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Abstract

Non-destructive inspections are a cornerstone of a wide range of safety critical

industries in which the assurance of the integrity of equipment is essential. Prior

to any technique being used in service, it is necessary to qualify the inspection

by demonstrating that it is capable of detecting defects of interest. Tradition-

ally, this has been achieved using expensive and time-consuming experimental

trials. Within the Ministry of Defence (MOD), this has proved to be a sig-

nificant barrier and an alternative methodology is needed. This project was

instigated by the Defence Science & Technology Laboratory (DSTL) to develop

a methodology which will allow this barrier to be overcome.

The use of numerical models to simulate inspections has become increas-

ingly common over the past few decades with the advent of cheaper and more

powerful computing resources. This presents the opportunity to replace a sig-

nificant proportion of experimental trials with faster and cheaper numerical

simulations. This thesis presents a general approach to achieving this as well

as demonstrating other useful information that a model-based approach can

yield. A generalised method of calculating metrics of inspection capability is

demonstrated, making no assumptions as to the nature of underlying proba-

bility distributions or the response of the inspection. Appropriate sampling

and interpolation methodologies provide tools to accurately and rapidly map

the inspection’s response. Sensitivity analysis is shown to be a suitable tool

for quantitatively assessing which parameters can be ignored due to having lit-

tle impact on the response of the inspection. These methods are applied to a

canonical example inspection in the aerospace industry, demonstrating that the

reliability of an inspection can be quantified using a range of metrics in a time

frame suitable for the MOD.
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Chapter 1

Introduction

Non-Destructive Testing (NDT), also known as Non-Destructive Evalua-

tion (NDE), is the notion of using non-invasive methods, such as ultrasound

and x-rays, to inspect the interior of structures without causing damage. This

has become a crucial tool for many safety critical industries, such as aerospace,

power generation and fossil fuel pipelines. In these sectors the cost of failure can

be enormous, with financial, human and environmental impact, therefore there

is a need to identify components which are damaged prior to a catastrophic

failure.

Significant resources are expended researching and developing novel tech-

nologies which can find smaller defects more reliably. However there is always

a need, especially in these typically very conservative industries, to demon-

strate the capabilities of a technique prior to its introduction to service. This

is a problem as old as NDT as a field and the classical approach to achieving

this has been to perform empirical trials. Such trials typically involve many

samples containing defects and several operators who perform blind trials to

demonstrate that defects can be detected reliably. However, in industries where

samples are difficult to obtain from in-service equipment or costly to manu-

facture, such as military aerospace, this can become a prohibitively expensive

process. Furthermore, the cost of using qualified operators and attempting to

perform the trials in an environment representative of the in-service inspection

further increase the outlay required to perform these trials. This is especially

true within the Ministry of Defence (MOD), with this barrier being highlighted

as the primary obstacle to the introduction of new techniques [1]. The result

of this within the MOD is that no new NDT modalities, such as phased array

ultrasonics, have been introduced into service in the last 15 years [1]. Given

the clear desire and need for increasingly advanced and capable technology, a
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method is required that can overcome this barrier.

The increase in accuracy and sophistication of numerical models of inspec-

tions coupled with the massive increase in computing power over the last few

decades presents the opportunity to replace a significant proportion of the ex-

perimental trials with numerical model evaluations, significantly reducing the

number of samples required and the time required to perform experiments. This

potential has been further enhanced with the advent of massively parallelised

calculations utilising graphics processing units (GPUs). These coupled together

potentially allow for sophisticated models which can accurately represent the

inspection to be evaluated rapidly. This presents the opportunity to assess

the impact of variations that may be present in an inspection on the outcome

through modelling. Given that this will require every possible outcome of the

inspection to be evaluated to fully quantify the effect of variations, optimisation

of the inspection technique should be possible as a by-product of the qualifica-

tion methodology. This is a significant benefit of this process as it should be

able to improve the inspection as well as demonstrating its reliability.

The aim of this project is to develop a generic methodology to assess the

reliability of a technique, primarily through the use of numerical models whilst

minimising the number of experimental trials required. This methodology will

be applicable to any inspection modality. Given the need to demonstrate the

viability of the methodology, ultrasonics was chosen as the demonstrator modal-

ity, given its widespread use in the military air domain.

This project was instigated by the Defence Science and Technology Labo-

ratory (Dstl) on behalf of the MOD. The Engineering Doctorate (EngD) is itself

a part of a larger project to write and demonstrate a qualification protocol for

the military air domain, which has been sub-contracted to The Welding Insti-

tute (TWI). The goal of this EngD is to develop methods which allow models of

inspections to be used efficiently to demonstrate the capability of a technique.

Full scale demonstration, including the performance of systematic experimental

trials with several qualified operators, is to be left to TWI. The methods pre-

sented in this thesis will feed into this protocol and the author has been playing

an active role in the development and writing of the protocol. With this in

mind, this thesis also considers the practical implementation of these methods

so that it can form a good description of the methods should an organisation

desire the use of them. It has been found during the course of this research

that the optimisation of the workflow of a qualification can yield significant
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reductions in the qualification time as well as minimising the number of model

evaluations.

The outline of the thesis is as follows. Contemporary qualification method-

ologies are reviewed in Chapter 2, highlighting their features and shortcomings

as well as definitions of reliability of inspections currently in use. Methods

for calculating the metrics of inspection reliability are presented and compared

in Chapter 3. The efficient mapping of inspection responses is discussed in

Chapter 4, presenting a method which minimises the number of model evalu-

ations required. Chapter 5 applies this methodology to an example inspection

of increasing complexity, developing a model and considering several degrees of

freedom in the inspection. The results of this project are summarised in the

conclusions in Chapter 6 along with a discussion of future work that leads on

from this thesis.
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Chapter 2

Contemporary Qualification

Methodologies

This chapter presents an overview of the literature regarding the qualifica-

tion of NDT techniques, highlighting some of the limitations of such methods

and the assumptions that underlie them. Overall, there is not a large volume of

literature on methods of qualification however there are many examples of the

application of these methods. It is also important to highlight current practices

to understand the requirements of a qualification methodology that could be

used in industry and thus maximise the impact of the work.

2.1 Definition of Common Reliability Metrics

This section outlines the general definition of some reliability metrics that

are commonly used to assess the capability of a technique in contemporary

qualification methodologies. The calculation of these metrics is not trivial and

is discussed in greater detail in the next Chapter.

The response of an inspection given a set of parameters x, that is quanti-

ties that may vary between instances of the performance of the inspection, is

given by the function R(x). A sentencing criterion is applied to this response,

often based on some decision threshold T . In practice, this may be anything

from a simple threshold on the amplitude of a signal to a more complex analysis

methodology involving multiple criteria. A decision threshold α on the param-

eter of interest xc, for example the crack length having a certain magnitude,

is also required. The Probability of Detection (PoD) is defined as the
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probability that the response of an inspection is greater than a deci-

sion threshold on the response, given that a defect with magnitude

of a critical parameter greater than the critical parameter threshold

is present, that is

PoD = p(R(x) ≥ T |xc ≥ α), (2.1)

where p(a) indicates the probability of the quantity a occurring. This is the

simplest and most commonly used definition of PoD. Variations of this decision

criteria will in general simplify to a conditional probability of a form similar.

The Probability of False Alarm (PFA) is the probability that the

response of an inspection is greater than the decision threshold on the

response, given that a defect with magnitude of a critical parameter

less than the critical parameter threshold is present. This covers both

the case when a defect is present but the response indicates that it is larger

than it truly is, that is 0 < xc < α, and when a defect is not present but a

response is obtained from the inspection greater than the response threshold.

Both cases result in the operator taking some action they would not otherwise

take if its true magnitude was known. In this case the PFA can be defined as

PFA = p(R(x) ≥ T |xc < α). (2.2)

The PoD is typically plotted as a function of the defect parameter of interest, a

plot known as the PoD curve. It may also be plotted as a function of the PFA as

T is varied, a plot known as a Receiver Operator Characteristic (ROC) curve.

Other reliability metrics can also be defined using conditional probabilities in

the same manner, however these two are the most commonly used and are the

focus of contemporary qualification methodologies.

2.2 Qualification Protocols

2.2.1 Inspection Qualification

The industries which use NDT are typically very conservative, that is they

are slow to implement change in the methods they use. This has been high-

lighted as a major barrier to the introduction of new inspection techniques

[1] and it is also a significant barrier to the introduction of new qualification

methodologies. There is therefore only a small number of guidance documents
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covering technique qualification across the various sectors, such as [2, 3, 4, 5, 6,

7, 8, 9], and anecdotal evidence suggests that many organisations have their own

internal qualification procedures. All of these methodologies constitute guid-

ance of some sort as to the type of outputs that are required for qualification;

however none provide clear, rigorous work instructions for performing a qualifi-

cation campaign. Presently, the majority of these methodologies focus solely on

the use of experimental trials to demonstrate capability with only a handful de-

scribing model assisted approaches. The primary reason for this is the inertia to

introducing new methodologies present in industry qualification methodologies

has resulted in them failing to catch up with the massive increase in desktop

computing capability of the past few decades. The Military Aircraft Structural

Airworthiness Advisory Group (MASAAG) Paper 119 [1] highlights the need

for a novel methodology that can allow techniques to be qualified quicker and

at a lower cost. Over the course of this EngD project, conversations with a

range of organisations about qualification procedures have also highlighted the

need for a methodology that is more specific than the guidance documents and

presents a clear series of steps that have to be performed in order to demonstrate

qualification. This is of particular concern to Small and Medium Enterprises

(SMEs) who do not have the resources to perform large scale experiment-based

qualification trials of their techniques. It would therefore be of significant bene-

fit to these organisations to have a general methodology that is widely accepted

that would allow them to demonstrate the capability of their techniques to end

users efficiently.

Within the aerospace industry, the most cited source for technique quali-

fication is the United States Department of Defence Military Handbook 1823A

Nondestructive Evaluation System Reliability Assessment [4] (henceforth re-

ferred to as 1823A for brevity). 1823A provides detailed methodologies for

the experimental trial qualification of both hit/miss inspections (a response is

recorded as either above or below a threshold) and inspections based on the

quantitative assessment of the response (sentencing is based on the magnitude

of the response). As a measure of the quality of an inspection, it uses the 90/95

metric which is the value of the parameter of interest which is detected in 90%

of measurements in which it is present (a PoD of 90%) with a 95% confidence

in that measurement. Crucially, for hit/miss data it recommends a minimum

of 60 specimens of defects with a range of values for the parameter of interest

and for quantitative response inspections at least 40 specimens with variations

of the defect. As well as this, to obtain an accurate measure of the false calls,
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when a positive indication is determined when no defect of the critical size is

present, three times these respective numbers of defect free specimens need to

be inspected. It should be noted that the analysis method used assumes that

these are independent measurements thus multiple inspections of the same de-

fect specimen cannot be used as part of the 60 or 40 defect specimens. This is

also true of the defect free specimens required for a quantification of the false

calls. Thus in total, for hit/miss data this requires a total of 240 specimens and

160 for quantitative response inspections. Whilst it is highlighted that these

need not all be distinct samples, a single specimen may contain multiple defects,

this is still a significant burden, especially as it is emphasised that these are the

minimum values that should be used. It also highlights the need for there to

be an assessment of all the variables that will affect an inspection and empha-

sises the need for experiments to be performed to assess their effects on the

inspection. This further increases the burden of qualification by significantly

expanding the number of specimens that need to be acquired and the number

of inspections to be performed. Discussions with organisations such as Rolls

Royce and Airbus reveal that in practice a much smaller number of specimens

are used, such as detecting 29 defects in 29 specimens with no false calls which

is the minimum number of specimens required to achieve the 90/95 metric. The

derivation of this number is not trivial and is the result of the specific method

used for calculating the PoD in 1823A. For a detailed derivation the reader is

directed to [10] and [11].

However, within 1823A there is a lack of continuity between this require-

ment and the description of the number of specimens. It is not made clear

how having multiple variables, such as material variations and pre-processing

of the specimens, affects the number of specimens required. A full understand-

ing of how these variables affect the inspection would require several times more

specimens than the figures quoted above, greatly increasing the cost of the pro-

cess. This is simply not feasible for many applications therefore it is somewhat

unsurprising that qualifications often focus on the effect of a single variable.

This document also has an appendix on performing Model Assisted Probability

of Detection studies, based on work by Thompson [12], however this is again

light on practical implementation details and is therefore very difficult to use

in anger. A flow diagram of the methodology is shown in Fig. 2.1. Within the

text of the methodology, statements such as “Select best available physics-based

models that are applicable for the conditions of interest” and “Calculate flaw

signal distribution simulations and noise signal distribution simulations” do not
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Figure 2.1: The flow diagram for the model assisted qualification method-
ology presented in the United States Department of Defence Military Hand-
book 1823A Nondestructive Evaluation System Reliability Assessment [4].

provide any insight into how these actions are performed and their various in-

tricacies. No further detail is provided on these actions and the reader is left

to their own devices to establish the details of implementing the methodology.

The reasoning for the lack of detail is that the methodology is “only a concep-

tual overview and the details are quite situation-specific”. However, as will be

discussed in this thesis, there are a wide range of features of a model assisted

qualification that are common to all inspections and therefore many of these

implementation details can be specified. This lack of detail is the most probable

reason why this methodology has not been widely adopted.

An alternative qualification document is the one provided by the nuclear

industry body, the European Network for Inspection and Qualification’s (ENIQ)

guidance on the topic [2]. This document focusses on two main principles: the

use of technical justification and the performance of practical trials. The for-

mer consists of collating sufficient evidence to demonstrate the capability of the
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technique for the desired application which can consist of technical arguments

and evidence from previous inspections using the same technique. The latter

is again the use of experimental trials to provide evidence of the capability of

the technique to the specific application. The document does provide a de-

tailed list of the various stages in a qualification campaign in an appendix to

the methodology (specifically Appendix 2) as well as a series of Recommended

Practice documents providing further advice on each stage. Within this frame-

work, numerical modelling fits into the technical justification and may be used

to provide evidence of the technical suitability of the technique. The ENIQ Rec-

ommended Practice 6: The Use of Modelling in Inspection Qualification [13]

details the challenges associated with using any numerical model, from in-house

code developed specifically for NDT applications to general modelling codes

developed commercially, such as finite element codes, which may be applied to

NDT scenarios. It suggests six ways of using numerical models as part of the

technical justification: “to predict signal amplitudes from postulated defects”,

“to quantify the influence of parameters related to the inspected component”,

“to determine the most difficult defects to detect from amongst those in the

defect specification”, “to interpolate between cases covered by experimental

data”, “to predict inspection capability for components of similar but slightly

different geometry” or “to provide physical insight that can be used further in

technical arguments”. Crucially, it again does not provide any insight into how

these may be performed and this lack of implementation details hinders its use

as a model assisted qualification methodology.

A significant challenge with any model assisted qualification methodolgy is

to provide validation of the model which essentially requires confirmation of the

underlying assumptions and that the model is being operated in its regime of

validity. The ENIQ framework addresses these concerns and provides sugges-

tions of how this can achieved, primarily through careful design of experiments

against which to compare the model. The focus of these trials on samples with

simple features which can be easily characterised however highlights one prob-

lem that hinders all qualification campaigns: that is finding samples that are

realistic examples of defects that may be present in service. A canonical ex-

ample of an artificial defect is electrical discharge machining (EDM) notches.

These are used to develop and validate inspections, but, they are not necessarily

a good representation of defects that will develop in service. Whilst methods

have been suggested to overcome this deficiency when discrepancies arise, such

as the work of Harding et al. [14] which uses a transfer function to account
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Figure 2.2: The flow diagram for the qualification methodology proposed
in MASAAG Paper 122 [5].

for the differential between real and artificial defects, it is a problem that has

to be considered in any qualification campaign. Modelling approaches have the

potential to overcome this burden as it is often easier to model a complex defect

than it is to physically reproduce one. Within the context of this project, this is

especially important as the MOD has a fleet of ageing aircraft that is no longer

in production. Therefore whilst it may be possible to obtain samples from these

aircraft, this would require downtime for that aircraft in order to inspect the

defect therefore reducing operational capability. Furthermore, knowledge of the

true nature of the defect, for example by performing an x-ray CT scan, would be

required to accurately characterise the defect before the NDT trial of the new

technique can be performed. Conversations early in the project with relevant

stakeholders has highlighted that this is a major issue and therefore a method

to qualify techniques which minimises the use of defect specimens is desired.
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A more general approach to qualification has been suggested by Smith

et al. in MASAAG Paper 122 [5]. This outlines a qualification methodology

which forms the basis of the protocol being drafted and demonstrated as part

of the wider Dstl program by TWI. It presents a clear workflow in the form of a

flow chart that someone performing qualification can follow, shown in Fig. 2.2,

highlighting the information required to perform each stage and the decision

process of continuing onto the next. This clarifies many of the stages and

whilst it provides some specifics as to what is required, it still does not provide

a complete description of the qualification process.

2.2.2 Personnel Certification

Within the aerospace industry however, as in most industries, there is

a greater emphasis on personnel certification rather than on specific technique

qualification. The oft-quoted source for such certification is European Standard

BS EN 4179:2009 Aerospace Series - Qualification and Approval of Personnel

For Non-Destructive Testing (EN 4179) [3]. It outlines the requirements for the

various Levels associated with operator certification as well as the duties each

Level is certified to perform. Due to this, it is essential to be able to account for

the limits of operators and how the certification process affects how inspections

are both designed and performed to allow accurate qualification of a technique.

The Personnel Certification Network [15] also provides guidance on the subject,

giving detailed requirements of the knowledge and practical experience required

to be considered certified. The great emphasis on work instructions, documents

detailing the specific process of how an inspection is performed which, in the-

ory, covers every variable, should minimise operator variability. However, this

can never be truly eliminated and so there will always be some variation which

must be accounted for. This does highlight a thorny issue that is yet to be

addressed by the NDT community: what is required to consider someone certi-

fied to perform inspection qualifications? Presently, this is the subject of debate

within the qualification community and a general consensus is yet to be reached.

The ENIQ guidance sheds light on this issue, having a specific Recommended

Practice on the topic [16]. This provides guidance on how to establish a body

capable of qualifying inspections, focussing on the range of skills required and

the need for independent adjudicators to provide impartial judgement on the

quality of an inspection. If the use of numerical models in qualification, as
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hoped, increases, the required knowledge of qualifiers will change and it is pos-

sible that many who are currently certified to perform qualifications may no

longer be capable of doing so. This therefore becomes a political as well a tech-

nical challenge and presents a significant hurdle to introducing regular model

assisted qualifications.

2.2.3 Summary

1823A, the ENIQ Framework and MASAAG 122 all demonstrate a lack of

detail of how to perform a qualification protocol in anger, making their appli-

cation to a given inspection difficult. Whilst it is not possible to create a single

protocol which covers all eventualities, these guidance documents do have many

features in common and it should therefore be possible to write a more gen-

eral protocol that provides more details on how to implement a qualification

campaign primarily using modelling.

The following sections present some examples of practical studies that have

been performed to highlight the practical challenges of performing qualification.

This is not intended to be an exhaustive search as many trials are performed

behind closed doors within companies and therefore the results are not always

publicly accessible.

2.3 Examples of Inspection Qualifications

2.3.1 Traditional Qualification Studies

There have been a large number of traditional, experiment based, probabil-

ity of detection (PoD) trials performed to qualify a technique for use in service.

The most common purpose of qualification is to demonstrate a technique’s suit-

ability to an inspection scenario, for examples see [17, 18, 19]. The goal of these

studies is to generate a PoD curve and from this determine the minimum de-

tectable defect size that can be reliably detected. Another application of PoD

trials has been to compare the capabilities of two potential techniques to deter-

mine which is most appropriate, as in [20]. In that study, ultrasonic inspections

were compared to radiographic inspections to determine which provided the

best performance. Explicit comparisons of different modalities are quite rare,
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especially in industrial scenarios, as the high cost of the resources necessary to

perform two very different inspections is rarely justifiable. A more common use

of technique comparison is to demonstrate the advantages of a new inspection

over an existing technique, such as in [21]. All of these studies used a signif-

icant number of physical specimens to obtain a useful result. However they

did demonstrate the capabilities of the various inspections for their respective

applications. This highlights both the suitability of using experimental trials

and the large associated cost in terms of both time to perform the trials and

the expense of obtaining the samples. They also only focus on the investigation

of a single parameter of interest whereas it is possible multiple parameters may

be of interest, such as the length and height of a crack, which would require

multiple sets of samples to be obtained and assessed to obtain a measure of the

reliability of the inspection.

There exists, therefore, a need for a qualification methodology that will

significantly reduce the effort and expense of performing long trials on physical

specimens. The use of numerical models is the prime candidate to achieve this.

2.3.2 Model Assisted Probability of Detection Studies

The idea of using models to replace a significant proportion of experimental

trials has existed for several decades and is commonly referred to as Model As-

sisted Probability of Detection (MAPOD). The idea is to simulate the variations

that would be present in an inspection using numerical models. These results

can then be assessed using the same methods as experimental trials to assess the

reliability of the inspection. This will reduce the significant burden of procuring

samples and performing inspections, thus reducing the cost and hopefully the

time required to qualify a technique. This idea has gained increased attention

over the past decade in particular with computing power now allowing models

that are representative of real inspections to be evaluated quickly.

Within the literature, there are two distinct modelling approaches which

are used, the transfer function approach (XFN) and the fully modelled approach

(FMA). The XFN approach utilises the notion of performing a smaller set of

empirical trials on a set of samples and fitting a parametric model to the data.

This will allow the data to be interpolated to any intermediary samples and, in

theory, extrapolated to specimens with properties that differ in a quantifiable

way. There are many examples of this approach being used, such as [22, 23,
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24]. The XFN method minimises the computation time however it is still sus-

ceptible to many problems associated with traditional PoD trials, in particular

the difference between manufactured and realistic samples. A key step in this

process is the establishment of the transfer functions which relate in service

defects with the manufactured defects and the differences between performing

an inspection in the laboratory and in the field. An example of this is that

performing an inspection on a runway in the Arctic at the end of a long shift

in freezing conditions is very different to performing the same inspection in the

comforts of an ideal laboratory. These transfer functions are by no means trivial

to establish and there is no consensus either on the form of these functions or on

how these should be established. This is demonstrated by Harding, Hugo and

Bowles [25]. who observed a very marked discrepancy between the responses ob-

tained from EDM notches and fatigue cracks. This discrepancy was attributed

at least partially to crack closure, and it is suggested a further transfer function

is required to account for this. It would require significant effort to accurately

map the transfer function for a given inspection due to the large variations be-

tween different defects in different inspections. Given this, and the number of

samples required to accurately establish the transfer function, it is a significant

burden to obtain a realistic result. Subsequent work further demonstrated the

differences between artificial defects and real defects, including fatigue cracks

[14]. The point is raised that it is essential to capture as many realistic features

as possible, such as surface finish and complex substructure, as these affect

both the defect response and how operators inspect the component, leading to

changes in the end result. Work by Demeyer and Jenson [22] provides further

evidence of this. Therefore whilst the XFN approach may reduce the number

of specimens required compared to a purely experimental trial, it still requires

a significant outlay to obtain sufficient results to build an accurate model.

The FMA approach utilises a full numerical model of the inspection, for

example using an analytic model or finite element model, and running simula-

tions of the inspections for different samples. This approach has become more

common in recent years and examples include [26, 27, 28, 29, 30]. The FMA

approach uses a physics-based model to simulate the inspection rather than

essentially performing the curve fitting that the XFN approach uses. This also

increases the opportunity for optimising the inspection as part of the qualifi-

cation process. Furthermore, as often the greatest cost of the FMA approach

is the development and validation of the model, should the inspection need to

be qualified for a similar scenario then a significant proportion of the modelling
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work can potentially be re-used, often requiring only a change in inputs rather

than the implementation of new modelling techniques. Carboni and Cantini

used a numerical model of ultrasonic inspections to validate a rotating ultra-

sonic probe used to inspect train axles [31]. The modelling was performed using

the numerical simulation tool CIVA [Extende, Massy, France] and with a sin-

gle source of variability, the probe position. The final result was an extremely

good match between the experimental PoD and numerical PoD, yielding en-

couraging results. This was however performed on a small sample of the axle

material with artificial defects. Further work on real samples with real defects

[32] yielded a significant difference between the simulated PoD and the experi-

mental PoD. This highlights the need for a broader modelling approach which

encompasses more of the variables present in performing an inspection in the

field. Studies have also been performed to model eddy current inspections [33,

34]. These demonstrate the suitability of the FMA approach to techniques other

than ultrasonics and in these studies very good agreement was found between

the experimental and calculated PoD curves. However, these again were simple

case studies and further work [35, 36], where variations that are likely to be

present in real inspections were accounted for, yielded a more significant dis-

crepancy between the experimental and numerical PoD curves. The PICASSO

project [37, 38], a large study using CIVA to model ultrasonic weld inspections,

accounted for more parameters and had greater success in accurately modelling

real inspections, demonstrating the viability of this method. However, this was

a study performed over a significant amount of time and thus, for FMA to be

used regularly within the MOD, the process needs to be greatly accelerated.

A combination of the FMA and XFN methods has been proposed for a

range of inspection techniques, see [39, 40] for examples. These use a com-

bination of experiments to generate expected responses and modelling to aid

the development of transfer functions which modify the experimental response.

This has the benefit of being able to produce realistic PoD curves based on

experimental data however it does not alleviate the need for realistic samples

and the time and expense of performing inspection trials. It does however allow

some parameters, such as random noise, to be modelled and the results com-

bined with numerical models. This process is often referred to as the modular

approach as, where possible, models are isolated if they are independent of one

another so that the results may be reused in future qualifications. This is a

method of reducing duplicated work over the course of a series of qualifications

and is therefore very desirable for practical applications.
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The majority of these studies, using both the XFN and FMA methods,

follow a statistical analysis methodology akin to that set out in 1823A [4],

which was developed to be used for experimental trials. Some of the studies,

notably the PICASSO project [37, 38] used Monte Carlo integration to calculate

the metrics. The choice of analysis method has an impact on how the model is

used, such as what combinations of parameter values have to be evaluated, and

the use of modelling presents opportunities for different ways of quantifying the

reliability. These analysis methods and their merits are discussed in detail in

the next chapter.

The modular approach is the most flexible of the methods discussed and

is therefore the approach that will be taken in this project. However, there are

some parameters, most notably human factors, that cannot be easily modelled

numerically but do have a significant impact on the outcome of the inspection

therefore these must be accounted for.

2.4 Human Factors in Inspections

One of the largest sources of variation in performing inspections is the effect

of having human operators perform them. This introduces a range of param-

eters, such as the position of a probe on the surface, the amount of couplant

used and device settings to name but a few, that may vary between inspectors

and even between inspections performed by the same operator. This leads to

an uncertainty in how the inspection will be performed which in turn affects

the outcome of the inspection. An accurate quantification and incorporation of

these factors into the qualification methodology will be necessary for an accurate

result.

The variations caused by human factors can be separated into two cate-

gories: those which have an effect which can be quantified as a variable in a

model and those which cannot. The former of these include parameters such as

the location of a probe in a manual inspection or the effect of incorrectly setting

up the equipment. The latter of these are parameters are often psychological,

such as the effect of the time of day on the result of sentencing. These can be

quantified through experimental trials and included as transfer function models

in the calculation of reliability metrics. This is an example of how a modular

approach will be very useful when multiple qualifications are performed: these
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effects are often independent of other processes in the inspection so can be

treated as independent and be reused in other studies.

There is a significant body of literature on the subject of human factors

within inspections, see [41, 42] for examples, and the majority of it focusses on

the best methods of mitigating their impact. There are a range of methods that

can be used to assess the effects of humans on inspections, such as observing

inspectors performing inspections [42], performing trials where inspectors assess

the same data [43] and performing round robin studies where the same speci-

mens are inspected by different organisations [44, 45, 46]. All of these yield a

transfer function that essentially shifts the PoD curve, reducing the reliability

of an inspection from its ideal case. This is calculated for a given value β of the

parameter of interest xc as

PoD(xc = β) = PoD0(xc = β)−∆(β), (2.3)

where PoD0(xc = β) is the untransformed PoD and ∆ is the transfer function

that quantifies the effect of the human factor. Given that the optimal method

of including human factors in reliability assessment would itself be sufficient

material for another thesis, in this work they will be accounted for through the

use of transfer functions where their effect cannot be quantified in a variable in a

numerical model. It should be noted that these parameters will have a reduced

impact in automated inspections however humans are always involved in setting

up automated inspections therefore they can never be completely ignored.

2.5 The Definition of Reliability

Many qualification methodologies focus on the need to demonstrate the

reliability of a technique. However, there is a lack of consensus of what consti-

tutes reliability. Given that a general approach to qualification will require this

definition or at least some quantifiable metric that can be used as a measure

of reliability, its definition merits further discussion. This section presents a re-

view of the definition of reliability given across a range of guidance documents

and qualification studies to highlight the differing opinions (or lack thereof)

currently in use.

Perhaps the simplest definition of reliability which is applicable to an in-

spection is given by the Oxford English Dictionary [47] as “the degree to which
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repeated measurements of the same subject under identical conditions yield

consistent results”. An ideal inspection would occur under ideal, identical con-

ditions every time it is performed however the large number of possible vari-

ations that may occur in an inspection mean a broader definition is required.

A survey of qualification documents shows that terms such as “sufficient reli-

ability” [6] or “The procedures must be reliable and repeatable” [7] are often

written as desired aims of an NDT trial without defining what these statements

mean. The following have also been used as quantitative definitions of reliabil-

ity: Probability of Detection (PoD, also known as the Sensitivity); Probability

of False Alarm (PFA, also known as the Specificity); Probability of Acceptance

(the probability of true negative); Probability of Rejection (the sum of the PoD

and PFA). Of these, the PoD is the most commonly used metric. Carvalho [20]

uses PoD as a measure of reliability and assumes that a high PoD constitutes

a high reliability. A direct link between the two is made, claiming that “a high

PoD and consequently increase in inspection reliability” however there is no

discussion or awareness of the implications of this not necessarily being a good

measure of reliability. Kurz et al. [19] consider the reliability of NDT methods

in general before implicitly making the connection between reliability and PoD.

They define the PoD as “the proportion of cracks that will be detected in the

total number of existing cracks in a component by an NDE technique when ap-

plied by qualified operators to a population of components in a defined working

environment”. They do highlight the need for a quantification of NDT reliabil-

ity, especially with the advent of damage tolerant design where the capabilities

of the NDT method are integral to the design process.

The Health and Safety Executive (HSE) has taken a sizeable interest in

this area and provide guidance on NDT for plant integrity management [8] as

well as how to perform NDT measurements on metal structures [6]. The former

document defines reliability as “the probability of detection and sizing accu-

racy”. This is again an ambiguous definition as it describes two independent

properties - the probability of detecting a defect and the accuracy of sizing that

defect - whilst making no reference as to how to combine these two measures.

It highlights that PoD or combining PoD with false calls in Receiver Opera-

tor Characteristic (ROC) curves can be used to measure a technique’s ability

to detect flaws. It discusses the importance of human factors and makes the

explicit link between variability of human operators (and thus decision mak-

ers) with the level of reliability of a technique. Again, however, it makes no

suggestion as to how to measure this in either a quantitative or qualitative
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manner. It also implicitly makes the link between defect characteristics, such

as size, orientation and position, and reliability, discussing how they can impact

the “effectiveness of inspection”. The latter document also fails to present a

definition of reliability, including in the terminology appendix. It does discuss

methods of describing reliability, through traditional PoD curves or ROC curves

although it makes no judgement as to which of these two is a better measure of

reliability or even if the two methods are a good measure of reliability.

The differences between PoD and reliability are highlighted by Rummel

[48]. It is suggested that reliability can be described by three independent

factors, namely reproducibility, repeatability and capability. These are, respec-

tively, the ability to produce the same result using the same technique on the

same specimen many times, the ability to use the same technique on different

samples to produce accurate results, and the ability to produce the required

discrimination level and/or probability of detection. This further highlights the

lack of a single definition of reliability in the context of NDT.

One of the most notable absences of a definition is in MIL-HDBK-1823A [4].

It does not provide a definition of reliability and only notes in its definition of re-

peatability and reproducibility that “these definitions are not universally agreed

on and the usage of “reliability”, “repeatability”, “reproducibility”, “variabil-

ity” and “capability” are often contradictory”. In the presented methodology,

the 90/95 metric is used as a quantitative metric of the reliability of a technique

and as this is an oft quoted authority on the subject, this measure has become

widespread as a definition, especially in the aerospace industry.

The nuclear industry is another area where the qualification of NDT meth-

ods is vital. A set of guidelines have been drawn up to qualify inspections [2]

however this document makes no specific reference to reliability of a method

and places an emphasis on technical justification for qualification, i.e “all ev-

idence on the effectiveness of the inspection, including previous experience of

its application, laboratory studies, mathematical modelling, physical reasoning

and so on”. Even in the expanded glossary there is no definition of reliability.

This is itself a rather vague and general description of the qualification process.

It is another good example of where reliability is merely glossed over despite it

being a key part of NDT inspections and qualifications.

It has been noted that the ENIQ qualification guidelines [2] are somewhat

vague and there have been attempts to quantify these guidelines utilising a

Bayesian approach [49, 50]. A framework is presented that allows a quantitative
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assessment of the reliability however, crucially, it does not attempt to present

numerical values for what can be deemed “reliable”. This was followed up

with another study [51] in which the framework was applied to ferritic welds.

In this study the qualification framework was shown to work well however a

number of issues were raised with the Bayesian approach. Firstly, the subjective

weighting of the various parameters involved in the Bayesian models was noted

and the difference in the weightings assigned by different qualification bodies

was highlighted. Secondly, the idea of having a single measure of reliability

for a technique is dismissed as being essentially impossible as there are too

many variables which can affect a measurement. In this regard it is suggested

that a solution to this would be to quote the reliability for different types of

defects (essentially assigning a reliability to sets of parameters). It is also noted

that there is no consideration of sizing errors in the methodology. Nonetheless,

there is no mention of what can be regarded as being “reliable” let alone any

quantification of a measure of “reliable”.

In general, there appears to be an acceptance to jump to the conclusion

that obtaining a PoD is a sufficient measure of reliability and specifically that

there is a correlation between a higher PoD and greater reliability. Some au-

thors define the reliability as the PoD for the method applied to any scenario

however others note that there can be extreme variations between samples and

thus PoD should be quoted for different sets of parameters. This evidently leads

to a natural variation in what parameters are considered and how these are dis-

cretised which makes it difficult to specify a general definition of PoD and thus

reliability using PoD. It is evident from the definitions above that there is no

single definition of reliability and that it is difficult to define one. Nonetheless,

it is necessary to define one based on the need for a comprehensive definition

for a qualification technique. The primary challenge in defining reliability is

the difficulty in defining the aims of an inspection. Often the need to have a

high probability of detecting defects is the main objective, such as in the case

of large, expensive equipment such as aircraft and satellites. In this scenario,

where missing a defect would be a critical mistake, the number of false positives

is significantly less important than missing a real defect therefore the key met-

ric becomes minimising the number of false negatives. Essentially, a high false

positive rate is tolerable so long as the false negative rate is minimised. In this

case, reliability will be characterised by minimising the false negative rate which

is implicitly achieved by maximising the PoD. However, in some scenarios, such

as high volume manufacturing of cheap components, a high false call rate may
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incur a much greater cost than missing some defects through a lower probabil-

ity of detection. In aerospace, a false positive can be an expensive mistake if it

causes an expensive component to be needlessly scrapped. Within the military

air domain, the cost is often downtime of an aircraft, or in some cases the entire

fleet of a certain aircraft, which results in reduced capability of the military

to perform its role. In this scenario, where it is important to minimise false

positives, it may be advantageous to increase the decision threshold to reduce

the likelihood of false positives however this comes at the cost of increasing the

number of smaller defects that will be missed, assigned as false negatives. In this

case, the reliability of the NDT technique will be its ability to minimise false

positives whilst detecting not necessarily the smallest cracks. This dovetails

with the notion of damage tolerance, the idea of designing components to be

able to withstand a certain amount of damage and still be operational. These

examples highlight the differences in requirements across inspections and the

need for different measures of reliability. Any qualification methodology must

therefore be able to generate assessments of reliability based upon the specific

requirements of the scenario and not just calculate the probability of detection.

Clearly a single reliability metric will be a function of the PoD and PFA however

the literature does not provide any guidance as to what this function should be.

This is discussed in more detail in Chapter 4.

A common theme in all of these definitions is that the inspection is treated

as a single process. In reality, the process of applying a NDT method to a sample

to determine if there is a defect with a parameter of interest of a magnitude

is a measurement consisting of at least two distinct processes. The first is the

ability of the NDT apparatus to detect if there is a defect within a sample,

i.e. its ability to obtain a response from the defect. This will include the

setting up of equipment and the act of performing a measurement. The second

process is the interpretation procedure whereby the response is quantified to

determine the size (and/or other characteristics) of the defect(s). This covers

both intrinsic interpretation, such as an automated system, or an extrinsic

interpretation, such as a human operator where the size of the crack has to be

determined before it can be decided whether it is above or below a decision

threshold. The accuracy of this sentencing method will have a significant effect

on the reliability of any inspection in which sentencing is based on sizing. This

links with the modular approach to qualification as, for example, changing the

sentencing method, such as employing a new automated decision system, will

lead to a change in the reliability of the system however this will have no effect
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on the collection of the data. Therefore it would be significantly more efficient

to quantify the reliability of only the independent processes that have changed

rather than the entire system.

2.6 Summary

This review has highlighted that there is a range of guidance across a range

of industries on how to qualify or demonstrate the reliability of a technique.

These are all rather vague on how these can be implemented in practice and

miss out many of the salient details required to do this. The focus of all of them,

in one way or another, is to quantify the effect of variations in how an inspection

is performed on the outcome of the inspection and thus infer how reliable the

inspection is through some quantified metric. This project aims to develop a

methodology that fills in many of these details so that it can readily be used

in anger. This thesis will outline this protocol and the writing of a document

appropriate for use in industry is being undertaken by TWI on behalf of Dstl,

into which this thesis will feed. This review has also demonstrated that there

is no single consistently used definition of reliability thus there is a need in

any proposed methodology to be able to accommodate any definition that is

required. The following chapter discusses the calculation of common reliability

metrics in detail and presents the outline of a general methodology to quantify

reliability.
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Chapter 3

A General Theory of

Qualification

The previous chapter discussed the features and limitations of contem-

porary qualification protocols. This chapter presents a general approach to

performing a qualification campaign. It also reviews methods of calculating

inspection metrics and presents a general formulation of calculating probabil-

ity of detection and probability of false alarm, discussing both the theory and

practical computational considerations.

3.1 A General Methodology for Assessing the

Reliability of an Inspection Primarily Us-

ing Numerical Models

The qualification methodologies discussed in the previous chapter all have

a large number of similarities. They all, with varying degrees of clarity and

brevity, instruct the user to attempt to quantify the variations that are inherent

in an inspection and to demonstrate that the technique can achieve a desired

reliability. These can all be distilled into a general process which describes

the stages of demonstrating the reliability of a technique. The following is the

outline of such a general methodology that can be applied to any inspection

modality.

The first requirement of a qualification is to determine the objectives of the

process, essentially determining what is to be demonstrated. The most common

requirement is to demonstrate that a minimum probability of detection will be
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achieved for a defect characteristic of a certain value, for example finding a

crack of length 5 mm in 90% of inspections. Another common requirement is

to demonstrate a false call rate below a desired level. The qualification process

however can also be used as an optimisation tool therefore the objective may

be to determine the optimal inspection configuration as well as demonstrating

a desired level of reliability.

Once the objective has been established, the parameters that vary in the

inspection, such as the defect parameters and the parameters that a human has

an influence over amongst others, need to be determined. These have an effect

on the choice of the numerical model as ideally it should be able to incorporate

the effect of changing each of these parameters. Of these parameters, those

that are better suited to having a transfer function model derived from either

experimental measurement, such as electrical noise, or a separate numerical

model should be partitioned. The parameters better suited to the transfer

function method are those whose effect is known to be independent (or a set of

parameters whose effect as a collective is independent) of the other parameters.

The relative cost, both time and resources, of incorporating these parameters

into an existing numerical model or performing the necessary experiments to

build a transfer function can be weighed to determine whether an experimental

or numerical model is the most efficient. Incorporating these models into the

calculation of the metrics is discussed in more detail later. Once these, and any

other, requirements on the model are determined, an appropriate numerical

model can be chosen. This should ideally already be experimentally validated

so that it is demonstrably an accurate representation of the inspection, however

further experimental validation may be required to satisfy the requirements

of the qualifying organisation or a qualification body. A common approach to

validation is to use the corner cases, that is the extreme values of the parameters,

and if these are shown to be valid then it is generally a reasonable assumption

that the model is valid across the entire parameter space.

How this model is used will depend upon the method that will be used to

calculate the inspection metrics. These are discussed in more detail in the next

section however they all involve generating some numerical data that represent

outcomes of the inspection. The model should be evaluated at the required

sample points to generate the requisite data. Once this has been completed,

these results, alongside any transfer function models created, are used to assess

the capability of the technique. Depending on the method of calculating the

inspections metrics used, the information generated may be sufficient to provide
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significant insight into how the parameters affect the inspection and thus can

be used for optimisation of the inspection. If this is used, the reliability of the

inspection may have to be reassessed and this process repeated until a suitable

inspection is defined.

This process is the outline of the methodology that is being written as part

of the wider Dstl project. Given that a major shortcoming of many contem-

porary qualification methodologies is a lack of specific implementation details,

this thesis goes into significant detail on many aspects of this process to provide

the finer details necessary to implement this process in anger. The hope is that

this will be sufficient, alongside the written protocol, to use this methodology

regularly to qualify techniques.

3.2 Contemporary Inspection Metric Calcula-

tions

The choice of method for calculating inspection metrics determines what

models must be evaluated, therefore these must be understood in order to de-

termine the optimal way of using models to demonstrate the reliability of the

technique. The calculation of these metrics requires the combination of infor-

mation about the possible outcomes of an inspection and the probabilities of

these responses occurring. There are two main types of data which can be used

to calculate metrics of an inspection: hit/miss data and response data. The

former uses information of simply whether a detection has been made, that is

whether the inspection has resulted in a positive or negative sentencing without

requiring any quantitative characterisation of the response. The latter uses a

quantified response of the inspection, such as the amplitude of an ultrasonic

signal, and knowledge of a threshold on this response. Both of these require

some knowledge, or assumptions, of probability of the variations in the outcome

or response of the inspection. The latter is more general and is to be focussed

on in this project. The reader is directed to [52] for a good description of the

former method.

There are three main methods that are used presently to calculate metrics

of inspection capability using response data: the â vs a method, the extension

to this known as the Multi-parameter PoD model and Monte Carlo methods.

Of these, the first method is the most commonly used with the second method
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seeing only limited application. The third method is more suited to model

assisted approaches and is rarely, if ever, used for experimental trials but has

seen some use for numerical studies. This section discusses these three methods

and their limitations.

3.2.1 â vs a

The â vs a method is presently the most common method used to calculate

metrics such as PoD and PFA. It is referenced as the method to use in a range

of qualification methodologies including the United States Department of De-

fence Military Handbook 1823A Nondestructive Evaluation System Reliability

Assessment [4] and the European Network for Inspection and Qualification’s

(ENIQ) guidance on the topic [2]. The following derivation is based on the

description of the method in [52]. It involves fitting a linear function to the

response of the inspection, â, as a function of the parameter of interest a, that

is

â = α + βa+ δ, (3.1)

where α and β are parameters that are estimated by performing a fit to the data

and δ is a noise term. The noise term δ is assumed to be a normal distribution

with zero mean and constant standard deviation σ for all values of a. The value

of σ can be empirically determined from experimental data. The determination

of α and β is typically performed using Maximum Likelihood Estimation (MLE).

The idea of MLE is to find the parameters of the function that maximise the

likelihood of the measurements being observed. For a linear function, using the

linear least squares method (strictly using vertical rather than perpendicular

offsets) with the assumption of constant normal variance is equivalent to MLE.

Linear least squares can be calculated by expressing the problem in a linear

matrix form as

â = AB, (3.2)

where A is the a n× 2 matrix of input variable values for the n measurements

performed with each ith row being [1, ai], and B = [α, β]T . B can be estimated

by finding the minimum value of the Euclidean 2-norm given by

min||â− AB||2. (3.3)

In practice, this process can be highly optimised and the reader should see

the LAPACK documentation for the DGELSD function [53] for more details.
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The definition of PoD for a given value of the parameter of interest a is the

probability that the response is greater than the response decision threshold,

âth, that is

P (â ≥ âth) = 1− Φ

(
âth − â
σ

)
, (3.4)

where Φ is the normal cumulative distribution function. Using the symmetry

of the distribution and substituting in Eqn. 3.1, the PoD for a given value of a

can be calculated as

PoD(a) = Φ

[
α + βa− âth

σ

]
. (3.5)

This process however makes the following assumptions:

1. There is constant variance throughout the parameter range.

2. The variance is normally distributed about the mean value.

3. The response â is linearly proportional to the defect characteristic a.

4. There are no saturated responses (high or low).

The first assumption is specific to the MLE method used to estimate the pa-

rameters α and β and can sometimes be mitigated through the use of suitable

transforms, such as taking logs [54]. However this may result in a change in the

variance of the response throughout the range of a and thus invalidate assump-

tions 2 and 3. If 2 and 3 are not valid in the first instance then a transform may

yield a data set that satisfies these assumptions however the resulting function

may no longer be linear. Assumption 4 can only be overcome by truncating the

data which will reduce the range of a over which the PoD is calculated, poten-

tially reducing the usefulness of the resutling PoD curve. Another limitation of

this process is that it can only calculate metrics for one parameter at a time

and cannot investigate the interactions between parameters. Given that these

assumptions are inherent to this method of calculating the PoD, if any of these

assumptions are not true in a given scenario then the analysis will result in

a misleading answer. These limitations are well documented and the relevant

appendix of the Military Handbook 1823A [4] carries the following warning:

“If any of these assumptions is false, or, if the model is a line and the data

describe a curve, then the subsequent analysis will be wrong. You may be able

to coerce the software into producing POD plots, but they will be wrong. This

is true of any analysis software (finite element codes for example) - If the input
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is flawed the output will be wrong. Input includes the assumptions on which

the analysis is based, not just the input data. Thus it is prudent practice - in

statistics and in engineering - to state all analysis assumptions explicitly so that

the customer can evaluate their relevance and veracity.”

The error in this calculation is due to the error in the linear fit and the

error in the calculation of σ. The error in the former arises from the error in

the estimation of the parameters a and b. For a derivation of these errors the

reader should see [55] and the salient result is that the errors in these quantities

scale as N−
1
2 for N independent measurements. The error in the latter εσ is

given by [56]

εσ
σ2

=

√
2

N − 1
, (3.6)

again the key point being that it scales as N−
1
2 . Therefore it becomes increas-

ingly costly to reduce the error in these predictions. Whilst it may be possible

to obtain a more precise result with an increased number of specimens, it will

only be accurate if the assumptions underpinning the method are valid. There-

fore results created using this method should not be taken at face value and

evidence of the satisfaction of the assumptions should be presented alongside

to provide confidence in the result.

3.2.2 Multi-Parameter PoD Model

A proposed extension of the â vs a approach to account for multiple in-

fluencing parameters is the Multi-Parameter PoD model [57]. This alleviates

this last limitation by casting the response as a function of multiple influencing

parameters, that is aMP = f(a1, a2, ..., an). In this case the response is now

written as a linear function of this parameter, that is

â = α + βaMP + δ, (3.7)

and the same analysis method is used as in the â vs a method. However this is

somewhat of an obvious step as the outcome of an inspection most often depends

on multiple parameters. In the â vs a method described above, the effect of

influencing parameters other than the parameter of interest is incorporated into

the noise term and careful design of experiments is necessary when selecting

specimens to account for these variations. If the inspection had only a single

influential parameter then the PoD curve would be a step function as the PoD
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would be zero when a is such that â(a) < âth and one when â(a) ≥ âth. This

perhaps explains why this method has not achieved widespread usage as its

only advantage over traditional â vs a is to reinforce the notion that the PoD

does depend on multiple influencing parameters. It is also noted that due to

the number of measurements required to obtain a good number of data points

to perform this analysis, it is better suited to numerical model based trials.

Similarly to the â vs a approach, it is still limited by the assumptions of MLE

and is therefore not always appropriate.

3.2.3 Monte Carlo Calculation

A different approach, which makes no assumptions as to the nature of the

probability distributions nor involves any form of curve fitting, is to use Monte

Carlo integration to directly calculate the metrics. Monte Carlo methods are

used in a wide range of fields beyond NDT, for examples of its application to

NDT reliability studies see [37, 38, 26]. The idea of Monte Carlo methods in

metric calculations is to sample the input values for the parameters of a model

from known probability density functions and then classify the response of the

model as either a pass or fail. In the case of PoD calculation, the classification

is it either being above or below the response decision threshold. This process

is repeated many times and the ratio of the number of responses obtained that

are above the threshold to the number of responses evaluated equals the PoD,

that is

PoD =
Number of responses ≥ T |defect present

Number of models evaluated|defect present
. (3.8)

The ratio of the responses below the threshold to the number of models evalu-

ated yields the probability of false negative (PFN), equivalent to 1-PoD. As the

number of model evaluations increases, the values of PoD and PFN converge to

their true values. The benefit of the Monte Carlo approach is that it makes no

assumptions as to the variance of the response, its linearity and can calculate

metrics for several parameters simultaneously. This method does have two main

disadvantages, that it can take a large number of model evaluations to deter-

mine the metrics and that changing any of the probability distribution functions

requires the whole process to be repeated. The error in the calculation scales

as N−
1
2 [58] for simple Monte Carlo integration schemes, that is it becomes in-

creasingly costly to reduce the error in the calculation as the number of model

evaluations increases. It is possible to improve this rate of convergence through

the use of quasi-random sequences such as Sobol sequences [59, 60] or Halton
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sequences [61]. The latter factor is the most significant hindrance as the mod-

els can potentially have a long evaluation time therefore incurring a significant

time cost to recalculate the metrics should the probability distributions change.

Ideally, the number of models that have to be evaluated should be minimised

and the probability distributions should be independent of the choice of model

evaluations so that they can be arbitrarily modified without having to perform

further model evaluations.

3.3 Beyond â vs a

The limitations of current qualification methods highlight the need for a

more general formulation of the calculation of inspection metrics and this section

describes such an approach. Consider an inspection with n parameters that may

vary, x1, x2, ..., xn. Define the parameter space of possible variations which may

occur in the inspection as the n dimensional unit hypercube

Ω = [0, 1]n (3.9)

where the values of all parameters have been scaled to the interval [0, 1]. This

step is important as different parameters can have scales that vary by several

orders of magnitude and when performing multi-dimensional interpolation and

sensitivity analysis this normalisation step ensures that each parameter has

equal importance. The response of an inspection at a coordinate x in Ω is

given by the function R(x). The probability of a coordinate x occurring when

an inspection is performed is given by the probability function P (x). The

determination of this function is discussed in more detail later.

Combining the information in R(x) and P (x) allows quantitative metrics

of the capability of an inspection to be derived. The definition of PoD and PFA

require two values to be specified to classify a response: a decision threshold

on the response, T , and a decision threshold α on a parameter of interest xc.

The former indicates when a detection has been made and the latter determines

whether the response is from a defect with a significant value of the parameter

of interest. These values will also be determined from the definition of the

inspection, for example T may be an amplitude threshold which determines

whether a component is passed or failed and α may be a physical defect size

above which a component is removed from service.
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The PoD for a defect with a given characteristic parameter xc equal to a

specific value β is the probability that the response of the inspection is greater

than the response decision threshold, T , given that a defect of that magnitude

is present, that is

PoD(xc = β) = p(R(Ω) ≥ T |xc = β). (3.10)

This can be calculated from analytic definitions of the response function R(x)

and the probability function P (x) as

PoD(xc = β) =

∫
ζ
P (x)dx∫

ω
P (x)dx

, (3.11)

where

ζ = Ω|(xc = β,R(Ω) ≥ T ), (3.12)

and

ω = Ω|(xc = β). (3.13)

The PoD can be computed by using a discrete formulation of Eqn. 3.11, effec-

tively performing numerical integration.

The PFA is the probability that the response of the inspection is greater

than the decision threshold given that the critical parameter is less than its

threshold α, p(R(Ω) ≥ T |xc < α). The PFA may be calculated as

PFA(xc < α) =

∫
κ
P (x)dx∫

ξ
P (x)dx

, (3.14)

In the most general sense, a false call is an indication in an inspection

which would cause the inspector to take an action which would otherwise not

be taken if the true nature of the defect is known. In this case, the definition

of a false call is

κ = Ω|(xc < α,R(Ω) ≥ T ), (3.15)

and

ξ = Ω|(xc < α). (3.16)

Some organisations categorise false calls into two categories. The definition

given by Eqn. 3.15 and 3.16 is designated as an overcall if a defect is present,

that is a detection of a defect is made however it is determined to have a greater
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magnitude than it has in reality. The other category is a false alarm in which

no defect of the type of interest is present, that is xc = 0, and in this case the

integral region is

κ = Ω|(xc = 0, R(Ω) ≥ T ), (3.17)

and

ξ = Ω|(xc = 0). (3.18)

In this work, the definition given by Eqn. 3.15 and 3.16 is used. These formula-

tions may also be extended to cover multiple conditional probabilities, such as

the probability that a crack has a certain length and height. This is achieved

by redefining the integral regions to cover this condition. This is a significant

advantage of this method over the â vs a method in that rather than just a

threshold on the response, any sentencing method which can be expressed as

a condition of the parameters and the response can be used for the integral

regions. Similarly, the response can be converted into binary hit/miss data or

some other quantified metric if a complex sentencing method is used and the

integrals can still be performed on the resulting data to evaluate the reliability

of the technique.

As these calculations are independent of the model evaluations, a single set

of response data may be used to generate multiple reliability assessments using

different metrics, a significant advantage over the â vs a method. Furthermore,

it is possible to change the probability distributions without having to perform

any further model evaluations whereas the Monte Carlo algorithm would have

to be performed again thus incurring a significant number of needless model

evaluations. The general method presented here is therefore a more efficient

method of calculating metrics if the response function can be accurately mapped

in a reasonable time, of at least the order of the time for Monte Carlo methods.

These calculations can also be computed directly using Monte Carlo methods

which would not require re-evaluation of models if the probability function is

changed, although further model evaluations may be required to obtain the

desired level of accuracy. The optimal way of mapping the response function is

addressed in the next chapter. The next section presents a comparison of these

methods for a simple example inspection.
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3.4 Definition of Example Response Functions

This section defines two analytic functions that are used throughout this

thesis as example response functions for the comparison of methods. Given the

desire for generality of the methods presented in this thesis, these functions

are not designed to be representative of the physical response function of a

particular inspection. However, they do possess properties which may arise.

The first is a purely additive function of the four parameters x0, x1, x2, x3

and is defined over the four dimension unit hypercube Ω = [0, 1]4. It is defined

as

R(Ω) = ax0 + bx1 + cx2 + dx3, (3.19)

where the parameters a, b, c and d are constant coefficients. This function is

linear in all of the four variables, it is monotonically increasing and the param-

eters are all independent, that is the response function can be expressed as a

sum of functions of single variables.

The second equation is a more complicated function of three parameters

x0, x1, x2 and is defined over the three dimension unit hypercube [0, 1]3. The

function is defined as

R(x) = 1 + (
3x0

2
)3 + x0x1 + 2

√
x1 + x2,

R(x) < 2.0 = 2.0,

R(x) > 5.5 = 5.5.

(3.20)

This function is not monotonically increasing, it has interaction between the

parameters and saturation of the response is present. This is chosen as some or

all of these features may be present in a real response function.

3.5 Comparison of Calculation Methods

The effect of using these different calculation methods can be demonstrated

using a simple numerical function. Consider the response function given by

Eqn. 3.20. A decision threshold on the response of 3.75 is used to distinguish

a detection. The parameter x0 is given a uniform distribution, x1 is given a

normal distribution with a mean of 0.3 and a standard deviation of 0.2, and x2

is given a normal distribution with a mean of 0.5 and a standard deviation of
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0.1+ x1

2
. The PoD is calculated as a function of the parameter x0, that is a = x0.

The empirical data required for applying the â vs a (in this case effectively R(x)

vs x0) method is generated by randomly sampling 31 points for 31 values of x0,

a total of 961 samples which is significantly greater than would be used in an

experimental PoD trial.

Figure 3.1(a) shows that this a non-linear function with non-constant vari-

ance across the range of x0. This function was chosen specifically to not satisfy

the assumptions of the â vs a method, as it is non-linear, has non constant

variance that is not normally distributed and has saturation. Therefore this

does not satisfy the assumptions of the â vs a method. The cubic dependence

of the response on x0 in Eqn. 3.20 would suggest that a natural logarithm

would be an appropriate transform therefore this has been applied to attempt

to linearise the function. The result of this is shown in Fig. 3.1(b) and is still

not a linear function. A more robust method would be to derive the linearising

transform explicitly from Eqn. 3.20 however in practice this function is very

unlikely to be known making this process nigh on impossible. The result of

this transformation still does not satisfy the assumptions of the â vs a method

although for illustrative purposes the PoD is calculated for both data sets. The

raw data appears to result in a better linear fit, validated by having an R2 value

of 0.79 compared to 0.53 for the transformed data. The transformation also has

a significant effect on the variance of the function as the transformed data has

a much larger range of variances across x0 compared to the original data. The

saturation of data is also an important factor and this has an effect on both the

linear fit and on the calculation of the PoD as it assumes a continuous error

distribution which saturation invalidates. An average standard deviation can

be calculated across the range of x0 and is used as the σ required to calculate

the PoD using Eqn. 3.5.

The curve for the general method is calculated using full knowledge of

the response function. This allows this curve to be calculated using direct

numerical integration, specifically using the Fortran QUADPACK library [62]

which is wrapped in SciPy. The reader is directed to the documentation in

[62] for more details of integration methods. These methods are susceptible to

rounding error in the calculation however as a relative fraction of the value of

the integral they are of at worst 10−10. Given this accuracy, no error bars are

plotted on these curves. In practice, this method requires accurate mapping

of the response function and the error in the calculation is dependent on the

accuracy of the mapping. Methods of achieving this are discussed in detail in
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Figure 3.1: The response of the function plotted (a) linearly and (b) with
a log-log transform applied.
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the next Chapter.

The Monte Carlo method should give the same result as the general method

and this is tested by taking the same number of randomly sampled points, 31,

for each value of x0. This process was repeated twenty times and an average

error in the calculation was determined, shown by error bars on the PoD curve.

The PoD curves for each of the three methods are shown in Fig. 3.2. This shows

that the raw and transformed data result in very different PoD curves which

differ significantly from the result of the Monte Carlo and general calculation

method. As expected, the Monte Carlo and the general method results match to

the error of the Monte Carlo method. The significant overestimation of the PoD

in the middle of the x0 range highlights the shortcomings of the â vs a method

as it may yield an inaccurate representation of the capability of a technique, in

this case suggesting the technique is more capable than it actually is. The effect

of calculating the PoD using a smaller number of samples is demonstrated in

Fig. 3.3 in which only 3 values at each value of a0 were used and the error in the

prediction calculated by repeating the calculation of the PoD curves 10 times.

This shows that the â vs a requires fewer samples to obtain a more precise result

than the Monte Carlo method however it has no effect on the accuracy if the

underlying assumptions are not satisfied. The greater error of the Monte Carlo

method for this example is not surprising given that Monte Carlo methods are

known to be inefficient for low dimensionality integrals however it does still yield

a more accurate result than the â vs a method. It is also interesting to observe

that the error is largest for both methods in the mid range of x0 and the Monte

Carlo method has a much lower error at small and large values of x0 than the â

vs a calculation. In the Monte Carlo method, as the sampled responses at these

values of x0 will always be below or above the response threshold respectively,

little if any error is introduced and a response will not be incorrectly classed as

moving over the threshold. In contrast, the error in the linear fit of the â vs a

calculation causes a shift in the mean value of the response at a given value of

x0 and hence introduces a change in the PoD at that value. In the mid range of

x0, the converse is true and the â vs a method provides a more precise, although

still inaccurate, measure of the PoD. The small number of samples used in the

Monte Carlo method does not provide an accurate representation of the PoD.

Effectively, the use of 3 samples allows only four possible values of the PoD at

any given value of x0: [0.0, 0.33, 0.67, 1.0]. This results in the large error bars

which are the effect of averaging over this large range of values.

The large discrepancy in shape demonstrates that it is evidently important
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Figure 3.2: The PoD curves calculated using different analysis methods of
the same data, using 31 points at each value of x0.

that the assumptions of the â vs a method are satisfied otherwise a very different

result may be obtained. In this case, whilst it is possible to analytically obtain

a linear relationship between the response and defect size, clearly the variance

of the response is neither constant nor normally distributed. The presence of

saturation in the response is also having an effect on the calculation. In real

scenarios, it is unlikely that all of these assumptions will be met therefore the

results obtained are likely to be misleading. This is a strong motivation for the

need for a more general method that moves away from these assumptions.

3.6 Incorporation of Transfer Function Models

The primary issue with the general approach is that as the number of pa-

rameters increases, the RAM required increases to a power law and the available

memory will be quickly exhausted. A typical desktop computer has 16 GB of

RAM and a 9 parameter response space with 10 values each would require 8

GB of RAM to store as 64 bit double precision floats thus it is not practical

to store large parameter spaces. It is therefore desirable to split the parameter

space into smaller independent spaces which can be mapped separately. This
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Figure 3.3: The PoD curves calculated using different analysis methods of
the same data, using 3 points at each value of x0.

would reduce the effective size of the parameter space with no loss of accuracy if

the parameters are independent. There are also some independent parameters,

such as ultrasonic couplant thickness or electrical noise, that are better suited

to generating a model from experimental data rather than using a numerical

model. In the literature this is referred to as the transfer function approach.

Therefore a method is needed which allows these adjoint spaces and the transfer

function models to be used in conjunction with numerically modelled data. An

alternative method is to directly incorporate these parameters into calculation

of metrics such as PoD and PFA as independent parameters or sets thereof.

This is suitable for parameters which are known to be independent of all other

parameters, such as electrical noise and coupling thickness. Consider two pa-

rameter spaces Ω and Ψ which have response functions, RΩ(Ω) and RΨ(Ψ), and

probability functions PΩ(Ω) and PΨ(Ψ), respectively. They are independent if

R(Ω,Ψ) = f(RΩ(Ω), RΨ(Ψ)) and P (Ω,Ψ) = PΩ(Ω)PΨ(Ψ). These parameter

spaces can then be combined by calculating a modified version of Eqn. 3.11 as

PoD(xc = α) =

∫
ζ
(PΩ(x)

∫
∆
PΨ(y)dy)dx∫

ω
PΩ(x)dx

, (3.21)
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where x and y are dummy variables for the parameter spaces Ω and Ψ respec-

tively. The choice of the integral region is dependent upon whether the response

of the two spaces is additive or multiplicative. In the former case, the region is

defined as

∆ = Ψ|(RΩ(Ω) +RΨ(Ψ) ≥ T ), (3.22)

whereas in the latter the region is defined as

∆ = Ψ|(RΩ(Ω)RΨ(Ψ) ≥ T ). (3.23)

Multiple independent parameters can be included in this method by combining

individual functions into a single function and applying the formulas above.

This method provides a significantly more computationally efficient method of

including these parameters.

For N numerically modelled parameters and M independent parameters,

this has the effect of reducing the memory required for including these param-

eters from 2NM to 2(N + M). The computational efficiency can be further

improved by pre-computing a cumulative distribution function of the indepen-

dent parameters which uses a minimal amount of memory. This approach can

also be applied to the PFP and other metrics using a similar formulation. Dis-

crete formulations of these metrics can be formed which allow these metrics to

be calculated efficiently computationally.

3.7 Definition of Probability Function

The â vs a makes implicit assumptions about the probability of varia-

tions occurring, specifically that they are normally distributed with constant

variance. The Monte Carlo method and the general method both, however,

require the probability distributions to be explicitly defined. This can either

be measured experimentally, although would require very costly observation

of operators performing trials, or estimated from engineering judgement. For

example, structural mechanics may predict a distribution of crack rotations

whilst observing operators performing the inspection will give the probability

distributions of the human controlled factors. In general, it is assumed that re-

sources expended on training operators are effective and that they are capable

of performing a better inspection than just arbitrarily guessing, therefore the

probability function will be non-uniform and peaked around the optimal set of
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inspection parameters. The worst case would be that there is no knowledge

of likelihood of variations occurring in which case uniform distributions can be

used for all parameters. Limits also need to be established for the parameters

which will be derived from considering how an inspection is performed. For

example, if the position of a probe is a parameter of an inspection, then it will

be limited to, most conservatively, the probe being on the specimen. In prac-

tice, this may be further limited to a smaller area in a region of interest on a

specimen where defects are known to potentially occur and where the inspector

has been trained and instructed to look, such as around a prominent feature.

If each of the n parameters are independent, P (x) is by definition

P (x) =
n∏
i=1

P (xi), (3.24)

where P (xi) is the probability of variations occurring in the ith parameter. It

is plausible that variations in parameters may not be independent and that

probability functions based on the interactions will need to be established. An

example of this is the optimisation of the position of a probe in two axes. In

order to find the optimal position it may be required to optimise the positions

of both simultaneously. In this case the probability function will not be the

product of two probability functions, P (Ω) = P (x1)P (x2), but rather a complex

function of the two variables P (Ω) = P (x1, x2). In order to calculate metrics of

inspection capability such as PoD numerically, the probability function needs

to be discretised into probability voxels Pv to perform numerical integration.

Each Pv gives the probability that the inspection will occur in that voxel in the

parameter space, i.e. it is the integral of the probability density function over

the voxel. In the case that the functions are independent, the voxel value Pv

can be calculated exactly over the range as

Pv =
n∏
i=1

Ci(xi,v +
∆i

2
)− Ci(xi,v −

∆i

2
), (3.25)

where Ci is the cumulative distribution function for the parameter xi, xi,v is the

value at the centre of the voxel and ∆i is the voxel width. This method results

in exact calculation of the discretised probabilities throughout Ω. In the case

where the probability function is a more complex function, a probability voxel

can be calculated as

Pv =

∫ xc+
∆x
2

xc−∆x
2

P (xv)dx (3.26)
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This can be approximated numerically as

Pv ≈ P (xv)
n∏
i=1

∆xi. (3.27)

Attempts have been made to define these probability distributions in other

projects, for example the PICASSO program [37]. Two examples of estimating

distributions are shown in Fig. 3.4 and Fig. 3.5. The former shows the centre

frequency and bandwidth of a sample of ultrasonic probes provided to the cur-

rent author by Olympus, advertised as 5 MHz probes. It is evident that there is

a range of bandwidths and centre frequencies, none of which are at 5 MHz. This

information can be used to generate a probability distribution of the frequency

spectrum of ultrasonic probes. The latter figure is an example of measuring a

probability distribution experimentally. The amplitude of the reflection from a

fixed back wall of a block of aluminium was measured repeatedly by the current

author, controlled such that the only variation between measurements is the ap-

plication of coupling. This was attempted to be applied consistently however,

as Fig. 3.5 demonstrates, a large variation in the amplitude was observed. This

also demonstrates the importance of human factors in inspections and the need

to account for the variations they cause in assessments of inspection capability.

The worst case scenario is that all parameters are equally likely which corre-

sponds to the operator randomly guessing the values of parameters over which

they have control, such as the position of the probe. Experience from trials

and engineering judgement should allow this to be estimated more accurately.

As this distribution may change as more knowledge is gained or training has a

greater effect, it is beneficial to be able to alter these probability distributions

without having to re-evaluate models therefore the general approach discussed

previously is particularly suited to this. It is possible that these probability

distributions will change over the course of a qualification campaign based on

improved knowledge or optimisation of the inspection. This highlights one ad-

vantage of the general method discussed previously, that the changing of the

probability distributions does not require any further model evaluations.
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Figure 3.4: The properties of a set of ultrasonic transducers that are sold
nominally as 5 MHz probes. The centre frequency of the probe is the fre-
quency that is at the centre of the bandwidth range, shown by the blue lines,
which is defined as the frequencies above and below the peak frequency that
the amplitude of the output of the transducer falls to 6 dB below the peak

frequency.



3.7. Definition of Probability Function 45

Figure 3.5: The amplitude of the ssecond and third reflections from the
back wall of an aluminium block, normalised to the amplitude of the first
reflection, generated using an inspection performed nominally identically.
The change in the thickness of the applied coupling causes the significant

variation in the measured amplitude.
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3.8 Summary

This chapter has discussed methods of calculating quantitative metrics of

an inspection through different methods and presented a generalised way of cal-

culating metrics such as PoD and PFA amongst others, making no assumptions

as to the nature of the response or probability distributions. This is a signifi-

cant advantage over current methods and the decoupling of the response of the

inspection from the probability of variations occurring allows the latter to be

changed without having to re-evaluate any models. It is therefore trivial to gen-

erate significant information about the capability of a technique by accurately

establishing the response function and probability function as well as gaining

insight into how to optimise the technique. However, the response function

must be established accurately in a reasonable time. Methods of achieving this

using numerical models whilst minimising the number of model evaluations is

discussed in the next chapter.
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Chapter 4

Mapping the Response Function

A key part of assessing the capability of a technique is to establish all

possible outcomes of the inspection throughout the parameter space Ω, mapping

the response function R(Ω). As the number of parameters considered increases,

the volume of Ω scales to a power law, therefore it quickly becomes impractical

to evaluate R(x) at every x in Ω. This is especially true for models of inspections

which may take a significant amount of time to run. Thus a method is needed

which allows R(Ω) to be mapped using the smallest number of model evaluations

to minimise the total qualification time. As the response is typically a quantified

metric, such as an amplitude, a phase or an area on an image, it is possible

to sub-sample Ω and approximate R(Ω) to a high degree of accuracy using

numerical interpolation. This process can be applied to any inspection for which

there is a model. It is also possible to apply this methodology to an experimental

qualification campaign if the samples and conditions of the inspection can be

accurately controlled although this may become a very expensive exercise.

This chapter presents methods which can map R(Ω) through sampling and

interpolation using a small number of model evaluations. This methodology

assumes that the model has been appropriately validated for the inspection

and validation is discussed in more detail in later chapters. In practice, it is

possible that not all parameters have a significant effect on the outcome of the

inspection. If it were possible to ignore some parameters, the dimensionality of

the parameter space can be reduced and thus the number of model evaluations

reduced. This is possible through the use of quantitative sensitivity analysis

and is discussed in this chapter.



48 Chapter 4. Mapping the Response Function

4.1 Sampling and Interpolation

The process of sampling and interpolating over a parameter space to build

an approximation of a function is a common challenge across a broad spectrum

of fields and is often referred to as surrogate modelling. The goal is to use a small

number of model evaluations to build a numerical surrogate model, typically

some form of analytic or numerical interpolating function. Many numerical

models, with the exception of Monte Carlo based models that are used for

example in models of radiographic inspections, are deterministic, that is running

a model multiple times with the same inputs will result in the same output to

within numerical error. Both finite element methods and ray tracing algorithms

fall into this category. This has the advantage of not having to evaluate a model

multiple times for a given coordinate in Ω, thus reducing the number of model

evaluations required. The following work assumes that a deterministic model is

used. If a Monte Carlo-based model or another model with some variance in its

outcome is being used, the following methodology may be applied if the degree

of variance in the outcome of repeated model evaluations is small, that is a single

model evaluation is an accurate representation of the true result. If this is not

true then an additional adjoint parameter space which quantifies the variance

of the response throughout Ω will be required. This will result in a greatly

increased qualification time and direct Monte Carlo integrals of the inspection

capability metrics will likely be a more efficient method of quantifying reliability

metrics.

The general outline of the sampling and interpolation process is as follows.

An initial set of samples is chosen, S0 ⊂ Ω, and the response of the model

is evaluated at these points. A predictor is built from this data set and its

quality is tested by calculating a predictive error. Methods of determining the

predictive error are discussed in the following section. A subsequent set of

samples, S1 ⊂ Ω, is chosen such that there is no overlap between the sample

sets, that is S0 ∩ S1 = 0. The model is evaluated at S1 and the predictor is

rebuilt using the combined set ST = S0 + S1. If the error of the predictor is

not below the desired threshold, another set of samples S2 ⊂ Ω is chosen, again

such that ST ∩ S2 = 0, the models evaluated at these points and the predictor

built using the new total set ST = ST + S2. This process is repeated n times

until the use of sample set Sn results in an error metric that is below the desired

threshold.
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Three questions therefore arise: what is an appropriate method to deter-

mine S0 through Sn, what choice of interpolation method can can yield a good

prediction of R(Ω) and what method can be used as a test of the predictive error.

For generality, it is assumed that there is no prior knowledge of any features of

R(Ω) and that R(Ω) is non-linear. It is not strictly assumed that the response

function is continuous over Ω, only that the response function is continuous on

the length scale of the interpolation method such that the interpolation is valid.

4.1.1 Testing Interpolation Quality

A key stage in this process is how to determine if the predictor is accurate.

There are a broad range of methods to do this however they all involve testing

the predictor at a set of sampled points which are not used in the construction

of the predictor. The primary reason for the independence of the sets is that

often numerical predictors, such as linear interpolators, guarantee that the in-

terpolation is exactly the sampled value at the sampled coordinates therefore

the error would be zero always.

One possibility is the independent error set method. This generates a set of

samples SE that is distributed throughout Ω such that it is independent of all the

sample points used for building the predictor, that is ST ∩ SE = 0. The benefit

of this method is that the interpolator will be tested throughout Ω and that the

number of error points and their location is determined independently of the

choice of samples to build the predictor. The disadvantage of this method is

that effort is effectively wasted on model evaluations which do not contribute to

the building of the predictor. It is possible, although unlikely, that the number

of model evaluations required to build a good predictor is less than the number

of points in the error set. In this case, more than 50% of the computational

effort will have been expended gaining information which will not be used which

is therefore inefficient. Methods of choosing SE are discussed in the following

section in more detail as the same issues are faced in choosing this set and

choosing the sets S0 through Sn.

An alternative method is to use Generalised Cross Validation (GCV) [63].

The idea of this method is to remove a subset of the sampled points, build

a predictor based on the reduced set and test it at the removed subset. If a

predictor is of a good quality then the removal of some points from the predictor

should not degrade it significantly. The question then arises of what is the best
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subset to remove which involves partitioning the sample set in some manner.

This can be done in either a systematic or random manner with different sizes

of sample sets however these will always be susceptible to the choice of error

subset and which points end up in the building of the predictor. The impact

of this choice can be mitigated to some extent by repeating the process with

different subsets such that all points are in the predictor at least once, so called

exhaustive cross validation. This will still be sensitive to the the choice of error

sets therefore the logical extreme of this process is to apply this to every possible

subset of size 1 to N−1 for N sampled points. The number of possible subsets,

ns, is given by

ns =
N−1∑
k=1

N !

k!(N − k)!
, (4.1)

where k is the number of points in the subset. This will quickly become very

large as N increases, for example 100 sampled points has 1.27 × 1030 possible

sample sets, and is therefore not a feasible solution. The impact of degrading

the predictor through removing sampled points whilst not generating an exces-

sive number of subsets can be minimised by using the Leave-One-Out Cross

Validation (LOOCV) [64] method. In this process, each sampled point is in

turn removed from the building of the predictor and the subsequent predictor

is then tested at the omitted point. This avoids the inefficiency of the indepen-

dent error set method in which effort is wasted evaluating points that are not

used in building the predictor. However this method is still susceptible to the

choice of error set which is implicitly determined by the choice of the sample

sets S0 through Sn. A potential disadvantage of this method is that for N

sample points, the predictor has to be constructed N times. Some complex pre-

diction algorithms require an appreciable time to build therefore this has been

found in practice to become a prohibitively expensive method as N increases.

As the number of sample points required to accurately map R(Ω) is evidently

not known prior to the mapping, the independent error set method is used in

this work as this provides a fixed cost of evaluating the quality of the predictor

rather than GCV which can potentially become prohibitively time consuming.

Whichever method of choosing the error set is used, a quantitative error

metric is required to evaluate the quality of the predictor. The most com-

mon metrics used for testing the quality of model predictors are the root mean
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squared error (RMSE) and the mean absolute error (MAE). The former is de-

fined as

RMSE =

√√√√ 1

N

N∑
i=1

(R(xi)−R′(xi))2, (4.2)

for N points at which the error is evaluated, R′(x) is the predicted value at the

coordinates x and R(x) is the evaluated response at the coordinate. This gives

a greater weight to errors with larger variance. The MAE is defined as

MAE =
1

N

N∑
i=1

|R(xi)−R′(xi)|, (4.3)

which gives equal weight to all magnitudes of error and is used in this work.

4.1.2 Latin Hypercube Sampling

Given that there is no prior knowledge of any features of R(Ω), it is rea-

sonable to distribute the points in SE, S0, ..., Sn throughout Ω. This can be

achieved in a number of ways, such as using a regular grid or random sampling.

An alternative method is to use Latin Hypercube Designs (LHDs, also known

as Latin Hypercube Sampling) [65, 66]. These are defined as each value of each

parameter being sampled once and only once. This has the benefit of testing

many values of each parameter and, with appropriate design, providing a set of

samples that are well distributed throughout Ω. The definition of a sample set

being well distributed is subject to debate, for a discussion see [67], however in

this work the optimality criterion proposed by Jin, the φp criterion, [67] is to

be minimised, defined as

φp =

[
N−1∑
i=1

N∑
j=i+1

d−pij

] 1
p

(4.4)

where N is the number of points in the design, dij is the Euclidean distance

between points i and j and p is a chosen number. The best value for p is

itself an area of debate. In the limit p → 1, the total distance between all

points will be maximised whereas in the limit p → ∞ the shortest distance

between any two points will be maximised. Therefore a trade-off between these

two cases is needed and following the work of Jin, p = 50 is used. Given this

optimality criterion, there are a range of methods which can be used to generate

the design. All designs consist of N points in each of nv variables and are built
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in the space [0, N − 1]nv before scaling to the values of the input parameters.

This allows the same design to be reused if the values of one or more parameters

are changed and avoids the issue of disparate scales of variables which will affect

the calculation of distance within the design. It is also important to note that

for the purposes of this project it is not necessary to find the globally optimal

LHD, only one that is highly optimal. Therefore methods which are capable of

finding a design that achieves this rather than definitively globally optimal are

appropriate.

The simplest method of generating a LHD is to generate nv vectors of

random ordering of the vector [0, 1, ..., N − 2, N − 1]. A simple optimisation

method is to repeat this process a number of times and choose the design that

has the lowest φp value. An alternative optimisation method is to perform pair-

wise column-wise switching in which a pair of values in two vectors is chosen

and swapped. The φp criterion is then calculated for this new design and the

process is repeated either a given number of times or until a desired optimality

is reached. Whilst this may result in a highly optimal design, it is also likely to

result in a design that is far from optimal therefore a method that more reliably

results in a highly optimal LHD is required.

There are a wide range of optimisation algorithms that can be applied to

this problem however given that the input parameters are discrete, the problem

is better suited to stochastic methods rather than any that involve gradient

descent, such as Newton-Raphson iteration [68]. Within stochastic methods,

there are a wide range of techniques such as simulated annealing [69] and genetic

algorithms [70]. A method that has been demonstrated to work well for LHDs

is a modification of simulated annealing, the Enhanced Stochastic Evolution

(ESE) algorithm [67]. The algorithm is outlined here however the reader is

directed to [67] for a more detailed discussion.

Enhanced Stochastic Evolution is based on the idea of jumping around the

design space to find a more optimal design and reducing the size of the jumps to

move towards a local minimum which is ideally the global minimum. The size

of the jumps is determined by a single scalar parameter, the temperature of the

simulation as in simulated annealing, and as the optimisation cools the size of

the jumps decreases. The key difference between ESE and simulated annealing

is that ESE has a temperature curve which rapidly decreases the temperature,

thus rapidly converging on a locally optimal design, before rapidly increasing

the temperature again, thus looking globally for a more optimal design. This
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process is repeated several times until some termination conditions are met.

Whilst this does not necessarily produce the globally optimal design, it does

rapidly produce a highly optimal design and can incorporate information from

previous designs and results.

An alternative approach to generating optimal designs efficiently is the

method of Viana et al. [71], the Translational Propagation algorithm. This ap-

proach uses an initial seed design which is propagated to generate the complete

design. The use of different initial seeds results in different final designs whose

optimality can be evaluated using the φp criterion and the best design chosen.

The process of propagating a seed is demonstrated in Fig. 4.1 for a two param-

eter LHD. The primary benefit of this algorithm is that it is significantly faster

than the ESE algorithm as it involves only vector addition and significantly

fewer optimality evaluations which are computationally expensive.

These methods can be compared by generating LHDs for a range of sizes

and dimensions to compare the optimality value. This is demonstrated for a

LHD of three parameters with a number of points varying from 11 to 111. The

random variation in the methods is accounted for by taking the average of 21

designs at each size and calculating the standard deviation of the optimality.

The optimality criterion used is the φp criterion as in Eqn. 4.4. The results of

this are shown in Fig. 4.2. This shows that the the ESE and TPLHD methods

consistently generate more optimal designs than the random method.

4.1.3 Choice of Error Set Size

In the case where an independent error set is used to calculate the predictor

error, the question remains of how many points should be used for the error

set. The calculation of the average error throughout Ω is equivalent to the

numerical integration of the error function. Each point in the independent

error set is an approximation of the error in its local vicinity. Therefore an

increase in the number of points in the error set and thus its density reduces

the volume of the voxel around each error point and increases the accuracy of

the approximation. For a smooth function, the maximum deviation in the error

is likely to be at the furthest distance from any error point, as this provides

the weakest approximation of the error value. Thus, the maximum distance of

any point in Ω from any point in the independent error set can be used as a

characterisation of the quality of the independent error set. The addition of
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Figure 4.1: The development of a 18 point Latin Hypercube Design from
an initial 2 point seed design. (a) The initial 2 point seed is scaled to an
appropraite block size. (b) The block is propagated through the first dimen-
sion. (c) The result of (b) is used as the seed for the propagation in the
second dimension. (d) In the case of generating a smaller design, a larger
design may be reduced by removing both the points and the levels associated

with those points.
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Figure 4.2: A comparison of methods for generating Latin Hypercube de-
signs of 3 parameters (top) and 5 parameters (bottom) for a range of number
of design points by calculating the optimality of the design. Three methods
were used for generating designs: random generation, the translational prop-
agation algorithm (TPLHD) and the enhanced stochastic evolution algorithm

(ESE).
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more points will reduce the maximum distance any point in Ω is from any point

in the independent error set. This process however has diminishing returns

and therefore there is a number of error points above which the computational

cost of adding in more points outweighs the decrease in the maximum distance.

This process can be investigated numerically using Voronoi diagrams [72] which

determines the volume around a sample point in which all points in that volume

are closer to that sample point than any other. An example of this for a two

parameter space with 20 points is shown in Fig. 4.3. The maximum distance

between any sampled point and its Voronoi nodes gives the maximum distance

between any point in the parameter space and any sampled point. This process

naturally extends to higher dimensions so can be used for any dimensionality

and size of design. This method could also be used as an alternative to the φp

method discussed previously as a metric of LHD quality however given that it

requires several orders of magnitude of time greater to calculate, it is less suited

to being used as a quality metric in an optimisation process.

The Voronoi diagram however must be constrained on the edges of the

volume for this process to work. The diagram will be constrained if the corners

of the volume are included as sample points but this is not possible with LHDs

as the definition of each value of each parameter being sampled once and only

once precludes this possibility. This is shown in Fig. 4.3 (top) in which it is

clear that the boundary of the unit hypercube is poorly constrained. In this

example, the sampled point closest to [0,0] is further away from this point that

any of its Voronoi vertices therefore a calculation of the maximum distance

only using these vertices would be incorrect. This can be mitigated however

by reflecting the sample points in all faces of the parameter space. This has

the effect of creating points just outside of the original parameter space which

can be used to create the Voronoi diagram and results in a constrained plot,

as shown in Fig. 4.3 (bottom) where the plotted area has been constrained for

clarity. The calculation of maximum distance is performed in n-dimensional

Euclidean space and is computed for each Voronoi node which is inside or on

the unit hypercube for each sampled point. The maximum value for each node

is then compared to obtain the maximum value for that design.

This process was applied to LHDs on a unit hypercube generated using

the ESE algorithm with varying numbers of parameters and sample points. For

each combination of parameters and sample points, 28 designs were generated

to obtain a measure of the variance of the maximum distance. The results of

this are shown in Fig. 4.4 alongside the maximum distance, dmax, for a regular
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Figure 4.3: The Voronoi diagram for the original Latin Hypercube Design
(top) and with it reflected in all faces of the unit hypercube (bottom), provid-
ing a better constraint of the boundary of the unit hypercube. The sampled
points of the design are in blue and Voronoi vertices in green. The solid black
lines indicate finite ridges and the dashed lines indicate the infinite ridges,

that is the Voronoi vertex at one end of the ridge is at infinity.
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Figure 4.4: The maximum distance between any point in the unit hyper-
cube and any sampled point for both Latin Hypercube Designs (solid line)

and sampling on a regular grid (dashed line).

grid. These are calculated for a grid of N points per dimension for each of nv

dimensions as

dmax =

√
nv

2N
. (4.5)

This demonstrates that a regular grid produces smaller maximum distances

however for larger numbers of parameters, as the number of points in a regular

grid scales as Nn, it becomes prohibitively expensive to add in more points to

the independent error set. For example, for a 6 parameter space a regular grid

of N = 2 has 64 points whilst a regular grid of N = 3 points has 729 points.

This also has the disadvantage of testing only a few values for each parameter.

Given that the LHD method has more flexibility to produce designs of arbitrary

numbers of points and that it does produce designs that test multiple values

per parameter, this method will be used. It should be noted that, as discussed

later in this chapter, using LHDs for function approximation is shown to work

well therefore it is a valid method to use.

Figure 4.4 demonstrates that for all numbers of parameters, as the number

of points in the design increases, the maximum distance decreases at an ever

slowing rate. Therefore this plot can be used to determine a good choice of
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error set size to be used as a trade off between the time required to generate the

error set and the maximum distance any point is away from the error set. For

a given number of dimensions of the LHD nv, the average volume around each

of the N points in the design is proportional to N−
1
nv . Figure 4.4 suggests that

there is an offset in the intercept for each of the different values of n therefore

it is appropriate to fit a function of the form

f(N) = a+
b

N
1
nv

, (4.6)

where a and b are parameters to be determined. The estimated values of a and

b for each value of nv are summarised in Table 4.1 and the functions are plotted

in Fig. 4.5. This can be used to define a convergence rate. In general, this is

defined as a proportional increase in the number of samples, CN resulting in a

proportional change in the value of the function, D, that is

f(N)− f(CN)

f(N)
= D. (4.7)

Substituting Eqn. 4.6 into Eqn. 4.7 and rearranging allows the number of

samples required to achieve a desired convergence rate to be defined as

N =

(
b(1− C

1
nv −D)

Da

)nv

. (4.8)

For example, for a 4 dimensional LHD with a convergence criterion of a change

in volume of 10% (D = 0.1) at a cost of doubling the number of points in the

design (C = 2), a design of 186 points is required. This information can be used

to determine how many points are required in an error set to give a desired level

of coverage of Ω as well as how many additional points need to be added to the

error set to improve the coverage of Ω by a desired amount. In practice, the

choice of the size of the error set is a trade off between desired accuracy and

the cost of a model evaluation. The higher the dimensionality of Ω, the more

points required should be used in the error set. In this work, a minimum of

11nv has been used for the size of the error set as a trade off between the cost

of generating the error set and the providing good coverage across the space.

In practice, a higher number may be appropriate to obtain a more accurate

estimate of the error of the prediction however this will be determined on a case

by case basis as a trade off between the cost of evaluating the additional models

and the benefit of obtaining a more accurate estimate of the error.
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Dimensions a b
2 0.069 0.800
3 0.124 1.032
4 0.180 1.124
5 0.187 1.322
6 0.202 1.445

Table 4.1: The values of the fit parameters in Eqn. 4.6 for different numbers
of dimensions.

Figure 4.5: The maximum distance between any point in the unit hyper-
cube and any sampled point for both Latin Hypercube Designs and the fit

of Eqn. 4.6 (black lines).
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4.1.4 Parameter Space Mapping using Latin Hypercube

Designs

Latin Hypercube Designs can be used to perform general parameter space

mapping when coupled with an interpolation method. Using the ESE method,

after the first iteration, ST can be passed into the generation function of the

next set of sample points Si and the optimality of the combination of Si + ST

can be maximised. The condition that there is no overlap between the set Si

and ST is also maintained. This method therefore builds up a distribution of

points throughout the space with each value of each parameter being sampled

n times after n sets of sample points have been added to ST . This process was

also considered using the TPLHD algorithm using a shift of the initial design.

It was found however that it was not always possible to find a shift with no

overlaps between the sets therefore this method is not suitable.

4.1.5 Interpolation Methods

Given any sampling method, an interpolation method is required to esti-

mate the response across Ω from the sampled points. There are a wide range

of techniques that can be used for multivariate interpolation. It was decided

that, where possible, pre-built interpolation packages would be used as these

tend to consist of highly optimised code and the focus of this project was not

to develop a highly efficient multivariate interpolation routine. The following

presents and compares multivariate interpolation methods which can be used.

Linear Interpolation

The simplest interpolation method that naturally extends to higher dimen-

sions is linear interpolation [73]. The most common method of linear interpola-

tion for arbitrary numbers of dimensions is to use linear barycentric interpola-

tion. This involves calculating the Delauney triangulation [74] of the sampled

points to create a set of simplexes and performing linear barycentric interpola-

tion within each simplex to approximate the response value. Each simplex in

nv dimensions has Nvert = nv + 1 vertices. The barycentric coordinates xB at

any given point within a simplex is the weighted sum of the coordinates of the
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vertices, that is

xB =
Nvert∑
i=1

αixi, (4.9)

where αi is a weighting coefficient. These coefficients act as weights for inter-

polation and the value of the function at xk can be approximated as

R(xk) ≈
Nvert∑
i=1

αif(xi). (4.10)

The coefficients can be calculated by treating the coordinates as a system of

linear equations and solving for the coefficients and normalised such that they

sum to 1. Any interpolation method which is not capable of also performing

extrapolation, which linear barycentric interpolation is not, requires the convex

hull of the input to cover the whole of Ω. This will not be possible with LHDs

alone therefore the corners of Ω must be sampled first to ensure that this con-

dition is met. This interpolation algorithm is reasonably fast and significant

research has already been expended on developing optimised code, therefore

the SciPy wrapper of the QHull implementation of the Quickhull algorithm [75]

is used. The primary disadvantage of this method is that a piecewise linear

representation may not be a good approximation of the response function if it

is rapidly varying however it will be very accurate in regions where the function

slowly varying and thus is linear to a good approximation. Another issue is that

it does not guarantee that the interpolator is smooth, that is the first derivative

is not continuous across the boundary of two simplexes.

Radial Basis Functions

A common non-linear interpolation method is radial basis function (RBF)

interpolation [73]. A radial basis function ψ(r) is one whose argument is the

distance r of the interpolated point x away from the sampled point xi. A

common choice is the Euclidean distance, that is r = |xi − x| although any

metric of distance can be used. The function itself can be any which has a

sole argument and common ones are linear, Gaussian and multiquadric. These

functions are used as an interpolator by calculating the weights βi for each of N

data points such that the error between the function values and actual values
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is minimised. The function approximation is therefore

R(x) =
N∑
i=1

βiψi(|x− xi|). (4.11)

The coefficients can again be calculated by treating the calculation as a set of

linear equations and solving for the coefficients. This method requires selection

of the basis function and choice of any parameters in these functions, for example

the variance of a Gaussian basis function must be chosen. As these interpolators

require a short time to construct, several basis functions may be used and the

one that gives the lowest predictive error used.

Multivariate Adaptive Regression Splines

An alternative approach to non-linear interpolation is the multivariate

adaptive regression splines (MARS) algorithm. This was first proposed by

Friedman [76] as an extension of the recursive splitting algorithm. For clar-

ity, the algorithms are summarised here, for exact forms see Algorithms 2 and

3 of [76] for the forward and backward stepwise algorithms respectively. The

basic idea of MARS is to develop a function which consists of a sum of basis

functions through recursive splitting of domains.

Initially, the model has a single domain, the entire parameter space, and

a constant basis function, β0, is fitted. Thus after the first pass in the forward

step, the predictor of the response function R′(Ω) is of the form

R′(Ω) = β0. (4.12)

The value of β0 is chosen to minimise the mean square error as defined in Eqn.

4.2. It should be noted that unlike linear and RBF interpolation, MARS does

not force the predictor through the sampled values therefore ε is not always

zero. The next pass finds the pair of reflected basis functions whose addition to

the function minimises the RMSE of R′(Ω) with respect to the sampled points.

The basis functions are commonly referred to as hinge functions although by

definition they are truncated power basis functions and are defined for a single

variable xi as

h(xi, c)
± = max(0,±(x− c)), (4.13)

where c is the knot location. This function has a discontinuity in the first
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derivative and thus is able to accommodate discontinues in the first derivative

of R(Ω). These may be added as single functions or products of these functions,

in one or more parameters, which accounts for interaction between variables and

non-linear trends. All function coefficients are recalculated upon the addition

of a pair of basis functions. Therefore β0 is recalculated as part of this pass.

The function, in a simple case, after the second pass is thus in the form

R′(Ω) = β0 + β1h(x, c1)+ + β2h(x, c1)−. (4.14)

Note that the hinge function is expressed in terms of a vector of coordinates,

x, but acts only in a single variable. This results in two domains, one on

each side of the knot. Importantly, upon the splitting of a given domain by

the addition of a pair of reflected basis functions, the parent basis function

is retained. This process is recursively repeated for splitting each domain by

adding pairs of reflected basis functions until either ε is below a tolerance or a

maximum number of basis functions M is added, the value of which is chosen

by the user.

The end result of the forward step is an overly constrained model. It is

desirable to have a model consisting of fewer basis functions as this fits the

global trends rather than fitting local noise. There is therefore a trade off

between the accuracy of the model and the number of terms and it is desirable

to remove some terms from the over constrained model. Thus a pruning process

is employed in a backwards step to remove basis functions. The metric used

to assess a model consisting of w basis functions is a weighted version of the

General Cross Variance (GCV) [76], given by

GCV =
RMSE[

1− w(1+d)
N

]2 , (4.15)

where d is a cost per basis function and all other terms retain the same meaning.

The value of d can be decided upon, however, a value in the range of 2 to 4

is generally chosen on the advice of Friedmann [76]. The backward step goes

through every w value from M to 2 and finds the basis function whose removal

improves the fit by the most or least degrades the fit, by calculating the GCV

for the removal of every eligible function. The constant basis function is never

eligible for deletion which ensures that all points in the space being mapped

always have a functional value. The number of basis functions which minimises

the GCV is the selected model as this will have the best trade off between
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error and number of basis functions. The resultant function can be cast in a

number of ways. A useful form which allows the interaction of parameters to

be determined is

R′(Ω) = β0 +
∑
Km=1

fi(xi) +
∑
Km=2

fij(xi, xj) +
∑
Km=3

fijk(xi, xj, xk) + ..., (4.16)

where the first sum is over all basis functions which involve a single parame-

ter, for clarity expressed as the function f , the second is over functions which

involve two parameters hence showing the interaction between them, the third

sum is over all functions which involve 3 parameters and so on. This is known as

the Analysis Of Variances (ANOVA) decomposition and allows the interactions

between the parameters to be investigated. Summing the variances of these

functions allows the relative importance of the parameters to be assessed how-

ever this requires accurate fitting of the model. Given this limitation and the

desire to assess the relative importance of parameters using other interpolation

methods, alternative sensitivity metrics are discussed in the following sections.

Two implementations of the algorithm were used in this work. The ARESLab

[77] implementation was initially used which is a MATLAB based library how-

ever the pyEARTH package in Python was found to be more flexible as well as

being easier to integrate into the wider tool chain. This method is more flexible

than the others previously discussed however it does have a significantly greater

degree of tuning required to obtain an accurate result and computationally it

is significantly more expensive.

4.1.6 Comparison of Interpolation Methods

These interpolation methods can be compared using the example functions

defined in Chapter 3. Consider the first function, Eqn. 3.19 with a = b =

c = d = 1. This function was sampled at the corners of the parameter space

Ω, requiring 16 samples, and an increasing number of LHDs, to a maximum

of 10, of 21 points each generated using the algorithm discussed previously.

Linear interpolation and the MARS algorithm are compared with two radial

basis functions, defined as

ψ1(r) = r3, (4.17)

and

ψ2(r) = e−( rβ )
2

, (4.18)
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where β is a parameter that must be tuned to minimise the error of the inter-

polation. To account for variation in the choice of samples, this process was

repeated 28 times to obtain an estimate of the error in the quality of the inter-

polators. The mean absolute error of the prediction at all points on a regular

grid of 21 points per parameter was used as a metric of the interpolator quality,

as defined in Eqn. 4.3.

The results of applying these interpolators are shown in Fig 4.6. This

shows that the MARS algorithm and linear interpolation are capable of very

accurately predicting this function given a very small number of samples. This

is due to these being capable of producing a very good approximation of the

underlying function. In the case of MARS, it is able to use purely linear ba-

sis functions for each parameter which when summed accurately represents the

underlying function. Of the two RBF methods, the Gaussian radial function

gives a relatively poor result and the cubic radial function gives a better pre-

diction, comparable to the MARS and linear methods however requires a larger

number of samples to reach the same level of accuracy. These results are due to

these radial basis functions being unrepresentative of the underlying response

function therefore they form poor predictors.

The same methodology of comparison is also applied to the more complex

example function Eqn. 3.20. The results of this process are shown in Fig. 4.7.

This shows that again the MARS algorithm, linear interpolation and cubic RBF

are the best interpolation methods. The Gaussian method performs poorly,

again this is due to it being a poor representation of the underlying function. It

is also instructive to note that the error rapidly converges to a small value after

approximately 100 model evaluations even for this complex function. This is a

feasible number of models to evaluate if its evaluation time is not trivial and

suggests that this process could work for complex response functions that may

be present in reality.

As the performance of an interpolator is dependent upon how well it repre-

sents the underlying function, each of these methods will be suited to different

scenarios. Given that the time taken to build a single instance of these interpo-

lators is often significantly less than the time to run a model, it is worth trying

all of these methods to determine which is the best. The best method will also

reduce the number of model evaluations required to achieve a predictive error

within tolerance therefore testing all three interpolation methods is the most

efficient overall approach.
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Figure 4.6: The result of applying the sampling and interpolation algorithm
to the linear example function defined by Eqn. 3.19 with a = b = c =
d = 1. Different interpolation methods are shown: Multivariate Adaptive
Regression Splines (MARS), linear interpolation, cubic radial basis functions
(RBF1) and Gaussian radial basis functions (RBF2). The results of the
MARS algorithm are coincident with the results of the linear interpolation

therefore both lines are not visible.
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Figure 4.7: The result of applying the sampling and interpolation algorithm
to the linear example function defined by Eqn. 3.20. Different interpolation
methods are shown: Multivariate Adaptive Regression Splines (MARS), lin-
ear interpolation, cubic radial basis functions (RBF1) and Gaussian radial

basis functions (RBF2).
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Whilst these methods work, it could be more efficient to adaptively sample

Ω in regions where the error is greatest, predominately caused by the response

function varying rapidly, and not further increase the density of sampling in

regions where the error is low, because the response function varies slowly. This

is not easy to implement with LHDs therefore an alternative method is discussed

in the next section.

4.1.7 Adaptive Sampling and Interpolation

Latin Hypercube sampling provides good coverage of the sample points

throughout Ω however this may not be the best approach if the response func-

tion has regions where it is slowly varying and regions where it is changing

quicker. In this case, a lower density of sample points will be sufficient in

smoother regions of the response function however denser sampling may be

necessary in regions with coarser features to capture the variations. It should

be noted that the aim is to map the response function independently of the

choice of probability function. Whilst sampling preferentially in regions of Ω

where the probability density is highest may result in a more accurate assess-

ment of reliability, if the probability function changes then the result may be

less accurate. As discussed previously, one major advantage of the methodology

is that the response function is decoupled from the probability function, there-

fore changing one has no effect on the other. This property should ideally be

retained when mapping the response function so that changes in the probability

function have no effect on the quality of the prediction of the response function

and thus an impact on the calculation of inspection metrics such as PoD and

PFA.

A method of generating sample points adaptively is the spatially adaptive

sparse grid method. Sparse grids can be traced back to Smolyak [78]. However,

were not regularly used until an efficient computational method was developed

to apply them to the solution of partial differential equations [79]. They have

subsequently been applied to high-dimension function approximation [80]. The

properties of sparse grids are summarised here and the reader is directed to [81]

for a detailed mathematical description of their construction.

The generation of sparse grids is somewhat similar to the recursive split-

ting used in the MARS algorithm. In this sense, each point in the sparse grid

represents a subspace which may be further split by adding in a pair of new
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points. The recursive splitting of these subspaces increases the density of sam-

pling in a given region. Strictly speaking, they are complete hierarchical grids

that are formed of a set of hierarchical subspaces whose tensor product forms

a complete basis for the parameter space. Each subspace is constructed using

a set of hierarchical basis functions, truncated using hat functions to limit the

domain they act upon. Adaptive sparse grids are an extension of this in which,

when moving from one level of the hierarchy to a lower one, not all child points

are added to the grid. The effect of this is to create a hierarchical grid that is

not fully populated and instead sample points are added based upon a criterion.

In this case of interpolation, this criterion is based upon the form of the fitted

function. Sparse grids form interpolators by fitting a sum of basis functions to

the data, that is

R′(Ω) =
N∑
i=1

αiφi(xi), (4.19)

where N is the number of sampled data points, α is a weighting factor and φ

is a basis function. The choice of which points to add is based on hierarchical

surpluses, that is the value of the weighting factors αi. As the number of points

added to a subspace increases, the weight of each basis function will decrease,

more rapidly if the gradient is smoother in that subspace. Therefore, these

weighting factors are a measure of the rate of change of the gradient of the

function in the subspace. The addition of more points to a region will provide

a better approximation of the function in that subspace, thereby decreasing

the weights of the other basis functions assigned to that subspace. Therefore

points are preferentially added to subspaces with larger weights for their basis

functions, thus adaptively sampling the parameter space using information of

the response function. This process is known as surplus refinement.

The application of adaptive sparse grids is demonstrated using an example

twin peaked Gaussian function as shown in Fig. 4.8. The sparse grid created

to map this function is also shown in Fig. 4.8. This shows that the adaptive

method preferentially samples at regions where the function gradient is changing

most rapidly whilst yielding a low density of sampling in regions where the

function is slowly varying. This demonstrates the power of the technique as it

is able to sample in regions where the predictive error is likely to be largest.

The primary issue with the use of sparse grids is the condition that all

of a point’s parents are known. This can lead to considerable wasted effort

mapping the parent points which may exist in regions where there is already

dense sampling. This is demonstrated in Fig. 4.8 in which it can be seen
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Figure 4.8: An example of the application of sparse grids to an interpola-
tion. The map of the response function is shown (top) with the location of

the sample points (bottom).
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that there is excessively dense sampling around (0.5, 0.1) and (0.1, 0.5) even

though the function is smooth in these regions. In the case where the numerical

model has a significant run time, this can result in a large time requirement for

the addition of a single point. Another problem is that it is sensitive to the

choice of basis function and given that the choice of basis function determines

the location of sample points on the grid, changing these will likely result in a

change of sample locations and thus a re-evaluation of the model at these points.

Therefore given that this method can potentially be very time consuming to use

if the choice of basis function is not appropriate, it should be used with caution,

as noted in [82].

Two sparse grid libraries were used in this work, SGPP [83] and TAS-

MANIAN [84]. The way sparse grids are built and stored using in the two

libraries are incompatible with each other, therefore it is not possible to inter-

change grids between them. Of these, SGPP has a limited, incomplete Python

wrapper whereas TASMANIAN has a fuller library of functions. SGPP was

initially used however its limitations were such that an alternative was sought

and TASMANIAN was integrated into the tool chain.

4.2 Parameter Reduction Using Sensitivity Anal-

ysis

As previously discussed, being able to ignore parameters due to insignifi-

cance can reduce the dimensionality of Ω and thus reduce the time it takes to

map R(Ω). Sensitivity analysis is again a broad topic that is widely researched

and the desire is to utilise well documented methods to quantitatively determine

the relative significance of parameters. This section discusses the application

of the method of Sobol for calculating sensitivity indices to inspections and

how these can be used to minimise the number of parameters that have to be

considered.

4.2.1 Sobol Sensitivity Indices

There are a wide range of sensitivity metrics that can be used to assess

the relative importance of parameters, for a good overview see [85]. Of these
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methods, the method of Sobol is very intuitive and provides an efficient compu-

tational method of calculating indices which represent the relative importance

of parameters.

The following is taken from [85] and [86] and is the definition of the sensi-

tivity indices used in this work. For brevity, only the computational calculation

of these indices using Monte Carlo integration is discussed and the analytic

derivation of the following can be found in [87]. Throughout this work, a hat-

ted value, for example D̂, indicates the approximation of a value which has been

calculated through Monte Carlo methods.

The primary idea of Sobol sensitivity indices is to determine the proportion

of the total variance of the function f(x) that can be attributed to each of the

n input parameters and the interactions between them. This is a similar idea

to the method of calculating the relative importance of parameters used in the

MARS algorithm discussed earlier. This is based on the notion that it is possible

to express a function as a linear sum of functions of increasing numbers of its

n parameter arguments, that is

f(x) = f0 +
n∑
i=1

fi(xi) +
n−1∑
i=1

n∑
r>i

fir(xi, xr) + ...+ f1,2,...,n(x1, ..., xn). (4.20)

This is known as the Analysis of Variance (ANOVA) representation of the func-

tion, the same principle used in Eqn. 4.16. The average value of f can be

calculated as

f̂0 =
1

N

N∑
q=1

f(xq), (4.21)

where the function f has been sampled at N discrete points. The total variance

of f can be estimated as

D̂ =

(
1

N

N∑
q=1

f 2(xq)

)
− f̂ 2

0 . (4.22)

The variance that can be attributed to the first order effect of a parameter, that

is its main contribution in fq(xq), can be estimated as

D̂i =

(
1

N

N∑
q=1

f(x
(1)
(∼i)q, x

(1)
iq )f(x

(2)
(∼i)q, x

(1)
iq )

)
− f̂ 2

0 , (4.23)

where x(∼i) denotes the vector defining all coordinate values except that for
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parameter xi. The superscripts (1) and (2) denote two different choices of the

values of the variable(s). Therefore each iteration of the summation uses pairs

of function values at two points with the same value of the parameter xi but

different values of all other parameters x(∼i). It is convenient to compare the

variance of a single variable to the total variance of the function therefore a

sensitivity index for the parameter xi can be defined as

Ŝi =
D̂i

D̂
. (4.24)

This is the first order sensitivity index for parameter xi. The sensitivity indices

can similarly be calculated for higher order interaction terms by calculating

D̂i,...,n for any combination of parameters i, ..., s. Explicit formulas for these

calculations are derived in [86] and are summarised here. Define

Di,...,n =
1

N

N∑
q=1

f(x
(1)
(∼i,...,n)q, x

(1)
(i,...,n)q)f(x

(2)
(∼i,...,n)q, x

(1)
(i,...,s)q). (4.25)

This again uses pairs of function values which have common values of the pa-

rameters xi,...,n and different values of the parameters x∼(i,...,n). It can be shown

that

D̂i,...,n = D1,...,n −
>∑
D1,...,n−1 +

>∑
D1,...,n−2...(−1)n−r

>∑
D1,...,r + (−1)nf̂ 2

0 ,

(4.26)

where
∑>D1,...,r denotes the sum over all permutations of size r of the param-

eters in i1, ..., is. This significantly reduces the total computation as it allows

each D1,...,n to be calculated then each D̂1,...,n to be calculated using combina-

torics by finding every combination of parameters. It is however more useful as

a first screening method to consider the total effect of a parameter. This can be

calculated by summing all S1,...,i,...,n terms which include parameter xi. However,

the explicit calculation of all the sensitivity indices involving a given parameter

becomes increasingly computationally expensive as the number of parameters

and thus the the number of higher order interaction terms increases. Noting

that all sensitivity indices must sum to 1 by definition, the total sensitivity

index for parameter xi can be calculated as

T̂i = 1−
D̂(∼i)

D̂
. (4.27)
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The calculation of D̂(∼i) can be performed in a single Monte Carlo calculation

as

D̂(∼i) =

(
1

N

N∑
q=1

f(x
(1)
(∼i)q, x

(1)
iq )f(x

(1)
(∼i)q, x

(2)
iq )

)
− f̂ 2

0 . (4.28)

This involves using function values at pairs of points with a common value of

all parameters except xi and varying xi.

4.2.2 Calculation of Sensitivity Indices During Parame-

ter Space Mapping

The above describes the general methods of calculating sensitivity indices

however this still requires the definition of the sample locations at which to

evaluate the function. The LHD algorithm is suited to calculating the first

order sensitivity indices as the use of multiple samples at each value of each

parameter but with different values of all other parameters, as required to avoid

repeated sampling, satisfies the requirements of Eqn. 4.23. After nI iterations

of a design with NP points there will be NnI−1
P pairs of points which can be

used to compute the first order sensitivity indices without using an interpolator

to generate more response values from these sampled points. The accuracy of

this process is tested by applying it to Eqn. 3.19 with [a, b, c, d] = [1, 2, 3, 4]

and Eqn. 3.20. The sampling process is the same as is used in the comparison

of interpolation methods using a LHD of 21 points repeated 28 times. The

results of this are shown in Fig 4.9. The large error bars show that this small

number of samples is not sufficient to consistently obtain an accurate measure

of the sensitivity indices. The decreasing size of the error bars as the number of

sample points increases suggests that a much greater number of response values

is necessary to obtain an accurate measure of the sensitivity indices. Performing

greater numbers of response evaluations would alleviate this problem, however,

this would come at a much greater time cost. An alternative is to use the

interpolator to generate the necessary response function values to calculate the

indices.

The use of an interpolator to generate the necessary points for the calcu-

lation can be tested by application to the complex example response function

given by Eqn. 3.20. The simple example response function is not used here as

the linear interpolation and MARS algorithm provide no error in the prediction

against which to compare. For clarity, only the linear interpolation method was
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Figure 4.9: The calculation of the first order sensitivity indices using com-
binations of sampled points.

used and 50000 randomly generated pairs of samples were used to calculate the

indices. This process was again repeated 28 times with different sets of LHDs

to generate the interpolator to obtain a measure of the repeatability of this

process. The results are shown in Fig. 4.10 which show that both the first and

total sensitivity indices converge rapidly, they do not change significantly as

the number of models evaluated increases. The small error bars in these graphs

demonstrate the repeatability of the calculation which shows that it is not sus-

ceptible to the choice of sampled points. The indices as a function of the error

in the prediction is shown in Fig. 4.11 which demonstrates little variation in

the calculation of the indices as the error of the prediction decreases. This sug-

gests that this process is capable of accurately estimating the sensitivity indices

as the parameter space mapping process proceeds, making it a useful tool for

potentially discounting parameters during the qualification. The accuracy of

these calculations can be further improved through the use of low-discrepancy

quasi-random sequences, such as Sobol sequences [88], to define the sample lo-

cations to be used in the interpolator. These types of sequences result in an

increased rate of convergence of the calculations due to providing more uniform

coverage of the space than random sampling. The result of this is that Monte
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Carlo integrals performed using NMC points converge as N−1
MC using Sobol se-

quences compared to N
− 1

2
MC for random sampling. The reader is directed to [59]

for further details.

It should be noted that the first order sensitivity indices are approximately

equal to the total sensitivity indices. This suggests that, despite Eqn. 3.20

appearing to have significant interaction between the parameters, the response

can be approximated to a high degree as a sum of independent functions. This

potentially allows parameters to either be ignored due to having little signifi-

cant or be treated as independent if they have negligible interaction terms. The

former of these is especially important as, as well as potentially reducing the

dimensions of the parameter space, for parameters whose inclusion may intro-

duce significant modelling complexity, for example requiring a model to utilise

another module or calculation algorithm, their removal may greatly reduce the

qualification time.

4.2.3 Reduction By Insignificance

In the case that Tk ≈ 0, the parameter xk has very little relative effect on

the outcome of the inspection. Therefore it is possible to ignore this parameter.

In practice, it is not possible to simply remove a parameter from an inspection,

it must be fixed to a given value δ such that

R(x) = R(x∼k) +R(x∼k, xk = δ). (4.29)

In this case a small error will be introduced into the calculation of metrics such

as PoD. This is discussed in more detail later.

4.2.4 Reduction by Independence

It is possible that Tk ≈ Sk. In this case, all of the second order and higher

interaction terms are negligible, that is∑
Sk,...,n ≈ 0. (4.30)

If this is true then it is possible to re-express the response function as

R(x) = R(x∼k) + fk(xk), (4.31)
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Figure 4.10: The (top) first order and (bottom) total sensitivity indices as
a function of the number of sampled points.
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Figure 4.11: The (top) first order and (bottom) total sensitivity indices as
a function of error in the prediction. The error in the prediction is normalised

to the maximum function value.
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where fk(xk) is the first order function of variable xk. This implies that the

contribution to the total response of parameter xk is independent of all other

parameters to a degree of approximation. It is therefore possible to fix all of the

other parameters and vary xk to empirically build an explicit function for this

parameter. This parameter may then be removed from the parameter space

mapping process and included in the calculations of metrics of an inspection,

due to its independence, via the methods discussed in Chapter 3.6. This still

leaves open the question of how good the approximation Tk ≈ Sk has to be in

order to apply this technique.

4.2.5 Optimal Parameter Fix Value

In the scenario where a parameter xk is determined to have exactly no

effect on the response or determined to be exactly independent, the ignoring of

xk will lead to no error in the calculation of reliability metrics. In practice, even

if this is not exactly true, it may may be desirable to ignore some parameters

as they account for little variance to reduce the dimensionality of Ω and thus

reduce the mapping time. It is also possible that a parameter may have a small

but significant effect however its inclusion in the model may cause a significant

increase in its evaluation time, such as considering non-linear effects. Therefore

it may be desirable to ignore a parameter to satisfy a time or resource constraint.

In either case, the fixing of a parameter to a value will introduce some error

into the calculation of inspection metrics such as PoD. Express the response of

the inspection as

R(x) = R(x∼k) +R(x∼k, xk) = R∼k +Rk, (4.32)

where R∼k is the sum of all functions not involving xk and Rk is the sum of

functions involving xk. In practice, ignoring a parameter means that it is fixed

to a value xk = γ and it is taken that it does not vary. The function Rk may

be a function of the other parameters if the higher order sensitivity indices,

Sk,... are non-zero thus will still vary as a function of the other parameters.

Therefore the error in the calculations of metrics such as PoD depend upon

how much the function R(x∼k, xk) varies compared to when the parameter xk

is fixed, that is Rk=γ = R(x∼k, xk = γ). Define Rk,min as the minimum possible

value of Rk and Rk,max as the maximum possible value of Rk. When xk = γ,

Rk,min ≤ Rk ≤ Rk,max. For metrics such as PoD and PFA, when R∼k +Rk,min ≥
T and R∼k + Rk,max < T , the error in the value of the response has no effect
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on the metric as it does not cause the decision threshold to be incorrectly

exceeded or undercut. Therefore the error only effects metrics in the region

T − Rk,max ≤ R∼k < T − Rk,min. There are two possible errors that can occur,

firstly when the response is incorrectly overestimated and causes it to exceed the

threshold, a false positive, and when the response is incorrectly underestimated

and causes it to be below the threshold, a false negative. The former of these is

the region ∆A : R∼k +Rk < T ≤ R∼k +Rk=γ and the latter ∆B : R∼k +Rk=γ <

T ≤ R∼k + Rk. In the case of PoD, the most common capability metric, the

total error εp across the range of the parameters of interest xc, whose range is

normalised to the interval [0, 1], is therefore

εp =

∫ xc=1

xc=0

[∫
∆A

P (x)dx∫
Ω
P (x)dx

+

∫
∆B

P (x)dx∫
Ω
P (x)dx

]
dxc. (4.33)

This cannot be further simplified without explicit forms of the probability func-

tion or the response function. The optimal choice of value can, however, be

investigated numerically using example test functions as follows. Consider Eqn.

3.19 with a being variable, b = c = 1 and d = 2. In this case the response

function has the form

R1(x) = ax0 + x1 + x2 + 2x3. (4.34)

The effects of these parameters on this function are all independent, that is

Si = Ti for all i. The relative importance of the parameters depends upon the

value of a. If a < 2 then x3 is the most significant parameter whereas if a > 2, x0

is the most significant parameter. Each parameter has an independent normal

probability distribution about the centres µi = [0.25, 0.5, 0.75, 0.5] respectively,

giving the probability function for the parameters P (x) as

P (x) =
3∏
i=0

e
−
(
xi−µi
σi

)2

, (4.35)

where σi is the standard deviation for parameter i and is [0.5, 0.25, 0.25, 0.75]

for each of the four parameters respectively. In the case that a = 0.5, x0 is

the least significant parameter and thus would be the most likely candidate

to be ignored. The effect of doing so can be investigated by calculating the

mean absolute error of the PoD curve, as in Eqn. 4.33, for another parameter

for different fix values, in this case x3 as it is the most significant of the other

parameters. The result of doing this is shown in Fig. 4.12 as a function of the fix

value, the corresponding cumulative distribution function (CDF) value and the
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corresponding probability density function value. This shows that the optimal

fix value is at approximately the centre of the CDF for the fixed parameter,

its mean value, not the maximum value of the PDF, its most likely value. For

the normal distribution used for x0, these do not coincide as the distribution

is defined over a finite domain with its mean not in the centre of the domain.

It also demonstrates the importance of choosing an appropriate value to fix

a parameter at if it is to be ignored otherwise this can result in a significant

error in the PoD. The effect of changing the value of a is shown in Fig. 4.13,

demonstrating that the minimum error in PoD is consistently at the mean value

of x0 and that the minimum error increases as the value of a increases. The

minimum error as a function of the total sensitivity index for parameter x0

is plotted in Fig. 4.14 which shows a linear relationship between the total

sensitivity index and the error in the calculation of the PoD. It demonstrates

that it is possible to obtain a small error in the PoD whilst ignoring a relatively

large proportion of the total variance of function, in this case an error of 5%

whilst ignoring 20% of the total sensitivity.

This simple, purely additive function is not necessarily representative of

the response function that may be present in an inspection therefore the same

methodology is applied to the more complex function. It was previously demon-

strated that the parameters in Eqn. 3.20 are approximately independent there-

fore would yield the same result as the above example. Given the need to

demonstrate this effects for which the higher order terms of the function Rk

will not be trivial, a more complex function is used. This is defined as

R2(x) =
ax2

0

10
− (x0 − x1) + 2x1x2 + 2e(2x3−ax0)2

, (4.36)

where a is again a variable weighting parameter. The sensitivity plot for this

function with a = 1 is shown in Fig. 4.15. This function has significant inter-

action between the parameters and is not monotonic. The error in the PoD is

calculated for the most significant parameter, x3, using Eqn. 4.33. The error as

a function of fix value, CDF and PDF is shown in Fig. 4.12 which suggests that

the optimal fix value is not at the centre of the CDF value or at the most likely

value, the maximum of the PDF. Therefore it is not trivial to set the parameter

x3 at its optimal value in this case. This is further demonstrated by plotting

the minimum error as a function of changing the weighting factor, as shown in

Fig. 4.16. This shows that the optimal fix value changes as the weighting fac-

tor changes, further evidence of the optimal choice being very dependent upon

the specific response function. It also demonstrates that it is again possible
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to achieve a very low error in the PoD whilst ignoring a reasonably important

parameter, in this case inducing an error of only a few percent whilst ignoring

more than 50% of the total variance. This is potentially significant if this could

allow several parameters with low total sensitivity indices to be ignored, signif-

icantly reducing the response mapping time by reducing the dimensionality of

the parameter space.

This suggests that the optimal fix value is not easy to determine analyti-

cally and is very dependent on the response function being mapped however it

is possible to ignore a reasonably large proportion of the variance whilst still

obtaining a reasonably accurate result. Given the difficult of choosing the op-

timal fix value, in practice, it is most conservative to set xk such that Rk=γ

is minimised, thus minimising the region ∆A and not overestimating the PoD.

This gives the worst case of inspection capability as the PoD will never be

overestimated. This may be estimated numerically, optimising the fixed value

of the ignored parameter by minimising the error in the calculated PoD when

the parameter is fixed compared to its unfixed value. This does assume that

when this process is performed the estimate of the response function is accurate

and the methods described previously have been demonstrated to be able to

accurately estimate response functions. This is therefore a feasible process in

practice.

4.2.6 Sensitivity Indices as a Metric of Inspection Qual-

ity

It is common for the PoD, or more specifically the 90/95 value known as

the minimum detectable defect size, to be used as a metric of the quality of an

inspection. This does not, however, take into account the false call rate of an

inspection which may be just as important. Sensitivity indices also provide a

way of comparing the quality of different inspection methods. In an ideal world,

a quantitative inspection would be sensitive to only the parameter of interest

xj and varying any combination of all other parameters would have no effect on

the response of the inspection, that is Sj = 1, Ti 6=j = 0 and R(Ω) = R(xj). In

practice, it may be desirable for the location of the probe to have an effect on

the inspection to allow localisation of a defect although it is still desirable for

the parameter of interest to have the most significant impact. As Sj → 1, the

PoD for any value of xj whose mean value is less than the threshold tends to
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Figure 4.12: The error in the PoD value as a function of the value of the
fixed parameter (top), the cumulative distribution function (CDF) of the
fixed value (middle) and the probability density function (PDF) of the fixed

value (bottom).
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Figure 4.13: The error in the PoD as a function of the value at which
the ignored parameter x0 is fixed with the value of the weighting factor a

changing, as defined in Eqn. 4.34.
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Figure 4.14: The error in the PoD value as a function of the total sensitivity
index for ignored parameter.

Figure 4.15: The sensitivity plot for the function given by Eqn. 4.36 with
a=1.0.
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Figure 4.16: The error in the PoD as a function of the value at which
the ignored parameter x0 is fixed with the value of the weighting factor a

changing, as defined in Eqn. 4.36.
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zero and those whose mean is above tends to one. This results in a sharper PoD

curve, becoming a step function for monotonically increasing R(xj), and thus a

better inspection. This also reduces the false calls as, if the decision threshold

on the response is set correctly, the probability of false alarm will decrease to

zero. In the opposite case, as Tj → 0, the PoD curve will tend to a constant

value as changing the value of the critical parameter will have no effect on the

response of the inspection, as R(Ω) = R(x∼j), and the outcome will be purely

determined by the values of the other parameters.

An alternative way of thinking about an inspection is to consider the re-

sponse of the inspection to be attributable to either the response from the

defect or the response of noise in the system. In this case, the range of these

responses can be used to build probability distributions of the response from

the defect, G, and the response caused by other factors in the inspection which

is noise, N . These will have a mean value and variance which can be derived

for the distribution. For simplicity, express an arbitrary distribution d as a

function of its mean and variance, that is d(mean, variance). Considering a

given value α of the defect parameter of interest xj, the distributions of re-

sponses are G = d(Sc, Tj,xj=α − Sj) and N = d(Nc, 1 − Tj). Note that these

are arbitrary probability distributions and that Tj,xj=α < Tj if Tj 6= Sj. As

Ti → 1, the variance of these distributions tends to zero, that is the range of

responses from either source decreases. As this happens, the responses will be

easier to distinguish between signal and noise as there will be less overlap in the

distributions if Nc 6= Sc. There will also be better characterisation of defects of

different magnitudes as Sc will depend on the value of α. In practice, a good

inspection will have Nc < Sc, otherwise the PFA is likely to be higher than the

PoD, which is not a useful inspection.

As sensitivity indices can encapsulate information about both the PoD

and PFA, it is a more useful metric than either on its own. It is also inherently

both normalised and unit-less and it therefore ideal as a metric for comparing

disparate inspections.
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4.3 Summary

The accurate mapping of the response function is essential for accurately

calculating metrics of inspection reliability. This chapter has discussed meth-

ods of doing this, such as using Latin Hypercubes and sparse grids coupled to

an interpolation method, that will in theory allow the response function to be

accurately mapped using a reasonable number of model evaluations. The use of

sensitivity analysis can provide insight into the relative importance of parame-

ters, highlighting those which can be ignored or treated as being independent.

However, unless either of these conditions is exactly met, an error in the reli-

ability metric will be introduced. The effect of this has been investigated and

the results suggest that it may be possible to ignore a significant proportion of

the total variance whilst inducing a reasonably small error into the calculation

of the inspection metrics. This does require careful choice of the fix value of

ignored parameters which may be performed numerically. The sensitivity in-

dex may also be used as a metric of inspection capability, allowing disparate

inspections of the same defects to be compared. As well as information on the

PoD, sensitivity indices also encode information of PFA, providing more infor-

mation than either alone. The following section discusses the application of

these methods to an example inspection qualification.





91

Chapter 5

Example Inspection

Qualification

This chapter presents the application of the methods discussed in this thesis

to a real inspection. A canonical example in aerospace is the inspection of cracks

that emanate from fastener holes in wing skins. This provides a good example

of an inspection on which to perform model assisted qualification as there are

many parameters that can vary, both human factors and defect parameters.

This inspection is also sufficiently complex to justify the use of a numerical

model which has a significant computational burden. Whilst a single iteration

of the model with a fixed set of parameters is reasonably straightforward to

create, efficient automated model generation for parameter space mapping is

not trivial and requires considerable work.

Initial work was done by Smith and Edgar [21] whilst the technique was

under development at QinetiQ, where some experimental trials were performed

to demonstrate the capability of the technique. This work was used as the basis

of understanding of how the inspection is performed.

5.1 Definition of Inspection

A realistic representation of the inspection scenario is shown with dimen-

sions in Fig. 5.1. It consists of a bolt hole in an aluminium wing skin from which

a triangular shaped crack emanates radially. The dimensions and cord-wise ro-

tation of the crack are variable parameters within the inspection, as shown in

Fig. 5.1. This defect was inspected using a single element, unfocussed, 45◦ shear

wave transducer with a centre frequency of 4 MHz. It is sentenced using a gated
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Parameter Parameter Type Lower Limit Upper Limit
Defect length cL Defect 1 mm 11 mm
Defect height cH Defect 0.5 mm 5.5 mm
Defect angle cθ Defect -45o 45o

Probe lateral position px Human 1 mm 11 mm
Probe perpendicular position py Human 5 mm 15 mm

Probe rotation pθ Human -10o 10o

Coupling thickness ε Equipment -20% 20%
Electrical noise η Equipment -5% 5%

Table 5.1: The six numerically modelled parameters and their ranges. The
values of the probe’s lateral and perpendicular position are relative to the

centre of the hole.

threshold, that is measuring the maximum amplitude of the Hilbert transform

of the signal in a fixed time gate whose position is determined by the operator.

In this inspection the time gate is set such that its centre is at the time of arrival

of a corner reflection from the base of a crack and its width is set to ±10% of

this arrival time. A 3D finite element model was built and solved using Pogo FE

[89]. Each model required approximately 20 minutes to evaluate, including pre-

processing for the model including the generation of the mesh, and analysing

the resulting time trace. Each model also required approximately 8 GB of GPU

RAM therefore it is possible to evaluate only a single model at a time on the

available hardware. In all, 8 parameters of variation are considered. These are

summarised, along with their limits, in Table 5.1. This chapter demonstrates

the application of methods for assessing reliability presented in this thesis to

increasing numbers of these parameters thereby increasing the dimensionality

of Ω.
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Figure 5.1: Schematic diagrams of the inspection investigated from an iso-
metric view (top), plan view (middle) and a diagram of the crack emanating
from the hole (bottom). The probe is shown by a red square and the ul-
trasonic beam by a blue arrow. In this inspection, the operator scans the
probe around the fastener hole to check all possible root positions of the
crack. Given the rotational symmetry of the inspection, only one crack root

position is simulated.
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5.2 Finite Element Modelling Using Pogo

The fundamental mechanics of elastic media when subject to an elasto-

dynamic excitation are well established, for an overview see [90]. The primary

challenge with the application of these formulae is solving them for complex sce-

narios, such as intricate geometries. This typically cannot be achieved analyti-

cally and in practice numerical methods are used. The most common approach

is to use the finite element method to discretise a volume and numerically solve

the equations on this mesh. The reader is directed to [91] for a good overview

of the finite element method used in ultrasonic modelling.

The advent of general purpose graphical processing units (GPGPUs, hence-

forth referred to as GPUs) in the last decade, which can have thousands of cores,

allows for massive parallelisation of this calculation using a desktop PC. Pogo

FEA [89] uses nVidia’s CUDA framework to achieve this parallelisation, acceler-

ating calculations by a factor of 10-1000 times over CPU based explicit solvers

such as Abaqus (Dassault Systems, Vlizy-Villacoublay France). For brevity,

the details of how this is achieved are not covered and the reader is directed to

[89] for details of the implementation. In its current form, Pogo consists of the

solver along with other programs required to set up the problem on the GPU,

using a non-proprietary binary input file format to define the models. This is

therefore well suited to evaluating many models as these input files, and asso-

ciated output files, can be generated and analysed using any scripting language

so desired.

The main limitation of Pogo is that presently it does not support acoustic

mesh elements therefore from an ultrasonic NDT perspective it is not able to

simulate immersion inspections. It has been used for simulations of ultrasonic

inspections using bulk waves, for example [92], thus it is suited to the demon-

stration inspection that for this project. This section discusses the use of Pogo

as a tool for performing MAQ of ultrasonic inspections, particularly methods

of optimising its use for efficient parameter space mapping.

5.2.1 Practical Considerations

Pogo, like most parallelised calculation software, is primarily limited by the

amount of memory bandwidth on the bus between CPU and GPU. Therefore a

GPU with high memory bandwidth is necessary to achieve good performance.
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The nVidia GeForce cards, primarily aimed at gaming rather than numerical

computing, have high memory bandwidth and relatively low cost, making them

a good choice for Pogo. A desktop PC was purchased consisting of an Intel Core

i7-6700 (4 cores, 8 threads), 32 GB of DDR4 RAM and a nVidia GeForce Titan

X GPU, which has 3072 cores, 12 GB of RAM and a memory bandwidth of 480

GB/sec. A PCI-E solid state drive was also installed to allow rapid reading and

writing of the files created in the generation of models. Typically this could

be of the order of several gigabytes for a large model and can be a significant

proportion of the total simulation time, therefore minimising the data transfer

time is essential. This system cost approximately £2200 and was used for all

Pogo simulations, making it a realistic option for a SME to use.

Given the potentially large number of simulations that will be run, au-

tomating the generation and running of models is essential. This is best achieved

using a high level scripting language, such as Python, which allows the various

programs necessary to run a Pogo model, such as the meshing tool, blocker and

solver, to be called in sequence. Python therefore acts as the glue between these

components and can also be used for the data analysis, sampling and interpola-

tion. Python as a language is well suited to this work as it is designed to handle

arbitrary objects, reading and writing of data and through the Scientific Python

stack (SciPy, NumPy and MatPlotLib) it is ideal for analysing results and per-

forming the necessary calculations required to generate a model. A significant

advantage of Python over other popular scripting languages, such as MATLAB

(MathWorks, Massachusetts USA), is that it is open source software, allowing

any tools developed in this project to be easily utilised by other organisations

without having to purchase expensive software licenses.

5.2.2 Automated Geometry Generation and Meshing

Given the large number of simulations that have to be completed, the

automated definition of models is essential to mapping the response function in

a reasonable time. The primary challenge in generating a model is the definition

of the mesh and therefore the volume that is to be meshed. There is a large

body of literature on the optimal generation of meshes and the advantages and

disadvantages of different element types, for a good overview see [93]. Given

that the use of cuboid (in 3D) elements can lead to incorrect reflection behaviour

of angled surfaces [93] if they do not accurately map to a surface, tetrahedral

elements were used regularly in this work as they are geometrically more flexible.
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Again, given the significant research invested in optimal meshing algorithms,

the software Tetgen [94] was used to generate meshes consisting of tetrahedral

elements. This process is based upon performing Delauney triangulation of the

convex hull of the volume to be meshed and performing iterative refinement

based upon some termination conditions to generate the mesh. In ultrasonic

FE calculations, typically the termination condition is when a desired number of

nodes per wavelength has been achieved. Evidence suggests that approximately

10 elements per wavelength at the highest frequency is appropriate [93]. As the

mesh coarsens and the average element volume increases, numerical inaccuracy

arises which can cause incorrect predictions of the amplitude and velocity of

waves in the model. Doubling the number of elements per wavelength halves

the edge length of an element, increasing the number of elements in the model

by a factor of 4 in 2D and a factor of 8 in 3D. As the edge length halves, the

time step used in the calculation must also halve, resulting in an additional

factor of 2 increase in the evaluation time. This leads to a significant increase

in the run time of a single model and thus a large increase in the total time

required to accurately map the response function. There is therefore a trade off

between accuracy and evaluation time of a model.

This is further complicated by the fact that non-uniform meshes have a

range of element sizes and the minimum distance between any two connected

nodes determines the time step of the simulation, where a larger time step

results in fewer time increments and thus a shorter simulation time. If the time

step is too large then the model is numerically unstable and infinities arise in the

output. Tetgen has the ability to refine a mesh until the volume of the largest

element is below a desired value however, without modification to the source

code, it is not possible to define a minimum value and this would require mesh

coarsening within the Delauney triangulation framework. It was decided that

this limitation would be acceptable given the effort required to either write a

new meshing program or to modify these programs to accommodate a minimum

element size. It should be noted that these programs have been highly optimised

and are able to generate meshes quickly, significantly faster than the built in

meshing routines of Abaqus.

A simple investigation was performed into the effect of element size on

accuracy. In the context of this inspection, the use of a gated threshold requires

an accurate estimation of the amplitude and arrival time of the reflected signals.

The latter therefore requires accurate estimation of the wave velocity in the

material. The simple model used is shown in Fig 5.2. This consists of a 10
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Figure 5.2: The geometry of the simple model used for the investigation
into the effect of varying the volume of elements within the mesh. It consists
of a 10 mm cube of aluminium (black) with a square element transducer of

side 5 mm on top (blue).

mm3 cube of aluminium with a 5 MHz, 5 cycle Gaussian tone burst input into

the cube. A square transducer element was used of dimension 5 mm and the

model time was approximately 6 µs to allow for a reflection off the back wall

with some extra time to allow for variations in the ultrasonic wave velocity.

Ultrasonic waves are induced into the model through the displacements of the

nodes in the transducer footprint. These displacements are perpendicular to

the surface and their amplitude varied to induce a sinusoidal wave. The other

dependant properties of the model, such as the time step, are calculated in the

generation of the model as these are a function of properties of the mesh.

The amplitude of the first reflection as a fraction of the amplitude of the

input pulse is shown in Fig. 5.3 which demonstrates that the coarseness of

the mesh has a significant effect on the response. It also has an effect on the

velocity of the wave in the model, and therefore the arrival time of the reflection,

as shown in Fig. 5.4. A coarser mesh reduces the measured velocity of the

longitudinal wave in the model, with the velocity converging as the mesh is

refined. Clearly a minimum value of the maximum element volume is required
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Figure 5.3: The amplitude of the first reflection from the back wall of the
sample as a fraction of the initial amplitude, as a function of the target mesh

size.

to achieve this convergence in both amplitude and velocity however refining

the mesh beyond this point provides no further increase in accuracy whilst

increasing the evaluation time of the model, as shown in Fig. 5.5. In the

context of inspection qualification, this sweet spot should be aimed for to both

minimise the time required for qualification whilst maintaining the accuracy of

the result. In this case, the result of over-refining the mesh could result in an

increase in the run time of a factor of four which, if many hundreds of models

are evaluated, could potentially result in days of wasted effort. Both of these

measurements converge at approximately 10−13 m3. Therefore an aluminium

sample with a 5 MHz input frequency requires approximately 104 elements per

mm3 for accurate modelling, or approximately 21 nodes per mm, thus this

1000 mm3 sample requires approximately 10 million elements. In practice, real

specimens will be significantly larger than this therefore will require on the order

of tens of millions of elements.

The major bottleneck in this stage of generating the model is in the gen-

eration and transfer of the mesh information, the node locations and element

assignments, into a Pogo input file. In practice a useful mesh may be of the
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Figure 5.4: The wave velocity of the longitudinal wave in the model as a
function of the target mesh size.

Figure 5.5: The time required to calculate the model as a function of the
number of elements in the model.
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order of tens of millions of elements and millions of nodes. Tetgen, like all mesh-

ing programs, requires significant amounts of system resources to generate the

mesh, typically more than 16 GB of RAM for meshes of tens of millions of ele-

ments and takes an appreciable time. It is not always possible to parallelise this

process given the required resources therefore this process is typically serialised.

This is further complicated by the need for error checking of the output of the

Pogo model and if necessary, due to either insufficient GPU RAM or the model

being unstable, the mesh may need to be regenerated using a coarser element

volume constraint. Therefore maximising the occupancy of the CPU and GPU

to maximise the efficiency of model generation and execution is not trivial. An

improvement of this process would be to create a parallel job submission system

in which meshes to be generated and input files could be queued to the CPU

and these input files could then be queued to the GPU for execution. Time

did not allow for this in the project however this would be a very worthwhile

avenue of investigation if this was to be performed in anger again.

Within this process, Tetgen uses a simple text file format to store the

information about the elements and nodes in the mesh. For meshes with tens

of millions of elements these files can be of the order of gigabytes in size. This

is a significant amount of text to parse into a floating point binary format

and for some models this part of the work flow may take up to 40% of the

total time. Ideally, this could be accelerated either by integrating the code into

the input file writer, for example in Python using a Cython wrapper, or, less

effectively, writing the files out into a binary format which would save parsing

the information on both ends of the transfer. Presently neither of these were

implemented however ideally, should this work continue, they would be and the

former would be significantly more efficient than the latter.

Prior to running a meshing program, the volume that is to be meshed

needs to be defined. This problem is not unique to meshing but is common in

a range of fields, primarily computer aided design (CAD). The generation of

a single geometry that describes a volume is trivial to perform by a human in

a CAD program however automating this process for variations in parameters

of the geometry, such as the length and height of the crack, is not trivial and

requires some coding. This therefore requires a defined format that describes

the geometry which can be modified using code.

A common and useful format for defining a volume is a Boundary Rep-

resentation (BRep). A BRep consists of defining the volume in terms of the
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facets that enclose it and within this the polygons that define each facet. The

polygons are described by the points that are the corners of polygons and the

lines which join the points to make the polygon. This is a simple format which

may be easily written into a text file and is known as the poly file format. A

complete description of the format along with some example input files can be

found here [94]. The advantage of this format is that the location of individual

nodes can be redefined without having to redefine the entire facet, for example

the tip of a crack can be moved without having to redefine any other lines or

facets. This format is also easy to generate analytically, allowing for the easy

automation of this process. The main difficulty is in combining objects, such

as placing a crack on the side of a cylinder. This generally requires the modifi-

cation of the facets of at least one of the objects so that they become attached

however this can be done in an automated fashion. This process must also be

tested to ensure that the geometries passed to the meshing tool are valid. It

is not possible to generate and test every possible geometry therefore the use

of the corner cases of the parameter space can be generated and validated as

correct inputs of the meshing tool. This provides confidence that the automated

geometry process is robust. It is also important to include error checking and

handling in this process so that models that fail can be recorded and modi-

fied as necessary to obtain valid geometries. A significant amount of effort was

expended developing the functions and work flow necessary to perform these

operations in an automated fashion. The result of this process is a library of

robust parametric definitions of geometries which were needed in this project

which is now available in a public GitHub repository [95].

5.2.3 Precision

A question that arises in any numerical model is that of its precision and

accuracy. The question of accuracy has been discussed previously and will be

further considered where models are compared with experiments. This section

deals with the issue of numerical precision of Pogo.

There are two main sources of error in numerical simulations: accumulated

rounding error and error caused by data corruption in memory. The former

is caused by having insufficient bits to precisely compute operations or the

inability of the binary basis to represent some numbers. The latter is caused by

a bit in memory undergoing some excitation which causes it to change state, thus

changing the number stored in memory. The former can be reduced through
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using more bits (using double rather than single precision) and using a large

range of the binary representation by multiplying all numbers by a constant

factor. The latter can be guarded against through the use of Error Correcting

Code (ECC) memory which is present in nVidia’s more expensive Quadro and

Tesla cards however this does come at a cost of slightly reduced performance.

There is evidence to suggest that this phenomenon is less prevalent than it was

in the past due to improved manufacturing [96] although it may still be an

issue [97]. Most errors of this kind are caused by defective hardware rather

than external sources therefore it is worth performing rigorous acceptance tests

of hardware before using it in anger. These errors were investigated by repeating

a simulation to determine if any there is any difference between the results. The

test scenario was a 2D square with an irregular triangular mesh. The mesh was

created with a defined maximum element area therefore there are a range of

element sizes within the mesh. The mesh was created to achieve a maximum of

5 elements per wavelength at twice the centre frequency of the input pulse. A

5 MHz, 5 cycle Gaussian tone burst was applied to a single node in the centre

of an edge of the square, designed to be representative of signals likely to be

present in ultrasonic NDT applications. The simulation consisted of 200,000

time steps for a total duration of 100 µs. This node is monitored along with

5 other randomly chosen nodes. This simulation was repeated for both the 32

bit and 64 bit versions of Pogo and these models were then repeated 100 times.

No discrepancy was found between the 32 bit and 64 bit versions, both results

were repeatedly identical. This suggests that there is minimal (if any) rounding

error in the 32 bit calculations. Similarly, the results of repeating both the 32

bit and 64 bit are identical, suggesting that in both versions there is minimal (if

any) random numerical error caused by bit flipping in either version. The 32 bit

version had an average run time of 18.52 ± 0.16 s and the 64 bit version 22.04

± 0.29 s. This is a difference of approximately 20%, similar time differences

have also been consistently observed throughout this work. Given the identical

nature of the results and the difference in run time, the 32 bit version was used

for all simulations as minimising the run time is an important part of performing

a qualification efficiently.

5.2.4 Modelling Transducers on Wedges

A common feature of ultrasonic inspections is the use of a wedge to direct

the beam within a material. In practice coupling gel is used to provide improved
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coupling between the wedge and the specimen, filling in the air gap that would

otherwise be present in dry coupling. However, given that Pogo is unable to

model gels as they are not elastodynamic, faithfully recreating this scenario in

Pogo is not possible. The modelling of ultrasonic transducers is also compli-

cated as they are complex devices, typically consisting of a piezoelectric element

surrounded by some backing materials. It is therefore far easier to experimen-

tally measure the output of a transducer and apply this as a load under ideal

coupling conditions. The liquid nature of the couplant is accounted for in the

model by only applying the load forces normal to the surface of the specimen.

The primary effect of varying the coupling is to provide a change in gain of the

signal, therefore a first order model of this effect is to apply a multiplicative fac-

tor to the amplitude of the measured displacements. This is particularly useful

as the effect of coupling thickness can be included in calculations of metrics of

an inspection as an independent parameter through the methods discussed in

Chapter 3.

Whilst the wedge is not modelled, angled beams still need to be induced into

the model to accurately model the inspection. Angled beams can be induced

into a material by applying loads directly to the surface of the specimen and

using appropriate delay laws to propagate the ultrasound at a desired angle.

This concept is illustrated in Fig. 5.6. The delay ∆t for a given node which is

a distance ∆x from the edge of a wedge at an angle θ is given by

∆t =
∆x sin(θ)

v
, (5.1)

where v is the velocity of the wave of interest. This is calculated for each node

in the footprint of the transducer and a bespoke load is defined for each node.

If an analytically defined signal is used then the implementation of the delay

is trivial however for experimentally measured signals, it is easiest to perform

this delay in the frequency domain, multiplying the input spectrum by a time

delay as

f(t+ ∆t) = F−1(F (ω)e−iω∆t), (5.2)

where F (ω) is the Fourier transform of the input signal f(t), F−1 is the inverse

Fourier transform and ω is the angular frequency. This process is also used

on reception as the received signals have to be further delayed to simulate the

return of them to the transducer at the end of the wedge. This is again achieved

using phase delays applied in the frequency domain and adds extra run time to

the model. However, this time is normally far less than simulating the wedge
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Figure 5.6: A diagram of the delay method for generating an ultrasound
beam (blue) at an arbitrary angle θ in a material. The input signals (red) for
each node (black dots) on the surface of the specimen (black solid line) are
delayed by a time dt dependent upon the node’s distance dx from the edge

of the transducer and θ.

and is an easier process to automate. The limitation to this process however is

the required RAM on the GPU to store all of these input signals. In the case of

large models, this can potentially become prohibitively expensive as a significant

proportion of the available memory will have to be dedicated to storing these

signals. As Pogo requires a load value for each time step in the model, this also

becomes an issue when there is a large number of time steps. In this case, when

a short initial pulse is used in the model, a large number of zeros still have to

be stored for the remainder of the time steps, wasting resources.

5.2.5 Pogo Simulations in Parallel

Modern graphics cards support Multiple Input Multiple Output (MIMO)

instructions, practically this means that they are capable of running multiple

models simultaneously if enough RAM is available. This is especially useful

for Full Matrix Capture (FMC) simulations of phased arrays in which each

transducer needs to be fired in turn and listened to on all others, requiring a

separate model evaluation for each transmission. Parallel models can be easily

implemented using parallel mapping functions where the limitations are the
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Figure 5.7: Result of changing the number of parallel processes used to run
16 identical Pogo jobs on an nVidia GeForce Titan X card.

number of CPU threads (one per model) and the available RAM on the GPU.

Using a typical desktop CPU (an Intel Core i7), this can run 8 jobs in parallel.

This was investigated using a simple small 2D model, chosen such that the

memory footprint is small enough to fit 8 jobs on the GPU simultaneously. The

result of this is shown in Fig. 5.7 which demonstrates that parallelisation can

produce a significant acceleration of the process. Whilst individually each job

takes longer to run due to fewer processors available to each job, overall the

total time is reduced, effectively reducing the run time per model. A plateau

in the run time is also present in Fig. 5.7 which may be attributed to the

limitations on memory bandwidth, writing to disk limitations and the trade off

in the number of GPU processors per job.

5.2.6 Experimental Validation

A key stage in the process of model assisted qualification is to demonstrate

that the numerical model being used is an accurate representation of the real

inspection. This is therefore something that must be achieved for this scenario

to give credence to the modelled result. Two specimens of this scenario were
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manufactured to provide experimental test pieces on which to perform experi-

mental validation. One is defect free, that is it consists of only an aluminium

plate with a hole in its centre, and one has two notches in it of different lengths,

one on each face, created using electronic discharge machining (EDM).

The primary difficulty in matching experimental with simulated results is

the matching of the properties of the probe. The probe has a rectangular foot-

print and is therefore defined in the model by two physical parameters, the

length and width of the face of the transducer that is on the specimen. It

was found through modelling trials that the two parameters are independent

therefore could be tuned sequentially. This significantly reduces the complexity

of matching these parameters. It is therefore possible to perform two scans of

the defect free specimen, one away perpendicularly from the side wall (Scan 1)

and one parallel to the hole at a distance that maximises the highest response

(Scan 2) to tune the two parameters respectively. However, it was found that a

constant force across the face of the transducer did not result in a match of the

experimental and measured profiles. It was found that a two-dimensional Gaus-

sian force profile across the transducer yielded good agreement between model

and experiment and that the width of these distributions in each axis could be

tuned independently. Physically, this is reasonable as the actual piezoelectric

element that drives the transducer is significantly smaller than the footprint

of the transducer and the beam of ultrasound will diverge before hitting the

surface therefore causing a peak in the centre and lower amplitude at the edges.

The properties of these distributions were therefore tuned alongside the length

and width of the transducer to match experimental results.

There are two main challenges to performing these measurements: precisely

knowing the location of the probe and maintaining good coupling between the

probe and specimen. The former can be alleviated by co-locating the peak am-

plitudes of the experimental and measured scans. Therefore only the change in

position is required rather than the position relative to the specimen. The latter

can be controlled through careful application of the couplant and maintaining

a constant force on the transducer to keep it in contact with the specimen.

This was achieved through the use of a carefully constructed rig attached to

a micrometer stage which allows precise positioning of the probe and through

many averages the effects of small changes in couplant thickness was minimised.

The results of this for Scan 1 and 2 are shown in Fig. 5.8 which largely shows

good agreement between the model and experiment. The maximum amplitude

of Scan 1 was used as a normalisation factor for the measurements and the
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profiles agree well in both amplitude and shape. The exception to this is the

presence in Scan 1 of some reflections at positions beyond 16 mm which are not

present in the experiment. This is due to reflections from the edge of the plate in

the FE model. This model can then be tested against a defect in the specimen

(Scan 3). The result of this is shown in Fig. 5.8 which shows good agreement

in both amplitude and shape of the profiles. Given this good agreement, these

scans provide sufficient validation of the numerical model of the inspection and

it can thus be used for mapping the parameter space.
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Figure 5.8: The modelled and experimentally measured scans for the val-
idation of the numerical model. The three scans are Scan 1 (top), Scan 2
(middle) and Scan 3 (bottom). The inset diagrams show the probe (black
square), the direction of the scans (black arrows) and the direction of the

ultrasound beam (red).
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5.3 Two Parameter Case

In the first instance, the properties of the crack are taken to be fixed with

a height of 2.89 mm, length of 5 mm and an angle of 0o. The rotation of the

probe is taken to be fixed and the probe’s lateral and perpendicular position

were varied. Each of these parameters was assigned 11 values each, yielding a

small parameter space of 121 points. Given this small volume, it was possible

to fully map the response space, as shown in Fig. 5.9. This shows a response

function which falls off in all directions away from an optimal position, quali-

tatively appearing to be the product of two Gaussian functions of each of the

two parameters. This also appears to decrease faster as the position in the

perpendicular axis changes than as the lateral position changes.

5.3.1 Response Function Mapping

Using the full data set it is possible to sub-sample and interpolate to test the

predictive algorithm. Sampling was performed using the ESE LHD algorithm

described in Chapter 4. As the full space was mapped, it is possible to repeat

this process to obtain a measure of the repeatability of the process. An example

of this process is shown in Fig. 5.10 which shows an example set of sample points

chosen for both the error set and sets used to build the predictors. The sampling

and interpolation algorithm was repeated 11 times by varying the choice of error

set and initial sample set with all four interpolation algorithms applied each

time. The MARS algorithm used a maximum degree of interaction of 4 and

smoothing was not applied to the resulting interpolant. The Gaussian RBF

function used the mean distance between sampled points as an approximation

for the parameter β in Eqn. 4.18. The linear and cubic RBF functions require

no specific parameter definitions.

The results of performing interpolation using these methods are shown in

Fig. 5.11 for the comparison to both the independent error set and the full data

set. The samples and the independent error set were the same for all of the

methods thus providing an accurate comparison of the interpolation methods.

Of these methods the cubic radial basis function and the cubic interpolation

are shown to be the best methods as they produce the best interpolators, they

have the smallest predictive errors, and are the most consistent, they have the

smallest error bars showing the smallest variations between different sample sets.



110 Chapter 5. Example Inspection Qualification

Figure 5.9: The response map for the 2 parameter case, mapped using a 3D
finite element model in Pogo. The crack has a fixed length of 5 mm, height

of 2.89 mm and rotation of 0o. The rotation of the probe is fixed at 0o.
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Figure 5.10: Example of points used to sample the parameter space. The
error set is used to test the quality of the interpolation. The corner points

and sample set are used to build the interpolator.

It should be noted that the cubic interpolator can only be applied to parameter

spaces of one or two dimensions therefore can not be used for high dimension

spaces. The Gaussian RBF function does not perform as well primarily due

to this interpolation function being a poor representation of the underlying

response function. Whilst it is unsurprising that, given the smooth nature of

the response function, an appropriate interpolation function performs well, it is

good demonstration of applying the mapping algorithm to simulated inspection

data.

5.3.2 Inspection Metrics

The response map can be used to calculate metrics of the quality of the in-

spection. The combination of this data with an adjoint probability space allows

a PoD curve to be calculated for each parameter. The probability space can

be approximated by estimating the probability density functions for each pa-

rameter. The probability density function for the lateral position was modelled

by a Gaussian of mean 6.5 mm and standard deviation 1 mm. Similarly, the
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Figure 5.11: The error in the prediction of the response space when com-
pared to an independent error set (top) and the full response map (bottom)
using a range of interpolation methods: Multivariate Adaptive Regression
Splines (MARS), linear interpolation, cubic interpolation, a cubic Radial
Basis Function (RBF) and a Gaussian RBF. The error is calculated as a

fraction of the maximum response.
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probability density function for the perpendicular position was also modelled

by a Gaussian with mean 7.5 mm and standard deviation 1 mm. It is assumed

that the variation of parameters occur independently, that is the value of one

parameter has no effect on the likelihood of a given value of another parameter.

A decision threshold on the response of 0.5 of the maximum response amplitude

was used. The PoD curves as a function of each of the two variable parame-

ters are shown in Fig. 5.12, calculated using the fully mapped space. These

plots demonstrate one advantage of this method over traditional qualification

approaches, that it is possible to produce PoD curves for each parameter that

has been varied in the mapping process from the same data set. The PoD curve

for the perpendicular position vary far more across the parameter range than

PoD curve for the lateral position. This suggests that the inspection is is more

sensitive to the perpendicular position of the probe than the lateral position.

The relative importance of parameters can be calculated using Sobol sen-

sitivity indices, as discussed in Chapter 4. The results of this process, as a

function of the number of points sampled, is shown in Fig. 5.13. The cubic

interpolation method is used to build the necessary interpolator. This shows

that the perpendicular position of the probe is the most significant parameter,

as suggested by the PoD curves in Fig. 5.12. There is also very weak inter-

action between the parameters, shown by the Sobol index for this interaction

being approximately zero, suggesting that they are approximately independent.

If this is true then the response function can be expressed as

R(Ω) = f0 + f1(xP ) + f2(xL), (5.3)

where f0 is a constant intercept term, f1 and f2 are functions of the probe’s

perpendicular position xP and lateral position xL. The intercept term can be

calculated by averaging the response over Ω. The functions f1 and f2 can be

numerically evaluated by fixing the value of the other parameter and varying

the parameter of the respective function. After two iterations of the sampling

and interpolation algorithm, the model has been evaluated 26 times and the

sensitivity indices suggest that the effect of the parameters on the response

function are approximately independent, that is the response function can be

approximated by Eqn. 5.3. A further 9 model evaluations per parameter are

required to generate sufficient data to sample a complete slice across the pa-

rameter space (11 points) that is not on the edge, bringing the total number of

models to 45 model evaluations. A cubic spline was used as an approximation

of each of the functions in Eqn. 5.3 as a cubic interpolation has been shown to
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Figure 5.12: The Probability of Detection curves for the two variable pa-
rameters in the inspection, the perpendicular position of the probe (top) and
the lateral position of the probe (bottom). The crack has a fixed length of 5
mm, height of 2.89 mm and rotation of 0o. The rotation of the probe is fixed
at 0o. A decision threshold on the response of 0.5 of the maximum response

amplitude of the first reflection was used.
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Figure 5.13: The sensitivity indices for each parameter and their interaction
as a function of the number of sampled points.

be a good interpolator for this function. These functions are shown with the

full data set in Fig. 5.14. The error in the prediction of this model is shown

in Fig. 5.15 which has a mean absolute value of 4%. This value is skewed by

the presence in some areas of a much greater error and the median value of

the error at the 121 sampled points is 0.02%. When the independent functions

are built using the full data set, the mean absolute error is 3%. This suggests

that the use of only a single slice of data in each parameter attains close to the

best possible approximation of the independent functions. It should be noted

however that whilst this is a good demonstrator of this method, given the very

good predictive nature of the interpolator, in this scenario the reduction of the

parameter space through independence is unnecessary.

5.4 Three Parameter Case

In reality, the operator will rotate the probe as well as translating it on the

surface, thereby introducing an additional degree of freedom into the inspection

and creating a three dimensional parameter space. The rotation of the probe
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Figure 5.14: The data and fit for the first order functions when treating
the two variable parameters as having an independent effect on the response
of the function. The crack has a fixed length of 5 mm, height of 2.89 mm

and rotation of 0o. The rotation of the probe is fixed at 0o.



5.4. Three Parameter Case 117

Figure 5.15: The error in the prediction when the parameters are treated as
being independent, plotted as a fraction of the maximum response amplitude.

on the surface can be easily incorporated into the previous model and requires

only a change of definition of which nodes on the surface constitute the probe.

Appropriate modification of the calculation of the delay laws is also necessary to

generate a beam at the desired angle in the specimen. This can be accomplished

by rotating the positions of the nodes that constitute the probe onto a plane

parallel to a single axis, in this case the axis for which the rotation of the probe

is zero, using the two dimensional rotation matrix[
x′

y′

]
=

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

][
x

y

]
, (5.4)

where x and y are the location coordinates of the nodes, x′ and y′ are the rotated

coordinates and θ is the angle of rotation. In this scenario the range of possible

rotations was ±10o from the probe being perpendicular to the crack.

This parameter was again assigned 11 values across this range, giving a

total parameter space volume of 1331 points at this sampling resolution. This

is a relatively large parameter space and given the appreciable model evaluation

time of the order of 15 minutes, it was not fully mapped. The sampling and
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Figure 5.16: The error in the prediction using of the 3 parameter response
space when compared to an independent error set. The crack has a fixed

length of 5 mm, height of 2.89 mm and rotation of 0o.

interpolation algorithm using the ESE LHD algorithm, testing against an inde-

pendent error set, as discussed in Chapter 4 was applied to map the response

and build an approximation of the response function. The results of this pro-

cess are shown in Fig. 5.16. The linear interpolator, MARS algorithm and the

cubic RBF all perform well, giving a decreasing predictive error. Of these, the

cubic RBF gives the lowest predictive error. The Gaussian RBF performs worst

again, due to the basis function being a poor representation of the underlying

response function. It also shows that it is possible to achieve a low predictive

error after mapping a small proportion of the parameter space, in this case a

smaller proportion of the parameter space than the two parameter case dis-

cussed previously. This is linked to a minimum density of points required to

obtain a good prediction: as the number of parameters increases, the number

of points required to obtain this density increases but at a slower rate than the

increase in the volume of the parameter space. It is not possible to predict the

required number of sampled points to map an unknown response function as it

is highly dependent upon the smoothness of the function, in general a smoother

function will require fewer sampled points.

The probability distribution for the rotation of the probe is a Gaussian with
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Figure 5.17: The Probability of Detection for the three parameter response
space as a function of the rotation of the probe. The crack has a fixed length

of 5 mm, height of 2.89 mm and rotation of 0o.

a mean of 0o and a standard deviation of 3o and the probability distributions for

the perpendicular and lateral positions are the same as in the two parameter

case. This information can be used to plot the PoD for the rotation of the

probe as well as the PoD for the other parameters, as shown in Fig. 5.17, 5.18

and 5.19. A threshold on the response of half of the maximum was used for

sentencing, the same as the two parameter example. Figures 5.18 and 5.19 show

a significant change in the PoD curves for the two positional parameters when

the rotation of the probe is considered. This suggests that the rotation of the

probe is a significant parameter which has a noticeable effect on the response

of the inspection. This can be quantified using Sobol indices and these, as

a function of the number of sampled points, is shown in Fig. 5.20. These

all converge after approximately 4 iterations of the sampling and interpolation

algorithm and the minor changes as the number of iterations increase can be

attributed to a combination of numerical error in their calculation, caused by the

use of Monte Carlo integration, and small changes in the underlying map of the

response function as more points are added. This shows that the perpendicular

position of the probe remains the most significant parameter of the inspection

and that the rotation of the probe has a greater impact on the response of the
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Figure 5.18: The Probability of Detection for the perpendicular position
of the probe as function of two parameters and three parameters. The crack

has a fixed length of 5 mm, height of 2.89 mm and rotation of 0o.

inspection than the lateral position of the probe. However, for all parameters

the total sensitivity indices are not approximately equal to their total sensitivity

indices which demonstrates appreciable interaction between them. Based on

this, it is not possible to discount any parameters as they all have a significant

total order sensitivity index. As they are clearly not independent, it is also not

possible to reduce the dimensionality of the parameter space through treating

some parameters as being independent. This example demonstrates the need

to consider all parameters which may have a non-trivial impact on the response

as the ignoring of parameters which have an appreciable impact can lead to an

incorrect measure of the reliability.

In practice, the properties of the defect, such as its length, will be the

parameter of interest, therefore variations in its properties must be accounted

for. This larger parameter space is investigated in the following section.
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Figure 5.19: The Probability of Detection for the lateral position of the
probe as function of two parameters and three parameters. The crack has a

fixed length of 5 mm, height of 2.89 mm and rotation of 0o.
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Figure 5.20: The first order sensitivity indices (px, py and pθ) and the total
order sensitivity indices (Tpx, Tpy and Tpθ) as a function of the number
of sampled points. The total sensitivity indices incorporate the interaction

between parameters.
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5.5 Eight Parameter Mapping

The previous qualification assumed that the crack was of a fixed size and

orientation and that the only variations present were due to the operator moving

and rotating the probe. In practice, the size and rotation of the crack can

vary, therefore introducing a further three parameters into Ω. As these are

the parameters of interest in this inspection it is essential to include these.

Equipment factors may also be important, therefore the electrical noise in the

system and the effects of varying couplant thickness will have an impact on the

response and must be considered. This brings the total dimensionality of Ω to

eight parameters which is evidently too large to evaluate the model at every

coordinate.

If the inspector is properly trained, they should be able to apply couplant

consistently in order to perform a repeatable measurement no matter the posi-

tion or orientation of the probe or the properties of the defect, thus it can be

considered independent of the other parameters. Similarly, the electrical noise

present in the system is not affected by the actions of the operator or defect

properties and can thus also be considered independent. These parameters can

therefore be incorporated into the calculations of inspection metrics through the

methods described in Chapter 4, reducing the dimensionality of the numerically

modelled parameter space to six parameters.

5.5.1 Modelling Independent Parameters

The two independent parameters are better suited to being experimentally

measured than being numerically modelled. In the case of electrical noise, the

transducer was placed on the surface of the specimen with appropriate coupling

applied and left in place for an hour. The use of an automated data collection

method, in this case by programming data acquisition through the interface

of the oscilloscope with a PC, minimises human impact on the inspection. A

fixed time gate was applied to each of the 10,000 collected time traces where no

reflections were present, thus in theory having a zero amplitude. The measured

amplitudes in this window were recorded for each trace and this data was used

to generate a distribution, found to be approximately a normal distribution, of

the noise in the measured signals. The mean of this distribution is 0.0 and the

standard deviation is 1.0% of the maximum response amplitude.
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Figure 5.21: The distribution of response amplitude caused by changes in
the thickness of couplant.

The effect of coupling thickness can be quantified experimentally through

performing a measurement consistently in which the only parameter that may

vary is the thickness of the applied couplant. This is achieved through perform-

ing an inspection of the back wall of a specimen repeatedly by removing the

probe, reapplying the couplant and performing the measurement on the same

location on the specimen. The amplitude of the first reflection is used as a

normalisation factor for subsequent reflections. The histogram of this data is

shown in Fig. 5.21, from which a numerical probability density function can be

derived for use in the calculation of inspection metrics.

5.5.2 Automated Model Generation

The variability of the properties of the crack introduces significantly greater

complexity into the automated generation of models. The allowance of variation

in rotation, length and height of the crack introduces more failure points in the

automated work flow. One major challenge is that the meshing algorithm is

capable of producing a mesh with too many nodes and elements to fit within

the available GPU RAM, which was found to occur in approximately 30-40%

of models. The sampling and interpolation algorithm requires a finite result to

be obtained for as many sampled points as possible and the omission of data

points will degrade the quality of the interpolator and therefore the accuracy of
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the response map. Thus a failure rate of 30% is not acceptable and will result

in significant wasted effort.

As the amount of required RAM is dependent upon more than just the

number of nodes and elements, it is not trivial to calculate the amount of

required memory and whether this will exceed available resources. Therefore

the simplest way to test if the model will be evaluated successfully is simply to

attempt to evaluate it and then test whether a finite result is obtained, rather

than an error of some nature in the case of a failed job. The built-in exception

handling functions of Python make this process easy to perform, simplifying

the check. In the case that a model is unsuccessful, the maximum element size

constraint is relaxed by a small percentage and the model rebuilt. This process

continues until a finite result is obtained. In practice, it has been found that

the model typically exceeds the available resources by only a small percentage

therefore only a small increase in size of the elements is required. This was not

found to significantly degrade the accuracy of the model. This ensures that

almost, if not, all the sampled data points return a finite result and thus can

be used in the construction of the interpolator.

5.5.3 Parameter Space Mapping

The results of applying the sampling and interpolation algorithm are shown

in Fig. 5.22. All interpolation methods are shown to work well with no one

interpolation method being clearly best. This is due to all of the interpolation

functions being a good approximation of the underlying response function on

the length scale of of each interpolator. They all produce a small predictive

error of approximately 4% of the maximum response amplitude after 600 model

evaluations, calculated by comparing the interpolated result to an independent

error set, which required approximately a week of simulation time. A slice of

the response map is illustrated in Fig. 5.23 which shows a slice of the data

for a fixed set of crack properties and a fixed probe rotation. This shows a

realistic result; there is a strong reflection that corresponds to the reflection

from the base of the hole and a weaker reflection from the crack which tails off

as the crack decreases in height. This method provides a visual check that the

response map produced is realistic.
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Figure 5.22: The mean absolute error in the prediction of the response
space when compared to an independent error set for the six parameter in-
spection mapped using a finite element model. A range of interpolation
methods are used: Multivariate Adaptive Regression Splines (MARS), lin-
ear interpolation, cubic interpolation, a cubic Radial Basis Function (RBF)
and a Gaussian RBF. The error is calculated by comparison of interpolated

results to an independet error set, normalised to the maximum response.
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Figure 5.23: A slice of the interpolated data, plotting the response as a
function of probe position. This can be used as a qualitative check of the
quality of the interpolation. The response decreases with increasing lateral

position due to the triangular profile of the crack.
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5.5.4 Calculation of Reliability Metrics

In this inspection, the crack length is the parameter of interest. An initial

estimate of the probability distribution is that all of the parameters are inde-

pendent and are estimated as follows. The position of the probe in the lateral

direction is a normal distribution with a mean position of 10 mm away from the

root of the crack and a standard deviation of 4 mm. The position of the probe

in the perpendicular direction is also a normal distribution with a mean of 2

mm from the root of the crack and a standard deviation of 4 mm. The rotation

of the probe is estimated to be uniformly distributed. It is more likely that the

crack grows radially out from the hole rather than at high angles therefore the

defect angle follows a normal distribution with a mean of 0o and a standard

deviation of 15o. All values of the length and height of the defect are assumed

equally likely therefore these both follow a uniform distribution. It is also as-

sumed that all combinations of all parameters are possible. The resulting PoD

curve is shown in Fig. 5.25. This shows that the PoD increases as the length

of the crack increases. This physically is reasonable as the size of the reflecting

area of the defect increases as the length of the crack increases, therefore pre-

senting a larger target for reflection. However, there is only a relatively small

increase in the PoD from small crack sizes to large crack sizes, suggesting that

the inspection is not particularly sensitive to this parameter.

The Sobol indices for the inspection parameters are shown in Fig. 5.24 as a

function of the number of samples, calculated using the linear interpolator. The

indices for the probe parameters converge as the number of samples increases

however some indices show a sudden change at approximately 600 samples,

most noticeably in some of the total sensitivity indices. As the Sobol indices

are a metric of global sensitivity, these variations are caused by changes in

the underlying response function, specifically the addition of more sampled

points changes the interpolator sufficiently to induce a significant change in

the response function. This is manifesting in increased interaction between

the parameters which is causing greater changes in the total sensitivity indices

compared to the first order indices.s

Figure 5.24 indicates that the perpendicular position of the probe is the

most significant parameter in terms of direct, first order effect however the lat-

eral position of the probe has the greatest total effect. This is due to greater

interaction between the lateral position and the variation in the other param-

eters. These probe parameters are more significant than the crack parameters
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Figure 5.24: The first order and total order sensitivity indices, denoted
by the prefix T , for the probe parameters (top) and the crack parameters
(bottom). The sudden change in indices at approximately 600 samples is
caused by a change in the underlying response function caused by the addition

of more sampled points.
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Figure 5.25: The probability of detection curve calculated using different
probability distributions. The independent curve uses a probability function
based on the assumption that all parameters are independent. The non-
independent curve uses a probability function based on a interdependency of
parameters. Using the independent probability function, the effect of halving
the variance of the lateral probe position probability function is shown to have
a less significant effect than halving the variance of the perpendicular probe

position.
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which suggests that the result of the inspection is dominated by human fac-

tors in this case. It is notable that the first order index for the crack length

is approximately 2%. This shows that the inspection is very insensitive to this

parameter which explains the very small variation across the PoD curve as the

response is dominated by the other parameters. As none of the parameters

have a small total sensitivity index, none can be discounted due to insignifi-

cance. Similarly, as none have a total sensitivity index approximately equal to

the first order index, no parameters can be treated as independent and thus

reduce the dimensionality of the mapped response space.

The perpendicular position of the probe has the greatest direct impact

on the response, therefore this suggests that the operator should most focus

their effort on this parameter and secondly on the lateral position of the probe.

The effect of the operator focussing more on these parameters, and therefore

halving the standard deviation of the variability in these axes, is shown in Fig.

5.25. This shows that focussing more upon the perpendicular position leads to

a greater increase in the PoD than focussing upon the lateral position, which is

expected given their relative importance. This information is potentially very

useful to the developer of an inspection and can lead to more reliable assessments

of structural integrity.

In reality, it is more likely that the human controlled parameters are not

independent and that the operator will optimise all three degrees of freedom

simultaneously to attempt to maximise the response which has some dependence

on the properties of the crack. This can be estimated as follows. The position

of the probe (x, y) is transformed into a perpendicular distance r from the crack

and a distance t along the crack from its root at (x0, y0) by calculating

r = (y − y0) cos(cθ) + (x− x0) sin(cθ), (5.5)

and

t = (y − y0) sin(cθ)− (x− x0) cos(cθ). (5.6)

The probability distribution for the r coordinate is a normal distribution with

mean of 10.5 mm and a variance which is itself a normal distribution function

of the height of the crack. The mean is chosen as that is the optimal distance

away from the crack to inspect it, given the angle of the beam and the thickness

of the specimen. The variance is chosen to reflect the notion that cracks with

shorter heights have a smaller distance from the optimal position in which they

can be detected and the operator is more likely to have a final probe position
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in this more narrow range. This distribution has a mean of the maximum crack

height and a variance of 2 mm. The probability distribution for the t coordinate

is again a normal distribution with a mean of 0 and a variance which is itself

a normal distribution function of the length of the crack. The mean is chosen

as it is the optimal location to inspect the crack. The variance is chosen to

reflect the fact that shorter cracks have a smaller range around the optimal

position in which they can be detected and the operator is more likely to finish

with the probe in that range. This distribution has a mean of the maximum

length of the crack and a variance of 3 mm. The rotation of the probe is also

dependent on the rotation of the crack therefore the probability distribution for

this parameter is a normal distribution with a mean of the rotation of the crack

and a variance of 2o.

Using this probability function results in a significant change in the PoD

curve, as shown in Fig. 5.25. This suggests that the metrics are very sensitive

to the choice of probability distribution. This significant variation in appar-

ent capability given the same response function suggests that these probability

distributions need careful, accurate definition to gain an accurate measure of

inspection capability using metrics that are dependent on probability of vari-

ations. This also highlights that methods that make implicit assumptions to

the nature of these distributions, such as the â vs a method, should be used

with caution and evidence of the satisfaction of these assumptions should be

provided alongside any results. This suggests that metrics which do not require

definition of the probability functions, such as Sobol indices, may provide a

more reliable measure of a technique’s capability as they are not sensitive to

changes in the likelihood of variations occurring.

With either probability distribution, the PoD never reaches 1. This is pri-

marily caused by the possibility of cracks with very small heights which present

a very small reflecting area and are therefore very difficult to detect by this

method. It may be more realistic that a crack of a given length may have a

minimum height in which case a subset of this data may be used with differ-

ent probability distributions. This highlights the flexibility of this approach

to calculating inspection metrics; as this will require a subset of the data, the

probability distributions can be changed with no further model evaluations re-

quired.

The PoD may be improved by decreasing the response decision threshold

however this will come at the cost of a greater false call rate. The effect of this
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Figure 5.26: The Receiver Operator Characteristic (ROC) curve for a crack
of 4 mm length. The curve is calculated by varying the response decision

threshold.

can be investigated through a Receiver Operator Characteristic (ROC) curve

calculated for a crack of length 4 mm as shown in Fig. 5.26. The ROC curves

for all of the probability distributions are similar, they are all very close to the

diagonal line of gradient 1 which would be the result of random guessing. This

provides further evidence that this is an ineffective inspection as changing the

threshold is causing similar changes in both the PoD and probability of false

calls, showing that it is ineffective at distinguishing between false calls and true

detections. The primary reason for this is that there is a coherent noise source

in this inspection that has a response of magnitude of at least the magnitude of

the response from the defect with a non-trivial probability of occurring. In this

case, it is the strong reflection from the hole which is present independently

of the geometry of the defect therefore it is always possible that a reflection

from the hole may be misconstrued as a signal from a defect. This may be due

to the incorrect choice of probability distributions and in practice the operator

may be better at distinguishing the reflections from the hole rather than defect.

This would result in a lower probability of these reflections being misconstrued

as a reflection from a defect which would require a different definition of the

probability function.
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Figure 5.27: The mean and maximum absolute error in the calculation
of the probability of detection curve for the eight parameter example, cal-
culated using the linear interpolator and the non-independent probability

distribution.

The convergence of the PoD curve can also be investigated. The result of

this calculation for both the maximum absolute and mean errors in the calcula-

tion are shown in Fig. 5.27. These were calculated using the linear interpolator

and the non-independent probability distribution with the final generated PoD

curve taken as the best estimate of the true result, thus deviations were calcu-

lated relative to this. The results show a dramatic improvement after approxi-

mately 260 samples which can be attributed to the response map for the areas

of highest probability becoming more accurate at this point. Following this, the

maximum error and mean error both follow a downward trend, converging to

the final PoD curve. This example demonstrates that is is possible to obtain

a precise estimate of the PoD using a reasonable number of model evaluations.

As discussed, this result will only be accurate if the probability distributions

are representative of the reality of the inspection.

This process has demonstrated that it is possible to map the response func-

tion for several parameters in a reasonable time using numerical models coupled

with an appropriate sampling and interpolation methodology. It is evident that

more work is required to better estimate the probability distributions as these
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have a significant impact on the outcome of the calculation of inspection met-

rics. Nonetheless, the process is capable of providing significant information on

the relative importance of parameters and how the inspection can be optimised.

5.6 Summary

This chapter has demonstrated the applicability of the general method of

calculating reliability metrics to the ultrasonic inspection of cracks emanating

from fastener holes in wing skins. The single element, angle probe inspection

was modelled using the finite element code Pogo and the necessary tools for

automated model generation developed. The methodology was shown to work

for increasing numbers of parameters and required only a relatively small num-

ber of model evaluations to achieve an accurate result. This was feasible using

desktop hardware and even the most complex, eight parameter example re-

quired less than two weeks of simulation time, meeting the MoD’s relatively

short time scales and not requiring large scale computing resources. This pro-

cess highlighted the need for accurate definitions of probability distributions to

describe the likelihood of variations occurring as it is possible to obtain signifi-

cantly different measures of probabilistic reliability, such as PoD, given different

probability functions. This highlights the need to clearly validate and present

evidence of the validation of the choice of probability distributions, whether

this general metric calculation method, a Monte Carlo method or the â vs a

method is used. Given this, the use of sensitivity indices as a metric of in-

spection capability, which are not dependent on the definition of probability

functions, may present a more accurate measure of inspection capability. The

sensitivity indices demonstrated that this inspection is very insensitive to the

parameter of interest, the crack length, and is in fact dominated by the human

factors present, specifically the location of the probe. This suggests that this in-

spection is relatively poor at detecting changes in crack length and in reality an

alternative method should be sought. The sensitivity index therefore provides a

good metric for directly comparing inspections without having to quantify their

probabilities of variations occurring. This process has thus achieved the aims

of this project and demonstrated a method of quantifying reliability of inspec-

tions primarily using numerical models of inspections rather than burdensome

experimental trials.
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Chapter 6

Conclusions and Future Work

6.1 Summary of Key Findings

1. A generalised approach to calculating metrics of the quality of an in-

spection, such as Probability of Detection (PoD), has been derived which

makes no assumptions of the nature of the response of the inspection or

probability of variations occurring.

2. A model based qualification approach has been demonstrated as a feasible

method of reducing the burden upon experimental trials to demonstrate

the reliability of an inspection technique, assessed by any desired quanti-

tative metric, reducing the time and cost of qualification. This has been

shown to be achievable for a relatively complex inspection using less than

two weeks of simulation effort on desktop computing hardware, a much

lower burden than performing experimental trials.

3. The use of appropriate sampling and interpolation algorithms has been

shown to accurately map the response function using a relatively small

number of model evaluations. This process is independent of the choice of

probability distributions, therefore these can be changed in the calculation

of inspection metrics without requiring further model evaluations.

4. The use of sensitivity analysis, specifically Sobol indices, has been demon-

strated to allow the relative importance of parameters to be assessed, al-

lowing some parameters to be discounted due to insignificance and others

to be treated as independent parameters. This can accelerate the response

mapping process and reduce the required simulation effort.
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5. Sensitivity indices have also been shown to be a useful quantitative metric

of the quality of an inspection as well as a tool to provide insight into the

relative importance of parameters, highlighting which parameters should

be heeded most effort to optimise. In the case of Sobol indices, as they

are not reliant upon the definition of probability distributions, they can

potentially provide a more accurate measure of the capability of an in-

spection technique.

6. The choice of probability distributions has been shown to have a significant

impact on the calculated PoD curve. Further work is required to determine

an accurate method of establishing these distributions.

6.2 Conclusions

The need for a fast and cost effective qualification methodology for in-

spections is well documented and this thesis has presented a model assisted

methodology that can be used to demonstrate the capability of a technique. A

general approach to calculating metrics of the quality of an inspection, making

no assumptions as to the probability of variations occurring or the nature of

variations in the response of the inspection, allows a more accurate measure of

a technique’s capability to be obtained.

This process requires knowledge of every possible outcome of an inspection

and methods of achieving this using numerical models have been presented.

The use of an appropriate sampling and interpolation methodology allows the

response to be accurately quantified using only a smaller sub set of all possi-

ble inspections. The use of quantitative sensitivity analysis, specifically Sobol

indices, allows the relative importance of parameters to be assessed and those

with minimal impact ignored. Sobol indices also provide a novel metric of in-

spection capability, providing a single, unit-less metric of the capability of the

technique. As it incorporates information of the Probability of Detection (PoD)

as well as the Probability of False Alarm (PFA), it is a more complete metric

than either of these in isolation. It is also independent of the choice of prob-

ability distributions, unlike other methods that attempt to combine both PoD

and PFA such as the area under the ROC curve. As the choice of probability

distributions has been shown to have a significant impact on the PoD, not being

dependent upon this choice is a significant advantage.
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These methods have been applied to an example ultrasonic inspection,

developing the model to incorporate increasing numbers of parameters, initially

investigating two parameter and increasing to eight. This process demonstrated

that it is possible to efficiently map the response of the inspection using a

reasonable number of model evaluations, importantly being feasible on desktop

hardware rather than requiring the use of a high performance cluster. A 3D

finite element model was used to map the response of the inspection and it has

been demonstrated that this process can be completed in a matter of weeks,

making it compatible with the MOD’s requirement to qualify an inspection in

under two months. The information generated in this process can be used to

calculate metrics of inspection capability, including the PoD and PFA, which

allows the quality of the inspection to be assessed. The Sobol index for the

parameter of interest, the crack length, was found to be very low, suggesting

that this is a poor inspection for detecting changes in the length of the crack.

This was borne out in the calculation of the PoD curve for the crack length which

showed a relatively small variation in the PoD over the range of crack lengths.

The PoD was found to be very sensitive to the choice of probability distributions

and therefore these require accurate estimation. The information this process

generates allows the relative importance of parameters to be assessed, providing

insight into how the inspection can be optimised. It was shown that focussing

on optimising the most significant parameters, thus reducing their variability,

allows the PoD to be increased. In this case, the human factors, specifically the

location of the probe, were found to be the most significant parameters. This

potentially guides operators to better focus their effort during an inspection

on the parameters which have the greatest impact on the response, and thus

improving the performance of the inspection.

A significant challenge to this methodology becoming widely used within

the MOD is the need for a numerical modelling capability for the inspection of

interest. In the example used in this work, the 3D finite element code Pogo FE

was used. Significant work was invested in developing the necessary tool chain

to allow this model to be used for qualification and obtaining the appropriate

hardware. Therefore for this model to be used in the MOD, the technical ex-

pertise and resources need to be in place before qualification can commence.

This is true for any model that is to be used, an optimised tool chain for the

model needs to be established within the organisation to allow model assisted

qualification to be performed. Should these be put in place, regular efficient

qualifications of inspections should be possible. It should be noted that the time
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and cost of achieving this may be cheaper and faster than obtaining the neces-

sary samples for an experimental qualification, especially if the specimens are

complex or rare. Furthermore, given the large numbers of inspection techniques

that are developed numerically, often a numerical model exists that could be

used to perform qualification therefore the obtaining of the model may not be

such a significant barrier.

6.3 Future Work

The large amount of resources required to perform a rigorous, blind exper-

imental PoD trial was a major barrier in this project to gaining experimental

validation of the PoD curves generated in the example qualification and it was

not possible to perform in the given time frame. This would therefore consti-

tute the largest body of future work with the goal of gaining validation of the

PoD curves. This will be performed by TWI with qualified operators as part

of the larger Dstl program. This will form the validation case for the qualifi-

cation protocol they are writing. Originally, that part of the project was due

to run alongside this research however bureaucratic delays hindered progress.

Another key avenue of future work is to determine accurate and efficient ways

of determining the probability function for an inspection. This is a sufficiently

broad area that it could be covered by several future theses and time did not

allow for a rigorous investigation of this part of the methodology however there

is already a significant body of literature on human factors in NDT that could

leveraged. One avenue to assess this is to record operators performing inspec-

tions and build probability distributions from this. One key challenge of this

will be to ensure that the inspection is being performed in as realistic a manner

as possible and at least some part of this should be performed as part of the

PoD trial performed by TWI. Ideally, these probability distributions will be

reusable, that is they should be transferable between qualifications to a high

degree. This ties in with the notion of a modular approach to qualification and

that the time it takes to qualify a technique will be minimised if as many results

of previous qualifications can be reused.

There are various improvements that could be made to the Pogo tool chain

to accelerate the pre and post processing of models. The main improvement is to

change the meshing output file into a binary format. This would eliminate the

need to parse text files and massively accelerate the pre-processing of the model.
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One further improvement, although it would require much greater alterations

to the meshing program, would be to pass a pointer to the memory location of

the nodes and elements once they are generated to the input file write, thereby

removing the need to write out a node and element files. Various other tweaks

to the tool chain could be implemented, primarily involving optimisations of the

Python code used although the 80/20 rule certainly applies here, the majority

of the time spent writing an input file is creating the mesh so this should be

optimised first.

The sampling and interpolation methodologies presented here are shown

to be capable of mapping the response function in a reasonable time however

there are likely to be better methods. More effort should be expended on the

sparse grid method and whether this can be tweaked to be more efficient as

the underlying idea of the method is very appealing. There are also a wide

range of underlying basis functions that could be used to form the sparse grid

and if time allowed these would have been further investigated. An alternative

approach would be the use of quasi-random low discrepancy sequences, such

as Sobol sequences [88], and applying selective criteria to whether these points

are sampled based on the magnitude of the local predictive error. Further

tweaks could also be applied to the Enhanced Stochastic Evolution algorithm

that could accelerate the generation of Latin Hypercube Designs (LHDs). An

alternative use of these could be to generate smaller local LHDs in regions of

rapidly changing gradient of the response function which could allow them to

be used in a more adaptive manner.

As this work is feeding into the Dstl protocol, some future work will be to

present these methods in a very accessible manner for practitioners of qualifi-

cation. The hope is that this work, coupled with a protocol that captures the

key details of implementing the methodology, will allow it to be widely used

in industry in the future. Ideally, model assisted qualification will become a

widely used method of qualifying techniques in anger, allowing the MOD and

others to utilise novel inspection technologies faster and more efficiently.
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Appendix A

Qualification Protocol Overview

This work is feeding into a protocol being written for Dstl. For complete-

ness, the latest outline flowchart of the protocol is provided in Fig. A.1 below.

This provides a high level overview of how the methods described in this thesis

can be applied in practice. It is in essence a flow chart representation of the

methodology described in Chapter 3.1.
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Figure A.1: An overview flowchart of the qualification protocol. Credit:
Martin Wall, ESR Techology, Oxford, UK
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