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Abstract 

The primary sequence of amino acids in a polypeptide chain determines a proteins 3D shape, how 

it folds and its function. Understanding this process is known as the protein-folding problem. The 

loss of conformational entropy upon folding must be overcome by the formation of many weak, but 

cooperative, non-covalent interactions. Studying miniproteins reduces the complexity of the protein-

folding problem and allows us to systematically probe contributions to protein folding and stability.  

Recently in the Woolfson group, a 34-residue monomeric miniprotein, PP!, was made using a 

fragment-based design approach that borrowed sequences from two natural protein structures. This 

antiparallel construct comprises a polyproline-II helix, loop and ! helix.  PP! is stabilised by the 

interdigitation of proline from the polyproline-II helix into a stack of tyrosine residues presented by 

the ! helix. There remains much to be understood about the sequence-to-structure and sequence-to-

stability relationships in PP!. Further, such knowledge and understanding offers opportunities for 

using PP! as a reliable modular building block to design and engineer entirely new protein folds 

and functions. 

In chapter 3 of this thesis, the complete rational redesign of PP! is described, moving away from a 

fragment-based design towards a de novo framework. An optimised PP! topology is presented that 

has been analysed extensively by a variety of biophysical techniques including NMR spectroscopy. 

Optimised PP! has significantly improved thermal stability compared to the parent design. The 

enhanced stability is attributed to a number of factors including electrostatic steering effects and 

general tightening of the structure resulting in improved non-covalent interactions, specifically  

CH–π interactions. General and intimate side chain-side chain interactions are probed in chapter 4 

revealing sequence-to-structure/stability relationships for the miniprotein fold. 

With the knowledge of how to design robust PP! modules, chapter 5 explores designing two new 

topologies based on PP! that, to our knowledge, have not been observed before in nature. Firstly, 

through iterative rounds of design, we achieve a stable and well-folded ! helix:loop:polyproline-II 

helix topology (!PP). Subsequently, PP! and !PP are combined to give a PP!PP construct with the 

expanded topology polyproline-II helix:loop:! helix:loop:polyproline-II helix. Through 

mutagenesis studies it is shown that the PP! component of the PP!PP topology is the more dominant 

interface and when this is removed the stability of the topology is dramatically reduced. 

Two further strategies to improve the stability of PP! are discussed in chapter 6. Firstly, the chain 

length of optimised PP! is increased. Similar to previous observations for !-helical coiled coils, the 

stability of PP! increases with increasing chain length in a non-linear, cooperative manner. 

Secondly, successful enzymatic cyclisation of PP! using an engineered peptide ligase yields cyclic 

PP! variants with enhanced thermal stabilities. 



 
 

 ii 

In summary, an optimised PP! has been designed and sequence-to-stability relationships for the 

miniprotein elucidated. The first steps towards expanded PP! topologies are presented.  These 

should pave the way for the development of more-advanced PP!-based protein folds with 

applications in protein engineering and synthetic biology. 
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Chapter 1! Introduction 

1.1! The protein-folding problem 

Max Pertuz and John Kendrew were awarded the 1962 Nobel Prize in Chemistry for their pioneering 

work using X-ray crystallography to determine the molecular structure of the globular proteins 

myoglobin and haemoglobin; the former of which was the first three-dimensional structure of a 

protein (Figure 1-1).1-2 They found that both molecules were built from Linus Pauling’s ! helices, 

but folded and packed together in intricate manners. Kendrew described the main features of 

myoglobin as its “complexity and lack of symmetry” adding “the arrangement seems to be almost 

totally lacking in the kind of regularities which one instinctively anticipates.”3 Their work raised the 

question of how protein structures are explained by physical principles and subsequently the notion 

of a folding problem first emerged. 

 

 

 

 

 

 

 

The protein-folding problem is concerned with how a protein’s primary linear amino-acid sequence 

dictates its three-dimensional native structure. More specifically, protein-folding studies aim to 

understand the sequence-to-structure relationships that govern how proteins fold.4-5 Since the 

problem was first posed over half a century ago, Dill et al. describe the protein-folding problem as 

having grown from a distinct research question into a self-perpetuating field of science.6 

A landmark in protein science was the postulate that resulted from Christian Anfinsen’s experiments 

on the renaturation of Ribonuclease A.7 He hypothesised that the native structure of a protein is the 

thermodynamically stable state, and that this depends only on its amino-acid sequence and the 

solution conditions, not on the kinetic folding route.8 Further, folding does not depend on whether 

the protein is synthesised in vivo or in vitro. This led Cyrus Levinthal to pose the question of how 

Figure 1-1: Structures of myoglobin and haemoglobin (A) Drawing of the tertiary 
structure of myoglobin as deduced from the 6 Å fourier synthesis. (B) Haemoglobin 
model, haem groups indicated as disks. Images taken from Kendrew and Pertuz  
papers.1-2 
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do proteins fold to their native state? The Levinthal paradox involves the consideration that a 

polypeptide chain cannot converge on its native state in real-time by a random search because the 

conformational space available to an unfolded polypeptide chain is too large.9-10 Levinthal reasoned 

that the protein must fold through a directed process, or protein folding pathways. 

Energy landscapes and folding funnels are used as a conceptual framework for understanding protein 

folding kinetics (Figure 1-2).11 A protein folds by taking steps that are generally incrementally 

downhill in energy towards a single stable low-energy native state. Folding can occur via multiple 

pathways in the conformational space landscape,12 hence why denatured peptides starting from 

different open conformations can refold to the same native structure. However, this is not always 

the case, there are exceptions in which the biologically active form is kinetically trapped, for 

example serpins.13  

 

 

 

 

 

 

The folded state of a protein is determined by the cooperation of many weak non-covalent 

interactions including hydrogen bonds, van der Waals interactions, electrostatic interactions and 

hydrophobic interactions.14 Hydrogen bonds are important because they form between backbone 

amide and carbonyl groups in nearly all secondary structure components including ! helices and $ 

sheets. Similarly, the atoms within a folded protein are tightly packed implying van der Waals 

interactions are also important.15 While some amino-acid side chains attract or repel one another as 

a result of negative and positive charges these groups are usually limited to the protein surface and 

so electrostatic interactions are unlikely to be the dominant interaction for folding.4, 16 Given that it 

is the side chains of amino acids that are responsible for the differences between proteins, and not 

the backbone hydrogen bonds, it is thought that hydrophobic interactions between non-polar side 

chains are the dominant driving force for folding. Supporting this view, globular proteins have 

hydrophobic cores where non-polar amino acids are buried from water. Also, studies have shown 

that there is a 1-2 kcal mol-1 benefit for sequestering a non-polar side chain from water into a 

hydrophobic oil-like media.17 

Figure 1-2: The funnel-shaped energy landscape of proteins has few low energy native 
like conformations and more unfolded structures. Image taken from an article by Dill and 
MacCullum.6  
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Opposing the folding process is a large loss in conformational entropy as the protein collapses to its 

folded state. This penalty is only just outweighed by the enthalpy of forming the non-covalent 

interactions and as a result, native proteins are only marginally stable, approximately  

5-10 kcal mol-1 more stable than their denatured states.6, 14 This subtle balance between forces makes 

predicting the three-dimensional structure of proteins particularly challenging.18-19 One way to 

address the protein-folding problem is to study small folding motifs termed miniproteins. In these 

systems the number of factors that influence the folded state is reduced making them good platforms 

for probing contributions to protein folding and stability both in silico and in vitro.20-23 Larger 

proteins have generally evolved for function as opposed to for stability and so it is harder to 

deconvolute their sequences into the components that are responsible for stability over function. 

1.2! Miniproteins 

Miniproteins are defined as short peptides (approximately ≤ 40 amino acid residues) that usually 

have well-defined globular-like folds with sequestered hydrophobic cores.21 They comprise two or 

more elements of secondary structure and have cooperative folding. While single secondary 

structure components exist and can be cooperatively folded, for example single ! helices (SAHs), 

this is rare and they do not contain a hydrophobic core like globular proteins.24 While the entropic 

cost of folding is lower for miniproteins, their hydrophobic cores are smaller and there are fewer 

non-covalent interactions to stabilise the folded state. This means that many miniproteins rely on 

other methods of stabilisation including metal binding,25 covalent-crosslinking,26 un-natural side-

chain staples,27 cyclisation28 and oligomerisation.29 These miniproteins will be discussed briefly 

later. However, the focus of this thesis is on miniproteins stabilised by non-covalent interactions. 

As well as providing systems to probe various aspects of protein-folding specifically sequence-to-

structure and -stability relationships, miniproteins also have potentially useful applications. For 

instance, they provide scaffolds onto which functional domains can be grafted specifically motifs 

for catalysis, binding and recognition that interfere with protein-protein interactions. Also, 

miniproteins can be used as building blocks to design and engineer larger, more complex folds and 

systems.30-32 Furthermore, they offer a starting point from which to access the dark matter of protein 

space, that is, protein folds that have not been observed before in nature.33-34 

1.2.1! Miniproteins stabilised by metal binding and covalent crosslinking 

1.2.1.1! Zinc fingers 
Zinc fingers (ZnFs) are one of the most widespread protein-folding motifs involved in DNA binding 

and recognition. The most widely studied and engineered ZnF is the Cys2His2 (C2H2)-type.35 The 

C2H2-ZnF is a small independently folded domain with a compact globular structure in which two 

histidine and two cysteine residues coordinate in a tetrahedral manner to a Zn ion. The first NMR 

structure corresponding to a single ZnF from the Xenopus protein Xfin revealed a 25-residues 

peptide composed of a $ hairpin, a loop and an ! helix (Figure 1-3A). Just above where the Zn 
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binds, Leu and Phe residues form a small hydrophobic pocket; the rest of the amino acids are solvent-

exposed.25 The four amino-acid residues located at the N-terminus of the ! helix participate in DNA 

recognition by interacting with hydrogen donors and acceptors exposed in the major groove of 

DNA.36 The modular assembly of metal-binding ZnF domains has allowed the engineering of 

artificial proteins and enzymes that recognise defined regions of DNA that can activate, repress or 

alter user-specified genes. These have been used in the field of targeted genome editing.37 While 

natural ZnFs require metal binding for folding, their $$! architectures have been engineered to fold 

in the absence of metal ions (see section 1.2.2.2). 

1.2.1.2! EF-hands 
The EF-hand calcium-binding motif plays an essential role in cell signalling.38 The motif, which is 

approximately 35-residues long, comprises two short ! helices separated by a metal-binding loop.39 

The Ca2+ ion binds to the loop in a preferred coordination geometry of seven ligands arranged in a 

pentagonal bipyramid. EF-hands usually occur in pairs to form discrete units in larger domains, most 

commonly containing two, four or six EF-hands. The EF-hand pair is stabilised through hydrophobic 

interactions between helices as well as "-" stacking interactions between single aromatic residues 

in the loop of each EF-hand. While stand-alone single-EF hands do exist, they are generally 

stabilised through dimerization (Figure 1-3B).38 

1.2.1.3! Cysteine knots 

Cysteine-knot miniproteins, often termed knottins, consist of approximately 30 – 40 amino acid 

residues.40 They have an unusual architecture where two disulfide bonds form a ring through which 

a third disulfide bond is threaded. The resulting structure has exceptional stability and resistance to 

proteolysis.41 A subset of these proteins are termed cyclotides, which, as well as having a knot 

framework, are characterised by their head-to-tail cyclised peptide backbone. Kalata B1 was the first 

cyclotide miniprotein to be structurally characterised (Figure 1-3C).42 It has three antiparallel $ 

strands stabilised by mainchain and side-chain hydrogen bonds and hydrophobic clusters. It also has 

a number of well-ordered tight turns stabilised by an extensive hydrogen bond network. A number 

of Gly residues are conserved in the turn regions of the cyclotide framework where adaptability of 

the backbone geometry is important. A Glu residue is also conserved that is involved in key 

hydrogen-bonding interactions. 

Cysteine knots play roles in various biological processes acting as enzyme inhibitors, hormones, 

growth factors, toxins, and host-defence molecules.43 Their exceptional stabilities and well-defined 

structures make them promising scaffolds for molecular engineering and pharmaceutical 

applications.26 While knottin cores are conserved, the loops between Cys residues are tolerant to 

mutation and have shown a broad range of sequence diversity thus making them suitable candidates 

for grafting bioactive epitopes.42For example, the Cochran lab have used directed evolution to 

engineer knottin peptides to bind with nanomolar affinity to integrin receptors which are 

overexpressed in a variety of cancers.44-45 



 
Chapter 1: Introduction 

 
 

 5 

Overall, considerable progress has been made in the field of miniproteins stabilised by covalent-

crosslinking and metal binding. Naturally occurring pharmacologically active miniproteins have 

shapes that are highly complementary to binding pockets on their targets. These peptides combine 

the stability and cell permeability of small molecules with the binding affinity and target specificity 

of larger protein-therapeutics and therefore are attractive drug molecules.46-49 Consequently, effort 

has focused on reengineering naturally occurring miniproteins to generate new bioactive 

molecules.44 However, these approaches are hampered by the limited variety of naturally occurring, 

constrained miniproteins and the lack of global shape complementarity with the target. In response 

to this problem, the Baker group have recently developed computational methods for the accurate 

de novo design of miniproteins stabilised by disulfide crosslinks.50 12 experimentally determined X-

ray and NMR structures of miniproteins that are 18 to 47 residues long containing both canonical 

and non-canonical amino acids have been solved revealing very close matches to the 

computationally-designed models (Figure 1-4). These miniproteins span a broad range of topologies 

incorporating multiple secondary structure components. The miniproteins were designed using the 

Rosetta software suite.51 Large numbers of peptide backbones were randomly generated, 

combinatorial sequence design calculations were performed to identity sequences that stabilised 

each backbone conformation, and finally designed sequence/structures were assessed to determine 

which ones were in deep energy minima, that is, which ones had a large energy gap between the 

designed structure and alternative conformations.50 

 

 

Figure 1-3: NMR structures of miniproteins stabilised by metal binding and covalent 
crosslinking. (A) Single ZnF (PDB: 1ZnF). (B) Homodimeric EF-hand (PDB: 1CTA). (C) 
Kalata B1 cyclotide (PDB: 1NB1). Metal ions shown as pink spheres. Hydrogen bonds 
shown as dashed lines. Images generated using PyMol. 
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1.2.2! Miniproteins stabilised by non-covalent interactions 
The focus of this thesis is on non-covalently stabilised miniproteins. While the majority of 

miniproteins observed and studied are stabilised by covalent crosslinks and metal ions, it is non-

covalently stabilised miniproteins that will allow in depth examination of fundamental sequence-to-

stability relationships without the complications of stability aids or larger protein contexts. Over the 

past half-century the majority of non-covalently stabilised miniproteins described have been 

fragments of larger natural proteins that have undergone iterative rounds of redesign and 

optimisation to enhance stability or introduce functional motifs. This has resulted in general design 

rules for miniproteins and a greater appreciation for and understanding of the non-covalent 

interactions present in such structures. More recently, high-throughput methods have also been used 

to design miniproteins.52-53 

 

Figure 1-4: NMR and crystal structures of the hyper-stable constrained miniproteins 
designed by the Baker lab. (A-D) Backbone cyclised miniproteins. (E-G) Miniproteins 
incorporating both L- and D-amino acids. (H-L) Genetically encodable miniproteins. 
Note: (J) is an X-ray crystal structure (A-I,K,L) are NMR structures showing overlays of 
all states in each ensemble. Coloured blue to red from N to C terminus. Disulfide bond 
crosslinks shown in yellow. PDB codes: 5JG9, 2ND2, 2ND3, 5JHI, 5JI4, 5KVN, 5KWO, 
5KWP, 5KX2, 5KWZ, 5KX1, 5KX0. Images generated using PyMol. 
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1.2.2.1! Pancreatic polypeptides 

The polyproline-II:loop:! helix topology was first observed in the X-ray crystal structure of the 

avian pancreatic peptide (aPP) dimer (Figure 1-5A).29 Pancreatic peptides are usually 36 residues 

in length and adopt a well-defined hairpin structure in water. The compact fold is stabilised by the 

interdigitation of Pro residues from the polyproline-II helix and aromatic residues stacked on the ! 

helix forming a hydrophobic core. aPP is a symmetric dimer stabilised by the intermolecular "-

stacking interaction between Tyr residues and is maintained in solution above micromolar 

concentrations.54-55 Indeed, most natural pancreatic peptides dimerise in solution. This has driven 

engineering and design of monomeric variants with a focus on developing miniprotein-based ligands 

as therapeutics. 

The Schepartz lab have used the aPP fold extensively as a scaffold to present !-helical and 

polyproline-II-helical recognition epitopes. For example, a synthetic monomeric aPP analogue 

named pGolemi was engineered that binds strongly (Kd 700 nM) to the Mena EVH1(enabled/VASP 

homology 1) domain of the Actin assembly-inducing protein (Acta) from Listeria monocytogenes.56-

57 EVH1 domains regulate actin filament dynamics and, similar to SH3 and WW domains, they 

recognise proline-rich sequences that are folded into polyproline-II helices. pGolemi was designed 

by grafting a polyproline-binding domain onto the N-terminal polyproline-II helix of aPP. As well 

as having high affinity for EVH1, 10-fold higher than the best previously known EVH1 ligand 

Acta11,58 pGolemi also discriminates between paralogs and reduces bacterial motility.  

A similar sequence-grafting strategy has been used for the aPP variant p007, which presents the !-

helical recognition epitope found on the bZIP protein GCN4 and binds DNA with nanomolar affinity 

and high specificity.59Also substitution of Arg residues for residues located on the ! helix of aPP 

help facilitate cell permeability without significant loss of helicity or thermal stability.60 

Furthermore, the bovine pancreatic peptide (bPP) has been designed as an artificial esterase to 

catalyse the hydrolysis of p-nitrophenyl esters. To do this His residues have been grafted onto the 

solvent exposed face of the ! helix.61 

1.2.2.2! $$! folds and metal free zinc fingers 

Small, independent $$! units are best exemplified by ZnFs as mentioned in section 1.2.1.1. While 

folding of natural ZnFs is driven by metal binding as opposed to the hydrophobic core, as noted 

above, several research groups have targeted this fold for metal free designs. In 1996, Struthers et 

al. obtained a 23-residue monomeric metal free $$! motif through an iterative design process in 

which amino acids were selected that would enhance the inherent secondary structure of the 

polypeptide.62 The final design incorporated a suitable turn that more effectively promoted $-hairpin 

formation, a D-Pro and a non-natural amino acid. The NMR structure revealed that the ! helix and 

$ hairpin are held tightly together by a defined hydrophobic core. Interestingly, the solution structure 

reveals the motif is more open than in the natural ZnFs. Struthers states this groove may be useful 

for catalysis or the design of enzyme mimics. Truncating the loop between $ hairpin and ! helix 
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prevents the hairpin folding back on the ! helix exposing a hydrophobic surface and promoting 

homo-oligomerisation.63 

A year later, a computational design using only proteogenic amino acids was reported by Dahiyat et 

al.64 A combinatorial design algorithm was used to screen a combinatorial library of 1.9 % 1027 amino 

acid sequences for compatibility with the target $$! topology.65-66 The design was validated 

experimentally by NMR spectroscopy (Figure 1-5B). The backbone RMSD between the average 

NMR state and the design target was 1.98 Å. The peptide had a TM of 39 °C, with weakly cooperative 

and completely reversible unfolding curve. The broad melt transition observed is consistent with a 

low enthalpy of folding, which is to be expected for a peptide with a small hydrophobic core. 

1.2.2.3! Villin headpiece 
Another approach to  miniprotein design is to pare down larger natural proteins. Villin is an F-actin-

bundling protein involved in microvilli formation in absorptive epithelia.67 In 1997, NMR 

spectroscopy of the C-terminal 35 residues of the chicken villin (HP-35) in aqueous solution 

revealed a well folded peptide consisting of three !-helical segments with each helix contributing 

residues to the central hydrophobic core (Figure 1-5C).68-69 HP-35 is surprisingly thermostable with 

a TM of 70 °C. 

1.2.2.4! $ Hairpins and Trp-zippers 

Many research groups have explored β hairpin formation in naturally derived and designed systems. 

Early design efforts resulted in free-standing β structures based on natural fragments, which were 

only moderately folded in aqueous media.70-71 However since then more-folded structures have been 

attained through largely iterative processes as well as some combinatorial screening.72 Trp-zippers 

(12-16 residues in length) are well-studied examples of short β-hairpins with interlocked Trp 

residues showing edge-to-face packing against one another (Figure 1-6A).73-74 The β sheets are 

highly twisted and the peptide is also stabilised by capping residues at the termini to permit cross-

Figure 1-5: Structures of miniproteins. (A) X-ray structure of avian pancreatic peptide 
dimer (PDB: 1PPT). (B) NMR structure of metal free ZnF (PDB: 1PSV). (C) NMR 
structure of Villin Headpiece (PDB:1VII). Colour key: aromatic and hydrophobic residues 
(pink), "-" stacking between Tyr residues in aPP dimer (yellow), Pro (blue). Images 
generated using PyMol. 
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strand hydrogen bonding. These miniproteins are highly folded monomers exhibiting exceptional 

thermal stabilities (TM 50 – 79 °C) and reversible cooperative unfolding curves. Chignolin is another 

example of a minimal β hairpin (10 residues) and is stabilised by the edge-to-face packing of Tyr 

and Trp residues.75 The peptide shows cooperative folding albeit with a broad thermal melt curve 

(TM 39 °C). The chignolin peptide has been used in phage display to identify a nanomolar binder of 

the Fc region of antibody immunoglobulin G.76 Trp-pocket β hairpins are stabilised by cation−π 

interactions in which Lys packs against a diTrp cleft on the opposite strand.77 Some Trp-pockets are 

near fully folded and can only be unfolded with high concentrations of denaturant or elevated 

temperatures.  

Overall, there has been substantial work in the field and as a result a number of general guidelines 

can be considered to ensure the successful design and stabilisation of monomeric β hairpins78: a 

hydrophobic cluster on one surface of the hairpin close to the loop region;79-80 inter-strand side-chain 

interaction with particular focus on Trp-Trp interactions;73, 81-82 high β-sheet and turn propensities;83 

and charged, aromatic residues or β-capping motifs at the termini.84 

1.2.2.5! Designed three-stranded $ sheets 

Initial designs of three-stranded $-sheets have been achieved by appending a third strand onto 

previously characterised $ hairpins.85-88 Most of these constructs however are largely unfolded in 

purely aqueous media and require  methanol to fold. One successful example, however, incorporates 

a Pro-Gly turn and N-methylated amino acids in the first and third strands to prevent amyloid-like 

aggregation.88 The 23-residue peptide is a soluble monomer and folds upon heating. No high-

resolution, structural data has been reported, the peptide is characterised by circular dichroism (CD) 

spectroscopy, size-exclusion chromatography and 1D NMR line shape analysis. 

A 20-residue peptide named Betanova has been designed that forms a monomeric, three-stranded, 

antiparallel $-sheet.85 The NMR structure reveals that the peptide is stabilised by an aromatic-rich 

hydrophobic cluster on one face of the $ sheet. However, subsequent more in-depth studies show 

that Betanova is only partially folded.89 This has led to the redesign of the fold through 

computationally informed point mutations that resulted in a more-stable structure.90 

The Gellman lab has designed a parallel triple-stranded $-sheet by incorporation of non-peptide 

linkers that connect pairs of strands in a parallel orientation.91 The solution structure reveals the 

desired peptide fold and CD spectroscopy shows a cooperative thermal unfolding transition. 

Enhanced folding is observed for the three-stranded-sheet relative to each two-stranded parallel 

hairpin component. 

WW domains are natural antiparallel three-stranded $-sheets and are one of the smallest naturally 

occurring folds. Their name reflects the conserved Trp residues in the first and third strands. WW 

domains mediate protein-protein interactions with short proline-rich motifs.92 The first structure of 

a WW domain was for human Yap65 in complex with its ligand.93 Following this, shorter WW 
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domains have been isolated of 34 and 37 residues in length in absence of bound ligands.94 Based on 

a systematic analysis of conserved residues in the WW family, a 36-residue folded prototype WW 

sequence has been designed and an NMR structure determined (Figure 1-6B).94 It must be noted, 

however, that the prototype is less thermally stable than natural $-sheets (TM 44 °C ). WW domains 

have been re-engineered to incorporate different functions for example a DNA binding pocket that 

shows 10-fold selectivity for single-stranded DNA over duplex DNA.95 

 

 

 

 

 

 

1.2.2.6! The Trp-cage 
The Trp-cage is a highly and cooperatively folded 20-residue miniprotein truncated from the 39-

residue extendin-4 (EX4) peptide found in Gila monster saliva. Original truncation of the C-terminal 

portion of EX4 resulted in a peptide that was only folded in the fold-promoting cosolvent 2,2,2-

trifluroethanol (TFE).96 However, a series of incremental sequence modifications has led to a well-

ordered fold comprising an N-terminal ! helix followed by a structured loop with a hydrophobic 

core centred on a single Trp residue surrounded by Pro side chains (Figure 1-7A).96 It is noted that 

the high Pro content may contribute to the stability of the peptide by limiting the conformational 

entropy loss associated with folding. In contrast to this, the peptide also has high Gly content – the 

most flexible and least rigid of all the natural amino acids. Gly flexibility may however allow the 

backbone to contort and further finetune the tertiary fold. Together, Gly, Pro and Trp form an 

organised fold with tightly buried side-chain interactions.97 Further mutations to the Trp-cage has 

seen increases in thermal stability with TMs up to 64 °C.98 Cyclisation of one variant gave a TM of 

95 °C.99 The Trp-cage has lent itself as a prime target for computational study as a result of its small, 

well folded nature and the large amount of structural data.20, 100 

1.2.2.7! $!$ Designs 

Extended βαβ repeats are widely observed in natural proteins, for example: TIM barrels consist of 

eight α helices and β sheets that alternate along the chain forming a closed barrel like structure;101 

the Rossmann fold is a structural motif found in proteins that bind nucleotides and forms an open 

Figure 1-6: Structures of miniproteins. (A) NMR structure of Trp-Zipper (PDB:1LE3). 
(B) NMR structure of the prototype WW domain (PDB: 1E0M). Colour key: aromatic 
residues (pink), Pro (blue). Images generated using PyMol. 
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sheet structure;102 and Leu-rich repeats form a structural motif that resembles an α/β horseshoe.103 

The alternating secondary structures lead to parallel β sheets and parallel α helices. 

The first de novo design of a stand-alone water-soluble βαβ motif was reported in 2009 (Figure 

1-7B).104 The design comprises a 12-residue α helix, selected after a statistical analysis of the helix 

length in natural α/β proteins, paired with two five-residue β strands which were of corresponding 

length. Sequences were selected based on secondary-structure preferences. An amphipathic helix 

was designed with Leu and Ala on the hydrophobic face and electrostatic interactions between Glu 

and Lys were arranged on the opposite face. Ile and Val were placed on the parallel β sheet forming 

a hydrophobic pocket in the core of the miniprotein. Initial designs were molten globule. To obtain 

the stable folded state, a Trp-Trp pair in the β strands, similar to Trp-zippers, was introduced.73 An 

NMR structure of the final 36-residue design reveals face-to-face packing of the pair. The βαβ motif 

is highly thermally stable up to 90 °C. This is exceptional for a peptide containing only natural 

proteinogenic amino acids and without disulfide bonds or metal binding.  

1.2.2.8! TrpPlexus 
TrpPlexus is a 19-residue miniprotein with a β strand:loop:polyproline-II helix topology designed 

using a fragment-based approach (Figure 1-7C).105 The N-terminal β strand is rich in Arg residues, 

while the C-terminal polyproline-II strand is Trp rich with a WSXWX motif. Despite the name, the 

polyproline-II helix does not contain any Pro residues. The sequences for the β strand and 

polyproline-II helix are borrowed from a fibronectin type III (f3) binding domain and are connected 

with a D-Pro,Gly loop. The NMR structure of TrpPlexus shows the interdigitation of Trp and Arg 

residues, which leads to cation-" interactions. This network of solvent exposed cation-" interactions 

offers an alternative to hydrophobic-core packing. TrpPlexus is monomeric with a broad thermal 

unfolding transition. However, the unfolding transition sharpened when unfolding was measured as 

a function of guanidinium chloride concentration showing a two-state sigmoidal transition.  

Further work by the Kirshenbaum group synthesised a disulfide cyclised variant and showed its 

tolerance for N-substituted Gly and Pro resides in the polyproline-II helix.28 The ability to 

incorporate a broad variety of monomer types in the polyproline-II helix provides opportunities for 

developing peptide and peptidomimetic inhibitors that can target PXXP motif-binding proteins and 

modulate protein-protein interactions in cellular signalling processes.  
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1.2.2.9! High-throughput methods to miniprotein design 
In recent years, high-throughput methods have been used in miniprotein design. The Baker group 

have used parallel protein design on a large scale to build thousands of new miniprotein variants and 

determine what sequence motifs stabilise these small structures.52, 106 In their approach miniprotein 

structures were designed computationally using a fragment-based approach in Rosetta. Four target 

topologies are described - !!!, $!$$, !$$!, $$!$$ - of which only the !!! topology is observed 

in nature within their target size range of 40 to 43 amino acids. Libraries of amino-acid sequences 

were generated to fit best each of these structures. These proteins were obtained via high-throughput 

DNA synthesis and cloning. The resulting miniproteins were displayed on the surface of yeast so 

that every cell had many copies, with each protein genetically fused to an expression tag that was 

fluorescently labelled with an antibody and subsequently exposed to protease. Stable variants were 

distinguished from unstable variants based on their resistance to protease treatment. Protease 

cleavage of the miniprotein led to loss of the tag and loss of fluorescence. The cells that retained 

fluorescence after proteolysis were then isolated by fluorescence-activated cell sorting and identified 

by deep sequencing. The isolated miniproteins were characterised and their sequences analysed for 

sequence-to-stability relationships which could be fed back into the design cycle. Iteration between 

design and experiment improved design success rate from 6% to 47%. 

From sequence analysis of these new stably folded miniproteins Rocklin et al. highlight key 

sequence and structural features: firstly, the amount of buried non-polar surface area from 

hydrophobic amino acids. While this is well established, they quantify its importance showing that 

stable variants need at least 30 Å2 per buried residue. The study also revealed the importance of 

having charged side-chain residues at the termini of ! helices that balance the terminal partial 

charges of the helices. Overall, four high-resolution miniprotein structures of each target topology 

were obtained by NMR spectroscopy (Figure 1-8). 

Figure 1-7: Structures of miniproteins. (A) NMR structure of the Trp-Cage (PDB:1L2Y). 
(B) NMR structure of a $!$ motif (PDB: 2KI0). (C) NMR structure of TrpPlexus (PDB: 
n/a, see ref 105. Colour key: aromatic residues (pink), Pro (blue), Arg (green). Images 
generated using PyMol. 
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1.2.3! Common features of miniproteins 
Whether the entropic cost of folding is less for small proteins or not, enthalpically favoured 

interactions still need to be made to form a stable, folded 3D structure. Inherent to their small size, 

miniproteins make fewer non-covalent interactions. Experimentally, this is apparent from the 

broader melt curves in CD spectroscopy, which are indicative of low enthalpies of folding.64 This is 

consistent with miniproteins having small hydrophobic cores. Therefore, to form stable miniproteins 

the non-covalent interactions that are made need to be optimal. 

The stable miniproteins described above have many common features in terms of both sequence and 

structure. These can be analysed to understand and refine the most important non-covalent 

interactions needed for creating stable miniprotein folds. A bioinformatics analysis of miniproteins 

in the PDB by the Woolfson group revealed that some classes of amino acids are more prevalent in 

miniproteins compared to larger proteins,21 including: electron-rich aromatics, in particular Tyr and 

Trp residues; long and charged amino acids for example Arg, Glu and Lys; and Pro residues. In 

contrast, it was found that small non-polar amino acids are more prevalent in larger proteins. This 

suggests that these aromatics and the longer charged residues may form more optimal non-covalent 

interactions such as CH-" interactions, cation-" interactions, "-" interactions and salt bridges. 

Furthermore, it is noted that CH-" interactions are six times more dense in miniproteins compared 

to larger proteins. The prevalence of Pro may be due to reducing conformational entropy. 

In the examples studied, the observed hydrophobic cores often have aromatic residues in contact 

with residues such as Pro and Arg leading to networks of CH-" and cation-" interactions, 

respectively. High proportions of Pro residues also likely reflects their ability to reduce the entropic 

cost of folding through their fixed torsion angle. Related to this, the backbones of miniproteins are 

more contorted and make better use of structured loops compared to larger counterparts. The 

Figure 1-8: Designed peptide from the Baker lab using high-throughput methods. (A) 
!!! topology (PDB: 5UOI). (B) $!$$ topology (PDB: 5UP5). (C) !$$! topology 
(PDB: 5UYO). (D) $$!$$ topology (PDB: 5UP1). Coloured blue to red from N to C 
terminus. Images generated using PyMol. 
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contorted backbones likely helps sequester hydrophobic residues and pack them more tightly in their 

core. 

The ! helix secondary structure is a common building block in both miniproteins as well as larger 

proteins and are observed in similar proportions for each class. While examples of free-standing ! 

helices have been observed in nature and have also been designed they are more commonly observed 

in tertiary and quaternary structures, the most common of which is the !-helical coiled coil.24, 107 

1.3! Coiled coils: sequence, structure and function 

!-Helical coiled coils are ubiquitous folding motifs consisting of a two or more helices wrapped 

around each other to form supercoils.108 Constituting approximately 3 % of all protein-encoding 

regions of the known genome,109-110 coiled coils have a broad range of functions including structural 

roles, DNA binding and mediating protein-protein interactions.111-113 While predicting the structure 

of proteins from their primary amino-acid sequence is difficult for the majority of proteins, there are 

well-established rules and sequence-to-structure and -stability relationships for coiled coils. 

Arguably, it is the best understood of all protein structures. Furthermore, we are able to predict their 

structures and also design new sequences that fold into well-defined assemblies.114-117 The sequence 

and structural features of coiled-coil peptides are discussed below. 

The primary sequence of the majority of coiled-coil regions consists of a seven-residue repeat 

commonly known as a heptad repeat in which residues are labelled abcdefg. These repeats have 

hydrophobic (H) and polar (P) residues arranged in the pattern HPPHPPP; i.e. hydrophobics occupy 

the a and d positions of the a through g repeat. While there are variations on this pattern, generally 

consisting of different combinations of HPP and HPPP sequences, we will focus on the most 

common heptad pattern.118-119 The identity of the hydrophobic and polar amino acid residues dictates 

the final structure of the assembly, including helix orientation (parallel or antiparallel), 

oligomerisation state, and homotypic or heterotypic assemblies.120-124 

The primary sequence of a coiled coil folds into !-helical secondary structure elements which are 

stabilised by backbone hydrogen bonds between donor HN atoms at residue i and carboxyl oxygen 

atoms at residue i+4 (Figure 1-9A). These hydrogen bonds lie parallel to the helical axis.125 The 

canonical right-handed ! helix can be described by a number of parameters, including: the rise per 

residue, equal to 1.5 Å; the residues per turn, equal to 3.6; the helix radius, equal to 2.3 Å; and phi 

(&) and psi (') torsion angles, in the region of –63° and –43° respectively  

(Figure 1-9B &C).126-127 
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Other secondary structures found in folded proteins include: polyproline-II helices (discussed in 

detail in Section 1.4.1), $ sheets, 310 helices, and " helices. Their corresponding torsion angles are 

represented visually in the Ramachandran plot in Figure 1-10 and their parameters detailed in Table 

1-1. 

 

 

 

 

310 and " helices are stabilised by hydrogen bonds between peptide amide and carbonyl groups of 

residues (i, i+3) and (i, i+5) respectively. Both structures are rare, the 310 helix is usually found at 

the ends of ! helices, while the " helix has only been observed in a handful of structures persisting 

for, at most, only a couple of turns.128-129 The majority of designed 310 helices contain non-natural 

amino acids, in particular !-aminoisobutyric acid (AIB) residues which contain a second methyl 

group attached to the C! atom.130 Alongside ! helices, $ strands are the other major structural 

element found in globular proteins.131 $ strands are arranged adjacent to other strands and associate 

by hydrogen bonding to form a $ sheet-like structure which, in the majority of cases, is twisted. $ 

sheets are made up of extended strands and fall within a wide shallow energy minimum of 

Secondary 
structure 

Residues 
per turn 

Rise per 
residue / Å 

Radius of 
helix / Å 

! helix +3.6 1.5 2.3 
310 helix +3 2 1.9 

" helix +4.3 1.1 2.8 

Polyproline-II –3.0 3.1 1.6 

$ strand –2.3 3.3 1.0 

Table 1-1: Examples of secondary structures and their parameters. 

Figure 1-9: The parameters that describe ! helix secondary structure. (A) ! helix showing 
hydrogen bonding between backbone NH and C=O groups of residues i to i+4 apart. (B) 
! helix showing the rise per residue and residue per turn parameters. (C) View down ! 
helix from the N-terminus highlighting helical axis and radius of the ! helix. 
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Ramachandran space. They can interact in parallel or antiparallel orientations, each with a distinctive 

hydrogen-bonding pattern and side chains alternating above and below the sheet. 

Given that the ! helix repeats itself every 3.6 residues and hydrophobic side chains are spaced at 

combinations of three and four residues in the HPPHPPP sequence repeat, an amphipathic helix is 

formed when the heptad is projected onto a helical wheel (Figure 1-11A&B).132-133 The hydrophobic 

effect is a key driving force in most biological self-assembling processes. This phenomenon results 

in biological molecules in aqueous solution folding or self-assembling to minimize the hydrophobic 

surface area in contact with the bulk solvent. Therefore, in the context of coiled coils, amphipathic 

helices come together to bury their hydrophobic a and d residues (Figure 1-11C). 

When ! helices wrap around each other they form left-handed super-helical coiled coils. The 

supercoiling results from a mismatch in periodicity between the heptad repeat (H residues on 

average every 3.5 residues) and the ! helix (3.6 residues per turn) and thus an a/d hydrophobic seam 

winds slowly around the right-handed helix in a left-handed manner. Given the regular nature of 

coiled coils, their structures can be described by three geometric parameters, as first described by 

Crick in 1953134-135: radius, interface angle and pitch (Figure 1-11D). A range of software 

applications have built upon these parameters allowing for the parametric modelling of coiled coils. 

Hardbury et al. used the Crick equations to help design a right-handed coiled-coil tetramer,136-137 

Woolfson et al. modified the Crick equations to allow non-canonical repeats to be modelled138 and 

De Grado et al. has developed a method for fitting Crick parameters to known coiled-coil 

structures.139 More recently, CC-Builder and ISAMBARD have been developed for building and 

optimising models of coiled coils of a broad range of oligomeric states.140-142 Further, the 

Figure 1-10: Torsion angles and Ramachandran space. (A) section of an ! helix showing 
the torsion angles &, ', and (. The planarity of the amide bond restricts ( to be 180°. (B) 
Ramachandran plot highlighting ! helix region in orange and polyproline-II helix region 
in red. Modified from reference 126. 
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ISAMBARD framework can be used to model any protein fold that is parameterizable; that is, folds 

that have a regular structure and can be described by mathematical parameters. 

When the ! helices of coiled coils wind around each other the side chains at the interface do not 

simply contact each other. Instead, the ! helices take part in intimate side-chain-packing 

interactions. A side chain referred to as a “knob” on one helix interdigitates with a diamond-shaped 

“hole” made up of four residues on a partnering helix. This type of intimate packing was first 

postulated by Crick and is termed “knobs-into-holes” (KIH) packing (Figure 1-11E&F).143 For 

example, in parallel coiled coils, an a knob docks into a dgad hole and a d knob docks into an adea 

hole. 

1.3.1! Oligomer-state specification 
The connection between sequence and KIH packing was first discussed in seminal work by Harbury 

et al.120, 144 In their experiments they found that mutating the core a and d positions of leucine-zipper 

peptide GCN4-p1 to combinations of Leu, Ile and Val residues resulted in changes to the oligomeric 

state of the assembly: when Ile and Leu were placed at a and d, respectively, a dimer was formed; 

Ile at both positions resulted in a trimer; and Leu at a and Ile at d gave a tetramer. This result was 

rationalised in terms of how the a and d side chains project towards their partner helix. In dimers, 

the a position projects out of the interface while the d position projects towards the interface. These 

projections change with changes in oligomerisation state. In dimers, a and d participate in parallel 

and perpendicular packing, respectively. Parallel packing is where the C!–C$ bond vector of the 

knob residue points parallel to the vector between the C! positions of the hole residues on the 

corresponding helix while in perpendicular packing the knob C!–C$ bond vector points 

perpendicular. In tetramers this packing is swapped over, while in trimers packing is somewhere 

between the two and is referred to as acute packing. Leu is most tolerated at perpendicular sites 

while beta-branched Ile (and Val) is preferred at parallel or acute sites. Perpendicular and parallel 

packing are discussed further in Section 4.1.1. 

Harbury’s experiments paved the way for future work in the field of coiled-coil design. Extensive 

work has since been carried out into the design and specification of both lower (< 5 helices in 

assembly) and higher-order coiled coils (>4 helices in assembly).32, 145-147 The oligomeric state of 

such coiled coils is determined by the interhelical interfaces present in their assemblies. The addition 

of helices from dimer through to tetramer leads to increased inclusion of peripheral residues (as well 

as a and d) within the hydrophobic core of the assembly. In particular, residues at g become knobs 

as well as just being part of the hole residues. These are referred to as Type I interfaces compared 

to the classical Type N interfaces, which are present in coiled-coil dimers (Figure 1-12). Increasing 

the hydrophobic core to include e knob residues as well leads to Type II interfaces and specifies 

pentamers through to heptamers. Type III assemblies have two distinct hydrophobic seams with a 

single intervening residue between them and specify even larger assemblies such as the 12-helix 

barrel of TolC.148 
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Figure 1-11: Structure of !-helical coiled coils. (A) Projecting the heptad HPPHPPP 
repeat onto a helical wheel results in a seam of hydrophobic residues. Orientation of the 
leaf shape shows the direction of the C!-C$ bond vector. N refers to the helix terminal 
nearest the viewer. (B) Amphipathic helix. (C) Coiled-coil dimer showing hydrophobic 
seam in orange. View down the coiled-coil axis shown on right. (D) Geometric parameters 
describing coiled coils: Interface angle (°), radius (Å), and pitch (Å). (E) Knobs-into-holes 
packing in coiled coils. (F) Helical nets for two identical ! helices (left, N termini at the 
top, positions of C! shown as circles) and superimposed helices (right) to show tight KIH 
packing in a coiled-coil interface. The core a and d residues are highlighted as filled 
circles. 
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Using these sequence-to-structure relationships as rules for protein design, a basis set of de novo 

designed peptides has been achieved for oligomeric states from dimer through to heptamer.32, 145 X-

ray crystal structures of these assemblies are shown in Figure 1-13. The higher-order coiled coils 

(>4  helices) have central open-ended channels and, therefore, are !-helical barrels. For these barrels 

the a and d sites are predominantly occupied by Leu and Ile residues. The residues at e and g 

essentially fine-tune oligomeric state selection: for CC-pent (five helices in the assembly) the 

flanking e and g residues are large Ile and Glu residues, respectively; in CC-Hex the e position is 

Ala and the g position is Glu or Ser; while in CC-Hept both e and g positions are Ala. Thus, in 

general, the smaller the residues at e and g the larger the helix-helix-helix interface angle and 

therefore the larger the barrel.  

These defined and well-characterised coiled coils have been used as building blocks for the reliable 

construction of more complex assemblies. Brodsky et al. used a homotrimeric coiled coil to promote 

folding of a recombinant bacterial collagen.149 Many collagen helices appear to require adjacent 

globular domains to assist folding. Brodsky et al. successfully replaced a natural trimerization 

domain with a de novo designed peptide. The coiled-coil “toolkit” has been engineered to make 

peptide fibres with detailed structural characterisation by cryoTEM.150 Further, using a peptide 

Figure 1-12: Coiled-coil interfaces. (A) Type N interface, found predominantly in 
dimers. (B) Type 1 interface found in trimers and tetramers. (C) Type II interface found 
in tetramers to heptamers. (D) Type III interface found in octamers and above. Coloured 
residues show “knobs” in KIH packing. Colour key: parallel packing (red), perpendicular 
packing (blue), acute packing (purple). The angle between two hydrophobic seams is 
highlighted in orange is termed the interface angle. Adapted from reference 113. 
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origami approach, Jerela et al. have combined six coiled-coil pairs in a single polypeptide to direct 

the folding of a tetrahedron nanostructure.151 Functional residues can also be introduced into the 

lumen of the higher order coiled coils. A Cys-His-Glu catalytic triad was successfully introduced 

into the pore of CC-Hept and showed hydrolytic activity.152 This is the first example of a functional 

catalytic triad engineered into a de novo protein scaffold. 

1.4! Hybrid coiled-coil miniprotein: PP! 

Recently, the Woolfson group used a fragment based design approach to create a stable, monomeric 

coiled-coil-hybrid miniprotein named PP!.153 While coiled coils are stabilised by burying the 

hydrophobic residues in each amphipathic helix by oligomerisation, PP! is stabilised by the 

buttressing of an ! helix with a polyproline-II helix. Overall, PP! comprises an N-terminal 

polyproline-II helix, a loop region and a C-terminal ! helix. 

1.4.1! Polyproline-II helix secondary structure 
Polyproline-II helices have long been recognised as the dominant conformation in the collagen triple 

helix (Figure 1-14A).154 The characteristic structure is composed of a three-residue repeat Xaa-Yaa-

Gly sequence where Xaa and Yaa are often Pro and Hyp (hyroxyproline), respectively. The triple 

helix contains a one residue stagger, which allows Gly to pack in the core of the structure. More 

recently, the polyproline-II helix has emerged as a structural class not only of fibrous proteins but 

also of folded and natively unfolded proteins more generally. Bioinformatics analyses of the PDB 

show that 2 % of all residues in the PDB adopt polyproline-II conformation.155-158 While this is 

significantly lower than that of the ! helix and $ structure, it is comparable to that of 310 helices. 

Despite its name, the presence of Pro residues in polyproline-II helix is not a prerequisite (See 

Figure 1-13: X-ray crystal structures of the de novo designed basis set ranging in 
oligomeric state from two to seven helices. CC-Di (red, PDB 4DZM), CC-Tri (orange, 
PDB: 4DZL), CC-Tet (green, PDB: 3R4A), CC-Pent (teal, PDB: 4PN8), CC-Hex (blue, 
PDB: 3R3K), CC-Hept (purple, PDB: 4PNA). Images generated using PyMol. 
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TrpPlexus, Section 1.2.2.8). Indeed, up to 46 % of polyproline-II helices in folded peptides and 

proteins do not contain Pro residues.159 

The polyproline-II helix is an extended left-handed helix defined by torsion angles in the region of 

& = –75° and ' = 145°. It has a rise per residue of 3.1 Å compared to 1.5 Å for ! helices and in the 

ideal form has three residues per turn; this number can vary slightly in natural structures (Figure 

1-14B).160 As a result of its extended character and the fact that the backbone amino and carboxyl 

groups point away from the helical axis, the polyproline-II helix does not support regular patterns 

of intrachain hydrogen bonds. Instead the helix is stabilised by main-chain hydrogen bonds with 

water molecules as well as side chain-main chain hydrogen bonds, specifically, the Gln side chain 

can participate in a hydrogen bonds with the backbone carboxyl oxygen of the preceding residue.156 

Also stabilisation is achieved through protein-protein interactions.159 Polyproline-II helices are more 

flexible in comparison to ! helices, although this flexibility is partially reduced when Pro is present 

in the sequence. 

 

 

 

 

 

 

 

Polyproline-II helices play an important role in both protein-protein as well as protein-nucleic acid 

interactions and mediate a wide range of molecular functions.161 They are considered the most 

widely spread binding motif in proteins. Their important role in binding is a result of their flexible 

structure and preferred location on the surface of proteins. The absence of intrachain hydrogen bonds 

means the helix is more flexible and can adjust its conformation to form hydrogen bonds to its target. 

Examples of recognition domains that bind ligands in the polyproline-II conformation include SH3, 

WW, EVH1, GYF, UEV and profilin domains.160 Specific examples are discussed in more detail in 

Section 1.2.1 and Chapter 6. 

Compared to ! helix and $ sheets, polyproline-II helices have not gained widespread interest. While 

this is mainly due to their low frequency of occurrence it is also because there are only a few methods 

Figure 1-14: Structure of collagen and polyproline-II helices. (A) Crystal structure of a 
collagen-like peptide (PDB: 1CAG). (B) Segment of a polyproline-II helix highlighting 
ideal residue per turn of 3 and a rise per residue of 3.1 Å. Images generated in PyMol. 
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for polyproline-II assignment. The most widely used secondary structure assignment method, DSSP, 

which is used by the PDB does not assign polyproline-II helices. DSSP assigns secondary structure 

on the basis of particular hydrogen bonding patterns. Several secondary structure assignment 

methods that do include polyproline-II helices, for example XTLSSTR,162 PROSS,163 and 

SEGNO164 give divergent results. A new consensus assignment method (DSSP-PPII) however, 

based on the ‘coil’ class of DSSP, is in good agreement with earlier methods.165 DSSP-PPII assigns 

polyproline-II helices based on at least two consecutive residues being within the torsion angle range 

& = –75 ± 30° and ' = 145 ± 30°. 

1.4.2! PP! design and characterisation 

The PP! design borrowed components from two natural structures: the bacterial surface adhesin 

and antigen (AgI/II) in Streptococcus mutans, and the bovine pancreatic peptide hormone (Figure 

1-15).55, 166 In both structures a polyproline-II helix and ! helix combine to form a tertiary structure 

in which Pro residues on the former interdigitate with Tyr residues presented by the latter. 

Streptococcus mutans is the causative agent of human tooth decay and AgI/II has become a target 

for protective immunity. AgI/II is a cell surface localised protein adhesin that mediates adhesion to 

the tooth surface and influences biofilm formation. While a mechanistic understanding of the 

functional properties of the peptide is unknown, removal of AgI/II results in decreased virulence. A 

high-resolution (1.8 Å) crystal structure of the A3VP1 fragment of AgI/II revels an extended ! helix 

that is intertwined with a polyproline-II helix with a left-handed supercoil. The ! helix extends to 

approximately 155 Å in length. The bovine pancreatic peptide is a shorter peptide that is part of the 

pancreatic peptide family and forms dimers. 

Figure 1-15: Natural protein components used in the design of PP!. (A) Bacterial surface 
adhesin (AgI/II) from Streptococcus mutans (PDB: 3IOX) highlighting the variable 
region, the extended ! helix region (A3-repeat) and the polyproline-II helix (P1-repeat). 
(B) Surface structure of the ! and polyproline-II helices highlighting interdigitation of Pro 
and Tyr residues. The purple box shows the fragment used in the design of PP!. (C) 
Bovine pancreatic peptide (PDB: 1BBA). Region in purple is the loop region borrowed in 
the design of PP!. Images generated in Pymol. 
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Two short segments of polyproline-II helix and ! helix were chosen from the bacterial surface 

adhesin (highlighted in purple in Figure 1-15B) for the PP! design. Segments were selected that 

best matched the different periodicities of the two secondary structure. Given that engineering loops 

in protein design is challenging, the two helices were connected with the loop from the bovine 

pancreatic peptide. A model generated for the topology was found to be stable over 100 ns of 

molecular dynamics (MD) simulation in water. A 34-residue peptide named PP!-Tyr, was 

synthesised and characterised in solution. CD spectroscopy showed that the peptide was folded and 

stable with approximately 50 % helicity at 5 °C and a TM of 39 °C. Sedimentation analytical 

ultracentrifugation (SE AUC) showed PP!-Tyr was monomeric in solution. NMR spectroscopy was 

used to determine the solution structure of PP!-Tyr. The NMR ensemble was consistent with the 

design model. KIH-type packing was observed between the two helices where Pro residues on the 

polyproline-II helix dock into a diamond shaped hole formed on the ! helix top and tailed by Tyr 

residues (Figure 1-16). 

1.4.3! CH-" interactions in PP! 
Close contacts were observed between the Tyr residues and the surrounding side chains prompting 

a search for potential CH–" interactions in the NMR ensemble. 45 CH–" interactions (2.25 per 

ensemble structure) were detected based on parameters from previous studies.167-168These were 

attributed as follows: 24 CH–" interactions between Pro and Tyr; 4 between Leu and Tyr; 15 

between Lys and Tyr; and 2 between Gly and Tyr. This suggested that beyond the hydrophobic 

effect and van der Waals’ forces from side-chain packing, PP!-Tyr is stabilised by CH–" 

interactions. To probe this hypothesis further stability studies were carried out in which a series of 

eight para-substituted phenylalanine mutants of PP! were synthesised, from electron rich p-

methoxyphenylalanine through to electron-poor p-nitrophenylalanine. Proteinogenic Trp and Phe 

Figure 1-16: Design of PP!. (A) Helical net of the polyproline-II helix component of 
PP!. (B) Helical net of ! helix component of PP!. (C) Overlay of the helical nets of the 
polyproline-II and ! helices showing KIH pacing of Pro residues into the diamond holes 
top and tailed with Tyr. (D) In silico model of PP!-Tyr after 100 ns of MD simulations in 
water. Adapted from Baker et al.153 
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and His mutants were also synthesised. NMR structures of the three most stable mutants, PP!-OMe 

(p-methoxyphenylalanine substituents) and PP!-Me (p-methylphenylalanine substituents), showed 

folded polyproline-II:loop: ! helix topologies with intimate contacts and CH–" interactions between 

Pro and the modified aromatic rings (Figure 1-17).  

The TMs of the para-substituted phenylalanine variants were plotted against the corresponding 

Hammett constant (σp). The Hammett constant was used as a proxy for the electron density in the 

aromatic ring. It was observed that peptides with electron-rich aromatic " systems were more 

thermally stable than those with electron withdrawing substituents. This suggests there is an 

electronic contribution to the Pro-aromatic interactions. Furthermore, it provides evidence for  

CH–" interactions; electron density from the ring is redistributed into the CH bond and therefore 

these interactions are favoured by the electron-donating substituents in the series. The Hammett plot 

plateaued for PPα-φCN and PPα-φNO2 mutants consistent with cyano and nitro substituted benzene 

rings having reduced interaction energies with CH groups. Interestingly, PPα-φNH2 has a lower than 

expected TM for which there is no clear explanation. 

 

Thermodynamic parameters were calculated through a van’t Hoff analysis. A range of free energies 

of unfolding (ΔGunf) were determined, which varied linearly with σp. Interestingly, the ΔGunf values 

Figure 1-17: NMR ensemble structures and corresponding secondary structure 
assignments. (A) PP!-Tyr (B) PP!-φOCH3 (All Tyr residues substituted for p-
methoxyphenylalanine) (C) PP!-φCH3 (All Tyr residues substituted for p-
methylphenylalanine). Key: Polyproline-II helix (red); bend or hydrogen-boned turn 
(yellow); 310 helix (minimum length 3 residues, light blue); ! helix (minimum length 4 
residues, dark blue). Residue 0 = N-terminal acetyl cap. 
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were spread over a 0.9 kcal mol-1 range which is similar to the literature estimate for CH–" 

interactions (1.5-2.8 kcal mol-1). Given that each ensemble structure from the NMR data had 

between two and three CH–" interactions, small differences in energy shift the equilibrium constants 

by nearly an order of magnitude. This implies that non-covalent interactions affect the energetics of 

folding and association significantly. 

A bioinformatics analysis of the PDB supported these conclusions: Pro-Tyr and Pro-Trp interactions 

are observed more frequently than expected by chance. In contrast, Pro-Phe interactions are 

underrepresented. Further, Pro-Tyr and Pro-Trp make many more CH–" interactions than any other 

side-chain interactions. Woolfson et al. state that these findings indicate that CH–" interactions 

which are traditionally considered as weak non-covalent interactions can considerably impact 

protein folding and stability and could be particularly important in the design and optimisation of 

miniproteins. 

 

 

Figure 1-18: Folding and stability of PPα and mutants. (A) Electrostatic surface potential 
for para-substituted benzene side chains. Scale: ≤ -130 kJ mol-1 (electropositive, blue) to 
≥ 130 kJ mol-1 (electronegative, red). (B) Plot of TM against the Hammett σp parameter 
for the para-substituted aromatic substituents. (C) Free energy of unfolding (∆Gunf) at 
5°C vs. Hammett σp parameter for para-substituents of the PPα mutant series. Figure 
modified from reference 153. 
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1.5! Scope of thesis 

Miniproteins reduce the complexity of the protein folding problem and allow us to probe 

contributions to protein folding and stability. Further, they provide stable, well-folded structures that 

can be used as modular building blocks in the design and engineering of larger and more-complex 

assemblies with the potential of accessing the dark matter of protein space. Recently, a fragment-

based approach has been used to design the PPα miniprotein with the topology polyproline-II 

helix:loop: α helix. There is much to be understood about the sequence-to-structure and sequence-

to-stability relationships in PP!. In this thesis, PPα has been completely redesigned, moving away 

from a structure based on natural sequence towards a de novo framework with enhanced thermal 

stability. General and intimate side chain-side chain interactions are examined revealing sequence-

to-structure relationships for the fold. Following iterative rounds of design, two new topologies are 

explored based on the PP! fold. Finally, further strategies to improve PP! are described, specifically 

chain elongation and cyclisation.
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Chapter 2! Materials and methods 

2.1! General considerations 

Fmoc protected amino acids, N,N-dimethylformamide (DMF) and 6-Chloro-1-

hydroxybenzotriazole  (HOBt-Cl) were purchased from AGTC Bioproducts, (Hessle, UK). H-Rink 

Amide-Chemmatrix® resin was purchased from PACS BioMatrix Inc. (Sain-Jean-sur Richelieu, 

Canada). Hexafluorophosphate azabenzotriazole tetramethyl uronium (HATU) was purchased from 

Carbosynth Ltd. (Compton, UK) and morpholine from Merck Millipore (Burlington, USA). All 

other chemicals were purchased from Sigma Aldrich (Gillingham, UK) or Fisher Scientific 

(Loughborough, UK), and used without further purification. Solution phase biophysical 

characterization was undertaken in phosphate-buffered saline (PBS, 8.2 mM sodium phosphate, 

1.8 mM potassium phosphate, 2.7 mM potassium chloride, 137 mM sodium chloride, pH 7.4) in 

ultrapure water from a Synergy® UV water purification system (Merck Millipore).  

2.2! Peptide synthesis and purification 

2.2.1! Automated solid-phase peptide  synthesis 
Peptides were synthesized via standard Fmoc solid-phase peptide synthesis (SSPS) methods on H-

Ring Amide-Chemmatrix® resin on a 0.1 mmol scale using a CEM (Buckingham, UK) Liberty Blue 

microwave-assisted automated peptide synthesiser with inline UV monitoring. Fmoc-protected amin 

acids were used at 0.2 M in DMF. 

Fmoc deprotection was performed with 20% (v/v) morpholine in peptide-grade DMF, with the 

exception of sequences prone to aspartimide formation where 5% (v/v) formic acid was added to 

the deprotection solution. Peptides were synthesised in two stages. Stage one: single couplings under 

microwave conditions using N,N-Diisopropylcarbodiimide (DIC)/HOBt-Cl activation (0.5 M, 

DMF/ 1 M, DMF) for the !-helix component (i.e. for oPP! from residue 34 (Tyr) to residue 14 

(Pro), peptide synthesized from C to N terminus). Stage two: double couplings under non-microwave 

conditions using HATU/ N,N-Diisopropylethylamine (DIPEA) activation (0.45 M, DMF/ 0.6 M, 

DMF) for the loop and polyproline II helix (i.e. for oPP! from residue 13 (Thr) to residue 1 (Pro)). 

Microwave conditions for this region led to peptide degradation during synthesis.  

Following automated synthesis, the peptides were washed with DMF (4 x 5 mL), and N-terminally 

acetylated using an excess of acetic anhydride (0.25 mL), and pyridine (0.30 mL) in DMF (5 mL), 

with slow inversion for 20 min at room temperature (rt). The acetylated peptides were washed with 

DCM (4 x 5 mL) then cleaved from the resin and side chain deprotected using trifluoroacetic acid 

(TFA) / triisopropylsilane (TIPS) / H2O (95 : 2.5 : 2.5 , 15 mL) for 2 h. Following cleavage, the TFA 

solution was reduced in volume to ca. 5 mL under a positive flow of nitrogen. Cold diethyl ether 

(40 mL) was then added to precipitate the peptide, which was isolated by refrigerated centrifugation 



Chapter 2: Materials and methods 
 
 

 28 

at 3 krpm, re-dissolved in water / acetonitrile (50 : 50, 10 mL) and lyophilised to yield the crude 

peptide as a white solid (Figure 2-1). 

 

 

 

 

 

 

 

 

 

 

2.2.2! Peptide purification 
Crude peptides were purified by reverse-phase high performance liquid chromatography (HPLC) on 

a Phenomenex Luna C18 column (5 µm particle size; 100 Å pore size; 150 × 10 mm). A gradient of 

water (0.1 % TFA, buffer A) and acetonitrile (0.1 % TFA, buffer B) between 20 and 80 % or 20 and 

60% buffer B over 40 min at a flow rate of 3 mL min-1 with absorbance recorded at 220 and 280 nm 

was typically used. Pure fractions were identified by MALDI-TOF (matrix-assisted laser 

desorption/ionisation time-of-flight) mass spectrometry and analytical HPLC (vide infra), and were 

combined and lyophilised. 

2.2.3! MALDI-TOF mass spectrometry 
MALDI-TOF mass spectrometry was performed on a Bruker (Coventry, UK) UltrafleXtreme II 

MALDI-TOF mass spectrometer, operating in positive-ion reflector mode. Peptides were co-

crystallised on a ground-steel target plate using 2,5-dihydroxybenzoic acid (DHB) or !-cyano-4-

hydroxycinnamic acid (!-CHA) as the matrix. Representative mass spectra for each peptide are 

shown in Section 8.1. Theoretical masses are quoted as the average masses and were calculated 

using Peptide Synthetics’ online peptide mass calculator (http://www.peptidesynthetics.co.uk/tools/, 

Peptide Protein Research Ltd.). 

Figure 2-1: Overview of SPPS showing Fmoc deprotection, activation, peptide coupling, 
and cleavage and deprotection. 
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2.2.4! Analytical HPLC 
Peptide purity was confirmed by reverse-phase analytical HPLC on a JASCO 2000 series HPLC 

system using a Phenomenex® Kinetex C18 (5 µM particle size; 100 x 4.5 mm) column, monitoring 

at 220 and 280 nm wavelengths Typically, a gradient of water (0.1 % TFA, buffer A) and acetonitrile 

(0.1 % TFA, buffer B) between 20 and 80 % buffer B over 20 min was used. Representative 

analytical HPLC traces for each peptide is shown in Section 8.1. 

2.2.5! Peptide concentration determination 
Pure peptides were dissolved in ultrapure deionised water and concentrations were determined on a 

Thermo Scientific (Waltham, USA) Nanodrop 2000 UV / visible spectrophotometer. Concentrations 

were determined by absorbance of Tyr at 280 nm using the Beer-Lambert Law (Equation 2-1). 

ε280(Tyr) = 1280 mol-1 dm3cm-1. The extinction coefficient of oPP!-Phe and PPII was determined 

using a literature protocol based on the absorbance at 214 nm.169 Pure peptides and stocks were 

stored at -20 °C and thawed before use. 

! = ). $. % 

2.3! Solution phase biophysical characterisation  

2.3.1! Circular dichroism spectroscopy 

2.3.1.1! Introduction to circular dichroism 
Circular Dichroism (CD) measures the difference in absorbance of left and right circularly polarised 

light by a chiral molecule (e.g. peptides).170 Circularly polarised light is the result of two linearly 

polarised light waveforms that are perpendicular to one another and phase shifted by a quarter 

wavelength. CD spectroscopy can be used to determine the secondary structure present in peptides 

and proteins due to the distinctive spectra produced in the far UV (260 - 190 nm). Peptides produce 

two key CD signals as a result of the amide bond at ca. 220 and 190 nm. These signals arise from 

electronic transitions from the n to "* (n"*) and " to "* (""*) orbitals respectively. These spectral 

features are characteristic of random coiled peptides. The periodic alignment of amide bonds in the 

peptide backbone within regions of secondary structure modify these basic electronic transitions, 

giving rise to information about the conformation of the peptide.171 

!-Helical secondary structure give a characteristic “double dip” spectrum with minima at 208 and 

222 nm and a maximum at 190 nm. $-Sheets have a minimum at ca. 215 nm (n"*) and a maximum 

at ca. 195 nm (""*) and polyproline II helices have a minimum at ca. 197 nm and a maximum at 

220 nm (Figure 2-2).172 

 

Equation 2-1: The Beer-Lambert Law. A is absorbance, ) is the extinction coefficient 
(mol-1 dm3cm-1), c is the concentration (mol dm-3) and l is the pathlength (cm). 
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Examination of CD spectra in the near UV range of 250 to 340 nm can provide useful information 

on the environment and conformation of aromatic side chains and consequently the structure of the 

peptide or protein. This is because the ""* transition on the aromatic rings of phenylalanine, tyrosine 

and tryptophan are responsive to their local surroundings.174 

2.3.1.2! Circular dichroism experimental details 
CD spectra were collected using a JASCO 815 or JASCO 810 spectropolarimeter fitted with a Peltier 

temperature controller. Peptide samples were prepared in PBS at pH 7.4. CD measurements were 

carried out in 1 mm (50 – 200 µM total peptide concentration, 250 µL total sample  volume), 5 mm 

(10 µM total peptide concentration, 1250 µL total sample volume) or 10 mm (near UV 

measurements, 100 µM total peptide concentration, 2500 µL total sample volume) pathlength 

cuvettes (Starna Scientific; Ilford, UK). For peptide concentrations greater than 500 µM a sandwich 

cell cuvette with pathlength 0.1 mm was used (100 µL total sample volume). CD spectra were 

baseline corrected and recorded as the average of five scans from 260 – 190 nm at 5 °C using a 

scanning speed of 100 nm min-1, a bandwidth of 1 nm, a 1 nm step size and a 1 s response time. 

Thermal denaturation curves were obtained from 5 to 95 °C and back to 5 °C (temperature slope = 

40 °C hr-1) by monitoring the absorbance at 222 nm (1 nm bandwidth) at 1 °C intervals with 16 s 

delay and 16 s response times. For near UV measurements 5 °C scans were recorded from 

250 – 340 nm and denaturation curves were obtained by monitoring at 276 nm. The midpoint of the 

denaturation curve (TM) was determined by taking the maximum value from the first derivative of 

the thermal transition. 

Data was buffer subtracted and then spectra were converted from ellipticities (mdeg) to mean residue 

ellipticities (MRE deg cm2 dmol-1 res-1) by normalising for peptide concentration, number  of peptide 

bonds and the cuvette pathlength as demonstrated in Equation 2-2. Representative spectra and 

thermal denaturation measurements for all peptides are shown in Section 8.2. 

 

Figure 2-2: CD spectra of protein secondary structure. !-Helical secondary structure 
(yellow, myoglobin), $-sheet secondary structure (green, $-Lactoglobulin) and 
polyproline-II helix (purple, bovine collagen type II). Spectra collected from Protein 
Circular Dichroism Data Bank.173 
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The fraction of ! helix (%) for each peptide was calculated using Equation 2-3: 

012$34567ℎ9%4:7(%) = 100<
['()7]=== − ['()]?@AB

−427000 E1 −
3
6G − ['()7]?@AB

H 

2.3.2! Analytical ultracentrifugation 

2.3.2.1! Introduction to analytical ultracentrifugation 
Analytical ultracentrifugation experiments follow the sedimentation of macromolecules over time 

when a centrifugal force is applied. Two types of experiments are  conventionally carried out: 

sedimentation velocity (SV) and sedimentation equilibrium (SE). Each experiment gives 

information on the size of the macromolecule, while each also providing additional information.177 

2.3.2.2! Sedimentation velocity 
In SV experiments samples are spun at high rotor speeds (typically >40 000 rpm) leading to the 

depletion of peptide away from the centre of the rotor creating a pellet at the bottom of the cell. Data 

is collected across the radial distance of the cell following the sedimentation of the peptide over 

time. The data is fitted to the Lamm equations in a continuous c(s) distribution model returning a 

sedimentation coefficient profile.178 This allows for determination of the sedimentation coefficient 

(Svedberg units, S = 10-13 s) and the frictional coefficient (f/f0) of the peptide, both of which relate 

to the mass of the peptide being studied. f/f0 gives information about the shape of the peptide, a 

theoretical value of 1 would imply a totally spherical peptide. An advantage of the SV experiment 

is information on the homogeneity of the sample is obtained; multiple peaks are observed in the 

sedimentation coefficient profile if oligomers or aggregates of the peptide are present (Figure 2-3). 

 

 

 

 

 

Equation 2-2: Conversion of mdeg (*) to mean residue ellipticity. c is the concentration 
of the sample (mol dm-3), l is the sample pathlength (cm) and b is the number of amide 
bonds in the sample. 

Equation 2-3: Percentage fraction helix at 222 nm. Where [MRE]coil = 640 – 45T = 415 
deg cm2 dmol-1 res-1 at 5°C. T is the temperature (°C); n is the number of bonds including 
the C-terminal amide.175-176 
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2.3.2.3! Sedimentation equilibrium 
In SE experiments samples are spun at lower speeds and consequently the sedimentation of sample 

is balanced by its desire to diffuse back up the cell due to the creation of a concentration gradient. 

An equilibrium is established when no change in the concentration distribution of any component is 

detectable and when the opposing forces are balanced.179 When this is achieved, scans are taken 

over the radial distance of the sample at a range of different speeds. Unlike for SV, no distinct 

boundaries are observed; instead a smooth gradient is seen. The curves are fitted to an exponential 

equation, and the molecular weight of the peptide is returned. If, at the concentration of the peptide, 

multiple species are sampled then more complex models for associating system can be fitted (e.g. 

monomer-dimer equilibrium) and a KD can be determined (Figure 2-4). 

 

 

 

 

 

 

2.3.2.4! Sedimentation Velocity Method 

SV AUC experiments were conducted at 20 °C in either a Beckman XL-A or XL-I ultracentrifuge 

equipped with an An-60 or An-50 Ti rotor. 410 µL of solution at 100 µM peptide concentration in 

PBS were loaded in the sample channel, and the reference channel was loaded with 420 µL of PBS 

buffer. Samples were centrifuged at 50 krpm, with absorbance scans taken across the cell at a radial 

Figure 2-3: Representative SV data. Top: SV sedimentation coefficient distribution after 
fitting to continuous c(s) distribution. Sharp peak demonstrates homogenous sample. 
Bottom: Residuals for the above fit shown as greyscale, showing the difference between 
the raw and fitted data in bitmap format.  

Figure 2-4: Representative SE data and fit. Top: data measured at four centrifugal speeds 
(crosses) and fitted to single ideal species model curves (lines). Bottom: Residuals for the 
above fit. 
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range of 5.8 – 7.3 cm at 5 min intervals to a total of 120 scans. Data was fitted to a continuous c(s) 

distribution model using SEDFIT (http://www.analyticalultracentrifugation.com) at a 95 % 

confidence level.180 The baseline, meniscus, frictional coefficient (f/f0), and systematic time-

invariant and  radial-invariant noise were fitted. Residuals for the c(s) distribution fit are shown as 

a bitmap in which the greyscale shade indicates the difference between fit and raw data. 

2.3.2.5! Sedimentation equilibrium method 

SE AUC experiments were conducted at 20 °C in either a Beckman XL-A or XL-I ultracentrifuge 

equipped with an An-60 Ti rotor and cells equipped with a 2-channel aluminium centrepiece and 

sapphire windows. Peptide solutions were made up in PBS at  80 – 130 µM (110 µl) peptide 

concentration. The reference channel contained 120 µl of PBS buffer. Samples were centrifuged 

from 44 – 60 krpm in increments of 4 krpm. Absorbance was measured at 280 nm across the cell at 

a radial distance of 5.8 – 7.3 cm at each speed after 8 h. To check the sample had reached equilibrium 

absorbance was measured again after a further hour to before moving onto the next speed. Data was 

fitted to a single ideal species model with Ultrascan II (http://ultrascan2.uthscsa.edu/).181 The partial 

specific volume (v̅ ) for peptides and the solvent density (1.0054 g mL-1) were calculated using 

Sednterp (http://www.jphilo.mailway. com/download.html). 95% confidence limits were calculated 

using Monte Carlo analysis of the obtained fits. All SE data, fitted curves and residuals are shown 

in Section 8.3. 

2.4! Nuclear magnetic resonance spectroscopy 

Peptide was prepared at 1 mM concentration in PBS. The pH was adjusted to pH 7.4 with 10 mM 

NaOH and the sample freeze-dried before being reconstituted in the appropriate volume of D2O 

(10%) in H2O (90%). The pH and concentration were confirmed. 

NMR data were acquired at 278 K on a Bruker Ascend spectrometer operating at 700 MHz equipped 

with a 1.7 mm micro-cryoprobe (BrisSynBio, University of Bristol). The peptides were assigned 

using standard 2D homonuclear spectra: TOCSY (60 ms mixing time) and NOESY (100 and 250 

ms mixing times). Both were acquired with spectral widths of 9,375 Hz, 4,096 complex points 

in f2 and 1,024 complex points in f1. To help with backbone and side-chain assignment, natural 

abundance 15N (96 (t1) × 1792 (t2) complex points) and 13C (124 (t1) × 2,048 (t2) complex points) 

HSQC spectra were also acquired.  

NMR data were processed by Dr Chris Williams (Crump Group, Bristol University) with NMRPipe 

and qMDD38, 68, 182. Peak picking and assignment were carried out in CCPNMR Analysis 2.4.1.183 

NOE  assignment and structure calculation were carried out with ARIA 2.3.1184 and CNS v 1.2185. 

The final structures were water refined using the standard ARIA protocol. Dihedral restraints for 

the α-helix were generated using DANGLE186 and validated with the NOE spectra before inclusion 

into the structure calculation. Three bond J couplings were extracted from a high resolution COSY 

and supplemented into the structure calculation during the final stages of refinement. The final 

refined ensemble was composed of 20 structures with the lowest energy and no violations (>5°) and 
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validated using PSVS v1.5.187 All peptide structure images were rendered with Pymol 

(http://www.pymol.org).  

2.5! X-ray crystallography: peptide crystallisation trial methods 

Freeze dried peptides were resuspended in deionised water to a concentration of 15 mg mL-1 for 

sitting-drop vapour-diffusion crystallisation trials using standard commercial screens (JCSG, 

Structure Screen 1+2 MorpheusTM, ProPlex and PACT PremierTM; Molecular Dimensions 

(Newmarket, UK))  at 20 °C and 4 °C with 0.3 µL of the screening solution. 

2.6! Computational design and analysis 

ISAMBARD (Intelligent System for Analysis, Model Building And Rational Design) is an open-

source Python package with a suite of tools for biomolecular structure analysis, protein design, 

model building and evaluation.142  

2.6.1! Loop finder 
LoopFinder, a protein design tool within ISAMBARD, was used to extract loops from the Protein 

Data Bank (PDB) that fit between a pair of entering and exiting residues in the !PP topology. Loops 

were filtered based on the following criteria:  

-! Loops from crystal structures with ≤ 2 Å  resolution  
-! ≤ 3 Å fit RMSD between loop and !PP model backbone coordinates 
-! 3 – 6 residue loop lengths 
-! Loops that link ! and $ secondary structure 
-! Loops containing cysteine were omitted 

2.7! Bioinformatics 

2.7.1! CH–" interaction identification 
CH–π interactions were identified within the ISAMBARD framework.142 CH–π interactions were 

identified using parameters based on those used to find CH–π interactions involving carbohydrates 

in protein crystal structures168 and adapted to account for any CH protons interacting with an amino 

acid aromatic ring. This adaptation provides an update to a previous analysis of CH–π interactions.167 

CH–π interactions were determined between all amino acid CH bonds and the aromatic ring of Tyr. 

Interactions were classed as CH–π positive if the following conditions were met: CH–π distance 

(between the CH proton to centre of the aromatic ring) ≤3.5 Å; CH–π angle (between the vector of 

the CH bond and the normal to the plane of the aromatic ring) ≤ 55°; C projection distance (between 

the projection of the CH carbon to the plane of the aromatic ring and the centre of the ring) ≤ 2.0 Å 

for 6-membered Tyr (Figure 2-5). 
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2.7.2! Solvent accessibility analysis 
Solvent accessible surface area (SASA) of both oPP! and PP! were calculated within the 

ISAMBARD framework using the programme NACCESS which uses the Lee and Richards method 

described in Section 1.4.6.188-189 SASA was calculated for the oPP! and PP! complex, loop region 

was ignored. SASA was then calculated for the individual ! helix and polyproline-II helix secondary 

structure components. SASA of the complex was then taken as a proportion of the total SASA of 

the individual components. This was done for all 20 structures in the NMR ensemble and then 

averaged. 

2.8! Molecular dynamics simulation 

2.8.1! Introduction to molecular dynamics  
Molecular dynamics (MD) is one of the principle tools for modelling proteins and probing their 

stability, folding and molecular recognition of other biologically important molecules. A molecule 

is described as a series of charged points (atoms) linked by springs (bonds). The potential energy 

function allows us to calculate the force experienced by any atom given the position of the other 

atoms in the system. How these forces affect the trajectories of atoms and molecules are determined 

by solving Newton’s equations of motion. 

2.8.2! Molecular dynamics simulation setup 
Models were constructed using Pymol and set up for MD simulation using the Gromacs 4.6.7 suite 

of tools.190-191 Hydrogen atoms were added consistent with pH 7.4 using pdb3gmx, and the TIP3P 

water model and Amber99sb-ILDN force field were chosen.192 A cubic periodic boundary box was 

set up with dimensions 2 nm greater than the longest dimension of the model with editconf. This 

box was filled with water molecules using genbox and 137 mM NaCl using genion. The system was 

energy minimized and position-restrained MD run for 200 ps as an NPT (normal pressure and 

temperature) ensemble at 278 K, 1 Bar using the Verlet cut-off scheme and under PME (Particle 

Figure 2-5: Parameters defining a CH–" interaction. CH–π distance (between the CH 
proton to centre of the aromatic ring, i.e. H–X, blue) ≤ 3.5 Å. CH–π angle (between the 
vector of the C–H bond and the normal to the plane of the aromatic ring) θ ≤ 55°. C-
projection distance (between the projection of the CH carbon to the plane of the aromatic 
ring and the centre of the ring, i.e. X – Cp, blue) ≤ 2.0 Å for 6-membered ring (Tyr). 
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Mesh Ewald) boundary conditions as an initial relaxation and equilibration step. The restraints were 

then removed and a further 10 or 100 ns of MD was performed using 1 GPU and 6 cores of an X86 

workstation. Structures were saved every 10 ps. Post-simulation trajectories were processed using 

trjconv to remove periodic boundary condition effects and solvent and inspected using VMD.193 All 

atom and backbone RMSDs and RMSFs were calculated using Gromacs.
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Chapter 3! Stabilising the PP! miniprotein by rational design 

The work described in this chapter was designed by the author of this thesis (KPG), Dr Emily Baker 

and Prof. Dek Woolfson. Bristol Chemical Synthesis CDT rotation student Frank Zieleniewski 

synthesised and preliminary characterised oPP!-E#K; full characterisation was followed up by 

KPG. Data collection and assignment of the oPP! NMR structure was done by Dr Chris Williams 

(Prof. Matthew Crump’s Group) and critical analysis of the structure was done by KPG. 

3.1! Chapter introduction 

Previously, the fragment-based design and characterization of a 34-residue miniprotein, PP!, has 

been described.153 PP! comprises a polyproline-II helix, loop and ! helix that are adapted from two 

natural proteins: an antigenic bacterial surface adhesin (AgI/II) from Streptococcus mutans166 and 

the bovine pancreatic polypeptide hormone.29 PP! is a monomer in aqueous solution and reversibly 

unfolds with a midpoint unfolding temperature (TM) of 39 ˚C. A Nuclear Magnetic Resonance 

(NMR) spectroscopy structure reveals that PP! is stabilized by the interdigitation of Pro and Tyr 

residues between the two helices and numerous CH–" interactions.  

We envisage using PP! as a building block to build larger and more-complex assemblies with 

applications in protein engineering and synthetic biology.194-195 PP! could provide a new component 

to the toolkit of peptides already developed to help make the engineering of biological systems easier 

and more accessible.151 Such building blocks should be predictable with respect to sequence, 

structure, and stability in order to be used reliably in a variety of systems while maintaining 

structural and functional integrity.32 As such, de novo designed building blocks of reduced 

complexity where the role of every residue in the sequence is understood provide advantages over 

more-complex sequences borrowed from nature. 

Arguably one of the best understood protein folding units in terms of sequence-to-structure 

relationships is the !-helical coiled coil where two or more amphipathic !-helices supercoil around 

a central hydrophobic core.132, 134, 196 !-Helical coiled coils with a range of oligomeric states have 

been de novo designed and fully characterised so that they can be used easily and reliably in different 

contexts.32, 145 In this chapter, we apply a similar strategy to PP! to garner a better understanding of 

the PP! topology. A rational redesign of PP! is described, that moves away from a fragment-based 

design towards a de novo framework. The extent to which the stability of PP! can be enhanced 

through this process is explored. An optimised and fully characterised PP! framework with 

significantly enhanced thermal stability compared to the first-generation design is delivered. 
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3.2! Rational redesign of PP! 

One of the key defining features of the PP! topology is the interdigitation of Pro residues on the 

polyproline-II helix with Tyr residues on the ! helix. Furthermore, these residues are conserved in 

many natural examples of polyproline-II:! helix interfaces, such as the AgI/II bacterial surface 

adhesin and the pancreatic peptide family.29, 55, 166 Baker et al. previously mutated the residue Tyr to 

a series of other proteinogenic and non-proteinogenic amino acids and found that Tyr gave the most 

thermally stable PP! fold.153 Therefore, the Pro-Tyr interface was maintained in our PP! redesign 

with Pro placed at position 1 and Tyr placed at the d position of the polyproline-II and !-helical 

repeats respectively (Figure 3-1). Leu at the a position is also conserved in many related natural 

peptides and forms part of the diamond shaped hole into which Pro projects. Therefore, Leu at a 

was initially preserved in the new PP! designs. However, the mutability of this position is discussed 

in more detail in Chapter 4. 

The redesign of PP! was inspired by a number of !-helical coiled-coil design principles. At the 

heart of all coiled coils, the burial of hydrophobic surfaces in intimate side-chain packing termed 

knobs-into-holes (KIH) interactions197 provides the driving force for coiled-coil assembly and 

specification.113, 132, 196,198 Alongside this, additional electrostatic interactions can provide further 

stabilisation. Charged residues at the e and g positions that flank the hydrophobic core can form 

interhelical Coulombic interactions in natural systems.199-200 These have been used extensively to 

guide and stabilise de novo coiled-coil designs.132-133, 201-202 Lys-Glu pairs have been used to control 

either homomeric or heteromeric assembly in peptides with otherwise identical a and d core 

interfaces (Figure 3-1A).203 

By analogy, PP! might be stabilized by optimising similar interactions between the 2 and 3 positions 

of the polyproline-II helix and the e and g positions of the ! helix (Figure 3-1B). It is noted that the 

direction of the C!-C$ bond vectors of the side chains of the 2 and 3 positions in the polyproline-II 

helix point away from the ! helix. This may mean that formal salt bridges are not made between the 

2/e, and 3/g positions due to the distance between the opposite charge groups being outside of the 

range for salt bridging. Nonetheless, charged residues may still help stabilise and promote folding 

of PP! through electrostatic steering where long-range electrostatic forces specifically increase the 

rate of helix association without affecting the rate of dissociation.204-205 

There are two extreme possibilities for pairing charged residues in PP!: a Lys-based polyproline-II 

helix plus a Glu-based ! helix or vice versa (Figure 3-1C&D). To determine the optimal 

combination, both mutants (oPP! and oPP!-E#K) were considered (Table 3-1). While there are 

other possibilities for pairing charged residues with a combination of both Lys and Glu on the same 

helix we only investigated the two extreme and simplest cases.206-208 More elaborate charge pattern 

designs might be useful for creating orthogonal sets of PP! peptides that can be used together 

without any cross-interaction. 
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With the initial ! helix foreground e, a, d and g positions of the starting sequences selected, focus 

turned to the remaining background positions (b, c and f positions). These residues were designed 

to contribute to the overall stability of the peptide by promoting ! helicity, without promoting 

aggregation. Therefore, helix propensity was optimised for the solvent-exposed face of the ! helix.  

Helix propensity is a measure of how the side chains of a particular amino acid affects the helix-to-

coil equilibrium; some residues have more of a preference for the !-helical conformation compared 

to others.209-211 Many different helix propensity scales have been developed based on different 

strategies and sources including statistical surveys,212-213 host-guest analysis214 and molecular 

dynamics calculations.215-216 One of the first helix propensity scales has been presented by Chou and 

Fasman and is based on the frequency of occurrence of amino acids in ! helices in proteins.217-218 

Later, DeGrado et al have designed an !-helical dimer in equilibrium with a random coil monomer. 

All 20 natural amino acids were substituted for a solvent exposed guest site on the helix and a list 

of free energy difference values (++G) for each amino acid were calculated.214 Perhaps the most 

comprehensive and widely used scale has been derived by Scholtz et al. based on experimental 

measurements of helix propensity in 11 systems including both proteins and peptides.209 From this 

analysis, the helix propensities of the amino acids are as follows (kcal mol-1): Ala 0, Leu 0.21, Arg 

Figure 3-1: Helical wheel representations of !-helical coiled coils and the PP! fold. Leaf 
tips point along the direction of the C!-C$ bond vectors. Lower case letters on the ! helix 
and numbers on the polyproline-II helix (left) indicate the helical register. C and N refer 
to the termini of the helices nearest the viewer. Interhelix Coulombic interactions (dashed 
lines) (A) Sequence of a heteromeric dimer highlighting interhelix Coulombic interactions 
between g and e positions.203 (B) Sequence of PP! with no interhelix Coulombic 
interactions. (C) Sequence of oPP! highlighting potential Coulombic or long-range 
electrostatic interactions between the 2 and 3 positions of the PPII helix and the e and g 
positions of the ! helix. (D) Sequence of oPP!-E#K highlighting alternative extreme 
arrangement of charged interactions.  
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0.21, Met 0.24, Lys 0.26, Gln 0.39, Glu 0.40, Ile 0.41, Trp 0.49, Ser 0.50, Tyr 0.53, Phe 0.54, Val 

0.61, His 0.61, Asn 0.65, Thr 0.66, Cys 0.68, Asp 0.69, and Gly 1.  

The ! helix is stabilised mainly by favourable enthalpic contributions219 from the formation of 

backbone hydrogen bonds, whereas the random coil is favoured by conformational entropy.220 The 

1 kcal mol -1 difference in helix propensity between Gly and Ala is the result of the reduced phi-psi 

space available to residues when the H in Gly is replaced by a methyl group in Ala.221-222 The methyl 

group reduces the entropy of the backbone in the random coil however it does not lose side chain 

conformational entropy on folding to form an ! helix.215 All other residues experience an 

unfavourable change in side chain conformational entropy upon folding to form an  

! helix.209, 215, 220  

Based on this helix propensity scale, mutations to Ala at b and c and Lys at f for both oPP! and 

oPP!-E#K were made. While Leu has relatively high helical propensity it was avoided in the oPP! 

background positions to ensure the monomeric nature of PP! was preserved. Met was also avoided 

as it is susceptible to oxidation and so too was Arg as it can have undesirable side reactions during 

synthesis. Lys was placed at position f, that is, the position spatially between b and c, to prevent a 

two-residue hydrophobic Ala interface forming, which may cause oligomerisation of the topology. 

The length of the new PP! designs were maintained at three !-helical heptads so that a direct 

comparison in stability could be made between the new designs and parent PP!. Also, to allow 

comparison of the new PP! design with parent PP!, the same loop region from PP! was used. 

Furthermore, loop design is notoriously difficult, unlike for ! helices and $-strands, there are not 

well determined amino-acid preferences for forming well-ordered loops.223 

 

 

The residues at the initial e-f-g positions of the first heptad of oPP! and oPP!-E#K were different 

to those in the second and third heptad, P-E-K compared to E-K-E. This is because Pro and Glu 

were conserved as the N terminal residues in the ! helix of related natural sequences and have been 

shown to be good helix capping residues.224-225 

Table 3-1: Sequences for PP! variants. 

Peptide 
Sequence and helical register 

              efgabcd efgabcd efgabcd 

parent PPα153 Ac- PPTKPTKP GDNAT PEKLAKY QADLAKY QKDLADY -NH2 

o-α Ac-                PEKLAAY EKELAAY EKELAAY -NH2 

oPPα Ac- PPKKPKKP GDNAT PEKLAAY EKELAAY EKELAAY -NH2 

oPP!-E#K Ac- PPEEPEEP GDNAT PEKLAAY KKKLAAY KKKLAAY -NH2 

oPPα-Phe Ac- PPKKPKKP GDNAT PEKLAAF EKELAAF EKELAAF -NH2 
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3.3! Biophysical characterisation 

3.3.1! Circular dichroism spectroscopy 
oPP! and oPP!-E#K were synthesized by solid-phase peptide synthesis, purified by reverse-phase 

HPLC, and confirmed by MALDI-TOF mass spectrometry (see Section 8.1). The peptides were 

characterised by circular dichroism (CD) spectroscopy (Figure 3-2). Both peptides were folded with 

approximately 50% !-helical structure at 5 °C, similar to parent PP!. Thermal denaturation 

experiments of the far-UV CD signal at 222 nm, which reports on the secondary structure present, 

revealed that oPP! had a cooperative and fully reversible thermal unfolding transition with a TM of  

51 °C. This is a substantial increase of 12 ˚C over the TM for PP!.  

However, oPP!-E#K was 10 °C less stable than oPP! with a TM of 40 °C, which is still more 

stable than parent PP!. It is noted that oPP!-E#K had a broader thermal unfolding transition 

compared to oPP!. The reduction in thermal stability can potentially be attributed to the large charge 

associated with the ! helix; +6 compared to -2 for oPP!.  

Consistent with PP!,153 oPP! was considerably more stable than the constituent ! helix (o-!). The 

! helix was 38 % folded and a TM could not be extracted from the thermal melt curve. This is striking 

given that almost half the oPP! sequence is loop region or polyproline-II helix both of which do not 

contribute to the CD signal but are included in the spectra normalisation. This demonstrates the 

significant stabilising effect of buttressing the ! helix against a polyproline-II helix. The folding and 

stability data is summarised in Figure 3-2. 

Next oPP! was characterised by near-UV CD spectroscopy, which reports on the tertiary structure 

of the peptide through the environment of the aromatic side chains, in this case Tyr (Figure 

3-2C&D). The thermal transition of oPP! monitored by near-UV CD spectroscopy gave unfolding 

and refolding curves coincident with the far-UV CD traces. While the degree of folding of both 

oPP! and PP! were similar at 5 °C in the far-UV region, the magnitude of the CD signal at 5 °C in 

the near-UV region was slightly greater for oPP!. This could indicate that the Tyr side chains of 

oPP! are slightly more rigid and less mobile than in PP! and suggests tighter packing between the 

two helices.226 
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3.3.2! Analytical ultracentrifugation 
Next, the constructs were investigated by analytical ultracentrifugation (AUC) to determine their 

molecular weights in solution. There are two standard AUC experiments usually used to determine 

molecular weight: sedimentation velocity (SV)  and sedimentation equilibrium (SE). In SV 

experiments samples are spun at very high centrifugal forces and sedimentation is measured over 

time. SV experiments reveal information about the size and shape of the peptide as well as the 

homogeneity of the system. SV experiments could not be performed on PP! variants, however, 

Peptide name MRE222 nm /  
deg cm2 dmol-1 res-1 

% Helicity175-

176 
TM  

/ °C 

PP! -18319 48 39 

o-! -13746 38 n/a 

oPP! -18319 48 51 ± 0.8 

oPP!-E#K -17810 47 40  ± 2.1 

Figure 3-2: Folding and stability of oPP! and variants. (A) CD spectra recorded at 5 °C 
in the far-UV range for parent PP!, oPP!,  oPP!-E#K and o-!. MRE is mean residue 
ellipticity. (B) Temperature dependence of the far-UV CD signal monitored at 222 nm. 
(C) Aromatic CD spectra recorded at 5 °C in the near-UV range. (D) Temperature 
dependence of the near-UV CD signal monitored at 276 nm. Conditions: 100 µM peptide, 
PBS, pH 7.4. Colour key: PP! (black, dash), oPP! (black), oPP!- E#K (orange), and o-
! (grey). (E) Table summarising CD data on the folding and stability for oPP! and 
variants. 
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because rotational speeds > 60 krpm would be required for full peptide sedimentation and this 

exceeds the maximum speed limit of the analytical ultracentrifuge. Therefore, only SE experiments 

were performed where the sample is spun at lower speeds over longer times to allow an equilibrium 

to be set up between sedimentation and back diffusion. At equilibrium, information on the weight 

of the peptide can be extracted from the radial distribution of peptide concentration. For associating 

peptides, SE experiments can also provide association constants provided the dissociated and 

associated states are both accessed in the experimental data. 

SE AUC experiments were carried out on both variants. Experimental data readily fitted to single-

ideal species models returning molecular weights consistent with monomers (Figure 3-3). To ensure 

high confidence in the masses returned, residuals were plotted which indicate the difference between 

fit and raw data. 95% confidence limits were calculated using Monte Carlo analysis of the obtained 

fits.  

 

 

 

 

 

To probe and understand the structure of oPP! further, attempts were made to crystallise oPP! for 

structure determination by X-ray crystallography. Crystal trays were laid down as described in 

Section 1.5 using standard commercial screens at both 20 and 4 °C however no crystals have been 

observed to date. 

3.4! Characterisation using NMR spectroscopy 

As an alternative to X-ray crystallography, high-resolution NMR spectroscopy was used to 

determine the solution-phase structure of oPP!. Data for oPP! were acquired at both 600 and 700 

MHz. As a result of the low-complexity of the oPP! sequence there was significant overlap in the 

signals in the 1D 1H NMR spectrum (Figure 3-4). The peptide was assigned using standard 2D 

spectra: TOCSY, NOESY and HSQC. Previously assigned NMR spectra for PP! aided the 

Figure 3-3: Sedimentation-equilibrium AUC data (top, dots) and fitted (lines) single-ideal 
species model curves at 44 (blue), 52 (aqua), 56 (orange), and 60 (red) krpm for oPPα and 
oPPα-E#K. Residuals (bottom) for the above fit. (A) oPPα (v̅ = 0.748 cm3 g-1). The fit 
returned the following mass: oPPα, 3854 Da, (1.0 x monomer mass), 95% confidence 
limits = 3839 – 3869 Da. (B) oPPα-E#K (v̅ = 0.748 cm3 g-1). The fit returned the 
following mass: oPPα-E#K, 3545 Da, (0.9 monomer mass), 95% confidence limits = 
3511 – 3581 Da. 
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assignment of those for oPP!. Data were collected and the NMR structure solved by Dr Chris 

Williams, BrisSynBio, University of Bristol. 

 

 

 

 

 

 

 

 

3.4.1! Sequential assignment approach 
The sequential assignment approach consists of two stages.227-229 Firstly, spin systems associated 

with particular amino acids are identified. This is achieved by running TOCSY (or COSY) 

experiments. The second stage is the assignment of each spin system to a particular residue in the 

amino-acid sequence. TOCSY experiments cannot be used to do this since there is no coupling 

across the amide bond. Instead, assignments are made from through-space nuclear Overhauser 

effects (NOEs) from the NOESY spectrum (Figure 3-5). Regular secondary structures (e.g. ! 

helices and $ strands) have regular and distinct NOE patterns. 

 

 

 

 

 

Figure 3-4: 1D 1H NMR spectrum of oPP! acquired at 700 MHz showing the complexity 
of the system and overlap of peaks.  
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3.4.2! [1H-1H]-TOCSY: Total correlation spectroscopy 
Similar to a COSY experiment a TOCSY spectrum gives 1H-1H correlations due to scalar (through-

bond) couplings. Unlike a COSY spectrum where coupling is limited to protons up to three bonds 

apart (4J coupling constants are close to zero), a TOCSY experiment potentially correlates all H 

nuclei of the same spin system. There is no scalar coupling through the amide bond and so protons 

from different amino acids belong to different spins systems. Therefore, from the TOCSY spectrum, 

characteristic peak patterns for a spin systems can be assigned to a particular type of amino acid. 

The TOCSY spectrum for oPP! is shown in Figure 3-6 highlighting the aliphatic side chain protons. 

Resonance assignments have been omitted for clarity. 

 

  

Figure 3-5: Polypeptide backbone showing the though-space distances (d1, d2, and d3) 
used for the sequential resonance assignment (blue arrows). Through bond spin-spin 
coupling connectivities within amino acid residues are shown as red lines. 
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3.4.3! [1H-1H]-NOESY: Nuclear Overhauser effect spectroscopy 
Cross peaks in a NOESY spectrum are the result of dipolar couplings resulting from interactions of 

spins via space and not through bonds as is the case for TOCSY experiments. The magnitude of 

these NOEs depends on the distance between interacting spins and therefore the NOESY spectrum 

contains all information about the spatial proximities of protons and consequently the 3D structure 

of the peptide.  

The amide region of the NOESY spectrum of oPP! is shown in Figure 3-7. Sequential HNi-HNi+1 

NOEs observed in the spectrum indicated a well-defined ! helix. To identity which amino acids 

these correlations belonged comparisons were made with the TOCSY spectrum. 

 

Figure 3-6: TOCSY spectrum of oPP! acquired at 600 MHz showing aliphatic side chain 
protons. Residual water band signal visible at 5 ppm on the f2 axis. 
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3.4.4! HSQC: Heteronuclear single quantum coherence spectroscopy 
To help with backbone and side chain assignment, natural abundance 15N and 13C HSQC spectra 

were also acquired. The HSQC experiment shows one bond connectives, for example the 1H-15N 

HSQC shows peaks for all backbone amides and some side chain nitrogen atoms of Asn, Arg, Gln, 

His, Lys and Trp. Pro does not have an amide proton and so does not give cross peaks in the 

spectrum. 

An overlay of the 1H-15N HSQC spectra for oPP! and PP! is shown in Figure 3-8. Like PP!, oPP! 

appeared to be well folded as determined by the good chemical shift dispersion. There were 

similarities between the two spectra. For example, peaks corresponding to the loop region (which is 

the same for both peptides), either overlaid or appeared in very similar regions of the spectrum 

(residues G9, D10, N11, A12, and T13). Cross peaks from E15 which is present in both peptides 

and corresponds to the start of the N terminus of the ! helix also overlay well. 

Figure 3-7: NOESY spectrum of oPP! acquired at 700 MHz (250 ms mixing time) in the 
amide/aromatic region. Strong sequential HNi – HNi+1connectivities in the helical segment 
highlighted between K22 to Y34 (black lines). 



Chapter 3: Stabilising the PP! miniprotein by rational design 
 
 

 48 

Unlike for PP!, clustering of peaks was observed for oPP!. This is a result of the repetitive and 

degenerate peptide sequence; there were a lot of the same residues in similar environments. This is 

particularly true for residues in the !-helical region, for example overlap is observed for residues 

A25 and A26, Y27 and E30, and L17, A18 and E23. 

In oPP!, residues K4 and K7 were shifted downfield in f1 and upfield in f2 relative to residues K3 

and K6. This is the result of the proximity of the K4 and K7 residues to the aromatic rings of Tyr27 

and Tyr20, respectively. 

 

 

Figure 3-8: Assigned natural abundance 1H-15N HSQC of oPP! (red) and parent PP! 
(black) acquired on a 700 MHz spectrometer. Pink and grey peaks are folded into the 
spectrum for oPP! and parent PP! respectively. Residues are labelled using their one-
letter codes. Coupling in carboxamide groups of Asp and Gln are specifically labelled. 
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3.4.5! Analysis of the NMR structure of oPP! 

Despite the repetitive sequence, 95.8% of the 1H NMR resonances for oPP! were assigned. The 

core of the structure, in particular the interdigitating Pro and Tyr residues, was well defined, while 

some of the solvent-exposed residues were more dynamic. The most dynamic region of the structure 

was the loop. The RMSDs across the ensemble were 0.52 ± 0.13 Å (backbone) and 1.05 ± 0.15 Å 

(all atom). These backbone and all atom RMSDs are comparable to those for the 900 MHz NMR 

structure of PP!; 0.51± 0.12 and 0.83 ± 0.12 Å, respectively (Figure 3-9A). The NMR structure of 

oPP! was closely similar to the NMR structure of PP! (Figure 3-9B&C). A representative structure 

from the oPP!  ensemble (PDB 6GWX, model 8) matched PP! (PDB 5LO2, model 14) with 

RMSDs of 0.5 Å and 0.9 Å, respectively, measured over the backbone and all atoms.  

To explore the origins of the improved thermal stability of oPP!, the ensembles of structures for 

PP! and oPP! were compared in more detail. First, distances between the Lys and Glu residues 

introduced into oPP! (2:e and 3:g distances) were measured to determine whether interhelical salt 

bridges were present. An accepted definition of a salt bridge, defined by Barlow and Thornton, is 

based on a cut-off distance of 4 Å between N-O atom pairs.230 Overall across all 20 ensemble states 

the average distances between the N, of Lys and the Oε of Glu were 8.7 ± 1.8 Å and 11.5 ± 2.4 Å 

for 2:e and 3:g respectively and therefore outside of any accepted definition for formal salt-bridge 

interactions;231 thus, none of the potential salt bridges were made. However, while it is clear formal 

salt bridges do not stabilise oPP!, general electrostatic steering during folding likely contribute to 

stability.24, 204, 232-236 In the literature, Schreiber and Fersht show that long-range electrostatic 

interactions increased the association rate constant between two proteins, barnase (Bacterial 

Ribonuclease) and its intracellular inhibitor (barstar), while also helping orientate the two proteins 

Figure 3-9: (A) Overlay of all 20 states in the NMR ensemble of oPP!. (B) Overlay of 
PP! (PDB 5LO2, model 14) and oPP! (PDB 6GWX, model 8).  (C) Overlay of PP! 
(PDB 5LO2, model 14) and oPP! (PDB 6GWX, model 8) rotated through 90 ° along the 
axis of the ! helix compared to (B). Colour key: oPP! (purple), PP! (wheat). Note PDB 
6GWX is deposited in PDB but has not been released yet. 
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for docking.204 Electrostatic steering has been shown to enhance the association rate between 

proteins in other studies too both experimentally and computationally.233, 237 

A key difference between the NMR structures was in the loop region and the orientation of the Pro8 

residue closest to the loop. In PP!, the loop kinks out causing Pro8 to be more solvent exposed 

compared to the equivalent Pro8 residue in oPP! (Figure 3-10A). In oPP!, Pro8 docked into the 

diamond-shaped hole on the ! helix more intimately than in PP!. The twisting out of Pro8 is likely 

result of the preceding residue, Lys7. In oPP!, Lys7 formed a long-range electrostatic interaction 

with Glu21 (Figure 3-10B). In PP!, there is no electrostatic steering effect between the two helices, 

instead a single interhelical salt bridge is made between Lys7 and Asp23 at 4.4 ± 1.3 Å with the 

knock on effect of Pro8 docking less tightly into the diamond shaped hole on the ! helix (Figure 

3-10C). We contend that electrostatic steering between the two helices has resulted in tightening of 

the oPP! NMR structure compared to PP!, which has contributed to the enhanced thermal stability. 

3.4.6! Analysis of solvent accessibility and side-chain burial in oPP! 

Next, we explored other factors that may have contributed to the enhanced stability of oPP! over 

PP!. The driving force for the assembly and stabilisation of the PP! fold is the interdigitation of 

Pro and Tyr residues and the burying of the hydrophobic interface. While polar hydrophilic residues 

are stabilised by interactions with water, hydrophobic side chains prefer to be buried and out of 

contact with water.238-239 The solvent accessible surface area (SASA) refers to the surface area of a 

biomolecule that is accessible to solvent, usually water. This is measured by rolling a probe of radius 

1.4 Å over the van der Waal’s surface of a macromolecule of interest, and the path traced out by the 

probe’s centre is the accessible surface.188 SASAs were calculated for both the oPP! and PP! NMR 

structures within the ISAMBARD framework using the programme Naccess.189 First, SASAs were 

calculated for intact oPP! and PP! complex (Figure 3-11A) with the loop region ignored in the 

calculations as it is the same for both the oPP! and PP! structures. SASAs were then calculated for 

the individual ! and PPII helix components for each structure (Figure 3-11B&C). 

Figure 3-10: Overlay of oPP! (PDB 6GWX, model 14) and PP! (PDB 5LO2, model 14) 
(A) Different orientations of residue Pro8 observed in PP! and oPP!. (B) Long-range 
electrostatic interaction (6.8 Å) between Lys7 and Glu21 in oPP!. (C) Salt bridge (2.7 Å) 
between Lys7 and Asp23 in PP!. Colour key: oPP! (purple), PP! (wheat). 
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In order to be able to make reliable comparisons between the oPP! and PP! structures, the SASA 

of the complex was taken as  a proportion of the total SASA of the individual components. This is 

summarised in Equation 3-1. This was done for every state in the NMR ensemble and the mean 

average calculated. 

(9%234I97J!J! = 7
J!J!KK!7?@LMBNO

(J!J!! + J!J!KKQQ)
 

A low value for the relative SASA is indicative of the interface between the two helices being less 

solvent accessible and thus more buried compared to a high value for normalised SASA. In other 

words, a normalised SASA value of 0 indicates fully buried and a value of 1 indicates fully solvent 

exposed. 

Overall, the normalised SASA of oPP! was equal to that of PP! (oPP! 0.78 ± 0.006, PP! 0.78 ± 

0.010). While the overall SASA is the same for both structures, on a per residue basis there are some 

differences between the structures (Figure 3-12). There is a shift in SASA for some interface amino 

acids, for example, in oPP! Tyr20, Leu17 and Lys4 are considerably more buried than in PP!. 

However, overall the analysis suggests there is no significant difference in SASA between the two 

NMR structures and therefore the enhanced thermal stability of oPP! is not a result of higher side-

chain burial. 

Equation 3-1: SASA of the PP! or oPP! complex as a proportion of the SASA of the 
individual ! and PPII helix components. 

Figure 3-11: (A) oPP! complex with the loop removed. (B) ! helix component (C) PPII 
helix component. 
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3.4.7! Analysis of CH–" interactions in oPP! 

Previous work shows that PP! is stabilized by CH–" interactions,153 therefore similar interactions 

were searched for in the oPP! ensemble. CH–" interactions were identified within the ISAMBARD 

framework.168-142 Interactions were classed as CH-positive if the following criteria were met: CH–π 

distance (between the CH proton to centre of the aromatic ring) ≤3.5 Å; CH–π angle (between the 

vector of the CH bond and the normal to the plane of the aromatic ring) ≤55°; H projection distance 

(between the projection of the CH bond to the plane of the aromatic ring and the centre of the ring) 

≤2.0 Å for Tyr (Figure 3-13). 

 

 

 

 

 

The analysis revealed 87 CH–" interactions across all 20 ensemble states in oPP! compared to 68 

interactions in PP!, equating to an increase of 28 %. This works out at an average of 4.35 CH–" 

interactions per structure for oPP! compared to 3.40 per structure for PP! (Table 3-2, Figure 3-14). 

Figure 3-13: Parameters defining a CH-" interaction. CH–π distance (between the CH 
proton to centre of the aromatic ring, i.e. H–X, blue) ≤ 3.5 Å. CH–π angle (between the 
vector of the C–H bond and the normal to the plane of the aromatic ring) θ ≤ 55°. C-
projection distance (between the projection of the CH carbon to the plane of the aromatic 
ring and the centre of the ring, i.e. X – Cp, blue) ≤ 2.0 Å for 6-membered ring (Tyr). 

 

Figure 3-12: Normalised SASA per residue in oPP! vs PP!. Colour key: oPP! (purple), 
PP! (wheat). Top line on x axis: oPP! sequence. Bottom line on x axis: PP! sequence. 
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The greater number of CH–" interactions in the oPP! NMR structure, approximately one extra CH–

" interaction per ensemble state, likely contributes to the enhanced thermal stability observed for 

oPP! over PP!. 

 

 

 

 

 

 

 

 

 

 

Interestingly, the dominant CH donors differed between the two ensembles: in oPP! fewer CH 

donors emanated from Pro side chains (oPP!: 5 interactions, PP!:, 22 interactions), but many more 

came from Leu (oPP!: 25 interactions, PP!: 4 interactions) and from the Lys residues (oPP!: 57 

interactions, PP!: 15 interactions) (Table 3-2,Figure 3-14). 

 

 

 

 

 

 

 

 

Table 3-2: Table of CH–" interactions in oPP! compared to PP!. 

 oPP! PP! 

Pro donor: total CH–" interactions 5 22 

Pro donor: CH–" interactions per structure 0.25 1.1 

Leu donor: total CH–" interactions 25 4 

Leu donor: CH–" interactions per structure 1.25 0.2 

Lys donor: total CH–" interactions 57 15 

Lys donor: CH–" interactions per structure 2.85 0.75 

Gly donor: total CH–" interactions 0 20 

Gly donor: CH–" interactions per structure 0 1 

Acetyl group donor: total CH–" interactions 0 7 

Acetyl group donor: CH–" interactions per structure 0 0.35 

Total CH–" interactions 87 68 

Average CH–" interactions per structure 4.35 3.40 

Figure 3-14: Bar chart summarising CH–π interactions across oPP! NMR ensemble 
compared to PP!. Colour key: oPP! (purple), PP! (wheat). 
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On closer inspection, in oPP! the side chains of Lys4 and Lys7 lie across the top faces of Tyr27 and 

Tyr20, respectively, leading to CH–π interactions between the C! and C$ protons of the former and 

the aromatic rings of the latter. The side chains of Leu24 and Leu31 sit on the underside of Tyr20 

and Tyr27 respectively, leading to CH–π interactions between the C$ protons of the former and the 

aromatic rings of the latter. Tyr residues appear to be anchored in place by CH–π interactions from 

Lys and Leu above and below the ring respectively (Figure 3-15). 

 

 

 

 

 

 

 

 

The contrasting conformation of Lys side chains between structures is best emphasised on 

overlaying all NMR states for both PP! and oPP! (Figure 3-16). There is a change in conformation 

of the Lys4 residue between PP! and oPP!. In oPP!, Lys4 points more towards the interface of the 

two helices and lies across the face of Tyr27 to a greater extent than in PP!. In PP! Lys4 is more 

solvent exposed, consistent with the calculated SASA measurements for Lys4 (Figure 3-12). 

 

Figure 3-15: Representative models from the NMR structure ensembles of PP!  and oPP! 
highlighting CH–" interactions. (A) PP! (PDB ID 5LO2, model 14). (B) oPP! (PDB ID 
6GWX, model 8). Key: oPP! (purple), PP! (wheat), CH–" interactions(dashed lines). 
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3.5! Further substitutions in oPP! 

Baker et al. show that the stability of PP! is influenced by the electron donating ability of the 

aromatic residue at the d position: peptides containing electron rich residues Tyr and Trp are more 

thermally stable compared to peptides containing electron poor residues Phe and His.153 To explore 

the importance of the CH-π interactions further, all of the electron-rich Tyr residues in oPP! were 

replaced by more-electron-poor phenylalanine (oPP!-Phe) (Figure 3-17). The electrostatic surface 

potentials of Phe and Tyr side-chains are shown in Figure 3-17D. As judged by CD spectroscopy, 

oPP! and oPP!-Phe had similar helicities at 5 °C. However, the thermal stability of oPP!-Phe 

dropped by approximately 20 °C compared to oPP! giving a TM of 33 °C. This drop is consistent 

with previous studies with PP! and thus indicates that while the identity of the CH–π donors is 

shifted the interactions are still at play. oPP!-Phe was monomeric by sedimentation equilibrium 

AUC. 

  

 

Figure 3-16: Overlay of oPP! and PP! NMR ensemble structures highlighting 
conformational change in Lys4 across the face of the aromatic ring in Tyr27 between 
structures. Key: oPP! (purple) and PP! (wheat).  
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3.6! Chapter conclusion 

In conclusion, the PP! fold has been optimised by rational protein redesign to give oPP!, which has 

a completely de novo framework and significantly enhanced thermal stability. A solution-phase 

NMR structure supported by a range of biophysical techniques including CD spectroscopy and AUC 

confirms that, similar to the parent peptide, oPP! forms a stably folded monomeric and compact 

structure comprising a polyproline-II helix linked via loop to an ! helix. The two helices interact 

via KIH-like packing with the interdigitation of Pro and Tyr residues. CD spectroscopy reveals that 

oPP! unfolds reversibly with a midpoint unfolding temperature of 51 °C, a substantial increase of 

approximately 12 °C compared with PP!. Overall, 10 mutations are made to the PP! fold to yield 

the optimised sequence.  

Figure 3-17: Folding and stability of oPP!-Phe. (A) CD spectra recorded at 5 °C for oPP! 
(black), oPP!-Phe (blue) (B) Temperature dependence of the far-UV CD signal monitored 
at 222 nm. (C) AUC Sedimentation-equilibrium for of oPP!-Phe. Data (top, dots) and 
fitted single-ideal species model curves (lines) at 44 (blue), 52 (aqua), 56 (orange), and 
60 (red) krpm for oPPα peptides. Bottom: Residuals for the above fits using the same 
colour scheme. oPPα-Phe (v̅ = 0.756 cm3 g-1). The fit returned a mass of 3771 Da, (1.0 
monomer mass), 95% confidence limits = 3742 – 3801 Da. (D) Electrostatic surface 
potentials of the side chains of Phe (left) and Tyr (right). Scale: ≤ -130 kJ mol-1 
(electropositive, blue) through ≥ 130 kJ mol-1 (electronegative, red). Modified from 
reference 153. Conditions for CD: 100 µM peptide, PBS, pH 7.4. Conditions for AUC: 130 
µM peptide, PBS, pH 7.4. 

 



Chapter 3: Stabilising the PP! miniprotein by rational design 
 
 

 57 

The increase in stability observed in oPP! compared to PP! is the result of a combination of factors. 

It was postulated that introducing Lys-Glu pairs between the 2 and 3 position of the PPII helix and 

the e and g position of the ! helix would result in the formation of interhelical Coulombic 

interactions that would help stabilise the miniprotein fold. This is a strategy used frequently in the 

de novo design of coiled coils to guide and stabilise assemblies.132-133 However, the distance between 

the Lys and Glu residues in oPP! indicated that salt bridges are not present in the NMR ensemble; 

distances are greater than the accepted cut-off for salt bridge interactions of 4 Å. While formal salt 

bridges may not stabilise oPP!, general electrostatic steering during folding likely contributes to the 

stability.204, 232 

Overall tightening of the oPP! NMR structure compared to PP! is observed, which will also 

contribute to the enhanced stability. The oPP! NMR structure reveals all Pro residues on the 

polyproline-II helix face and dock into diamond shaped holes top and tailed by Tyr residues forming 

KIH-like interactions. However, there is an anomaly in PP! where Pro8, the Pro residue closest to 

the loop region, kinks out and is more solvent exposed; it does not dock so tightly into the diamond 

hole formed on the ! helix. This is quantified by the higher SASA value for Pro8 in PP! compared 

to oPP!. 

This tightening of the structure improves the non-covalent interactions, specifically the frequency 

of CH–π interactions. Analysis of the oPP! NMR structure reveals a significant increase in the 

number of CH–" interactions in the ensemble compared to PP!; 87 CH–" interactions (4.35 per 

structure) in oPP! compared to 68 (3.40 per structure) in PP! i.e. one extra CH–" interaction per 

ensemble state. Interestingly, the dominant CH donor shifts from Pro in PP! to Lys and Leu in 

oPP!. Closer inspection of the NMR ensemble shows Tyr residues are stabilised by CH-" 

interactions from Lys above the aromatic ring and Leu below the ring. Lys appears to lie across the 

face of Tyr. 

Overall, the enhanced stability of oPP! can be attributed to electrostatic steering effects and overall 

tightening of the structure resulting in improved non-covalent binding, specifically an increase in 

the number of CH–π interactions. Further sequence-to-stability relationships need to be investigated 

to fully understand this miniprotein. In Chapter 4 such relationships will be discussed, in particular 

the effect of mutating the interface diamond-shaped-hole residues.
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Chapter 4! Probing sequence-to-stability relationships in oPP! 

The work described in this chapter was designed by the author of this thesis (KPG), Dr Emily Baker 

and Prof. Dek Woolfson. Bristol Chemical Synthesis rotation CDT students Frank Zieleniewski and 

Jenny Samphire synthesised and preliminary characterised peptides oPP!-A@a, oPP!-I@a, 

oPP!-V@a, oPP!-E@a, oPP!-K@a. Full characterisation of these peptides was followed up by 

KPG. Molecular dynamics simulations were set up and analysed by KPG. 

4.1! Chapter introduction 

Chapter 3 described the redesign of PP! into a de novo framework. This resulted in an optimised 

PP! fold with significantly enhanced thermal stability. The increase in the thermal stability of oPP! 

can be rationalised by electrostatic steering from interhelix Lys-Glu pairs and improved non-

covalent interactions such as CH–" interactions as a result of the overall tightening of the structure. 

This chapter focuses on the interface residues involved in the KIH-like packing to further understand 

the PP! fold. 

We have a good understanding of sequence-to-structure relationships in !-helical coiled  

coils.132-133, 240 This has led to success in the rational design of lower order coiled coils32, 203 (both 

homo- and hetero- meric dimers trimers, tetramers) as well as more complex !-helical barrels with 

central channels.145 Successful rationally designed coiled coils are now being used as scaffolds onto 

which functions are being grafted152 and as building blocks for more complicated assemblies.241-242 

In a similar way, deeper understanding of the PP! fold should help pave the way for the successful 

design of more complicated assemblies based around the polyproline-II helix:loop:! helix topology. 

This chapter explores sequence-to-structure and -stability relationships in oPP! by probing the 

diamond shaped hole residues that accommodate the Pro knob residue. 

4.1.1! Knobs-into-holes packing 
As discussed in previous chapters, intimate side-chain interdigitation, named knobs-into-holes 

(KIH) packing, directs helix-helix interactions in coiled coils. Specifically, hydrophobic side chains 

at a and d on one helix act as knobs and dock into diamond-shaped holes of four residues on the 

adjacent helix. For parallel helices, two types of KIH interactions are possible depending on the 

identity of the knob residue: an a knob can dock into a hole formed by dgad residues while a d knob  

interacts with adea residues (Figure 4-1A).243 

As a result of the helical geometry, all the C!-C$ bonds of side-chains project out of the helix 

backbone along a defined vector.134 In parallel dimers a and d knob residues point towards the 

diamond shaped hole residues on the adjacent helix differently. The C!-C$ bond vector of the d knob 

residue points directly into the hole towards the opposite helix and is referred to as perpendicular 
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packing.132 Whereas the C!-C$ bond vectors of a knobs point away from the helix-helix interface, 

which is termed parallel packing (Figure 4-1C).132, 143, 244 As a result, d residues favour non-$-

branched less bulky residues like Leu while a residues are more accommodating of different shaped 

side-chains and thus prefer $-branched Ile and Val.132, 245 

In the PP! fold, Tyr at d is critical for folding and stability153 and forms two sides of the diamond 

hole defined by side chains at successive dgad sites on the ! helix. Only position 1 (Pro) on the 

polyproline-II helix acts as a knob residue pointing at the diamond hole on the ! helix as a result of 

the three residue per turn geometry of the polyproline-II helix (Figure 4-1B&D).  

 

 

 

 

 

 

 

 

4.1.2! Related natural PP! peptides 

As described in the Introduction, the fragment based design of PP! borrowed from two natural 

proteins: pancreatic peptides29 and the antigenic bacterial surface adhesin166 (AgI/II). The pancreatic 

polypeptide family, consists of pancreatic peptides,29, 246-247 peptide YY248 and neuropeptide Y249 

and all have sequence similarities and some conserved residues (Table 4-1). The conservation of 

residues at the dgad positions in natural sequences was explored. 

 

 

 

Figure 4-1: (A) Representation of knobs-into-holes packing for parallel coiled-coil 
dimers: (left) ‘d’ hole (right) ‘a’ hole. (B) Knobs-into-hole like packing in PP!. (C) 
Coiled-coil dimer (CC-Di, PDB: 4DZM) highlighting parallel and perpendicular packing. 
(D) oPP! (NMR structure, state 1) highlighting the a (cyan) and d (orange) sites. Key: 
cyan: a position, orange: d position, blue: g position, pink: 1 position. 
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Table 4-1, showing the sequences of the pancreatic polypeptide family, can also be interpreted 

visually as a sequence logo: a  graphical representation of an amino acid sequence alignment (Error! 

Reference source not found.).250-251 The logo consists of a stack of letters, one stack for each position 

in the sequence. The height of the letter within the stack indicates the relative frequency of each 

amino acid at that position. Letters at the top of a stack are the most frequent across all sequences. 

Both Table 4-1and Error! Reference source not found. show that Tyr at d and Pro at position 1 are 

highly conserved in related folds of natural proteins. Leu at position a is also conserved. The a 

position (residue24) is entirely Leu across all sequences for the middle !-helical heptad (heptad 2) 

while the frequency of other residues at the a position increases in heptads 1 and 3. For example for 

heptad 3, while Leu (residue30) is still the most frequent, other hydrophobic residues Ile and Val 

are present in some sequences. The g site is less conserved in related natural peptides and in the 

majority of cases it is a polar residue. 

 

 

 

 

 

 

 

Table 4-1: Sequences of the pancreatic polypeptide family. 

Peptide name Sequence and helical register PDB 
Code                 321321               efgabcd efgabcd efgabcd  

oPP! Ac- PPKKPKKP GDNAT PEKLAAY EKELAAY EKELAAY    -NH2    6GWQ* 

Parent PP! Ac- PPTKPTKP GDNAT PEKLAKY QADLAKY QKDLADY    -NH2       5LO2 
aPP     GPSQPTYP GDDAP VEDLIRF YNDLQQY LNVVTRH RY -NH2 1PPT† 
bPP     APLEPEYP GDNAT PEQMAQY AAELRRY INMLTRP RY -NH2 1BBA 
hPP     APLEPVYP GDNAT PEQMAQY AADLRRY INMLTRP RY -NH2 - 
pPP     APLEPVYP GDDAT PEQMAQY AAELRRY INMLTRP RY -NH2 - 
nPY     YPSKPDNP GEDAP AEDLARY YSALRHY INLITRQ RY -NH2 1RON 
pYY     YPIKPEAP GEDAS PEELNRY YASLRHY LNLVTRQ RY -NH2 2DEZ 

AgI/II     PPVKPTAP  //   EAKLAKY QADLAKY QKDLADY PV 3IOX 

aPP (avian pancreatic peptide), bPP (bovine pancreatic peptide), hPP (human pancreatic 
peptide), pPP (porcine pancreatic peptide), nPY (neuropeptide Y), pYY (peptide tyrosine 
tyrosine), AgI/II (antigenic bacterial surface adhesin) residues 450-472 and 838-845. 
*NMR structure deposited in the PDB but will not be released to the public until 
publication. †All structures are NMR structures apart from aPP which is an X-ray crystal 
structure.  
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As well as having sequence similarities, the pancreatic polypeptide family are also structurally very 

similar. Figure 4-3A shows overlays of the middle heptad of oPP!, parent PP!, avian pancreatic 

peptide (aPP), bovine pancreatic peptide (bPP), neuropeptide Y (nPY) and antigenic bacterial 

surface adhesin (AgI/II). All structures overlay well. The majority have similar side chain 

conformations for the dgad residues, in particular for the Pro and Tyr residues. There is some 

variation in the puckering of the ring in the Pro residues. 

nPY is slightly different. While it has sequence similarity to the other peptides it has different 

structural features. nPY has distinctly different side-chain conformations for the Tyr residues 

(Figure 4-3A) and in the NMR structure the ! helix does not interact with the polyproline-II helix; 

NOEs were not found between the ! and polyproline-II helices (Figure 4-3B).249 This can be 

rationalised by studies that have shown nPY is a dimer in solution with the two monomers 

interacting via their ! helices in an antiparallel fashion.252 From a biological perspective, nPY is a 

neurotransmitter acting on both the central and peripheral nervous systems and the self-associated 

forms of nPY is thought to be its storage form while the monomer is the active form.249 

 

 

 

Figure 4-2: Sequence logo of the related natural PP! like folds. (A) Sequence logo for 
aPP, bPP, hPP, pPP, nPY and pYY. (B) Sequence logo for aPP, bPP, hPP, pPP, nPY, pYY 
and AgI/II. Loop region omitted. (C) Sequence logo for an !-helical heptad repeat for 
aPP, bPP, hPP, pPP, nPY, pYY and AgI/II. (D) Sequence logo for the three residue 
repeating unit in the polyproline-II helices of aPP, bPP, hPP, pPP, nPY, pYY. Sequence 
logo for Sequence logos generated with Weblogo.250-251 Colour key: polar residues (blue), 
hydrophobic residues (black), Ala, Pro and Gly residues (green). 
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Figure 4-3: (A) Overlay of the middle heptad for aPP (pink), bPP (green), nPY (orange, 
only ! helix shown), AgI/II (wheat), oPP! (purple), parent PP! (pink) highlighting the 
similar conformations of the side chains in the diamond hole residue positions dgad. 
Structures aligned in Pymol. Note nPY PPII helix not present since peptide does not adopt 
PP! topology. (B) Overlay of all 26 states in the NMR ensemble of nPY (PDB: 1RON). 
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4.2! Probing the diamond shaped hole residues in oPP! 

4.2.1! Mutations to the a position of oPP! 

While Pro and Tyr residues are essential for the formation and stability of the PP! fold the 

amenability of the a and g positions to mutation were investigated. First, to explore what other 

residues, if any, might substitute for Leu at a, a series of mutants (X@a mutants) in which all three 

sites were replaced by Ala, $-branched Ile or Val or  charged Glu or Lys residues were synthesised 

and characterised in solution (Figure 4-4). Non-bulky Ala was initially selected to determine the 

contribution of Leu to the stability of the peptide in a similar manner to alanine-scanning. $-branched 

Ile and Val were selected because the sequence logos above show they are present at the a position 

in the heptad repeats of natural related sequences while Glu and Lys were selected to determine the 

effect of charged residue at the a position. 

 

 

 

 

 

 

 

 

 

4.2.1.1! Characterisation of the X@a series by CD spectroscopy 
These peptides were first analysed by CD spectroscopy to determine the effect of a position 

mutations on the overall structure and stability of the peptides (Figure 4-5). CD spectra and thermal 

unfolding curves revealed a broad range of stabilities for the X@a variants ranging in helicity from 

5 to 48 % at 5 °C and ranging in TM from < 5 °C to 51 °C. Of all the X@a mutants, Leu at a was 

the most stable, which is consistent with it being the naturally preferred residue at the a position. 

Peptide name Sequence and helical register 
       321321       efgabcd efgabcd efgabcd  

oPP! Ac- PPKKPKKP GDNAT PEKLAAY EKELAAY EKELAAY -NH2          
oPP!-I@a Ac- PPKKPKKP GDNAT PEKIAAY EKEIAAY EKEIAAY -NH2                    
oPP!-V@a Ac- PPKKPKKP GDNAT PEKVAAY EKEVAAY EKEVAAY -NH2                     
oPP!-E@a Ac- PPKKPKKP GDNAT PEKEAAY EKEEAAY EKEEAAY -NH2                       
oPP!-K@a Ac- PPKKPKKP GDNAT PEKKAAY EKEKAAY EKEKAAY -NH2                     
oPP!-A@a Ac- PPKKPKKP GDNAT PEKAAAY EKEAAAY EKEAAAY -NH2                

Figure 4-4: (A) Helical wheel representation of the series of mutations at the a position 
(X@a mutations). (B) Sequences of the series of peptides with mutations to the a position. 
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The stability of the oPPα-A@a variant was drastically compromised with respect to oPPα. The CD 

spectra at 5 °C showed 23% α-helical character, less than half that of oPPα, despite the favourable 

increase in helical propensity of Ala compared to Leu. Thermal stability was also substantially 

compromised. We attribute this to the non-bulky nature of the methyl functional group eliminating 

any preferable side chain interactions. Further, this implies that Leu at a plays an important role in 

the folding and stability of the peptide and contributes to the interface.  

oPPα variants with $-branched residues at a, oPPα-I@a and oPPα-V@a, were well folded, albeit 

with reduced thermal stabilities compared to oPPα with TMs values of 40 °C and 34 °C vs 51 °C 

respectively. This is perhaps unsurprising given the similar size and isomeric nature of Ile and Leu. 

Furthermore, both Ile and Val are present in the third heptad of some natural sequences (Table 4-1) 

hinting at their amenability at the a position. The reduction in TM values suggests that the extra steric 

bulk of the $ carbon may hinder access of the Pro knob to the hole. However, it must also be noted 

that this cannot be disconnected from the fact that the !-helix propensities of Ile and Val are 

appreciably lower than that of Leu.209  

 

Peptide name MRE222 nm /  
deg cm2 dmol-1 res-1 

% Helicity175-

176 
TM  

/ °C 

oPP! -18319 48 51  ± 0.8 

oPP!-I@a -16493 43 40  ± 0.1 

oPP!-V@a -14854 37 34  ± 1.4 

oPP!-K@a -12448 33 19  ± 2.3 

oPP!-A@a -8522 23 - 

oPP!-E@a -1642 5 - 

Figure 4-5: Folding and stability of oPP! and X@a variants. (A) CD spectra recorded at 
5 °C for oPP! variants: oPP!-E@a (red), oPP!-A@a (sky blue), oPP!-K@a (blue), 
oPP!-I@a (green), oPP!-V@a (orange), and oPP! (black) for comparison. (B) 
Temperature dependence of the far-UV CD signal monitored at 222 nm for the X@a 
mutants, same colour scheme as in (A). (C) Table summarising the MRE at 222 nm at  
5 °C, the % helicity and also the TM for all the X@a peptide variants. Conditions:  
100 µM peptide, PBS, pH 7.4. 
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The least folded variant, oPPα-E@a, was unfolded showing no α-helical characteristics at 208 and 

222 nm. We postulate this is due in part to the proximal glutamates at the e position if the ! helix 

were folded, but also the bulky nature of the Glu side-chain may potentially prevent Pro from 

docking so tightly into the diamond hole. This is despite a potentially positive interaction with the 2 

position. Also the helical propensity of Glu is slightly lower compared to Leu which will contribute 

to the reduced stability. This result suggests large negatively charged side chains are not compatible 

at the a position. In comparison, oPPα-K@a gives a partially folded peptide with a TM of 33 °C. Lys 

likely forms a favourable i!i+4 interaction with Glu at the e position contributing to stability.24 

However the close proximity to Lys at position 2 will reduce electrostatic steering effects between 

the two helices thus hampering stability. It is encouraging nevertheless that larger positively charged 

residues can be accommodated. 

To summarise, Leu at a gave the most folded and thermally stable variant. However, other residues 

such as hydrophobic Ile, Val and positively charged residue Lys can also be tolerated. This is 

encouraging for future applications of oPPα where the sequence will need to be amenable to 

mutation to allow for function to be introduced. 

4.2.1.2! Characterisation of the X@a series by AUC 
To determine the oligomeric states of the X@a peptide series in solution SE AUC experiments were 

carried out. For all peptides in the series, apart from oPPα-E@a, experimental data readily fitted to 

single-ideal species models returning molecular weights consistent with monomers (Figure 4-6). 

oPPα-E@a  precipitated at approximately 50 krpm and therefore data could not be fitted. 
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4.2.2! Probing a fully hydrophobic interface 
To further assess the optimal interface, the g position of the ! helix was also investigated. In oPP!, 

polar residue Glu at g contributes to electrostatic steering between the ! and polyproline-II helices. 

Therefore, any mutations at g could be detrimental in this respect so Glu was installed at the c 

position to maintain charge complementarity between the two helices. This allowed the identity of 

the g position to be explored. Note also that Glu at the c position results in a potential Glu ! Lys 

i!i+4 side chain salt bridge with the f position (Figure 4-7). 

The ! helix also needed to be considered since in oPP! the first heptad is different to the following 

two heptads and starts with the residues P-E-K at e-f-g. As mentioned in Chapter 3, this is because 

Pro and Glu are conserved as the N-terminal residues in the ! helix of related natural sequences 

(Table 4-1, Error! Reference source not found.). This is likely because Pro and Glu have been shown 

to be good helix capping residues with high frequency of occurrence at the N1 and N2 positions 

Figure 4-6: AUC Sedimentation-equilibrium data (top, dots) and fitted single-ideal 
species model curves  (lines) at 44 (blue), 52 (aqua), 56 (orange), and 60 (red) krpm. (A) 
oPP!-A@a (v̅ = 0.733 cm3 g-1). (B) oPP!-K@a (v̅ = 0.742 cm3 g-1). (C) oPP!-V@a (v̅ = 
0.743 cm3 g-1). (D) oPP!-I@a (v̅ = 0.748 cm3 g-1). The fit returned the following masses: 
oPPα-A@a, 3510 Da (1.0 % monomer mass), 95% confidence limits = 3495 – 3526 Da; 
oPPα-K@a, 3692 Da, (1.0 % monomer mass), 95% confidence limits = 3680 – 3703 Da; 
oPPα-V@a, 3702 Da, (1.0 % monomer mass), 95% confidence limits = 3683 – 3722 Da; 
oPPα-I@a, 3074 Da, (1.0 % monomer mass), 95% confidence limits = 3037 – 3111 Da. 
Conditions: 130 µM peptide, PBS, pH 7.4. 
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respectively in ! helix motifs.224-225, 253 Pro lacks the flexibility of other residues because its 

backbone dihedral angle . is constrained at ≈ –70° similar to an ideal helix.224 Lys was selected to 

balance the charge associated with Glu. Therefore, the first turn of the ! helix following the loop 

region was maintained across mutants of oPP!. The g position was therefore not mutated in the first 

heptad but only mutated for heptads two and three. 

4.2.2.1! Leu at the g position 
The g site was initially mutated to Leu with Leu maintained at the a position since our analysis 

above shows Leu offers the greatest stability. This resulted in a fully hydrophobic diamond hole and 

a wider hydrophobic interface (oPP!-L@a-L@g) (Figure 4-7).  

 

 

 

The CD spectra at 5 °C showed that oPP!-L@a-L@g had approximately the same helicity as oPP! 

(Figure 4-8A). However, a much broader transition in the thermal denaturation curve was observed 

with a TM of 76 °C (Figure 4-8B). This is a substantial increase over the TM of oPP! (51 °C). The 

broad nature of the thermal melt is unlike the melt curves of other oPP! mutants. The different 

unfolding behaviour suggests that the interactions in oPP!-L@a-L@g are potentially different to 

what has previously been observed. 

Peptide name Sequence and helical register 
       321321       efgabcd efgabcd efgabcd  

oPP! Ac- PPKKPKKP GDNAT PEKLAAY EKELAAY EKELAAY -NH2          
oPP!-L@a-L@g Ac- PPKKPKKP GDNAT PEKLAEY EKLLAEY EKLLAEY-NH2                    

Figure 4-7: (Top) Sequence of peptide with a fully hydrophobic diamond hole (oPP!-
L@a-L@g). (B) Helical wheel representation of oPP!-L@a-L@g.  
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Figure 4-8: Folding and stability of oPP!-L@a-L@g. (A) Far-UV CD spectra recorded 
at 5 °C for oPP!, oPP!-L@a-L@g. (B) Temperature dependence of the far-UV CD signal 
monitored at 222 nm. For both (A) and (B) spectra overlaid for concentrations 5, 10, 50, 
100 and 200 µM. The lines for each concentration range in colour from light blue (low 
concentration) to dark blue (high concentration). (C) Near-UV CD spectra recorded at 5 
°C for oPP!, oPP!-L@a-L@g. (D) Temperature dependence of the near-UV CD signal 
monitored at 276 nm for oPP! and oPP!-L@a-L@g. (E)  AUC Sedimentation-
equilibrium data (top, dots) and fitted single-ideal species model curves (lines) at 44 
(blue), 52 (aqua), 56 (orange), and 60 (red) krpm for oPPα-L@g-L@a. Bottom: Residuals 
for the above fits. oPPα-L@a-L@g v̅ = 0.754 cm3 g-1  The fit returned a mass of 4912 Da 
(1.2 % monomer mass), 95% confidence limits = 4899 – 4926. Colour key: oPP! (black), 
oPP!-L@a-L@g (blue). Conditions: 100 µM (CD Spectroscopy) and 130µM (SE AUC) 
peptide, PBS, pH 7.4. 
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To investigate this further, near-UV CD spectroscopy experiments were also performed (Figure 

4-8C&D). The magnitude of the CD signal in the near-UV region is very similar compared to oPP! 

indicating similar stability at 5 °C. Monitoring the thermal transition showed unfolding and folding 

curves that were coincident with those recorded in the far-UV with a TM of 76 °C. 

The broad melt curve combined with the fully hydrophobic diamond hole interface perhaps suggests 

that there is non-specific association of the two helices. The two hydrophobic faces of the 

polyproline-II and ! helices come together driven by the hydrophobic effect but perhaps do not 

interact so precisely as in PP! and oPP!. In addition, some possible self-association may be 

occurring.  

To test this oligomerisation hypothesis, CD spectra were run at a range of different concentrations 

to determine whether there was any concentration dependence to the CD signal. Concentration 

dependence of the CD signal is indicative that the peptide could be oligomerising into a higher order 

oligomeric state.226, 254-256 As well as running CD spectroscopy experiments at 100 µM, experiments 

were also run at 5, 10, 50 and 200 µM (Figure 4-8A&B). A range of peptide helicities and TMs were 

observed (Table 4-2). CD spectra at 5 and 10 µM were consistent with one another however were 

less folded compared to oPP!-L@a-L@g at 100 µM exhibiting lower helicity at 5 °C and a lower 

TM of 71 °C. The CD signal at 50 µM was between 10 and 100 µM with a TM of 72 °C while at 200 

µM the TM value was 77 °C, slightly higher than at 100 µM. This concentration dependence of the 

CD signal is indicative that some peptide oligomerisation is taking place. 

 

 

 

 

To further examine the oligomeric state of oPP!-L@a-L@g SE AUC experiments were performed 

(Figure 4-8E). SE AUC determined that the peptide had a mass of 1.2 % the mass of the monomer. 

This non-discrete value combined with the concentration dependence of the CD signal suggests that 

oPP!-L@a-L@g is not fully monomeric and is in equilibrium with a higher order species, 

potentially a dimer. 

 

 

Table 4-2: Concentration dependence of CD signal for oPP!-L@a-L@g 

Concentration 
/ µM 

MRE222 nm /  
deg cm2 dmol-1 res-1 

% Helicity175-

176 
TM / °C 

5 -14065 37 71 
10 -14259 37 71 
50 -15265 40 72 
100 -17333 46 76  ± 1.2 
200 -16525 43 77 
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4.2.3! Probing which position is more dominant: a or g 
Leu is conserved at the a position in related natural sequences. Leu at both a and g results in a higher 

midpoint of unfolding however the discrete monomeric nature of the miniprotein is lost. The broad 

transition in response to temperature may also be the result of non-specific association.  

While it is clear Leu at both a and g is not preferable, the preference for one position over the other 

has not been investigated. To make a direct comparison between the preference for Leu at either the 

a or g positions the following two peptides were synthesised (Figure 4-9). Again, Glu was installed 

at the c position to maintain complementary electrostatic interactions between the two helices. PEK 

was also retained which limited mutations to the second and third heptads of the ! helix. In 

oPP!-L@a-A@g the residues are spaced Li!Yi+4 whereas in oPP!-A@a-L@g they are spaced 

Yi!Li+4. 

 

 

 

 

 

 

 

 

 

 

 

Peptide name Sequence and helical register 
       321321       efgabcd efgabcd efgabcd  

oPP!-L@a-A@g Ac- PPKKPKKP GDNAT PEKLAEY EKALAEY EKALAEY-NH2                     
oPP!-A@a-L@g Ac- PPKKPKKP GDNAT PEKLAEY EKLAAEY EKLAAEY-NH2                     

Figure 4-9: (Top) Peptides sequences for oPP!-L@a-A@g  and oPP!-A@a-L@g. 
(Bottom) Helical wheel representations of oPP!-L@a-A@g (A) and oPP!-L@g-A@a  
(B). Diamond holes formed in the second and third heptads of oPP!-L@a-A@g (C) and 
oPP!-A@a-L@g (D). 
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Figure 4-10: (A) Folding and stability of oPP!-L@a-A@g and oPP!-A@a-L@g. (A) 
Far-UV CD spectra recorded at 5 °C for oPP!-L@a-A@g and oPP!-A@a-L@g. (B) 
Temperature dependence of the far-UV CD signal monitored at 222 nm. (C) Near-UV CD 
spectra recorded at 5 °C for oPP!-L@a-A@g and oPP!-A@a-L@g. (D) Temperature 
dependence of the near-UV CD signal monitored at 276 nm. (E&F)  AUC Sedimentation-
equilibrium data (top, dots) and fitted single-ideal species model curves (lines) at 44 
(blue), 52 (aqua), 56 (orange), and 60 (red) krpm for oPPα-L@g-L@a. Bottom: Residuals 
for the above fits. (E) oPP!-L@a-A@g v̅ = 0.745 cm3 g-1.  The fit returned a mass of 4019 
Da (1.0 % monomer mass), 95% confidence limits = 4006.9 – 4030.6. (F) oPP!-A@a-
L@g v̅ = 0.745 cm3 g-1  The fit returned a mass of 4101 Da (1.1 % monomer mass), 95% 
confidence limits = 4089.0 –  4113.3. Conditions: 100 µM (CD Spectroscopy) and 130µM 
(SE AUC) peptide, PBS, pH 7.4. Colour key: oPP! (black), oPP!-L@a-A@g (purple), 
oPP!-A@a-L@g (red). 
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oPP!-L@a-A@g was significantly less folded than oPP! at 5 °C with 29% helicity and a TM of  

21 °C (Figure 4-10A&B). Surprisingly, oPP!-A@a-L@g was more folded compared to  

oPP!-L@a-A@g (38 % helicity at 5 °C), albeit less so than oPP! . The thermal melt curve of  

oPP!-A@a-L@g was slightly broader compared to oPP! and a lower TM of 43 °C was calculated. 

Near-UV CD spectra at 5 °C for oPP!-L@a-A@g showed a less intense signal compared to oPP!-

A@a-L@g indicative of less rigid and more mobile Tyr side chains.226 The thermal unfolding curves 

in the near-UV range for both were consistent with traces in the far-UV range and TMs were 

coincident (Figure 4-10C&D). 

oPP!-L@a-A@g and oPP!-A@a-L@g were both monomeric in solution by SE AUC (Figure 

4-10E&F) yielding masses of 1.0 and 1.1 % monomer mass. 

These results suggest that, with Glu at c, Leu is best placed at the g position compared to the a 

position. This is surprising given that Leu is very conserved at the a position in related natural folds. 

It is also surprising given that on mutating Leu at a to Ala it would be expected that this would result 

in the loss of CH-" interactions between Leu and Tyr that are observed in both PP! and oPP! and 

stabilise the structure. However other interactions must compensate for this. 

4.2.4! Swapping the a and g positions 
Based on this result, the effect of Leu at g in the context of oPP! was investigated by synthesising 

oPP!-a#g where the a and g positions were swapped (Figure 4-11). The e and c as well as the b 

and f positions were also swapped so as to keep both peptides equivalent and comparable. 

Introducing complementary or unfavourable charged interactions in the ! helix of oPP!-a#g that 

were not observed in oPP! was avoided. 

 

 

 

 

 

Peptide name Sequence and helical register 
       321321       efgabcd efgabcd efgabcd  

oPP! Ac- PPKKPKKP GDNAT PEKLAAY EKELAAY EKELAAY-NH2                     

oPP!-a#g Ac- PPKKPKKP GDNAT PEKLAAY AALEKEY AALEKEY -NH2                     

Figure 4-11: (Top) Peptide sequence of oPP!-a#g. (Bottom) Helical wheel of oPP! (A) 
and oPP!-a#g (B). 
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oPP!-a#g was less folded at 5 °C compared to oPP! and yielded a TM value of 19 °C, a substantial 

decrease compared to the TM of oPP!. The near UV CD spectra was consistent with what is observed 

in the far-UV range. SE AUC experiments found oPP!-a#g to be monomeric in solution. 

This result is inconsistent with what is observed when probing Leu at both a and g in isolation 

(oPP!-L@a-A@g and oPP!-A@a-L@g), which showed that Leu at g appeared to provide greater 

stability compared to Leu at a. This highlights the difficulties in probing non-covalent interactions 

even in the context of miniproteins. The diamond hole residues work in combination to provide 

stability to the peptide and looking at individual contributions of Leu at a or g does not accurately 

reflect the effect this has on stability in the context of oPP!. Comparing oPP! with oPP!-a#g 

confirmed that placing Leu at the a position and Glu at the g position is the favourable way round. 
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Figure 4-12: (A) Folding and stability of oPP!-a#g (A) Far-UV CD spectra recorded at 
5 °C for oPP!-a#g and oPP!. (B) Temperature dependence of the far-UV CD signal 
monitored at 222 nm. (C) Near-UV CD spectra recorded at 5 °C for oPP!-a#g and oPP!. 
(D) Temperature dependence of the near-UV CD signal monitored at 276 nm. (E&F)  
AUC Sedimentation-equilibrium data (top, dots) and fitted single-ideal species model 
curves (lines) at 44 (blue), 52 (aqua), 56 (orange), and 60 (red) krpm for oPP!-a#g. 
Bottom: Residuals for the above fits. (E) oPP!-a#g v̅ = 0.748 cm3 g-1  The fit returned a 
mass of 4079 Da (1.1 % monomer mass), 95% confidence limits = 4065 – 4093. 
Conditions: 100 µM (CD Spectroscopy) and 130µM (SE AUC) peptide, PBS, pH 7.4. 
Colour key: oPP! (black), oPP!-a#g (green. 
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4.3! Molecular dynamics simulations of oPP! and variants 

Obtaining experimental structures was not possible for all of the oPP! variants because of their 

reduced stabilities. Therefore, molecular dynamics (MD) simulations in water were used to explore 

the root causes of the difference in stabilities in the oPP! variants. MD simulations are one of the 

principle tools in the theoretical study of biological molecules to assess their time-dependent 

behaviours. MD simulations can provide information on protein stability, conformational changes, 

protein folding, molecular recognition and ion transport in biological systems.257-258 

4.3.1! MD simulations of the X@a series of oPP! peptide 

Point mutations were made to conformer eight of the NMR structure of oPP! in Pymol to generate 

models for the X@a mutants. A cubic periodic boundary box was set up and the box was filled with 

water molecules and 137 mM NaCl to mimic experimental conditions. Simulations were run using 

the Gromacs suite of tools and the Amber99sb-ILDN force field. After an initial relaxation and 

equilibration period each model peptide underwent a further 100 ns of MD. Simulations were 

performed in triplicate for each X@a model from the same starting structure to ensure as much 

conformational space was sampled. However without infinite simulation time the quality of 

sampling in simulations will always be limited. Theoretically, with an infinitely long MD run time, 

the overall global thermodynamic energy minimum can be reached. Simulations were also run for 

the oPP! NMR structure (state 8).  

All-atom RMSDs were calculated across the MD simulation; each structure from the trajectory was 

compared to the reference structure at the 0 ns timepoint. RMSDs were used to give an indication 

of how stable the model peptide was. RMSDs that fluctuate most across the time course were 

deemed less stable relative to RMSDs that did not fluctuate so much and were more consistent across 

the time course. 

Firstly, the oPP! NMR structure was simulated and was found to be stable over three 100 ns 

simulations showing no significant fluctuations in the RMSD over the trajectory. For the oPPα X@a 

variants, the RMSDs of the model structures through the MD trajectories correlated crudely with 

the observed experimental thermal stabilities. oPPα and oPPα-I@a, which have the highest TMs, 

were stable with little fluctuation throughout all simulations as judged by RMSD. Whereas, all of 

the other variants deviated progressively from the initial structures as the simulations ensued as 

indicated by the increasing RMSD values (Figure 4-13). 
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Figure 4-13: RMSD analyses of molecular dynamics trajectories. All atom RMSD vs. 
simulated time for oPP!-X@a variants run in triplicate. RMSDs calculated relative to 0 
ns time point. Colour key: oPP! (black), oPP!-I@a (green), oPP!-V@a (orange), oPP!-
K@a (blue), oPP!-A@a (sky blue), oPP!-E@a (red). 
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To quantitatively compare the MD structures, the RMSD between the 0 and 100 ns structures were 

calculated for each repeat, averaged and the standard deviation determined (Figure 4-3).  Again, 

there was a rough trend in which the all atom and backbone RMSDs increase as the stability of the 

peptide decreases (i.e. as the TM of the peptide drops). Also, as well as an increase in RMSD for the 

less stable peptides, there was an increase in the standard deviation too. This suggests that the less 

stable peptides are more dynamic. 

 

 

 

 

As well as calculating RMSDs between the 0 and 100 ns structures, root mean square fluctuations 

(RMSFs) were also determined. The RMSF calculates, for each residue, the fluctuation about the 

average position. While the average structure is not that informative the fluctuations gives insight 

into the flexibility of different parts of the peptide and correspond to crystallographic b-factors. The 

RMSF and average structure for each mutant in the X@a series are represented in Figure 4-14. The 

colours of the structures are distributed over the b-factors values where blue represents the most 

stable and red represents the most fluctuating regions. The bulges in the cartoons emphasise regions 

of high fluctuation in b factors in the structure.  

For each oPP! mutants the interface a, d and g positions were the most stable, in particular the 

residues Tyr20, Tyr27, X@a24, and Pro5  showed the least fluctuation around the average structure 

and were the most rigid. For oPP! and oPP!-I@a, flexibility was limited mainly to the loop region 

and all Tyr, Leu and Pro residues were rigid. oPP!-V@a showed some fraying towards the N-

terminus of the ! helix. Significant fraying of both the N and C terminus was observed for oPP!-

K@a and oPP!-E@a. Notably, only slight fraying of the C-terminus of oPP!-A@a was observed 

however large fluctuations in the loop region and the Pro8 residue were noted. 

 

 

 Backbone RMSD / Å 
 

All atom RMSD / Å 
 

TM / °C 

oPP! 1.28 ± 0.21 2.49 ± 0.26 51 
oPPα-I@a 1.43 ± 0.10 2.62 ± 0.11 40 
oPPα-V@a 2.44 ± 0.19 3.31 ±0.25 34 
oPPα-K@a 2.80 ± 1.22 3.82 ± 1.17 19 
oPPα-A@a 2.43 ±0.26 3.45 ± 0.38 - 
oPPα-E@a 2.78 ±1.02 3.78 ± 0.97 - 

Table 4-3: RMSD between 0 and 100 ns timepoints for oPP!-X@a Series. 
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Snapshots of each mutant were also overlaid at 0 and 100 ns timepoints to compare the gross change 

in structure from the start to the end of the simulation (Figure 4-15). For oPP! and oPP!-I@a the 

snapshots were very similar and the 100 ns structures overlaid well with the initial structures. oPP!-

V@a overlaid well however slight fraying of the C-terminus of the ! helix was observed, consistent 

with the RMSF. Significant fraying of both the N-terminus of the PPII helix and C-terminus of the 

! helix was observed for oPP!-K@a and oPP!-E@a. No KIH interaction between Pro and the dagd 

residues is observed in the final heptad of the oPP!-E@a structure. Also bulging of the ! helix in 

oPP!-E@a was observed across the trajectories. While, only slight fraying of the C-terminus of 

oPP!-A@a is observed unfolding of the N-terminal !-helix towards the loop region is seen. 

Figure 4-14: Average structures of each X@a mutant highlighting RMSFs. (A) oPP! (B) 
oPP!-I@a (C) oPP!-V@a (D) oPP!-K@a (E) oPP!-A@a (F) oPP!-E@a. Colour 
gradient: blue (most stable) through to red (most fluctuating). 
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Figure 4-16 shows the diamond shaped holes of the second (middle) heptad of the oPP!-X@a 

variants at 0, 20, 40, 60, 80, and 100 ns timepoints. The overlays highlight the difference in stabilities 

of the diamond holes for each mutant model. oPP! and oPP!-I@a show the least variation and 

residues at the d, a, g and 1 positions overlay relatively well with little change in conformation. 

Interestingly, while there is some more variation in the conformation of the Tyr side chains for 

oPP!-K@a and oPP!-E@a compared to the other mutants, there is not a significant difference in 

the diamond holes for all mutants.  

 

 

Figure 4-15: Overlays of the 0 and 100 ns snapshots from the MD simulations of the 
oPP!-X@a mutants. (A) oPP! (B) oPP!-I@a (C) oPP!-V@a (D) oPP!-K@a (E) oPP!-
A@a (F) oPP!-E@a. Structures shown in grey are of 0 ns timepoints. 
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4.3.1.1! Correlation between the BUDE score and TM in oPP!-X@a mutants 

BUDE (Bristol University Docking Engine) predicts the free energy of binding (kJ mol-1) between 

two molecules using an empirical free-energy force field and can perform protein-protein docking 

in real space, virtual screening and ligand binding site identification on protein surfaces.140, 259-260 It 

was hypothesised that there may be a correlation between the BUDE259-260 score of the peptide after 

MD and the stability (TM) of the peptide. To assess the fit of the polyproline-II helix with the ! helix 

the former was treated as the ligand and the latter as the receptor. It was hypothesised that peptides 

which had a higher TM and were deemed more thermally stable would also exhibit a better (i.e. more 

negative) BUDE score. BUDE scores for each oPP!-X@a model was implemented within the 

ISAMBARD framework.142 

 The BUDE scores for the oPP!-X@a series are shown in Figure 4-17. Unfortunately, there appears 

to be no correlation between BUDE score and peptide stability; all models have very similar BUDE 

scores. It appears that the subtle differences in the a position are not significant enough for BUDE 

to accurately determine relative stabilities. BUDE overweights charge-charge interactions and so a 

mutations may not be enough to disentangle these non- covalent interactions. 

Figure 4-16: In silico models for designed oPP! variants after 100 ns of molecular 
dynamics simulation in water. Structures highlight a position mutations and corresponding 
‘knobs-into-holes packing’ for the middle heptad within the !-helix sequence. (A) oPP!, 
(B) oPP!-I@a, (C) oPP!-V@a, (D) oPP!-K@a (red). (E) oPP!-A@a (F) oPP!-E@a. 
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 TM / °C BUDE score 
before MD 

Average BUDE 
score after MD 

oPP! 51 -391.9 -369.8 ± 4.5 
oPPα-I@a 40 -377.4 -366.4 ± 13.5 
oPPα-V@a 34 -375.7 -341.7 ± 16.0 
oPPα-K@a 19 -385.8 -374.7 ± 15.8 
oPPα-A@a - -359.0 -367.8 ± 18.1 
oPPα-E@a - -374.2 -373.0 ± 43.7 

Figure 4-17: (Top)  Table of BUDE scores of the oPP!-X@a models before and after 
100 ns of MD. (Bottom) Bar chart showing BUDE score after MD for each oPP!-X@a 
model. 
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4.3.2! MD simulations examining Leu at a and g positions 
Point mutations were made to the NMR structure of oPP! in Pymol to also generate models for  

oPP!-L@a-L@g, oPP!-L@a-A@g, oPP!-A@a-L@g and oPP!-a#g. Simulations were 

performed in triplicate for each model and all atom RMSDs were calculated across the MD 

simulations (Figure 4-18).  

 

There were no significant fluctuations in the RMSD over the time course for both oPP!-L@a-L@g 

and oPP!-L@a-A@g and this is reflected in the low all atom RMSDs between the 0 and 100 ns 

time points; 2.92 ± 0.11 and 2.58 ± 0.40 respectively (Table 4-4). Whereas oPP!-A@a-L@g and 

oPP!-a#g showed much greater variation across the ensembles with all atom RMSDs of 4.51 ± 

1.61 and 2.91 ± 0.70 respectively. In particular the high standard deviation in the RMSD for oPP!-

A@a-L@g reflects the less stable nature of the structure. 

 

 

 
 

Backbone RMSD / Å All atom RMSD / Å 
 

oPPα-L@a-L@g 1.75 ± 0.10 2.92 ± 0.11 
oPPα-L@a-A@g 1.57 ± 0.50 2.58 ± 0.40 
oPPα-A@a-L@g 3.36 ± 1.83 4.51 ± 1.61 

oPPα-a#g 1.51 ± 0.45 2.91 ± 0.70 

Table 4-4: Comparison of average RMSDs between 0 and 100 ns timepoints. 

 

Figure 4-18: RMSD analysis of molecular dynamics trajectories. RMSDs calculated 
relative to 0 ns time point. Colour key: oPP!-L@a-L@g (teal), oPP!-L@a-A@g 
(purple), oPP!-A@a-L@g (pink) and oPP!-a#g (sky blue). 
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The RMSF and average structure were again determined and are shown in Figure 4-19. For  

oPP!-L@a-L@g and oPP!-L@a-A@g fluctuations were limited mainly to the loop region. The 

interface a, d and g positions were the most stable. oPP!-A@a-L@g and oPP!-a#g showed 

significant fraying at both the N and C termini. 

 

 

 

 

 

 

 

 

 

 

 

 

Snapshots of each mutant were overlaid at 0 and 100 ns timepoints to compare how the structures 

changed overtime. For oPP!-L@a-L@g and oPP!-L@a-A@g the 0 and 100 ns structures overlaid 

well whereas there was much more deviation as a result of fraying termini for oPP!-A@a-L@g and 

oPP!-a#g, consistent with the RMSFs.  

 

 

 

 

Figure 4-19: Average structures of each mutant highlighting RMSFs. (A) oPP!-L@a-
L@g (B) oPP!-L@a-A@g (C) oPP!-A@a-L@g (D) oPP!-a#g Colour gradient: blue 
(most stable) through to red (most fluctuating). 
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Figure 4-21 shows the diamond shaped holes of the second (middle) heptad of the oPP! variants at 

0, 20, 40, 60 , 80 and 100 ns timepoints. The overlays highlight the difference in stabilities of each 

mutant model. oPP!-L@a-L@g shows the least variation and residues at the d, a, g and 1 positions 

overlay relatively well with little change in conformation. Overall the time points for oPP!-L@a-

A@g overlay well, there is more movement in the polyproline-II helix across the ! helix compared 

to oPP!-L@a-L@g. oPP!-A@a-L@g and oPPα-a#g show the most variation between timepoints. 

There is substantial variation in the conformation of the Tyr residues for oPP!-A@a-L@g and both 

show significant movement of the polyproline-II helix. 

 

 

 

 

Figure 4-20: Overlays of the 0 and 100 ns snapshots from MD simulations. (A) oPP!-
L@a-L@g (B) oPP!-L@a-A@g (C) oPP!-L@a-L@g. (D) oPP!-a#g. Structures shown 
in grey are of 0 ns timepoints.  
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Figure 4-21: Overlay of MD structures at 0, 20, 40, 60, 80 and 100 ns time points. 
Structures highlight ‘knobs-into-holes packing’ for the middle heptad within the !-helix 
sequence. (A) oPP!-L@a-L@g, (B) oPP!-L@a-A@g (C) oPP!-A@a-L@g (D) oPPα-
a#g. 

 



 
 

 

 

 

 

 

Table 4-5: Combined solution-phase biophysical characterisation of oPP! and mutants. 

a MRE222 from CD spectroscopy at 5 °C and 100 µM peptide in PBS. b The point of inflection in sigmoidal thermal denaturation curves, calculated from the maxima 
of the first derivative of the thermal transition. c Oligomeric state calculated from SE AUC experiments. 

Entry Name Sequence and register 
 321321       efgabcd efgabcd efgabcd 

MRE222 (deg cm2 

dmol-1 res-1) a 

% Helicity TM / °C b Oligomeric 

State c 

1 Parent PP! Ac- PPTKPTKP GDNAT PEKLAKY QADLAKY QKDLADY -NH2 -18319 48 39 0.9 

2 oPP! Ac- PPKKPKKP GDNAT PEKLAAY EKELAAY EKELAAY -NH2 -18319 48 51  ± 0.8 1.0 

3 oPP!-E"K Ac- PPEEPEEP GDNAT PEKLAAY KKKLAAY KKKLAAY –NH2 -17810 47 40  ± 2.1 0.9 

4 oPP!-Phe Ac- PPKKPKKP GDNAT PEKLAAF EKELAAF EKELAAF -NH2 -18105 47 33  ± 0.6 1.0 

5 oPP!-I@a Ac- PPKKPKKP GDNAT PEKIAAY EKEIAAY EKEIAAY -NH2                    -16493 43 40  ± 0.1 1.0 

6 oPP!-V@a Ac- PPKKPKKP GDNAT PEKVAAY EKEVAAY EKEVAAY -NH2                     -14854 37 34  ± 1.4 1.0 

7 oPP!-K@a Ac- PPKKPKKP GDNAT PEKKAAY EKEKAAY EKEEAAY -NH2                       -12448 33 19  ± 2.3 1.0 

8 oPP!-A@a Ac- PPKKPKKP GDNAT PEKAAAY EKEAAAY EKEKAAY -NH2                     -8522 23 - 1.0 

9 oPP!-E@a Ac- PPKKPKKP GDNAT PEKEAAY EKEEAAY EKEEAAY -NH2                -1642 5 - - 

10 oPP!-L@a-L@g Ac- PPKKPKKP GDNAT PEKLAEY EKLLAEY EKLLAEY -NH2 -17333 45 76  ± 1.2 1.2 

11 oPP!-L@a-A@g Ac- PPKKPKKP GDNAT PEKLAEY EKALAEY EKALAEY -NH2 -10849 29 21 1.0 

12 oPP!-A@a-L@g Ac- PPKKPKKP GDNAT PEKLAEY EKLAAEY EKLAAEY -NH2 -14365 38 43 1.1 

13 oPP!-a"g Ac- PPKKPKKP GDNAT PEKLAAY AALEKEY AALEKEY -NH2 -12477 33 19  ± 1.3 1.1 
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4.4! Chapter conclusion 

oPP! is stabilised by KIH-like packing between the ! and polyproline-II helices. Pro residues on 

the polyproline-II helix dock into diamond shaped holes formed by successive dagd residues on the 

! helix. Mutations were made to the diamond hole to determine sequence to stability relationships 

for oPP!. 

Firstly, the a position was mutated to a series of hydrophobic, polar and charged residues. Ile and 

Val are tolerated at the a position yielding well folded peptides with TM values of 43 and  37 °C 

respectively. Lys at a is tolerated to some extent while Ala and Glu are not tolerated. Therefore, as 

observed in related natural peptides Leu at a appears to be the most favoured. 

A fully hydrophobic diamond hole was also probed by placing Leu at both a and g. The behaviour 

of this variant in response to temperature was altered and gave a broad CD melt curve with a TM of 

76 °C. Concentration dependence of the CD signal was indicative of peptide oligomerisation which 

was confirmed by SE AUC returning a molecular mass equivalent to 1.2 " the monomer mass of the 

peptide. Collectively this indicated that non-specific association of the helices is occurring, 

consistent with a broader hydrophobic seam. 

A direct comparison between the preference for Leu at either the a or g positions was made by 

comparing oPP!-L@a-A@g with oPP!-A@a-L@g. Despite nature selecting Leu at the a position 

oPP!-A@a-L@g was more stable with a higher TM value. This led to investigating the effect of Leu 

at g in the context of oPP! with Glu at the a position; the a and g positions were switched. oPP!-

a#g was substantially less folded than oPP! with a TM of 19 °C. This result suggests that the 

diamond hole residues work in combination to provide stability to the peptide and observing 

individual contributions of Leu at a or g does not accurately reflect the effect this has on stability in 

the context of oPP!. 

MD studies of the X@a peptide series show a crude correlation between TM and RMSD across the 

trajectory. Analysis of the MD simulations revealed that instability of the model peptide mutant 

mainly manifested itself as fraying of the N and C termini. While MD is a powerful computational 

technique for studying biological systems there are some limitations to it. Firstly, the output of a 

simulation is the result of the atomic force field and so results will only be realistic if the force field 

mimics the forces experienced by ‘real’ atoms. Designing a good forcefield is very challenging. A 

balance must be struck between the accurate representation of real atoms within a forcefield, a 

simple enough forcefield to speed up evaluation, and a forcefield that is applicable to many systems. 

While the AMBER forcefield is accepted as one of the best forcefields for studying proteins and 

nucleic acids, there is still room for improvement. Secondly, time limitation is a major problem with 

MD simulations. It is currently not feasible to run simulations longer than the nanosecond timescale 

using standard MD simulations. This may not be long enough to observe the process of  protein 

folding. 
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Overall, Leu is the most preferred residue at the a position, however Ile, Val and Lys are also 

tolerated. Preference for Leu at the a position over the g position in oPP! is also observed. A fully 

hydrophobic diamond hole results in increased thermal stability of the peptide at the cost of a discrete 

monomeric structure. 

The optimised and thermally stable PP! structure and the sequence-to-stability relationships 

determined herein can now be used as a foundation on which to build larger and more complex 

assemblies based on the PP! fold.
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Chapter 5! Towards larger oPP! topologies 

5.1! Chapter introduction 

The previous chapters have described the successful redesign of PP! and subsequent sequence-to-

stability studies for the optimised topology. This chapter describes attempts to use this optimised 

PP! as a building block in the construction of larger and more-complex de novo assemblies. 

Towards this goal, expanding the PP! assembly to incorporate additional secondary structure 

elements and to give new tertiary folds with PP!PP or !PP!  topologies were explored (Figure 

5-1).  

 

 

 

 

 

 

 

 

We hypothesised that optimal PP! and !PP components might be combined to give these constructs. 

With an optimised PP! component already in hand, efforts turned towards designing an !PP 

component. The !PP topology differs from the oPP! topology since the ! helix is N terminal in the 

former. We anticipated that finding an appropriate loop to join the ! and polyproline-II helices 

together would be important. To test this hypothesis the two secondary structure components of 

oPP! were synthesised individually and their interactions investigated (Figure 5-2A). CD 

spectroscopy was performed on a 1:1 mix of the peptides corresponding to the ! and polyproline-II 

helices and the resultant CD spectra were compared to the theoretical average spectrum of the non-

interacting helices (Figure 5-2B&C). 

 

Figure 5-1: Cartoon representations of the PP!PP and !PP! folds broken down into their 
constituent components: PP! and !PP. Colour key: Polyproline-II helix (light blue), ! 
helix (dark blue). Arrows represent orientation of helices. 
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If the ! and polyproline-II helices were not interacting then the resultant CD spectrum at 5 °C would 

overlay exactly with the theoretical average spectrum of the two individual helices. The polyproline-

II helix CD spectrum resembled that of a polyproline-II helix with a minimum at approximately 

197 nm and a maximum at approximately 220 nm while the ! helix was 38 % !-helical. The 

resultant CD spectrum of the 1:1 mixture gave an ! helicity of 34 % while the theoretical average 

of the non-interacting helices was 26 % !-helical (oPP! was 48 % folded at the same concentration). 

The thermal melt curves for the 1:1 mix of the ! and polyproline-II helical components and the 

theoretical average of the two were also very similar. Together, these results indicated that in the 

absence of the loop, the peptides corresponding to the ! and polyproline-II helices showed very 

limited interaction and the !:polyproline-II complex was much less folded and stable than the single 

chain oPP!. Furthermore, this demonstrated that selecting an appropriate loop to join the secondary 

structure components together was going to be important. 

 

  

 

 

 

 

 

 

 

5.2! Designing an !PP topology 

The !PP topology was designed to maintain the interface between the two helices as in oPP! 

(Figure 5-3A-C). The NMR structure of oPP! revealed close contacts between the N-terminal PP-

cap and C-terminal Tyr, therefore a PP-cap was installed at the now C-terminal polyproline-II helix 

Peptide name Sequence and helical register 
    efgabcd efgabcd efgabcd 

! component Ac-PEKLAAY EKELAAY EKELAAY-NH2 

Polyproline-II component Ac-PPKKPKKPG-NH2                     

Figure 5-2: CD spectra of ! and polyproline-II helices. (A) Sequences of ! and 
polyproline-II helical components. (B) CD spectra at 5 °C for ! helix, polyproline-II helix, 
1:1 mix of ! and polyproline helices and theoretical average of non-interacting helices. 
(C) Temperature dependence of the CD signal monitored at 222 nm. Conditions: 100 µM 
each peptide, PBS, pH 7.4. Colour key: ! helix component (green), PPII component 
(pink), 1:1 mix of the peptides corresponding to the ! and PPII helices (blue), theoretical 
mix of helices (blue dash), oPP! (black).  
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and Tyr at the N-terminal ! helix. This required the !-helical register to be shifted by one residue 

to maintain Tyr at d and Leu at a. The resulting heptad runs d through c. Loop design is notoriously 

difficult and therefore, as a starting point, the natural loop used in PP! was initially also used for 

!PP to give !PP-GDNAT (Figure 5-3D).223 

  

 

 

 

 

 

 

 

 

Loop design is challenging for a number of reasons: firstly, the backbone hydrogen-bonding 

potential of a loop is not automatically satisfied as it is for ! helices and $ sheets.223 For a loop to 

adopt a low-energy discrete conformation the backbone/side-chain polar groups need to be hydrogen 

bonded to other groups either in the loop, the rest of the protein, or be solvent exposed and able to 

hydrogen bond with water. However, if too much of the loop is exposed to water then the loop may 

not adopt a unique conformation. Secondly, unlike for ! helices and $ sheets where there are general 

rules and sequence-to-structure relationships for forming well-folded secondary structures,83, 261-262 

the relationships for forming an ordered loops are less clear. Most ordered loops have diverse 

sequences that form specific and hard-to-predict interactions within the loop and with the rest of the  

protein.223, 263 

Peptide name Sequence and helical register 
       321321       efgabcd efgabcd efgabcd  

oPP! Ac- PPKKPKKP GDNAT PEKLAAY EKELAAY EKELAAY-NH2                     

    defgabc defgabc defgabc defgabc       123123123 

!PP-GDNAT         Ac-YEKELAA YEKELAA YEKELAA GDNAT PKKPKKPPG–NH2 

!PP-GDNAT-4 Ac-YEKELAA YEKELAA YEKELAA YEKELAA GDNAT PKKPKKPKKPPG–NH2 

Figure 5-3: (A) NMR structure state 1 of PP! (B) Model of !PP generated within the 
ISAMBARD framework. (C) Overlay of PP! and !PP. The region between the two black 
dashed lines represent the interface region that is the same in both structures. The region 
above the top grey line and below the bottom grey line are different between the oPP! 
and !PP topologies. (D) Sequences of initial !PP designs compared to oPP!. 
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A Gly residues was included at the C-terminus of !PP so that a Pro residue was not adjacent to the 

Rink Amide resin during peptide synthesis. When Pro was positioned at the C-terminus a single Pro 

residue was deleted during synthesis.  

The !PP-GDNAT peptide was first characterised by CD spectroscopy. !PP-GDNAT was 

significantly less folded than oPP! with an !-helicity of 32 % compared to 48 % for oPP! (Figure 

5-4A). Interestingly, the minimum at 208 nm is substantially lower than at 222 nm for !PP-GDNAT. 

As discussed in Section 2.3.1 a distinctive !-helical peptide is characterised by minima at 208 and 

222 nm of approximately equal intensities. While the ratio of these two minima is sometimes used 

as an additional gauge of !-helicity the origin and effect of peptide sequence on this ratio remains 

ill-defined.264-266 It is likely the difference in MRE values is linked to the less folded nature of the 

peptide and the increased random coil. !PP-GDNAT was also significantly less thermally stable 

than oPP! and a TM could not be extracted from the data (Figure 5-4B). SE AUC data confirmed 

that the peptide was monomeric in solution (Figure 5-4C). 

While the ! helix:polyproline-II helix interface in !PP should be the same as in oPP!, the peptide 

is significantly less folded and stable. This suggests that although the ! helix:polyproline-II helix 

interface provides the key driving force for peptide folding the role of the loop region is also critical 

for folding and cannot be overlooked. While the natural loop adopts conformations optimal for 

joining the secondary structure components in oPP! the loop is not optimised for !PP. 

!PP-GDNAT was also extended and synthesised as a four heptad variant to determine the effect of 

increased length on the stability of !PP. !PP-GDNAT-4 was significantly more folded and 

thermally stable than !PP-GDNAT with an !-helicity of 50 % and a TM of 49 °C. The stability of 

four heptad variant !PP-GDNAT-4 is comparable to oPP! (three heptads). Further, from work 

discussed in Section 6.2, !PP-GDNAT (three heptads) is comparable in stability to shortened oPP! 

variant oPP!-2 (two heptads). This further suggests that the GDNAT loop is not optimised for !PP. 

The first heptad after the loop potentially compensates for the suboptimal loop resulting in fraying 

or unfolding at the C terminus of the ! helix component. Subsequently, this leads to loss in helicity 

and stability of the peptide topology. The effect of chain length on oPP! will be discussed in more 

depth in Section 6.2. 
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As a control, a simple and more flexible Gly-Ser loop was selected of the same length to join the ! 

and polyproline-II helices together (Figure 5-5A).151, 267 !PP-GSGSG was slightly more folded 

than !PP-GDNAT with an !-helicity of 36 % however this was still not comparable to the folding 

observed for oPP! (Figure 5-5B). Further, an imbalance in the minima at 208 and 222 nm was 

observed. A TM of 20 °C was extracted from the thermal unfolding curve of !PP-GSGSG, 

compared to 51 °C for oPP! (Figure 5-5C). SE AUC experiments revealed the !PP variant was 

monomeric in solution (Figure 5-5D). 

 

 

 

 

Figure 5-4: Folding and stability of !PP-GDNAT and !PP-GDNAT-4 compared to 
oPP!. (A) CD spectra recorded at 5 °C for !PP-GDNAT and !PP-GDNAT-4. (B) 
Temperature dependence of the CD signal monitored at 222 nm. (C-D) AUC 
Sedimentation-equilibrium data (top, dots) and curves fitted single-ideal species model 
(lines) at 44 (blue), 52 (aqua), 56 (orange), and 60 (red) krpm for αPP-GDNAT. Bottom: 
Residuals for the above fits. (C) !PP-GDNAT: v̅ = 0.743 cm3 g-1. The fit returned a mass 
of 3860 Da (1.0 " monomer mass), 95% confidence limits = 3849.7 – 3870.4 Da. (D) 
!PP-GDNAT-4: v̅ = 0.747 cm3 g-1. The fit returned a mass of 4979 Da (1.0 " monomer 
mass), 95% confidence limits = 4955.8 – 5001.8 Da. Conditions: 100 µM peptide, PBS, 
pH 7.4. Colour key: !PP-GDNAT (green), !PP-GDNAT-4 (red), oPP! (black). 
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While the flexible linker allowed the loop to adopt a broad range of conformations, including ones 

favourable for the antiparallel !PP topology, the lack of rigidity potentially meant the loop did not 

adopt a single unique conformation. The reduced folding of both !PP-GDNAT and !PP-GSGSG 

implied a more structured loop optimised for the !PP topology was required and thus a more 

sophisticated approach to loop design was needed. 

5.2.1! Capping Motifs 
There are other factors as well as an optimal loop that may help improve the stability of the !PP 

topology including capping motifs. We note that loops and capping motifs were investigated 

simultaneously but for the purpose of this chapter they are discussed separately. 

Peptide name Sequence and helical register 
    defgabc defgabc defgabc       123123 

!PP-GSGSG Ac-YEKELAA YEKELAA YEKELAA GSGSG PKKPKKPPG–NH2 

Figure 5-5: Sequence and biophysical characterisation of !PP-GSGSG compared to 
oPP!. (A) Sequence of oPP!-GSGSG. (B) CD spectra recorded at 5 °C for !PP-GSGSG. 
(C) Temperature dependence of the CD signal monitored at 222 nm. (D) AUC 
Sedimentation-equilibrium data (top, dots) and curves fitted single-ideal species model 
(lines) at 44 (blue), 52 (aqua), 56 (orange), and 60 (red) krpm for αPP-GSGSG. Bottom: 
Residuals for the above fits. v̅ = 0.744 cm3 g-1. The fit returned a mass of 3864 Da (1.0 " 
monomer mass), 95% confidence limits = 3851.1 – 3877.5 Da. Conditions: 100 µM 
peptide, PBS, pH 7.4. Colour key: !PP-GSGSG (blue), oPP! (black). 
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Capping residues at the N termini of ! helices are important for stabilising helix formation. A 

bioinformatics study of an early subset of ! helices in the PDB shows preferences of amino acids 

for particular positions at the ends of ! helices (Figure 5-6).225 Specifically, there is a strong 

preference for Asn at the N-cap position. This is because Asn can form a hydrogen bond from its 

O% position to the backbone NH group of residue N3, which is the third residue after the N-cap and 

is exposed in the first turn of the ! helix. There is also a strong preference for Pro at position N1. 

One reason for this is because the backbone dihedral angle (&) of Pro is fixed at approximately 70° 

and therefore, with only one rotatable angle, the loss of entropy on forming an ! helix structure is 

lower than for other amino acids.224 The study notes side-chain hydrogen bonds to the backbone 

NHs of N2 and N3 but almost never to N1. It has been hypothesised that another important 

contribution to why Pro is preferred at N1 is simply to occupy a position which would otherwise 

have an exposed NH group.268 Pro is often thought of as a “helix breaker” because it is not often 

found in the interior positions of ! helices however, given its preference at position N1, a better 

description of Pro may be as a helix initiator.268 A preference for charged residues at N2 is also 

noted, in particular Asp and Glu.24 Overall, an important theme to help stabilise the terminal ends 

of ! helices is the need to satisfy potential hydrogen bonds. 

 

In !PP the N-cap of the ! helix is Tyr, the N1 position is Glu and the N2 position is Lys. While Glu 

is the second-most preferred residue at the N1 position, Tyr and Lys are significantly less 

favourable.225 Therefore, we propose that the addition of favourable residues at the N-terminus of 

the ! helix of !PP may help stabilise the overall topology. A series of peptides were synthesised 

with various N-terminal capping residues added (Table 5-1).  

 

 

!PP-NP was first synthesised with Asn at the N-cap position and Pro at the N1 position. This peptide 

was significantly more folded and thermally stable than the corresponding peptide with the same 

loop region (!PP-GDNAT) but without the Asn-Pro cap. !PP-NP had an ! helicity of 39 % 

compared to 32 % for !PP-GDNAT and a measurable TM of 15 °C. The next peptide synthesised in 

Table 5-1: Sequences of !PP variants with various capping residues. 

Peptide name Sequence and helical register 
           defgabc defgabc defgabc       123123 

!PP-NP Ac-NP     YEKELAA YEKELAA YEKELAA GDNAT PKKPKKPPG–NH2 

!PP-NPE Ac-NPE    YEKELAA YEKELAA YEKELAA GDNAT PKKPKKPPG-NH2 

!PP-NPELAA Ac-NPELAA YEKELAA YEKELAA YEKELAA GDNAT PKKPKKPPG-NH2 

Figure 5-6: Summary of some of the position specific amino acid preferences in ! helices. 
Top entry is the position in the ! helix and the bottom entry is the amino acid preference 
at that position. 
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the series, !PP-NPE, had a Asn-Pro-Glu cap. Glu was chosen at the N2 position over Asp since Glu 

is much more prevalent in the !-helix sequence of oPP! and has higher !-helical propensity 

generally.209 This is despite the fact that Asp is the most preferred residue at this position with Glu 

the second most preferred.225 This additional Glu residue enhanced the folding and stability further 

to an !-helicity of 42 % and a TM of 22 °C. 

In an attempt to make a seamless transition between the Asn-Pro-Glu capping residues and the first 

heptad in the !PP sequence the residues Leu-Ala-Ala were added after Asn-Pro-Glu. In effect, a 

truncated heptad (NPELAA) with enhanced helix capping potential was added onto the N-terminus 

of !PP. While this peptide does not represent a realistic !PP variant, it was synthesised to determine 

how much helicity and  stability could be garnered from a helix cap. !PP-NPELAA was slightly 

more folded than !PP-NPE with an !-helicity of 44 % however the TM was approximately 20 °C 

which is slightly lower than for !PP-NPE. All peptide variants were monomeric in solution as 

determined by SE AUC. The biophysical characterisation data of these peptides are shown in Figure 

5-7 and their folding and stability statistics summarised in Table 5-2. 

 

 

 

 

 

Interestingly, as the folding of the peptides in this series increased the ratio between the 208 and 

222nm minima become closer to equal intensities. This series of peptides demonstrates the 

importance of residues close to the N-terminus which will impart stability to the peptide. The optimal 

cap in terms of enhancing thermal stability appears to be Asn-Pro-Glu. This cap was therefore used 

for subsequent !PP design variants.  

 

 

 

 

 

 

Table 5-2: Table summarising the MRE222 at 5 °C, the % helicity and the TM for the series 
of peptides with helix caps. 

Peptide name MRE222 nm  

/ deg cm2 dmol-1 res-1 
% Helicity175-

176 
TM  

/ °C 

oPP! -18319 48 51 

!PP-GDNAT -12046 32 n/a 

!PP-NP -14910 39 15 

!PP-NPE -16020 42 22 

!PP-NPELAA -17057 44 20 
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Figure 5-7: Biophysical characterisation of !PP variants with various capping motifs. (A) 
CD spectra recorded at 5 °C for !PP-NP, !PP-NPE, !PP-NPELAA. (B) Temperature 
dependence of the CD signal monitored at 222 nm. (C-E) AUC Sedimentation-
equilibrium data (top, dots) and curves fitted to a single-ideal species model (lines) at 44 
(blue), 52 (aqua), 56 (orange), and 60 (red) krpm. Bottom: Residuals for the above fits. 
(C) !PP-NP: v̅ = 0.740 cm3 g-1. The fit returned a mass of 3936 Da (1.0 " monomer mass), 
95% confidence limits = 3920 – 3951 Da. (D) !PP-NPE: v̅ = 0.738 cm3 g-1. The fit 
returned a mass of 4296 Da (1.0 " monomer mass), 95% confidence limits = 4284 – 4308 
Da. (E) !PP-NPELAA: v̅ = 0.742 cm3 g-1. The fit returned a mass of 4646 Da (1.0 " 
monomer mass), 95% confidence limits = 4628 – 4664 Da. Conditions: 100 µM peptide, 
PBS, pH 7.4. Colour key: !PP-GDNAT (green), oPP! (black), !PP-NP (yellow), !PP-
NPE (blue), !PP-NPELAA (pink). 
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5.2.2! Optimising loop region in !PP 

With the new helix cap improving !PP folding and stability, efforts turned to the more challenging 

task of finding an optimal loop to connect the ! helix and polyproline-II helix components. For 

reasons discussed earlier in this chapter, de novo loop design is significantly more challenging than 

designing regular elements of secondary structures like ! helices and $ strands. Therefore, loops 

were taken from proteins in the PDB. LoopFinder, a protein design tool within ISAMBARD, was 

used to extract loops from the PDB that fitted between the residues that ‘entered’ and ‘exited’ the 

loop. The entering residue was defined as the last residue of secondary structure entering the loop 

and by the same logic the exiting residue was defined as the first residue of secondary structure 

exiting the loop.  

In oPP! a five-residue loop was optimal to bridge the gap between the polyproline-II and ! helices. 

Based on this, it was hypothesised that a loop of similar length would be adequate for !PP. 

Therefore, only loops of between three and six residues were extracted from the PDB. Loops were 

filtered based on the following criteria: Firstly, loops were only selected from NMR or crystal 

structures with a resolution ≤ 3 Å. A resolution greater than this was not deemed reliable enough to 

ensure an accurate fit between the residues entering and exiting the loop and the loop residues 

selected. Also, this constraint helped refine and reduce the number of loops returned. Secondly, only 

loops with ≤ 2 Å RMSD fit between loop and entering and exiting residue backbone coordinates 

were selected. This ensured the transition in backbone coordinates from !PP to the loop were 

continuous. To ensure the loops selected fitted well with the secondary structure elements either side 

of the loop, the DSSP defined secondary structure of the entering and exiting residues were restricted 

to ! and $, respectively. The $ secondary structure element was chosen since polyproline-II helix is 

not formally defined by DSSP. Loops containing cysteine residues were also omitted for ease of 

handling; the thiol group can readily undergo oxidation if not handled with care. 

Based on these criteria, 2212 loops were extracted from the PDB by LoopFinder. Of these, over half 

were three-residue loops, a quarter were four and five residues, and only 28 loops were 6 residues 

long (Figure 5-8). 

 

Loop Length Number of Loops 

3 1362 
4 433 
5 389 
6 28 

Total 2212 

Figure 5-8: (A) Overlay of the top 100 five-residue loops i.e. those that have the lowest 
RMSD. (B) Frequency of loops of ranging lengths selected from the PDB using 
LoopFinder. 
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Subsequently, loops were refined and selected for ease of synthesis and low RMSD with !PP. Loops 

with amino-acid sequences that were particularly hydrophobic were avoided because the loop in 

!PP is solvent exposed. Also, only loops with the ! and $ helices in an antiparallel orientation, 

similar to !PP, were selected. The loop sequences chosen are shown in Table 5-3. 

 

 

The loops selected for joining the constituent components of !PP are shown in their native protein 

environments in Figure 5-9. All loops are proximal to the surface of the protein as opposed to being 

buried within the core and thus are relatively solvent exposed. While the conformation that a loop 

adopts depends on the surrounding protein environment, the fact that these loops are solvent exposed 

bodes well for their use in !PP where they will also be in a solvent exposed environment. 

 

 

 

 

 

 

 

 

 

 

 

Table 5-3: Sequences of !PP peptides with ranging loop lengths. 

Peptide name Sequence and helical register 
        defgabc defgabc defgabc        123123 

!PP-NPE-3 Ac-NPE YEKELAA YEKELAA YEKELAA GKP    PKKPKKPPG–NH2 
!PP-NPE-4 Ac-NPE YEKELAA YEKELAA YEKELAA NPQG   PKKPKKPPG–NH2 
!PP-NPE-5 Ac-NPE YEKELAA YEKELAA YEKELAA NGGQG  PKKPKKPPG-NH2 
!PP-NPE-6 Ac-NPE YEKELAA YEKELAA YEKELAA QAKDQQ PKKPKKPPG-NH2 

Figure 5-9: Loops selected for !PP in their natural protein environment. (A) 3 residue 
loop, GKP, from PDB: 1T9A. (B) 4 residue loop, NPQG, from PDB: 3T7D. (C) 5 residue 
loop, NGGQG, from PDB: 3QWA. (D) 6 residue loop, QAKDQQ, from PDB: 4RHE. 
Colour key: Loop (light), entering and exiting secondary structure (dark), surrounding 
protein (grey). 
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5.2.3! MD Studies 
To give an indication of the stability of the series of !PP peptides with varying loop lengths, 100 ns 

MD simulations were performed for each variant (Figure 5-10). Note that for this MD study models 

of the peptides were generated without the Asn-Pro-Glu capping residues however this did not 

interfere with determining the effectiveness of the loop region. 

!PP-NPE-3 with the three-residue GKP loop was least stable across the MD trajectory resulting in 

the proline residues on the polyproline-II helix flipping to the solvent-exposed surface and no longer 

interdigitated with the tyrosine residues on the ! helix. It appears the loop was too short to keep the 

polyproline-II helix in the correct orientation against the ! helix and the interface between the ! and 

polyproline-II helix was lost. Consistent with this, the RMSD across the trajectory showed the 

greatest deviation. In contrast, !PP-NPE-4 (with the four-residue NPQG loop) was stable across the 

trajectory and the initial and 100 ns snapshots overlay well, in particular the Pro and Tyr interface 

residues. This suggests the four-residue loop was a good fit and allowed the interface between the 

two helices to be maintained. !PP-NPE-5 and !PP-NPE-6 were also relatively stable across their 

trajectories. While the Tyr and Pro residues from the 0 and 100 ns timepoints do not overlay as well 

as compared to !PP-NPE-4, the interface between the two helices is maintained and Pro and Tyr 

are still interdigitated. As a result of this MD study !PP-NPE-3 was not taken forward for synthesis. 

Subsequently, only the !PP variants with four, five and six residue loops were synthesised. These 

peptides were then characterised by CD spectroscopy to determine their folding and stability in 

Figure 5-10: Snapshots of MD simulations at 0 and 100 ns, and fluctuations in all-atom 
RMSD across the trajectory. (A) !PP-3 (loop:  GKP) (B) !PP-4 (loop: NPQG) (C) !PP-
5 (loop: NGGQG) (D) !PP-6 (loop: QAKDQQ). Colour key: initial 0 ns snapshot (grey), 
100 ns snapshot (blue, red, green and purple). 
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solution. All peptides in the series exhibited very similar !-helicities at 5 °C (approximately 40 %), 

however they showed a broader range of thermal stabilities. The variant with the shortest length 

loop, !PP-NPE-4,  was the least thermally stable in the series with a TM of 18 °C. Interestingly, 

!PP-NPE-4 was less thermally stable than !PP-NPE, which has the natural GDNAT loop. The 

variant with the five-residue loop, !PP-NPE-5 was the most thermally stable in the series with a TM 

of 28 °C. The variant with the longest loop, !PP-NPE-6 fell between the two with a TM of 20 °C. 

All the peptides in this series were monomeric in solution as determined by SE AUC. The CD and 

AUC biophysical data are shown in Figure 5-11 and the folding and thermal stability of these 

peptides are summarised in Table 5-4 . 

 

 

 

 

While none of the peptides were as stable as the PP! counterpart the !PP-NPE-5 variant with the 

NGGQG loop had the greatest thermal stability. Therefore, this loop was taken forward to create a 

PP!PP design and combine PP:! and !:PP interfaces. It was hoped that the presence and well folded 

behaviour of the PP! component may help template the folding of the C-terminal second 

polyproline-II helix.  

 

 

 

Peptide name MRE222 nm  

/ deg cm2 dmol-1 res-1 
% Helicity175-

176 
TM  

/ °C 

oPP! -18319 48 51 

!PP-NPE -16020 42 22 

!PP-NPE-4 -15395 40 18 

!PP-NPE-5 -15789 41 28 

!PP-NPE-6 -15190 39 20 

Table 5-4: Summary of the !-helicity at 5 °C and thermal stability of the series of 
peptides with varying loop length. 
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Figure 5-11: Biophysical characterisation of !PP variants with varying loop lengths and 
composition selected using LoopFinder. (A) CD spectra recorded at 5 °C for !PP-NPE-4, 
!PP-NPE-5, !PP-NPE-6. (B) Temperature dependence of the CD signal monitored at 222 
nm. (C-E) AUC Sedimentation-equilibrium data (top, dots) and curves fitted to a single-
ideal species model (lines) at 44 (blue), 52 (aqua), 56 (orange), and 60 (red) krpm. Bottom: 
Residuals for the above fits. (C) !PP-NPE-4: v̅ = 0.741 cm3 g-1. The fit returned a mass of 
4172 Da (1.0 " monomer mass), 95% confidence limits = 4160 –4184 Da. (D) !PP-NPE-
5: v̅ = 0.737 cm3 g-1. The fit returned a mass of 4180 Da (1.0 " monomer mass), 95% 
confidence limits = 4166 – 4195 Da. (E) !PP-NPE-6: v̅ = 0.739 cm3 g-1. The fit returned 
a mass of 4562 Da (1.0 " monomer mass), 95% confidence limits = 4548 – 4576 Da. 
Conditions: 100 µM peptide, PBS, pH 7.4. Colour key: oPP! (black), !PP-NPE-4 (red), 
!PP-NPE-5 (green), !PP-NPE-6 (purple). 
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5.3! Expanding the PP! topology: PP!PP  

With both an oPP! and !PP component in hand efforts turned towards combing the two topologies 

in an attempt to create a PP!PP topology (Figure 5-12A). In !-helical barrels, each helix interacts 

with the adjacent helix via a hydrophobic seam. There are three main types of interfaces as discussed 

in Section 1.3.1: the two hydrophobic seams share one residue (type I interface), the two seams are 

adjacent (type II interface) or the seams are separated by one intervening residue (type III 

interface).113, 145 Type III-like interfaces were used in the design of PP!PP (Figure 5-12B). 

 

 

 

 

 

 

The a, d and g positions (Leu-Tyr-Glu) that make up the diamond shaped hole on the ! helix of 

oPP! were maintained in the design of PP!PP. An extra Leu-Tyr-Glu interface was placed on the 

previously solvent-exposed face of oPP! ! helix at the c, f and b positions. Lys was placed at the e 

position to balance charge on the ! helix. Also, a potential i!i+3 salt bridge could form between 

Lys at e and Glu at b which would help stabilise the ! helix. The natural GDNAT loop was used to 

connect the PP! components of the topology while the NGGQG loop from !PP-NPE-5 was used to 

connect the !PP component. Overall the sequence for the design of PP!PP is shown in Table 5-5. 

PP!PP was first characterised by CD spectroscopy (Figure 5-13). 

 

 

 

Table 5-5: Sequence of the PP!PP Design. 

Peptide  Sequence and helical register 
name      321321       efgabcd efgabcd efgabcd       123123 

oPP! Ac-PPKKPKKP GDNAT PEKLAAY EKELAAY EKELAAY-NH2                     

PP!PP Ac-PPKKPKKP GDNAT PYKLELY KYELELY KYELELY NGGQG PKKPKKPPG -NH2 

Figure 5-12: (A) Cartoon representation of the PP!PP topology with the polyproline-II 
helices shown in light blue and the ! helix shown in dark blue. Arrows demonstrate the 
orientation of the helices. (B) Helical wheel representation of PP!PP with overlaid 
peptide sequence highlighting the interhelical interfaces. Colour key: hydrophobic seams 
(purple), Glu (red), Lys (blue). C and N represent the termini of the helices nearest the 
viewer. 
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PP!PP was significantly less folded at 5 °C in the far-UV region compared to oPP! with an !-

helicity of 33 %. However, the thermal stability of PP!PP was only slightly lower than oPP! with 

a TM of 48 °C. The reduced folding of PP!PP is the result of the presence of the extra polyproline-

II helix which will have limited contribution to the CD signal at 222 nm. Therefore, to give a better 

indication of the effect of the extra polyproline-II helix on the stability of PP!PP, the CD data were 

Figure 5-13: Folding and stability of PP!PP. (A) CD spectra recorded at 5 °C for oPP! 
and PP!PP. (B) Temperature dependence of the far-UV CD signal monitored at 222 nm. 
(C) CD spectra recorded at 5 °C normalised for expected number of !-helical residues. 
(D) Temperature dependence of the far-UV CD signal monitored at 222 nm normalised 
for expected number of !-helical residues. (E) Aromatic CD spectra recorded at 5 °C. (F) 
Temperature dependence of the near-UV CD signal monitored at 276 nm. Conditions: 100 
µM peptide, PBS, pH 7.4. Colour key: oPP! (black), PP!PP (blue). 
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renormalised for !-helical residues only in both topologies (Figure 5-13C&D). Upon 

renormalisation the !-helicity of PP!PP at 222 nm matched that of oPP!.  

There is also a significant difference in the ratio of the minima at 208 and 222 nm. This is again 

likely a result of the additional polyproline-II helix. Polyproline-II helices have a deep minimum at 

approximately 197 nm which will contribute to the signal at 208 nm for PP!PP. (See Section 2.3.1). 

PP!PP was also monitored by near-UV CD spectroscopy to monitor the aromatic environment. The 

thermal transition of PP!PP by near-UV CD spectroscopy showed unfolding and refolding curves 

that were consistent with the far-UV CD traces. The TM when measured through the aromatic CD 

signal at 276 nm was 48 °C which is the same as the TM when measured through the far-UV CD 

trace. 

To probe further the contributions of each helix interface to the overall stability of the PP!PP 

topology each interface was knocked out in turn. An interface was removed by mutation of all the 

Pro residues on the polyproline-II helix to Gly residues. The sidechain of Gly is a single hydrogen 

atom and therefore should not contribute to helix packing. Each interface was knocked out 

individually leading to two peptides: PP!PG and PG!PP (Figure 5-14).  

 

 

Both peptides were analysed by CD spectroscopy (Figure 5-15). The CD spectra of PP!PG 

informed about the folding and stability of the PP! interface while the PG!PP related to the !PP 

interface. 

 

 

Peptide  Sequence and helical register 
name      321321       efgabcd efgabcd efgabcd       123123 

PP!PP Ac-PPKKPKKP GDNAT PYKLELY KYELELY KYELELY NGGQG PKKPKKPPG -NH2 

PP!PG Ac-PPKKPKKP GDNAT PYKLELY KYELELY KYELELY NGGQG GKKGKKGGG -NH2 

PG!PP Ac-GGKKGKKG GDNAT PYKLELY KYELELY KYELELY NGGQG PKKPKKPPG -NH2 

Figure 5-14: Sequences and helical wheel representation of PP!PG and PG!PP. (A) 
PP!PG (B) PG!PP. (C) Sequences of the PP!PG and PG!PP peptides. 
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PP!PG was well folded with the same helicity at 5 °C as observed for PP!PP. The thermal stability 

of PP!PG was slightly reduced with a TM of 46 °C compared to 48 °C for PP!PP. Conversely, the 

folding and thermal stability of PG!PP was dramatically reduced. The peptide showed only 14 % 

Figure 5-15: Folding and stability of PP!PG and PG!PP. (A) CD spectra recorded at 5 
°C for oPP!, PP!PP, PP!PG and PG!PP. (B) Temperature dependence of the far-UV CD 
signal monitored at 222 nm. (C) CD spectra recorded at 5 °C normalised for !-helical 
residues. (D) Temperature dependence of the far-UV CD signal monitored at 222 nm 
normalised for !-helical residues. (E) Aromatic CD spectra recorded at 5 °C. (F) 
Temperature dependence of the near-UV CD signal monitored at 276 nm. Conditions: 100 
µM peptide, PBS, pH 7.4. Colour key: oPP! (black), PP!PP (blue), PP!PG (red), and 
PG!PP (green). 



 
Chapter 5: Towards larger oPP! topologies 

 
 

 107 

!-helicity at 5 °C and a TM could not be extracted. A summary of the folding and stability of these 

peptides is shown in Table 5-6. 

 

 

 

 

The slight reduction in thermal stability of PP!PG compared to PP!PP suggests the !PP interface 

plays a lesser role in the overall stability of the topology while the PP! interface is the most 

dominant. Further, the significantly reduced folding and stability of PG!PP suggests that without 

the PP! interface the PP!PP topology will not form. Taken together this implies it is the PP! 

component of PP!PP that reduces the energy for second polyproline-II helix by providing a 

template. 

It was anticipated that the PP! interface within the PP!PP topology would be the most dominant 

given we have previously shown oPP! to be more folded and stable compared to !PP. However, 

the fact that the PG!PP peptide was essentially unfolded was unexpected. 

Interestingly, the minima at 208 and 222 nm are of equal intensities for PP!PG, this is in contrast 

to what is observed for PP!PP. This may be explained by the fact that without the proline residues, 

a polyproline-II helix conformation is not adopted; instead just random coil. While the CD spectra 

of random coil and polyproline-II helices are similar there are some slight differences. One such 

difference is that the minima at 197 nm in the CD spectra of polyproline-II helices is reduced in 

magnitude and redshifted.172 The effect of this in the context of PP!PG would result in the signal at 

208 nm to also be reduced in magnitude and therefore result in an intensity that matches the signal 

at 222 nm. 

The oligomeric states of PP!PP, PP!PG and PP!PPP were determined by SE AUC (Figure 5-16). 

Both PP!PP and PP!PG were monomeric in solution and fitted well to single ideal species models. 

PG!PP precipitated at approximately 50 kprm and therefore the oligomeric state of the peptide could 

not be determined. The presence of precipitation emphasised the unfolded and less predictable 

nature of the peptide. 

 

Peptide name MRE222 nm  

/ deg cm2 dmol-1 res-1 
% Helicity175-

176 
TM  

/ °C 

oPP! -18319 48 51 

PP!PP -12818 33 48 

PP!PG -12939 33 46 

PG!PP -5283 14 n/a 

Table 5-6: Summary of the folding and thermal stabilities of PP!PP and variants. 
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5.4! Chapter conclusion 

In conclusion, an iterative design process has been used to design a stable and folded !PP topology. 

Through the iterative design process it became apparent that simply maintaining the interface 

between the two helices of the foregoing oPP! design and using either a flexible (!PP-GSGSG) or 

suboptimal loop region (!PP-GDNAT) to connect the ! and polyproline-II helices is not enough to 

form a stable !PP topology. Subsequently, two important factors were considered for generating a 

well folded !PP topology: introducing N-terminal capping motifs and an optimising the loop region. 

N-terminal capping motifs help initiate helix formation and stabilise the !-helix component. Based 

on work by Richardson et al., which gives amino acid preferences for specific locations at the ends 

of helices, an Asn-Pro-Glu motif was added to the N terminus of the ! helix of !PP.225 This resulted 

in an improvement in the folding and thermal stability of the !PP topology compared to the initial 

design with an increase in TM from < 20 to 22 °C. 

MD simulations suggest that a three-residue loop is too short to connect the ! and polyproline-II 

helices effectively but a loop of length four to six residues should be sufficient. Therefore, 

LoopFinder was used to extract loops ranging from four to six residues from the PDB that would fit 

between a pair of entering and exiting residues of the !PP topology. The best loop selected from 

LoopFinder is five residues in length and resulted in an !PP variant with a TM of 28 °C. This is a 

significant improvement on the initial !PP design (TM < 20 °C). However, this is still not comparable 

to the stability of the oPP! counterpart suggesting !PP could be optimised further. 

Therefore, a more comprehensive study of loops selected by LoopFinder will be required to find an 

optimal !PP loop. A quantitative approach would help refine and select the best loops for synthesis 

Figure 5-16: Sedimentation-equilibrium AUC data (top, dots) and curves fitted to single-
ideal species model (lines) at 44 (blue), 52 (aqua), 56 (orange), and 60 (red) krpm. Bottom: 
Residuals for the above fits. (A) PP!PP: v̅ = 0.753 cm3 g-1. The fit returned a mass of 
5951 Da (1.1 " monomer mass), 95% confidence limits = 5932 – 5970 Da. (B) PP!PG: v̅ 
= 0.726 cm3 g-1. The fit returned a mass of 5919 Da (1.1 " monomer mass), 95% 
confidence limits = 5897 – 5941 Da. Conditions: 100 µM peptide, PBS, pH 7.4. 
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from the large number (>1000) of loops outputted by LoopFinder. Parameters to be considered 

include RMSD with entering and exiting residues, hydrophobicity of loop specifically the 

hydrophobic moment, orientation of secondary structure either side of loop, loop rigidity, and ease 

of loop synthesis with regard to sequence.  

While LoopFinder offers a good starting point for selecting potential loops to connect secondary 

structure components together there are some drawbacks to this approach. LoopFinder assumes the 

loop will adopt the same conformation in the native protein environment as in its new miniprotein 

environment, which may not be the case. 

Overall, while an !PP topology that is comparable in folding and stability to that of oPP! (TM 51 °C) 

has not been delivered a reasonably well folded peptide with a TM of 28 °C (!PP-NPE-5) has been 

designed and characterised and has been taken forward to expand the PP! topology. Also, 

significant progress forward has been made compared to the initial !PP design which had a TM of 

< 20 °C. 

The NGGQG loop from !PP-NPE-5 is used in the design of PP!PP. PP!PP has similar levels of 

folding and thermal stability to oPP!. To determine the contribution of each interface to the overall 

stability of the topology two variants (PP!PG and PG!PP) are described with each helix interface 

knocked out in turn. The interface was removed by mutation of the Pro residues in the polyproline-

II helix to Gly. CD spectroscopy of these peptides revealed that the PP! interface in the PP!PP 

topology was significantly more dominant; PG!PP was essentially unfolded. 

The next stage of characterisation will seek to verify the structure through NMR spectroscopy. High 

resolution structural data will be required to determine whether the PP!PP peptide has formed the 

topology desired. NOEs between helices will help in determining whether the second polyproline-

II helix is interacting with the ! helix or not. 

Overall, two new topologies have been designed (!PP and PP!PP) that, to the best of our 

knowledge, have not been observed before in nature and thus help move us into the dark matter of 

protein space.33 Solution phase biophysical characterisation for the peptides discussed in this chapter 

are summarised in Table 5-7. 

 



 
 
 

 

 

 

Table 5-7: Combined solution-phase biophysical characterisation for the peptides discussed in this chapter.  

Entry Name Sequence and register 
              321321       efgabcd efgabcd efgabcd 

MRE222 (deg cm2 

dmol-1 res-1) a 

% 

Helicity 

TM / 

°C b 

Oligomeric 

State c 

1 oPP!         Ac- PPKKPKKP GDNAT PEKLAAY EKELAAY EKELAAY-NH2 -18319 48 51 1.0 

!PP        defgabc defgabc defgabc defgabc       123123123     

2 !PP-GDNAT            Ac-YEKELAA YEKELAA YEKELAA GDNAT PKKPKKPPG–NH2 -12046 32 < 20 1.0 

3 !PP-GDNAT-4h    Ac-YEKELAA YEKELAA YEKELAA YEKELAA GDNAT PKKPKKPKKPPG–NH2 -19601 50 49 1.0 

4 !PP-GSGSG            Ac-YEKELAA YEKELAA YEKELAA GSGSG PKKPKKPPG–NH2 -13826.8 36 20 1.0 

Capping Motifs               defgabc defgabc defgabc       123123     

5 !PP-NP         Ac-NP YEKELAA YEKELAA YEKELAA GNDAT PKKPKKPPG-NH2 -14910 39 15 1.0 

6 !PP-NPE        Ac-NPE YEKELAA YEKELAA YEKELAA GDNAT PKKPKKPPG-NH2 -16020 42 22 1.0 

7 !PP-NPELAA     Ac-NPELAA YEKELAA YEKELAA YEKELAA GDNAT PKKPKKPPG-NH2 -17057 44 20 1.0 

Loops             defgabc defgabc defgabc        123123     

8 !PP-NPE-4     Ac-NPE YEKELAA YEKELAA YEKELAA NPQG   PKKPKKPPG-NH2 -15395 40 18 1.0 

9 !PP-NPE-5     Ac-NPE YEKELAA YEKELAA YEKELAA NGGQG  PKKPKKPPG-NH2 -15789 41 28 1.0 

10 !PP-NPE-6     Ac-NPE YEKELAA YEKELAA YEKELAA QAKDQQ PKKPKKPPG-NH2 -15190 39 20 1.0 

PP!PP        321321       defgabc defgabc defgabc       123123     

11 PP!PP  Ac-PPKKPKKP GDNAT PYKLELY KYELELY KYELELY NGGQG PKKPKKPPG-NH2 -12818 33 48 1.1 

12 PP!PG  Ac-PPKKPKKP GDNAT PYKLELY KYELELY KYELELY NGGQG GKKGKKGGG-NH2 -12939 33 46 1.1 

13 PG!PP  Ac-GGKKGKKG GDNAT PYKLELY KYELELY KYELELY NGGQG PKKPKKPPG-NH2 -5283 14 n/a n/a 

a MRE222 from CD spectroscopy at 5 °C and 100 µM peptide in PBS. b The point of inflection in sigmoidal thermal denaturation curves, calculated from the maxima 
of the first derivative of the thermal transition. c Oligomeric state calculated from SE AUC experiments. 
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Chapter 6! Modulating stability in oPP! through elongation and  

               cyclisation 

The cyclisation work described in this chapter was done in collaboration with Marcel Schmidt (MS) 

at EnzyPep, Netherlands. The work was conceived and designed by the author of this thesis (KPG), 

Prof. Dek Woolfson, and MS. MS performed the enzymatic cyclisation and KPG carried out the 

synthesis and biophysical characterisation. Dr Prasun Kumar performed the bioinformatics 

analysis. 

6.1! Chapter introduction 

6.1.1! Protein-protein interactions 
Miniproteins provide a compact and stable scaffold onto which functional motifs can be grafted 

including binding and recognition motifs that have the potential to disrupt protein-protein 

interactions.21, 59, 269 Both transient and long-lived, protein-protein interactions are important for 

controlling a diverse range of cellular functions.270-273 As a result, protein interfaces have become 

targets for perturbing cell function.274-275 Further, the use of miniproteins to disrupt protein-protein 

interactions in important cellular recognition domains offers exciting and challenging opportunities 

to develop miniprotein-based drug therapeutics.276-278 More-challenging motifs that have the 

potential to introduce catalytic function into the simplified miniprotein system are also being 

explored.61 

SH3 (Src homololgy region 3) and other domains such as EVH1 and WW domains have similar 

interfaces to that of PP!. SH3 domains are one of the most abundant molecular recognition domains 

in the proteome and are found in a wide variety of intracellular and membrane-associated proteins.279 

They play important roles in protein-protein interactions essential to cell function.280 The SH3 

domain has a characteristic fold consisting of five or six β strands arranged as two antiparallel β 

sheets. The surface of the domain has a hydrophobic ligand binding pocket with highly conserved 

aromatic residues in which Pro-rich sequences bind. The Pro-rich ligands contain a conserved PXXP 

binding motif and adopt a polyproline-II helix conformation (Figure 6-1A).281-286 In isolation, the 

Pro-rich ligands bind with modest affinity (5 -100 µM) and with little selectivity within families of 

SH3 domains; many SH3 domains bind multiple PXXP containing peptides.287-288 However, SH3 

domains are often found in association with other interaction domains (e.g. SH2 domains)  and work 

in a cooperative manner to give highly specific protein-protein interactions.289 

The avian pancreatic peptide (aPP) has been used as a scaffold whereby some residues on the 

polyproline-II helix have been replaced by a Pro-rich sequence motif (RP1) that interacts with the 

SH3 domain of abelson tyrosine kinase (Ab1-SH3) (Figure 6-1B).281 The binding of this new aPP 

mutant (APP-RP1) to Ab1-SH3 is comparable to the binding of RP1with Ab1-SH3. 
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The aPP scaffold has been used in a similar way to bind to the polyproline-recognition domain 

EVH1. EVH1 domains are found in a large number of signalling proteins and are often involved in 

modulating the actin cytoskeleton or in signal transduction in postsynaptic compartments of 

chemical synapses.290 Optimisation of the polyproline-II helix of aPP produced a variant with high 

affinity for the ActA target protein in Listeria monocytogenes, EVH1 mena.56 The ! helix of aPP 

has also been optimised for sequence specific DNA recognition. A mutant of aPP named p007 

presents the !-helical recognition epitope found on the bZIP protein GCN4. The recognition epitope 

was grafted onto the solvent exposed face of the ! helix and subsequently binds DNA with 

nanomolar affinity.59 

6.1.2! Controlling the stability of protein-protein interactions 
Similar to aPP, the compact, well-folded nature of the oPP! miniprotein lends itself as a good 

scaffold for targeting and disrupting protein-protein interactions. The sequence-to-stability 

relationships established for the fold in Chapter 4 will help determine which residues are amenable 

to mutation. In complicated association-dissociation processes involving complex dynamics it will 

be important to be able to control and tune the stability and affinity of protein-protein interactions.  

One way to tune stability is to vary the length of the peptide components. The stability of !-helical 

coiled coils increases dramatically with peptide length in a direct but non-linear cooperative manner; 

the increase in stability on going from three to four heptads is greater than going from four to five 

heptads.291-292 As chain length increases, the importance of hydrophobic interactions in relation to 

stability decreases.291 The correlation between peptide chain length and stability has successfully 

been used to engineer and quantify a range of stabilities into heterodimeric coiled coils with 

micromolar to sub-nanomolar dissociation constants.203 Such peptides will be useful for applications 

in protein engineering and synthetic biology where protein-protein interactions with specific 

Figure 6-1: (A) Interaction of the SH3 domain of abelson kinase (Ab1-SH3) with a proline 
rich sequence motif called RP1 (PDB: 1BBZ). (B) Structural alignment of aPP (PDB: 
1PPT) with RP1 motif which is complexed to Ab1-SH3. Colour key: RP1(teal), Ab1-SH3 
(grey, aromatic residues highlighted in purple) and aPP (orange). 
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stabilities are required. The effect of chain length on the stability of oPP! will therefore be examined 

in this chapter. 

As well as varying chain length to modulate peptide stability, miniproteins can also be stabilised by 

cyclisation. Cyclic miniproteins are particularly attractive for in vivo applications where the peptides 

will need to be resistant to proteolysis and degradation in the cellular environment.293 Linear peptide 

based drugs have limited resistance to proteolysis294 compared to cyclic variants which have much 

better metabolic stability due to their reduced sensitivity to proteolytic cleavage.295 A cyclic 

miniprotein also offers potentially enhanced binding properties as a result of its limited 

conformational flexibility which in turn reduces the entropic penalty upon binding. Given the 

importance of proteolytic stability for applications of miniproteins in vivo, and more ambitiously as 

drug therapeutics, cyclisation of oPP! has been explored and will be discussed herein. 

6.1.3! Peptide cyclisation strategies 
A peptide can be cyclised in four different ways: head-to-tail (C-terminus to N-terminus), head-to-

side chain, side chain-to-tail, or side chain-to-side chain.296 For each of these strategies various 

different synthetic methodologies have been explored. One strategy involves an azide-alkyne 

cycloaddition to introduce a 1,2,3-triazole into the peptide backbone, which are both thermally and 

physiologically stable.297-298 Further, the triazole is readily obtained by 1,3-dipolar cycloadditions 

between an azide and alkyne group. However, while the synthesis is synthetically facile a non-native 

peptide bond is generated at the ligation site. Another cyclisation strategy is the synthesis of larger 

more flexible peptide macrocycles followed by an intramolecular ring contraction to give the target 

structure.299-300 This has been demonstrated as an effective way to reduce the entropic penalty of 

macrocyclization, particularly for very small ring sizes. Ring closing metathesis has also been used 

to cyclise side chain protected peptides in anhydrous organic solvents.301-302 However, for many of 

these synthetic methodologies heavy dilution is required to prevent polymerisation; there are risks 

of epimerisation; and sidechain protected peptides can have poor solubility.303 

Native chemical ligation (NCL) is an alternative strategy often used to cyclise unprotected peptides 

in aqueous solution. This reaction utilises an N-terminal Cys and a C-terminal thioester that react to 

form a native amide bond through a trans-thioesterification followed by S-to-N acyl migration.304 

The strategy was initially developed to ligate peptide segments together to facilitate the synthesis of 

large peptides. However, by incorporating the N-terminal Cys and C-terminal thioester into the same 

peptide, cyclic peptides can readily be synthesised.305 However, this strategy usually requires the 

presence of a Cys in the peptide sequence although desulfurization methods have been  

developed.306-307 

6.1.3.1! Enzymatic cyclisation 
Enzymes offer an alternative to traditional synthetic methodologies for cyclisation. Examples of 

such  enzymes include sortases,308 trypsin,309 asparaginyl endoproteases (AEP),310-311 and subtilisin 

variants such as peptiligase.312 While these enzymes offer excellent stereo- and chemo- selectivity 
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many suffer from incomplete ligation, low catalytic efficiency, and leave a “footprint” region. A 

footprint is an unavoidable enzyme recognition sequence at the coupling site. However, a peptiligase 

based enzyme variant named omniligase-1 has recently been reported to efficiently catalyse 

cyclisation and is footprint free.313-314 

Peptiligase is protein engineered from a stabilised cation independent variant of substilisin BPN’ 

(Sbt149).313 The calcium binding domain has been removed and 18 stabilising mutations made 

including the introduction of a disulfide bridge. Subsequently, the introduction of two further 

mutations (Ser212 to Cys and Pro216 to Ala) yields peptiligase. Omniligase-1 is an improved variant 

of peptiligase that has recently become commercially available.314 Schmidt et al (EnzyPep, 

Netherlands) demonstrate the use of omniligase-1 as a versatile enzyme for head-to-tail peptide 

cyclisation of linear peptides bearing a C-terminal ester (Figure 6-2). Omniligase-1 has been shown 

to have broad peptide substrate scope.314 

 

 

 

Omniligase-1 has six specific substrate recognition pockets: four recognise the C-terminal part of 

the peptide (S1-S4), and two are involved in binding the N-terminal acyl acceptor part of the peptide 

(S1’ and S2’ ).314 To ensure efficient ligation, hydrophobic amino acids are preferred at position 4 

(P4). Positions 1, 1’ and 2’ (P1, P1’ and P2’) should avoid Pro. (Figure 6-3). 

 

 

 

 

 

 

 

 

Figure 6-2: Schematic showing cyclisation of linear peptide esters using omniligase-1. 

Figure 6-3: Schematic representation of the enzyme pocket of Omniligase-1 highlighting 
the substrate scope at each position. 
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6.2! Effects of chain length on the formation and stability of the oPP! 

topology 

With the optimized PP! sequence in hand, the effect of chain length on the formation and stability 

of the oPP! topology was investigated. First, and simply, oPP! variants with 1-, 3- and 4- unit 

polyproline-II-helical repeats and correspondingly 2-, 4- and 5- heptad !-helical repeats were 

synthesised (Table 6-1). oPP! completes the series with two polyproline-II units and three !-helical 

repeats. For all sequences the final two Pro residues at the N terminus were maintained. 

 

The oPP!-X series of peptides were first analysed by CD spectroscopy (Figure 6-5). 

Unsurprisingly, the shortest peptide, oPP!-2, was the least folded in the series with an ! helicity of 

35 % at 5 °C, and a correspondingly low TM of 19 °C. The larger construct, oPP!-4, was significantly 

more folded and thermally stable than oPP! with a TM of 66 °C and the longest peptide, oPP!-5, 

was the most thermally stable in the series with a TM of 72 °C.  

 

 

 

 

 

 

 

 

Table 6-1: Sequences of the series of peptides with chain length ranging from 2 to 5 
heptads. 

 Peptide  Sequence and helical register 
  321321321321       efgabcd efgabcd efgabcd efgabcd efgabcd 

oPP!-2 Ac-         PPKKP GDNAT PEKLAAY EKELAAY-NH2          

oPP! Ac-      PPKKPKKP GDNAT PEKLAAY EKELAAY EKELAAY-NH2          

oPP!-4 Ac-   PPKKPKKPKKP GDNAT PEKLAAY EKELAAY EKELAAY EKELAAY-NH2          

oPP!-5 Ac-PPKKPKKPKKPKKP GDNAT PEKLAAY EKELAAY EKELAAY EKELAAY EKELAAY-NH2          

Figure 6-4: CD data showing the effect of chain length on the folding and stability in 
oPP!. (A) CD spectra recorded at 5 °C for the oPP!-X series: oPP!-2 (orange), oPP! 
(black), oPP!-4 (pink) and oPP!-5 (blue). Temperature dependence of the CD signal 
monitored at 222 nm for oPP!-X series, same colour scheme as for (A). Conditions: 100 
µM peptide, PBS, pH 7.4. 



 
Chapter 6: Modulating stability in oPP! through elongation and cyclisation 

 
 

 116 

Overall, stability increases with chain length in the oPP! topology. However, similar to what is 

observed for !-helical coiled coils, this occurs in a non-linear cooperative manner (Figure 6-5). The 

most significant increase in thermal stability is observed between oPP!-2 and oPP!-3 with an 

increase of 32 °C. A smaller increase in stability of 15 °C is seen between oPP!-3 and oPP!-4 while 

there is only a 6 °C difference in the stability between  oPP!-4 and oPP!-5. 

 

 

 

 

 

 

 

 

 

 

To determine the oligomeric state of the new longer oPP! constructs SE AUC experiments were 

performed. Experimental data for each peptide readily fitted to a single ideal species models and  

confirmed all peptides existed as monomers in solution (Figure 6-6). 

 

 

 

Peptide name MRE222 nm /  
deg cm2 dmol-1 res-1 

% Helicity175-

176 
TM  

/ °C 

oPP!-2 -12822 35 19 

oPP! -18319 48 51 

oPP!-4 -21356 54 66 

oPP!-5 -20670 52 72 

Figure 6-5: Effect of chain length on the folding and stability of oPP!. (Top) Table 
summarising the MRE222 at 5 °C, the % helicity and the TM for all the oPP!-X peptides. 
(Bottom) Plot of heptad length vs TM (blue) and MRE222 at 5 °C (red) for oPP!-X peptides. 
Dashed lines to help guide the eye.  
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6.2.1! Periodicity mismatch in the oPP! topology 

In Crick’s model of !-helical coiled coils, the 7-residue repeating unit (heptad) of each helix spans 

the same distance and therefore alignment between the two helices is maintained along the coiled 

coil.135, 197 However, in oPP! the 3- and 7-residue repeats of the polyproline-II and ! helices do not 

quite match structurally. Polyproline-II helices have a rise per residue of approximately 3.1 Å and 

therefore span ≈ 9.3 Å per helical repeat; while ! helices have a rise per residue of approximately 

1.5 Å and span ≈ 10.5 Å per heptad repeat (Figure 6-7A&B). This could result in mismatches over 

the lengths of the helical rods of up to 6 Å for oPP!-5 which in turn could destabilize the helix–

helix interactions that we seek to optimize (Figure 6-7C). 

Figure 6-6: Sedimentation-equilibrium AUC data (top, dots) and fitted (lines) single-ideal 
species model curves at 44 (blue), 52 (aqua), 56 (orange), and 60 (red) krpm for oPPα-2, 
oPPα-4 and oPPα-5. Residuals (bottom) for the above fit using the same colour scheme. 
(A) oPPα-2 (v̅ = 0.742 cm3 g-1), (B) oPPα-4 (v̅ = 0.730 cm3 g-1),  (C) oPPα-5 (v̅ = 0.753 
cm3 g-1). The fits returned the following masses: oPPα-2, 2503 Da, (0.9 " monomer mass), 
95% confidence limits = 2491 – 2514 Da; oPPα-4, 4846 Da, (1.0 " monomer mass), 95% 
confidence limits = 4826 – 4867 Da; oPPα-5, 6402 Da, (1.0 " monomer mass), 95% 
confidence limits = 6375 – 6429 Da. Conditions for AUC: 130 µM, PBS, pH 7.4. 
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Methods to reduce the mismatch in periodicities and realign the two helices were investigated. Skips, 

stutters and stammers are relatively prevalent in !-helical coiled coils.315-316 A skip is defined as the 

insertion of one reside into the heptad pattern, a stutter is the insertion of four residues and a stammer 

is the insertion of three residues. By the same logic, a skip can also be thought of as the insertion of 

two stutters. Stutters straighten the helices by decreasing the degree of supercoiling in a left handed 

coiled coil while stammers increase supercoiling.315 When stutters and stammers are repeated 

regularly along the helix, as opposed to just being local discontinuities, they lead to coiled coils that 

deviate globally from the Crick model and can lead to a range of periodicities. For example inclusion 

of stutters leads to hendecad repeats (7+4=11) and pentadecad repeats (7+4+4=15).118 The supercoil 

of these coiled coils is determined by the deviation of their periodicity from the 3.63 residues per 

turn of an undistorted coiled coil. Crick coiled coils with periodicities of 3.5 (7/2, heptad) are left-

handed, hendacads with 3.67 (11/3) are virtually straight, and pentadecads with 3.75 (15/4) are right-

handed. Stammers are less common in natural coiled coils since the super coil needs to compensate 

for their 3.3 periodicity (10/3). This imposes a lot of strain on the helix and is at the limit of allowed 

!-helical backbone conformation.118  

Translating this logic to oPP!, helix realignment could be achieved in two ways; either the 

introduction of  a stutter into the ! helix or a skip into the polyproline-II helix. Indeed the bacterial 

surface adhesin Ag I/II from S. mutans appears to adopt the latter in the form of a Pro skip 

(PXXPPXX) on the polyproline-II helix that intersperses the PXX repeat (Figure 6-8).166 The !-PP 

interface in AgI/II is three full polyproline-II helix repeat units before a skip is introduced therefore 

Peptide name PPII helix theoretical 
length / Å 

! Helix theoretical 
length / Å 

Mismatch 
/ Å 

oPP!-2 18.6 21 2.4 

oPP! 27.9 31.5 3.6 

oPP!-4 37.2 42 4.8 

oPP!-5 46.5 52.5 6 

Figure 6-7: Sequence repeats in !-helical coiled-coils and oPP!. (A) Heptad repeat in !-
helical coiled coil highlighting distance spanned (1.5 x 7 = 10.5 Å). (B) 3- and 7- residue 
repeats of the polyproline-II and ! helices highlighting distance spanned (polyproline-II 
helix 3.1 x 3 = 9.3 Å). (C) Table highlighting the mismatch in periodicities between the 
polyproline-II and ! helices at varying chain lengths.  
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a Pro skip could improve the stability of the longest oPP!-5 peptide which has four full polyproline-

II helix repeat units. 

A skip was chosen to be incorporated onto the polyproline-II helix over a stutter on the ! helix since 

naturally related proteins use Pro skips on the polyproline-II helix. Also introduction of a stutter on 

the ! helix was anticipated to be more disruptive. As such, a Pro skip was introduced to the middle 

of the polyproline-II repeat of the oPP!-5 sequence (Table 6-2). 

 

oPP!-5-skip showed similar helicity to oPP!-5 at 5 °C but was slightly less thermally stable with a 

TM of 68 °C. This suggests that the oPP! fold is plastic in nature and can tolerate minor mismatches 

in periodicities without the need for helix realignment. However, this may not be the case for longer, 

fibrous-like assemblies such as AgI/II. The slightly reduced TM of oPP!-5 may also suggest that the 

skip position is not optimally placed. Future investigation is required to vary the position of the skip 

along the polyproline-II helix. oPP!-5-skip was also found to be monomeric in solution by SE AUC. 

 

 

 

Peptide  Sequence and helical register 

    321321321321       efgabcd efgabcd efgabcd efgabcd efgabcd 

oPP!-5  Ac-PPKKPKKPKKPKKP GDNAT PEKLAAY EKELAAY EKELAAY EKELAAY EKELAAY-NH2          

oPP!-5-
skip 

Ac-PPKKPKKPPKKPKKP GDNAT PEKLAAY EKELAAY EKELAAY EKELAAY EKELAAY-NH2          

Table 6-2: Sequence of oPP!-5 with the incorporation of a skip on the polyproline-II helix. 

 

Figure 6-8: The bacterial surface adhesin (PDB: 3IOX) from S. mutans.  highlighting the 
interdigitation of the Pro and Tyr residues between the extended ! helix and polyproline-
II helix and the Pro skip on the polyproline-II helix breaking the PXX repeat. AgI/II is 
coloured blue to orange from N to C terminus. 
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6.2.2! Helix capping in the oPP! topology 

As mentioned earlier oPP! possesses an N terminal PP. This double Pro was maintained across the 

various chain lengths. This was because the NMR structures of oPP! and PP! show the PP 

interacting with the C terminus of the ! helix suggesting PP is a good helix cap. To determine the 

effect on stability of this PP cap oPP!-4 was also synthesised without the final Pro residue 

(Table 6-3). 

 

 

Table 6-3: Sequence of oPP!-4 with the removal of the double Pro cap. 

Peptide  Sequence and helical register 
                         321321321       efgabcd efgabcd efgabcd efgabcd  

oPP!-4 Ac- PPKKPKKPKKP GDNAT PEKLAAY EKELAAY EKELAAY EKELAAY-NH2 

oPP!-4-
no-cap 

Ac-  PKKPKKPKKP GDNAT PEKLAAY EKELAAY EKELAAY EKELAAY-NH2          

Figure 6-9: Folding and stability of oPP!-5-skip. (A) CD spectra recorded at 5 °C for 
oPP! (black), oPP!-5:  (blue), and oPP!-5-skip (green). (B) Temperature dependence of 
the CD signal monitored at 222 nm. Same colour scheme as for (A). Conditions for CD 
experiments: 100 µM peptide, PBS, pH 7.4.(C) AUC Sedimentation-equilibrium data 
(top, dots) and fitted single-ideal species model curves (lines) at 44 (blue), 52 (aqua), 56 
(orange), and 60 (red) krpm for oPPα-5-skip. Bottom: Residuals for the above fits using 
the same colour scheme. oPP!-5-skip v̅ = 0.753 cm3 g-1. The fit returned a mass of 6085 
Da (1.0 " monomer mass), 95% confidence limits = 6126 – 8257 Da. Conditions for AUC: 
130 µM, PBS, pH 7.4. 
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oPP!-4 and oPP!-4-nocap were similar in the CD spectra. oPP!-4-no-cap was marginally less 

folded at 5 °C compared to oPP!-4 and also slightly less thermally stable with a TM of 62 °C. This 

suggests that the double Pro cap helps anchor the N-terminus of the polyproline-II helix against the 

! helix. SE AUC experiments showed oPP!-4-no-cap was monomeric in solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-10: Folding and stability of oPP!-4-no-cap. (A) CD spectra recorded at 5 °C for 
oPP! (black), oPP!-4:  (pink), and oPP!-4-no-cap (sky blue). (B) Temperature 
dependence of the CD signal monitored at 222 nm. Same colour scheme as for (A). 
Conditions for CD experiments: 100 µM peptide, PBS, pH 7.4.(C) AUC Sedimentation-
equilibrium data (top, dots) and curves fitted to a single-ideal species model (lines) at 44 
(blue), 52 (aqua), 56 (orange), and 60 (red) krpm for oPPα-4-no-cap. Bottom: Residuals 
for the above fits using the same colour scheme. oPP!-4-no-cap v̅ = 0.751 cm3 g-1. The 
fit returned a mass of 4488 Da (0.9 " monomer mass), 95% confidence limits = 4466 – 
4510 Da. Conditions for AUC: 130 µM, PBS, pH 7.4. 
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6.2.3! Models and MD simulations of the oPP!-X series 

Models of the oPP!-X series of peptides were constructed in PyMol based on the bacterial surface 

adhesin AgI/II structure (PDB: 3IOX). Models were then energy minimised over 10 ns of MD 

simulations in water (Figure 6-11).  

While 10 ns is not long enough for the peptides to reach their most stable conformation or unfold, 

the short simulation gives an idea of the stability of the peptides. Also given the repetitive and 

degenerate nature of these sequences solving an NMR structure for them would be very challenging 

and therefore these MD simulations provide an initial model to help visualise these structures. All 

models were found to be well folded over the 10 ns trajectory and had relatively low RMSD values 

between the initial and 10 ns timepoints (Table 6-4). 

 

 

 

 

In brief summary, a set of oPP! variants have been presented ranging in length from two to five !-

helical heptads. The different lengths allow access to peptides with a range of stabilities. As observed 

for !-helical coiled coils, stability increases with chain length in a non-linear manner. For the lengths 

tested a skip region is not necessary in order to maintain a periodicity match between the two helices. 

The double PP at the N-terminus of the polyproline-II helix appears to act as a helix cap adding to 

the constructs stability. 

Table 6-4: RMSD between 0 and 10 ns timepoints for the oPP!-X series during MD 
simulations. 

Peptide  All atom RMSD /  Å Backbone RMSD /  Å 

oPP!-2 2.012 1.103 

oPP!-4 3.018 2.081 

oPP!-4-no-cap 2.056 1.063 

oPP!-5 2.835 1.690 

oPP!-5-skip 2.287 1.363 

Figure 6-11: Models of the oPP!-X Series after 10 ns of MD simulations in water. oPP!-
2 (orange), oPP! (NMR structure, state 8, black), oPP!-4 (pink), oPP!-4-no-cap (lilac), 
oPP!-5 (blue), oPP!-5-skip (green). 
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6.3! Enzymatic cyclisation of oPP! with omniligase-1 

6.3.1! Cyclic oPP! design 

Next, the cyclisation of oPP! was explored as an alternative strategy to increase stability. The 

cyclisation strategy discussed in Section 6.1.3.1 was applied to oPP!. In order to cyclise oPP! a 

linker between the N-terminal end of the polyproline-II helix and the C-terminal end of the ! helix 

had to be introduced. Inspection of the oPP! NMR structure revealed the distance between the N-

terminal nitrogen of Pro1 and the C-terminal carboxyl carbon of Tyr34 is 8.4 ± 0.4 Å. This is similar 

to the distance between the C-terminal carboxyl carbon of Pro8 and the N-terminal nitrogen of Pro14 

(8.8 ±  0.4 Å) for which a five-residue loop connects the two secondary structure components 

(Figure 6-12A). Therefore, a similar length loop could be satisfactory in joining the N-terminal end 

of the polyproline-II helix and the C-terminal end of the ! helix while still maintaining the interface 

between the two helices. A loop of four to six residues in length was therefore deemed appropriate. 

The position of cyclisation was considered next. The cyclisation site could be part of the loop region 

or within either the polyproline-II or ! helix components. Given Pro should be avoided in the 

recognition sequence for omniligase-1 the polyproproline-II helix was discounted as a cyclisation 

site.  

Therefore, both cyclisation in the ! helix and loop region were investigated (Figure 6-12B). There 

were advantages and disadvantages to both cyclisation strategies. Loop cyclisation would allow a 

sequence to be selected that is most optimal for the enzyme and therefore give the cyclisation the 

best chance of success. !-Helix cyclisation requires a six residue sequence frame on the ! helix to 

be chosen that is compatible with omniligase-1. This could result in a sequence frame that is not 

fully optimal for omniligase-1 or require mutations that disrupt the oPP! assembly. However, the ! 

helix cyclisation strategy allows a sequence for Loop2 (Figure 6-12B) to be selected that is optimal 

for bridging the gap between the two secondary structure components without worrying about 

enzyme compatibility. Also, we anticipate that the peptide undergoing !-helix cyclisation would be 

partially unfolded before enzyme addition, as a result of the break in !-helical secondary structure, 

therefore facilitating formation of the enzyme-substrate intermediate and successful cyclisation. The 

peptide undergoing loop cyclisation would likely be folded pre-enzyme addition and therefore may 

hinder cyclisation. 
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Based on unpublished work by Schmidt et al., a six residue loop sequence was selected based on its 

compatibility with omniligase-1. The P4P3P2P1P1’P2’sequence chosen was LSTKDL. The enzyme 

recognition sequence avoided Pro and ensured a hydrophobic residue at P4 (leucine). For cyclisation 

in the ! helix region, a six residue recognition sequence frame was selected as AYEKEL between 

heptad two and three ensuring P4 was a hydrophobic residue (Ala) (Table 6-5).  

 

 

Loop2, connecting the N-terminal end of the polyproline-II helix with the C-terminal end of the ! 

helix, was chosen based on a bioinformatics analysis of loop residues in the PDB. A Top8000 dataset 

from the Richardson lab317 was used. This dataset comprises 7957 high resolution structures. Only 

structures of the highest quality are selected to this dataset and criteria for selection include a crystal 

structure resolution of < 2 Å and a MolProbity318 score of  < 2. MolProbity is a structure validation 

web service that assesses the quality of a model at both the global and local level, for example 

ensuring Ramachandran outliers are limited. 

Table 6-5: Sequence of the cyclised oPP! peptides. 

Cyclisation 
Location 

Peptide Sequence 

Loop oPP!-LSTKDL DL PPKKPKKP GDNAT PEKLAAY EKELAAY EKELAAY LSTK -OCam-L-OH 

 cPP!-LSTKDL  

! helix oPP!-GPQY ELAAY GPQY PPKKPKKP GDNAT PEKLAAY EKELAAY EK-OCam-L-OH 

 cPP!-GPQY  

Figure 6-12: oPP! and cyclic variant. (A) State 8 of NMR strucutre of oPP!. (B) Model 
of cyclic oPP! generated in ISAMBARD highlighting the two different cyclisation sites 
examined. Colour key: N-terminus (blue) and C-terminus (red). 
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The Richardson dataset was further refined by culling PDB entries that had greater than 25% 

sequence identity using the Pisces Server.319 This yielded 3252 PDB files. From this dataset, 

structures containing an N-terminal ! helix connected to a C-terminal polyproline-II helix via a loop 

region were selected. The program Assignment of Secondary Structure in Proteins (ASSP)320 was 

used to assign secondary structure. The most common methods of secondary structure assignment 

such as Dictionary of Protein Secondary Structure (DSSP)321 and STRIDE322 were not used since 

they omit definitions for polyproline-II helices.323 

The ASSP method assigns secondary structure by first calculating local geometric parameters: twist, 

rise per residue, virtual torsion angle, and radius. The full length of the protein chain is scanned and 

parameters for blocks of four C! atoms are calculated. The continuity in the protein structure is 

checked based on these parameters and continuous stretches are further divided into secondary 

structure elements. Assignments include right- or left- handed ! helix, right- or left- handed 310 

helix, right- or left- handed # helix, left-handed polyproline-II helix, extended conformation ($-

strands). If a stretch of protein does not fall into any of these categories it is labelled as undefined. 

The minimum possible length for ! and polyproline-II helices are four and three residues 

respectively. 

In our analysis a loop region was specified by having ‘undefined’ secondary structure. 734 structures 

were obtained that had an N-terminal ! helix connected to a C-terminal polyproline-II helix by such 

a region. A range of loop lengths from zero to four residues were extracted (Table 6-6). 

Interestingly, no loops longer than four residues were found. This is likely a result of longer loop 

regions containing other regions of secondary structure and not just strictly ‘undefined’ peptide. 

Note that PP! is not present in the dataset since it does not have an N-terminal ! helix component; 

the ! helix is C-terminal. 

 

 

 

 

Since four-to-six residue loops were most desirable and there were no five or six residue loops 

identified, we focused on the four-residue loops in the dataset. Of the 116 structures 60 % were in a 

antiparallel conformation. The propensity for residues at each position in the four residue loop was 

then calculated (Figure 6-13). The most preferred residue at each position were (Gly/Asn, Gly/Pro, 

Pro/Gln, Gly/Tyr) equating to (Position 1, Position 2, Position 3, Position 4). Based on this analysis 

the four residue loop GPQY was selected for the cyclic structure in which the ligation site was 

located in the ! helix. 

Table 6-6: Frequency of loops of ranging lengths connecting N-terminal ! helix to C-
terminal polyproline-II helix. 

Loop 
Length 

Number of 
Loops 

0 127 
1 250 
2 150 
3 136 
4 116 
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6.3.2! Synthesis and biophysical characterisation of cyclic oPP! variants 
The linear peptides bearing C-terminal activated carboxyamidomethyl (Cam) ester were synthesised 

by SPPS and then enzymatically cyclised with omniligase-1 by Marcel Schmidt. Both cyclic oPP! 

variants were obtained, despite evidence of unwanted ester hydrolysis side reactions, with cPP!-

GPQY being the most facile. As anticipated, the pre-folded nature of the peptides, in particular 

cPP!-LSTKDL, may have inhibited the formation of the enzyme-substrate intermediate. 

By CD spectroscopy, both peptides appeared to be less folded at 5 °C compared to oPP!  (Figure 

6-14). However, thermal unfolding experiments of the far-UV CD revealed cPP!-GPQY and cPP!-

LSTKDL both underwent cooperative and fully reversible transitions with TM of 70 °C and 73 °C, 

respectively. This is a substantial increase over that of oPP! (51 °C). 

 

 

 

 

 

 

We posit that some of the reduction in helicity of both cyclic peptides at 5 °C can be attributed to 

the introduction of either a four or six residue loop region which should not contribute to the !-

Figure 6-13: Barchart highlighting the propensity for the amino acid residues in the four 
residue loop connecting an ! helix to a polyproline-II helix.  

Figure 6-14: Folding and stability of cPP! variants. (A) CD spectra recorded at 5 °C for 
oPP! (black), cPP!-LSTKDL (red) and cPP!-GPQY (teal). (B) Temperature dependence 
of the CD signal monitored at 222 nm. Same colour scheme as for (A). Conditions: 100 µM 
peptide, PBS. 
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helical CD signal however is included in the normalisation calculation. Therefore the data for the 

cyclic peptides were renormalised for the residues in oPP! only (i.e. 34 residues not 40 or 38 

residues for oPP!-LSTKDL and oPP!-GPQY, respectively). The renormalized CD spectra are 

shown in Figure 6-15. The degree of folding of cPP!-LSTKDL at 5 °C appears comparable to that 

of oPP!, while cPP!-GPQY remains less folded than oPP!. This suggests that a four residue loop 

is not long enough to bridge the gap between the ! helix and polyproline-II helix secondary structure 

components and may have caused fraying of the structure around the loop region. 

 

 

 

 

 

 

SE AUC experiments confirmed that both cyclic peptides were monomeric in solution. 

Experimental data readily fitted models to single-ideal species (Figure 6-16). 

 

 

 

 

 

 

 

Figure 6-15: Folding and stability of cPP! variants normalised for 34 oPP! residues only. 
(A) CD spectra recorded at 5 °C for oPP! (black), cPP!-LSTKDL (red) and cPP!-GPQY 
(teal). (B) Temperature dependence of the far-UV CD signal monitored at 222 nm. Same 
colour scheme as for (A). Conditions: 100 µM peptide, PBS. 

Figure 6-16: Sedimentation-equilibrium AUC data (top, dots) and fitted (lines) curves to 
single-ideal species model at 44 (blue), 52 (aqua), 56 (orange), and 60 (red) krpm for for 
cPPα- LSTKDL and cPPα-GPQY. Residuals (bottom) for the above fit. (A) oPPα-
LSTKDL (v̅ = 0.751 cm3 g-1). The fit returned the following mass: oPPα-LSTKDL, 4100 
Da, (0.9 x monomer mass), 95% confidence limits = 4079 – 4121 Da. (B) oPPα-GPQY (v̅ 
= 0.743 cm3 g-1). The fit returned the following mass: oPPα-GPQY, 4315 Da, (1.0 
monomer mass), 95% confidence limits = 4268 – 4365 Da. Conditions for AUC:  
130 µM, PBS, pH 7.4. 
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6.4! Chapter conclusion 

Two strategies were explored for improving the stability of oPP!. Firstly, the chain length of oPP! 

was varied. A set of oPP! variants of ranging length from two to five !-helical heptads were 

designed with TMs ranging from 19 to 72 °C. Similar to what is observed in !-helical coiled coils 

the stability of these peptides increases with increasing chain length in a non-linear but cooperative 

manner.291-292 The greatest increase in stability is observed between oPP!-2 (TM 19 °C) and oPP! 

(TM 51 °C) with minimal increase in stability between the longest variants oPP!-4 and oPP!-5 (66 

to 72 °C). 

It was hypothesised that increasing the lengths of the helices may have led to a mismatch in the 

periodicities resulting from the different secondary structures. Therefore, a Pro skip was introduced 

to realign Pro and Tyr  side chains however this had little effect on the folding or thermal stability 

of oPP!-5. This suggests that for the lengths investigated the oPP! fold is plastic to some extent 

and can accommodate small mismatches in periodicities but this may not be the case for longer, 

fibrous like assemblies. 

This set of oPP! variants will be useful for applications in protein engineering and synthetic biology 

where protein-protein interactions of varying stabilities are required. They will also be useful in the 

emerging field of peptide origami.324 While the base complementarity of DNA has been exploited 

to rationally design artificial nanostructures that can arrange into 2D and 3D structures (DNA 

origami),325 the design of such peptide counterparts is significantly more challenging as a result of 

many cooperative and long range interactions. The first example is the self-assembly of a tetrahedral 

peptide fold designed from 12 orthogonal coiled-coil peptides joined by short flexible peptide 

linkers.151 Graph theory revealed that both parallel and antiparallel coiled-coil components are 

needed to form a single chain tetrahedron. While both orientations are present in nature significantly 

more parallel dimers have been isolated and designed. Therefore, these antiparallel oPP! peptides 

may be useful additions to the toolkit of coiled-coil peptide building blocks and will aid the design 

of future polyhedra and the construction of complex modular protein assemblies more generally. 

Secondly, successful enzymatic cyclisation of oPP! yielding two cyclic peptide variants with 

significantly enhanced thermal stabilities compared to the linear oPP! peptide. Both peptides had 

cooperative and fully reversible unfolding transitions with TMs of 70 and 73 °C. Future work will 

focus on obtaining a high resolution structure of the cPP! mutants. Given the enhanced thermal 

stability of the cyclic oPP! variants initial attempts were made to crystallise the peptides. 

Unfortunately crystal trays (laid using standard commercial screens at 20 °C) resulted in no crystals 

to date however further crystal trays will be laid at higher concentrations and lower temperatures to 

attempt to reach optimal crystallisation conditions.  
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Further investigations are also required to determine the proteolytic stability of these cyclic peptides 

in a biological fluid. If proteolytic stability is high then these oPP! variants will be useful scaffolds 

for grafting recognition motifs to modulate protein-protein interactions in a cellular environment. 

More ambitiously they could have the potential to be good architectures for developing miniprotein 

based drug therapeutics.
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Chapter 7! Conclusions and future work 

7.1! Overall conclusions 

Through the work described in this thesis, an optimised PP! miniprotein has been designed and 

fully characterised in solution. Sequence-to-stability relationships have been probed through 

mutagenesis studies. The newly designed oPP! has also been used as a foundation for building two 

new topologies, which, to the best of our knowledge, have not been observed before in nature: !PP 

and PP!PP. 

Firstly, the PP! minprotein, which is based on sequences from natural peptides, has been rationally 

redesigned into a completely de novo PP! framework. The redesign of PP! was inspired by design 

principles for !-helical coiled coils including knobs-into-holes packing, electrostatic interactions 

between helices, and !-helical propensity. The optimised PP! miniprotein has been extensively 

characterised in solution by a range of biophysical techniques including high-resolution NMR 

spectroscopy. The parent and optimised design have similar helicities at 5 °C. However, oPP! has 

significantly enhanced thermal stability. We attribute the enhanced stability of the peptide to a 

number of factors. While formal salt bridges are not observed between charged side chains on the ! 

and polyproline-II helices, electrostatic steering effects likely contribute to the elevated stability and 

general tightening of the structure. Furthermore, the number of CH–π interactions detected in the 

NMR structure of oPP! is increased, with an average of one extra CH–π interaction per ensemble 

state. 

To enhance our understanding of the oPP! fold, sequence-to-stability relationships have been 

investigated through a series of amino acid mutations to the a and g positions on the ! helix which 

are involved in KIH-type packing between the two helices. Studies found that the a position is 

tolerant of mutation to small hydrophobic residues Val and Ile as well as charged residue Lys. 

However, this position is not tolerant of Ala and Glu, which yield unfolded peptides. Overall, as 

observed in related natural peptides, Leu is the most favoured residue at the a position. A fully 

hydrophobic hole for accepting the Pro side chain has been investigated by placing Leu at both the 

a and g positions. While expanding the hydrophobic seam gives a peptide that is thermally very 

stable, concentration-dependent circular dichroism spectroscopy experiments combined with 

sedimentation equilibrium analytical ultracentrifugation experiments indicate this is at the cost of a 

discrete monomeric structure. Finally, Leu at a and Glu at g is preferred over Glu at a and Leu at g 

in the oPP! framework.  

Optimised PP! and the sequence-to-stability relationships determined in this thesis can be used as 

a foundation on which to build larger and more complex assemblies based on the PP! fold for 
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applications in synthetic biology and protein engineering. Towards this goal, an iterative design 

process has been used to design a stable and folded !PP topology. Initial designs show that simply 

maintaining the interface between the two helices and joining them using a flexible or suboptimal 

loop region is not enough to form a stable !PP topology. Both N-terminal capping motifs and loop 

optimisation are important factors to be considered to give a folded and stable !PP topology. N-

terminal capping motifs were chosen based on the work by Richardson et al. and loops were selected 

using LoopFinder within the ISAMBARD framework.142, 225 While an !PP topology equivalent in 

folding and stability to that of oPP! has not been delivered, a reasonably well folded !PP variant 

has been designed and characterised. Further, significant progress has been made compared to the 

initial !PP design. oPP! and the new !PP topology were subsequently used in the design of a new 

extended PP!PP topology. PP!PP shows similar folding and stability compared to oPP!. 

Mutagenesis experiments reveal that the PP! interface of the topology is the more dominant 

compared to the !PP interface and when it is removed the stability of the topology is reduced 

dramatically. An NMR or X-ray crystal structure is needed to verify the structure and determine 

whether the PP!PP peptide has formed the desired topology. 

Finally, two strategies have been implemented to enhance the stability of oPP!: increasing chain 

length and peptide cyclisation. Consistent with observations for !-helical coiled-coils, the stability 

of oPP! increases with chain length in a non-linear cooperative manner. The greatest increase in 

stability is observed between variants with two and three !-helical heptad repeats, while a minimal 

increase in stability is observed between the longest variants of lengths four and five !-helical heptad 

repeats. It is hypothesised that increasing the lengths of the helices may lead to a mismatch in the 

periodicities between the different secondary structures. To test this, a Pro skip was introduced to 

realign Pro and Tyr side chains. However, this had little effect on the folding or thermal stability of 

the variant with five !-helical heptad repeats. This suggests the PP! fold is plastic enough to 

accommodate small mismatches in periodicities within the lengths tested. However, this may not be 

the case for longer, fibrous like assemblies. This set of oPP! variants will be useful for applications 

where protein-protein interactions of varying stabilities are required.  

Successful enzymatic cyclisation of oPP! has produced two cyclic peptide variants with 

significantly enhanced thermal stabilities compared to the linear oPP! peptide. Both have 

cooperative and fully reversible unfolding transitions with TMs exceeding that of oPP!. Such 

miniproteins are potentially useful scaffolds for grafting functional motifs for applications in vivo. 

7.2! Future work 

Two new topologies have been designed (!PP and PP!PP) that help protein design move into the 

dark matter of protein space.33 Future targets for expanding the PP! topology include !PP! and 

PP!PP!, given that the PP! component of PP!PP is the more dominant. Further, more ambitious 
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targets include expanding oPP! to form circular 3D objects. For example, one can envisage forming 

a single chain hybrid polyproline-II-!-helical barrel structure with alternating polyproline-II and ! 

helices (Figure 7-1A). Alternatively an ‘inverted’ TIM-barrel type structure could be designed with 

! helices forming a central !-helical barrel with each helix connected by an external polyproline-II 

helix (Figure 7-1B-D).326  

Analogues to !-helical barrels (specifically CC-Hept), such single-chain barrels could find 

applications in catalysis and small-molecule binding.145, 152 Currently CC-Hept is a rudimentary 

hydrolase. However this is limited by the seven-fold symmetry; one mutation results in seven copies 

Figure 7-1: Design targets incorporating PP!. (A) Single chain hybrid polyproline-II-!-
helical barrel structure with alternating polyproline-II and ! helices. (B) An ‘inverted’ 
TIM-barrel type structure with ! helices forming a central !-helical barrel with each helix 
connected by an external polyproline-II helix. Loops not shown for (A) and (B). (C) Top-
down view of de novo designed TIM-barrel, PDB 5BVL. (D) Side view of TIM-barrel. 
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across the assembly. A single-chain variant would allow point mutations to be made in the assembly 

and more sophisticated active sites within the lumen of the barrel to be designed. 

The compact and stable nature of the oPP! miniprotein makes it a useful scaffold for targeting and 

disrupting protein-protein interactions. Further the sequence-to-stability relationships established 

for the fold will help determine which residues are amenable to mutation. The set of oPP! variants 

of ranging lengths will be useful for controlling and tuning the stability and affinity of the protein-

protein interactions. This will be particularly important in systems with complex association-

dissociation dynamics. 

The cyclic variants will be good starting points for in vivo applications where the peptides will need 

to be resistant to proteolysis and degradation. Future work should focus on determining their 

proteolytic stability in a biological fluid. If proteolytic stability is high then these variants will be 

useful scaffolds for grafting recognition motifs for modulating protein-protein interactions in a 

cellular environment. Motifs could be grafted onto either solvent exposed face of the polyproline-II 

helix or the ! helix. The related natural pancreatic peptides have been used as scaffolds to present 

! helical and polyproline-II recognition epitopes.56, 59, 61 Further, and more ambitiously, the cyclic 

oPP! miniproteins could be good architectures for developing miniprotein-based therapeutics.



 
Chapter 8: Appendix 

 
 

 134 

Chapter 8! Appendix 

8.1! HPLC traces and MALDI-TOF MS for the designed peptide sequences 

8.1.1! Chapter 3: Stabilising the PP! miniprotein by rational design 
!

!
!

!
!
!
!
!
!
!
!

!

Figure 8-1: o-! - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass [M+H]+ =  
2440.242 Da, observed mass = 2440.904 Da. 

 

Figure 8-2: oPP! - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass [M+H]+ 
= 3799.009 Da, observed mass = 3800.901 Da. 
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Figure 8-4: oPP!-Phe - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass [M+H]+ 
= 3752.024 Da, observed mass = 3752.826 Da. 

Figure 8-3: oPP!-E%K - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass 
[M+H]+ = 3802.219 Da, observed mass = 3802.219 Da. 
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8.1.2! Chapter 4: Probing sequence-to-stability relationships in oPP! 
!

!
!
!
!

!
!
!
!
!
!

!
!

!
!
!
!

!

Figure 8-5: oPP!-I@a - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass [M+H]+ 
= 3752.024 Da, observed mass = 3752.826 Da. 

Figure 8-6: oPP!-V@a - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass [M+H]+ 
= 3752.024 Da, observed mass = 3752.826 Da. 

Figure 8-7: oPP!-E@a - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass 
[M+H]+ = 3752.024 Da, observed mass = 3752.826 Da. 
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!
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!

!
 

!

Figure 8-8: oPP!-K@a - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass 
[M+H]+ = 3846.374 Da, observed mass = 3846.239 Da. 

Figure 8-9: oPP!-A@a - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass 
[M+H]+ = 3675.393 Da, observed mass = 3675.088 Da. 

Figure 8-10: oPP!-L@a-L@g - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass 
[M+H]+ = 3941.109 Da, observed mass = 3946.465 Da. 
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Figure 8-11: oPP!-L@a-A@g - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass 
[M+H]+ = 3857.015 Da, observed mass = 3863.115 Da. 

Figure 8-12: oPP!-A@a-L@g - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass 
[M+H]+ = 3857.015 Da, observed mass = 3860.997 Da. 

Figure 8-13: oPP!-a%g - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass [M+H]+ = 
3799.099 Da, observed mass = 3800.896 Da. 
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8.1.3! Chapter 5: Towards larger oPP! topologies 

!

!

!
!

!
!

!

Figure 8-16: oPP!-GDNAT - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass 
[M+H]+ = 3888.020 Da, observed mass = 3889.910 Da. 

Figure 8-14: PPII - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass [M+H]+ = 
864.460 Da, observed mass = 865.969 Da. 

Figure 8-15: oPP!-GSGSG - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass 
[M+H]+ = 3777.265 Da, observed mass = 3777.630 Da. 
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!

!

Figure 8-18: oPP!-NP - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass [M+H]+ 
= 4101.601 Da, observed mass = 4103.111 Da. [M+H]2+ also visible. 

Figure 8-17: oPP!-GDNAT-4 - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass 
[M+H]+ = 4951.624 Da, observed mass = 4954.896 Da. [M+H]2+ also visible. 

Figure 8-19: oPP!-NPE - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass 
[M+H]+ = 4230.716 Da, observed mass = 4231.905 Da. 
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!

!
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!
!

!

Figure 8-20: oPP!-NPELAA - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass 
[M+H]+ = 4486.033 Da, observed mass = 4486.418 Da. 

Figure 8-21: oPP!-NPE-4 - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass 
[M+H]+ = 4168.691 Da, observed mass = 4168.664 Da. 

Figure 8-22: oPP!-NPE-5 - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass 
[M+H]+ = 4185.678 Da, observed mass = 4187.968 Da. 



 
Chapter 8: Appendix 

 
 

 142 

!

!
!
!

!
!
!

!
!
!
!
!
!

Figure 8-24: PP!PP - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass [M+H]+ 
= 5575.464 Da, observed mass = 5579.034 Da. [M+H]2+ also visible. 

Figure 8-25: PP!PG - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass [M+H]+ 
= 5415.205 Da, observed mass = 5418.360 Da. [M+H]2+ also visible. 

Figure 8-23: oPP!-NPE-6 - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass 
[M+H]+ = 4471.021 Da, observed mass = 4473.628 Da. 
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Figure 8-26: PG!PP - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass [M+H]+ 
= 5415.205  Da, observed mass = 5418.926 Da. [M+H]2+ also visible. 
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8.1.4! Chapter 6: Modulating stability in oPP! through elongation and cyclisation 
!

!
!

!
!
!
!
!
!
!
!

!
!

!

!

Figure 8-27: oPP!-2 - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass [M+H]+ 
= 4863.574 Da, observed mass = 4863.025 Da. 

Figure 8-28: oPP!-4-nocap - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass 
[M+H]+ = 4863.574 Da, observed mass = 4863.025 Da. 

Figure 8-29: oPP!-4 - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass [M+H]+ 
= 4960.690 Da, observed mass = 4961.102 Da. [M+H]2+ also visible. 
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Figure 8-30: oPP!-5 - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass [M+H]+ 
= 6119.050 Da, observed mass = 6119.708 Da. Observed mass [M+H]2+ = 3059.692. 

Figure 8-32: cPP!-GPQY - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass 
[M+H]+ = 4185.18 Da, observed mass = 4190.124 Da. [M+H]2+ also visible. 

Figure 8-31: oPP!-5-skip - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass 
[M+H]+ = 6211.45 Da, observed mass = 6215.346 Da. [M+H]2+ also visible. 
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Figure 8-33: cPP!-LSTKDL - HPLC traces (left) and MALDI-TOF MS (right). Calculated mass 
[M+H]+ = 4397.35 Da, observed mass = 4404.301 Da.  
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8.2! Circular dichroism data for designed peptide sequences 

8.2.1! Stabilising the PP! miniprotein by rational design 
!

!
!
!

!

!
!
!

!

Figure 8-34: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for o-!. Conditions: 100 µM peptide, PBS, pH 7.4. Key: melt (black), 
cool (dashed line). 

 

Figure 8-35: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for oPP!. Conditions: 100 µM peptide, PBS , pH 7.4. Key: melt (black), 
cool (dashed line). 
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Figure 8-37: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for oPP!-Phe. Conditions: 100 µM peptide, PBS, pH 7.4. Key: melt 
(black), cool (dashed line). 

 

Figure 8-36: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for oPP!-E%K. Conditions: 100 µM peptide, PBS, pH 7.4. Key: melt 
(black), cool (dashed line). 
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8.2.2! Probing Sequence-to-Stability Relationships in oPP! 
!
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Figure 8-38: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for oPP!-I@a. Conditions: 100 µM peptide, PBS, pH 7.4. Key: melt 
(black), cool (dashed line). 

 
 

Figure 8-39: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for oPP!-V@a. Conditions: 100 µM peptide, PBS, pH 7.4. Key: melt 
(black), cool (dashed line). 
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Figure 8-41: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for oPP!-K@a. Conditions: 100 µM peptide, PBS, pH 7.4. Key: melt 
(black), cool (dashed line). 

 

Figure 8-40: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for oPP!-E@a. Conditions: 100 µM peptide, PBS, pH 7.4. Key: melt 
(black), cool (dashed line). 

 

Figure 8-42: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for oPP!-A@a. Conditions: 100 µM peptide, PBS, pH 7.4. Key: melt 
(black), cool (dashed line). 
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Figure 8-43: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for oPP!-L@a-L@g. Conditions: 100 µM peptide, PBS, pH 7.4. Key: 
melt (black), cool (dashed line). 

 

Figure 8-44: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for oPP!-L@a-A@g. Conditions: 100 µM peptide, PBS, pH 7.4. Key: 
melt (black), cool (dashed line). 

 

Figure 8-45: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for oPP!-A@a-L@g. Conditions: 100 µM peptide, PBS, pH 7.4.  
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Figure 8-46: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for oPP!-a%g. Conditions: 100 µM peptide, PBS, pH 7.4.  
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       8.2.3   Towards larger oPP! topologies 
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Figure 8-47: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for PPII. Conditions: 100 µM peptide, PBS, pH 7.4. Key: melt (black), 
cool (dashed line). 

 

Figure 8-48: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for !PP-GSGSG. Conditions: 100 µM peptide, PBS, pH 7.4. Key: melt 
(black), cool (dashed line). 
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Figure 8-49: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for !PP-GDNAT. Conditions: 100 µM peptide, PBS, pH 7.4. Key: melt 
(black), cool (dashed line). 

 

Figure 8-50: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for !PP-GDNAT-4. Conditions: 100 µM peptide, PBS, pH 7.4. Key: 
melt (black), cool (dashed line). 

 

Figure 8-51: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for !PP-GDNAT-NP. Conditions: 100 µM peptide, PBS, pH 7.4. Key: 
melt (black), cool (dashed line). 
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Figure 8-52: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for !PP-GDNAT-NPE. Conditions: 100 µM peptide, PBS, pH 7.4. Key: 
melt (black), cool (dashed line). 

 

Figure 8-53: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for !PP-GDNAT-NPELAA. Conditions: 100 µM peptide, PBS, pH 7.4. 
Key: melt (black), cool (dashed line). 

 

Figure 8-54: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for !PP-NPE-4. Conditions: 100 µM peptide, PBS, pH 7.4. Key: melt 
(black), cool (dashed line). 
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Figure 8-55: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for !PP-NPE-5. Conditions: 100 µM peptide, PBS, pH 7.4. Key: melt 
(black), cool (dashed line). 

 

Figure 8-56: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for !PP-NPE-6. Conditions: 100 µM peptide, PBS, pH 7.4. Key: melt 
(black), cool (dashed line). 

 

Figure 8-57: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for PP!PP. Conditions: 100 µM peptide, PBS, pH 7.4. Key: melt (black), 
cool (dashed line). 
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Figure 8-58: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for PP!PG. Conditions: 100 µM peptide, PBS, pH 7.4. Key: melt 
(black), cool (dashed line). 

 

Figure 8-59: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for PG!PP. Conditions: 100 µM peptide, PBS, pH 7.4. Key: melt (black), 
cool (dashed line). 
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8.2.3! Modulating stability in oPP! through elongation and cyclisation 
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Figure 8-60: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for oPP!-2. Conditions: 100 µM peptide, PBS, pH 7.4. Key: melt (black), 
cool (dashed line). 

 

Figure 8-61: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for oPP!-4-nocap. Conditions: 100 µM peptide, PBS, pH 7.4. Key: melt 
(black), cool (dashed line). 
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Figure 8-63: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for oPP!-5. Conditions: 100 µM peptide, PBS, pH 7.4. Key: melt 
(black), cool (dashed line). 

 

Figure 8-64: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for oPP!-5-skip. Conditions: 100 µM peptide, PBS, pH 7.4. Key: melt 
(black), cool (dashed line). 

 

Figure 8-62: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored 
at 222 nm (right) for oPP!-4. Conditions: 100 µM peptide, PBS, pH 7.4. Key: melt (black), 
cool (dashed line). 
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Figure 8-66: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored at 
222 nm (right) for cPP!-GPQY. Conditions: 100 µM peptide, PBS, pH 7.4. Key: melt 
(black), cool (dashed line). 

 

Figure 8-65: CD spectrum at 5°C (left) and temperature dependent CD signal, monitored at 
222 nm (right) for cPP!-LSTKDL. Conditions: 100 µM peptide, PBS, pH 7.4. Key: melt 
(black), cool (dashed line). 
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8.3! Analytical ultracentrifugation data for designed peptide sequences 

8.3.1! Stabilising the PP! miniprotein by rational design 
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Figure 8-67: AUC data for o-! (v̅ = 0.747 cm3 g-1). Sedimentation equilibrium data (top, 
dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 (orange), 60 
(red) krpm. The fit returns a molecular weight of 2928 Da (1.2 " monomer mass, 95 % 
confidence limits 2880 – 2917 Da). Bottom: Residuals for the above fit (same colour 
scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 

Figure 8-68: AUC data for oPP! (v̅ = 0.748 cm3 g-1). Sedimentation equilibrium data 
(top, dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 (orange), 
60 (red) krpm. The fit returns a molecular weight of 3854 Da (1.0 " monomer mass, 95 % 
confidence limits 3839 – 3869 Da). Bottom: Residuals for the above fit (same colour 
scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 
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Figure 8-69: AUC data for oPP!-E%K (v̅ = 0.748 cm3 g-1). Sedimentation equilibrium 
data (top, dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 
(orange), 60 (red) krpm. The fit returns a molecular weight of 35454 Da (0.9 " monomer 
mass, 95 % confidence limits 3511 – 3581Da). Bottom: Residuals for the above fit (same 
colour scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 

Figure 8-70: AUC data for oPP!-Phe (v̅ = 0.756 cm3 g-1). Sedimentation equilibrium data 
(top, dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 (orange), 
60 (red) krpm. The fit returns a molecular weight of 3771 Da (1.0 " monomer mass, 95 % 
confidence limits 3742 – 3801 Da). Bottom: Residuals for the above fit (same colour 
scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 
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8.3.2! Probing Sequence-to-Stability Relationships in oPP! 
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Figure 8-71: AUC data for oPP!-I@a (v̅ = 0.748 cm3 g-1). Sedimentation equilibrium 
data (top, dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 
(orange), 60 (red) krpm. The fit returns a molecular weight of 3074 Da (1.0 " monomer 
mass, 95 % confidence limits 3037 – 3111 Da). Bottom: Residuals for the above fit (same 
colour scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 
 

Figure 8-72: AUC data for oPP!-V@a (v̅ = 0.743 cm3 g-1). Sedimentation equilibrium 
data (top, dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 
(orange), 60 (red) krpm. The fit returns a molecular weight of 3702 Da (1.0 " monomer 
mass, 95 % confidence limits 3683 – 3722 Da). Bottom: Residuals for the above fit (same 
colour scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 
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Figure 8-73: AUC data for oPP!-K@a (v̅ = 0.742 cm3 g-1). Sedimentation equilibrium 
data (top, dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 
(orange), 60 (red) krpm. The fit returns a molecular weight of 3692 Da (1.0 " monomer 
mass, 95 % confidence limits 3680 – 3703 Da). Bottom: Residuals for the above fit 
(same colour scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 

 

Figure 8-74: AUC data for oPP!-A@a (v̅ = 0.733 cm3 g-1). Sedimentation equilibrium 
data (top, dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 
(orange), 60 (red) krpm. The fit returns a molecular weight of 3510 Da (1.0 " monomer 
mass, 95 % confidence limits 3495 – 3526 Da). Bottom: Residuals for the above fit 
(same colour scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 
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Figure 8-75: AUC data for oPP!-L@a-L@g (v̅ = 0.754 cm3 g-1). Sedimentation 
equilibrium data (top, dots) and fitted single-ideal species model curves at 44 (blue), 52 
(aqua), 56 (orange), 60 (red) krpm. The fit returns a molecular weight of 4912 Da (1.2 " 
monomer mass, 95 % confidence limits 4899 – 4926 Da). Bottom: Residuals for the above 
fit (same colour scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 

Figure 8-76: AUC data for oPP!-L@a-A@g (v̅ = 0.745 cm3 g-1). Sedimentation 
equilibrium data (top, dots) and fitted single-ideal species model curves at 44 (blue), 52 
(aqua), 56 (orange), 60 (red) krpm. The fit returns a molecular weight of 4019 Da (1.0 " 
monomer mass, 95 % confidence limits 4006 – 4030 Da). Bottom: Residuals for the above 
fit (same colour scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 
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Figure 8-77: AUC data for oPP!-A@a-L@g (v̅ = 0.745 cm3 g-1). Sedimentation 
equilibrium data (top, dots) and fitted single-ideal species model curves at 44 (blue), 52 
(aqua), 56 (orange), 60 (red) krpm. The fit returns a molecular weight of 4101 Da (1.1 
" monomer mass, 95 % confidence limits 4089 – 4113 Da). Bottom: Residuals for the 
above fit (same colour scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 
°C. 

Figure 8-78: AUC data for oPP!-a%g (v̅ = 0.748 cm3 g-1). Sedimentation equilibrium 
data (top, dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 
(orange), 60 (red) krpm. The fit returns a molecular weight of 4079 Da (1.1 " monomer 
mass, 95 % confidence limits 4065 – 4093 Da). Bottom: Residuals for the above fit 
(same colour scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 
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8.3.3! Towards larger oPP! assemblies 
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Figure 8-79: AUC data for αPP-GSGSG (v̅ = 0.744 cm3 g-1). Sedimentation equilibrium 
data (top, dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 
(orange), 60 (red) krpm. The fit returns a molecular weight of 3864 Da (1.0 " monomer 
mass, 95 % confidence limits 3851 – 3878 Da). Bottom: Residuals for the above fit (same 
colour scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 
 

Figure 8-80: AUC data for αPP-GDNAT (v̅ = 0.743 cm3 g-1). Sedimentation equilibrium 
data (top, dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 
(orange), 60 (red) krpm. The fit returns a molecular weight of 3860 Da (1.0 " monomer 
mass, 95 % confidence limits 3850 – 3870 Da). Bottom: Residuals for the above fit (same 
colour scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 
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Figure 8-81: AUC data for αPP-GDNAT-4 (v̅ = 0.747 cm3 g-1). Sedimentation equilibrium 
data (top, dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 
(orange), 60 (red) krpm. The fit returns a molecular weight of 4979 Da (1.0 " monomer 
mass, 95 % confidence limits 4956 – 5002 Da). Bottom: Residuals for the above fit (same 
colour scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 
 

Figure 8-82: AUC data for αPP-NP (v̅ = 0.740 cm3 g-1). Sedimentation equilibrium data 
(top, dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 (orange), 
60 (red) krpm. The fit returns a molecular weight of 3936 Da (1.0 " monomer mass, 95 % 
confidence limits 3920 – 3951 Da). Bottom: Residuals for the above fit (same colour 
scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 
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Figure 8-83: AUC data for αPP-NPE (v̅ = 0.738 cm3 g-1). Sedimentation equilibrium data 
(top, dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 (orange), 
60 (red) krpm. The fit returns a molecular weight of 4296 Da (1.0 " monomer mass, 95 % 
confidence limits 4284 – 4308 Da). Bottom: Residuals for the above fit (same colour 
scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 
 

Figure 8-84: AUC data for αPP-NPELAA (v̅ = 0.742 cm3 g-1). Sedimentation equilibrium 
data (top, dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 
(orange), 60 (red) krpm. The fit returns a molecular weight of 4646 Da (1.0 " monomer 
mass, 95 % confidence limits 4628 – 4664 Da). Bottom: Residuals for the above fit (same 
colour scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 
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Figure 8-85: AUC data for αPP-NPE-4 (v̅ = 0.741 cm3 g-1). Sedimentation equilibrium 
data (top, dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 
(orange), 60 (red) krpm. The fit returns a molecular weight of 4172 Da (1.0 " monomer 
mass, 95 % confidence limits 4160 – 4184 Da). Bottom: Residuals for the above fit (same 
colour scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 
 

Figure 8-86: AUC data for αPP-NPE-5 (v̅ = 0.737 cm3 g-1). Sedimentation equilibrium 
data (top, dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 
(orange), 60 (red) krpm. The fit returns a molecular weight of 4180 Da (1.0 " monomer 
mass, 95 % confidence limits 4166 – 4195 Da). Bottom: Residuals for the above fit (same 
colour scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 
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Figure 8-87: AUC data for αPP-NPE-6 (v̅ = 0.739 cm3 g-1). Sedimentation equilibrium 
data (top, dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 
(orange), 60 (red) krpm. The fit returns a molecular weight of 4562 Da (1.0 " monomer 
mass, 95 % confidence limits 4548 – 4576 Da). Bottom: Residuals for the above fit (same 
colour scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 
 

Figure 8-88: AUC data for PPαPP (v̅ = 0.753 cm3 g-1). Sedimentation equilibrium data 
(top, dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 (orange), 
60 (red) krpm. The fit returns a molecular weight of 5951 Da (1.0 " monomer mass, 95 % 
confidence limits 5932 – 5970 Da). Bottom: Residuals for the above fit (same colour 
scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 
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Figure 8-89: AUC data for PPαPG (v̅ = 0.726 cm3 g-1). Sedimentation equilibrium data 
(top, dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 (orange), 
60 (red) krpm. The fit returns a molecular weight of 5919 Da (1.0 " monomer mass, 95 % 
confidence limits 5897 – 5941 Da). Bottom: Residuals for the above fit (same colour 
scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 
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8.3.4! Modulating stability in oPP! through elongation and cyclisation 
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Figure 8-90: AUC data for oPPα-2 (v̅ = 0.742 cm3 g-1). Sedimentation equilibrium data 
(top, dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 (orange), 
60 (red) krpm. The fit returns a molecular weight of 2503 Da (1.0 " monomer mass, 95 % 
confidence limits 2491 – 2514 Da). Bottom: Residuals for the above fit (same colour 
scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 
 

Figure 8-91: AUC data for oPPα-4-nocap (v̅ = 0.751 cm3 g-1). Sedimentation equilibrium 
data (top, dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 
(orange), 60 (red) krpm. The fit returns a molecular weight of 4488 Da (1.0 " monomer 
mass, 95 % confidence limits 4466 – 4510 Da). Bottom: Residuals for the above fit (same 
colour scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 
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Figure 8-92: AUC data for oPPα-4 (v̅ = 0.730 cm3 g-1). Sedimentation equilibrium data 
(top, dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 (orange), 
60 (red) krpm. The fit returns a molecular weight of 4846 Da (1.0 " monomer mass, 95 % 
confidence limits 4826 – 4867 Da). Bottom: Residuals for the above fit (same colour 
scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 
 

Figure 8-93: AUC data for oPPα-5 (v̅ = 0.753 cm3 g-1). Sedimentation equilibrium data 
(top, dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 (orange), 
60 (red) krpm. The fit returns a molecular weight of 6402 Da (1.0 " monomer mass, 95 % 
confidence limits 6375 – 6429 Da). Bottom: Residuals for the above fit (same colour 
scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 
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Figure 8-95: AUC data for cPP!-LSTKDL (v̅ = 0.751 cm3 g-1). Sedimentation 
equilibrium data (top, dots) and fitted single-ideal species model curves at 44 (blue), 52 
(aqua), 56 (orange), 60 (red) krpm. The fit returns a molecular weight of 4100 Da (0.9 " 
monomer mass, 95 % confidence limits 4079 – 4121 Da). Bottom: Residuals for the above 
fit (same colour scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 

 

Figure 8-94: AUC data for oPPα-5-skip (v̅ = 0.753 cm3 g-1). Sedimentation equilibrium 
data (top, dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 
(orange), 60 (red) krpm. The fit returns a molecular weight of 6085 Da (1.0 " monomer 
mass, 95 % confidence limits 6126 – 8257 Da). Bottom: Residuals for the above fit (same 
colour scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 
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Figure 8-96: AUC data for cPP!-GPQY (v̅ = 0.743 cm3 g-1). Sedimentation equilibrium 
data (top, dots) and fitted single-ideal species model curves at 44 (blue), 52 (aqua), 56 
(orange), 60 (red) krpm. The fit returns a molecular weight of 4315 Da (1.0 " monomer 
mass, 95 % confidence limits 4268 – 4365 Da). Bottom: Residuals for the above fit (same 
colour scheme as above). Conditions: 130 µM peptide, PBS, pH 7.4, 20 °C. 
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8.4! NMR assignments, structure calculations and validation statistics for 

structural ensembles. 

! oPPα! PPα!900MHz! PPα!700MHz!

Degree!of!Assignment! ! ! !

H!(%)! 95.8! 87! 87!

Heavy!atoms!(N!and!C)!(%)! 29.3! 32.4! 32.4!

Number!of!Restraints! ! ! !

Total!Distance!restraints! 624! 583! 459!

IntraBresidue!(|iBj|=0)! 260! 245! 228!

Sequential!(|iBj|=1)! 118! 103! 121!

Medium!Range!(2!≤!|iBj|!<!5)! 77! 67! 11!

Long!Range!(|iBj|!≥!5)! 39! 35! 20!

Ambiguous! 130! 133! 79!

Dihedral!angle!restraints! 48! 55! 43!

Restraints!statisticsa! ! ! !

Rms!of!distance!violations!(Å)! 0.029!±!0.011! 0.062±0.019! 0.092±0.028!

Rms!of!dihedral!violations!(Å)! 0.030!±!0.060! 0.03!±0.036! 0.09±0.097!

Violations!>!0.5!Å! 0! 0! 0!

Violations!>!0.3!Å! 1.75!±!1.4! 5.65!±!1.52! 2.2±1.6!

Violations!>!0.1!Å! 7.1!±!1.9! 12.45±1.63! 4.6±2.1!

Rms!from!idealised!covalent!geometrya! ! ! !

Bonds!(Å)! 0.003±!
0.0001!

0.0027!±!
0.0001!

0.0027±!

0.0001!

Angles!(o)! 0.42±0.01! 0.429!±!0.010! 0.42±0.01!

Impropers!(o)! 1.01±0.07! 0.932!±!0.084! 0.98±0.10!

Structural!qualityc! ! ! !

Ramachandran!Plotd! ! ! !

Most!favoured!regions!(%)! 99.4! 96.8! 97.0!

Allowed!regions!(%)! 0.6! 3.2! 3.0!

Generously!allowed(%)! 0! 0! 0!

Disallowed!regions!(%)! 0! 0! 0!

Verify3D!ZBscore! B1.61! B2.89! B2.73!

Table 8-1: Comparison of NMR data between PPα!and!oPPα. 
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ProsaII!ZB!score! 2.07! 1.08! 1.28!

Procheck!ZB!score!(Φ/Ψ)! 2.05! 1.97! 1.61!

Procheck!ZBscore!(all)! 2.25! 1.54! 0.470!

MolProbility!ZB!score! 0.86! 0.13! 0.30!

No!of!close!contacts! 0! 1! 0!

Coordinate!precision!rmsd!(Å)! ! ! !

All!backbone!atoms!(Å)! 0.52±0.13! 0.514!±!0.121! 0.67±0.15!

All!heavy!atoms!(Å)! 1.05±0.15! 0.825!±!0.122! 1.18±0.14!
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Table 8-2: CH–# interactions in oPP!. 87 interactions (4.35 ±! 1.13! per ensemble 
structure). 

Model CH donor CH acceptor 

1 Lys4 CA-HA 
Lys4 CB-HB2 
Lys7 CA-HA 
Leu24 CB-HB2 
Leu31 CB-HB2 

Tyr27 
Tyr27 
Tyr20 
Tyr20 
Tyr27 

2 Lys4 CA-HA 
Lys4 CB-HB2 
Lys7 CA-HA 
Leu24 CB-HB2 

Tyr27 
Tyr27 
Tyr20 
Tyr20 

3 Lys4 CA-HA 
Lys4 CB-HB2 
Lys7 CA-HA 
Leu24 CB-HB2 

Tyr27 
Tyr27 
Tyr20 
Tyr20 

4 Lys4 CA-HA 
Lys4 CB-HB2 
Lys7 CA-HA 
Lys7 CB-HB2 
Leu24 CB-HB2 
Leu31 CB-HB2 

Tyr27 
Tyr27 
Tyr20 
Tyr20 
Tyr20 
Tyr27 

5 Lys4 CA-HA 
Lys4 CB-HB2 
Lys7 CA-HA 
Leu24 CB-HB2 

Tyr27 
Tyr27 
Tyr20 
Tyr20 

6 Pro1 CA-HA 
Lys4 CB-HB2 
Lys7 CA-HA 
Leu24 CB-HB2 

Tyr34 
Tyr27 
Tyr20 
Tyr20 

7 Pro1 CA-HA 
Lys4 CA-HA 
LYS4 CB-HB2 
Lys7 CA-HA 

Tyr34 
Tyr27 
Tyr27 
Tyr20 

8 Pro1 CA-HA 
Lys4 CA-HA 
Lys4 CB-HB2 
Lys7 CA-HA 
Lys7 CB-HB2 
Leu24 CB-HB2 
Leu31 CB-HB2 

Tyr34 
Tyr27 
Tyr27 
Tyr20 
Tyr20 
Tyr20 
Tyr27 

9 Lys4 CA-HA 
Lys7 CA-HA 
Leu24 CB-HB2 
Leu31 CB-HB2 

Tyr27 
Tyr20 
Tyr20 
Tyr27 

10 Lys4 CA-HA 
Lys4 CB-HB2 
Lys7 CA-HA 
Leu24 CB-HB2 

Tyr27 
Tyr27 
Tyr20 
Tyr20 

11 Lys4 CA-HA 
Lys7 CA-HA 
Leu24 CB-HB2 

Tyr27 
Tyr20 
Tyr20 

12 Lys4 CA-HA 
Lys4 CB-HB2 

Tyr27 
Tyr27 
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Pro 

donor total = 5 i.e. 0.25 CH–π interactions per structure.  

Leu donor total = 25 i.e. 1.25 CH–π interactions per structure.  

Lys donor total = 57 i.e. 2.85 CH–π interactions per structure.  

Lys7 CA-HA 
Leu24 CB-HB2 
Leu31 CB-HB2 

Tyr20 
Tyr20 
Tyr27 

13 Lys4 CA-HA 
Lys4 CB-HB2 
Lys7 CA-HA 
Leu24 CB-HB2 

Tyr27 
Tyr27 
Tyr20 
Tyr20 

14 Lys4 CA-HA 
Lys4 CB-HB2 
Lys7 CA-HA 
Lys7 CB-HB2 
Leu31 CB-HB2 

Tyr27 
Tyr27 
Tyr20 
Tyr20 
Tyr27 

15 Lys4 CA-HA 
Leu24 CB-HB2 

Tyr27 
Tyr20 

16 Lys4 CA-HA 
Lys7 CA-HA 
Leu24 CB-HB2 

Tyr27 
Tyr20 
Tyr20 

17 Lys4 CA-HA 
Lys7 CA-HA 
Lys7 CB-HB2 
Leu31 CB-HB2 

Tyr27 
Tyr20 
Tyr20 
Tyr27 

18 Lys4 CA-HA 
Lys7 CA-HA 
Lys7 CB-HB2 
Leu31 CB-HB2 

Tyr27 
Tyr20 
Tyr20 
Tyr27 

19 Pro2 CD-HD2 
Lys4 CA-HA 
Lys4 CB-HB2 
Lys7 CA-HA 
Leu24 CB-HB2 
Leu31 CB-HB2 

Tyr34 
Tyr27 
Tyr27 
Tyr20 
Tyr20 
Tyr27 

20 Pro1 CA-HA 
Lys4 CA-HA 
Lys7 Ca-HA 
Lys7 CB-HB2 
Leu24 CB-HB2 

Tyr34 
Tyr27 
Tyr20 
Tyr20 
Tyr20 



 
References 

 
 

 181 

References 

1. Kendrew, J.; Dickerson, R.; Strandberg, B.; Hart, R.; Davies, D.; Phillips, D.; Shore, V. 
Nature, 1960, 185, 427. 

2. Perutz, M. F.; Rossmann, M. G.; Cullis, A. F.; Muirhead, H.; Will, G.; North, A. Nature, 
1960, 185, 416. 

3. Kendrew, J. C.; Bodo, G.; Dintzis, H. M.; Parrish, R.; Wyckoff, H.; Phillips, D. C. Nature, 
1958, 181, 662. 

4. Dill, K. A.; Ozkan, S. B.; Shell, M. S.; Weikl, T. R. Annu. Rev. Biophys., 2008, 37, 
289−316. 

5. Travaglini-Allocatelli, C.; Ivarsson, Y.; Jemth, P.; Gianni, S. Curr. Opin. Struct. Biol., 
2009, 19, 3. 

6. Dill, K. A.; MacCallum, J. L. Science, 2012, 338, 1042. 

7. Anfinsen, C. B.; Haber, E.; Sela, M.; White, F. Proc. Natl. Acad. Sci. U.S.A., 1961, 47, 
1309. 

8. Anfinsen, C. B. Science, 1973, 181, 223. 

9. Levinthal, C. Mossbauer spectroscopy in biological systems, 1969, 67, 22. 

10. Honig, B. J. Mol. Biol., 1999, 293, 283. 

11. Dill, K. A.; Chan, H. S. Nat. Struct. Mol. Biol., 1997, 4, 10. 

12. Radford, S. E.; Dobson, C. M.; Evans, P. A. Nature, 1992, 358, 302. 

13. Wang, Z.; Mottonen, J.; Goldsmith, E. J. Biochemistry, 1996, 35, 16443. 

14. Dill, K. A. Biochemistry, 1990, 29, 7133. 

15. Chen, J.; Stites, W. E. Biochemistry, 2001, 40, 15280. 

16. Nakamura, H. Q. Rev. Biophys., 1996, 29, 1. 

17. Wolfenden, R. J. Gen. Physiol., 2007, 129, 357. 

18. Pace, C. N.; Scholtz, J. M.; Grimsley, G. R. FEBS Lett., 2014, 588, 2177. 

19. Robertson, A. D.; Murphy, K. P. Chem. Rev., 1997, 97, 1251. 

20. Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; Shaw, D. E. Science, 2011, 334, 517. 

21. Baker, E. G.; Bartlett, G. J.; Porter Goff, K. L.; Woolfson, D. N. Acc. Chem. Res., 2017, 
50, 2085−2092. 

22. Nguyen, H.; Maier, J.; Huang, H.; Perrone, V.; Simmerling, C. J. Am. Chem. Soc., 2014, 
136, 13959. 



 
References 

 
 

 182 

23. Piana, S.; Lindorff-Larsen, K.; Shaw, D. E. Proc. Natl. Acad. Sci. U.S.A., 2012, 109, 17845. 

24. Baker, E. G.; Bartlett, G. J.; Crump, M. P.; Sessions, R. B.; Linden, N.; Faul, C. F.; 
Woolfson, D. N. Nat. Chem. Biol., 2015, 11, 221−8. 

25. Lee, M. S.; Gippert, G. P.; Soman, K. V.; Case, D. A.; Wright, P. E. Science, 1989, 245, 
635. 

26. Craik, D. J.; Daly, N. L.; Waine, C. Toxicon, 2001, 39, 43. 

27. Kale, S. S.; Villequey, C.; Kong, X.-D.; Zorzi, A.; Deyle, K.; Heinis, C. Nat. Chem., 2018, 
10, 715. 

28. Craven, T. W.; Bonneau, R.; Kirshenbaum, K. ChemBioChem, 2016, 17, 1824. 

29. Blundell, T. L.; Pitts, J. E.; Tickle, I. J.; Wood, S. P.; Wu, C. W. Proc. Natl. Acad. Sci. 
U.S.A., 1981, 78, 4175−4179. 

30. Bharat, T. A.; Eisenbeis, S.; Zeth, K.; Höcker, B. Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 
9942. 

31. Zhu, H.; Sepulveda, E.; Hartmann, M. D.; Kogenaru, M.; Ursinus, A.; Sulz, E.; Albrecht, 
R.; Coles, M.; Martin, J.; Lupas, A. N. Elife, 2016, 5, e16761. 

32. Fletcher, J. M.; Boyle, A. L.; Bruning, M.; Bartlett, G. J.; Vincent, T. L.; Zaccai, N. R.; 
Armstrong, C. T.; Bromley, E. H.; Booth, P. J.; Brady, R. L. ACS Synth. Biol., 2012, 1, 
240−250. 

33. Taylor, W. R.; Chelliah, V.; Hollup, S. M.; MacDonald, J. T.; Jonassen, I. Structure, 2009, 
17, 1244. 

34. Woolfson, D. N.; Bartlett, G. J.; Burton, A. J.; Heal, J. W.; Niitsu, A.; Thomson, A. R.; 
Wood, C. W. Curr. Opin. Struct. Biol., 2015, 33, 16−26. 

35. Razin, S.; Borunova, V.; Maksimenko, O.; Kantidze, O. Biochemistry (Mosc.), 2012, 77, 
217. 

36. Wolfe, S. A.; Nekludova, L.; Pabo, C. O. Annu. Rev. Biophys. Biomol. Struct., 2000, 29, 
183. 

37. Gersbach, C. A.; Gaj, T.; Barbas III, C. F. Acc. Chem. Res., 2014, 47, 2309. 

38. Gifford, J. L.; Walsh, M. P.; Vogel, H. J. Biochem. J., 2007, 405, 199. 

39. Shaw, G. S.; Hodges, R. S.; Sykes, B. D. Biochemistry, 1992, 31, 9572. 

40. Avrutina, O., Synthetic Cystine-Knot Miniproteins–Valuable Scaffolds for Polypeptide 
Engineering. In Protein targeting compounds, Springer: 2016; pp 121. 

41. Lavergne, V.; J Taft, R.; F Alewood, P. Curr. Top. Med. Chem., 2012, 12, 1514. 

42. Rosengren, K. J.; Daly, N. L.; Plan, M. R.; Waine, C.; Craik, D. J. J. Biol. Chem., 2003, 
278, 8606. 

43. Daly, N. L.; Craik, D. J. Curr. Opin. Chem. Biol., 2011, 15, 362. 



 
References 

 
 

 183 

44. Kimura, R. H.; Levin, A. M.; Cochran, F. V.; Cochran, J. R. Proteins: Struct., Funct., 
Bioinf., 2009, 77, 359. 

45. Silverman, A. P.; Levin, A. M.; Lahti, J. L.; Cochran, J. R. J. Mol. Biol., 2009, 385, 1064. 

46. Craik, D. J.; Fairlie, D. P.; Liras, S.; Price, D. Chem. Biol. Drug Des., 2013, 81, 136. 

47. Kintzing, J. R.; Cochran, J. R. Curr. Opin. Chem. Biol., 2016, 34, 143. 

48. Gebauer, M.; Skerra, A. Curr. Opin. Chem. Biol., 2009, 13, 245. 

49. Zahnd, C.; Kawe, M.; Stumpp, M. T.; de Pasquale, C.; Tamaskovic, R.; Nagy-Davidescu, 
G.; Dreier, B.; Schibli, R.; Binz, H. K.; Waibel, R. Cancer Res., 2010, 1595. 

50. Bhardwaj, G.; Mulligan, V. K.; Bahl, C. D.; Gilmore, J. M.; Harvey, P. J.; Cheneval, O.; 
Buchko, G. W.; Pulavarti, S. V.; Kaas, Q.; Eletsky, A. Nature, 2016, 538, 329. 

51. Leaver-Fay, A.; Tyka, M.; Lewis, S. M.; Lange, O. F.; Thompson, J.; Jacak, R.; Kaufman, 
K. W.; Renfrew, P. D.; Smith, C. A.; Sheffler, W., ROSETTA3: an object-oriented 
software suite for the simulation and design of macromolecules. In Methods Enzymol., 
Elsevier: 2011; Vol. 487, pp 545. 

52. Rocklin, G. J.; Chidyausiku, T. M.; Goreshnik, I.; Ford, A.; Houliston, S.; Lemak, A.; 
Carter, L.; Ravichandran, R.; Mulligan, V. K.; Chevalier, A. Science, 2017, 357, 168. 

53. Chevalier, A.; Silva, D.-A.; Rocklin, G. J.; Hicks, D. R.; Vergara, R.; Murapa, P.; Bernard, 
S. M.; Zhang, L.; Lam, K.-H.; Yao, G. Nature, 2017, 550, 74. 

54. Hodges, A. M.; Schepartz, A. J. Am. Chem. Soc., 2007, 129, 11024. 

55. Li, X.; Sutcliffe, M. J.; Schwartz, T. W.; Dobson, C. M. Biochemistry, 1992, 31, 
1245−1253. 

56. Golemi-Kotra, D.; Mahaffy, R.; Footer, M. J.; Holtzman, J. H.; Pollard, T. D.; Theriot, J. 
A.; Schepartz, A. J. Am. Chem. Soc., 2004, 126, 4. 

57. Link, N. M.; Hunke, C.; Mueller, J. W.; Eichler, J.; Bayer, P. Biol. Chem., 2009, 390, 
417−26. 

58. Prehoda, K. E.; Lee, D. J.; Lim, W. A. Cell, 1999, 97, 471. 

59. Yang, L.; Schepartz, A. Biochemistry, 2005, 44, 7469. 

60. Smith, B. A.; Daniels, D. S.; Coplin, A. E.; Jordan, G. E.; McGregor, L. M.; Schepartz, A. 
J. Am. Chem. Soc., 2008, 130, 2948. 

61. Nicoll, A. J.; Allemann, R. K. Org. Biomol. Chem., 2004, 2, 2175−80. 

62. Struthers, M. D.; Cheng, R. P.; Imperiali, B. Science, 1996, 271, 342. 

63. Mezo, A. R.; Cheng, R. P.; Imperiali, B. J. Am. Chem. Soc., 2001, 123, 3885. 

64. Dahiyat, B. I.; Mayo, S. L. Science, 1997, 278, 82. 

65. Dahiyat, B. I.; Mayo, S. L. Protein Sci., 1996, 5, 895. 

66. Dahiyat, B. I.; Sarisky, C. A.; Mayo, S. L. Science, 1997, 278, 82. 



 
References 

 
 

 184 

67. Otto, J. J. Curr. Opin. Cell Biol., 1994, 6, 105. 

68. McKnight, C. J.; Matsudaira, P. T.; Kim, P. S. Nat. Struct. Biol., 1997, 4, 180. 

69. Chiu, T. K.; Kubelka, J.; Herbst-Irmer, R.; Eaton, W. A.; Hofrichter, J.; Davies, D. R. Proc. 
Natl. Acad. Sci. U.S.A., 2005, 102, 7517. 

70. Blanco, F. J.; Jimenez, M. A.; Herranz, J.; Rico, M.; Santoro, J.; Nieto, J. L. J. Am. Chem. 
Soc., 1993, 115, 5887. 

71. Cox, J. P.; Evans, P. A.; Packman, L. C.; Williams, D. H.; Woolfson, D. N. J. Mol. Biol., 
1993, 234, 483. 

72. Pastor, M. T.; de la Paz, M. L.; Lacroix, E.; Serrano, L.; Pérez-Payá, E. Proc. Natl. Acad. 
Sci. U.S.A., 2002, 99, 614. 

73. Cochran, A. G.; Skelton, N. J.; Starovasnik, M. A. Proc. Natl. Acad. Sci. U.S.A., 2001, 98, 
5578. 

74. Russell, S. J.; Cochran, A. G. J. Am. Chem. Soc., 2000, 122, 12600. 

75. Honda, S.; Yamasaki, K.; Sawada, Y.; Morii, H. Structure, 2004, 12, 1507. 

76. Watanabe, H.; Yamasaki, K.; Honda, S. J. Biol. Chem., 2014, 289, 3394. 

77. Riemen, A. J.; Waters, M. L. Biochemistry, 2009, 48, 1525. 

78. Mahalakshmi, R. Arch. Biochem. Biophys., 2018, 661, 39. 

79. Espinosa, J. F.; Gellman, S. H. Angew. Chem. Int. Ed., 2000, 39, 2330. 

80. Fesinmeyer, R. M.; Hudson, F. M.; Andersen, N. H. J. Am. Chem. Soc., 2004, 126, 7238. 

81. Santiveri, C. M.; Jiménez, M. A. J. Pept. Sci., 2010, 94, 779. 

82. Ramírez-Alvarado, M.; Blanco, F. J.; Serrano, L. Nat. Struct. Mol. Biol., 1996, 3, 604. 

83. Minor Jr, D. L.; Kim, P. S. Nature, 1994, 367, 660. 

84. Kiehna, S. E.; Waters, M. L. Protein Sci., 2003, 12, 2657. 

85. Kortemme, T.; Ramı ́rez-Alvarado, M.; Serrano, L. Science, 1998, 281, 253. 

86. Sharman, G. J.; Searle, M. S. J. Am. Chem. Soc., 1998, 120, 5291. 

87. Schenck, H. L.; Gellman, S. H. J. Am. Chem. Soc., 1998, 120, 4869. 

88. Doig, A. Chem. Commun., 1997, 0, 2153. 

89. Kuznetsov, S. V.; Hilario, J.; Keiderling, T. A.; Ansari, A. Biochemistry, 2003, 42, 4321. 

90. López, M.; Lacroix, E.; Ramı ́rez-Alvarado, M.; Serrano, L. J. Mol. Biol., 2001, 312, 229. 

91. Kung, V. M.; Cornilescu, G.; Gellman, S. H. Angew. Chem. Int. Ed., 2015, 127, 14544. 

92. Staub, O.; Rotin, D. Structure, 1996, 4, 495. 



 
References 

 
 

 185 

93. Macias, M. J.; Hyvönen, M.; Baraldi, E.; Schultz, J.; Sudol, M.; Saraste, M.; Oschkinat, H. 
Nature, 1996, 382, 646. 

94. Macias, M. J.; Gervais, V.; Civera, C.; Oschkinat, H. Nat. Struct. Mol. Biol., 2000, 7, 375. 

95. Stewart, A. L.; Park, J. H.; Waters, M. L. Biochemistry, 2011, 50, 2575. 

96. Neidigh, J. W.; Fesinmeyer, R. M.; Andersen, N. H. Nat. Struct. Mol. Biol., 2002, 9, 425. 

97. Gellman, S. H.; Woolfson, D. N. Nat. Struct. Mol. Biol., 2002, 9, 408. 

98. Barua, B.; Lin, J. C.; Williams, V. D.; Kummler, P.; Neidigh, J. W.; Andersen, N. H. 
Protein Eng., Des. Sel., 2008, 21, 171. 

99. Scian, M.; Lin, J. C.; Le Trong, I.; Makhatadze, G. I.; Stenkamp, R. E.; Andersen, N. H. 
Proc. Natl. Acad. Sci. U.S.A., 2012, 109, 12521. 

100. Paschek, D.; Hempel, S.; García, A. E. Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 17754. 

101. Huang, P.-S.; Feldmeier, K.; Parmeggiani, F.; Velasco, D. A. F.; Höcker, B.; Baker, D. 
Nat. Chem. Biol., 2016, 12, 29. 

102. Rao, S. T.; Rossmann, M. G. J. Mol. Biol., 1973, 76, 241. 

103. Kobe, B.; Kajava, A. V. Curr. Opin. Struct. Biol., 2001, 11, 725. 

104. Liang, H.; Chen, H.; Fan, K.; Wei, P.; Guo, X.; Jin, C.; Zeng, C.; Tang, C.; Lai, L. Angew. 
Chem. Int. Ed., 2009, 48, 3301. 

105. Craven, T. W.; Cho, M. K.; Traaseth, N. J.; Bonneau, R.; Kirshenbaum, K. J. Am. Chem. 
Soc., 2016, 138, 1543. 

106. Woolfson, D. N.; Baker, E. G.; Bartlett, G. J. Science, 2017, 357, 133. 

107. Wolny, M.; Batchelor, M.; Bartlett, G. J.; Baker, E. G.; Kurzawa, M.; Knight, P. J.; 
Dougan, L.; Woolfson, D. N.; Paci, E.; Peckham, M. Sci. Rep., 2017, 7, 44341. 

108. Liu, J.; Rost, B. Protein Sci., 2001, 10, 1970. 

109. Rose, A.; Manikantan, S.; Schraegle, S. J.; Maloy, M. A.; Stahlberg, E. A.; Meier, I. Plant 
Physiol., 2004, 134, 927. 

110. Rackham, O. J.; Madera, M.; Armstrong, C. T.; Vincent, T. L.; Woolfson, D. N.; Gough, 
J. J. Mol. Biol., 2010, 403, 480. 

111. Strelkov, S. V.; Burkhard, P. J. Struct. Biol., 2002, 137, 54. 

112. Mason, J. M.; Arndt, K. M. ChemBioChem, 2004, 5, 170. 

113. Woolfson, D. N.; Bartlett, G. J.; Bruning, M.; Thomson, A. R. Curr. Opin. Struct. Biol., 
2012, 22, 432. 

114. Gruber, M.; Söding, J.; Lupas, A. N. J. Struct. Biol., 2006, 155, 140. 

115. Vincent, T. L.; Green, P. J.; Woolfson, D. N. Bioinformatics, 2012, 29, 69. 

116. McDonnell, A. V.; Jiang, T.; Keating, A. E.; Berger, B. Bioinformatics, 2005, 22, 356. 



 
References 

 
 

 186 

117. Trigg, J.; Gutwin, K.; Keating, A. E.; Berger, B. PLoS One, 2011, 6, e23519. 

118. Lupas, A. N.; Bassler, J. Trends Biochem. Sci, 2017, 42, 130. 

119. Lupas, A. N.; Gruber, M., The structure of α-helical coiled coils. In Adv. Protein Chem., 
Elsevier: 2005; Vol. 70, pp 37. 

120. Harbury, P. B.; Zhang, T.; Kim, P. S.; Alber, T. Science, 1993, 262, 1401. 

121. Oakley, M. G.; Hollenbeck, J. J. Curr. Opin. Struct. Biol., 2001, 11, 450. 

122. Monera, O. D.; Zhou, N. E.; Lavigne, P.; Kay, C. M.; Hodges, R. S. J. Biol. Chem., 1996, 
271, 3995. 

123. O'Shea, E. K.; Lumb, K. J.; Kim, P. S. Curr. Biol., 1993, 3, 658. 

124. Negron, C.; Keating, A. E. J. Am. Chem. Soc., 2014, 136, 16544. 

125. Pauling, L.; Corey, R. B.; Branson, H. R. Proc. Natl. Acad. Sci. U.S.A., 1951, 37, 205. 

126. Hollingsworth, S. A.; Karplus, P. A. Biomol. Concepts, 2010, 1, 271. 

127. �� J. Mol. Biol., 1963, 7, 95. 

128. Fodje, M.; Al-Karadaghi, S. Protein Eng., Des. Sel., 2002, 15, 353. 

129. Armen, R.; Alonso, D. O. V.; Daggett, V. Protein Sci., 2003, 12, 1145. 

130. Gessmann, R.; Brückner, H.; Petratos, K. J. Pept. Sci., 2003, 9, 753. 

131. Nesloney, C. L.; Kelly, J. W. Biorg. Med. Chem., 1996, 4, 739. 

132. Woolfson, D. N. Subcell. Biochem., 2017, 82, 35−61. 

133. Woolfson, D. N. Adv. Protein Chem., 2005, 70, 79. 

134. Crick, F. H. Acta. Crystallogr., 1953, 6, 689−697. 

135. Crick, F. H. Acta. Crystallogr., 1953, 6, 685. 

136. Harbury, P. B.; Tidor, B.; Kim, P. S. Proc. Natl. Acad. Sci. U.S.A., 1995, 92, 8408. 

137. Harbury, P. B.; Plecs, J. J.; Tidor, B.; Alber, T.; Kim, P. S. Science, 1998, 282, 1462. 

138. Offer, G.; Hicks, M. R.; Woolfson, D. N. J. Struct. Biol., 2002, 137, 41. 

139. Grigoryan, G.; DeGrado, W. F. J. Mol. Biol., 2011, 405, 1079. 

140. Wood, C. W.; Bruning, M.; Ibarra, A. A.; Bartlett, G. J.; Thomson, A. R.; Sessions, R. B.; 
Brady, R. L.; Woolfson, D. N. Bioinformatics, 2014, 30, 3029. 

141. Wood, C. W.; Woolfson, D. N. Protein Sci., 2018, 27, 103. 

142. Wood, C. W.; Heal, J. W.; Thomson, A. R.; Bartlett, G. J.; Ibarra, A. A.; Brady, R. L.; 
Sessions, R. B.; Woolfson, D. N. Bioinformatics, 2017, 33, 3043. 

143. Walshaw, J.; Woolfson, D. N. J. Struct. Biol., 2003, 144, 349. 



 
References 

 
 

 187 

144. Harbury, P. B.; Kim, P. S.; Alber, T. Nature, 1994, 371, 80. 

145. Thomson, A. R.; Wood, C. W.; Burton, A. J.; Bartlett, G. J.; Sessions, R. B.; Brady, L. J.; 
Woolfson, D. N. Science, 2014, 346, 485. 

146. Ghirlanda, G.; Lear, J. D.; Ogihara, N. L.; Eisenberg, D.; DeGrado, W. F. J. Mol. Biol., 
2002, 319, 243. 

147. Lovejoy, B.; Choe, S.; Cascio, D.; McRorie, D. K.; DeGrado, W. F.; Eisenberg, D. Science, 
1993, 259, 1288. 

148. Koronakis, V.; Sharff, A.; Koronakis, E.; Luisi, B.; Hughes, C. Nature, 2000, 405, 914. 

149. Yoshizumi, A.; Fletcher, J. M.; Yu, Z.; Persikov, A. V.; Bartlett, G. J.; Boyle, A. L.; 
Vincent, T. L.; Woolfson, D. N.; Brodsky, B. J. Biol. Chem., 2011, 286, 17512. 

150. Burgess, N. C.; Sharp, T. H.; Thomas, F.; Wood, C. W.; Thomson, A. R.; Zaccai, N. R.; 
Brady, R. L.; Serpell, L. C.; Woolfson, D. N. J. Am. Chem. Soc., 2015, 137, 10554. 

151. Gradišar, H.; Božič, S.; Doles, T.; Vengust, D.; Hafner-Bratkovič, I.; Mertelj, A.; Webb, 
B.; Šali, A.; Klavžar, S.; Jerala, R. Nat. Chem. Biol., 2013, 9, 362. 

152. Burton, A. J.; Thomson, A. R.; Dawson, W. M.; Brady, R. L.; Woolfson, D. N. Nat. Chem., 
2016, 8, 837. 

153. Baker, E. G.; Williams, C.; Hudson, K. L.; Bartlett, G. J.; Heal, J. W.; Porter Goff, K. L.; 
Sessions, R. B.; Crump, M. P.; Woolfson, D. N. Nat. Chem. Biol., 2017, 13, 764−770. 

154. Shoulders, M. D.; Raines, R. T. Annu. Rev. Biochem., 2009, 78, 929. 

155. Berisio, R.; Loguercio, S.; De Simone, A.; Zagari, A.; Vitagliano, L. Protein Pept. Lett., 
2006, 13, 847. 

156. Stapley, B. J.; Creamer, T. P. Protein Sci., 1999, 8, 587. 

157. Adzhubei, A. A.; Sternberg, M. J. J. Mol. Biol., 1993, 229, 472. 

158. Jha, A. K.; Colubri, A.; Zaman, M. H.; Koide, S.; Sosnick, T. R.; Freed, K. F. Biochemistry, 
2005, 44, 9691. 

159. Cubellis, M.; Caillez, F.; Blundell, T.; Lovell, S. Proteins: Struct., Funct., Bioinf., 2005, 
58, 880. 

160. Adzhubei, A. A.; Sternberg, M. J.; Makarov, A. A. J. Mol. Biol., 2013, 425, 2100. 

161. Rath, A.; Davidson, A. R.; Deber, C. M. J. Pept. Sci., 2005, 80, 179. 

162. King, S. M.; Johnson, W. C. Proteins: Struct., Funct., Bioinf., 1999, 35, 313. 

163. Srinivasan, R.; Rose, G. D. Proc. Natl. Acad. Sci. U.S.A., 1999, 96, 14258. 

164. Cubellis, M. V.; Cailliez, F.; Lovell, S. C. BMC Bioinformatics, 2005, 6, 8. 

165. Mansiaux, Y.; Joseph, A. P.; Gelly, J.-C.; de Brevern, A. G. PLoS One, 2011, 6, e18401. 

166. Larson, M. R.; Rajashankar, K. R.; Patel, M. H.; Robinette, R. A.; Crowley, P. J.; Michalek, 
S.; Brady, L. J.; Deivanayagam, C. Proc. Natl. Acad. Sci. U.S.A., 2010, 107, 5983−8. 



 
References 

 
 

 188 

167. Brandl, M.; Weiss, M. S.; Jabs, A.; Sühnel, J.; Hilgenfeld, R. J. Mol. Biol., 2001, 307, 
357−377. 

168. Hudson, K. L.; Bartlett, G. J.; Diehl, R. C.; Agirre, J.; Gallagher, T.; Kiessling, L. L.; 
Woolfson, D. N. J. Am. Chem. Soc., 2015, 137, 15152−60. 

169. Kuipers, B. J. H.; Gruppen, H. J. Argic. Food Chem., 2007, 55, 5445. 

170. Sreerama, N.; Woody, R. W. Methods Enzymol., 2004, 383, 318. 

171. Wallace, B. A.; Janes, R. W., Modern Techniques for Circular Dichroism and Synchrotron 
Radiation Circular Dichroism Spectroscopy. IOS Press: 2009; Vol. 1. 

172. Lopes, J. L. S.; Miles, A. J.; Whitmore, L.; Wallace, B. A. Protein Sci., 2014, 23, 1765. 

173. Whitmore, L.; Woollett, B.; Miles, A. J.; Klose, D. P.; Janes, R. W.; Wallace, B. A. Nucleic 
Acids Res., 2011, 39, 480. 

174. Li, Z.; Hirst, J. D. Chem. Sci., 2017, 8, 4318. 

175. Myers, J. M.; Pace, C. N.; Scholtz, J. M. Proc. Nat. Acad. Sci. U.S.A., 1997, 94, 2833  

176. Scholtz, J. M.; Qian, H.; York, E. J.; Stewart, J. M.; Baldwin, R. L. Biopolymers, 1991, 31, 
1463. 

177. Cole, J. L.; Lary, J. W.; P. Moody, T.; Laue, T. M., Analytical Ultracentrifugation: 
Sedimentation Velocity and Sedimentation Equilibrium. In Biophysical Tools for 
Biologists, Volume One: In Vitro Techniques, 2008; pp 143. 

178. Laue, T. M.; Stafford, W. F. Annu. Rev. Biophys. Biomol. Struct., 1999, 28, 75. 

179. Scott, D. J.; Harding, S. E.; Rowe, A. J., A Brief Introduction to the Analytical 
Ultracentrifugation of Proteins for Beginners. In Analytical Ultracentrifugation, 2007; pp 
1. 

180. Schuck, P. Biophys. J., 2000, 78, 1606. 

181. Schuster, T. M.; Laue, T. M., Modern Analytical Ultracentrifugation. Springer: 1994. 

182. Pabo, C. O.; Peisach, E.; Grant, R. A. Annu. Rev. Biochem., 2001, 70, 313. 

183. Vranken, W. F.; Boucher, W.; Stevens, T. J.; Fogh, R. H.; Pajon, A.; Llinas, M.; Ulrich, E. 
L.; Markley, J. L.; Ionides, J.; Laue, E. D. Proteins, 2005, 59, 687. 

184. Rieping, W.; Habeck, M.; Bardiaux, B.; Bernard, A.; Malliavin, T. E.; Nilges, M. 
Bioinformatics, 2007, 23, 381. 

185. Brunger, A. T.; Adams, P. D.; Clore, G. M.; DeLano, W. L.; Gros, P.; Grosse-Kunstleve, 
R. W.; Jiang, J.; Kuszewski, J.; Nilges, M.; Pannu, N. S.; Read, R. J.; Rice, L. M.; 
Simonson, T.; Warren, G. L. Acta. Crystallogr., 1998, D54, 905. 

186. Cheung, M. S.; Maguire, M. L.; Stevens, T. J.; Broadhurst, R. W. J. Magn. Reson., 2010, 
202, 223. 

187. Bhattacharya, A.; Tejero, R.; Montelione, G. T. Proteins, 2007, 66, 778. 

188. Lee, B.; Richards, F. M. J. Mol. Biol., 1971, 55, 379. 



 
References 

 
 

 189 

189. Hubbard, S.; Thornton, J. Department of Biochemistry and Molecular Biology, University 
College London, 1993. 

190. Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R. Comp. Phys. Comm., 1995, 91, 43. 

191. Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput., 2008, 4, 
435. 

192. Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.; Shaw, 
D. E. Proteins, 2010, 78, 1950. 

193. Humphrey, W.; Dalke, A.; Sculten, K. J. Mol. Graph., 1996, 14, 27. 

194. Armstrong, C. T.; Boyle, A. L.; Bromley, E. H.; Mahmoud, Z. N.; Smith, L.; Thomson, A. 
R.; Woolfson, D. N. Faraday Discuss., 2009, 143, 305. 

195. Thompson, K. E.; Bashor, C. J.; Lim, W. A.; Keating, A. E. ACS Synth. Biol., 2012, 1, 118. 

196. Lupas, A. N.; Bassler, J. Trends Biochem. Sci, 2017, 42, 130. 

197. Crick, F. H. Acta. Crystallogr., 1953, 6, 689. 

198. Zhu, B. Y.; Zhou, M. E.; Kay, C. M.; Hodges, R. S. Protein Sci., 1993, 2, 383. 

199. O'Shea, E. K.; Klemm, J. D.; Kim, P. S.; Alber, T. Science, 1991, 254, 539. 

200. Lee, D. L.; Ivaninskii, S.; Burkhard, P.; Hodges, R. S. Protein Sci., 2003, 12, 1395. 

201. Fletcher, J. M.; Bartlett, G. J.; Boyle, A. L.; Danon, J. J.; Rush, L. E.; Lupas, A. N.; 
Woolfson, D. N. ACS Chem. Biol., 2017, 12, 528. 

202. Hodges, R. S.; Saund, A. K.; Chong, P.; St-Pierre, S.; Reid, R. E. J. Biol. Chem., 1981, 
256, 1214. 

203. Thomas, F.; Boyle, A. L.; Burton, A. J.; Woolfson, D. N. J. Am. Chem. Soc., 2013, 135, 
5161−6. 

204. Schreiber, G.; Fersht, A. R. Nat. Struct. Biol., 1996, 3, 427−431. 

205. Selzer, T.; Albeck, S.; Schreiber, G. Nat. Struct. Mol. Biol., 2000, 7, 537. 

206. Bromley, E. H.; Sessions, R. B.; Thomson, A. R.; Woolfson, D. N. J. Am. Chem. Soc., 
2008, 131, 928. 

207. Nautiyal, S.; Woolfson, D. N.; King, D. S.; Alber, T. Biochemistry, 1995, 34, 11645. 

208. Reinke, A. W.; Grant, R. A.; Keating, A. E. J. Am. Chem. Soc., 2010, 132, 6025. 

209. Scholtz, J. M.; Pace, C. N. Biochem. J., 1998, 75, 422. 

210. Blaber, M.; Zhang, X.; Matthews, B. W. Science, 1993, 260, 1637. 

211. Myers, J. M.; Pace, C. N.; Scholtz, J. M. Proc. Natl. Acad. Sci. U.S.A., 1997, 94, 2833. 

212. Chou, P. Y.; Fasman, G. D. Annu. Rev. Biochem., 1978, 47, 251. 

213. Wojick, J.; Altmann, K. H.; Scheraga, H. A. Biopolymers, 1990, 30, 121. 



 
References 

 
 

 190 

214. O’Neil, K. T.; DeGrado, W. F. Science, 1990, 250, 646. 

215. Hermans, J.; Anderson, A. G.; Yun, R. H. Biochemistry, 1992, 31, 5646. 

216. Creamer, T. P.; Rose, G. D. Proc. Natl. Acad. Sci. U.S.A., 1992, 89, 5937. 

217. Chou, P. Y.; Fasman, G. D. Biochemistry, 1974, 13, 211. 

218. Chou, P. Y.; Fasman, G. D. Annu. Rev. Biochem., 1978, 47, 251. 

219. Scholtz, J. M.; Marqusee, S.; Baldwin, R. L.; York, E. J.; Stewart, J. M.; Santoro, M.; 
Bolen, D. W. Proc. Natl. Acad. Sci. U.S.A., 1991, 88, 2854. 

220. Aurora, R.; Creamer, T. P.; Srinivasan, R.; Rose, G. D. J. Biol. Chem., 1997, 272, 1413. 

221. Nemethy, G. J. Phys. Chem., 1966, 70, 998. 

222. Lupque, I.; Mayorga, O. L.; Freire, E. Biochemistry, 1996, 35, 13681. 

223. Hu, X.; Wang, H.; Ke, H.; Kuhlman, B. Proc. Natl. Acad. Sci. U.S.A., 2007, 104, 17668. 

224. Aurora, R.; Rosee, G. D. Protein Sci., 1998, 7, 21. 

225. Richardson, J. S.; Richardson, D. C. Science, 1988, 240, 1648. 

226. Kelly, S. M.; Price, N. C. Curr. Protein Peptide Sci., 2000, 1, 349. 

227. Wagner, G.; Wüthrich, K. J. Mol. Biol., 1982, 155, 347. 

228. Wider, G.; Lee, K. H.; Wüthrich, K. J. Mol. Biol., 1982, 155, 367. 

229. Wüthrich, K. Biopolymers, 1983, 22, 131. 

230. Barlow, D. J.; Thornton, J. M. J. Mol. Biol., 1983, 168, 867−885. 

231. Donald, J. E.; Kulp, D. W.; DeGrado, W. F. Proteins, 2011, 79, 898. 

232. Schreiber, G.; Haran, G.; Zhou, H.-X. Chem. Rev., 2009, 109, 839−860. 

233. Hemsath, L.; Dvorsky, R.; Fiegen, D.; Carlier, M. F.; Ahmadian, M. R. Mol .Cell, 2005, 
20, 313−24. 

234. Blochliger, N.; Xu, M.; Caflisch, A. Biophys. J., 2015, 108, 2362−2370. 

235. Sheinerman, F. B.; Norel, R.; Honig, B. Curr. Opin. Struct. Biol., 2000, 10, 153. 

236. Schreiber, G. Curr. Opin. Struct. Biol., 2002, 12, 41. 

237. Kiel, C.; Selzer, T.; Shaul, Y.; Schreiber, G.; Herrmann, C. Proc. Natl. Acad. Sci. U.S.A., 
2004, 101, 9223. 

238. Connolly, M. L. Science, 1983, 221, 709. 

239. Farber, P. J.; Mittermaier, A. Protein Sci., 2008, 17, 644. 

240. Parry, D. A.; Fraser, R. B.; Squire, J. M. J. Struct. Biol., 2008, 163, 258. 



 
References 

 
 

 191 

241. Fletcher, J. M.; Harniman, R. L.; Barnes, F. R.; Boyle, A. L.; Collins, A.; Mantell, J.; Sharp, 
T. H.; Antognozzi, M.; Booth, P. J.; Linden, N. Science, 2013, 595−599. 

242. Xu, C.; Liu, R.; Mehta, A. K.; Guerrero-Ferreira, R. C.; Wright, E. R.; Dunin-Horkawicz, 
S.; Morris, K.; Serpell, L. C.; Zuo, X.; Wall, J. S.; Conticello, V. P. J. Am. Chem. Soc., 
2013, 135, 15565. 

243. Steinkruger, J. D.; Bartlett, G. J.; Hadley, E. B.; Fay, L.; Woolfson, D. N.; Gellman, S. H. 
J. Am. Chem. Soc., 2012, 134, 2626. 

244. Hadley, E. B.; Testa, O. D.; Woolfson, D. N.; Gellman, S. H. Proc. Natl. Acad. Sci. U.S.A., 
2008, 105, 530. 

245. Testa, O. D.; Moutevelis, E.; Woolfson, D. N. Nucleic Acids Res., 2008, 37, D315. 

246. Li, X.; Sutcliffe, M. J.; Schwartz, T. W.; Dobson, C. M. Biochemistry, 1992, 31, 1245. 

247. Kimmel, J.; Hayden, L. J.; Pollock, H. G. J. Biol. Chem., 1975, 250, 9369. 

248. Nygaard, R.; Nielbo, S.; Schwartz, T. W.; Poulsen, F. M. Biochemistry, 2006, 45, 8350. 

249. Monks, S. A.; Karagianis, G.; Howlett, G. J.; Norton, R. S. J. Biomol. NMR, 1996, 8, 379. 

250. Crooks, G. E.; Hon, G.; Chandonia, J.-M.; Brenner, S. E. Genome Res., 2004, 14, 1188. 

251. Schneider, T. D.; Stephens, R. M. Nucleic Acids Res., 1990, 18, 6097. 

252. Minakata, H.; Taylor, J. W.; Walker, M.; Miller, R.; Kaiser, E. T. J. Biol. Chem., 1989, 
264, 7907. 

253. Kim, M. K.; Kang, Y. K. Protein Sci., 1999, 8, 1492. 

254. Weiss, M. A.; Ellenberger, T.; Wobbe, C. R.; Lee, J. P.; Harrison, S. C.; Struhl, K. Nature, 
1990, 347, 575. 

255. Fezoui, Y.; Weaver, D. L.; Osterhout, J. J. Proc. Natl. Acad. Sci. U.S.A., 1994, 91, 3675. 

256. Marky, L. A.; Breslauer, K. J. Biopolymers, 1987, 26, 1601. 

257. Daggett, V. Chem. Rev., 2006, 106, 1898. 

258. Hospital, A.; Goñi, J. R.; Orozco, M.; Gelpí, J. L. Adv. Appl. Bioinform., 2015, 8, 37. 

259. McIntosh-Smith, S.; Wilson, T.; Ibarra, A. Í.; Crisp, J.; Sessions, R. B. Comput. J., 2012, 
55, 192. 

260. McIntosh-Smith, S.; Price, J.; Sessions, R. B.; Ibarra, A. A. Int. J. High Perform. Comput. 
Appl., 2015, 29, 119. 

261. Regan, L. Curr. Biol., 1994, 4, 656. 

262. Hill, R. B.; Raleigh, D. P.; Lombardi, A.; DeGrado, W. F. Acc. Chem. Res., 2000, 33, 745. 

263. Nagi, A. D.; Regan, L. Fold Des., 1997, 2, 67. 

264. Bruch, M. D.; Dhingra, M. M.; Gierasch, L. M. Proteins: Struct., Funct., Bioinf., 1991, 10, 
130. 



 
References 

 
 

 192 

265. Wang, D.; Chen, K.; Kulp, J. L.; Arora, P. S. J. Am. Chem. Soc., 2006, 128, 9248. 

266. Kallenbach, N. R.; Lyu, P.; Zhou, H., CD spectroscopy and the helix-coil transition in 
peptides and polypeptides. In Circular dichroism and the conformational analysis of 
biomolecules, Springer: 1996; pp 201. 

267. Boyle, A. L.; Bromley, E. H.; Bartlett, G. J.; Sessions, R. B.; Sharp, T. H.; Williams, C. L.; 
Curmi, P. M.; Forde, N. R.; Linke, H.; Woolfson, D. N. J. Am. Chem. Soc., 2012, 134, 
15457. 

268. Presta, L. G.; Rose, G. D. Science, 1988, 240, 1632. 

269. Fletcher, J. M.; Horner, K. A.; Bartlett, G. J.; Rhys, G. R.; Wilson, A.; Woolfson, D. N. 
Chem. Sci., 2018. 

270. Nooren, I. M.; Thornton, J. M. EMBO J., 2003, 22, 3486. 

271. Perkins, J. R.; Diboun, I.; Dessailly, B. H.; Lees, J. G.; Orengo, C. Structure, 2010, 18, 
1233. 

272. Keskin, O.; Gursoy, A.; Ma, B.; Nussinov, R. Chem. Rev., 2008, 108, 1225. 

273. Nussinov, R.; Tsai, C.-J. Cell, 2013, 153, 293. 

274. Shogren-Knaak, M. A.; Alaimo, P. J.; Shokat, K. M. Annu. Rev. Cell Dev. Biol., 2001, 17, 
405. 

275. Huang, Z. Pharmacol. Ther., 2000, 86, 201. 

276. Milroy, L.-G.; Grossmann, T. N.; Hennig, S.; Brunsveld, L.; Ottmann, C. Chem. Rev., 
2014, 114, 4695. 

277. Surade, S.; Blundell, T. L. Chem. Biol., 2012, 19, 42. 

278. Phan, T.; Nguyen, H. D.; Göksel, H.; Möcklinghoff, S.; Brunsveld, L. Chem. Commun., 
2010, 46, 8207. 

279. Musacchio, A.; Gibson, T.; Lehto, V.-P.; Saraste, M. FEBS Lett., 1992, 307, 55. 

280. Mayer, B. J. J. Cell Sci., 2001, 114, 1253. 

281. Cobos, E. S.; Pisabarro, M. T.; Vega, M. C.; Lacroix, E.; Serrano, L.; Ruiz-Sanz, J.; 
Martinez, J. C. J. Mol. Biol., 2004, 342, 355. 

282. Cicchetti, P.; Mayer, B. J.; Thiel, G.; Baltimore, D. Science, 1992, 257, 803. 

283. Feng, S.; Chen, J. K.; Yu, H.; Simon, J. A.; Schreiber, S. L. Science, 1994, 266, 1241. 

284. Lim, W. A.; Richards, F. M.; Fox, R. O. Nature, 1994, 372, 375. 

285. Musacchio, A.; Saraste, M.; Wilmanns, M. Nat. Struct. Mol. Biol., 1994, 1, 546. 

286. Ren, R.; Mayer, B. J.; Cicchetti, P.; Baltimore, D. Science, 1993, 259, 1157. 

287. Dalgarno, D.; Botfield, M.; Rickles, R. J. Pept. Sci., 1997, 43, 383. 



 
References 

 
 

 193 

288. Bartelt, R. R.; Light, J.; Vacaflores, A.; Butcher, A.; Pandian, M.; Nash, P.; Houtman, J. 
C. Biochim. Biophys. Acta, 2015, 1853, 2560. 

289. Nash, P., SH3 Domains. In Reference Module in Life Sciences, Elsevier: 2017. 

290. Ball, L. J.; Jarchau, T.; Oschkinat, H.; Walter, U. FEBS Lett., 2002, 513, 45. 

291. Su, J. Y.; Hodges, R. S.; Kay, C. M. Biochemistry, 1994, 33, 15501−15510. 

292. Litowski, J.; Hodges, R. J. Pep. Res., 2001, 58, 477−492. 

293. Zorzi, A.; Deyle, K.; Heinis, C. Curr. Opin. Chem. Biol., 2017, 38, 24. 

294. Zhou, X.; Po, A. L. W. Int. J. Pharm., 1991, 75, 97. 

295. Baeriswyl, V.; Heinis, C. Protein Eng., Des. Sel., 2012, 26, 81. 

296. White, C. J.; Yudin, A. K. Nat. Chem., 2011, 3, 509. 

297. Bock, V. D.; Perciaccante, R.; Jansen, T. P.; Hiemstra, H.; van Maarseveen, J. H. Org. 
Lett., 2006, 8, 919. 

298. Turner, R. A.; Oliver, A. G.; Lokey, R. S. Org. Lett., 2007, 9, 5011. 

299. Lécaillon, J.; Gilles, P.; Subra, G.; Martinez, J.; Amblard, M. Tetrahedron Lett., 2008, 49, 
4674. 

300. Meutermans, W. D.; Golding, S. W.; Bourne, G. T.; Miranda, L. P.; Dooley, M. J.; 
Alewood, P. F.; Smythe, M. L. J. Am. Chem. Soc., 1999, 121, 9790. 

301. Miller, S. J.; Blackwell, H. E.; Grubbs, R. H. J. Am. Chem. Soc., 1996, 118, 9606. 

302. Chapman, R. N.; Dimartino, G.; Arora, P. S. J. Am. Chem. Soc., 2004, 126, 12252. 

303. Rohrbacher, F.; Deniau, G.; Luther, A.; Bode, J. W. Chem. Sci., 2015, 6, 4889. 

304. Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. Science, 1994, 266, 776. 

305. Clark, R. J.; Craik, D. J. J. Pept. Sci., 2010, 94, 414. 

306. Yan, L. Z.; Dawson, P. E. J. Am. Chem. Soc., 2001, 123, 526. 

307. Camarero, J. A.; Cairó, J. J.; Giralt, E.; Andreu, D. J. Pept. Sci., 1995, 1, 241. 

308. Antos, J. M.; Truttmann, M. C.; Ploegh, H. L. Curr. Opin. Struct. Biol., 2016, 38, 111. 

309. Thongyoo, P.; Roqué-Rosell, N.; Leatherbarrow, R. J.; Tate, E. W. Org. Biomol. Chem., 
2008, 6, 1462. 

310. Nguyen, G. K.; Wang, S.; Qiu, Y.; Hemu, X.; Lian, Y.; Tam, J. P. Nat. Chem. Biol., 2014, 
10, 732. 

311. Yang, R.; Wong, Y. H.; Nguyen, G. K.; Tam, J. P.; Lescar, J.; Wu, B. J. Am. Chem. Soc., 
2017, 139, 5351. 

312. Nuijens, T.; Toplak, A.; Quaedflieg, P. J. L. M.; Drenth, J.; Wu, B.; Janssen, D. B. Adv. 
Synth. Catal., 2016, 358, 4041. 



 
References 

 
 

 194 

313. Toplak, A.; Nuijens, T.; Quaedflieg, P. J. L. M.; Wu, B.; Janssen, D. B. Adv. Synth. Catal., 
2016, 358, 2140. 

314. Schmidt, M.; Toplak, A.; Quaedflieg, P. J. L. M.; Ippel, H.; Richelle, G. J. J.; Hackeng, T. 
M.; van Maarseveen, J. H.; Nuijens, T. Adv. Synth. Catal., 2017, 359, 2050. 

315. Gruber, M.; Lupas, A. N. Trends Biochem. Sci, 2003, 28, 679. 

316. Brown, J. H.; Cohen, C.; Parry, D. A. Proteins: Struct., Funct., Bioinf., 1996, 26, 134. 

317. Read, R. J.; Adams, P. D.; Arendall, W. B., 3rd; Brunger, A. T.; Emsley, P.; Joosten, R. P.; 
Kleywegt, G. J.; Krissinel, E. B.; Lutteke, T.; Otwinowski, Z.; Perrakis, A.; Richardson, J. 
S.; Sheffler, W. H.; Smith, J. L.; Tickle, I. J.; Vriend, G.; Zwart, P. H. Structure, 2011, 19, 
1395. 

318. Chen, V. B.; Arendall, W. B., 3rd; Headd, J. J.; Keedy, D. A.; Immormino, R. M.; Kapral, 
G. J.; Murray, L. W.; Richardson, J. S.; Richardson, D. C. Acta Crystallogr. Sect. D. Biol. 
Crystallogr., 2010, 66, 12. 

319. Wang, G.; Dunbrack, R. L. Bioinformatics, 2003, 19, 1589. 

320. Kumar, P.; Bansal, M. Acta Crystallogr. Sect. D. Biol. Crystallogr., 2015, 71, 1077. 

321. Kabsch, W.; Sander, C. Biopolymers, 1983, 22, 2577. 

322. Frishman, D.; Argos, P. Proteins, 1995, 23, 566. 

323. Mansiaux, Y.; Joseph, A. P.; Gelly, J. C.; de Brevern, A. G. PLoS One, 2011, 6, e18401. 

324. Lapenta, F.; Aupič, J.; Strmšek, Ž.; Jerala, R. Chem. Soc. Rev., 2018, 47, 3530. 

325. Hong, F.; Zhang, F.; Liu, Y.; Yan, H. Chem. Rev., 2017, 117, 12584. 

326. Huang, P.-S.; Feldmeier, K.; Parmeggiani, F.; Velasco, D. A. F.; Höcker, B.; Baker, D. 
Nat. Chem. Biol., 2016, 12, 29. 

 



 
 

 

 


