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Abstract

Composite structures are extensively used in many industries, where they are subjected to a variety of loads
and may undergo large deformations. Reliable utilisation of such structures requires prior knowledge of
their failure response. In order to predict failure loads and modes, accurate, yet computationally efficient,
evaluation of three-dimensional (3D) stress fields becomes important. In this paper, we present a modelling
approach, based on the Unified Formulation, that accounts for geometric nonlinearity in laminated compos-
ites and predicts 3D stress fields for subsequent failure analysis. The approach builds upon the hierarchical
Serendipity Lagrange finite elements and is able to capture high-order shear deformation, as well as local
cross-sectional warping. A total Lagrangian approach is adopted and the classic Newton-Raphson method
is employed to solve the nonlinear governing equations. A key novelty of the proposed formulation is its
completeness and its applicability to fully anisotropic structures. In other words, using the Green-Lagrange
strain components within the Unified Formulation framework, the explicit form of the tangent stiffness
matrix is derived including general stiffness properties. This new model is benchmarked against 3D finite
element solution, as well as other formulations available in the literature, by means of static analyses of
highly nonlinear, laminated composite beam-like structures. Significant computational efficiency gains over
3D finite elements are observed for similar levels of accuracy. Furthermore, to show the enhanced capabil-
ities of the present formulation, the postbuckling response of a composite stiffened panel is compared with
experimental results from the literature. The 3D stress fields computed in the postbuckling regime are used
to detect failure of the stiffened panel. The corresponding failure mode, as obtained by the new model, is
shown to match with the experiment.

Keywords: Large Deflection; Finite Element; Composite Stiffened Panel; Failure Initiation.

1. Introduction

As environmental concerns and governmental regulations push towards a more efficient use of materials
and resources, engineering structures are progressively being developed and optimised to, e.g., reduce their
mass and/or increase their performance and fuel efficiency. Composite materials offer considerable advan-
tages in the impetus towards lightweighting, due to their high specific stiffness and strength. In combination,
these more stringent design drivers and the availability of advanced materials promote the employment of
increasingly slender and thin-walled, monocoque and semi-monocoque structures. The aerospace, automo-
tive and wind energy industries provide prime examples of structures that gain efficiency through increased
slenderness. See, for instance, the A350 and 787 wings or recent multi-MW wind turbine blades. However,
as slenderness increases, structures become more susceptible to complex nonlinear deformations. Engineers
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must, therefore, be aware of the limits of both elastic stability and material strength to produce efficient,
reliable designs. For instance, composite stiffened panels, commonly used in aerospace structures, can, in
many cases, operate far beyond the buckling load and only fail deep into the postbuckling range [1]. In order
to account for such failures, accurate prediction of the structural behaviour, including failure mechanisms,
is essential during, and possibly early into, the design phase.

In this regard, significant efforts have been made in the development of tools for predicting ply failure
mechanisms under plane stress states [2–4]. However, using two-dimensional (2D) stress fields in con-
junction with 2D failure theories may not result in accurate evaluation of the failure indices, and thus,
three-dimensional (3D) stress states are required [5]. In general, predicting 3D stress fields accurately in
composite structures is important as through-thickness damage, such as delamination, is driven by trans-
verse shear and transverse normal stresses. Moreover, using 3D stress states in a consistent way, provides
not only the prediction for the onset of ply damage, but also additional information regarding the type of
failure and the orientation of the fracture plane [6, 7]. To this end, high-fidelity finite element methods
(FEM) are often employed to obtain reliable 3D stresses with the desired level of accuracy [8]. However, us-
ing these models becomes prohibitively expensive, from a computational standpoint, whenever thin and/or
multi-layered composite structures are to be analyzed. The problem is further exacerbated for the already
costly geometrically nonlinear or transient analyses. Although many efforts have been carried out over re-
cent decades with numerous numerical models being proposed to assess the nonlinear structural response of
laminated composites [9–13], perhaps due to the computational cost and complexity, the reporting of fully
3D nonlinear stress analyses of laminates in the literature is rather limited.

Of relevance to the present work, a recent contribution to the field of structural mechanics is the Unified
Formulation (UF) by Carrera and co-workers [14, 15]. The formulation extends the kinematics of one-
dimensional (beam) and two-dimensional (plate and shell) models over the cross-section (beam case) and
through the thickness (plate and shell cases) by employing various expansion functions. The available litera-
ture shows the UF’s capability to solve a wide range of structural mechanics problems in an efficient manner.
de Miguel et al. [16] performed failure evaluations using 3D stress fields determined by employing Lagrange
expansions. The approach is shown to be computationally efficient compared to 3D Finite Element (FE)
models and also computes accurate out-of-plane stress fields required for predicting the onset of delamination
in multi-layered composites. However, de Miguel’s work is limited to linear static analyses. In recent works
by Pagani and Carrera [17, 18], the UF is extended to account for large deflections and postbuckling of solid
and thin-walled laminated beam structures. Global/local deformations were investigated using Lagrange
expansion functions in the cross-section. The model is limited to monoclinic material and is not suitable
for analysing anisotropic material structures. More recently, in order to capture shear deformations and
local cross-sectional warping, Hui et al. [19] proposed a geometrically nonlinear high-order kinematic model
using hierarchical expansion functions (Taylor) in the cross-section. Although, the model predicts the dis-
placement and stress fields accurately and efficiently, it is based on a plane-stress assumption, and therefore,
cannot capture 3D stress fields. Moreover, more general limitations of using the Taylor-expansion-based
Unified Formulation are highlighted in [20].

As an alternative approach, we propose to employ the Serendipity Lagrange Expansion (SLE) elements
previously developed by the authors in [20]. The model, combines two of the main features of the Taylor
and the Lagrange expansion elements, i.e. it is hierarchical and allows for numerically stable cross-sectional
refinements via re-meshing. The model was developed with an aim to capture localised 3D stress fields
near geometric features, and was recently extended to account for constant- and variable-stiffness laminated
composite structures [21–23]. In the present paper, we aim to further extend the formulation to deal with
large displacements and nonlinear kinematics. To do so, the total Lagrangian approach is used and the
tangent stiffness matrix of the element is derived from the weak form of the governing equations obtained
via the Principle of Virtual Displacement. For the first time in the nonlinear UF framework, all terms of the
material stiffness matrix are considered to account for general anisotropy. Furthermore, the explicit form of
the tangent stiffness matrix is given in a novel concise form, which simplifies its algorithmic implementation.
The second Piola-Kirchhoff stresses employed by the total Lagrangian formulation are transformed into
true Cauchy’s stresses, which are physically meaningful. The model so-developed is benchmarked against
numerical and experimental results by means of static and failure analyses of nonlinear, laminated composite
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Figure 1: Reference system for a laminated beam.

structures.
The remainder of the paper is structured as follows. Section 2.1 and 2.2 provides preliminary and intro-

ductory information on the Unified Formulation framework, including Green-Lagrange nonlinear geometrical
relations and elastic constitutive equations. In Section 2.3, the tangent stiffness matrix is presented explic-
itly, followed by a discussion on computing co-rotational Cauchy’s stresses in Section 2.4. In Section 3, the
efficacy of the proposed nonlinear model is shown by means of large deflection analyses of various struc-
tures. The solutions obtained are compared with numerical and experimental results. Finally, conclusions
are drawn in Section 4.

2. Mathematical Formulation

2.1. Preliminaries

Consider a laminated beam of length L and rectangular cross-section of width b and thickness h, composed
of Nl layers. The material properties and the thickness of each layer may be entirely different. The beam is
referred to a Cartesian coordinate system (x,y,z), where the y-direction is defined to be along the principal
beam axis, while the z-axis is in the transverse stacking direction as shown in Figure 1. Let θ denote the
fibre orientation and the subscript k be used to refer to the kth layer. For points in the structure’s volume,
the three-dimensional displacement field is given as

U(x, y, z) = {u v w}> , (1)

and the displacement gradient vector Φ can be written as

Φ = {u,x u,y u,z v,x v,y v,z w,x w,y w,z}> , (2)

where a subscript preceded by a comma denotes differentiation with respect to the corresponding spatial
coordinate.

To account for large deformations, the Green-Lagrange strain vector E is considered, which is given by

E =

[
H +

1

2
A

]
Φ, (3)

and the virtual variation of the Green-Lagrange strain vector [24] is given by

δE = δ

{[
H +

1

2
A

]
Φ

}
= [H +A] δΦ, (4)
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where
E = {Exx Eyy Ezz Eyz Exz Exy}> ,

H =


1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0

 ,

A =


u,x 0 0 v,x 0 0 w,x 0 0
0 u,y 0 0 v,y 0 0 w,y 0
0 0 u,z 0 0 v,z 0 0 w,z
0 u,z u,y 0 v,z v,y 0 w,z w,y
u,z 0 u,x v,z 0 v,x w,z 0 w,x
u,y u,x 0 v,y v,x 0 w,y w,x 0

 .

In the present work, the material is assumed to undergo deformation within the linear elastic range and,
therefore, Hooke’s law provides the constitutive relation at layer level:

S = C̄E, (5)

where S = {Sxx Syy Szz Syz Sxz Sxy}> is the second Piola-Kirchhoff stress tensor and C̄ is the
transformed material stiffness matrix expressed in the global Cartesian coordinate system,

C̄ =


C̄11 C̄12 C̄13 C̄14 C̄15 C̄16

C̄22 C̄23 C̄24 C̄25 C̄26

C̄33 C̄34 C̄35 C̄36

C̄44 C̄45 C̄46

Symmetric C̄55 C̄56

C̄66

 . (6)

The coefficients C̄ij relate to the elastic coefficients in material coordinates, Cij , via the transformation
matrixQ, whose elements are obtained from the direction cosines of the material coordinate system projected
onto the global x, y, z coordinate directions. Specifically,

C̄ = QCQ>. (7)

The coefficients Cij and the matrixQ are not included here for sake of brevity, but can be found in Section 5.4
of [25].

2.2. Serendipity-Lagrange-based nonlinear Finite Element Model

Our model employs the Unified Formulation framework, where a 3D structure is discretised with a finite
number of transverse planes running along the principal axis of the structure. For simplicity, this axis
can be thought of as a beam axis and the transverse planes as the beam’s cross-sections. The Unified
Formulation [14, 15] relies on a displacement-based version of the finite element method. In the current
setting, the longitudinal axis of the structure is discretised with Ne-noded, 1D finite elements, so that the
displacement field can be approximated element-wise by means of local shape functions, Ni(y). In addition,
the transverse, or cross-sectional deformations, are approximated using hierarchical Serendipity Lagrange
expansion (SLE) functions, Fτ (x, z) [20], such that

U(x, y, z) =

Ne∑
i=1

m∑
τ=1

Ni(y)Fτ (x, z)Uiτ . (8)
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where m is the number of terms depending on the order of SL expansion, and Uiτ are generalised three-
dimensional displacement vectors.

Adopting this expansion model, cross-sections are discretised using four-noded Lagrange sub-domains
(SLE nodes). The displacement field within each sub-domain can be enriched by increasing the order of the
local Serendipity Lagrange expansion. This model allows a layer-wise approach to be implemented directly
by using a sub-domain for each layer. In addition, the kinematics within each layer (or sub-domain) can be
varied hierarchically. The reader is referred to [20, 21] for a more detailed implementation and treatment of
SLE models.

For the sake of clarity, it is important to stress that, using Eq. (8), the cross-sectional mesh (indicated
by discretisation variable τ) captures the warping of the cross-section with one set of 2D shape functions
(Fτ (x, z)), while the axial behaviour is modelled by a separate 1D mesh (indicated by discretisation variable i)
with an independent set of 1D shape functions (Ni(y)). This approach differentiates the method from classic
3D FEM, where 3D shape functions are used over volumetric brick or tetrahedral elements that offer no
separation of cross-sectional and axial deformations. Moreover, the current methodology overcomes the
limitation on the aspect ratio of a 3D brick element in FE analysis by decoupling the shape functions along
the longitudinal axis and across the transverse plane.

By substituting Eq. (8) in Eq. (2), the displacement gradient vector can be written as

Φ = GiτUiτ (9)

where

Giτ =



NiFτ,x 0 0
Ni,yFτ 0 0
NiFτ,z 0 0

0 NiFτ,x 0
0 Ni,yFτ 0
0 NiFτ,z 0
0 0 NiFτ,x
0 0 Ni,yFτ
0 0 NiFτ,z


, Uiτ =

 uiτ
viτ
wiτ

 .

In the previous expression and throughout remainder of the paper, the Einstein summation convention is
implied over repeated indices.

Elastic equilibrium is enforced via the Principle of Virtual Displacements, by equating the internal and
external virtual work, δWint and δWext. By definition, the internal work is the work done by the internal
stresses over the corresponding internal strains and is equivalent to the elastic strain energy. Noting that
Wint =

∑
eW

e
int, where W e

int represents the strain energy per element and V e be the volume of the generic
element in an undeformed state,

δW e
int =

∫
V e

δE>S dV. (10)

In the notation of the Unified Formulation [20], the internal work can be re-written as

δW e
int = δU>jsK

τsij
s Uiτ , (11)

where the term Kτsij
s is referred to as the Fundamental Nuclei of the secant stiffness matrix. Its explicit

form for an orthotropic lamina can be found in [18]. Fundamental nuclei are assembled into a global
stiffness matrix following the standard finite element procedure. For the sake of brevity, the derivation of
the fundamental nucleus of the loading vector from the virtual variation of the external work is not reported
here, but can be found in [15]. In the present work, we employ the full Newton-Raphson method to solve
the nonlinear governing equations. The main disadvantage of using the secant stiffness matrix as in Eq. (11)
would be its low convergence rate. Moreover, the secant matrix is not uniquely defined and is generally
non-symmetric [18]. Therefore, in the following section, we derive the tangent stiffness matrix, as a more
suitable alternative for the Newton-Raphson iterative solver employed herein.
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2.3. Fundamental Nucleus of the Tangent Stiffness Matrix

In the present work, a classical Newton iteration method [26] is employed to solve the nonlinear system,
which requires formulation of the tangent stiffness matrix. The fundamental nucleus of the tangent stiffness
matrix is obtained from the linearisation of the virtual variation of the strain energy [18] as follows

d(δW e
int) =

∫
V e

d(δE>S) dV =

∫
V e

δE>dS dV +

∫
V e

d(δE>)S dV. (12)

The first term requires the linearisation of the constitutive relation (Eq. (5)), which, under the assumption
of constant material stiffness and following Eq. (4), can be recast as∫

V e

δE>dS dV =

∫
V e

(
δΦ>

{
[H +A]> C̄ [H +A]

}
dΦ
)
dV. (13)

The second term requires the linearisation of the virtual variation of the Green-Lagrange strain vector,
which, after manipulation [24], can be written in the following form:∫

V e

d(δE>)S dV =

∫
V e

δΦ>ŜdΦ dV, (14)

where

Ŝ =



Sxx Sxy Sxz 0 0 0 0 0 0
Sxy Syy Syz 0 0 0 0 0 0
Sxz Syz Szz 0 0 0 0 0 0
0 0 0 Sxx Sxy Sxz 0 0 0
0 0 0 Sxy Syy Syz 0 0 0
0 0 0 Sxz Syz Szz 0 0 0
0 0 0 0 0 0 Sxx Sxy Sxz
0 0 0 0 0 0 Sxy Syy Syz
0 0 0 0 0 0 Sxz Syz Szz


.

Substituting Eqs. (9), (13) and (14) into (12), the linearised version of the virtual variation of the strain
energy is written as

d(δW e
int) = δU>js

(∫
V e

G>js

{
[H> +A>] C̄ [H +A] + Ŝ

}
Giτ dV

)
dUiτ ,

= δU>js

(
Kτsij

l l +Kτsij
l nl +Kτsij

nl l +Kτsij
nl nl +Kτsij

σ

)
dUiτ ,

= δU>jsK
τsij
T dUiτ ,

(15)

where Kτsij
T is the fundamental nucleus of the tangent stiffness matrix, which, in turn, is composed of a

linear term, Kτsij
l l , the nonlinear terms, Kτsij

l nl , Kτsij
nl l and Kτsij

nl nl, and the geometric stiffness term, Kτsij
σ ,

where these are defined as follows:

Kτsij
l l =

∫
V e

G>jsH
>C̄HGiτ dV,

Kτsij
l nl =

∫
V e

G>jsH
>C̄AGiτ dV,

Kτsij
nl l =

∫
V e

G>jsA
>C̄HGiτ dV,

Kτsij
nl nl =

∫
V e

G>jsA
>C̄AGiτ dV,

Kτsij
σ =

∫
V e

G>jsŜGiτ dV.

(16)
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These matrices are of size 3×3 for given i, j, τ , s and can be computed for each τ, s = 1, . . . ,m, and
i, j = 1, . . . , Ne, in order to obtain the elemental tangent stiffness matrix for beam models of any order.
Once the elemental tangent stiffness matrix is obtained, it is assembled into a global stiffness matrix following
the standard finite element procedure.

In the present work, geometrically nonlinear stiffness terms, accounting for fully anisotropic material
properties, are presented for the first time in the Unified Formulation framework. Therefore, for the sake
of completeness, giving the explicit form of all nine components of the tangent stiffness matrix, for each of
the nucleus sub-matrices, is important. However, each term in the fundamental nucleus involves summing a
large number of expressions. Writing these long expressions is cumbersome and it also increases the chance
of introducing a typing error while programming. For instance, each Kτsij

l l term requires summation of 9
expressions as follows:

Kτsij
l l (1, 1) =

∫
V

C̄11Fτ,xFs,xNiNjdV +

∫
V

C̄16Fτ,xFsNiNj,ydV +

∫
V

C̄15Fτ,xFs,zNiNjdV

+

∫
V

C̄16FτFs,xNi,yNjdV +

∫
V

C̄66FτFsNi,yNj,ydV +

∫
V

C̄56FτFs,zNi,yNjdV

+

∫
V

C̄15Fτ,zFs,xNiNjdV +

∫
V

C̄56Fτ,zFsNiNj,ydV +

∫
V

C̄55Fτ,zFs,zNiNjdV.

(17)

Similarly, Kτsij
l nl and Kτsij

nl l terms require 27 expressions each, while Kτsij
nl nl terms require 81 expressions.

Furthermore, these matrices are of size 3×3 and non-symmetric, which increases the above count by a
multiple of 9.

To overcome this complication, we devised an algorithmic and simplified way of writing the expressions
in a concise form using Einstein’s summation notation over repeated indices:

Kτsij
l l (α, β) = < C̄αbβa(NiFτ ),a(NjFs),b >,

Kτsij
l nl (α, β) = < C̄αbac(NiFτ ),a(NjFs),b(NlFp),c > Ulp(β),

Kτsij
nl l (α, β) = < C̄βabc(NiFτ ),a(NjFs),b(NmFq),c > Umq(α),

Kτsij
nl nl(α, β) = < C̄acbd(NiFτ ),a(NjFs),b(NlFp),c(NmFq),d > Ulp(β)Umq(α),

Kτsij
σ (α, β) =

{
kτsijσ (1, 1) + kτsijσ (2, 2) + kτsijσ (3, 3) for α = β

0 for α 6= β
,

(18)

with
kτsijσ (α, α) = < C̄αcab(NiFτ ),a(NjFs),b(NlFp),c > Ulp(α)

+
1

2
< C̄abcd(NiFτ ),a(NjFs),b(NlFp),c(NmFq),d > Ulp(α)Umq(α),

(19)

where α, β = 1, 2, 3, are row and column indices; a, b, c, d = 1, 2, 3, unless preceded by a comma denoting
differentiation, in which case a, b, c, d = x, y, z; < (.) > denotes

∫
V

(.) dV , which is evaluated numerically by
employing Gauss Quadrature; and where C̄ is expressed as a fourth-order tensor (cf. Eq.(6)), as

C̄ =


C̄1111 C̄1122 C̄1133 C̄1123 C̄1113 C̄1112

C̄2222 C̄2233 C̄2223 C̄2213 C̄2212

C̄3333 C̄3323 C̄3313 C̄3312

C̄2323 C̄2313 C̄2312

symmetric C̄1313 C̄1312

C̄1212

 . (20)

This concise way not only reduces the task, but also speeds up the computation process by natural vectori-
sation of the loop. Finally, it is to be noted that the expressions are independent of the type of expansion
function used in the cross-section.
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2.4. Corotational Cauchy Stress

The Cauchy stress tensor σ is derived from the Second-Piola stress tensor S using the deformation
gradient F . Specifically,

σ =
1

detF
FSF>, (21)

where

F =

 1 + u,x u,y u,z
v,x 1 + v,y v,z
w,x w,y 1 + w,z

 . (22)

The Cauchy stress tensor is referenced in the global coordinate system, which does not have a clear physical
meaning in case of large deformations. Therefore, corotational Cauchy stresses are computed on the deformed
configuration using the rotation tensor, R:

σ̂ = R>σR. (23)

The rotation tensor R is obtained by polar decomposition of the deformation gradient as per [27].

3. Numerical Results

In this section, to demonstrate the capabilities of the proposed geometrically nonlinear Unified Formula-
tion, based on Serendipity Lagrange expansions (UF-SLE), various benchmark problems are addressed. The
first example presents the large deflection analysis of an isotropic cantilever beam in bending. In the second,
highly flexible, laminated composite plate strips are considered and their nonlinear responses are compared
with 3D FE solutions and other numerical results available in the literature. In both cases, attention focuses
on highlighting the ability of the UF-SLE model to account for complex nonlinear 3D stress states. In the
third example, the postbuckling response of a single-stringer panel under axial compression is compared
with experimental results from the literature. The 3D stress analysis capabilities of the present model are
exploited for predicting the onset of failure in the panel.

3.1. Isotropic Beam

Consider a clamped-free, square cross-section beam of length L = 1 m, height and width h = b = 0.05 m,
subjected to a bending load, Pz, applied at the free end (y = L), as shown in Figure 2. The Young’s
modulus, E, and Poisson’s ratio, ν, of the constituent material, which is isotropic, are 2.9 GPa and 0.33,
respectively. The non-dimensional quantities

ūz =
uz
L
, ūy =

uy
L
, P̄ =

PzL
2

EI
, (24)

are defined as metrics to benchmark the results, where uz indicates vertical deflection, uy indicates axial
deflection and I is the second moment of area of the square cross-section.

In the present UF-SLE model, the beam structure is discretised using 20 B4 (four-noded cubic Lagrange)
elements along its length and 1 SL5 (fifth-order Serendipity Lagrange) element in the cross-section. A 3D
FE analysis, performed with commercial finite element software ANSYS, is used as a reference for validation,
where the beam is discretised using 10,000 SOLID186 (3D 20-noded) elements to yield converged results.
With the proposed model convergence is achieved with 4,209 degrees of freedom (DOFs), whereas in case of
ANSYS, 139,623 DOFs are required. Figure 3 shows the normalised load-deflection curve, where the vertical
and axial deflection components, ūz and ūy, are measured at the centre of the tip of the beam. In addition to
the 3D FE solution, exact analytical solution given by Bisshopp and Drucker [28], and experimental results
obtained by Kemper [29], are used to validate the UF-SLE model. From the plots, it is evident that the
nonlinear equilibrium curve obtained using the UF-SLE model is in excellent agreement with the 3D FE
solution. The curves slightly differ with the analytical solution, but a better correlation is observed with
the experimental results.
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Figure 2: Square cross-section cantilever beam with applied tip load.

(a) P̄ vs ūz curve at (0, L, 0) (b) P̄ vs ūy curve at (0, L, 0)

Figure 3: Load-deflection curve at the tip centre of a square cross-section isotropic beam. Analytical and experimental results
are taken from [28] and [29], respectively.
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(a) σ̂yy at (0, L/2, z) (b) τ̂yz at (0, L/2, z)

Figure 4: Through-thickness distribution of the axial normal and transverse shear stresses at beam’s mid-span for two load
steps, P̄ /2 and P̄ .

Furthermore, to show the capability of the model in capturing stresses accurately, the through-thickness
distribution of the axial normal, σ̂yy, and transverse shear, τ̂yz, stresses, at two different load steps (P̄ /2 and
P̄ ), are shown in Figure 4. The stress results obtained are compared with the 3D FE solution. The nonlinear
UF-SLE model, which employs the three-dimensional Green-Lagrange strain/displacement relation within
a total Lagrangian approach, is able to replicate the 3D FE model with a limited number of DOFs.

3.2. Thin Composite Plate Strip

In this section, a multi-layered composite plate strip is considered, as shown in Figure 5. The length,
width and thickness of the strip are L = 10 m, b = 1 m and h = 0.1 m, respectively. The plate strip is
clamped at the end y = 0 and is subjected to a bending load, Pz = 5 N , applied uniformly across the section
at the end y = L. The material properties of the orthotropic laminae, considered herein are:

Ex = 0.3 MPa Ey = 1 MPa Ez = 0.3 MPa

Gyz = 0.15 MPa Gxz = 0.12 MPa Gxy = 0.15 MPa

νyz = 0.25 νxz = 0.25 νxy = 0.075.

Four different layups are used: [0/90/0], [90/0/90], [-45/45/-45/45], [30/-60/-60/30]. In order to decide the
number of beam and cross-section elements employed in the UF-SLE model, a mesh convergence analysis
was performed. For converged deflection and normal stress responses, 40 B4 elements along the y-direction
and 1 SL5 (fifth-order expansion) element per layer in the cross-section proved sufficient. However, higher
fidelity is required for nonlinear transverse shear stresses and, therefore, 3 SL8 (eighth order expansion)
elements per layer were required for the cross-section. For the sake of brevity, only converged results are
presented here.

The nonlinear load-deflection curve (Pz vs uz) at the plate’s tip centre (0, L, 0), for the different lamina-
tion schemes, is plotted in Figure 6. The present results are compared with those obtained by performing
a 3D FE analysis in ANSYS and also with the reference solution given by Payette & Reddy [30] using a
seven-parameter, spectral/hp shell finite element. As expected, the stacking sequence [90/0/90] is the most
flexible while [0/90/0] is the most stiff, out of all of the stacking sequences analysed herein.

10



Figure 5: Thin plate strip subjected to a bending load

Figure 6: Load-deflection curve at the tip centre (0, L, 0) of laminated plate strips. Spectral/hp FE results are taken from [30].
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(a) σ̂yy at (0, L/5, z) and (0, L/2, z) (b) τ̂yz at (0, L/5, z) and (0, L/2, z)

Figure 7: Through-thickness distribution of the axial normal and transverse shear stresses at y = 0.2L and 0.5L, measured
from the clamped end, for composite plate strip with layup [0/90/0].

(a) σ̂yy at (0, L/5, z) and (0, L/2, z) (b) τ̂yz at (0, L/5, z) and (0, L/2, z)

Figure 8: Through-thickness distribution of the axial normal and transverse shear stresses at y = 0.2L and 0.5L, measured
from the clamped end, for composite plate strip with layup [90/0/90].
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(a) σ̂yy at (0, L/5, z) and (0, L/2, z) (b) τ̂yz at (0, L/5, z) and (0, L/2, z)

Figure 9: Through-thickness distribution of the axial normal and transverse shear stresses at y = 0.2L and 0.5L, measured
from the clamped end, for composite plate strip with layup [-45/45/-45/45].

(a) σ̂yy at (0, L/5, z) and (0, L/2, z) (b) τ̂yz at (0, L/5, z) and (0, L/2, z)

Figure 10: Through-thickness distribution of the axial normal and transverse shear stresses at y = 0.2L and 0.5L, measured
from the clamped end, for composite plate strip with layup [30/-60/-60/30].
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Figure 11: Single-stringer composite stiffened panel: configuration and dimensions.

From the load-deflection curve (Figure 6), it is evident that the examples considered in this section
behave nonlinearly. Solving large-deflection problems can be cumbersome, especially if accurate stress fields
are to be measured. In order to test the suitability of the UF-SLE model for predicting the nonlinear stress
response accurately, the predicted distributions of axial normal stress, σ̂yy, and transverse shear stress, τ̂yz,
are compared with 3D FE solutions. figs. 7 to 10 show an excellent agreement between the two models,
where the through-thickness stress distribution, computed at two different locations along the structure’s
length (y = 0.2L and 0.5L), are plotted for all the layups considered herein. The benefit of using the UF-
SLE model is the ability to tune its fidelity by changing the order of expansion, as opposite to remeshing.
As mentioned previously, to obtain the stress response of figs. 7 to 10, an eighth order expansion model is
employed. This high-order model is computationally expensive (with ∼0.15 million DOFs), but it is still
preferable to the ANSYS solution, which requires 102,000 20-noded brick elements and ∼1.3 million DOFs.

3.3. Composite Stiffened Panel

In this section, the proposed geometrically nonlinear UF-SLE model is employed for predicting the
onset of failure in a single-stringer composite panel subjected to compression. This example is adapted
from the work done by Bisagni et al. [1, 31, 32], where experimental tests were conducted on single-stringer
compression (SSC) specimens and a shell-based FE model with damage capabilities was developed to predict
the panel’s postbuckling response, and the damage evolution from initiation to collapse. In the present study,
the UF-SLE model is assessed by evaluating its performance in predicting the postbuckling response of the
SSC specimen. Moreover, the model’s capability to evaluate 3D stress fields accurately is exploited for
predicting damage initiation.

The geometrical configuration and dimensions of the single-stringer hat specimen are shown in Figure 11.
Both the skin and the stringer are made from IM7/8552 graphite-epoxy material, with mechanical properties
and strength values as shown in Tables 1 and 2, respectively. The skin consists of an 8-ply quasi-isotropic
laminate with a stacking sequence of [45/90/−45/0]s, resulting in the total thickness of 1 mm. The stringer
comprises of 7 plies with symmetric stacking sequence [−45/0/45/0/45/0/ − 45], which results in a total
thickness of 0.875 mm. The displacement constraints imposed at the two ends of the SSC specimen, using
potting (by means of two 30 mm long tabs cast), ensure a uniform distribution of the load during the
experiment [31]. To mimic this condition in the UF-SLE model, all the nodes within the potting region
(refer to Figure 11) are fixed at one end (between y = 0 and y = 30 mm) and are allowed to move only in
the longitudinal direction at the opposite end (between y = 270 mm and y = 300 mm). The specimen is
subjected to a uniformly distributed compressive load P = 41 kN, applied to the end y = 300 mm.

To obtain the nonlinear static response of the SSC specimen, in the UF-SLE model, the cross-section
is discretised with 195 SL5 (fifth-order expansion) elements, while 10 B4 elements are employed in the
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Table 1: Mechanical properties of the IM7/8552 composite [33].

Ex Ey Ez Gyz Gxz Gxy νyz νxz νxy

(GPa)

9.08 150 9.08 5.6 2.8 5.6 0.32 0.5 0.019

Table 2: Material strength values (in MPa) of the IM7/8552 composite [33].

Intralaminar Interlaminar

ST11 SC11 ST22 SC22 SS12 SS13 SS23 ST33 SS33

2560 1590 73 185 90 90 57 63 90

longitudinal direction. This discretisation and cross-sectional expansion results in a total of 234,825 DOFs,
which guaranty convergence. Figure 12 shows the load-displacement curve obtained with the UF-SLE
model, which agrees well with the shell-based FE solution. The structural response is also compared with
the experimental results. It can be seen that the experimental load-displacement curve exhibits softer
behaviour than the numerical predictions. As discussed in [31], one possible reason for this behaviour could
be the nonlinearity of the compression modulus Ey, which is not taken into account in either numerical
model. Another reason for this discrepancy could be the difference between the specimen’s actual and
predicted stiffness values, as the compressive stiffness and strength of carbon composites are notoriously
difficult to measure and length-scale dependent.

For further comparison and verification of the present modelling approach, Figure 13 shows the out-of-
plane displacement response at different load levels. Up to an applied load of 2 kN (Point A), the structure
exhibits a quasi-linear response with a single-wave out-of-plane deformation of the skin. The first buckling
load (Point B) corresponds to a three half-wave mode and affects the skin only. The buckling load is predicted
to be 7.8 kN by the UF-SLE model and 7.5 kN by the shell model (see [31]). Progressing with the UF-SLE
model to the load level of 24.5 kN (Point C), shallow buckles become visible on the two webs of the stringer.
This load corresponds to stringer buckling. Similar out-of plane deformation with the shell FE model is
observed at 23.5 kN. Upon further loading, at 39.5 kN, the out-of-plane displacements are maximum. This
load triggers failure initiation. Figure 13e shows the comparison of the predicted and measured deformation
shapes immediately before collapse. It is observed that the number of half-waves in both the skin and the
stringer, as predicted by the UF-SLE model, correlates well with the experimental observation and the shell
FE solution.

Figure 14a and 14b show the crippling and delamination modes of failure in the test specimen. The
crippling of the stringer is characterised by a fracture that travels across the stringer width. Different modes
of crippling of the stringer were obtained for different specimens. Figure 14a shows a specimen in which the
fracture is oriented at 45◦ in the crown and in the webs, and at 90◦ in the flanges. Whereas, the specimen
shown in Figure 14b exhibits a fracture at approximately the mid-length of the specimen that runs across
the stringer at a 90◦ angle. In most of the specimens, fibre pullouts were identified at various locations
along the stringer and no fibre damage was recorded in the skin. The second major failure observed is
skin/stringer separation. The delaminated surfaces remain within the interface between skin and stiffener
and crack jumping is not apparent. In order to predict the damage initiation load and mode, the 3D stress
fields obtained by the UF-SLE model, at various load levels in the post-buckling regime, are plugged in the
Hashin 3D failure criteria [34] for the prediction of ply failure, and in the mixed mode quadratic criteria [35]
to determine the onset of delamination. The failure indices are calculated using the stress state in the
material coordinate system (1,2,3) by:
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Figure 12: Load-displacement curve for the single-stringer composite panel subjected to compression. Experiment and Shell
FE results are taken from [31].

1. Fibre Tension for σ11 ≥ 0: (
σ11

ST11

)2

+

(
σ2

12 + σ2
13

SS2
12

)
≥ 1, (25)

2. Fibre Compression for σ11 < 0: (
σ11

SC11

)2

≥ 1, (26)

3. Matrix Tension for σ22 + σ33 ≥ 0:(
σ22 + σ33

ST22

)2

+

(
σ2

23 − σ22σ33

SS2
23

)
+

(
σ2

12 + σ2
13

SS2
12

)
≥ 1, (27)

4. Matrix Compression for σ22 + σ33 < 0:[(
SC22

2SS23

)2

− 1

](
σ22 + σ33

SC22

)
+

(
σ22 + σ33

2SS23

)2

+

(
σ2

23 − σ22σ33

SS2
23

)
+

(
σ2

12 + σ2
13

SS2
12

)
≥ 1, (28)

5. Delamination for σ33 ≥ 0: (
σ33

ST33

)2

+

(
σ23

SS33

)2

+

(
σ13

SS33

)2

≥ 1, (29)

where ST, SC and SS denotes tensile strength, compressive strength and shear strength of the material, σij
terms denote the components of the stress tensor in the material coordinate system, and subscripts 1, 2 and
3 represents the fibre direction, the in-plane direction orthogonal to fibres, and the direction normal to the
layer plane, respectively.

The intralaminar damage of the fibre and the matrix is evaluated in terms of failure indices using
Eqs. (25) to (28). It is observed that at a load level of 36 kN, transverse tension and in-plane shear cause
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(a) Load-axial displacement curve pre-
dicted by the UF-SLE model.

(b) Response predicted at 2 kN. Shell FE
(left) and UF-SLE (right)

(c) Skin buckling: 7.5 kN (Shell FE, left)
and 7.8 kN (UF-SLE, right)

(d) Stringer buckling: 23.5 kN (Shell FE, left) and
24.5 kN (UF-SLE, right)

(e) Before collapse: 41 kN (Experiment, left), 39 kN (Shell
FE, centre) and 39.5 kN (UF-SLE, right)

Figure 13: Out of plane displacement response predicted by the UF-SLE model at different load levels compared to those
obtained by the Shell FE model and Experiment [31].
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matrix cracking at different locations along the stringer. Although, transverse matrix cracking is considered
as the benign mode of failure, that corresponds to a small reduction in the overall stiffness of the structure
which can affect the evolution of damage. However, the present model does not account for any degradation
in the material stiffness property, and is used herein for first-ply failure analysis. With a further increase
in applied load, the areas with matrix damage become more extensive and starts to extend into the skin.
At a load level of 39.5 kN, fibre damage initiation is observed and fractures are predicted at the corners
between the stringer webs and the corresponding flanges, as shown in Figure 14c. Also, the matrix damage
contour is shown in Figure 14d which is highly diffused. These failure contour plots indicate fibre-matrix
debonding at discrete locations along the stringer, which can further cause fibre pullouts in these regions as
was observed in the experiment.

The transverse stress fields obtained by the UF-SLE model are used for predicting the onset of delam-
ination using Eq. (29). Figure 14e shows the delamination index contour obtained at the applied load of
39.5 kN. From the contour plot, the skin and the stringer separation (red fringe) is likely to initiate from:
(i) two different locations along the length, at the stringer flange and skin interface, present on either side
of the stringer; and (ii) from the the mid-length in the region around the stringer web and flange junction.
This delamination prediction by the present model is in close agreement with experiments. Although, with
current capabilities and using 3D stress fields, it is difficult to predict the crippling fracture of the specimen
as its accurate prediction requires progressive failure models.

To conclude it is important to remark on the computational efficiency of the UF-SLE model compared
to the reference shell FE model, which can be estimated by comparing the degrees of freedom required
for convergence. The approximate number of DOFs required by the shell model is 710,000, which is three
times more than that required by the present model. Moreover, unlike shell elements, Serendipity Lagrange
elements are capable of predicting 3D stress fields. In contrast, obtaining 3D stress fields using a FE
model require brick elements, and solving such high-fidelity model is cumbersome and expensive. Thus, the
proposed model offers significant computational benefit, over shell FE model, together with solid-like FE
capabilities.

4. Conclusions

Previous studies [20, 21, 23, 36, 37] highlighted the ability of the Unified Formulation, based on Serendip-
ity Lagrange expansions (UF-SLE), to capture localised three-dimensional (3D) stress fields accurately, in
isotropic, constant- and variable-stiffness, laminated composite and sandwich structures. The hierarchical
nature of the Serendipity Lagrange expansions allows the fidelity of the model to be tuned, such that low-
fidelity and high-fidelity models can be used concurrently to assess global response and 3D stresses. In
this work, geometric nonlinear modelling capabilites are incorporated within the UF-SLE model and then
employed for the large deflection analysis of isotropic and laminated composite structures. The nonlinear
governing equations and the finite element approximation are formulated using the principle of virtual work.
All classical material stiffness terms are considered in the formulation, thereby making it complete and
suitable for analysing fully anisotropic structures. The explicit form of the tangent stiffness matrix, in terms
of the fundamental nuclei, is provided in a clear concise notation and the benefit of writing these expres-
sions in such a way is discussed. These expressions are general, meaning they can be adapted, as they are
independent of the expansion function used in the cross-section, within the Unified Formulation framework.
The nonlinear structural response obtained by the UF-SLE model is shown to match experimental data,
shell and solid Finite Element (FE) solutions and numerical results available in the literature. The nonlinear
3D stress fields, evaluated using the present model, are used for predicting damage initiation in a stiffened
composite structure subjected to compression. The results indicate a good correlation with experimental
data in terms of load-displacement response in the pre- and post-buckling range. The model also offers
insight on the intralaminar failure mechanisms and correctly predicts the initiation of the separation of
the skin from the stringer as obtained experimentally. Finally, the proposed model offers computational
benefits over conventional FE models, while maintaining similar levels of accuracy. This study provides
confidence in using advanced damage modelling capabilities within the present formulation, and together
with its efficiency and accurate stress predicting capability, can be a useful tool for structural analysis.
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(a) Experimental failure mode (b) Experimental collapse mode
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Figure 14: Experimental [31] and predicted numerical failure modes of a single-stringer composite panel.
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