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Integrated service selection, pricing and fulfillment

planning for express parcel carriers — Enriching service

network design with customer choice and endogenous

delivery time restrictions
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a
Department of Socioeconomics, Vienna University of Economics and Business

bDepartment of Global Business and Trade, Vienna University of Economics and Business

Abstract

Express parcel carriers offer a wide range of guaranteed delivery times in order to separate

customers who value quick delivery from those that are less time but more price sensitive. Such

segmentation, however, adds a whole new layer of complexity to the task of optimizing the logistics

operations. While many sophisticated models have been developed to assist network planners

in minimizing costs, few approaches account for the interplay between service pricing, customer

decisions and the associated restrictions in the distribution process. This paper attempts to fill

this research gap by introducing a heuristic solution approach that simultaneously determines the

ideal set of services, the associated pricing and the fulfillment plan in order to maximize profit. By

integrating revenue management techniques into vehicle routing and fleet planning, we derive a new

type of formulation called service selection, pricing and fulfillment problem (SSPFP). It combines

a multi-product pricing problem with a cycle-based service network design formulation. In order

derive good-quality solutions for realistically-sized instances we use an asynchronous parallel genetic

algorithm and follow the intuition that small changes to prices and customer assignments cause

minor changes in the distribution process. We thus base every new solution on the most similar

already evaluated fulfillment plan. This adapted initial solution is then iteratively improved by a

newly-developed route-pattern exchange heuristic. The performance of the developed algorithm is

demonstrated on a number of randomly created test instances and is compared to the solutions of

a commercial MIP-solver.

Keywords: asdlkfjasdlkfj

JEL Classifications: C2, C81, C82, C83, D3
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1 Introduction

Driven by a booming e-commerce sector express parcel carriers have experienced rapid growth in

transportation volumes. In 2016, the two dominant integrated express carriers UPS and FedEx had a

combined U.S. domestic package operation of 26.5 million packages per day (FedEx, 2016; UPS, 2016).

Given the dynamic development of online retailing with compound annual growth rates of 12.8% over

the last decade (US Census Bureau, 2009, 2017) efforts have focused on increasing the efficiency of the

underlying physical distribution networks. Service network design, i.e. tactical planning of operations

based on optimized consolidation and routing of shipments and vehicles, has appeared particularly

promising for improving capacity utilization of resource-restricted logistics networks.

Still, the ever growing number of shipments is not the only challenge faced by the package de-

livery industry. Tight competition together with customer’s desire to receive their goods ever more

quickly have encouraged express carriers to offer a wide range of transportation services. With carriers

nowadays allowing their customers to choose from several guaranteed delivery times (e.g. overnight,

two-day, etc.), revenue management is playing an increasingly prominent role in logistics operations.

More granular service segmentation, however, adds a whole new layer of complexity to the task of op-

timizing the logistics operations. This is especially true once the optimization models account for the

consequences of carrier’s pricing decisions. Interestingly, while many sophisticated models have been

developed to assist network planners in minimizing costs, few approaches account for the interplay

between service pricing, customer decisions and the associated restrictions in the distribution process.

As such this paper attempts to add to this research gap by introducing a solution approach that

simultaneously determines the ideal service offering as well as the cost-optimal fulfillment plan. We

call this new approach the service selection, pricing and fulfillment problem (SSPFP). From a modeling

perspective it combines a service network design problem (SNDP) with the optimization of a product

line differentiated by guaranteed delivery time. Each of these models belongs to the class of NP-hard

(check) optimization problems making a combination of them particularly challenging to solve. We

tackle this problem by employing a heuristic procedure based on a genetic algorithm together with

a newly-developed route pattern exchange heuristic. We show that the proposed solution framework

delivers good-quality solutions within reasonable amounts of time.

To the best of our knowledge this is the first optimization approach that jointly determines the

optimal service segmentation and the associated profit maximizing prices while accounting for time

restrictions of shipments and the routing of vehicles. Consequently our first research contribution is the

SSPFP model itself. Using this model we explore how the service segmentation and associated pricing

affects the operational costs in a multi-modal package distribution network. The relevance of joint

revenue and cost optimization within complex distribution networks is highlighted by a comparison

between our integrated solution approach and a more conventional sequential optimization. Finally
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we demonstrate the flexibility of the model by solving it for various test instances and show how it

can be tailored for further scientific and practical analysis.

As our topic is interweaving the concepts of vehicle routing and revenue management, the structure

of the paper is aimed at making this topic accessible to both groups of readers. We begin with

highlighting some previous work that involved integrating revenue and capacity management and

discuss how these studies are related to our approach. We then provide some background on product

segmentation and pricing and introduce our product line optimization model. Subsequently we turn

to the literature on and formulation of service network design models. This then enables us to combine

the two streams of research and derive our SSPFP model. Finally we conclude with a computational

study and provide insight in the complex interrelation of customer decisions and fulfillment efficiency

in the context of parcel logistics.

2 Background

Express package carriers have a long tradition of using operations research methods to improve their

competitive position. Confronted with a rising number of shipments and an ever more demanding

customer base, practitioners as well as researchers have put great effort into improving capacity uti-

lization of resource-restricted logistics networks. The fulfillment side of consolidated freight services

is often formulated as multi-commodity fixed-charge network design models, commonly referred to

as service network design problems (SNDP) once they focus on the tactical planning of operations

(Crainic, 2000; Crainic and Laporte, 1997). These models have been adapted to many applications in

transport, including truck, train, container and airline services. As network design formulations can be

extended rather easily, researchers have added many different features, like asset balancing contraints

(Andersen et al., 2009), level of service requirements (Jarrah et al., 2009) or stochastic demand (Hoff

et al., 2010).

With respect to the primary target industry of this study, i.e. express parcel delivery, there is

also a small set of papers dealing explicitly with applications of service network design models for

this transport sector1. Most notably in a series of papers Barnhart et al. (2002) (see also Barnhart

and Schneur (1996) and Kim et al. (1999)) analyze the Express Shipment Delivery Problem of UPS.

As the network size of an integrated express parcel carrier, like UPS, is typically huge, the main

focus of these papers is on managing the complexity of the associated space-time graph in order to

reduce the number of variables and constraints. These efforts eventually culminate in the works of

Armacost et al. (2002, 2004) who introduce the so-called composite variable formulation of SNDPs.

While this formulation allows for realistically-sized multi-modal express networks it prohibits some of

the key features of the integrated, profit-maximizing models needed for adequate RM. This is due to

1
For more general reviews on service network design the reader is referred to Wieberneit (2008) and Martin2019b.
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the fact that flow and resource variables get reduced to just one set of composite variables. While

this is computationally very efficient the lack of explicit flow variables greatly limits the possibilities

to enforce any kind of delivery time requirements or similar path-based restrictions which are key to

implementing RM-components.

A study allowing for two levels of service within integrated logistics networks is Smilowitz et al.

(2003). They are able to distinguish between express and deferred delivery items and present a

solution approach based on column generation for solving the LP-relaxation of the problem and then

applying a number of rounding heuristics to derive good-quality integer solutions. In a subsequent

paper Smilowitz and Daganzo (2007) circumvent the combinatorial difficulties of large-scale integer

programs by using continuum approximation of a discrete network design problem instead. The

authors argue that they can derive good quality approximations for fleet size and number of required

terminals, provided that the network is sufficiently large. However, they also admit that evaluation

of solution quality is problematic as the necessary scale of such a network limits comparisons with

discrete approaches.

It is evident from the presented studies that researchers have made significant advances in making

the distribution process within multi-modal LTL-networks more efficient. However, all of these ap-

proaches are focused on cost-side optimizations which cover only half of the cost-revenue relation. RM,

defined by Talluri and Van Ryzin (2004) as the demand management decisions aimed at increasing a

firm’s revenue, can have an equally strong impact on profitability. According to these authors, con-

ditions under which RM is particularly promising include customer heterogeneity, demand variability

and limited resources. As parcel logistics usually involves markets characterized by all three of these

conditions, the express package delivery industry should be primed to employ RM-techniques.

Interestingly studies that explicitly deal with demand management of consolidated freight services

have remained scarce. One notable study is Lin et al. (2009) who developed an algorithmic framework

based on implicit enumeration and Langrangian relaxation to derive origin-destination (OD) specific

prices for LTL-carriers. The authors also accounted for delivery time restrictions in the selection of

time-feasible delivery paths. Later Lin and Lee (2015) also developed an exact algorithm to determine

profit maximizing zone prices for LTL-operations. They demonstrate that zone pricing is necessarily

less profitable than OD-specific pricing. In both papers demand was aggregated using OD-specific

inverse demand functions, yielding concave expressions for revenue.

In contrast, other fields of transportation, like air traffic and container shipping, have traditionally

been on the forefront of RM-innovations (see McGill and Van Ryzin (1999) and Zurheide and Fischer

(2014) for reviews). Research in these areas has resulted in a wide array of optimization approaches

for tariff setting and product line design, including a number of linear programming based formula-

tions. A well known example here is Bartodziej et al. (2007), who study OD-pricing for cargo airlines

with a network flow representation. However, most papers dealing with joint design and pricing of
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transportation networks use bilevel formulations as these allow for a static representation of a non-

cooperative Stackelberg game. As such the upper level of the program models the decision of a leader

who attempts to maximize revenue while users of the network are treated jointly as cost-minimizing

followers on the lower level. Such a setup was first introduced by Labbé et al. (1998) and subsequently

extendet by Brotcorne et al. (2000, 2001) who designed a freight-tariff setting problem with a carrier

controlling tolls on a set of arcs which are used by flows of goods. Brotcorne et al. (2008) later extend

this approach by including investment fixed costs for operating arcs and solving the problem via a

Langrangian relaxation based heuristic. Brotcorne et al. (2011) also developed an exact approach for

solving these kinds of problems as well as a tabu search heuristic (Brotcorne et al., 2012). Conceptually

similar is Crevier et al. (2012) who also use a bilevel model for an integrated pricing and operations

planning problem with their use case being rail freight transportation.

What all of these bilevel programming based studies have in common is that they neglect congestion

effects and thus assume an uncapacitated network. This also translates into a simplified treatment

of demand which is assumed to be fixed and customers decide independently and fully rationally

based on shortest paths, irrespective of the decisions of other individuals. The integration of more

flexible demand structures into operations planning for intermodal transport was studied by Li and

Tayur (2005). Instead of using some form of aggregate demand, they directly utilize customers’

individual reservation prices, which can be obtained via standard marketing techniques (i.e. either

conjoint analysis or discrete choice experiments). Based on these reservation prices they regress the

parameters of a special kind of probability density function which yields a concave expression for

revenue. A drawback of the approach, besides the evident limitations in suitable distributions, are

the comparably small sets of routes and paths that can be handled. An alternative approach would

be to regard the individual reservation prices as a representative sample and use them directly in a

non-linear mixed integer problem (see Dobson and Kalish, 1988; Green and Krieger, 1985; McBride

and Zufryden, 1988). A fulfillment model using this kind of demand representation appears very

enticing as it would allow for a very flexible treatment of demand and underlying decision processes.

Additionally, individual customer choices can be elegantly included in the mixed integer models used

in network design formulations, enabling a reciprocal influence of consumer behavior and fulfillment

costs. However, Dobson and Kalish (1993) have shown that such a deterministic product line model

is NP-complete, which makes a combination with an equally NP-complete network design proplem

particularly challenging to solve.

Our short literature review should indicate that a major shortcoming of existing approaches is an

overly simplified treatment of demand. We believe that in order to enable more sophisticated revenue

management in LTL-networks, adequate modelling of customer behavior will be necessary. As such

the mathematical model and associated solution procedure presented in the following chapters shall

demonstrate the feasibility of such an integrated approach. One could even think about bypassing
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the need for individual reservation prices entirely and directly express the market shares as a function

of price. The issue here is that this typically yields multi-dimensional integrals which are difficult to

handle in any optimization approach. Still, for some families of discrete choice models closed form

expression for market shares exist. In this case our developed metaheuristic would allow for the

direct implementation of a full discrete choice process. However, we decided to save this for a later

contribution as it would prohibit comparison with an exact solution approach.

3 Problem statement

The proposed approach links service selection and pricing to the task of optimizing a logistics network.

These two problems stem from separate research fields, exhibiting some major differences in mathemat-

ical formulations as well as in theoretical concepts employed. In order to streamline our presentation

we first introduce the product line selection and pricing problem before turning to the fulfillment part

of our model. At the end of this chapter these two parts are combined into an integrated optimization

approach.

3.1 Service selection and pricing problem

In order to separate consumers who value quick delivery from those that are less time but more

price sensitive, express carriers typically segment their services according to guaranteed delivery time

(one-day, two-day, etc.). Contingent on the set of services offered, customers will pick a service that

maximizes their personal net benefit (i.e. utility minus price) and the shipper will then be obligated

to deliver the parcel within the specified guaranteed delivery time. We take the perspective of the

shipper who tries to determine the optimal set of services and associated prices in order to maximize

profit.

A basic segmentation that shippers frequently apply is according to service type into express and

deferred delivery. This simple differentiation is already quite useful as it allows the carrier to dedicate

capacity on fast but more costly transportation services to high revenue orders instead of wasting

expensive resources on orders where the benefits of quick delivery are not rewarded. While the field of

transport and logistics provides little formal guidance on how to design delivery services, product line

optimization has been subject of extensive research in the fields of marketing and economics. A rather

straightforward integer programming formulation that deals with price segmentation was introduced

by Dobson and Kalish (1988) and heuristic approaches for dealing with this formulation were further

discussed in Dobson and Kalish (1993). They assume the firm to be a local monopolist who seeks to

determine the optimal combination of products and prices in a product line differentiated by quality.

For an express parcel carrier the product portfolio consists of only one homogeneous service, i.e.,

delivery of a parcel. However, when differentiating according to guaranteed delivery time, parcel
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delivery services can be viewed as a product line in which faster service is equivalent to higher quality.

The shipper then needs to determine the optimal set of guaranteed delivery times to offer, given that

customers will self-select themselves based on their individual sensitivities to delivery time and price.

For this we assume that we have data on preferences of a representative sample of customers (e.g.

from conjoint analysis or discrete choice experiments) and that these customers behave rationally and

choose the service that maximizes their personal welfare (i.e., utility from delivery minus cost of ser-

vice). Each customers’ utility function is dependent on random sensitivity parameters for delivery time

and price and is determined outside of the model2. Using the model of Dobson and Kalish (1988) as a

basis, the revenue management part of our approach, referred to as SSPP, can be formulated as follows:

max
∑
k∈K

∑
s∈S

∑
n∈N

dk
|N |

zsnp
s −

∑
s∈S

fsos (1)

s.t.
∑
σ∈S

(uσn − p
σ)zσn − (usno

s − ps) > 0 ,∀n ∈ N, s ∈ S (2)∑
s∈S

zsn = 1 ,∀n ∈ N (3)∑
n∈N

zsn + ps −Mos 6 0 ,∀s ∈ S (4)

o0 = 1 (5)

p0 = 0

(LP)

(6)

p
s ∈ R+

price variable of service s S set of services

z
s
n ∈ {0, 1} is 1 if service s is selected by customer segment n N set of customer segments

o
s ∈ {0, 1} is 1 if service s is offered K set of commodities

dk quantity of commodity k f
s

fixed cost of offering service s

The objective (1) maximizes revenue minus fixed costs of offering the chosen services. These costs

may represent overhead or any other costs incurred by offering additional services which are unrelated

to the actual fulfillment process (delivery costs are included in the second part of the model). Using

binary variables os the shipper can select any combination of services s ∈ S and must determine the

associated profit maximizing prices ps. Note that the so-called no-purchase option, denoted s0, is

always offered, as it allows customers to exit the market in case none of the offerings is attractive to

them. Starting with the fastest service s1, all other services are indexed in order of increasing delivery

due time.

Note that we do not model each shipment as a separate customer as this would require an enor-

mous amount of variables. Instead we first aggregate shipments with identical availability time, origin

and destination into a set of commodities K. Second, we consider our set of customers to be repre-

sentative of a larger population. As prices are uniform to all and by assuming that customers form

2
The appendix includes more detailed information on the type of utilities used. See also Akcay et al. (2010), Berry

and Pakes (2007), and Song (2007).

7



a representative sample with preferences that do not differ among locations, we are able to translate

the individual customers’ decisions into arbitrarily large demand volumes as follows: Binary decision

variables zsn are one if customer n decides to use service s. Since each representative customer chooses

exactly one service, we can aggregate all decisions and interpret this as a market share. As demand is

similarly structured across all locations, this share will apply to all commodities k ∈ K and respective

demands dk between hubs. This way we model a potentially unlimited number of parcels by a modest

sample of customer decisions. In our objective (1) market shares are obtained by summing over all

decisions zsn of representative customers n on services s and then dividing by the total number of

customers |N |. Multiplying by demand dk of commodity k and price ps we obtain revenue.

Constraint (2) enforces rational behavior of the representative customers. Each individual n ∈ N

decides for the service where the welfare usn− p
s gained is at least equal to what it would achieve with

choosing any other service. Customers must choose exactly one service which is assured by constraint

(3). If price exceeds utility for all offered services, the customer will choose the no-purchase option

s0, making the revenue contribution disappear. Constraint (4) states that customers can only decide

for services that are offered and additionally forces prices of non-offered alternatives to zero3. Finally,

constraints (5) and (6) specify that the no-purchase option is always offered and that its price is zero.

Owing to the products of binary variables os with real-valued price variables ps, both the objective

(1) and the rational behavior constraint (2) include bilinear terms. Dobson and Kalish (1993) devel-

oped heuristic procedures to solve this NP-complete problem. We experimented with modifications

of their approach but concluded that it was inappropriate once you combine it with computationally

intensive routing considerations. We therefore developed our own approach which will be described

after we introduced the integrated formulation of the problem.

3.2 The express service fulfillment model

When determining the optimal set of guaranteed delivery times the basic intuition is that shorter

guaranteed delivery times increase delivery costs as it reduces opportunities to realize economies of

scale. As such the degree to which one can consolidate shipments at intermediate locations is vital for

the efficiency of the fulfillment operations. One class of models primed for this purpose are SNDPs.

These models have been successfully employed to solve a wide array of transportation problems.

SNDPs are typically dynamic, in the sense that they span multiple time-periods via an expanded

space-time network. This is necessary to adequately model the routing of shipments and vehicles

as they move through the system. The inherent size of such networks, however, limits the time

scale that those formulations can cover. Since product selection and pricing usually involve longer

planning periods than routing decisions, we should align the differing planning horizons by generating

3
If non-offered services would have positive price we would have to multiply p

s
in constraint (2) by o

s
yielding another

bilinear term. This is avoided by forcing those prices to zero.
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distribution plans that can be executed repeatedly. To assure this we decided to use a cyclical SNDP

formulation as the basis for our model (see Andersen et al., 2011; Andersen et al., 2009).

As last mile delivery is often operated on the same set of resources, regardless of differences in

guaranteed delivery times, we refrained from a dedicated modeling of last-mile operations and use a

uniform cost factor cLM per unit of demand instead. As such we assume shipments to enter and leave

our network at the hubs. The carrier’s transport operations are modeled as a space-time network

G = (H,A), with the set of arcs A representing possible connections between the hubs H. Unless

noted otherwise, arcs and hubs always refer to the time expanded version of the network, i.e. they

denote a physical location at a specific point in time. The schedule length is divided into a set of

periods T = {1, . . . , TMAX}. Note that our cyclical formulation implies that the first period is the

successor of the last. An illustration of the type of network considered is depicted in Fig. 1.

We consider a multi-modal logistics network with two types of vehicles, cargo aircraft and trucks.

Both operate between the same set of hubs, where packages can be consolidated and transferred from

one vehicle to another. As aircraft can travel much larger distances during each time period, aircraft

arcs form a very dense graph compared to trucks, whose connections are limited by the hubs they can

reach within a reasonable amount of time. A set of holding arcs Ah allows shipments and trucks to

be stored at the nodes while aircraft, due to their high fixed costs, need to be operated throughout

the planning horizon. An illustration of such a network is depicted in Fig. 1.

Figure 1: The physical structure of the express air hub network

Note that the shortest guaranteed delivery time the carrier considers, strongly influences the re-

quired density of the graph and thus the size of the overall model. For example, if the shortest service

guarantees delivery within two periods, then it needs to be possible to reach every physical destina-

tion from each time-expanded node within these two periods. Otherwise customers might demand a

delivery time which is not feasible in the underlying graph. Consequently, short delivery times re-

quire dense graphs. In combination with the fact that express carriers typically employ large fleets of
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vehicles this would become a major issue for any arc-based formulation as the number of constraints

would grow too quickly. In line with results from Andersen et al. (2009) we thus chose to use a SNDP

formulation based on routes and paths, as this has proven to computationally outperform arc-based

formulations, especially on larger instances. Moreover, the fleet size does not directly influence the

difficulty of our problem anymore, as the usage of a vehicle simply corresponds to a chosen route in

the objective, while the number of constraints and variables remain unaffected.

The downside of this formulation is that one needs to consider an enormous set of possible routes

and paths. Unless these are generated dynamically via column generation, the number of routes and

paths that need to be generated a priori quickly becomes prohibitively large. However, a large portion

of all possible routes and paths are typically not in line with the way express carriers operate (e.g.

shipments making numerous changes between aircrafts and trucks or vehicles that do not regularly

return to a given home base). Therefore, we generate only those routes and paths meeting a number of

operational restrictions that typically arise in the context of express parcel delivery (see the appendix

for a complete list of the restrictions).

We again aggregate shipments with identical availability time, origin and destination into a set of

commodities K and respective delivery quantities qk. Given that we know the market shares φs of

each offered delivery service 4, we can specify our fulfillment model FP as follows:

min
∑
v∈V

∑
r∈Rv

f rv y
r
v +

∑
k∈K

∑
p∈Pk

cpkx
p
k +

∑
k∈K

cLM (1− φ0)dk (7)

s.t.
∑
k∈K

∑
p∈Pk

xpkα
p
ij −

∑
v∈V

∑
r∈Rv

κvβ
r
ijy

r
v 6 0 ,∀(i, j) ∈ A\Ah (8)

∑
r∈Rv

yrv 6 ev ,∀v ∈ V (9)

(1− φ0)dk =
∑
p∈Pk

xpk ,∀k ∈ K (10)

∑
σ∈S:σ6s

φσdk −
∑

p∈Pk:t
p6τs

xpk 6 0 ,∀k ∈ K, s ∈ S\{0}

(FP)

(11)

x
p
k ∈ R+

flow of commodity k on path p Pk set of paths pk for commodity k

y
r
v ∈ {0, 1} is 1 if vehicle v is used on route r Rv set of routes rv for vehicles of type v

c
p
k variable costs of commodity k on path p A arc set of the space-time network

c
p
k variable costs of commodity k on path p V set of different vehicle types

α
p
ij is 1 if arc (i, j) is part of path p f

r
v fixed costs of vehicle v on route r

β
r
ij is 1 if arc (i, j) is part of route r κv capacity of vehicle of type v

dk total amount of commodity k ev max. number of vehicles of type v

φ
s

market share of service s

In the objective (7) we sum fixed costs f rv for using a vehicle of type v on route r and variable

4
Market shares are denoted by φ

s
for the moment but will be replaced in the integrated model by an expression

representing aggregated customer decisions.
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costs cpk, incurred by sending an amount of shipments xpk of commodity k on path p. Additionally,

we may add the costs cLM for last-mile delivery, which are constant in this case as market shares

are fixed in this subproblem. Constraint (8) assures that enough vehicle capacity κv is provided to

serve all selected paths, with αpij and βrij indicating whether arc (i, j) is part of path p and route

r, respectively. Constraint (9) limits our fleet size to a type-specific maximum of ev. The actual

quantity to be transported is obtained by subtracting the market share of the no-purchase option

φ0 from demand dk (10). This quantity needs to be equal to the sum of path flows. The delivery

time requirements are enforced by (11), stating that a sufficient fraction of each commodity must be

delivered on paths with a duration tp less than or equal to the guaranteed delivery time τ s of service

s.

3.3 An integrated approach to service selection, pricing and fulfillment

Now that we have introduced the two basic components of our model we can combine them in order to

derive an integrated approach of service selection, pricing and order fulfillment. The two models are

merged in a joint profit maximizing objective function and are linked in such a way that the individual

choices of the customers translate into the routing constraints and vice versa. More specifically we

need to replace the constant market shares φs of constraints (10) and (11) by the ones aggregated

from customer decisions, as already seen in the objective (1). We call the resulting integrated formu-

lation service selection, pricing and fulfillment problem (SSPFP). It extends service network design

by endogenous demand and endogenous delivery due times.
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max
∑
k∈K

∑
s∈S

∑
n∈N

dk
|N |

zsnp
s −

∑
v∈V

∑
r∈Rv

f rv y
r
v −

∑
k∈K

∑
p∈Pk

cpkx
p
k −

∑
s∈S

fsos −
∑
k∈K

cLM (1− φ0)dk (12)

s.t.
∑
k∈K

∑
p∈Pk

xpkα
p
ij −

∑
v∈V

∑
r∈Rv

κvβ
r
ijy

r
v 6 0 ,∀(i, j) ∈ A\Ah (13)

∑
r∈Rv

yrv 6 ev ,∀v ∈ V (14)

∑
σ∈S

(uσnz
σ
n − p

σzσn)− (usno
s − ps) > 0 ,∀n ∈ N, s ∈ S (15)∑
s∈S

zsn = 1 ,∀n ∈ N (16)∑
n∈N

zsn + ps −Mos 6 0 ,∀s ∈ S (17)

∑
n∈N

(
1− z0

n

) dk
|N |

=
∑
p∈Pk

xpk ,∀k ∈ K (18)

∑
σ∈S:σ6s

∑
n∈N

dk
|N |

zσn −
∑

p∈Pk:t
p6τs

xpk 6 0 ,∀k ∈ K, s ∈ S\{0} (19)

o0 = 1 (20)

p0 = 0 (21)

zsn, o
s, yrv ∈ {0, 1} xpk, p

s ∈ R+

(SSPFP)

(22)

Note that due to the product of binary decision variables zsn and continuous price variables ps, the

integrated model features bilinear terms. It can be linearized by replacing this product with a new

variable, whose behavior mimics the bilinear expression through a set of big-M constraints (see e.g.,

Wu, 1997). The resulting model has a very weak bound and any commercial MIP-solver will have

issues solving instances of only moderate size. However, for small instances it can provide optimal

values and thus serve as a benchmark for our heuristic solution approach which will be described

subsequently.

4 Solution approach

Solving our integrated model is challenging as both components, the service selection problem (SSPP)

and the fulfillment problem (FP), are known to be NP-complete problems with weak linear relaxations.

However, for a given solution to SSPP, we would know the market shares of all services and thus the

quantities that need to transported in the specified due times. We then would have everything needed

to solve FP, which is a potentially large but linear service network design problem.

Following this logic we decompose the integrated model SSPFP into its two already known com-

ponents, SSPP and FP, by using a asynchronous parallel genetic algorithm (GA) that operates on the

price vectors and generates a new solution to SSPP in each iteration. This in turn means that we
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need to solve one instance of the remaining FP with each new individual created. As multi-commodity

fixed-charge network design problems, like FP, are notoriously hard optimization problems, it appears

fairly optimistic to iteratively solve a large number of them. Consequently our GA is aimed at keep-

ing the number of required iterations as low as possible. Additionally we attempt to exploit historic

knowledge in order to speed up the search for good quality solutions of the fulfillment problems. The

different parts of the algorithm are explained in detail in the following sub-chapters. A schematic il-

lustration of the complete solution procedure is depicted in figure 2. Associated pseudo code together

with required parameter values can be found in the appendix.

Figure 2: Illustration of metaheuristic solution procedure AE-RPE. Note: Tasks in white boxes are performed
by master process, tasks in grey boxes are being run in parallel on slaves.
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4.1 Asynchronous evolution - AE

In order to perform a sufficient number of iterations within a reasonable amount of time we imple-

mented a parallel GA, operating asynchronously on a shared population (commonly referred to as

asynchronous evolution or AE). The master process manages the population and the pattern pool,

generating new individuals and fulfillment problems whenever a worker is available. Observe that as

the fulfillment problems exhibit very heterogeneous solution times asynchronous operation of the GA

is a key feature of our algorithm as any generational model would have to wait for all workers to

finish before proceeding. Particularly long evaluation times of high quality individuals, however, can

still pose a problem as they cannot spread their properties in the population until their evaluation

is finished, thus putting these individuals at a disadvantage. To circumvent this issue we exploit the

fact that the differences in solution quality are quite high at early stages of the GA and become less

pronounced later on. We thus stop the heuristic procedure after a given maximum amount of time

even if it continues to improve the fulfillment problem. The high disparities among individuals partly

offset the sub-optimal solution values at early stages of the population. Since the GA allows the same

fulfillment problem to be evaluated multiple times the evaluation can be continued later on when small

improvements are of higher importance.

4.2 Recombination and mutation

Starting from a random initial population the GA iteratively creates new price vectors. Parent in-

dividuals for mating are selected via tournament selection, with one parent being selected based on

solution quality and the other one based on the distance with respect to the first parent. This way we

strike a balance between intensification and diversification. Note that with an ordered set of delivery

services it would be counterintuitive if a faster service has a lower price. As such, whenever we are

mating or mutating we should enforce that prices must form a decreasing sequence. This greatly

reduces the range of values each price can take and thus also the number of needed iterations. For

the crossover operation we chose Extended Intermediate Recombination, a variant designed by Muh-

lenbein and Schlierkamp-Voosen (1993) which is particularly suitable for real-valued vectors. Their

choice of a crossover parameter in the interval [−0.25, 1.25] also performed best in our experiments.

We randomly determine the elements that are crossed over and all remaining elements are directly

inherited from one of the two parents. The frequency of mutations is determined by a fixed mutation

rate, however, the variance of mutations is adaptive. As each price is an element of a decreasing

price sequence it is bounded from above and below by its neighboring prices and the minimum and

maximum prices possible, i.e. zero and maximum utility value. In order to make sensible mutations

the standard deviation used should account for the size of this interval.
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4.3 Solution of SSPP and derivation of FP

Observe that for a given price sequence p0, p1, . . . , ps for s = |S| − 1 it is trivial to determine which

alternative will maximize each customer’s welfare in constraint (2) of SSPP. In this case we can easily

obtain the optimal values of decision variables zsn and solve SSPP. Note that decision variables os can

be neglected in this case as a service can always be forced to have zero market share by charging a price

higher than the maximum utility obtained by any individual in the sample. Each new price vector

can thus be mapped to a corresponding market share vector that uniquely defines the quantities and

time restrictions of FP. What is more, Dobson and Kalish (1988) have shown that once an assignment

of customers to products is given we can easily determine the revenue maximizing prices that would

generate such market shares by solving a set of shortest path problems (as arcs can have negative

values in these problems we use Bellman-Fords’s algorithm for obtaining the revenue maximizing

prices). This greatly reduces the number of iterations needed as we only have to generate each market

share vector once in order to immediately know what the associated maximum revenue is. After

logging this information we pass on the respective FP to one of the available workers.

4.4 Deriving good initial solutions from similar individuals

Genetic algorithms typically make a lot of minor tweaks to a real-valued solution vector, i.e., the

price vector and thus also the customer decisions often remain largely the same. This in turn causes

only minor changes in the quantities to be transported within the various delivery due times. As the

quantities of the offered delivery services are the only aspect of our delivery problem that changes

between iterations, we can expect that many instances of FP will resemble one another. Consequently

we try to speed up solution times of FP by trying to learn as much as possible from similar, already

evaluated instances. This is achieved by the following process.

Whenever we need to solve an instance of FP, we determine which already evaluated individual

was most similar to the current one. We then fix all routes used in the similar individual’s solution

to one and solve the linear relaxation of the remaining sub-MIP. All routes having fractional values

in the optimal LP solution are then rounded up, yielding a feasible initial solution which is easy to

obtain and comparably tight (In our experiments this initial solution was typically within ten percent

of optimality CHECK!!!).

One challenge that remains is how to determine similarity of individuals. The price vectors them-

selves would result in an inappropriate measure of similarity as different price sequences can be mapped

to the same market shares. As such it is market shares, rather than prices that uniquely define a fulfill-

ment problem. In the simple case where two individuals have equal market share vectors, it is trivial

to observe that associated FPs are identical, as all quantities and time restrictions are then the same.

In this case we can simply adopt the best solution of the identical individual and try to further improve
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it. In all other cases we need to find a measure of similarity that adequately reflects the implications

that different quantities and time restrictions have on the selection of routes and paths. For this

we tested three different measures of similarity based on the market share vector of individuals. We

compared a Euclidean distance measure with one that we based on a version of Spearman’s footrule

which accounts for position weights and similarities among rank elements (Kumar and Vassilvitskii,

2010). As a benchmark we added a random similarity measure consisting of a number drawn from

the uniform distribution between zero and one.

Table 1: Comparison of distance metrics: For a description of test instances see section 5. For each instance
dataset A was used.

instance average absolute value of initial solution Spearman’s footrule relative to

Spearman’s footrule Euclidian random Euclidian random

i1 2,440,389.7 2,464,077.7 3,191,245.7 −1.0 % −23.5 %
i2 3,353,373.6 3,380,773.7 4,493,127.5 −0.8 % −25.4 %
i3 3,213,451.1 3,235,675.8 4,306,681.0 −0.7 % −25.4 %
i4 2,946,210.9 2,993,484.6 4,342,959.3 −1.6 % −32.2 %
i5 5,419,672.4 5,662,639.2 8,967,849.1 −4.3 % −39.6 %
i6 6,895,625.5 7,492,870.5 8,906,659.1 −8.0 % −22.6 %
i7 11,556,733.5 11,620,284.6 15,549,185.7 −0.5 % −25.7 %
i8 10,953,117.8 12,328,449.6 17,709,100.6 −11.2 % −38.1 %
i9 7,778,994.0 8,902,401.4 12,150,223.0 −12.6 % −36.0 %
i10 15,302,044.0 16,951,162.5 23,828,417.7 −9.7 % −35.8 %

mean −5.0 % −30.4 %

As can be seen in table 1 our similarity measure based on Spearman’s footrule clearly performed

best, with average improvements in initial solutions of 5% and 30% relative to a Euclidian and random

distance measure. As our similarity-enabled version of Spearman’s footrule is able to account for cor-

relation among alternatives, it adequately mirrors that one- and two-day services are closer substitutes

than one- and five-day services. As an example, an individual who has ten percent market share of

service one shifted to service two is regarded as being more similar to the original than one with equal

amount shifted from service one to service five. Euclidean distance metrics on the other hand would

regard both cases as having identical similarity. Therefore, whenever we refer to a distance measure

in the following chapters, we applied the one based on Spearman’s footrule (also see algorithm 3 in

chapter B of the appendix).

4.5 Route-pattern exchange heuristic - RPE

Each worker subsequently runs a newly developed improvement procedure, called route-pattern ex-

change (RPE) heuristic, which is also designed to exploit historic knowledge from previous evaluations.

It involves a learning component that has been used in various forms by Rochat and Taillard (1995)

and others. It stems from the idea that one can intensify and guide the search to promising regions of

the solution space by identifying common variables in high-quality solutions and by exchanging com-

ponents of those solutions among each other. This usage of so-called consistent variables, however, is
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usually employed in the context of local search heuristics and involves different solutions of one and

the same routing problem. We, on the other hand, start from an initial solution and try to improve

upon it by learning from other, similar problems. Therefore we adjusted this well-known strategy such

that we identify small sets of currently chosen routes, referred to as replacement candidates, that are

particularly inconsistent. For each of them we then search for promising substitution candidates and

evaluate them together in a sub-MIP to see whether we can find a lower cost combination of routes and

paths. All objective-improving sets of replacement and substitution candidates, called route-patterns,

are shared via a pattern pool between workers.

Selection of replacement candidates is based on a distance-weighted usage statistic ωrv, provid-

ing information on how popular this route is in the best solutions of all other previously evaluated

individuals. It is calculated according to

ωrv =
∑
i∈I

(yrv)i log
1

di
∀v ∈ V, r ∈ Rv. (23)

Each solution value of variable yrv across all individuals i is weighted by the log of the inverse

distance measure di. As such, a low ω-score indicates that this route can be considered as weakly

determined for the given individual. On the basis of this metric we use tournament selection to

determine a small number of routes in the current solution which seem promising to reevaluate.

In order to select good substitution candidates for these variables we utilize the concept of a γ-

neighborhood, found in the context of k-opt heuristics for MIP-solvers (see Achterberg, 2009; Hendel,

2011). This neighborhood consists of all variables sharing a minimum ratio γ of rows with the selected

variable. As such, potential substitution candidates are those routes that use a certain fraction of the

same arcs as the replacement candidate. Note, however, that a strict application of this concept is

problematic, as different classes of vehicles do not share any arcs, thus making it impossible for a set of

trucks to replace an aircraft. Likewise, routes connecting a similar set of physical nodes but at slightly

different times should also be considered as substitutes. Before we can define a proper neighborhood,

we thus need to determine which arcs have comparable properties. For this we introduce the concept

of an adjusted coefficient matrix Ā.

Definition 1. Let P be an instance of our fulfillment problem and let aij ∈ A be the coefficients of

route variables in constraints of type (8). Then each constraint i ∈ I corresponds to an arc and each

variable j ∈ J represents a route. Associated with each constraint i are departure time ti, physical

origin oi and physical destination di. If ε denotes the departure tolerance in periods, then for all

i ∈ I, j ∈ J we can define the coefficients āij of the adjusted matrix Ā as follows:

āij =


1 if ∃ k ∈ I : akj = 1 ∧ ok = oi ∧ dk = di ∧ |ti − tk| 6 ε

0 otherwise.

(24)
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Whenever coefficient matrix A has value 1, the adjusted coefficient matrix Ā receives value 1 in

all rows that correspond to arcs with same origin and destination and within the departure tolerance

ε, irrespective of the arc’s vehicle type. Using this adjusted coefficient matrix we can now define the

γ-neighborhood.

Definition 2. Let P be a mixed-integer program, j ∈ J a given variable and Āj a column of its

adjusted coefficient matrix. Then for a fixed matching rate γ ∈ [0, 1] we can define the γ-neighborhood

as

Γγj =

{
i ∈ J \ {j}

∣∣ |Āj ∩ Āi|
|Āj |

> γ

}
(25)

to be all integer variables of P which share a certain ratio γ of rows in Ā with j.

For each replacement variable we then take a random sample of variables from its respective γ-

neighborhood, together forming our set of promising substitution candidates. After fixing all route

variables, except replacement and substitution candidates, we solve a sub-MIP with an objective

cutoff. Any feasible solution to this sub-MIP improves the original FP. We adopt the best improve-

ment made and log the differences with respect to the previous solution. The resulting set of m

replacement candidates that left and n substitution candidates that entered the solution represents

an m:n-improvement, referred to as a route-pattern exchange. Following the intuition that successful

improvements provide valuable information for other FPs we add these patterns to a pattern pool that

is managed by the master process. Whenever a new individual’s FP is created we rank all patterns

in increasing order according to the distance of the creating instance to the current one. The ten

thousand least distant patterns are attached to the problem data and passed on to the worker.

After retrieving an initial solution the RPE heuristic checks whether any of the patterns match

the current solution. If not we simply create new patterns as described above. In case there are

matching patterns, a maximum number of five of them is selected via tournament selection, based

on the absolute objective improvement these patterns generated. The winning patterns are appended

to the set of previously determined replacement and substitution candidates and together with all

real-valued path variables a sub-MIP is evaluated. Our experiments showed that it is beneficial to

first concentrate on replacing variables representing aircraft routes before allowing all routes to be

evaluated. This is intuitive as aircraft routes have much higher cost coefficients in the objective than

routes representing trucks.

4.6 Local search

Besides random selection, new individuals can also be obtained through training of previous solutions

via a local search procedure. For each service we identify the customer decision which prevents us

from increasing or decreasing a given services’ price and reassign this customer to the next best

alternative. We then compute the profit maximizing prices for the new assignments and use these
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price sequences as our new individuals (see Dobson and Kalish (1988) for a more detailed description

of this procedure). The best solution found in this local search is injected into the population. As

this process is computationally expensive we employ local search only with a certain quality-scaled

probability or every time a new best solution is found.

4.7 Solution polishing

As our heuristic is primarily designed to yield good solutions quickly it might happen that the best

solution retained by the GA could still be somewhat improved if we would reoptimize its FP. Therefore

the algorithm concludes with another ten minutes of RPE heuristic on the best individual’s FP.

5 Data

As noted in chapter 3.2, the time-restrictions imposed by the delivery services imply that it needs to

be possible to reach every physical node from each time-expanded node within the shortest offered

delivery time. In case of dedicated networks (e.g. up to 3-day exclusively served by aircraft, beyond

by trucks) a feasible model even requires that this condition is fulfilled for each mode separately.

This imposes some unique requirements on the structure of networks which are typically not met by

commonly used test instances. As such we decided to build our own networks by randomly allocating

hubs on a plane. We then added all arcs that were possible given the vehicles’ speed limitations. For

aircraft this implies a complete graph in the physical network, repeated in each period. In order to

reflect real-world limitations, as for example availability of airport slots, we randomly removed a few

aircraft arcs. We subsequently checked whether the given network would be feasible with respect to

the shortest delivery times. Speed and capacity of aircraft are modelled after a Boeing 757-200F, with

operating costs of this model taken from section 4 of FAA (2016). Truck data is from table 11 of

ATRI (2016). Customer utilities are assumed to be dependent on sensitivity parameters for price and

delivery time and are randomly generated by a linear-in-parameters utility function consistent with

random coefficients discrete choice models as in Akcay et al. (2010), Berry and Pakes (2007), and

Song (2007). For the creation of routes and paths we used the algorithms of Andersen et al. (2009,

p. 203) and adapted them in order to account for operational restrictions. For further information on

customer utilities and restrictions on routes and paths we refer to section A in the appendix. With

ten specifications, each with three datasets, we created thirty different test instances, twelve smaller

ones and 18 with larger size. They are described in table 2 and are available upon request. The largest

instances resemble the size of UPS’ air hub network which features seven major air hubs in Nothern

America.
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Table 2: Description of test instances

ID Hubs Periods Nodes Services Commo- Cust- Arcs Paths Routes
dities omers min max min max min max

1 4 6 24 3 72 200 125 140 2,084 2,772 129 168
2 4 8 32 4 96 200 178 197 2,471 4,012 211 580
3 5 6 30 3 120 200 178 203 3,493 5,942 184 262
4 5 8 40 4 160 200 249 271 4,766 7,925 297 827
5 5 10 50 5 200 2,000 277 358 6,870 15,909 2,082 2,869
6 5 14 70 5 280 2,000 412 439 8,577 12,188 19,563 115,577
7 6 10 60 5 300 2,000 420 460 21,463 29,737 4,822 22,338
8 6 14 84 5 420 2,000 588 644 22,309 33,342 96,937 172,361
9 7 10 70 5 420 2,000 682 682 56,896 77,562 18,222 34,534

10 7 14 98 5 588 2,000 787 899 32,288 78,319 421,209 464,690

6 Results

We decided to implement our metaheuristic AE-RPE using MATLAB R2017a. The associated Parallel

Computing Toolbox lends itself well to the implementation of an asynchronous parallel algorithm and

as our metaheuristic spends over 95 percent (CHECK!!!) of the overall computational time in solving

sub-problems within CPLEX, a lower-level language would not lead to substantial speed-up. All

calculations were perfomed on an IBM x3850 X5 Linux server with four Intel Xeon X7560 processors

(32 cores in total) with 330GB of RAM. Table 3 exhibites a comparison on all thirty test datasets

between CPLEX 12.8 and our metaheuristic AE-RPE. CPLEX was run for ten hours on the linearized

version of model (SSPFP) using the fastest setting of 16 threads. The metaheuristic was able to use

all 32 cores and was also stopped after a maximum time of ten hours. The upper part of the table

contains results for the smaller test instances where a commercial MIP-solver can provide a meaningful

benchmark. Despite the small size of these instances, CPLEX was only able to solve three of them

to optimality. On most other small instances CPLEX came reasonable close to the LP bound, while

it struggled on instances i4-A and i4-C. The issues CPLEX has in closing the MIP-gap on such small

instances already indicate the overall difficulty of the integrated problem and also point to a very

weak linear relaxation. As the bottom half of the table illustrates, any further increase in the size

of the test instances makes the problem unsolvable for current versions of commerical MIP-solvers.

In half of these cases CPLEX cannot even find a profitable integer solution, while the MIP-gaps are

still enormous whenever it does. In comparison our metaheuristic AE-RPE proves competitive on

the smaller test instances, coming reasonably close to proven high-quality solutions. On the larger

test instances the metaheuristic clearly outperforms the MIP-solver, yielding integer solutions that are

frequently several times better than the ones reported by CPLEX. The right columns of table 3 exhibit

a performance comparison of solution values from AE-RPE after one, two and ten hours relative to

what CPLEX reported after ten hours. We consider these results encouraging as they demonstrate

that our metaheuristic is able to find high quality solutions in moderate time frames, despite the fact

that it is generally designed to be fairly explorative.

20



Table 3: Performance of metaheuristic AE-RPE compared to CPLEX 12.8 (max. 10h)

instance CPLEX AE-RPE

objective (10h) bound time/MIP-gap objective (10h) relative to CPLEX (10h)
after 1h after 2h after 10h

i1-A 1,459,066.5 1,477,187.0 1.24 % 1,459,066.5 1.00 1.00 1.00
i1-B 1,191,321.7 1,209,595.9 1.53 % 1,189,506.9 1.00 1.00 1.00
i1-C 2,827,032.6 2,827,032.6 10412.5 sec. 2,820,357.4 0.99 0.99 1.00
i2-A 3,773,500.2 3,774,069.8 0.02 % 3,764,256.2 0.98 0.99 1.00
i2-B 4,347,932.7 4,349,655.1 0.04 % 4,335,405.4 0.98 0.99 1.00
i2-C 2,070,986.5 2,107,065.4 1.74 % 2,066,554.5 0.97 0.98 1.00
i3-A 2,208,034.2 2,208,034.2 3880.4 sec. 2,208,034.2 1.00 1.00 1.00
i3-B 1,872,402.3 1,894,799.9 1.20 % 1,870,115.2 0.98 1.00 1.00
i3-C 1,061,931.1 1,061,931.1 5303.8 sec. 1,058,737.4 0.98 0.99 1.00
i4-A 4,913,402.6 5,368,362.4 9.26 % 4,850,680.8 0.99 0.99 0.99
i4-B 2,541,269.9 2,560,361.6 0.75 % 2,513,229.6 0.93 0.95 0.99
i4-C 3,561,379.3 3,790,231.2 6.43 % 3,569,720.0 0.94 0.99 1.00

i5-A 4,666,587.4 9,289,007.5 99.05 % 5,015,584.1 0.97 1.01 1.07
i5-B 847,576.7 3,482,749.1 310.91 % 1,292,022.4 1.22 1.40 1.52
i5-C 2,577,689.7 5,368,963.4 108.29 % 2,885,247.7 1.00 1.07 1.12
i6-A 913,974.9 11,301,719.2 1136.55 % 5,668,927.5 6.20 6.20 6.20
i6-B 317,529.1 11,735,254.0 3595.80 % 5,635,295.2 16.57 17.00 17.74
i6-C 0.0 7,037,625.2 ∞ % 2,864,373.6 ∞ ∞ ∞
i7-A 0.0 12,346,340.4 ∞ % 6,623,976.6 ∞ ∞ ∞
i7-B 1,288,896.4 11,178,899.6 767.32 % 5,875,495.8 4.18 4.40 4.56
i7-C 4,849,986.4 11,114,527.8 129.17 % 5,454,812.5 0.88 1.01 1.12
i8-A 0.0 13,694,320.1 ∞ % 6,517,507.2 ∞ ∞ ∞
i8-B 1,273,962.9 18,168,402.9 1326.13 % 9,214,783.1 6.78 7.15 7.23
i8-C 0.0 17,545,428.6 ∞ % 8,575,831.8 ∞ ∞ ∞
i9-A 3,479,052.8 17,113,680.6 391.91 % 9,474,564.5 2.59 2.68 2.72
i9-B 0.0 16,454,841.2 ∞ % 9,404,365.2 ∞ ∞ ∞
i9-C 0.0 16,784,723.5 ∞ % 8,477,000.3 ∞ ∞ ∞
i10-A 0.0 26,183,204.9 ∞ % 13,804,081.4 ∞ ∞ ∞
i10-B 0.0 18,437,177.0 ∞ % 9,902,871.0 ∞ ∞ ∞
i10-C 0.0 28,425,385.8 ∞ % 14,769,796.5 ∞ ∞ ∞

As the poor performance of CPLEX limits the validity of these results, we also tested how well

our route-pattern-based improvement heuristic is able to solve the fulfillment part of the problem.

For this we selected the first instance from each of the ten different specifications and resolved it with

the metaheuristic. However, this time each fulfillment problem was solved twice, once with CPLEX

and once with the improvement heuristic. As is evident from table 4 the improvement heuristic

outperformed CPLEX on the linear fulfillment problem in nine out of ten cases.
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Table 4: Performance of improvement heuristic

CPLEX heuristic

best integer bound mipgap best integer relative to CPLEX
i1 2,258,131.45 2,215,508.02 1.89% 2,260,924.32 1.001
i4 1,520,159.36 1,492,654.27 1.81% 1,515,084.89 0.997
i7 2,438,845.01 2,399,091.83 1.63% 2,673,375.40 1.096
i10 2,363,550.10 2,285,194.16 3.32% 2,355,619.90 0.997
i13 5,219,954.63 4,862,827.04 6.84% 5,146,176.63 0.986
i16 4,684,262.43 3,127,281.99 33.24% 3,402,721.27 0.726
i19 10,913,680.04 10,287,134.07 5.74% 10,633,660.74 0.974
i22 89,345,612.68 3,102,741.30 96.53% 7,663,264.15 0.086
i25 8,708,560.15 4,579,062.33 47.42% 6,369,273.69 0.731
i28 96,365,088.68 431,538.52 99.55% 13,042,797.42 0.135

Given the consistently good performance and the lack of alternative approaches we think that our

metaheuristic constitutes a proper solution approach to this challenging problem.

7 Conclusions
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A Further information on test instances

Routes and paths have been created a-priori as in Andersen et al. (2009, p. 203). Additionally we

enforced the following requirements which should reflect real-world operational restrictions. In an

express air network parcels are either transported directly from origin to destination or via a central

hub. As such the use of aircraft precludes frequent transshipments and overly long transit times.

We therefore enforce that a feasible path featuring aircrafts has a maximum duration of six periods

and uses at most two aircraft. Parcels may wait for further transport at any hub, the waiting time,

however, has to be uninterrupted. With a planning horizon of up to a week vehicles might not return

to their starting point for an extended amount of time. In reality, however, vehicles have fixed home

bases to which they need to return on a regular basis (e.g. to exchange crews). We therefore define

the first physical node of a route as its home base and enforce that aircraft need to return to this

location once every four periods and trucks once every eight periods. Real-world express air networks

typically feature a central hub with a special status (e.g. for aircraft maintanance). In case of UPS

it is located in Louisville and is called a global hub. We randomly select one of the physical nodes as

the global hub and enforce that aircraft need to visit it once every six periods.

B Pseudo code

This detailed pseudo code should be sufficient to recreate our algorithm. Values for necessary param-

eters are given in square brackets.

Algorithm 1 performGA (executed asynchronously in parallel)

1: P← {} . population of price vectors
2: S← {} . population of associated market share vectors
3: Q← {} . matrix of route patterns
4: popSize← desired population size [50]
5: numPatterns← number of route patterns that are passed to worker [10000]
6: numRoutes← number of routes in fulfillment problem
7: maxShareLS ← maximum share of local search in total evaluations 0.5]
8: i← 0

9: while elapsedT ime < maxTime− polishT ime and i < maxIteration− 1 do
10: i← i+ 1;
11: r ← random number drawn from uniform distribution between 0 and 1
12: if |N| < popSize then
13: p← doRandomPrices() . draw prices from uniform distribution and sort decreasingly
14: else if PLS 6= {} and r 6 maxShareLS then
15: p← price vector from local search pool PLS . remove this price vector from local search

pool after selection
16: else
17: p← doMateAndMutate(P,S,Π) . see algorithm 2
18: end if
19: (s,a)← getMarketShares(p) . determine customer decisions a and get market shares s
20: pmax ← getMaxPrices(a) . determine maximal prices yielding this set of customer decisions
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21: R← getRevenue(p) . market shares, quantities and prices yield revenue
22: Rmax ← getRevenue(pmax) . revenue achievable with maximal possible prices
23: d← getDistances(s,S) . see algorithm 3
24: for j ← 1 to numRoutes do
25: ωj ←

∑i
k=1(yj)kdk . sum weighted solution values yj of all evaluated individuals

k = 1, . . . , i
26: end for
27: sort all patterns in Q according to distance dk of the generating individual k relative to the

current individual i
28: Qi ← Q(1 : numPatterns)
29: (C,Qnew

i )← solveFP(s, ω,Qi) . cost C is derived by algorithm 4
30: Q← [Q,Qnew

i ]
31: Π← R− C . calculate profit Π and maximal possible profit Πmax

32: Πmax ← Rmax − C
33: if |P| = popSize then
34: kill one individual by tournament selection based on Π
35: end if
36: P← [P,p]
37: S← [S, s]
38: if Πmax > Π∗max then
39: Π∗max ← Πmax

40: pLS ← performLocalSearch(p, s) . see algorithm 6
41: PLS ← [PLS ,pLS ]
42: end if
43: end while
44: doSolutionPolishing() . try to further improve best solution by using 4 for some more time
45: return Π∗max

Algorithm 2 doMateAndMutate

1: P← population of price vectors 〈p1, p2, . . . , pl〉
2: S← population of market share vectors 〈s1, s2, . . . , sl〉
3: Π← profits
4: t← tournament size [2]
5: c← positive value which determines how far long the line a child can be located [0.25]
6: iterationCount← GA iteration counter
7: minPrice← 0
8: maxPrice← maximum value among all customers’ utilities
9: σ0 ← initial standard deviation for mutation [maxPrice / 8]

10: bestImproved← binary vector indicating which iteration improved best objective
11: windowSize← number of iterations for exponential moving average [500]
12: minEMA← lower limit for EMA, controls when standard deviation should be increased [0.001]

13: parent(1)← individual picked at random from P with replacement
14: for i← 2 to t do . pick mother according to fitness
15: next← individual picked at random from P with replacement
16: if Πnext > Πparent(1) then
17: parent(1)← next
18: end if
19: end for
20: sparent(1) ← market share vector associated to this price vector
21: d← getDistances(sparent(1),S) . see algorithm 3
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22: parent(2)← individual picked at random from P with replacement
23: for j ← 2 to t do . pick parent(2) according to distance from parent(1)
24: next← individual picked at random from P with replacement
25: if dnext > dparent(2) then
26: parent(2)← next
27: end if
28: end for
29: m← random integer from 1 to 2 . perform crossover by Extended Intermediate Recombination
30: p← parent(m) . offspring is based on randomly selected parent
31: n← random integer from 1 to l
32: shuffle← random permutation of integers 1 through l
33: recombine← shuffle(1 : n) . these are the prices to cross over
34: for each service s of market share vector s do
35: if s ∈ recombine then
36: if s = 1 then . determine bounds (new prices need to form a decreasing sequence)
37: lb← max{ps+1,minPrice}
38: ub← maxPrice
39: else if s = l then
40: lb← minPrice
41: ub← min{ps+1,minPrice}
42: else
43: lb← max{ps+1,minPrice}
44: ub← min{ps−1,maxPrice}
45: end if
46: α← uniformRandom(−c, 1 + c)
47: ps ← mothersα+ fathers(1− α)
48: end if
49: EMA← exponential moving average of bestImproved with window size windowSize
50: if iterationCount > windowSize then
51: σ ← σ0

52: else if EMA < minEMA then
53: σs ← standard deviation of prices in population for service s
54: σs ← (1− EMA

minEMA)σ0 + σs . gradually increase standard deviation if GA is unsuccessful
55: else
56: σs ← standard deviation of prices in population for service s
57: end if
58: u← random number drawn from uniform distribution between 0 and 1
59: if u > rateMutation then
60: v ← random number drawn from standard normal distribution
61: ps ← ps + vσs

62: end if
63: if ps < lb then . if new price is invalid then clip it to violated bound
64: ps ← lb
65: end if
66: if ps > ub then
67: ps ← ub
68: end if
69: end for
70: return p

Algorithm 3 getDistances
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1: s← vector of new market shares 〈s1, s2, . . . , sm〉
2: S← array of previous (unique) market shares 〈S1, S2, . . . , Sn〉

3: for i← 1 to n do . outer loop can be replaced by vector operations in inner loops
4: for j ← 1 to m do
5: dij ← 0
6: δij ← Sij − sj
7: for k ← 1 to m do
8: if j < k then
9: if δij and δik have opposite signs then

10: rij ← min{
∣∣δij∣∣ , |δik|}

11: if δij > 0 then
12: δij ← δij − rij
13: else
14: δij ← δij + rij
15: end if
16: dij ← dij + log (1− j + k) rij
17: end if
18: end if
19: end for
20: end for
21: di ←

∑m
j=1 dij

22: end for
23: return d

Algorithm 4 solveFP

1: s← current market shares 〈s1, s2, . . . , sm〉
2: ssim ← market share vector of most similar individual
3: vsim ← solution of most similar individual
4: a← vector of objective coefficients
5: ω ← vector of usage statistics for each route variable
6: Q← array of route patterns
7: c← 0

8: if vsim 6= {} then . build initial solution from most similar individual
9: if s = ssim then

10: v∗ ← vsim
11: else
12: v∗ ← fix chosen routes in vsim, solve LP, round up and fix route variables, resolve LP
13: end if
14: else . build initial solution from rounded up LP if no similar solution exists
15: v∗ ← solve LP, round up and fix route variables, resolve LP
16: end if
17: repeat
18: c← c+ 1
19: if c 6 3 or mod (c, 50) = 0 then
20: rrep ← all currently used aircraft routes are replacement candidates
21: else
22: rrep ← getReplacementCandidates(ω) . tournament selection based on usage statistic ω
23: end if
24: rsub ← getSubstitutionCandidates(rrep) . see algorithm 5
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25: Q̂← route patterns that match current solution
26: if Q̂ 6= {} then

27:

(
Q̂rep, Q̂sub

)
← select a number of patterns by tournament selection based on previous

cumulative objective improvement

28: rrep ←
[
rrep, Q̂rep

]
29: rsub ←

[
rsub, Q̂sub

]
30: end if
31: ṽ← solve sub-MIP with all routes fixed except replacement and substitution candidates
32: if ṽTa < v∗Ta then . if cost is lower for new solution adopt it
33: v∗ ← ṽ
34: Q̃← changes from previous to current best solution define a new route pattern

35: Q∗ ←
[
Q∗, Q̃

]
. append new route pattern to output

36: end if
37: until either number of consecutive non-improving iterations or time reached limit
38: return v∗,Q∗

Algorithm 5 getSubstitutionCandidates

1: rrep ← vector of route replacement candidates
2: rsub ← {}
3: Ā← adjusted coefficient matrix
4: n← number of substitution candidates per replacement candidate [10]
5: t← consecutive number of times this instance of FP was not improved by heuristic
6: tmax ← maximum allowed number of non-improving consecutive heuristic runs [5]
7: φA, φT ← required mode shares for selection of substitution candidates [0.5,0.8]
8: AA,AT, TT, TA ← initial values for minimium ratio of shared rows, specific for air-air, air-

truck, truck-truck, truck-air (necessary due to different number of arcs in air and truck routes)
[0.66,0.33,0.66,0.99]

9: for each route j ∈ rrep do
10: Ej ← binary vector indicating if an arc is in route j

11: γj ←
Ā

T
Ej

Ā
T
j Ej

. gamma is the ratio of shared rows in adjusted coefficient matrix, it gets

12: α←
(

1− t
tmax

)
. minimum ratio gets lowered with each non-succesfull heuristic run until

selection of substitution candidates if fully random
13: if route j is an aircraft route then
14: ΓAAj ← all aircraft routes whos γj is bigger than α(AA)

15: ΓATj ← all truck routes whos γj is bigger than α(AT )

16: rjsub ← random sample of nφA air routes and n
(

1− φA
)

truck routes

17: else
18: ΓTTj ← all truck routes whos γj is bigger than α(TT )

19: ΓTAj ← all aircraft routes whos γj is bigger than α(TA)

20: rjsub ← random sample of nφT truck routes and n
(

1− φT
)

air routes

21: end if
22: rsub ←

[
rsub, r

j
sub

]
23: end for
24: return rsub
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Algorithm 6 performLocalSearch

1: p← input price vector
2: s← input market share vector
3: a← binary array indicating service that maximizes net utility for each customer
4: U← utilities of customers (scaled by customers’ price-sensitivity)
5: N ← maximum number of customers to be switched to other service [5]

6: n← draw random integer from 1 to N
7: Unet ← U− p
8: slack ← Unet −Unet(a)
9: for i← 1 to n do

10: for each service s do
11: Isi ← first i customers whos slacks turns negative if price ps is increased
12: Ds

i ← first i customers whos slacks turns positive if price ps is decreased
13: As

i ← [Isi ,D
s
i ] . new assignment if price ps is changed so that i customers switch

14: Ai ← [Ai,A
s
i ]

15: end for
16: A← [A,Ai] . array of new assignments
17: end for
18: for each new customer assignment a ∈ A do
19: pnew ← getMaxPrices(a) . see Dobson and Kalish (1988) for a detailed explanation
20: pLS ← [pLS ,pnew]
21: end for
22: return pLS

30


