
                          Pereira, G. C., Pereira, S. P., Pereira, F. B., Lourenço, N., Lumini, J.
A., Pereira, C. V., Bjork, J. A., Magalhães, J., Ascensão, A.,
Wieckowski, M. R., Moreno, A. J., Wallace, K. B., & Oliveira, P. J.
(2019). Early Cardiac Mitochondrial Molecular and Functional
Responses to Acute Anthracycline Treatment in Wistar Rats.
Toxicological Sciences, 169(1), 137-150.
https://doi.org/10.1093/toxsci/kfz026

Peer reviewed version

Link to published version (if available):
10.1093/toxsci/kfz026

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via University of Oxford Press at https://academic.oup.com/toxsci/article/169/1/137/5304396. Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1093/toxsci/kfz026
https://doi.org/10.1093/toxsci/kfz026
https://research-information.bris.ac.uk/en/publications/adfbe900-af53-47f7-9182-9465314c44b5
https://research-information.bris.ac.uk/en/publications/adfbe900-af53-47f7-9182-9465314c44b5


 

1 

 

Early Cardiac Mitochondrial Molecular and Functional Responses to Acute Anthracycline Treatment 1 

in Wistar Rats 2 

 3 

Gonçalo C. Pereira1,a,#, Susana P. Pereira1,b, Francisco B. Pereira2,3, Nuno Lourenço2, José A. Lumini4,5,6, 4 

Claudia V. Pereira1,c, James A. Bjork7, José Magalhães4, António Ascensão4, Mariusz R. Wieckowski8, 5 

António J. Moreno1,9, Kendall B. Wallace7 and Paulo J. Oliveira1. 6 

 7 

1. CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 8 
Cantanhede, Portugal 9 
2. Centre for Informatics and Systems, University of Coimbra, Polo II, Pinhal de Marrocos, Coimbra, 10 
Portugal 11 
3. Coimbra Polytechnic - ISEC, Coimbra, Portugal 12 
4. Research Centre in Physical Activity, Health and Leisure, Faculty of Sport Sciences, University of Porto, 13 
Porto, Portugal 14 
5. Faculty of Health Sciences, University of Fernando Pessoa, Porto, Portugal. 15 
6. LABIOMEP - Porto Biomechanics Laboratory, Porto University, Porto, Portugal 16 
7. Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota, USA 17 
8. Nencki Institute of Experimental Biology, Warsaw, Poland 18 
9. Department of Life Sciences, University of Coimbra, Coimbra, Portugal 19 
 20 

Current addresses: 21 
a – School of Biochemistry, University Walk, University of Bristol, Bristol, UK 22 
b – Research Centre in Physical Activity Health and Leisure (CIAFEL), Faculty of Sports, University of 23 
Porto, Porto, Portugal 24 
c - University of Miami Miller School of Medicine, Neurological Research Building, Miami, FL, USA 25 
 26 

# Corresponding author:  27 

Gonçalo Pereira, PhD 28 
Current Address: School of Biochemistry, University Walk, University of Bristol, Bristol BS8 1TD 29 
g.pereira@bristol.ac.uk 30 
 31 

ORCID: 32 
Gonçalo C. Pereira (0000-0001-9638-0615), Susana P. Pereira (0000-0002-1168-244) Francisco B. Pereira 33 
(0000-0002-1937-6548), Nuno Lourenço (0000-0002-2154-0642), José A. Lumini (0000-0003-1565-7075), 34 
Claudia V. Pereira (0000-0001-5666-5720.), James A. Bjork (n.a.), José Magalhães (0000-0003-4808-8374), 35 
António Ascensão (0000-0001-5269-0857), Mariusz R. Wieckowski (0000-0003-0789-4521), António J. 36 
Moreno (0000-0003-3575-7604), Kendall B. Wallace (n.a.) and Paulo J. Oliveira (0000-0002-5201-9948). 37 
 38 

Keywords: doxorubicin; animal study; cardiotoxicity; mitochondrial permeability transition; principal 39 

component analysis; feature correlation analysis 40 

 41 



 

2 

 

Abbreviations List: ADP – adenosine diphosphate; CsA – cyclosporin A; DOX – doxorubicin; EGTA – 42 

ethylene glycol tetraacetic acid; mPTP - mitochondrial permeability transition pore; OXPHOS – oxidative 43 

phosphorylation; ROS – reactive oxygen species. 44 

45 



 

3 

 

ABSTRACT 46 

Doxorubicin (DOX) is an anticancer drug widely used to treat human and non-human tumors but the late and 47 

persistent cardio-toxicity reduces the therapeutic utility of the drug. The full mechanism(s) of DOX-induced 48 

acute, sub-chronic and delayed toxicity, which has a preponderant mitochondrial component, remains unclear; 49 

therefore, it is clinically relevant to identify early markers to identify patients who are predisposed to DOX-50 

related cardiovascular toxicity. 51 

To address this, Wistar rats (16 weeks old) were treated with a single DOX dose (20 mg/Kg, i.p.); then, 52 

mRNA, protein levels and functional analysis of mitochondrial end-points were assessed 24 h later in the 53 

heart, liver and kidney. Using an exploratory data analysis, we observed cardiac-specific alterations after 54 

DOX treatment for mitochondrial Complexes III, IV, and preferentially for Complex I. Conversely, the same 55 

analysis revealed Complex II alterations are associated with DOX response in the liver and kidney. 56 

Interestingly, H2O2 production by the mitochondrial respiratory chain as well as loss of calcium-loading 57 

capacity, markers of sub-chronic toxicity, were not reliable indicators of acute DOX cardiotoxicity in this 58 

animal model.  59 

By using sequential Principal Component Analysis and Feature Correlation Analysis, we demonstrated for the 60 

first time alterations in sets of transcripts and proteins, but not functional measurements, that might serve as 61 

potential early acute markers of cardiac-specific mitochondrial toxicity, contributing to explain the trajectory 62 

of DOX cardiac toxicity and to develop novel interventions to minimize DOX cardiac liabilities.  63 

64 



 

4 

 

INTRODUCTION 65 

Doxorubicin (DOX) is an anthracycline antibiotic that is widely used as a chemotherapeutic agent to treat 66 

multiple types of cancers (Simunek et al., 2009; Sterba et al., 2013); however, its therapeutic utility is limited 67 

due to the development of a cumulative and dose-dependent cardiotoxicity (Wallace, 2007). Congestive heart 68 

failure after DOX treatment is a pressing concern. The mortality observed after a chronic treatment can be as 69 

high as 50% (Chatterjee et al., 2010), increasing significantly for cumulative doses higher than 500 mg/m2 as 70 

reported by Singal et al. (1998). This life-time cumulative dose is equivalent to 13.5 mg/Kghumans or 83.8 71 

mg/Kgrats, using reference values and calculations suggested by Nair et al. (2016). The etiology of DOX-72 

induced cardiotoxicity is commonly ascribed to a redox-cycling of the drug on Complex I of the 73 

mitochondrial respiratory chain (Davies et al., 1986). Reactive oxygen species (ROS) generated during this 74 

process are believed to be responsible for the toxic effects on cardiac mitochondria, resulting in impaired 75 

oxidative phosphorylation (Santos et al., 2002), loss of mitochondrial calcium homeostasis (Zhou et al., 76 

2001a) and increased apoptotic signaling (Childs et al., 2002). DOX cardiotoxicity can present distinct 77 

phenotypes depending on the time elapsed since the initial treatment. Among the wide range of treatment 78 

protocols used in different laboratories (Ascensao et al., 2012; Hayward et al., 2007; Solem et al., 1996; Zhou 79 

et al., 2001c) we have previously demonstrated that treating Wistar rats with DOX resulted in toxicity only in 80 

the cardiac tissue and more easily detected in a sub-chronic treatment protocol (Pereira et al., 2012).  81 

A distinguishing feature is the fact that DOX toxicity presents a delayed component, manifesting itself years 82 

or even decades after treatment (Steinherz et al., 1991). Despite the abundant research in the last decades, the 83 

mechanism(s) underlying delayed DOX cardiac toxicity evolution are still far from being understood. 84 

Regardless the mechanism(s), it is clinically relevant to identify early signs of specific metabolic or 85 

transcriptional alterations observed after acute DOX treatment that may be considered early stress 86 

response(s). For this objective, we measured three distinct sets of data on cardiac, renal, and hepatic tissue in 87 

a rat model subjected to an acute DOX treatment (Ascensao, et al., 2012; Pereira, et al., 2012):  88 

(i) mRNA and protein levels of subunits of the mitochondrial respiratory complexes (I-IV), ATP synthase, 89 

and other relevant mitochondrial components (Cyt c, ANT, VDAC), and applied a suite of exploratory 90 

data analysis tools in clusters of transcripts related to the same complex. From this use we seek to obtain 91 
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evidence of DOX-induced acute alterations that are present even in the absence of significant differences 92 

in the overall respiration flux (Pereira et al., 2016). 93 

(ii) hydrogen peroxide (H2O2) production by the mitochondrial respiratory chain. 94 

(iii) the sensitivity to the mitochondrial permeability transition (mPTP) as a surrogate of DOX response.  95 

Since the latter markers have both been detected in sub-chronic DOX toxicity animal models (Cappetta et al., 96 

2017; Zhou, et al., 2001c), our objective was to measure similar alterations in the acute model, with the 97 

novelty of performing experiments with both Complex I and II substrates. 98 

We used in this study a Wistar rat-based animal model and the acute treatment protocol previously described 99 

(Pereira, et al., 2012). A single dose of 20 mg/Kg DOX caused an increase in circulating troponin I and a ~ 100 

7.6 % decrease in cardiac mass with no visible alterations on the mitochondrial functional parameters 101 

evaluated. However, if a similar dosage was spanned over the period of 7 weeks (sub-chronic model), a clear 102 

mitochondrial impairment was observed (Pereira, et al., 2012; Zhou, et al., 2001a; Zhou et al., 2001b; Zhou, 103 

et al., 2001c), suggesting that DOX acute effects may progress into mitochondrial bioenergetic dysfunction. 104 

Moreover, it also suggests that the acute DOX toxicity model may be used to assess mitochondrial alterations 105 

that precede functional changes. Therefore, we included mitochondrial molecular parameters in the present 106 

study and anticipated that our novel approach will allow the assessment of early markers of acute DOX 107 

cardiotoxicity, facilitating the development of biomarkers to be used in the clinic for timely identification of 108 

patients with higher susceptibility to latent DOX toxicity and for the development of interventions aimed at 109 

decreasing DOX off-target cardiac toxicity. 110 

111 
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RESULTS 112 

Exploratory Data Analysis  113 

In the present research, we applied Principal Component Analysis (PCA) and Feature Correlation Analysis 114 

(FCA) to discover correlations and clustering patterns that help to identify relevant mitochondrial markers for 115 

the early detection of acute DOX toxicity. The small number of available samples prevents a complete and 116 

robust statistical analysis of the results. However, PCA provides initial insight regarding the separation of the 117 

treatment groups (Saline vs. DOX) allowing the discovery of important relevant trends. The twelve panels 118 

from Figure 1 illustrate the separation between Saline and DOX samples, for each of the 4 mitochondrial 119 

respiratory complexes in heart, kidney and liver tissues, respectively. To allow an informative 2D 120 

visualization we considered just the two principal components (explaining > 70% of the variance) and 121 

projected the original data in the lower dimensional space. 122 

Considering the cardiac tissue (Fig. 1a), the four panels representing each of the respiratory complexes tend to 123 

exhibit a clear separation between areas comprising samples from saline (blue area) and DOX-treated rats (red 124 

area). The separation is clearly visible for Complex I while some minor perturbations are observed in 125 

Complexes II, III, and IV. These minor differences correspond to specific regions where the separation is not 126 

evident, suggesting that it might be difficult for a computational analysis to accurately classify examples in 127 

these locations. Class separation between treatment groups for some respiratory complexes is also less evident 128 

when analyzing the remaining tissues in the study. For example, when analyzing the renal tissue (Fig. 1b) a 129 

visible class separation in Complexes II and III was observed, but the other complexes displayed several 130 

mixed sub-areas that might compromise the correct identification of the samples. Similarly, Complex II in the 131 

hepatic tissue (Fig. 1c) tends to generate a clear boundary between the two treatment groups, while the other 132 

complexes reveal several density sub-areas. 133 

Overall, PCA analysis of mRNA transcripts identified Complex I as preferable target for DOX acute toxicity 134 

in the heart while Complex II preferentially relates to DOX effects in the liver and kidney. Complexes III and 135 

IV are not robust markers to differentiate DOX toxicity in the analyzed tissues of this study. 136 

 137 

Next, we complemented the PCA with individual FCA, to estimate the dependence that may exist between 138 

every pair of features. Our analysis considered all pairwise feature correlations and aimed to identify variables 139 
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exhibiting high sensitivity to DOX. Figure 2a-c show the global trend in the correlation changes resulting 140 

from DOX administration for features describing mRNA and protein levels in the heart, kidney and liver 141 

tissues, respectively.  142 

Observationally, there are some noticeable differences in the global patterns shown in Fig.2. In regard to liver 143 

(Fig. 2c), DOX administration tends to have a minor impact in the correlation strength change (high number 144 

of blank cells). Nonetheless, there is a high and consistent change involving the expression of subunit 145 

NDUFB8 in the liver. Conversely, Figures 2a and 2b, representing heart and kidney, respectively, exhibit a 146 

considerable number of filled cells identifying pairs with sizable correlation changes. The correlation change 147 

of NDUFB8 that was signaled in the liver is also present in these tissues, although to a lesser extent. 148 

Regarding features from Complex I, some additional correlation changes are observed, namely ND1 and ND2 149 

mRNA in the kidney and ND6 and NDUFS4 mRNA in the heart.  150 

In respect to Complex II, no noticeable changes in correlation were observed, regardless of the tissue in study. 151 

In Complex III related features, DOX treatment showed a stronger effect on the correlation change of CytB 152 

mRNA and UQCRFS1 protein levels in kidney. Finally, a few correlation changes regarding Complex IV 153 

features were also observed in heart and kidney, but not as obvious as reported above (Fig. S1). 154 

Overall, the FCA analysis suggests that the impact of the DOX treatment is easier to perceive if considering 155 

samples from heart and kidney when compared to liver, in agreement with findings obtained from PCA.  156 

 157 

Mitochondrial hydrogen peroxide production 158 

DOX-induced oxidative stress is considered a hallmark of its toxicity (Pereira, et al., 2012). In the present 159 

work, we investigate the contribution of different sites of the mitochondrial respiratory chain to the overall 160 

oxidative response by DOX. In respect to Complex I-sustained respiration, H2O2 production was similar to 161 

control values in heart and kidney mitochondria regardless of the energization conditions tested (Fig. 3a, c). 162 

However, in liver mitochondria, H2O2 production in the presence of rotenone was higher in mitochondria 163 

from DOX-treated animals (11 ± 3%) even though no statistical differences were observed in the presence of 164 

antimycin A alone (18 ± 10%) or with antimycin A plus rotenone (1 ± 2%). 165 

When mitochondria were energized with Complex II-linked substrates, heart mitochondria from DOX-treated 166 

animals showed increased production of H2O2 in the presence of substrate alone, yet it was not statistically 167 
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significant (164 ± 72%, p = 0.06; Fig. 3a). Interestingly, this alteration was only observed in the absence of 168 

respiratory chain inhibitors as other conditions were similar to controls, reflecting ROS production through 169 

reverse electron transfer. 170 

In regard to liver and kidney, mitochondria from DOX-treated animals energized with Complex II-linked 171 

substrates presented similar levels of H2O2 production under all tested conditions (Fig. 3b, c). 172 

Overall, liver mitochondria from DOX-treated animals appear to generate more H2O2 compared to heart or 173 

kidney mitochondria but only when the respiratory chain is challenged by oxidative phosphorylation 174 

(OXPHOS) inhibitors, suggesting a higher flux of electrons through the respiratory chain at the Complex I 175 

level. 176 

 177 

Mitochondrial calcium loading capacity 178 

To assess mitochondrial calcium handling, we measured the sensitivity of each mitochondrial preparation to 179 

undergo the calcium-induced mPTP. Heart mitochondria from DOX-treated animals showed no alteration 180 

neither in calcium retention time nor release rate regardless of the respiratory substrate used (Fig. 4a). 181 

Similarly, no treatment-related effects on calcium flux were observed in kidney mitochondria (Fig. 4c). 182 

However, liver mitochondria from DOX-treated animals showed an apparent decreased sensitivity to mPTP 183 

opening (Fig. 4b). Hepatic mitochondrial preparations retained calcium for 43 ± 30% longer with Complex I-184 

linked respiration and 36 ± 19% for Complex II-linked respiration compared to control group although no 185 

statistical significance was observed (p = 0.194 and 0.098, respectively). In addition, calcium release rates 186 

were decreased by 49 ± 19% with Complex I-linked respiration and 18 ± 27% with Complex II-linked 187 

respiration. Significance was not always achieved due to the high variability in response to the treatment (Fig. 188 

4b). Confirming that all previous mentioned alterations were related to the mPTP opening is the fact that pre-189 

incubation with CsA, the classic mPTP desensitizer (Broekemeier et al., 1989) prevented calcium release 190 

(Table 1). 191 

Additionally, the same mitochondrial preparations were assessed for calcium-induced mitochondrial swelling 192 

in similar conditions to those aforementioned. Corroborating the above results, heart mitochondria swelling 193 

amplitude and swelling rate were not altered after acute treatment with DOX, regardless of the respiratory 194 

substrate used (Fig. 5a). Likewise, in kidney mitochondria, amplitude and swelling rate were not different 195 
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from control (Fig. 5c). However, liver mitochondria from DOX-treated animals appear to have slower 196 

swelling rate (6 ± 12% and 21 ± 37% for glutamate/malate and succinate, respectively; Fig. 5b) despite no 197 

apparent change in swelling amplitude (20 ± 30% and 11 ± 31% for glutamate/malate and succinate, 198 

respectively). As in calcium-loading capacity experiments, a high variability in response to the treatment was 199 

observed for liver mitochondria preventing any statistical differences. CsA under the experimental swelling 200 

conditions abolished all the effects, confirming the opening of the mPTP (Table 2). 201 

Two major regulators of the mPTP are: cyclophilin D (Cyp-D) in the matrix and ANT in the inner membrane 202 

(Silva et al., 2018). Cyp-D protein levels remained constant after the acute treatment regardless of the tissue 203 

analyzed (Table 3). We next measured mRNA and protein content of two ANT isoforms (Table 4). The 40 ± 204 

6% cardiac-specific decrease of ANT1 mRNA was significantly stronger than the effects observed in liver and 205 

kidney. Similarly, the 26 ±6% decrease of ANT2 mRNA was significant when compared to kidney. Still, no 206 

change in protein levels were observed after the 24 h treatment (Table 3). Moreover, no treatment- or tissue-207 

specific effects were detected regarding the protein and mRNA levels of VDAC, a porin of the outer 208 

mitochondrial membrane which governs ion and metabolites flux into mitochondria (Table 4). 209 

Overall, the sensitivity to mPTP opening remains constant in heart mitochondria after the acute treatment in 210 

contrast with liver mitochondria which show strong resistance to mPTP opening. However, this mPTP 211 

modulation cannot be attributed to changes in the protein levels of mPTP-related proteins. We suggest instead 212 

that increased electron flux through the respiratory chain in liver mitochondria is modulating mPTP opening. 213 

214 
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DISCUSSION 215 

The mechanisms underlying DOX-selective cardiotoxicity remain undefined. Nevertheless, it is being 216 

more widely accepted that the antitumor activity is independent of cardiac toxicity, which may involve 217 

alterations of mitochondrial function (discussed in Pereira et al. (2011)). Acute DOX cardiac toxicity occurs 218 

during the early treatment of patients (high dose) and usually include symptoms which are therapeutically 219 

easy to manage and resolve once treatment is discontinued (Tokarska-Schlattner et al., 2006). Alternatively, a 220 

small, but significant number of patients develop chronic cardiotoxicity that can manifest itself at the end of 221 

treatment or several years later (Steinherz, et al., 1991). However, unlike acute toxicity, the dose-dependence 222 

together with its difficult early detection, renders DOX chronic toxicity life-threatening and largely 223 

uncontrolled. 224 

Regardless the mechanism(s) involved in DOX cardiotoxicity, the available data not only demonstrates 225 

mitochondrial involvement (Zhou, et al., 2001c), but also differences related to each treatment protocol (acute 226 

vs. sub-chronic in Pereira, et al. (2012)). Previously, by using Wistar rats treated with a single dose of DOX 227 

(20 mg/Kg), Ascensão et al. (2006; 2011; 2005) observed that heart mitochondria respiration and 228 

phosphorylation capacity were impaired after 24 h treatment. In contrast, we applied the same treatment 229 

protocol in younger rats of the same strain and observed no DOX effects on cardiac mitochondrial respiration, 230 

although minor, but statistical significant alterations were measured in ADP-stimulated respiration in liver 231 

(increase) and kidney (decreased) mitochondria (Pereira, et al., 2012), suggesting a differential response to 232 

DOX determined by age at time of treatment. Considering that a very large proportion of children with cancer 233 

are treated with DOX (van Dalen et al., 2009) despite its potential cardiotoxicity, it is relevant to identify 234 

early alterations of mitochondrial parameters/markers, which can be considered as early cardiac-specific 235 

stress responses to drug treatment. 236 

It has been demonstrated in different rat models that DOX sub-chronic treatment causes inhibition of 237 

mitochondrial respiration; oxidation of proteins, lipids, and nuclei acids; loss of cardiolipin and, alterations in 238 

the antioxidant enzymatic network (Oliveira et al., 2004; Oliveira et al., 2006; Pereira, et al., 2016; Wallace, 239 

1986; Zhou, et al., 2001b). Alterations of mitochondrial activity were also reported in different cardiac-like 240 

cell models, associated to increased cell death (Asensio-Lopez et al., 2016; Cunha-Oliveira et al., 2018; 241 

Sardao et al., 2009). Taking these sub-chronic markers of DOX toxicity into account we selected and 242 
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measured relevant mitochondrial mRNA and protein content, respiratory chain-derived H2O2, and calcium-243 

loading capacity in16-weeks old Wistar rats, suspecting that they would be reliable markers of DOX acute 244 

toxicity. 245 

Our data on calcium-loading capacity suggests that liver mitochondria are resistant to mPTP opening after 246 

DOX treatment in agreement with the increased mitochondrial bioenergetics fitness previously described by 247 

our lab (Ascensao, et al., 2011; Pereira, et al., 2012). Similarly, liver mitochondria displayed increased H2O2 248 

production when mitochondria were stressed by using OXPHOS inhibitors. Together with the improved 249 

mitochondrial fitness previously described, it suggests an increased electron flow through the respiratory 250 

chain. Electron flow has also been reported to modulate mPTP sensitivity (Fontaine et al., 1998), 251 

corroborating our data from calcium-loading capacity experiments. However, because a single timepoint was 252 

evaluated in our experimental setup (24 h), it was not possible to determine if DOX effect in liver 253 

mitochondria is slow to develop or long-lasting.  254 

Considering that increased mitochondrial oxidative stress and loss of calcium-loading capacity are 255 

regarded as hallmarks of chronic DOX-induced cardiac mitochondrionopathy (Pereira, et al., 2011; Zhou, et 256 

al., 2001a; Zhou, et al., 2001b; Zhou, et al., 2001c), our negative results in respect to cardiac tissue suggest 257 

that H2O2 generation and early loss of calcium-loading capacity following an acute DOX treatment are not 258 

reliable markers for early DOX cardiotoxicity. Therefore, it is relevant to identify alternative mitochondrial 259 

markers in order to recognize early functional or molecular signs of DOX-related cardiovascular toxicity. 260 

To this end, we also performed mRNA and protein analysis for components relevant for the maintenance of 261 

mitochondrial integrity and for OXPHOS. In general, mitochondrial-encoded transcripts showed minimal and 262 

heterogeneous increase in their levels compared to nuclear-encoded transcripts, demonstrating a preferential 263 

initial targeting of nuclear DNA. This is reminiscent of our previous data showing that DOX accumulates 264 

rapidly in the nucleus (Sardao, et al., 2009). Although the number of commercially available antibodies which 265 

worked in our setup was much lower than the total number of transcripts, we performed a similar analysis at 266 

the protein level, with at least one protein from each complex, semi-quantified by Western Blotting. No 267 

protein differences were found between saline and DOX-treated groups regardless of the analyzed tissue. This 268 

could be due to higher turnover rates for mitochondrial proteins in rodents (Brunner et al., 1968; Miwa et al., 269 
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2008). Therefore, neither a direct correlation can be performed, nor treatment-related differences can be 270 

properly attributed through this analytic methodology. 271 

We complemented the study with an alternative strategy to analyze mRNA and protein data. From the 272 

PCA analysis, we obtained a consistent separation between treatment groups in the heart for all four 273 

respiratory complexes, suggesting that the effect of the DOX administration is clearly detected in this tissue. 274 

The boundary is particularly well defined when analyzing Complex I which was previously indicated as being 275 

inhibited in DOX-induced cardiotoxicity (Santos, et al., 2002). As for the other tissues, clear separations 276 

occur just in specific complexes: in liver there is a clear separation in Complex II, whereas in kidney clear 277 

boundaries are visible in Complexes II and III. This differential response of DOX suggests that the impact of 278 

treatment can be easily distinguished between the cardiac and other tissues such as the liver or kidney. 279 

Contrary to the absence or minimal changes in cardiac mitochondrial function (mPTP sensitivity, H2O2 280 

production and, respiration and oxidative stress markers (Pereira, et al., 2012)), the trends detected in the PCA 281 

study confirmed Complex I as the most promising target to detect acute mitochondrial changes resulting from 282 

DOX-treatment in the heart. Heart accumulates DOX slowly but to a higher extent than liver (Peters et al., 283 

1981) which could explain why DOX inhibitory effect on transcription was more easily detected in the heart, 284 

suggesting a tissue-specific concentration-dependent effect. Alternatively, these findings could be explained 285 

on the basis of tissue-specific stability of nuclear and mitochondrial-encoded mRNAs (Connor et al., 1996), 286 

being cardiac mRNAs less stable compared to the other tissues. Nonetheless, our data suggests that the 287 

observed mitochondrial molecular alterations precede changes in mitochondrial function. 288 

FCA allowed the identification of promising features that can be used for the detection of an acute 289 

toxicity. UQCRFS1 transcript and protein levels were involved in higher correlation changes in both kidney 290 

and heart. Complex III UQCRFS1subunit has been shown to be decreased in Barth syndrome animal models 291 

(Huang et al., 2015), a pathology which is associated to the development of cardiomyopathy (Dudek et al., 292 

2017). In addition to NDUFB8, NDUFS4 mRNA levels were also identified as features with high correlation 293 

changes in heart. Recently, Piekutowska-Abramczuk et al. (2018) reported NDUFB8 as the underlying gene 294 

in childhood-onset of Leigh-like encephalomyopathy, observing decreased NDUFS4 protein levels and lower 295 

Complex I activity as well. Interestingly, NDUFS4 is an accessory subunit important in Complex I assembly 296 

while NDUFB8 is an integral structural component of Complex I essential for its function (Sanchez-Caballero 297 
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et al., 2016). NDUFB8 is not involved in the catalytic activity of Complex I but is an essential component of 298 

the membrane-anchor required for the full assembly of Complex I and contribute to the oligomerization of 299 

Complex I with Complex III and IV (Wu et al., 2016). Interestingly, we have previously suggested loss of 300 

mitochondrial supercomplexes as a possible underlying event in DOX-chronic toxicity (Pereira, et al., 2016). 301 

Our results indicate that an acute DOX treatment leads to alterations in proteins and transcripts related 302 

with Complexes I, III and IV in the heart and kidney, with a special predominance for Complex I. The liver 303 

tissue, on the other hand, showed minimal alterations in molecular features, while displaying positive 304 

adjustments in terms of respiration and calcium loading capacity, two measures of functional changes.  305 

By using sequential Principal Component Analysis and Feature Correlation Analysis, we demonstrated for 306 

the first time alterations in sets of transcripts and proteins, but not in functional measurements, that might 307 

serve as potential early acute markers of cardiac-specific mitochondrial toxicity, contributing to explain the 308 

trajectory of DOX cardiac toxicity and to measure the efficacy of novel interventions aimed at minimizing 309 

DOX cardiac liabilities in anti-cancer treatments (Pereira, et al., 2012; Pereira, et al., 2016). Nonetheless, 310 

longer resting periods after DOX-acute treatment should be studied to determine when mitochondrial 311 

functional impairments begin to be apparent in the different organs studied. Similarly, it remains to be 312 

elucidated whether these molecular markers are detectable in the circulation of DOX-treated animals or 313 

patients. Although mRNA has become a signature-based biomarker in cancer management, their use in 314 

cardiovascular medicine is still in its earlier days; however, it would prove instrumental in the early detection 315 

of DOX-induced cardiotoxicity in the clinic and could replace myocardial biopsies, an invasive procedure to 316 

detect heart diseases. 317 

318 
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MATERIALS AND METHODS 330 

Reagents 331 

DOX hydrochloride, (7S,9S)-7-[(2R,4S,5S,6S)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-332 

trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7H-tetracene-5,12-dione hydrochloride, chemical 333 

purity ≥ 98%, was obtained from Sigma-Aldrich (Barcelona, Spain) and prepared in a sterile saline solution, 334 

NaCl 0.9% (pH 3.0, HCl) and stored at 4ºC for no longer than five days upon re-hydration. All other 335 

chemicals were of the highest commercially available grade of purity. Aqueous solutions were prepared in 336 

ultrapure (type I) water (Milli-Q Biocel A10 with pre-treatment via Elix 5, Millipore, Billerica, MA, USA). 337 

For non-aqueous solutions, ethanol (99.5%) or dimetylsulfoxide (DMSO), both from Sigma-Aldrich, were 338 

used as solvent.  339 

 340 

Animal care 341 

Animal handling was performed in accordance with the European Convention for the Protection of Vertebrate 342 

Animals used for Experimental and Other Scientific Purposes (CETS no.123) and Portuguese rules (DL 343 

129/92). The procedures were approved by the CNC Committee for Animal Welfare and Protection. Animal 344 

handlers and the authors GCP, SPP, JM, AA and PJO are credited by the European Federation for Laboratory 345 

Animal Research (FELASA) category C for animal experimentation (accreditation no. 020/08).  346 

Male Wistar rats, Crl:WI(Han), were purchased from Charles River (France) with 14 weeks of age, 347 

acclimated for 10-14 days prior to the initiation of experiments and maintained in the local animal house 348 

facility (CNC – School of Medicine, University of Coimbra, Coimbra, Portugal). Animals were group-housed 349 

in type III-H cages (Tecniplast, Italy) with irradiated corn cob grit bedding (Scobis Due, Mucedola, Italy) and 350 

environmental enrichment and under controlled environmental requirements (22ºC, 45-65% humidity, 15-20 351 

air changes/hour, 12 h artificial light/dark cycle, noise level < 55 dB) and free access to standard rodent food 352 

(4RF21 GLP certificate, Mucedola, Italy) and acidified water (at pH 2.6 with HCl) ad libitum.  353 

The experimental model was performed as previously described (Pereira, et al., 2012). Briefly, male Wistar-354 

Han rats (N = 34) were randomly divided into two groups (n = 17 each group) and received a single 355 

intraperitoneal injection (i.p.) of DOX (20 mg/Kg of body weight) or an equivalent volume of vehicle solution 356 

(NaCl 0.9% pH 7, controls), 24 h before sacrifice.  357 
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All animals were injected during the light phase of the cycle and weighed at the beginning and end of the 358 

experimental treatment period (data available in Pereira, et al. (2012)). Non-fasted animals were euthanized in 359 

pairs by cervical dislocation followed by decapitation, to confirm death and exsanguination. Organs were 360 

immediately extracted from the body and quickly washed in appropriate ice-cold buffer before being weighed 361 

(data available in Pereira, et al. (2012)). Tissues intended for mRNA and protein analyses were stored 362 

separately in RNAlater (Applied Biosystems/Ambion, Austin, TX) at –80°C, accordingly to manufacturer 363 

guidelines. 364 

 365 

Isolation of mitochondrial fraction 366 

Mitochondria were isolated by a standard procedure currently used in our laboratory (Pereira, et al., 2012). 367 

Briefly, organs were excised and finely minced in ice-cold isolation medium containing 250 mM sucrose, 10 368 

mM HEPES, 1 mM EGTA and 0.1% defatted BSA (pH 7.4, KOH). After washing the blood, organs were 369 

homogenized with a motor-driven Teflon Potter homogenizer. For the isolation of cardiac mitochondrial 370 

fractions, isolation medium was supplemented with 0.5 μg/mL of protease (Subtilisin A, Type VIII from 371 

Bacillus licheniformis, Sigma-Aldrich, Madrid, Spain). Protease was removed from the cardiac homogenate 372 

by centrifugation at 14,400 g for 10 min at 4°C and the pellet, essentially devoid of protease, was gently 373 

homogenized and resuspended to its original volume with a loose-fitting homogenizer. Subsequently, all 374 

homogenates were centrifuged at 750 g for 10 min at 4°C and the resulting supernatants at 10,000 g for 10 375 

min. Mitochondrial pellet was resuspended using a paintbrush and centrifuged twice at 10,000 g for 10 min 376 

before obtaining a pure mitochondrial suspension. EGTA and defatted BSA were omitted from the final 377 

washing medium (pH 7.2, KOH). Mitochondrial protein was quantified by the biuret method using bovine 378 

serum albumin (BSA) as standard. Mitochondrial preparations were kept on ice during experiments, which 379 

were carried out after 20 min recovery period and within 5 h. The respiratory control ratio (RCR) values of 380 

the mitochondrial preparations were within the standard range, demonstrating a good coupling between 381 

respiration and ATP phosphorylation (Heart saline glutamate plus malate 4.6 ± 0.4, succinate 2.7 ± 0.2; Liver 382 

saline glutamate plus malate 9.5 ± 1.0, succinate 8.2 ± 1.5; Kidney saline glutamate plus malate 4.1 ± 0.3, 383 

succinate 3.5 ± 0.2; there was no statistical difference between saline vs. DOX group), previously reported in 384 

Pereira, et al. (2012). 385 
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 386 

Measurement of hydrogen peroxide 387 

H2O2 generation was measured fluorimetrically using a modified method previously described by Barja 388 

(2002). Briefly, the method consists in the use of homovanillic acid which reacts with H2O2 in the presence of 389 

horseradish peroxidase to form the fluorescent dimer 2,2’-dihydroxy-3,3’-dimethoxydiphenyl-5,5’-diacetic 390 

acid (λEx/λEm = 312/420 nm). Reactions (500 μL) were conducted in standard glass test tubes under constant 391 

magnetic stirring and incubated in a water bath at 30°C. Small volumes of reactants were combined in the 392 

following order to pre-added incubation medium (145 mM KCl, 30 mM Hepes [pH 7.4, KOH], 5 mM 393 

KH2PO4, 3 mM MgCl2, 100 μM EGTA, 0.1% fatty acid-free albumin) to reach the following concentrations: 394 

0.125 μg mitochondrial protein, 6 U/mL horseradish peroxidase and 100 μM homovanillic acid. H2O2 395 

production was determined in mitochondria energized with 5 mM glutamate/malate or 5 mM succinate. At 396 

these concentrations, H2O2 production is not substrate-dependent. In some experiments, specific inhibitors for 397 

Complex I (rotenone, 1 μM) or for Complex III (antimycin A, 0.5 μM) were used in combination with 398 

respiratory substrates to block electron transport and maximize H2O2 production. Arbitrary fluorescence units 399 

were converted to nmol H2O2 by extrapolation through a standard curve established by addition of known 400 

amounts of H2O2 in the presence of horseradish peroxidase and homovanillic acid. Values were then 401 

normalized to protein amount and expressed as nmol H2O2/15 min/mg protein.  402 

 403 

Mitochondrial Calcium Accumulation 404 

Extramitochondrial free Ca2+ was assayed by monitoring the variations in fluorescence of the hexapotassium 405 

salt of the probe Calcium Green 5-N (Ca5GN; Invitrogen, Spain, C-3737), which increases its yield upon 406 

binding to calcium, and as previously described (Rajdev et al., 1993). Briefly, isolated mitochondrial fraction 407 

(0.25 mg/mL cardiac, 0.75 mg/mL liver and kidney) were suspended in 2 mL of buffer containing 200 mM 408 

sucrose, 10 mM Tris, 10 μM EGTA (to complex basal calcium), 5 mM KH2PO4 for cardiac mitochondria, or 409 

1 mM KH2PO4 for liver and kidney mitochondria, combined with 812 nM of Ca5GN. After mitochondrial 410 

energization with 2.5 mM glutamate plus malate (enabling mitochondrial energization through complex I) or 411 

2.5 mM succinate in the presence of 1 μM rotenone (enabling mitochondrial energization through complex II) 412 

a baseline of 60 seconds was obtained before the addition of a single pulse of calcium of 65-100 nmol, 50-100 413 
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nmol and 40-65 nmol for heart, liver and kidney mitochondria. Fluorescence was continuously recorded in a 414 

water-jacketed cuvette holder at 30°C using a PerkinElmer LS-55 fluorescence spectrometer (PerkinElmer 415 

Life and Analytical Sciences, Boston, MA) at λEx/λEm = 506/531 nm. Five nm slits were used for excitation 416 

and emission wavelengths. Adequate controls were performed to assess possible interferences in probe 417 

fluorescence, under either low or high calcium concentrations (no interferences were observed for the 418 

experimental conditions described). Possible interferences with DOX were discarded since its emission peaks 419 

at 550 nm, a higher wavelength than our emission filter; and, excitation peaks at 475 nm, meaning that only a 420 

small fraction of the drug could lower Ca5GN excitation at 506 nm. Cyclosporin A (CsA), a desensitizer of 421 

the mPTP (Broekemeier, et al., 1989), was used to confirm that the recorded event was related to the mPTP. 422 

 423 

Calcium-induced mitochondrial swelling 424 

Mitochondrial osmotic volume changes associated with the calcium-induced mPTP were assessed by 425 

turbidimetry (Halestrap et al., 1990). The optical density was monitored at 540 nm with a Jasco V-560 426 

spectrophotometer (Jasco Inc., Easton, MD, USA) equipped with a magnetic stirrer and a water-jacketed 427 

cuvette holder connected to a water bath set to 30°C. The assay was carried out in the same buffer as 428 

described above for calcium loading experiments, but at a protein concentration of 0.5 mg/mL (heart) or 1.0 429 

mg/mL (liver and kidney) was used. After a 60 sec baseline, a single pulse of calcium of 20-50 nmol/mg 430 

protein or 10-50 nmol/mg protein was added to heart or liver and kidney mitochondria, respectively. 431 

Absorbance variations were recorded and analyzed with the manufacturer’s software. The swelling amplitude 432 

presented in the graphs is defined as the difference in absorbance between the time-point that corresponds to 433 

half of the maximum swelling amplitude of the control record and the baseline before calcium addition (larger 434 

values mean greater sensitivity to mPTP). CsA was used to confirm that the recorded events were related to 435 

the mPTP. 436 

 437 

Total RNA isolation 438 

RNA was isolated using the RNeasy Mini Kit (Qiagen Inc., Valencia, CA). Briefly, 20 mg of each RNAlater-439 

conserved frozen tissue was thawed and ground in a glass pestle homogenizer followed by further 440 

homogenization with a 27-gauge needle connected to a syringe. The purification was performed as described 441 
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in the manufacturer’s RNA clean-up protocol, following its suggestions. RNA was quantified using a 442 

NanoDrop spectrophotometer (ThermoFisher Scientific Inc., Rockford, IL). RNA quality and purity were 443 

assessed by observing a spectral scan with a single prominent A260 peak and A260/A280 ratio greater than 2. 444 

Protein extraction and Western blot 445 

RNAlater-conserved frozen tissue (70-150 mg) was thawed and ground in a glass pestle homogenizer in a 446 

10% (m/v) RIPA buffer (150 mM NaCl, 50 mMTris, pH 8.8, 0.5% sodium deoxycholate, 0.1% SDS, and 1% 447 

Igepal), supplemented with 5 μL/mg of tissue of protease inhibitors cocktail (P8340, Sigma-Aldrich Inc, St. 448 

Louis, MO, USA). The homogenate was then centrifuged at 14,000 g for 5 min to remove cellular debris. 449 

Protein concentration was determined by BCA Protein Assay Kit (Thermo Fisher Scientific Inc.) using BSA 450 

as standard. Extracted proteins were diluted in Laemmli buffer (BioRad Laboratories, Hercules, CA, USA) 451 

supplemented with 2% β-mercaptoethanol then boiled at 95ºC for 5 min. Equal amounts of protein (25 μg) 452 

were loaded into 12% polyacrylamide gels separated by SDS-PAGE. Then, proteins were transferred to 453 

PVDF membranes (Millipore, Billerica, Massachusetts, USA) at 100 V for 90 min, at 4ºC. Membranes were 454 

blocked with 0.25% of non-fat dry milk in Tris-buffered saline (154 mM NaCl, 50 mM Tris, pH 8.0) 455 

containing 0.1% Tween-20 (TBS-T) using the SNAP-id system (Millipore) with 10 min incubation. After 456 

washing twice with TBS-T in the same system, membranes were incubated with primary antibody directed 457 

against the respective protein (listed in Table S1) through traditional procedures, overnight at 4ºC. After 458 

washing twice in the SNAP-id system, membranes were incubated in this system with the respective alkaline 459 

phosphatase-linked secondary antibody (1:6000), prepared in TBS-T. The membranes were processed for 460 

protein detection using the Enhanced Chemi-Fluorescence system (ECF; GE Healthcare, Buckinghamshire, 461 

UK) and imaged with the Versa Doc imaging system (BioRad). The densities of each band were calculated 462 

with Quantity One Software (BioRad) and expressed as a percentage of control. The assay was standardized 463 

by re-probing the membranes for actin (#MAB1501, Milipore) immunoreactivity (1:10,000) to verify whether 464 

similar amounts of protein present in all lanes. 465 

 466 

Real time qRT-PCR 467 

cDNA was synthesized from extracted RNA (0.5–1.5 μg) using random primers along with the Omniscript 468 

Reverse Transcription Kit (Qiagen). All primers (Table S2) used for real time qRT-PCR were designed using 469 
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the web-based PrimerQuest software (Integrated DNA Technologies, Inc., Coralville, IA). Real time qRT-470 

PCR was carried out using FastStart SYBR Green I Kit (Roche Diagnostics, Indianapolis, IN) with 10 μL 471 

reaction volume and performed in a LightCycler (Roche Diagnostics). Quantitation of gene expression was 472 

achieved by measuring target messenger RNA (mRNA) copy number against a 10-fold serial dilution of 473 

target-specific DNA standard ranging between 107 and 103 DNA copies. A target-specific DNA standard was 474 

prepared for each transcript by performing a 150 μl PCR reaction using HotstarTaq PCR Master Mix Kit 475 

(Qiagen) and cleaning the product using the Qiaquick PCR Purification Kit (Qiagen) The purified DNA 476 

standard was visualized by running a 100 ng aliquot on a 1.5% agarose gel and verifying that a single product 477 

of the proper size was present. The DNA standard was quantified spectrophotometrically using the NanoDrop 478 

ND1000 and diluted to a standard stock concentration of 5 × 109 DNA copies per microliter. 18S ribosomal 479 

RNA was used to normalize gene expression. Real-time qRT-PCR of control and treated samples for each 480 

gene was performed on the same run to minimize potential run to run variability. 481 

 482 

Exploratory analysis and data statistical analysis 483 

Results are shown as means ± SEM of the indicated number of experiments. Statistical significance between 484 

mean differences was determined using two-tailed Student’s t test after normality and homogeneity of 485 

variances was access using a Shapiro-Wilk and Levene’s test. Control group was matched against the treated 486 

group for each day to exclude the variability associated with mitochondrial isolation. In the specific case 487 

when seeking to ascertain whether changes between saline and DOX group in the heart are actually different 488 

from changes in other tissues, regardless of the inter-tissue baseline (i.e. for mRNA) data were analyzed by a 489 

two-way ANOVA with planned contrasts against the interaction between treatment and tissue so that 490 

significant relative changes (fold-change) are dependent on tissue. p-Values were thereafter adjusted for 491 

multiplicity using Šídák post-hoc test. Differences were considered significant if p < 0.05 and categorized 492 

accordingly to their interval of confidence. Statistical analyses were performed using Graph Pad Prism 493 

version 5.0 (GraphPad Software, Inc., San Diego, CA, USA), except of the two-way ANOVA, which was 494 

performed using JMP-SAS version 9.03 (SAS Campus Drive, Cary, NC, USA). 495 

 496 
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The exploratory analysis comprises the application of Feature Correlation Analysis (FCA) and Principal 497 

Component Analysis (PCA) methods. For both studies, samples with missing values were discarded. 498 

Standardization was applied to all the remaining features and the corresponding standard scores were used. 499 

FCA was performed using the Pearson correlation coefficients, whose values belong to the interval [-1, +1]: 500 

+1 signals a total positive linear correlation, 0 identifies no linear correlation and -1 refers to a total negative 501 

linear correlation. To simplify the analysis of the results, we consider just the absolute magnitude of change 502 

and created several graphical displays of the correlation matrices.  503 

PCA was applied to find the two principal components that collectively explain most of the variability of the 504 

original set. The obtained eigenvectors were used to project the original samples in a set of 2D plots. Both 505 

FCA and PCA studies were performed using Python2, version 7. We relied on the Pandas package to load, 506 

store and transform the data (McKinney, 2010). The statistical analysis was performed using SciPy (Jones, 507 

2001) and scikit-learn (Fabian Pedregosa, 2011). FCA correlation plots were created using Matplotlib and 508 

Biokit modules (Hunter, 2007). PCA scatter plots and density region charts were obtained with Orange Biolab 509 

(Demsar J, 2013). 510 

 511 

512 
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TABLES 655 

Table 1 - Effect of cyclosporin A (CsA) on calcium-induced mPTP evaluated with Ca5GN. 656 

Substrate Treat. Heart Liver Kidney 

  Diff. 

Means 

Pooled 

SE 

Diff. 

Means 

Pooled 

SE 

Diff. 

Means 

Pooled 

SE 

  % of inhibition 

  nCsA = 4 nCsA = 6 nCsA = 5 

Glutamate/Malate Saline 85.9** 25.0 107.0*** 21.0 98.8*** 17.0 

DOX 96.4** 24.6 101.0*** 22.0 96.0** 24.4 

Succinate Saline 92.2* 37.2 72.6*** 11.7 101.4** 23.7 

DOX 97.0* 39.6 100.0* 32.0 98.5** 21.9 

 657 

Tabulated values represent the difference between means of groups in the absence of CsA and groups with 658 

CsA, e.g. saline-glutamate/malate vs. saline-glutamate/malate + CsA, and are expressed as relative percentage 659 

to the group without CsA. *, p ≤ 0.05; **, p ≤ 0.01 and ***, p ≤ 0.001 vs. group with CsA, as evaluated by an 660 

unpaired Student’s t test. Abbreviations: Exp. – experimental setup; Treat. - treatment; Diff. Means - 661 

difference between group means; Pooled SE - pooled standard error; nCsA - replicates number in CsA group. 662 

 663 

664 
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Table 2 - Effect of CsA on calcium-induced mitochondrial swelling. 665 

Substrate Treat. Heart Liver Kidney 

  Diff. 

Means 

Pooled 

SE 

Diff. 

Means 

Pooled 

SE 

Diff. 

Means 

Pooled 

SE 

  % of inhibition 

  nCsA = 4 nCsA = 6 nCsA = 5 

Glutamate/Malate Saline 80.6* 34.8 108.6*** 24.8 87.0** 23.6 

DOX 76.6** 33.7 80.9** 22.2 90.7** 25.3 

Succinate Saline 91.6*** 14.4 99.0*** 38.3 88.0** 18.9 

DOX 93.8** 28.7 98.1* 29.3 87.3** 20.5 

 666 

Tabulated values represent the difference between means of groups in the absence of CsA and groups with 667 

CsA, e.g. saline-glutamate/malate vs. saline-glutamate/malate + CsA, and are expressed as relative percentage 668 

to the group without CsA. *, p ≤ 0.05; **, p ≤ 0.01 and ***, p ≤ 0.001 vs. group with CsA, as evaluated by an 669 

unpaired Student’s t test. Abbreviations: Exp. – experimental setup; Treat. - treatment; Diff. Means - 670 

difference between group means; Pooled SE - pooled standard error; nCsA - replicates number in CsA group. 671 

672 



 

28 

 

Table 3 - Effects of DOX treatment on protein content of mPTP-related proteins. 673 

    ANT VDAC Cyp-D 

    Mean SE Mean SE Mean SE 

Heart Saline 1.02 0.05 0.96 0.02 1.00 0.03 

DOX 0.97 0.08 1.04 0.05 1.01 0.02 

Liver Saline 0.97 0.08 1.00 0.10 1.00 0.07 

DOX 1.04 0.04 0.99 0.08 1.01 0.04 

Kidney Saline 1.02 0.05 0.95 0.11 1.06 0.04 

DOX 0.99 0.05 1.04 0.08 0.95 0.05 

 674 

Protein levels data are presented as arbitrary units and represent densitometry analysis of western blot 675 

membranes after image acquisition. Differences between treatment group means were evaluated by matched 676 

pairs Student’s t test. Abbreviations: A.U. - arbitrary units; SE - standard error. 677 

678 
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Table 4 – Effects of DOX treatment on transcript level of mPTP-related proteins. 679 

    ANT1 ANT2 VDAC1 VDAC2 VDAC3 

    Mean SE Mean SE Mean SE Mean SE Mean SE 

Heart Salin

e 

8.04×10−

3  

5.35×10−

4 

2.55×10−

4 

1.51×10−

5 

1.51×10−

3 

2.33×10−

4 

4.05×10−

4 

3.14×10−

5 

5.36×10−

4 

3.72×10−

5 

DOX 4.82×10−

3 a 

1.94×10−

4 

1.87×10−

4 b 

1.29×10−

5 

9.85×10−

4 

7.57×10−

5 

2.96×10−

4 

1.32×10−

5 

4.57×10−

4 

2.42×10−

5 

Liver Salin

e 

1.96×10−

4 

1.54×10−

5 

1.08×10−

3 

6.41×10−

5 

2.33×10−

3 

2.54×10−

3 

3.05×10−

4 

4.19×10−

5 

8.57×10−

4 

8.97×10−

4 

DOX 2.00×10−

4 

1.03×10−

5 

1.12×10−

3 

8.38×10−

5 

3.23×10−

4 

2.32×10−

4 

3.01×10−

4 

2.10×10−

5 

1.28×10−

4 

5.98×10−

5 

Kidne

y 

Salin

e 

2.36×10−

3   

2.01×10−

4 

5.18×10−

3 

4.70×10−

4 

5.77×10−

4 

7.36×10−

5 

1.32×10−

4 

1.26×10−

4 

1.85×10−

4 

2.29×10−

5 

DOX 2.63×10−

3 

2.45×10−

4 

5.90×10−

3 

4.53×10−

4 

4.32×10−

4 

8.80×10−

5 

1.38×10−

5 

1.12×10−

5 

1.97×10−

4 

2.25×10−

5 

 680 

Total mRNA was extracted from each tissue and transcript levels were analyzed through RT-qPCR with the 681 

transcript copy number being thereafter normalized to 18S copy number. Values are shown as transcript copy 682 

number / 18S copy number. For statistical analysis, tabulated values were log transformed and differences in 683 

fold-change of each tissue were detected by a two-way ANOVA with planned contrasts and adjusted for 684 

multiple comparisons through the Sidak test. a , p ≤ 0.05 Saline-DOX fold-change in heart vs liver and 685 

Saline-DOX fold-change  in heart vs. kidney; b , p ≤ 0.05 Saline-DOX fold-change in heart vs. kidney. n = 6 686 

for all tissues and both experimental setups. Abbreviations: SE - standard error. 687 

 688 

689 
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FIGURE SUBTITLES 690 

Fig. 1: PCA projection along the two principal components of the separation between DOX (red) and Saline 691 

(blue) samples for Heart (a), Kidney (b) and Liver (c). The two class density colors identify the area of 692 

influence of each group. The four panels in each figure display results obtained with each mitochondrial 693 

respiratory complex. PCA was performed on transcripts (mRNA) of genes encoding proteins from 694 

mitochondrial Complexes I-IV. The study was based on 12 samples (6 Saline and 6 DOX) and 13, 4, 6, and 7 695 

transcripts for each one of the 4 respiratory complexes (I-IV), respectively. PCA was performed separately for 696 

each combination of tissue and specific respiratory chain complex, to simplify the identification of situations 697 

in which a clear boundary between the two treatment groups emerges. 698 

 699 

Fig.2: Matrices with all correlation changes in the features that result from the administration of DOX: a - 700 

Heart; b - Kidney; c - Liver. Blank cells indicate that there is no significant change in correlation levels 701 

calculated before and after DOX treatment. Cells with circles identify sizable changes in the correlation value. 702 

The area and shading of a circle are directly proportional to the absolute magnitude of change. 703 

 704 

Fig. 3: Effects of DOX treatment on mitochondrial H2O2 production. After 15 min, end-point H2O2 levels 705 

were measured fluorimetrically through reaction with homovalinic acid. a - heart; b - liver; c - kidney. Circles 706 

represent means of treatment groups (saline in white circles; DOX in black circles) with SEM (error bars are 707 

smaller than symbols when not visible). Differences between means of treatment were evaluated by matched 708 

pairs Student’s t test to exclude the variability related to mitochondrial. ∗p ≤ 0.05 and ∗∗p ≤ 0.01 vs saline 709 

group of the same model. n = 8, 7 and 6 (heart, liver and kidney, respectively). 710 

 711 

Fig. 4: Effects of DOX treatment on mitochondrial calcium-loading capacity. Ca2+ movements were evaluated 712 

using the extramitochondrial fluorescent probe Ca5GN after addition of a single pulse of Ca2+. The retention 713 

time is defined by the time interval between the influx and efflux of Ca2+ whose fluorescence value equals the 714 

peak half-height fluorescence upon addition of calcium (larger values mean less sensitivity to mPTP). a - 715 

heart; b - liver; c - kidney. Bars represent means of treatment groups (saline in white bars; DOX in black bars) 716 

with SEM. Differences between means of treatment groups were evaluated by matched pairs Student’s t test 717 
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to exclude the variability related to mitochondrial isolation. ∗p ≤ 0.05 and ∗∗p ≤ 0.01 vs saline group. n = 10, 718 

9 and 10 (heart, liver and kidney, respectively). GM, glutamate/malate; SUC, succinate. 719 

 720 

Fig. 5: Effects of DOX treatment on calcium-induced mitochondrial swelling. Mitochondrial swelling was 721 

evaluated by following the decrease in apparent absorbance of the mitochondrial suspension at 540 nm after 722 

addition of a single pulse of Ca2+. The swelling amplitude presented in the graphs is defined as the difference 723 

in absorbance between the point which corresponds to half of the maximum swelling amplitude of the control 724 

record and the maximum absorbance before calcium addition (larger values mean greater sensitivity to 725 

mPTP). a - heart; b - liver; c - kidney. Bars represent means of treatment groups (saline in white bars; DOX in 726 

black bars) with SEM. Differences between means of treatment groups were evaluated by matched pairs 727 

Student’s t test to exclude the variability related to mitochondrial isolation. ∗p ≤ 0.05 vs saline group of the 728 

same model. n = 10, 9 and 10 (heart, liver and kidney, respectively). GM, glutamate/malate; SUC, succinate. 729 

  730 
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Figure 2C 740 
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