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Distribution of Cell Area in Bounded Poisson

Voronoi Tessellations with Application to

Secure Local Connectivity
Konstantinos Koufos and Carl P. Dettmann

Abstract

Poisson Voronoi tessellations have been used in modeling many types of systems across different sciences,

from geography and astronomy to telecommunications. The existing literature on the statistical properties of Poisson

Voronoi cells is vast, however, little is known about the properties of Voronoi cells located close to the boundaries of

a compact domain. In a domain with boundaries, some Voronoi cells would be naturally clipped by the boundary, and

the cell area falling inside the deployment domain would have different statistical properties as compared to those of

non-clipped Voronoi cells located in the bulk of the domain. In this paper, we consider the planar Voronoi tessellation

induced by a homogeneous Poisson point process of intensity λ>0 in a quadrant, where the two half-axes represent

boundaries. We show that the mean cell area is less than λ−1 when the seed is located exactly at the boundary, and

it can be larger than λ−1 when the seed lies close to the boundary. In addition, we calculate the second moment

of cell area at two locations for the seed: (i) at the corner of a quadrant, and (ii) at the boundary of the half-plane.

We illustrate that the two-parameter Gamma distribution, with location-dependent parameters calculated using the

method of moments, can be of use in approximating the distribution of cell area. As a potential application, we

use the Gamma approximations to study the degree distribution for secure connectivity in wireless sensor networks

deployed over a domain with boundaries.

Index Terms

Clipped Voronoi cells, physical layer security, Poisson Voronoi tessellations, stochastic geometry.

I. INTRODUCTION

A random tessellation is a random subdivision of a space into disjoint regions or cells Ci, see [1], [2] for a formal

definition. Perhaps the most basic random tessellation model partitions the plane R2 into Voronoi cells. In order

to construct them, a set of random nuclei (or seeds) Si are first distributed, and then, the locations of the plane

are associated with the nearest seed for the Euclidean distance. The boundaries of the Voronoi cells are equidistant

to the two nearest seeds, while the vertices of the tessellation are equidistant to the three nearest seeds. When the
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seeds are distributed randomly with intensity λ>0, i.e., a Poisson Point Process (PPP), the random tessellation is

widely-known as the Poisson Voronoi Tessellation (PVT) [1], [2].

Since the concept of Voronoi tessellations is quite fundamental, it accepts a wide range of applications across the

sciences. In seismology, the seeds may represent epicentral locations of earthquakes. The tapered Pareto distribution,

which favours the extreme events less than the Pareto distribution, was found to model well the distribution of

Voronoi cell areas [3]. In biology, the seeds may represent nest sites. The area of influence (area of Voronoi cell)

was found to carry important biological information, e.g., it can be used as a measure for the breeding success [4]. In

astrophysics, the seeds may represent galaxies, and the area of a cell can be used to estimate the density of galaxies

at that location. Adjacent cells with density higher than a threshold are grouped together, thereby clusters of galaxies

can be separated from the background [5]. Voronoi tessellations are also useful for data partition, visualization and

analysis, because they carry more information in comparison with their binned data counterparts [6]. Recently,

Voronoi binning has also been proposed for analyzing the outcome of high-energy particle colliders. Each outcome

is represented by a point in the phase space, labelled with information about momentum of particles, etc. The point

process governing the resulting tessellation is in general a non-homogeneous PPP. The relative standard deviation

of the area of neighboring Voronoi cells could be used as an indicator for identifying the edge cells, which separate

regions of different intensities in the phase space. In this way, different outcomes can be categorized [7].

The statistical properties of planar PVTs, e.g., cell area, perimeter, vertex degree, etc. have been studied since

the early 1950’s [8], [9]. The Probability Distribution Function (PDF) of the area of the typical (randomly selected)

cell in a planar PVT is unknown, and approximations using the Gamma and the log-normal distribution with

appropriately selected parameters have been widely adopted [10]–[13]. The quality of these approximations has

been mostly established by simulations. An intuitive explanation for the good fit of the Gamma distribution, based

on the distribution of nearest neighbors for a planar PPP, is claimed in [10]. In order to avoid heavy simulations,

an integral-based method is devised in [14], which is used to compute various second-order statistics of the PVT

including the edge length, the PDFs of the distance and angle between neighboring seeds and vertices, the area

of the typical cell, etc. Unlike the PVT, the distribution of cell area in planar Poisson Delaunay tessellation (the

dual graph of the Voronoi diagram) is known; it can be expressed in terms of the modified Bessel function [15].

For three-dimensional Delaunay cells, some properties of geometrical characteristics are available in [16]. For the

statistical properties of three-dimensional Voronoi cells, see [17] and references therein.

If we would like to partition a bounded domain into Poisson Voronoi cells, some of the cells would be naturally

clipped by the boundaries, see for instance [18, Fig. 1]. In practice, we would be mostly interested in the parts

of the cells falling inside the domain, i.e., the intersection of the PVT and the domain. Intuitively, the statistics,

e.g., cell area, of the clipped cells which are located close to the boundaries, would be different in comparison

with those located in the bulk (non-clipped cells). We are motivated to study the distribution of the area falling

within the deployment domain for clipped Voronoi cells, because wireless communication networks are embedded

in domains with boundaries. Since the Voronoi partition of any closed object gives rise to clipped cells, other

potential applications are also evident.

In wireless communication networks, PVTs have been used to describe the coverage area of base stations
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and/or sensors deployed in an irregular structure. The coverage area calculated in this way ignores the impact

of fading in the wireless channel, the interference and the transmit power level, which might be different at

different locations. Nevertheless, the PVT is widely accepted by network engineers, and it is often used to get

input into more complicated models including interference, e.g., the shot noise [19]. The Gamma approximation for

the distribution of cell area in planar PVTs without boundaries has been used so far in cellular systems studies, e.g.,

by converting cell area distribution to network load distribution for a typical (randomly selected) base station [20],

as well as in Wireless Sensor Networks (WSN), e.g., to investigate the PDF of the number of secure communication

links towards an Access point (AP) [21]; a more detailed explanation for secure connectivity would be presented

in Section V. These studies use the Gamma parameters suggested in [13], etc., which correspond to a PVT in

R2, or equivalently, to wireless networks with infinite extent. This assumption might not be representative for all

communication scenarios and/or for all the base stations in the network. For instance, realizing that most of the

wireless data traffic is consumed indoors, we witness nowadays the deployment of low-power base stations inside

buildings and shopping malls. Similarly, WSNs are deployed indoors to collect and communicate data measurements

necessary for automated applications. In this kind of scenarios, it might not be possible to neglect boundary effects.

In this paper, we consider a homogeneous PPP S of finite intensity λ over the quadrant R2
+, where the two

half-axes represent physical boundaries. The points (or seeds) of the process are denoted by Si, i = 1, 2, . . . We

also assume an additional point S0, which is arbitrarily fixed either at the boundary or close to that. Let us denote

by C0 the Voronoi cell centered at S0 with respect to the set S ∪ {S0}. Firstly, we compute the mean area for the

Voronoi cell C0 falling inside the quadrant. We show that it can be smaller or larger than λ−1, depending on the

location of the seed S0. On the other hand, in R2, the mean area of Voronoi cells is λ−1. Secondly, we extend

the method of [14] to compute the second moment of the area, after fixing S0 either at the corner of the quadrant

or at the boundary and far from the corner. The latter can be seen as a PVT in the half-plane with the point S0

located at the boundary. In both cases, we illustrate that the two-parameter Gamma distribution with fitted mean and

variance using the method of moments can be a useful approximation for the distribution of the area of C0 falling

inside the domain. The parameters of the Gamma approximation depend on the location of S0. Even though the

distribution of the area is not exactly Gamma, as we will see a discrepancy around the peak, the approximations can

be incorporated into certain applications introducing negligible errors. For instance, we will use the approximations

in WSNs to study the distribution of the number of sensors with secure connection to and from an AP in the

presence of eavesdroppers.

In a recent paper [22], it has been shown that the asymptotic distribution (as the number of points tending to

infinity) of the Voronoi cell area is independent of the location of the seed S0 (almost everywhere) and of the

intensity measure underlying the PPP, including also the case of inhomogeneous PPP. Our results complement the

analysis in [22], showing that for a PPP with finite intensity λ, the moments of the cell area are location-dependent

near the boundaries.

The rest of the paper is organized as following: In Section II, we present the notation. In Section III, we prove

the main outcome of this paper, i.e., in clipped PVTs, the mean cell area falling inside the deployment domain is

location-dependent. In Section IV, we show how to calculate the variance of cell area using numerical integration,
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S
0

Fig. 1. The dots represent a realization of a PPP of unit intensity λ= 1. Seed S0 (asterisk) is added along the boundary at (1, 0), or a= 1.

The Voronoi cell C0 is clipped from the boundaries. The area of C0 inside the quadrant is colored.

and we identify the parameters for the gamma PDF approximating the cell area distribution for seeds fixed at

the boundary. In Section V, we use the gamma approximation to study properties for the secrecy graph in WSNs

deployed in domains with borders. In Section VI, we conclude this study.

II. POISSON VORONOI TESSELLATION OVER A QUADRANT

We consider a PPP of unit intensity (without loss of generality) over the quadrant [0,∞) × [0,∞). We denote

by S the set of points Si, i=1, 2, . . . generated by the process. In addition, we place a point S0 at a fixed location,

either (i) along the boundary at distance a≥ 0 from the corner of the quadrant or, (ii) at distance h≥ 0 from the

boundary of the half-plane. The latter can also be seen as the case where S0 is located far from the corner of the

quadrant and at distance h from the boundary. We consider the intersection of the Voronoi tessellation with respect

to the set S ∪ {S0} and the quadrant. Let C0 be the Voronoi cell of seed S0. Due to the fact that S0 is located at

the boundary or close to that, the cell C0 would be probably clipped. We are interested in the distribution (over all

realizations of the PPP S) of the area of C0 falling inside the quadrant, see Fig. 1 for a snapshot. Note that due to

Slivnyak’s Theorem [23], the properties of S0 in the process S ∪ {S0} are the same with those of Si, i∈{1, 2, . . .}

in the PPP S, conditioned on Si located at S0.

Let us consider a general point P ∈ R2
+ with polar coordinates (r, φ). The point P can be interior to some Voronoi

cell, at the boundary separating two cells, or it can also be a vertex. Adopting the terminology used in [14], we

define the void of P to be the intersection of the quadrant R2
+, and the disk D with center P and radius equal

to the distance d between P and the nearest seed(s), D (P,mini d (P, Si)) , i= 0, 1, 2, . . . The area of the void is

denoted by V (P ). We denote by A the area of the cell C0 falling inside the quadrant. In the next section, we show

how to calculate the mean area E {A}.

June 15, 2019 DRAFT
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(a) (b)

(c) (d)

Fig. 2. Coordinate systems and example illustrations of the void area of a point P interior to Voronoi cell C0. In (a)−(c) the seed S0 is located

at distance a from the corner of the quadrant. In (d), the seed S0 is located at distance h from the boundary of the half-plane. The void is the

white-colored part of the disk D(P, d(P, S0)); note the colored area clipped by the boundaries.

III. MEAN CELL AREA E{A}

In order to compute E {A}, we should identify the probability that a point P ∈ R2
+ is interior to the cell

C0, and integrate this probability over the quadrant. The point P is interior to C0 when the seed S0 lies on the

circumference of the void of P . Since the underlying PPP has unit intensity, this occurs with probability e−V (P ),

where V (P )=
∣∣D (P, d (P, S0)) ∩ R2

+

∣∣. The mean cell area can be read as

E {A}=E

[∫
R2

+

1P∈C0dP

]
=

∫
R2

+

P (P ∈ C0) dP =

∫
R2

+

e−V (P )dP,

where 1 is the indicator function, equal to one for all points P ∈ C0 and zero otherwise.

Let us assume that S0 is located at the boundary of the quadrant and at distance a from the corner. Given a, we

separate between the following cases in the calculation of V (P ):
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• r ≥ a/2, φ ≤ φ1, see Fig. 2a. For φ = φ1, the void of P becomes tangential to the boundary along the y-axis.

In order to calculate φ1 we note that d= r cosφ1. In addition, d=
√
r2 + a2 − 2ar cosφ1. Solving for the

positive φ1, we end up with φ1 = arccos
(
−a+

√
2a2+r2

r

)
. For φ ≤ φ1, the boundary along the x-axis cuts

some part of the disk D(P, d). The angle ω in Fig. 2a can be calculated as ω = arccos
(
r sinφ
d

)
, and the area

of the void, denoted by V1, is

V1 = πd2 − ωd2 + r sinφ |r cosφ− a| . (1)

• r ≥ a/2, φ1 ≤ φ ≤ φ2, see Fig. 2b. For φ=φ2, the edge of the disk D (P, d) passes through the corner of the

quadrant, and d=r. In addition, d =
√
r2 + a2 − 2ar cosφ2, hence, φ2 = arccos

(
a
2r

)
. For φ1 ≤ φ ≤ φ2, both

boundaries along the x- and y-axis determine the void, see Fig. 2b. In Fig. 2b, ω1 = ω, ω2 = arccos
(
r cosφ
d

)
,

and the area of the void, V2, is

V2 = πd2 − (ω1 + ω2) d2 + r sinφ |r cosφ− a|+ rd cosφ sinω2. (2)

• r ≥ a/2, φ2 ≤ φ ≤ π/2. In that case, see Fig. 2c, the area of the void, denoted by V3, can be calculated as the

sum of a trapezium, a triangle and a circular domain with radius d and angle
(

3π
2 − ω3 − ω4

)
, where ω3 = ω2

and ω4 = ω. Hence,

V3 =
1

2
r sinφ (r cosφ+ a) +

1

2
rd cosφ sinω3 +

3π
2 − ω3 − ω4

2π
πd2. (3)

• r ≤ a/2, φ ≤ π/2. In that case, φ1 = φ2 = 0, and the void of P always contains the corner of the quadrant

in its interior. The area of the void is still given by equation (3).

Finally, one has to sum up the four terms to consider all points in the quadrant.

E {A}=

∫ φ1

0

∫ ∞
a
2

e−V1rdrdφ+

∫ φ2

φ1

∫ ∞
a
2

e−V2rdrdφ+

∫ π
2

φ2

∫ ∞
a
2

e−V3rdrdφ+

∫ π
2

0

∫ a
2

0

e−V3rdrdφ. (4)

Lemma 1. For a PVT induced by a unit-intensity PPP in the quadrant R2
+, the mean area of the cell C0 falling

inside the quadrant is
arccos( 2

π )√
π2−4

when the seed S0 is located at the corner.

Proof. When the seed S0 is located at the corner of the quadrant, one may substitute a= 0, φ1 = 0 and φ2 =π/2

in equation (4). Therefore the area of the void of P is essentially computed from equation (2) after substituting

d = r, ω1 = π
2 − φ and ω2 = φ. Finally we get V (P )=

(
π
2 +sin(2φ)

)
r2, and the mean cell area can be read as

E {A} =

∫ π/2

0

∫ ∞
0

e−r
2(π2 +sin(2φ))rdrdφ =

arccos
(

2
π

)
√
π2 − 4

≈ 0.36351. (5)

Lemma 2. For a PVT induced by a unit-intensity PPP in the quadrant R2
+, the mean area of the cell C0 falling

inside the quadrant is less than unity when the seed S0 is located at the boundary.

Proof. In order to compute an upper bound (which is less than unity) of equation (4) for arbitrary a≥0, we change

the coordinate system so that the seed S0 becomes the origin, and we construct lower bounds for the areas of the

void of P , which can be evaluated in closed- and/or semi-closed form. We will consider all points P ∈ R2
+. Note

that the coordinates of the boundaries of the quadrant is x=−a and y=0 in the new coordinate system, see Fig. 3.
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(a) (b) (c)

Fig. 3. Example illustrations in the calculation of the upper bound for the mean area E{A} in Lemma 2.

When r≥ 0, 0≤ φ≤ π
2 , see Fig. 3a, we construct a lower bound for the area of the void considering that the

y-axis, x= 0, see the dashed line in Fig. 3a, is a boundary. Thus, the mean cell area E{A} due to these points

P (r, φ) is actually upper-bounded by equation (5).

In order to bound the area of the void for 0≤ r≤ a, π2 ≤ φ≤ π, see Fig. 3b, we use the area of the rectangle

with sides a and 2r sinφ. Thus, the mean cell area E{A} due to these points P (r, φ) is upper-bounded by∫ a

0

∫ π

π
2

e−2ar sinφrdrdφ = −π
4
M1

(
2a2
)
,

where Mν(x) is the modified Struve function of the second kind, Mν(x) = Lν(x) − Iν(x), where Lν(x) is the

modified Struve function of the first kind, see [30, pp. 498], and Iν(x) is the modified Bessel function of the first

kind, see [30, pp. 374].

For the remaining points, i.e, r>a, π2 ≤φ≤π−arccos
(
a
r

)
, see Fig. 3c, a lower bound on the area of the void is

obtained by considering just the quarter of the disk D(P, r). Hence, the mean cell area E{A} due to these points

P (r, φ) is upper-bounded by∫ ∞
a

∫ π−arccos( ar )

π
2

e−
π
4 r

2

rdφdr = e−
a2π
4 − Erfc

(
a
√
π

2

)
,

where Erfc(x)= 2√
π

∫∞
x
e−t

2

dt is the complementary error function.

After summing up the contributions from the three parts of the quadrant we get

E{A}<e− a
2π
4 − Erfc

(
a
√
π

2

)
− π

4
M1

(
2a2
)

+
arccos

(
2
π

)
√
π2 − 4

. (6)

The upper bound in (6) can be evaluated at arbitrary precision, and it is less than unity for all a≥0, see the red

line in Fig. 4a. As a→∞, the Struve function converges to lima→∞M1

(
2a2
)

=− 2
π , and the bound converges to

1
2 +

arccos( 2
π )√

π2−4
.

Lemma 3. For a PVT induced by a unit-intensity PPP in the half-plane, the mean area of cell C0 within the

half-plane is less than unity when the seed S0 is located at the boundary.
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Fig. 4. The integral-based calculation in equations (4) and (8) is verified by simulations. 10 000 simulation runs per marker. Mean cell area

E{A} w.r.t. (a) the distance a from the corner of the quadrant, (b) the distance h from the boundary of the half-plane. The intensity of the

PPP is λ= 1. In the simulations, we consider a square with side L= 10. The PVT and the area of the cell C0 falling inside the square are

simulated using MatLab toolboxes. Given the set of seeds Si, i=0, 1, 2, . . ., the algorithm identifies the vertices of the tessellation, the boundary

intersection points, and calculates the area of the polygon within the square associated with the cell C0. In the simulations for varying h, the

coordinates of the seed S0 are
(
L
2
, h

)
.

Proof. We take a coordinate system where the seed S0 is the origin. The area of the void for points with coordinates

r ≥ 0, 0 ≤ φ ≤ π/2 can be calculated using equation (1) after substituting d=r, a=0 and ω= π
2 − φ. After some

straightforward calculation we get

E{A} = 2

∫ π/2

0

∫ ∞
0

e−r
2(π2 +φ+sin(φ) cos(φ))rdrdφ=

∫ π/2

0

2dφ

π+2φ+sin (2φ)
≈ 0.61082, (7)

where we have multiplied by 2 to account for the angles π/2 ≤ φ ≤ π.

One may also note that E{A}<
∫ π

2

0
2dφ
π+2φ =log(2)<1. Another way to prove that E{A}<1 is to take the limit of

the bound in (6) as a→∞, resulting to E{A}< 1
2 +

arccos( 2
π )√

π2−4
<1.

Remark 1. A rather loose lower bound to equation (4) is obtained after neglecting the impact of boundaries

on the area of the disks D(P, d), and substituting V1 = V2 = V3 = πd2 in equation (4). Finally, E {A} >

1
4 (1 + Erf (a

√
π)) ∀a≥0, where Erf (x)= 2√

π

∫ x
0
e−t

2

dt is the error function.

The computation of the mean cell area E{A} for varying a using (4) is validated in Fig. 4a. One may also find

there the lower bound, see Remark 1, and the upper bound, see (6). For large a, the mean converges to the value

given in (7). For small a, e.g., a≤ 1
2 , the vertical boundary reduces significantly the mean cell area. For intermediate

values of a, e.g., 1≤a≤2, the mean cell area is large when the cell C0 contains also the corner of the quadrant in

its interior.

Let us now assume that the seed S0 is located at distance h from the boundary of the half-plane, see Fig. 2d.

In order to simplify the integration, the origin of the coordinate system is the point at the boundary nearest to S0,
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φ
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(a)
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r

h

φ

(b) (c)

Fig. 5. Example illustrations in the calculation of the lower bound for the mean cell size in Lemma 4.

thus the polar coordinates of S0 become
(
h, π2

)
. Following similar steps used to obtain equations (1)−(4), one can

show that the mean cell area is

E {A} = 2

∫ φ0

0

∫ ∞
h/2

e−V1rdrdφ+ 2

∫ π/2

φ0

∫ ∞
h/2

e−V2rdrdφ+ 2

∫ π/2

0

∫ h/2

0

e−V1rdrdφ, (8)

where V1 =
(
π−ω+ sin(2ω)

2

)
d2, V2 =πd2, d=

√
r2+h2−2hr sinφ, φ0 =arcsin

(
−h+
√

2h2+r2

r

)
, ω=arccos

(
r sinφ
d

)
,

and the factor 2 has been added to account for angles π/2 ≤ φ ≤ π.

Lemma 4. For a PVT induced by a unit-intensity PPP in the half-plane, the mean area of the cell C0 falling in

the half-plane can be larger than unity when the seed S0 lies close to boundary.

Proof. We look for a lower bound on the mean area A which is larger than unity. First, we note that the lower

bound obtained by setting V1 =V2 =πd2 in equation (8) is equal to 1
2 (1 + Erf (h

√
π))∀h≥ 0. This is increasing

in h becoming unity as h→∞, thus cannot be used to claim mean cell area larger than unity. In order to obtain

another lower bound to equation (8), we start by changing the coordinate system so that the seed S0 becomes the

origin. In the new system, see the dashed lines in Fig. 5a−5c, the coordinates of the boundary is y=−h. Then,

we will construct appropriate upper bounds for the area of the void. Note that the void of a general point P in the

quadrant is now the intersection of the half-plane and of the disk centered at P with radius equal to the distance

between P and the nearest seed(s).

When r ≥ 0, 0 ≤ φ ≤ π
2 , see Fig. 5a, we may neglect the impact of boundary on the area of the void with

negligible approximation error, thus the mean cell area E{A} due to these points P (r, φ) is lower-bounded by

2

∫ ∞
0

∫ π
2

0

e−πr
2

rdrdφ =
1

2
.

When r ≤ h, −π2 ≤ φ≤ 0, see Fig. 5b, we still neglect the impact of boundary on the area of the void. This

approximation may introduce non-negligble error for the points with radii h
2 ≤r≤h.

2

∫ h

0

∫ 0

−π2
e−πr

2

rdrdφ =
1

2

(
1− e−πh

2
)
.

Finally, for the remaining points r ≥ h, − arcsin
(
h
r

)
≤ φ ≤ 0, see Fig. 5c, the area of the void is V (P ) =(

π
2 + ω + cosω sinω

)
r2, where ω(φ) = arcsin

(
h
r + sinφ

)
. Due to the fact that 1

2 sin(2x) < x for x ≥ 0, the
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area can be upper-bounded by V (P ) ≤
(
π
2 + 2ω

)
r2. For r ≥ h,−π2 ≤ − arcsin

(
h
r

)
≤ φ ≤ 0, the function ω(φ)

is increasing in φ with positive second derivative. Hence, V (P ) ≤
(
π
2 + 2

(
arcsin

(
h
r

)
+ φ

))
r2. Therefore the

contribution of these points to the mean cell area can be lower-bounded as∫ ∞
h

∫ 0

− arcsin(hr )
e−(π2 +2(arcsin(hr )+φ))r2rdφdr =

1

2
Ei
(
πh2

2

)
−
∫ ∞
h

1

r
e−( 3π

2 −2 arccos(hr ))r2dr,

where Ei(x)=
∫∞
x

e−t

t dt, x>0 is the exponential integral.

In order to lower bound the right-hand side of the equation above, we need to upper bound the second term. A

rather trivial upper bound is obtained using a piecewise function to upper-bound arccos
(
h
r

)
, i.e, π

3 for h≤r≤2h

and π
2 for r>2h. ∫ ∞

h

1

r
e−( 3π

2 −2 arccos(hr ))r2dr<
1

2

(
Ei
(

5πh2

6

)
− Ei

(
10πh2

3

)
+ Ei

(
2πh2

))
After summing up the contributions from the three parts of the half-plane we get

E {A} > 1− 1
2e
−πh2

+ 1
2

(
Ei
(

10πh2

3

)
− Ei

(
5πh2

6

)
+ Ei

(
πh2

2

)
− Ei

(
2πh2

))
. (9)

The right-hand side of (9) can be evaluated at arbitrary precision. When the distance h to the boundary is around

h=1, we observe mean cell sizes larger than unity, see Fig. 4b.

Remark 2. In Fig. 4, we see that the integral-based calculation matches quite well the simulation results even for

a moderate average number of points, λL2 =100, inside the square where the simulated PVTs are generated. Note

that the probability that the cell C0 touching opposite sides of the square is at most exp
(
−λπL2/8

)
, thus negligible

for our parameter settings.

IV. SECOND MOMENT OF CELL AREA E
{
A2
}

In order to calculate the second moment of the cell area, one has to consider two points P1(r1, φ1) , P2(r2, φ2)

interior to the cell C0 and average over their locations.

E
{
A2
}

=

∫
R2

+×R2
+

P (P1, P2 ∈ C0) dP1dP2 =

∫
R2

+×R2
+

e−V (P1,P2)dP1dP2,

where V (P1, P2)=
∣∣(D (P1, d (P1, S0)) ∪D (P2, d (P2, S0))) ∩ R2

+

∣∣ is the area of the intersection of two disks and

the quadrant, and the points S0, P1, P2 cannot be collinear.

In the infinite plane, the calculation of the second moment using integral-based methods can be found in [14],

[24]. The computation of V (P1, P2) in a bounded domain is cumbersome. Nevertheless, when the seed S0 is fixed

either at the corner of the quadrant, a=0, or at the boundary of the half-plane, h=0, the second moment can be

calculated using few integral terms.

Lemma 5. For a PVT induced by a unit-intensity PPP in the quadrant R2
+, the second moment of the area of C0

falling inside the quadrant when the seed S0 is located at the corner is

E
{
A2
}

=

∫ π
2

0

∫ θ

θ−π2

∫ π
2−θ

−ω1

f (ω1, ω2) dω2dω1dθ

V 2
1

+2

∫ 0

−π2

∫ θ

−π2

∫ π
2

−ω1

f (ω1, ω2) dω2dω1dθ

V 2
2

,
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(a) (b)

(c) (d)

Fig. 6. Coordinate systems and example illustrations of the void of two points P1, P2 when the seed S0 is located at the corner.

where V1 = 2θ+sin(2(θ−ω1))+sin(2ω1)
2 cos2 ω1

+π−2θ+sin(2(θ+ω2))+sin(2ω2)
2 cos2 ω2

, V2 = π+2 sin(2(θ+ω2))
2 cos2 ω2

, and f (ω1, ω2)= sin(ω1+ω2)
cos3 ω1 cos3 ω2

.

Proof. We transform the coordinate system as follows: (z, θ) are the polar coordinates of the point Q which is the

intersection point of the line passing through P1, P2 and its perpendicular line passing through the origin S0, ω1

is the angle QS0P1 measured clockwise, and ω2 is the angle QS0P2 measured counter-clockwise, see Fig. 6 for

example illustrations. The transformation can be read as φ1 = θ−ω1, φ2 = θ+ω2, r1 = z
cosω1

and r2 = z
cosω2

. The

determinant of the Jacobian matrix of the transformation is |J |=z3f (ω1, ω2), where f (ω1, ω2)= sin(ω1+ω2)
cos3 ω1 cos3 ω2

.

Due to the fact that r1 = z
cosω1

and r2 = z
cosω2

, the area of the void V (P1, P2) can be written as Vjz
2,

where Vj is the area of the void normalized for z = 1. After integrating the probability that the seed S0 is at

the edge of the void, e−Vjz
2

, we have E
{
A2
}

=
∫
e−Vjz

2

z3f (ω1, ω2) dP1dP2. Integrating over z ≥ 0, we get

E
{
A2
}

=
∫ f(ω1,ω2)

2V 2
j

dω2dω1dθ.

In the infinite plane, i.e., in the bulk of the domain, the normalized area of the void is

V =
π + 2ω1 + sin (2ω1)

2 cos2 ω1
+
π + 2ω2 + sin (2ω2)

2 cos2 ω2
,

resulting to E
{
A2
}
≈1.28 [14], [24].
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When the seed S0 is located at the corner, even though both points P1, P2 are located within the quadrant, the

angle θ can take values in
[
−π2 , π

]
. The range of the variables ω1, ω2 depend on the quadrant where the point Q

lies. Therefore the computation of the void can be divided into three parts. When the point Q lies in the upper-right

quadrant, the angles ω1, ω2 could be positive or negative. Example illustrations are in Fig. 6a, where the angle ω2

is positive and in Fig. 6b, where ω2 is negative. In both figures, ω1 is positive. In order to calculate the area of the

void, we take the disk generated by P1 and subtract: (i) the shaded area under the x-axis, and (ii) the part of the

disk at the left of the line passing through S0 and Q. In a similar manner, we can calculate the contribution to the

void due to the point P2. After summing up we get

V1 =
2θ + sin (2 (θ − ω1)) + sin (2ω1)

2 cos2 ω1
+
π − 2θ + sin (2 (θ + ω2)) + sin (2ω2)

2 cos2 ω2
.

When θ is negative, e.g., in Fig. 6c, ω1 becomes always negative and ω2 always positive. In Fig. 6c, we see

that the point P1 can be ignored, and the area of the void, denoted by V2, can be calculated based on P2, i.e.,

V2 = π+2 sin(2(θ+ω2))
2 cos2 ω2

. Finally, when π
2 ≤ θ ≤ π, see Fig. 6d, the area of the void depends only on P1, and

V3 = π+2 sin(2(θ−ω1))
2 cos2 ω1

. Due to symmetry, negative angles, θ ≤ 0 and angles larger than π
2 give equal contributions.

In addition, every integral term must be multipled by two to consider each pair of points twice and the Lemma is

proved.

Lemma 6. For a PVT induced by a unit-intensity PPP in the half-plane, the second moment of the size of the cell

C0 when the seed S0 is located at the boundary is

E
{
A2
}

=

∫ π
2

0

∫ θ

θ−π2

∫ π
2−θ

−ω1

2f(ω1, ω2)dω2dω1dθ

V 2
1

+

∫ π
2

0

∫ θ

θ−π2

∫ π
2

π
2−θ

2f(ω1, ω2)dω2dω1dθ

V 2
2

+∫ π
2

0

∫ θ−π2

−π2

∫ π
2

−ω1

2f (ω1, ω2) dω2dω1dθ

V 2
3

+

∫ 0

−π2

∫ θ

−π2

∫ π
2

−ω1

2f (ω1, ω2) dω2dω1dθ

V 2
4

,

where
V1 = 2θ+sin(2(θ−ω1))+sin(2ω1)

2 cos2 ω1
+ π+2ω2+sin(2ω2)

2 cos2 ω2

V2 = 2θ+sin(2(θ−ω1))+sin(2ω1)
2 cos2 ω1

+ 2π−2θ+sin(2ω2)−sin(2(θ+ω2))
2 cos2 ω2

V3 = π+2ω1+sin(2ω1)
2 cos2 ω1

+ 2π−2θ+sin(2ω2)−sin(2(θ+ω2))
2 cos2 ω2

V4 = π+2θ+2ω2+sin(2(θ+ω2))
2 cos2 ω2

.

Proof. We consider same coordinate system with Lemma 5, with the seed S0 being the origin. We separate between

angles −π2 ≤ θ ≤ π
2 and π

2 ≤ θ ≤ 3π
2 . Due to symmetry, it is sufficient to carry out the computation only

for −π2 ≤ θ ≤ π
2 . For 0 ≤ θ ≤ π

2 , all configurations of points P1, P2 can be divided into three cases: Both

points are located at the upper-right quadrant,
{
φ1 ≤ π

2 , φ2 ≤ π
2

}
, point P1 is located at the upper-right and point

P2 at the upper-left quadrant,
{
φ1 ≤ π

2 ,
π
2 ≤ φ2 ≤ π

}
, and both points are located at the upper-left quadrant,{

π
2 ≤ φ1 ≤ π, π2 ≤ φ2 ≤ π

}
. An example configuration for the first case is depicted in Fig. 7a, where the disk of

P2 is not anymore limited from a boundary along the y-axis, thus

V1 =
2θ + sin (2 (θ − ω1)) + sin (2ω1)

2 cos2 ω1
+
π + 2ω2 + sin (2ω2)

2 cos2 ω2
.
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(a) (b)

(c) (d)

Fig. 7. Coordinate systems and example illustrations of the void area around two interior points P1, P2 when the seed S0 is located at the

boundary of the half-plane.

In the second case, both disks due to P1 and P2 are truncated from the boundary, see Fig. 7b. After some

straightfoward calculation we get the size of the aggregate void,

V2 =
2θ + sin (2 (θ − ω1)) + sin (2ω1)

2 cos2 ω1
+

2π − 2θ + sin (2ω2)− sin (2 (θ + ω2))

2 cos2 ω2
.

In the third case, see Fig. 7c, only the disk of P2 is affected from the boundary

V3 =
π + 2ω1 + sin (2ω1)

2 cos2 ω1
+

2π − 2θ + sin (2ω2)− sin (2 (θ + ω2))

2 cos2 ω2
.

Finally, for θ < 0, see Fig. 7d, the void is determined only from P2 and V4 = π+2θ+2ω2+sin(2(θ+ω2))
2 cos2 ω2

. After

multiplying every term by four to consider angles π
2 ≤ θ ≤ 3π

2 and to count every pair of points twice and

summing up we get the result of the Lemma.

After numerical integration we get E
{
A2
}

= 0.23781 in Lemma 5 and E
{
A2
}

= 0.54508 in Lemma 6. The

associated mean values at the corner of the quadrant and at the boundary of the half-plane are given in equations (5)

and (7) respectively.

With the numerical calculation of the first two moments at hand, we may now select suitable distributions to

approximate the PDF of the cell area at different locations. The Gamma distribution has so far been widely used for
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TABLE I

FITTING THE GAMMA PDF TO THE DISTRIBUTION OF THE AREA A OF THE CELL C0 USING METHOD OF MOMENTS.

E{A} Var {A} k ν

Corner 0.36351 0.10567 1.25052 0.29069

Edge 0.61082 0.17198 2.16935 0.28157

Bulk 1 0.28018 3.56918 0.28018
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Fig. 8. Distribution of the area of the Voronoi cell C0 falling inside the quadrant at different locations of the seed S0 using simulations and the

Gamma distribution with parameters available in Table I. In the inset, we depict the approximation error between the simulated and approximated

CDF, i.e., Fsim−Fapp, where F is the CDF, at the corner (blue), at the edge (red) and in the bulk (black). It indicates that with the selected

parameters the distributions are not Gamma.

the PDF of the Voronoi cell area in the bulk, with two parameters in [10], [25] and with three parameters in [11].

In [10] the parameters k, ν of the Gamma PDF, x
k−1e−x/ν

νkΓ(k)
, are selected equal to k=ν−1 =3.61 using simulations,

and in [25], they are selected equal to k=ν−1 =3.575 using numerical integration. In [11], the maximum likelihood

function of the generalized Gamma PDF is numerically maximized given 107 data samples, resulting to the best

up-to-date fit of Voronoi cell area PDF in the bulk.

After fitting the moments to the two-parameter Gamma distribution, we end up with k= E{A}2
Var{A} and ν= E{A}

k .

The mean and the variance of the cell area A as well as the parameters k, ν when the seed S0 is located at the

corner of the quadrant, at the edge of the half-plane, and in the infinite plane (i.e. in the bulk) are summarized in

Table I. We see that the parameter k depends clearly on the location, while the parameter ν is not that sensitive.

In the bulk, the values we get for k, ν are close to those of [10], [25]. The parameterized Gamma distributions

at the corner and at the edge are to the best of our knowledge new. In Fig. 8, we have simulated 500 000 PVTs

over a square with side L= 10 and PPP intensity equal to unity. We see that the Gamma distribution with fitted

mean and variance provides a good approximation for the CDF of the area of C0 inside the square for all locations

of the seed S0. The simulated mean and variance at the corner are 0.36282 and 0.10571 respectively, while at

the edge the related values are 0.61037 and 0.17154. The error between the simulations and the approximations,
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Fig. 9. The simulated PDFs for the area of the Voronoi cell C0 and the Gamma approximation with parameters in Table I. 500 000 PVTs

simulations per location. In order to get smooth simulated points we consider class interval 0.08 for the bulk and the edge, and 0.04 for

the corner. For the bulk the Chi-squared test statistic at 5% significance level is 441.9 for the two-parameter Gamma and 109.3 for the

three-parameter Gamma, while the critical value with 55 degrees of freedom is 73.3. The estimates for the three-parameter Gamma PDF are

a=1.09735, b=2.91894, c=3.25367. For the edge, the Chi-squared statistic is approximately 239.9 for the two-parameter Gamma and 192.7

for the three-parameter Gamma, while the critical value with 45 degrees of freedom is 61.6. The estimates are a=1.11495, b=2.95131, c=

1.95004. Finally, for the corner, the Chi-squared statistic is approximately 1076 for the two-parameter Gamma and 964 for the three-parameter

Gamma, while the critical value with 75 degrees of freedom is 96.2. The estimates are a=0.98351, b=3.44063, c=1.24211. This is another

justification that for the selected parameters the distributions are not Gamma. In the insets, the absolute difference |fsim−fapp| is depicted,

where f stands for the PDF. The Chi-squared goodness-of-fit and the optimization using Quasi-Newton method have been done using MatLab

toolboxes.

see the inset of Fig. 8, and the Chi-squared goodness-of-fit test, see the caption in Fig. 9, indicate that the cell

area distributions are not actually Gamma. In Fig. 9, we note that the main source of approximation error comes

around the peak of the PDF for all locations, especially at the corner. Nevertheless, the two-parameter Gamma

approximations using method of moments should be adequate for use in many applications, see for instance the

next section. Note that the three-parameter Gamma approximation depicted in Fig. 9, axc−1e−bx
a
bc/a

Γ(c/a) , estimated

by maximizing the log-likelihood function using Quasi-Newton method, see also [11], provides better fit than the

Gamma distribution. The improvement, as compared to the two-parameter Gamma, is significant only for the bulk.

Also, the Chi-squared values at 5% significance level indicate that the true distribution is not the three-parameter

Gamma either.

The numerical calculation of the mean and the variance of the cell area for seeds located close to the boundary

and the corner of the quadrant involves very bulky integrals without getting any new insights. In Fig. 10, we have

simulated the contour plots for the mean and the standard deviation of cell area for a grid of seeds close to the corner

of the quadrant. The coordinates of the seed S0 are (i∆x, j∆y), where ∆x= ∆y= 0.3 and i = 0, 1, . . . , 10, j =

0, 1, . . . , 10. As expected, the mean and the variance of the cell area are maximized when the seed is located close

to the boundary and also close to the corner of the quadrant. In addition, we see in Fig. 10a that the mean cell

area converges quickly to unity as we move towards the bulk.

V. APPLICATION TO PHYSICAL LAYER SECURITY

In modern wireless communications systems, the confidentiality of information between a mobile user and the

base station is maintained with authentication and cryptography. The main idea of cryptographic techniques is to
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Fig. 10. Contour plots for (a) the mean, and (b) the standard deviation of the cell area A when the seed S0 is located close to the corner of

the quadrant. A grid of 11× 11 seeds is simulated with 10 000 simulations per seed.

share a secret key between the communication parties, which is used to encrypt source information at the transmitter

and extract the information messages at the receiver. Even if an eavesdropper manages to decode the transmitted

packets, it is very unlikely to extract any useful information from them, unless it possesses the decryption key,

see [26, Chapter 1] for more details.

Physical layer security without exchanging secret keys was first proposed by Wyner [27]. It refers to the protection

of information messages against eavesdropping using the uniqueness of the wireless channel between the sender

and the receiver [28]. Physical layer security would be well-suited for devices with light computational power, e.g.,

in certain types of wireless sensor networks (WSNs), where conventional cryptography-based techniques fail to

adapt due to their high complexity that incurs a high power cost [28].

Let us consider an entity B1 that wants to send a message to entity B2. The message is protected against the

i-th eavesdropper Ei, if the eavesdropper fails to extract useful information from the message it receives. We will

assume that B1 succeeds to send the message in a secure manner, if the distance between B1 and B2 is smaller than

the distance between B1 and the eavesdropper closest to B1, i.e., d (B1, B2) < d (B1, Ei)∀i. This distance-based

criterion for secure connectivity is quite fundamental as it corresponds to the case without fading in the wireless

channel, no interference, equal noise power levels at the legitimate users and the eavesdroppers, and secrecy rate

threshold equal to zero [21]. In [29], we have shown that boundaries can enhance physical layer security for a fixed

wireless link in the presence of a single eavesdropper without the above assumptions.

We consider two independent and homogeneous PPPs; one for the legitimate users, Πl, and another for the

eavesdroppers, Πe, with intensities λl and λe respectively. In addition, we place a node S0 at a fixed location,

either at the corner of the quadrant or at the edge of the half-plane. For instance, this could be the location of an

AP where all sensors (legitimate users) want to transmit measurement data. We would like to study the distribution

of the number of legitimate users with a secure connection to and from the AP, over the ensemble of all possible
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(a) AP at the bulk (b) AP at the boundary

Fig. 11. Example illustration for Voronoi tessellations generated by the PPP of the eavesdroppers (blue dots) and the AP (blue asterisk),

Πe∪{S0}. The number of legitimate users (black dots) with secure connection to the AP located in the bulk is two. The corresponding number

at the boundary is one. The part of the cell C0 falling inside the deployment domain is colored.

realizations of Πl,Πe. A legitimate user has secure connection to the AP, if their distance separation is smaller

than the distance between that user and any eavesdropper. The number of secure connections to the AP accepts

an elegant geometric interpretation using the PVT: It is equal to the number of legitimate users that fall inside the

Voronoi cell C0 of the point process Πe ∪ {S0} [21], see Fig. 11 for example illustrations. Conditioned on the area

A, the Random Variable (RV) describing the number of secure connections to the AP, Nin, follows the Poisson

distribution Po
(
λl
λe
A
)

, where we have to divide by the intensity of the eavesdroppers, λe, to consider the intensity

of the PPP generating the Voronoi tessellation. The mean and the variance of the RV Nin can be expressed in terms

of E {A} and E
{
A2
}

. One has to average the mean and variance of the Poisson distribution Po(pA) over A.

E {Nin} = pE {A} , p= λl
λe
.

Var {Nin} = pE {A}+ p2 E
{
A2
}
− p2E {A}2 .

(10)

Lemma 7. The probability that no legetimate user has secure connection to the AP can be approximated by 1
(1+p ν)k

,

where k, ν are parameters of the Gamma distribution shown in Table I.

Proof. The Probability Mass Function (PMF) of the RV Nin, fNin(n), is approximated by averaging the Poisson

PDF Po(pA) over the Gamma approximation for the PDF of the cell area.

fNin(n) ≈
∞∫

0

(pA)
n
e−pA

n!

Ak−1e−A/ν

νkΓ (k)
dA=

(p ν)
n

Γ (k + n)

n! Γ (k) (1 + p ν)
n+k

.

After setting n=0 in the above approximation we get the desired result.

The approximation for the CDF of the RV Nin can be expressed in terms of the Gaussian hypergeometric function
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Fig. 12. The simulated CDF of the RV Nin at different locations S0 for the AP. The intensities for the legitimate users and the eavesdroppers

are λl=10 and λe=1. In the simulations, we consider a square with side L=10 and we place S0 at the corner (0, 0), at the edge (L/2, 0),

and in the middle of the square (L/2, L/2). 20 000 simulations per location. In the approximations, we have used (11) with parameters k, ν

available in Table I for the different locations of S0.

2F1 [30, pp. 556]

FNin(n) ≈ 1−
(p ν)

1+n
Γ (1+k+n) 2F1

(
1, 1+k+n, 2+n; p ν

1+p ν

)
(1+p ν)

1+k+n
Γ (k) Γ (2+n)

. (11)

In Fig. 12 we illustrate the approximation accuracy of (11) at the corner, at the edge and in the bulk, with

parameters k, ν available in Table I. We see very good agreement with the simulated CDFs. Let us denote by

Nout the RV describing the number of legitimate users where the AP can securely transmit to. Following the same

distance-based rule, the AP can securely transmit to a legitimate user if their distance is smaller than the distance

between the AP and any eavesdropper. The distribution of the RV Nout is independent of the location S0. The

quantity λl
λe+λl

= p
1+p is the probability that the next user we meet as we move away from the AP is legitimate.

Therefore Nout =n, if we succeed in meeting n legitimate users before the first eavesdropper. Hence, the PMF of

the RV Nout is Geometric with parameter p
1+p [21], [31].

fNout(n) =
(

p
1+p

)n
1

1+p , FNout(n) = 1−
(

p
1+p

)1+n

, n ≥ 0. (12)

From (12) we get E {Nout} = p and Var {Nout} = p (1 + p). The probability that the AP has no secure connection

to any legitimate user is fNout(0)= 1
1+p .

Lemma 8. In regions with boundaries, the mean degrees E {Nin} and E {Nout} are not equal.

Proof. Since E {A} < 1 along the boundary of a quadrant, see Lemma 2, E {Nout}=p>pE {A} (a)
= E {Nin}, where

(a) follows from equation (10). On the other hand, close to the boundary and far from the corner, we may have

E {A} > 1, see Lemma 4, thus E {Nout} < E {Nin}. Finally, in the bulk, E {A}= 1, and E {Nout} = E {Nin} =

p.

The relation between the probabilities that no legitimate user has secure connection towards the AP, fNin(0),

and from the AP, fNout(0), depends on the location of the AP, S0, and the intensity ratio p. Verifying the results
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Fig. 13. Probability there is no secure connection w.r.t. to the intensity of eavesdroppers, while the intensity of legitimate users is λl = 10.

The probability there is no secure connection to the AP, fNin (0), is approximated by 1
(1+p ν)k

and from the AP, fNout (0), is equal to 1
1+p

,

where p= λl
λe

.

of [21] for the bulk, it is more probable to have at least one secure connection to the AP than from the AP,

fNin(0)<fNout(0), see Fig. 13. This is because, a single eavesdropper close to the AP, hinders secure connections

from the AP to the legitimate users, while secure connections towards the AP are still possible, e.g., users may be

located close to the AP but still further from the eavesdroppers. However, this does not hold true in general. In

Fig. 13, we see that at the corner of a quadrant and at the edge of the half-plane, it is more likely to have secure

connection from the AP to the legitimate users than from the users to the AP (for a moderate to high intensity of

eavesdroppers). Close to the boundaries, the probability to have secure connections to the AP decreases, because

the available locations for the legitimate users over there are much less as compared to the bulk.

VI. CONCLUSIONS

Instead of running extensive simulations, we have used a low-complexity numerical method for computing the

mean cell area in a homogeneous Poisson Voronoi tessellation for seeds located along and/or close to the boundary

of a quadrant. We have shown that the mean cell area falling inside the deployment domain is location-dependent.

In addition, we have calculated the second moment of the cell area for a seed at the corner of the quadrant and at the

boundary of the half-plane. Even though the distribution of the cell area is not exactly Gamma, the two-parameter

Gamma distribution with fitted mean and variance using the method of moments still provides a reasonably good

approximation, which might be useful to certain applications. Besides the connectivity of wireless sensor networks

with physical layer security, the fitted Gamma distribution can also be used in the performance analysis of finite area

cellular networks, e.g., modeling the network load located close to the network borders. In the foreseen deployments

of indoor low-power wireless networks, the impact of boundaries cannot be neglected. Another direction for future

work is the approximation for the area distribution of edge Voronoi cells due to non-homogeneous PPPs, i.e.,

the cells separating regions of different intensities. This may complement existing heuristics for edge detection in

high-energy particle physics, see [7], [32].
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