre-treatment has shown some problems when 

used together with MSC (most of the results were in the order of 10
-2

%w/w). Thus, also in this case, a solution 

is still under study. 

Anyway, there are also positive and encouraging remarks shown by Table 4.5.2, the most important of which 

is that the extrapolated values for those samples for which an expected one was present, are close to that 

(except for the already cited D9). It is an important result, because the expected values were obtained by the 

destructive and time-consuming wet method, while the NASSAM one is more rapid and does not destroy the 

analyzed samples, thus it could be considered a valid alternative to the official method. Standard deviations 

of the extrapolated values are, in some cases, quite high, but this is due to the low reproducibility of IR-ATR 

analyses in terms of signal intensities. This is why it is important to use MSC as a pre-treatment, otherwise 

standard deviations would be probably even higher. Therefore, other pre-treatment methods will be explored 

in further works, as for example EMSC [21], an extension of MSC taking into account the second-order 

polynomial fitting to the reference spectrum. Moreover, it is reported in the literature [23] that BSi 

concentration in superficial sediments is relatively low (< 10%w/w), and this is in agreement with, at least, the 

results obtained for the two most superficial samples, D0 and D1. 

Even if not conclusive, a second approach for the quantification of BSi in sediments by IR-ATR is here 

proposed. The starting point is pre-processing original spectra with orthogonal signal correction (OSC) [20], 

instead of MSC. OSC in general works as a PLS regression (thus, unlike most of the other pre-processing 

methods, requires also a response, y, variable), but, unlike PLS, it calculates the weight vectors, w, in order 

to minimize, and not maximize, the covariance between X (the matrix of spectra) and y (the vector of added 

concentrations, cadd). As for PLS, “principal components” are calculated iteratively, and the computation is 

stopped when a satisfactory result has been reached. The final goal of this procedure is to obtain a corrected 

X matrix that is (almost) orthogonal to y. This brings to a corrected matrix in which as much of the 

information related to y has been retained, while the discarded information is that not related to y 

(orthogonality guarantees it). In fact, the greatest problem of other pre-treatment methods is that there is no 

control over which part of the information is discarded from X. Thus, it may happen that also part of (if not 

all) the information related to the response(s) variable(s) is removed from data, making a further regression 

model unstable. OSC, instead, guarantees a corrected X matrix very suitable for a regression model. 

Therefore, OSC was applied to all samples. The total number of components used for all samples is 4. Figure 

4.5.6 shows a sample (D2) matrix corrected by OSC. 
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Figure 4.5.6: D2 sample spectra pre-treated by OSC 

What is interesting to note from Figure 4.5.6 is that the profiles obtained by OSC are very close to those of 

pure diatomite reported in Figure 4.5.4 (brown profile), but the diatomite spectra were not used for the 

computation. Thus, OSC seems to actually extract the signal due only to the analyte of interest, as NAS does. 

Sometimes, as reported in Figure 4.5.7 (for sample D10), there are some intersections of sample signals, but 

the peaks are, anyway, in the same positions. 

 

Figure 4.5.7: D10 sample spectra pre-treated by OSC 

The problem is how to use such data for BSi quantification. OSC, as presented here, is incompatible with 

NAS: the specularity of OSC-spectra (add.0 with add.3 and add.1 with add.2) is maintained at the end of any 

NAS computation, thus there is no linearity on the final standard addition line and it cannot be used for 

extrapolation. Any other pre-treatment does not solve this problem (and it is likely to lose the advantage 

gained by the use of OSC). Therefore, a possible correct procedure would be to use a blank sample (i.e. a 

sample devoid of the analyte of interest): analyze it by IR-ATR, project its spectrum on the OSC model (and 

not use it to compute the pre-treatment), then project the OSC-spectrum on a PLS model computed with the 



94 
 

standard added samples. However, the original problem comes back: it is very difficult to obtain such real 

blank sample, therefore such a solution is hardly practicable. 

As a possible use of these data, a tentative was made to compute a PLS model with the three added samples 

(add.1, add.2, and add.3), and then predict the concentration value of the zero-added sample. The idea behind 

this method is that OSC removes the signal due to the matrix: thus, on the zero-added sample (the sediment), 

only the signal due to BSi naturally present in the sample remains, thus it becomes a sort of “standard” which 

can be used for extrapolation. The following Table 4.5.3 reports the calculated concentrations for such 

method and the differences (in absolute values) between NAS-values and OSC-values. For all samples, the 

extrapolation was performed on the 4
th
 PLS-component, the same number used for OSC pre-treatment (R

2
 

both in calibration and in validation were always higher than 0.95 for that component). The values reported 

are the mean of the calculated ones for the 4-6 replicates of the zero-added sample. 

  Std 53% D0 D1 D2 D4 D5 D6 
 

OSC 31.5 0.300 5.25 10.9 8.30 1.50 3.27 
 

|OSC-NAS| 22.2 2.9 2.0 0.5 3.7 3.9 10.9 
 

         
  D7 D8 D9 D10 D11 D12 D13 D14 

OSC 6.18 19.7 7.24 9.31 14.6 13.0 4.48 1.71 

|OSC-NAS| 0.3 10.2 -- 0.1 11.6 -- -- -- 

         
  D15 D16 D17 D18 D19 D20 D21 

OSC 6.09 11.5 8.25 3.50 4.82 2.75 7.50 

|OSC-NAS| 2.8 -- 5.5 1.3 0.8 0.4 4.4 

Table 4.5.3: Predicted values for spectra pre-treated by OSC and difference with NAS extrapolated values 

As it can be seen from Table 4.5.3, the differences between concentrations obtained in this case and NAS-

extrapolated values are, in most of the cases, not so high: OSC values may be considered inside the 

confidence interval of NAS ones. However, there are also cases for which OSC values are strongly different 

from NAS (also of the double, as for D8, or more, as for D6 and D11). Moreover, the concentration 

calculated for 53% standard is significantly different from the expected value, and also the other samples for 

which an expected value is present are not so good (except for D9, expected 9.0 ± 1.4 and D18, expected 

4.27 ± 0.65). Another problem is that the standard deviation, calculated automatically by the software, are 

always in the degree of magnitude of the calculated concentration, making it not significantly different from 

zero (that’s why standard deviations were not reported). However, these results are not totally unreliable: it 

has been reported in the literature [23, 24] that the BSi content in Ross sea hardly reaches 20%w/w (due to 

dissolution and water fluxes), and OSC values never reach this limit (as NAS ones). Therefore, the problem 

might be simply to find a way for using these data in a trustable way, for example finding a proper “blank” 

sample on which to perform extrapolation or studying a way for removing the specularity of spectra when 

computing OSC. 
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Conclusions 

NAS procedure was applied to sediment samples analyzed by IR-ATR spectroscopy. Although some critical 

issues emerged, some encouraging results were obtained. In fact, when a reference value was present, NAS 

results were in agreement with it, and the results are also in agreement with what reported in literature for 

BSi concentration in Ross Sea  [23, 24]. This demonstrates that NASSAM methodology may be a valid 

alternative to the traditional wet method for the quantification of biogenic silica in sediments. Most of the 

problems may be probably solved by further improving the computations, without even the need of re-

prepare and re-analyze the samples. 

Moreover, a second approach to the problem has been proposed, considering a different data pre-treatment as 

a possible solution for the NAS problems. Also in this case, some encouraging results have been obtained, 

but the method still needs to be developed. 
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APPENDIX A: DoE TABLE FOR PLANTS PROBLEM 

DoE table referred to the plant work, shown in chapter 3.1. Values of the Y block are expressed in ppm 

(metal weight over plant weight). 

 X block Y block 

 
Cd Pb Cr Cdplant Crplant Cuplant Pbplant Znplant 

DOE 1 0 0 0 2.00 0.33 9.6 18.6 71 

DOE 2 -1 -1 -1 0.54 0.14 10.6 3.4 65 

DOE 3 1 -1 -1 2.37 0.29 9.5 3.7 59 

DOE 4 -1 1 -1 0.56 0.23 22.2 29.2 73 

DOE 5 1 1 -1 37.84 1.7 15.9 26.8 86 

DOE 6 -1 -1 1 0.64 2.3 15.9 3.7 80 

DOE 7 1 -1 1 3.46 2.9 17.7 39.6 74 

DOE 8 -1 1 1 0.49 1.8 22.7 33.0 63 

DOE 9 1 1 1 2.46 1.0 16.7 27.8 59 

DOE 10 0 -1 -1 0.9 0.13 8 36 40 

DOE 11 -1 0 -1 0.66 0.17 7 47 39 

DOE 12 0 0 -1 3.3 0.14 7 3.8 46 

DOE 13 1 0 -1 3.4 0.18 9 2.1 36 

DOE 14 0 1 -1 2.5 0.18 8.2 10 53 

DOE 15 -1 -1 0 2.2 0.84 7.6 6 41 

DOE 16 0 -1 0 0.7 0.28 9 13 41 

DOE 17 1 -1 0 3.2 0.15 37 0.7 64 

DOE 18 -1 0 0 0.35 0.26 8 12 38 

DOE 19 1 0 0 1.1 0.29 8 24 49 

DOE 20 -1 1 0 2.9 0.15 8.7 5 57 

DOE 21 0 1 0 1.5 0.95 7 9 52 

DOE 22 1 1 0 2.6 0.30 8.3 8 54 

DOE 23 0 -1 1 1.4 0.24 7.6 2 34 

DOE 24 -1 0 1 1.5 0.36 8.8 10 51 

DOE 25 0 0 1 1.9 1.2 8 3.6 43 

DOE 26 1 0 1 2.8 0.68 8.6 2.7 47 

DOE 27 0 1 1 2.3 0.55 7.5 4.7 60 

DOE 1bis 0 0 0 5.3 0.99 9 16.3 49 

DOE 5bis 1 1 -1 6.6 0.30 8 11.4 73 

DOE 8bis -1 1 1 2.0 3.4 8 23.3 59 

DOE 15bis -1 -1 0 2.3 0.58 7 4.4 41 

DOE 16bis 0 -1 0 4.6 0.21 6 1.6 36 

DOE 17bis 1 -1 0 4.9 0.06 7 0.7 42 

DOE 24bis -1 0 1 3.5 0.18 8 3.0 66 

DOE 26bis 1 0 1 3.1 0.36 5 3.7 46 

DOE 27bis 0 1 1 2.5 0.33 4 3.7 61 
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APPENDIX B: DoE TABLE AND MB RESULTS FOR MACHINE 

OPTIMIZATION PROBLEM 

DoE table referred to the bin blender work, shown in chapter 3.2.  

 X Block Y Block 

 

Bin 

Filling 

(%) 

Rotation 

Speed 

(rpm) 

Mixing 

Time 

(min) 

Particle 

Size  

(µm) 

Mean HPLC 

Concentrations 

(ppm) 

Standard 

deviation 

HPLC (ppm) 

iCarr 

(%) 

DOE 1 -1 -1 -1 -1 3.14 0.22 22.48 

DOE 2 0 -1 -1 -1 3.25 0.45 22.44 

DOE 3 1 -1 -1 -1 3.18 0.22 24.03 

DOE 4 -1 0 -1 -1 3.26 0.34 23.98 

DOE 5 0 0 -1 -1 3.34 0.29 22.47 

DOE 6 1 0 -1 -1 3.33 0.68 23.52 

DOE 7 -1 1 -1 -1 3.16 0.26 23.49 

DOE 8 0 1 -1 -1 3.25 0.46 23.50 

DOE 9 1 1 -1 -1 3.37 0.24 23.02 

DOE 10 -1 -1 0 -1 3.46 0.40 23.48 

DOE 11 0 -1 0 -1 3.23 0.42 23.53 

DOE 12 1 -1 0 -1 3.28 0.11 22.05 

DOE 13 -1 0 0 -1 3.22 0.07 23.55 

DOE 14 0 0 0 -1 3.18 0.12 23.96 

DOE 15 1 0 0 -1 3.37 0.67 23.48 

DOE 16 -1 1 0 -1 3.14 0.29 24.02 

DOE 17 0 1 0 -1 3.13 0.22 23.99 

DOE 18 1 1 0 -1 3.26 0.18 23.48 

DOE 19 -1 -1 1 -1 3.14 0.20 23.95 

DOE 20 0 -1 1 -1 2.91 0.32 22.46 

DOE 21 1 -1 1 -1 3.21 0.25 23.54 

DOE 22 -1 0 1 -1 3.35 0.50 23.99 

DOE 23 0 0 1 -1 3.75 0.84 23.51 

DOE 24 1 0 1 -1 3.43 0.15 23.47 

DOE 25 -1 1 1 -1 3.13 0.27 23.47 

DOE 26 0 1 1 -1 3.11 0.15 24.01 

DOE 27 1 1 1 -1 3.18 0.38 23.51 

DOE 28 -1 -1 -1 1 3.57 0.45 20.00 

DOE 29 0 -1 -1 1 3.38 0.24 21.47 

DOE 30 1 -1 -1 1 3.19 0.18 23.52 

DOE 31 -1 0 -1 1 3.07 0.18 21.95 

DOE 32 0 0 -1 1 3.16 0.31 20.96 

DOE 33 1 0 -1 1 3.27 0.45 23.48 

DOE 34 -1 1 -1 1 3.56 0.40 20.90 

DOE 35 0 1 -1 1 3.51 0.70 20.00 

DOE 36 1 1 -1 1 3.04 0.34 22.53 

DOE 37 -1 -1 0 1 3.33 0.35 21.98 

DOE 38 0 -1 0 1 3.38 0.20 19.97 

DOE 39 1 -1 0 1 3.35 0.43 20.53 

DOE 40 -1 0 0 1 3.04 0.32 22.02 

DOE 41 0 0 0 1 3.22 0.41 20.47 

DOE 42 1 0 0 1 3.14 0.56 21.00 

DOE 43 -1 1 0 1 3.39 0.31 20.19 

DOE 44 0 1 0 1 3.21 0.25 20.97 

DOE 45 1 1 0 1 3.29 0.33 20.96 

DOE 46 -1 -1 1 1 3.08 0.49 20.53 

DOE 47 0 -1 1 1 3.23 0.72 21.56 

DOE 48 1 -1 1 1 2.64 0.06 20.03 

DOE 49 -1 0 1 1 3.09 0.22 22.51 

DOE 50 0 0 1 1 2.63 1.07 21.55 

DOE 51 1 0 1 1 3.31 0.36 20.97 

DOE 52 -1 1 1 1 3.22 0.06 20.53 

DOE 53 0 1 1 1 3.23 0.30 22.46 

DOE 54 1 1 1 1 3.06 0.28 21.98 

DOE 55 0 0 0 -1 3.56 0.76 24.59 

DOE 56 0 0 0 -1 3.34 0.80 22.49 

DOE 57 0 0 0 1 2.97 0.09 20.53 

DOE 58 0 0 0 1 3.13 0.52 20.96 
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MB ANALYSES GRAPHS OF DoE EXPERIMENTS 

For all graphs, red line represents the MB mean, blue line represents MB standard deviation 

DOE 1 

 
DOE 2 

 
DOE 3 

 
DOE 4 
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DOE 7  

 
DOE 8 

 
DOE 9 not present due to technical problems 

 

DOE 10 

 
  



102 
 

DOE 11 

 
DOE 12 

 
DOE 13 
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DOE 28 without spectrum 49 
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DOE 33 

 
DOE 34 not present due to technical problems 
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DOE 45 

 
  



109 
 

DOE 46 

 
DOE 47 

 
DOE 48 

 
DOE 49 
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APPENDIX C: R CODE FOR NAS COMPUTATIONS 

In this section, R codes for NAS computations are reported. The codes are generalized in order to make 

possible to use them for any dataset. 

The first part shows the code for computing the original Lorber’s NAS procedure. Hemmateenejad and Ferré 

variants are reported as supplementary code (at the bottom of the code) that can be implemented or not 

during computation. The lines were variants should be added are indicated by three hashtags (###). Then, 

the Bro procedure is reported. 

## Definition of libraries and datasets, PLS computation, and creation of 

## vectors to store the final results. 

## This first part is in common for both Lorber and Bro procedures  

library(MASS) 

library(pls) 

S<-#Define the signal (e.g. spectra) matrix 

c.agg<-#Define the added concentrations vector 

s.pure<-#Define the signal matrix of the pure analyte 

s.pure.new<-apply(s.pure,2,mean) 

 

### 1 – Add Hemmateenejad variant ### 

 

n.sam<-nrow(S) 

p.var<-ncol(S) 

set.seed(1) 

model.plsr<-plsr(c.agg~S,validation="CV",ncomp=n.sam-3) 

rmse<-RMSEP(model.plsr) 

plot(rmse,legendpos="topright") 

n.comp<-model.plsr$ncomp 

c0<-matrix(NA,1,n.comp) 

R2<-matrix(NA,1,n.comp) 

RMSE<-rmse$val[2,,1:n.comp+1] 

Lorber NAS procedure 

nas.i<-matrix(NA,n.sam,n.comp) 

for(j in 1:n.comp){ 

T<-as.matrix(model.plsr$scores[,1:j]) 

P<-as.matrix(model.plsr$loadings[,1:j]) 

m<-apply(S,2,mean) 

S.reb<-t(t(T%*%t(P))+m) 

S.pinv<-ginv(S) 

ck<-S.reb%*%S.pinv%*%c.agg 

alfa<-as.numeric(1/(s.pure.new%*%S.pinv%*%ck)) 

K<-alfa*ck%*%s.pure.new 

Sk<-S-K 

Sk.pinv<-ginv(Sk) 

Id<-diag(1,p.var,p.var) 

H<-(Id-t(Sk)%*%t(Sk.pinv)) 



113 
 

 

### 2 – Add Ferré variant ### 

 

s.net.i<-matrix(NA,n.sam,p.var) 

for(i in 1:n.sam) { 

s.net.i[i,]<-H%*%S[i,] 

nas.i[i,j]<-norm(as.matrix(r.net.i[i,]),"f") 

} 

retta<-lm(nas.i[,j]~c.agg) 

R2[j]<-summary(retta)$adj.r.squared 

c0[j]<-retta$coefficients[1]/retta$coefficients[2] 

} 

res.lorber<-t(rbind(c0,R2,RMSE)) 

colnames(res.lorber)<-c("c0,"R2","RMSE") 

rownames(res.lorber)<-seq(1,n.comp) 

res.lorber 

 

### 1 - Hemmateenejad variant ### 

s<-#Define signal matrix of zero-added samples (and remove it from S) 

s.mean<-apply(s,2,mean) 

S.sm<-t(t(S)-s.mean) 

C<-S.sm%*%s.pure.new%*%solve(t(s.pure.new)%*%s.pure.new) 

# Use C as c.add and S.sm as S 

c.add<-C 

S<-S.sm 

 

### 2 – Ferré variant ### 

W<-as.matrix(model.plsr$loading.weights[,1:j]) 

O<-t(P)%*%W 

O.inv<-solve(O) 

SWa<-W%*%O.inv 

Q<-P%*%t(SWa) 

# Use the product of Q and S as corrected signals 

S<-Q%*%S 

Bro NAS procedure 

nas.i.bro<-matrix(NA,n.sam,n.comp) 

for(j in 1:n.comp){ 

b<-as.matrix(model.plsr$coefficients[,,j]) 

H<-b%*%ginv(t(b)%*%b)%*%t(b) 

s.net.i<-matrix(NA,n.sam,p.var) 

for(i in 1:n.sam) { 

s.net.i[i,]<-H%*%S[i,] 

nas.i.bro[i,j]<-norm(as.matrix(r.net.i[i,]),"f") 

} 

retta<-lm(nas.i.bro[,j]~c.agg) 

R2[j]<-summary(retta)$adj.r.squared 

c0[j]<-retta$coefficients[1]/retta$coefficients[2] 

} 
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res.bro<-t(rbind(c0,R2,RMSE)) 

colnames(res.bro)<-c("c0","R2","RMSE") 

rownames(res.bro)<-seq(1,n.comp) 

res.bro 

 

The following lines report the computation for the standard deviation of the extrapolated value for Lorber 

and Bro methods. The previous matrices res.lorber and res.bro report the results obtained by the two 

computations (with relative R
2
 and RMSE). From those matrices, it is necessary to choose the proper number 

of PLS-components. 

n.comp<-#Define the proper number of PLS-components 

c0<-matrix(NA,1,n.sam) 

R2<-matrix(NA,1,n.sam) 

Lorber method 

nas.i<-matrix(NA,n.sam-1,n.sam) 

for(j in 1:n.sam){ 

S.j<-as.matrix(S[-j,]) 

c.j<-as.matrix(c.agg[-j,]) 

n<-nrow(S.j) 

model.plsr<-plsr(c.j~S.j,validation="CV",ncomp=n.sam-5) 

T<-as.matrix(model.plsr$scores[,1:n.comp]) 

P<-as.matrix(model.plsr$loadings[,1:n.comp]) 

m<-apply(R,2,mean) 

S.reb<-t(t(T%*%t(P))+m) 

S.pinv<-ginv(S.reb) 

c2<-S.reb%*%S.pinv%*%c.j 

alfa<-as.numeric(1/(s.pure.new%*%S.pinv %*%c2)) 

K<-alfa*c2%*%s.pure.new 

Sk<-S.reb-K 

Sk.pinv<-ginv(Sk) 

Id<-diag(1,p.var,p.var) 

H<-(Id-t(Sk)%*%t(Sk.pinv)) 

s.net.i<-matrix(NA,n.sam,p.var) 

for(i in 1:n) { 

s.net.i[i,]<-H%*%S.j[i,] 

nas.i[i,j]<-norm(as.matrix(r.net.i[i,]),"f") 

} 

retta<-lm(nas.i[,j]~c.j) 

R2[j]<-summary(retta)$adj.r.squared 

c0[j]<-retta$coefficients[1]/retta$coefficients[2] 

} 

res.sd.lorber<-t(rbind(c0,R2)) 

colnames(res.sd.lorber)<-c("c0","R2") 

rownames(res.sd.lorber)<-seq(1,n.sam-1) 

res.sd.lorber 

sd.NAS.lorber<-sd(res.sd.lorber[,1]) 

sd.NAS.lorber 
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Bro Method 

nas.i.bro<-matrix(NA,n.sam-1,n.sam) 

for(j in 1:n.sam){ 

S.j<-as.matrix(S[-j,]) 

c.j<-as.matrix(c.agg[-j,]) 

n<-nrow(S.j) 

model.plsr<-plsr(c.j~S.j,validation="LOO",ncomp=n.sam-3) 

b<-as.matrix(model.plsr$coefficients[,,n.comp]) 

H<-b%*%ginv(t(b)%*%b)%*%t(b) 

s.net.i<-matrix(NA,n.sam-1,p.var) 

for(i in 1:n) { 

s.net.i[i,]<-H%*%S.j[i,] 

nas.i.bro[i,j]<-norm(as.matrix(r.net.i[i,]),"f") 

} 

retta<-lm(nas.i.bro[,j]~c.j) 

R2[j]<-summary(retta)$adj.r.squared 

c0[j]<-retta$coefficients[1]/retta$coefficients[2] 

} 

res.sd.bro<-t(rbind(c0,R2)) 

colnames(res.sd.bro)<-c("c0","R2") 

rownames(res.sd.bro)<-seq(1,n.sam) 

res.sd.bro 

sd.NAS.bro<-sd(res.sd.bro[,1]) 

sd.NAS.bro 

 

This last part of the code is for the computation of the further figures of merit: sensitivity (Sn) and limit of 

detection (LoD), the latter again divided between Lorber and Bro methods. It is again necessary to choose 

the proper number of PLS-components. Moreover, for LoD computations, it is necessary to define a matrix 

containing only the blank signal (blank). 

Sensitivity 

model.plsr<-plsr(c.agg~S,validation="CV",ncomp=n.sam-3) 

B<-as.matrix(model.plsr$coefficients[,,n.comp]) 

Sn<-1/norm(as.matrix(B),"f") 

Sn 

LoD for Lorber method 

blank.net<-matrix(NA,nrow(blank),ncol(blank)) 

T<-as.matrix(model.plsr$scores[,1:n.comp]) 

P<-as.matrix(model.plsr$loadings[,1:n.comp]) 

m<-apply(R,2,mean) 

S.reb<-t(t(T%*%t(P))+m) 

S.pinv<-ginv(S.reb) 

c2<-S%*%S.pinv%*%c.agg 

alfa<-as.numeric(1/(r.pure.new%*%S.pinv %*%c2)) 

K<-alfa*c2%*%r.pure.new 

Sk<-S.reb-K 
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Sk.pinv<-ginv(Sk) 

Id<-diag(1,p.var,p.var) 

H<-(Id-t(Sk)%*%t(Sk.pinv)) 

for(i in 1:nrow(blank)){ 

blank.net[i,]<-H%*%blank[i,] 

} 

blank.net.mean<-apply(blank.net,2,mean) 

LoD.lorber<-3*norm(as.matrix(blank.net.mean),"f")/Sn 

LoD.lorber 

LoD for Bro method 

H<-B%*%ginv(t(B)%*%B)%*%t(B) 

blank.net<-matrix(NA,nrow(blank),ncol(blank)) 

for(i in 1:nrow(blank)){ 

blank.net[i,]<-H%*%blank[i,] 

} 

blank.net.mean<-apply(blank.net,2,mean) 

LoD.bro<-3*norm(as.matrix(blank.net.mean),"f")/Sn 

LoD.bro 

 

 


