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Diversity in the shapes of avian eggs has intrigued biologists for centuries, and recent studies at a range 

of taxonomic scales suggest that egg shape can be a powerful lens through which to view morphological 

adaptation. At a broad taxonomic level, we (Stoddard et al. 2017) examined egg shape in 1400 species. 

Our study, which contained a detailed analysis of the egg shape morphospace and a new biophysical 

model of egg shape formation, included a broad-scale phylogenetic comparative analysis of egg shape 

across more than 1200 species representing 34 orders and 143 families. We found that, at this global 

scale, most variation in egg shape is correlated with phylogenetic history, an adult bird’s body mass and 

egg size. We also found a significant correlation between egg shape and hand-wing index, a measure of 

wing shape that provides a general estimate of flight ability, prompting us to consider the possibility that 

adaptations for flight might be important drivers of egg shape variation. 

 

In our paper (Stoddard et al. 2017), we encouraged additional work on egg shape variation within 

specific avian lineages, stating that the global patterns we observed across more than 1200 species do 

not apply equally to all smaller clades. It is exciting to see recent studies in this area, which have 

explored egg shape with respect to incubation behavior (Deeming and Mayr 2018; Birkhead et al. 2019), 

composition (eggshell, yolk and albumen) (Deeming 2018), strength and stability (Birkhead et al. 2017a, 

Hays and Hauber 2018, Birkhead et al. 2018), protection from contamination by soil and feces 

(Birkhead et al. 2017b), morphology and locomotion (Anten-Housten et al. 2017; Shatkovska et al. 

2018), diet (Bańbura et al. 2018) and climate conditions (Duursma et al. 2018) in a number of avian 

families. In a new study in Ibis, Birkhead, Thompson, Biggins and Montgomerie (2019) investigated egg 

shape in 30 species belonging to two avian families – the alcids (Alcidae) and penguins (Spheniscidae). 

They found that egg size and factors related to incubation, including chick developmental mode, clutch 

size and incubation site, are correlated with egg shape in these two groups. They present these findings 

as an alternative to some of the results we reported in Stoddard et al. (2017), suggesting that “selection 

acting during incubation may influence egg-shape variation across birds as a whole.” 

 

Contrary to Birkhead et al. (2019), who argue that their new findings about incubation provide an 

opposing explanation for egg shape variation in birds, we see no conflict between the results of Birkhead 

et al. (2019) and Stoddard et al. (2017), which were performed at different taxonomic scales. Here, we 

expand on this point and emphasize the complementary—rather than contradictory—nature of our joint 

findings. First, we wish to clarify that we (Stoddard et al. 2017) did include factors related to incubation 



in our global analysis. We tested hypotheses related to clutch size, nest location, nest type and chick 

developmental mode. We did not find any of these factors to be a significant predictor of egg shape 

variation at a global scale across the more than 1200 species for which data were available. To conduct 

our analysis, we searched the literature for hypotheses related to the function of egg shape and used this 

to guide our collection of extensive biometric, life history and environmental data for species in our 

sample, including adult body mass, egg length, diet, clutch size, nest type, nest location, chick 

developmental mode, latitude, temperature, precipitation and hand-wing index. All of these factors were 

included in our comparative models, which used backbone phylogenies based on Jetz et al. (2012) and 

Prum et al. (2015). Controlling for differences in phylogenetic relatedness, only adult body mass, egg 

size and hand-wing index were significantly correlated with egg shape at the global scale in both of the 

examined tree topologies. Therefore, at the global scale, we concluded that hand-wing index was a 

predictor of egg shape variation whereas factors related to diet, incubation and the environment were 

not.  

 

Birkhead et al. (2019) point out that “as powerful as comparative studies can be, broad-based analyses 

like that of Stoddard et al. (2017) can mask effects that differ from taxon to taxon.” We certainly agree 

with this, which is why in our study we also investigated the extent to which global patterns of egg 

shape variation applied to smaller taxonomic groups: seabirds, shorebirds (order: Charadriiformes) and 

passerines (order: Passeriformes). We found that hand-wing index was not a significant predictor of egg 

shape variation in seabirds and shorebirds, and we highlighted the fact that “life history traits may have a 

substantial secondary influence on egg-shape evolution on smaller taxonomic scales” (Stoddard et al. 

2017). From this perspective, we fully expect—and indeed have demonstrated in some groups—that the 

factors correlated with egg shape variation across a large sample of families do not always translate to 

individual families. This is the beauty and challenge of comparative biology: it can reveal 

generalizations across a taxonomically diverse group, but it can also blur the details of smaller clades. 

Consequently, we might reject the hypothesis that clutch size and nest type are significant drivers of egg 

shape variation at the global scale, but this does not mean that these factors are unimportant for cliff-

nesting alcids or penguins. Therefore, our results (Stoddard et al. 2017) at the global scale do not 

necessarily contradict the more taxonomically-focused analyses of Birkhead et al. (2019) but rather 

suggest that different rules emerge at different taxonomic scales. 

 



Just as we cannot generalize trends at the global scale to all subgroups, we should not assume that the 

factors explaining variation in particular subgroups will scale up. Birkhead et al. (2019) have focused on 

egg shape in two extreme seabird families. Alcids, which include cliff-nesting guillemots (Uria spp.) 

and razorbills (Alca torda), lay famously pyriform eggs—among the most asymmetric of all bird eggs 

(see Stoddard et al. 2017, Figure 1)—particularly in species nesting on rocky cliff-ledges. Penguins are 

flightless birds that incubate their eggs in shallow cup-nests, in crevices or burrows, or directly on their 

feet. Birkhead et al. (2019) emphasize the importance of incubation site and the role of the incubating 

parent’s posture as selection pressures acting on egg shape. Certainly these factors may be influential for 

birds that must position the egg in a way that reduces the chance of it rolling away, as is the case for 

some penguins and alcids. However, for the vast majority of bird species, eggs are not at great risk of 

rolling away because they are contained in deep burrows, cavities or cup-shaped nests. We acknowledge 

that there are many advantages to exploring egg shape variation in clades with extreme eggs, and the 

alcids are among the best studied in this respect. However, alcids as a group are unlikely to reflect 

broader patterns of egg shape variation across all birds, particularly because unprotected cliff-ledge and 

bare-rock nests are extremely rare or absent in most avian families. 

 

Birkhead et al. (2019) note that hand-wing index only explained about 4% of the total variance in egg 

shape in our comparative models across ~1200 species. This is true, because most of the variance in egg 

shape was explained by phylogenetic relatedness, adult body size and egg size. As we described above, 

however, hand-wing index was the only significant predictor of egg shape variation—across two 

different phylogenetic topologies—after controlling for phylogeny, body size and egg size. Birkhead et 

al. (2019) report a large proportion of variance explained by a single factor, showing that more than 60% 

of the variation in egg shape across alcids and penguins is explained by incubation site. However, this 

result is not especially surprising because it is based on an analysis that included only incubation site as 

a predictor, whereas a separate analysis revealed that egg volume and “taxon” (alcids vs penguins) also 

explained a large proportion (41-76 %) of variation in egg shape parameters. Even in these two clades, 

in which experimental evidence suggests that incubation site might exert selection pressure on egg 

morphology in some species (e.g., Birkhead et al. 2018), there appears to be no significant relationship 

between egg shape and incubation site after controlling for egg volume and shared phylogenetic history 

(Birkhead et al. 2019, supplementary information).  

 



Birkhead et al. (2019) suggest that the correlation we (Stoddard et al. 2017) found between hand-wing 

index and egg shape is difficult to interpret because the effect size of hand-wing index is small. 

However, our p-values for the correlations between hand-wing index and egg shape fall below the 

widely-accepted threshold of =0.05 and below the stricter threshold of =0.005 (Benjamin et al. 2017). 

Additionally, significant predictors in broad-scale comparative analyses routinely explain a relatively 

small amount of overall variation in dependent variables. For example, the major findings of recent 

comparative studies of avian cooperative breeding (Cornwallis et al. 2010) and plumage evolution (Dale 

et al. 2015) are based on significant predictors with similarly-limited explanatory power. The increased 

power of a particular explanatory variable in models conducted at smaller taxonomic scales does not 

refute the findings of broadly sampled comparative analyses. On the contrary, increased power with 

reduced sampling can be expected because of the simplified set of selective mechanisms playing out 

across a narrower subset of evolutionary history (Graham et al. 2018).   

 

An additional point of clarification is about the mechanism by which hand-wing index may be linked to 

the shape of eggs. Birkhead et al. (2019) state that we “did not offer any convincingly plausible 

mechanism” for a possible association between flight and egg shape. From this, readers might conclude 

that we included hand-wing index in our analyses without a clear a priori hypothesis, which was not the 

case. When we searched the literature, we found that most hypotheses about egg shape were related to 

clutch size, diet, nest characteristics and chick developmental mode. However, an often-overlooked 

hypothesis suggested that “reduced abdominal space typical of birds (presumably an adaptation for 

flight, as is the habit of carrying only a single shelled egg at a time), may therefore be the most 

important determinant of egg-shape in birds” (Iverson and Ewert 1991).  

 

To test this idea, we included hand-wing index, a standard proxy for several aspects of avian flight 

performance (Claramunt et al. 2012, Pigot and Tobias 2015, Kennedy et al. 2016), in our comparative 

models. When hand-wing index emerged as a significant predictor of egg shape, we proposed several 

ways in which adaptations for flight might influence a bird’s body morphology, which could in turn 

affect egg shape. We did not suggest that a female’s flight behavior during egg formation alters egg 

shape directly. Rather, we hypothesized that general adaptations for strong flight selected for a 

constrained, streamlined body plan, which could influence egg shape. We fully acknowledged that “the 

precise physiological mechanisms by which morphological adaptations for flight might affect egg shape 



are unknown,” and we highlighted the need for further research exploring whether hand-wing index is 

correlated with other anatomical features, like pelvic width. Pelvis shape is correlated with egg shape 

(Rensch 1947, Warham 1990), and recent work indicates that pelvic shape is also related to some 

locomotion styles in birds (Anten-Houston et al. 2017). Thus, while we agree with Birkhead et al. (2019) 

that more work is needed to determine whether hand-wing index is correlated with body shape, 

reproductive organ size and additional aspects of flight behavior, we believe the underlying hypothesis 

that streamlined bodies adapted for flight are associated with asymmetric or elongated eggs is clearly 

plausible.  

 

To understand the drivers of egg shape variation, it is also important to consider how best to quantify 

egg shape from 2D photographs. In a recent study, Biggins, Thompson and Birkhead (2018) presented a 

comprehensive analysis and comparison of egg shape metrics. They showed that a four-parameter model 

proposed by Preston (1953) provides a better fit to egg shapes than other methods, particularly for 

highly pyriform eggs. They also showed that, for eggs that are not highly pyriform, two broad sets of 

indices (corresponding to pointedness/polar asymmetry and elongation) may be sufficient to provide a 

general description of egg shape (in addition to a third measure “bicone” that is less directly related to 

the principal features of egg shape). How should researchers proceed? The Preston (1953) method offers 

clear advantages over alternative metrics because its four parameters can be used to describe all egg 

shapes well. However, other methods—including the simpler two-parameter model we used (Stoddard et 

al. 2017)—likely capture much of the variation in egg shape expressed by two broad sets of indices 

(mentioned above) discussed by Biggins et al. (2018). For example, for the 49,175 eggs in our dataset 

(Stoddard et al. 2017), our measures of asymmetry and ellipticity are highly correlated with two 

measures proposed by Biggins et al. (2018), pointedness (R2 = 0.87) and elongation (R2 = 0.97), 

respectively. Finally, Biggins et al. (2018) highlighted the importance of photographing eggs in a 

horizontal position, to reduce errors in estimating egg shape that arise when eggs are in a resting position 

(with the pointed end of the egg facing downward). In the future, museums interested in digitizing their 

egg collections should heed this advice, but an analysis by Biggins et al. (2018) suggests that in most 

cases the errors introduced by estimating shape from resting eggs are likely to be small. For 193 eggs (of 

various species) photographed in the horizontal and resting positions (Biggins et al. 2018, 

supplementary material), the average percent errors in estimating pointedness and elongation from 



resting images appear to be relatively minor (less than 1.5% for both measures, based on our 

calculations derived from the supplementary material). 

 

In summary, egg shape is a complex phenotype that is tugged in multiple directions by various selective 

forces. Which selective forces are the most salient are likely to differ at different phylogenetic scales 

(Graham et al. 2018). Investigations into the drivers of egg shape variation must therefore address a 

range of scales from smaller clades (order, family, genus, species) to the broad (class) level. The results 

presented by Birkhead et al. (2019) in penguins and alcids need not challenge those of our broad-scale 

study (Stoddard et al. 2017), and instead our findings are generally compatible. To obtain a richer 

picture of the adaptive function of egg shape, it will be vital to continue similarly detailed investigations 

in diverse avian (and non-avian) lineages, at a range of taxonomic scales. Understanding the function of 

egg shape will also require a deeper mechanistic appreciation of egg shape formation in the oviduct. To 

this end, a critical part of our study (Stoddard et al. 2017) involved a detailed description of the egg 

shape morphospace, based on a quantitative analysis of nearly 50,000 eggs, and the development of a 

new biophysical model of egg shape. We showed that by adjusting two parameters—variation in the 

material properties of the eggshell’s stretchy membrane, and variation in pressure across the 

membrane—we could simulate shapes that span the egg shape morphospace. Uncovering the details of 

egg formation is likely to lead to new insights about the function and evolution of egg shape, and we 

encourage future integrative work in this area.  

 

 

 

 

 

 

 

 

 

 

 

 



REFERENCES 

 

Anten-Houston, M. V., M. Ruta, and D. C. Deeming. 2017. Effects of phylogeny and locomotor style on 

the allometry of body mass and pelvic dimensions in birds. J. Anat. 231:342–358. 

 

Bańbura, M., M. Glądalski, A. Kaliński, M. Markowski, J. Skwarska, J. Wawrzyniak, P. Zieliński, and 

J. Bańbura. 2018. A consistent long-lasting pattern of spatial variation in egg size and shape in blue tits 

(Cyanistes caeruleus). Front. Zool. 15:140311–10. 

 

Benjamin, D. et al. 2018. Redefine statistical significance. Nat. Hum. Behav. 2:6–10. 

 

Biggins, J. D., J. E. Thompson, and T. R. Birkhead. 2018. Accurately quantifying the shape of birds’ 

eggs. Ecol. Evol. 8:9728–9738. 

 

Birkhead, T. R., J. E. Thompson, and J. D. Biggins. 2017a. Egg shape in the Common Guillemot Uria 

aalge and Brunnich’s Guillemot U. lomvia: not a rolling matter? J. Ornithol. 158:679–685.  

 

Birkhead, T. R., J. E. Thompson, D. Jackson, and J. D. Biggins. 2017b. The point of a Guillemot's egg. 

Ibis 159:255–265.  

 

Birkhead, T. R., J. E. Thompson, and R. Montgomerie. 2018. The pyriform egg of the Common Murre 

(Uria aalge) is more stable on sloping surfaces. Auk 135:1020–1032. 

 

Birkhead, T. R., J. E. Thompson, J. D. Biggins, and R. Montgomerie. 2019. The evolution of egg shape 

in birds: selection during the incubation period. Ibis doi:10.1111/ibi.12658 

 

Claramunt, S., E. P. Derryberry, J. V. Remsen, and R. T. Brumfield. 2012. High dispersal ability inhibits 

speciation in a continental radiation of passerine birds. Proc. R. Soc. London Ser. B. 279:1567–1574. 

 

Cornwallis, C. K., S. A. West, K. E. Davis, and A. S. Griffin (2010). Promiscuity and the evolutionary 

transition to complex societies. Nature, 466:969–972. 

https://doi.org/10.1111/ibi.12658


 

Dale J., C. J. Dey, K. Delhey, B. Kempenaers, M. Valcu. 2015 The effects of life history and sexual 

selection on male and female plumage colouration. Nature 527:367–370.  

 

Deeming, C., and G. Mayr. 2018. Pelvis morphology suggests that early Mesozoic birds were too heavy 

to contact incubate their eggs. J. Evol. Biol. 31:701–709. 

 

Deeming, D. C. 2018. Effect of composition on shape of bird eggs. J. Avian Biol. 49:jav–01528. 

 

Duursma, D. E., R. V. Gallagher, J. J. Price, and S. C. Griffith. 2018. Variation in avian egg shape and 

nest structure is explained by climatic conditions. Sci. Rep. 8:4141. 

 

Graham, C. H., D. Storch, and A. Machac. 2018. Phylogenetic scale in ecology and evolution. Global 

Ecol. Biogeogr. 27:175–187. 

 

Hays, I. R., and M. E. Hauber. 2018. How the egg rolls: a morphological analysis of avian egg shape in 

the context of displacement dynamics. J. Exp. Biol. 221:jeb.178988–33. 

 

Iverson, J. B., and M. A. Ewert. 1991. Physical characteristics of reptilian eggs and a comparison with 

avian eggs. Pp. 87–100 in Egg Incubation: Its Effect on Embryonic Development in Birds and Reptiles. 

Cambridge University Press, New York, New York, USA. 

 

Jetz, W., D. B. Thomas, J. B. Joy, K. Hartmann, and A. O. Mooers. 2012. The global diversity of birds 

in space and time. Nature 491:444–448. 

 

Kennedy, J. D., M. K. Borregaard, K. A. Jonsson, P. Z. Marki, J. Fjeldsa, and C. Rahbek. 2016. The 

influence of wing morphology upon the dispersal, geographical distributions and diversification of the 

Corvides (Aves; Passeriformes). Proc. R. Soc. London Ser. B. 283:20161922. 

 

Pigot, A., and J.A., Tobias. 2015. Dispersal and the transition to sympatry in vertebrates. Proc. R. Soc. 

London Ser. B. 282:20141929. 



 

Preston, F. W. 1953. The shapes of birds' eggs. Auk 70:160–182. 

 

Prum, R. O., J. S. Berv, A. Dornburg, D. J. Field, J. P. Townsend, E. M. Lemmon, and A. R. Lemmon. 

2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. 

Nature 526:569–573. doi: 10.1038/nature15697. 

 

Rensch, B. 1947. Neuere Probleme der Abstammungslehre. Stuttgart: F. Enke. 

 

Shatkovska, O. V., M. Ghazali, I. S. Mytiai, and N. Druz. 2018. Size and shape correlation of birds' 

pelvis and egg: Impact of developmental mode, habitat, and phylogeny. J. Morphol. 279:1590–1602. 

 

Stoddard, M. C., E. H. Yong, D. Akkaynak, C. Sheard, J. A. Tobias, and L. Mahadevan. 2017. Avian 

egg shape: Form, function, and evolution. Science 356:1249–1254. 

 

Warham, J. 1990. The Petrels: Their ecology and breeding systems. London: Academic Press.  

 


