
                          Silvi, M., & Aggarwal, V. K. (2019). Radical Addition to Strained -Bonds
Enables the Stereocontrolled Synthesis of Cyclobutyl Boronic Esters.
Journal of the American Chemical Society, 141(24), 9511-9515.
https://doi.org/10.1021/jacs.9b03653

Peer reviewed version

Link to published version (if available):
10.1021/jacs.9b03653

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via ACS at https://pubs.acs.org/doi/10.1021/jacs.9b03653 . Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/user-
guides/explore-bristol-research/ebr-terms/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/211001869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1021/jacs.9b03653
https://doi.org/10.1021/jacs.9b03653
https://research-information.bris.ac.uk/en/publications/radical-addition-to-strained-bonds-enables-the-stereocontrolled-synthesis-of-cyclobutyl-boronic-esters(3c58e3a8-2db7-488f-8da0-24c3f41e6baf).html
https://research-information.bris.ac.uk/en/publications/radical-addition-to-strained-bonds-enables-the-stereocontrolled-synthesis-of-cyclobutyl-boronic-esters(3c58e3a8-2db7-488f-8da0-24c3f41e6baf).html


 

 

Radical Addition to Strained σ-Bonds Enables the Stereocontrolled 

Synthesis of Cyclobutyl Boronic Esters 

Mattia Silvi, and Varinder K. Aggarwal* 

School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom. 

 

Supporting Information Placeholder

ABSTRACT: Whilst radical additions to -bonds are well estab-

lished, additions to -bonds are far less explored. We have found 

that electron deficient radicals derived from alkyl iodides under vis-

ible light irradiation add to the central strained bond of bicyclobutyl 

(BCB)-boronate complexes and lead to 1,3-alkyl disubstituted cy-

clobutyl boronic esters in high yields, with full stereospecificity 

and high levels of stereoselectivity. Novel cyclobutyl-substituted 

structures, including peptide and steroid boronic ester derivatives 

can be accessed. Additionally, although the use of electron-rich al-

kyl iodides as radical precursors was found to be ineffective, an 

alternative route involving alkylsulfonylation of the BCB-

boronate, followed by reductive desulfonylation provided access to 

simple alkyl substituted cyclobutane products.  

The field of radical chemistry1 has witnessed a renaissance over 

the last decade,2 triggered largely by the introduction of photoredox 

methods (electron transfer photocatalysis)3-4 for the generation of 

open-shell species under mild conditions. The radicals generated 

have been utilized in a broad array of reactions including addition 

to π-systems (e.g. olefins, alkynes, aromatics),2-4 radical-metal re-

combination5 and radical-radical cross-coupling.6  

We and others recently showed that electrophilic radicals readily 

add to π-bonds of unsaturated boronate complexes 1 (Scheme 1a).7 

Subsequent one-electron oxidation of the resulting intermediate 

radical anion 2 triggered a 1,2-metallate rearrangement leading to 

densely functionalized boronic esters 3. We questioned whether 

less activated σ-bonds, embedded in a strained molecule,8 could 

undergo analogous radical reactivity as this would significantly en-

hance the scope of both boron and radical chemistry. In support of 

this hypothesis, the addition of radicals to exceptionally strained σ-

bonds has been observed,9 although studies in this area remain lim-

ited. Specifically, we sought to add radicals to the central σ-bond 

of a strained bicyclobutyl (BCB)-boronate complex 4 (Scheme 1b), 

which we recently showed was capable of reacting with electro-

philic palladium(II) intermediates.10 Following radical addition, 

one-electron oxidation7 would trigger a 1,2-metallate rearrange-

ment11 leading to cyclobutyl boronic esters 6. Not only does this 

proposal present novel reactivity between boronate complexes and 

radicals, but it also offers a mechanistically distinct method to pre-

pare challenging polysubstituted cyclobutanes.12 Such entities have 

the potential to open up considerable chemical space due to the 

three readily diversifiable positions (radical precursor,4 boronic es-

ter substituent, and the boron atom13 itself). Furthermore, 

cyclobutanes are of increasing interest in medicinal chemistry,14 

adding significant motivation for developing this methodology. 

Herein, we show that radicals can indeed add to the central σ-bond 

of a strained BCB-boronate complexes, thereby providing a stere-

ocontrolled synthesis of 1,3-dialkyl substituted cyclobutyl boronic 

esters 6.  

Scheme 1. a) Radical addition to π-bonds of unsaturated 

boronate complexes. b) Proposed radical addition to σ-

bonds of BCB-boronate complexes. 

 

We began our studies by focusing on developing a radical trifluo-

romethylation process,2c as the trifluoromethyl group is a highly 

sought-after moiety in medicinal chemistry.15 For the optimization 

studies, the BCB-boronate complex 3a was generated in situ by 

adding t-BuLi to a mixture of sulfoxide 7 and cyclohexyl boronic 

acid pinacol ester 8a in THF. An excess (5 equiv.) of trifluorome-

thyl iodide-DMSO complex and 1 mol% of the photocatalyst 

Ru(bpy)3
2+ were then added under blue LED irradiation.  After 16 

h we were delighted to find that the expected boronic ester 6a was 

formed in good yield and moderate diastereoselectivity (Table 1, 

entry 1). A brief solvent screen showed that THF was superior to 

DMSO and MeCN (entries 2-3). Performing the reaction at -78 °C16 

was found to significantly improve the process, providing the de-

sired compound 6a in high yield and as a single diastereoisomer 

(entry 4; stereochemistry established by 1H-NMR NOE analysis, 



 

 

see SI for details). In line with our previous studies with vinyl boro-

nates,7b we found that the photocatalyst was unnecessary for the 

process (entry 5). Finally, the loading of radical precursor could be 

decreased to 3 equivalents, and the reaction time shortened to 1 

hour, without any loss in reaction efficiency (entry 6). A control 

experiment highlighted the importance of light, as only traces of 6a 

were observed in the absence of blue LED irradiation (entry 7). Fi-

nally, performing the reaction in the presence of a radical inhibitor 

(TEMPO) led to complete inhibition (entry 8), and to the detection 

of the TEMPO–CF3 adduct (see SI), which is indicative of the in-

volvement of radical species in the process.  

Table 1. Optimization Studies.  

 

Entrya Solvent T (°C) 6a (%)b d.r.c 

1d THF 25 66 5:1 

2e DMSO 25 52 6:1 

3e CH3CN 25 46 5:1 

4d THF -78 73 >20:1 

5 THF -78 75 >20:1 

6f THF -78 79 (74) >20:1 

7g THF -78 to 25 6 5:1 

8h,f THF -78 0 - 

a All the reactions performed on a 0.1 mmol scale, light source: 

Kessil blue LED lamp (see SI), reaction time: 16 h. Cy: cyclohexyl. 
b 19F-NMR yield using trifluorotoluene as internal standard, num-

ber in parentheses is the isolated yield of a 0.2 mmol scale reaction. 
c Determined by 19F-NMR. d 1 mol% of Ru(bpy)3(PF6)2 used. e 1 

mol% of Ru(bpy)3Cl2 used. f Reaction carried out with 3 equiv. of 

CF3I·2DMSO, reaction time: 1 hour. g Reaction carried out without 

blue LED irradiation. h Reaction carried out in the presence of 1 

equiv. of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO). 

With the optimized conditions in hand, we explored the scope of 

the radical trifluoromethylation reaction by varying the structure of 

the starting boronic ester. The reactions were found to occur with 

high diastereoselectivity, and simple chromatographic separation 

of the isomers allowed isolation of the products as single diastere-

oisomers. A variety of alkyl groups could be accommodated on the 

boronic ester starting material, from a simple Me group up to a t-

Bu group, showing that the reaction tolerates the full spectrum of 

steric demand and affords products 6b-d with high stereoselectivity 

(Scheme 2). Aromatic boronic esters were also successfully em-

ployed, although only moderate levels of diastereoselectivity were 

achieved (6e-g).17 A cyclobutyl boronic ester was also explored, 

giving the strained boronic ester 6h, featuring two adjacent cyclo-

butyl rings with high diastereoselectivity. Enantioenriched boronic 

esters featuring a chiral center in the α-position gave 6i-k with com-

plete retention of stereochemistry. The pyrrolidine boronic ester 

substrate is especially noteworthy as this is normally a poor migrat-

ing group18 but worked well under our standard conditions giving 

6k in good yield and with high stereocontrol. In addition, cyclobu-

tyl boronic esters bearing complex chiral structures and biologi-

cally relevant substituents could be obtained through this method-

ology with high stereocontrol (6l-o).   

Scheme 2. Scope of boronic esters for the radical trifluoro-

methylation reactiona 

 

a Unless noted otherwise, isolated yields of single diastereoisomer in reac-

tions carried out under a nitrogen atmosphere, with 1.2 equiv. of 7, 1.0 

equiv. 8 and 3 equiv. of CF3I·2DMSO, using Schlenk techniques on a 0.2 

mmol scale. Diastereomeric ratio measured by 19F-NMR analysis of the 
crude reaction mixture and refers to stereochemistry across the cyclobutane 

ring: the migration was in all cases observed to be stereospecific with re-

spect to the migrating carbon.  bReaction time: 24 hours, propionitrile used 

as solvent. c Compound isolated as a mixture of diastereoisomers. 

We then sought to explore the scope of radical precursors that 

could be employed. Longer perfluoroalkyl chains could be used, 

resulting in similarly high yield and stereoselectivity (Scheme 3, 

compound 6p). A number of alkyl halides carrying electron with-

drawing groups – including nitriles, esters, primary amides and sul-

fones – reacted with high yield and moderate to good diastereose-

lectivity (6q-t). The stereoselectivity of the process was observed 

to follow the trend CN < COOEt < SO2Ph, indicating that steric 

factors influence the outcome of the reaction. Remarkably, dipep-

tide 6u and tigogenin derivative 6v could also be efficiently syn-

thesized from radical precursors derived from the corresponding 

biologically relevant molecule, showcasing the applicability of this 

process for late stage functionalizations.  



 

 

Scheme 3. Scope of radical precursorsa 

 

a Isolated yields of mixtures of diastereoisomers in reactions carried out 

under a nitrogen atmosphere, with 1.2 equiv. of 7, 1.0 equiv. 8a and 2 equiv. 
of iodide 5, using Schlenk techniques on a 0.2 mmol scale. Diastereomeric 

ratio measured by 1H-NMR analysis of the crude reaction mixture. b 

Ru(bpy)3(PF6)2 (1 mol%) was used. c Reaction time: 24 hours. 

Unfortunately, non-activated alkyl iodides (e.g. benzyl iodide, 

methyl iodide) were found to be unreactive in the process, presum-

ably because the polarity of the electron rich radical did not match 

with the polarity of the electron rich BCB-boronate, limiting the 

scope of the methodology. To overcome this limitation, we consid-

ered the use of sulfones as traceless activating groups.19 Pleasingly, 

sequential radical alkylsulfonylation followed by reductive cleav-

age of the sulfone enabled access to alkylated products 9a and 9b 

in high yields (Scheme 4). Interestingly, the cyclobutylmethyl rad-

ical intermediate involved in the desulfonylation did not undergo 

ring opening [k=4.5·102 s-l],20 showing that reduction/protonation 

are faster processes.  

Scheme 4. Strategy to introduce simple alkyl groups 

 

The synthetic utility of the products was demonstrated by carry-

ing out a number of functional group interconversions of the 

boronic ester. For example, cyclobutane 6a underwent stereospe-

cific oxidation to alcohol 10a, conversion to potassium trifluorob-

orate salt21 10b, Zweifel olefination22 to give alkene 10c, and 

Matteson homologation23 to afford boronic ester 10d (Scheme 5).  

Scheme 5. Product functionalization reactions 

 

The mechanism of this photochemical radical reaction of BCB-

boronate complexes likely bears similarities to that previously re-

ported for vinyl boronate complexes.7b We propose that the light 

sensitive alkyl iodide undergoes photolytic initiation generating 

radical 11, which adds to the strained central σ-bond of BCB-

boronate 3 leading to the electron-rich radical anion 12 (Scheme 6). 

Single electron transfer to another molecule of alkyl iodide 5 re-

generates radical 11 and forms zwitterionic species 13, which un-

dergoes fast 1,2-metallate rearrangement to give the final product 

6.24 We believe that the single electron-transfer step is also the ste-

reoselectivity determining step. As depicted in Scheme 6, alkyl io-

dide 5 approaches radical intermediate 12 from the less hindered 

face of the cyclobutane ring, away from the alkyl iodide-derived 

substituent. As the electron is transferred, 1,2-migration occurs on 

the opposite lobe of the p orbital before the molecule has time to 

undergo bond rotation around the C+–B bond. This accounts for the 

cis-relationship between the two alkyl groups in 6. 

Scheme 6. Proposed reaction mechanism 

 

In conclusion, we have shown that bicyclobutyl boronate com-

plexes are excellent radical traps for electrophilic radicals, provid-

ing a novel visible light-mediated three-component coupling. Fur-

thermore, the reaction can be conducted in the absence of photo-

catalysts. The reactions occur with moderate to excellent diastere-

oselectivity, are fully stereospecific, and allow the synthesis of 

complex chiral cyclobutanes, including peptide and steroid deriva-

tives. The reactivity is induced by strain release-driven radical 



 

 

addition to σ-bonds, a pathway that will no doubt find further ap-

plication in the synthesis of cyclobutyl-containing natural products 

and drug candidates 
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