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Dynamics Beyond Dynamic Jam; Unfolding the Painlevé Paradox Singularity∗

Arne Nordmark† , Peter L. Várkonyi‡ , and Alan R. Champneys§

Abstract. This paper analyzes in detail the dynamics in a neighborhood of a Génot–Brogliato point, colloquially
termed the G-spot, which physically represents so-called dynamic jam in rigid body mechanics with
unilateral contact and Coulomb friction. Such singular points arise in planar rigid body problems
with slipping point contacts at the intersection between the conditions for onset of lift-off and for the
Painlevé paradox. The G-spot can be approached in finite time by an open set of initial conditions
in a general class of problems. The key question addressed is what happens next. In principle,
trajectories could, at least instantaneously, lift off, continue in slip, or undergo a so-called impact
without collision. Such impacts are nonlocal in momentum space and depend on properties evaluated
away from the G-spot. The answer is obtained via an analysis that involves a consistent contact
regularization with a stiffness proportional to 1/ε2 for some ε. Taking a singular limit as ε → 0,
one finds an inner and an outer asymptotic zone in the neighborhood of the G-spot. Matched
asymptotic analysis then enables continuation from the G-spot in the limit ε → 0 and also reveals
the sensitivity of trajectories to ε. The solution involves large-time asymptotics of certain generalized
hypergeometric functions, which leads to conditions for the existence of a distinguished smoothest
trajectory that remains uniformly bounded in t and ε. Such a solution corresponds to a canard that
connects stable slipping motion to unstable slipping motion through the G-spot. Perturbations to
the distinguished trajectory are then studied asymptotically. Two distinct cases are distinguished
according to whether the contact force becomes infinite or remains finite as the G-spot is approached.
In the former case it is argued that there can be no such canards and so an impact without collision
must occur. In the latter case, the canard trajectory acts as a dividing surface between trajectories
that momentarily lift off and those that do not before taking the impact. The orientation of the
initial condition set leading to each eventuality is shown to change each time a certain positive
parameter β passes through an integer. Finally, the results are illustrated in a particular physical
example, namely the frictional impact oscillator first studied by Leine, Brogliato, and Nijmeijer.
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1. Introduction. This paper considers the open question first posed in the work of Génot
and Brogliato [3] in relation to the classical Painlevé paradox in contact mechanics. They
considered the classical problem of a falling rod, one end of which is in contact with a rough
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Figure 1. (a) The canonical example of the Painlevé paradox, a rod falling under gravity. (b) The frictional
impact oscillator proposed by [8] that we shall return to in section 6. In both cases we have illustrated the
tangential and normal velocites u and v.

horizontal surface (see Figure 1(a)). They show that for a sufficiently high coefficient of friction
there is an open set of initial conditions that are drawn in finite time into a singularity, which
we have termed the G-spot in homage to Génot, co-author of the paper [3] by himself and
Brogliato. Such a point is characterized by both the vanishing of normal free acceleration
and the so-called Painlevé parameter, which measures the ratio of that acceleration to normal
contact force. The physical phenomenon of approaching the singularity is also known as
dynamic jam [12] and has been reported in other physical systems. In particular in section 6,
the results of this paper shall be applied to the frictional impact oscillator system represented
in Figure 1(b), first studied by Leine, Brogliato, and Nijmeijer [8]. Yet, we are unaware of
any mathematical analysis of what must happen after such a singularity is reached. Does the
rigid body formulation break down completely, so that there is no continuation of trajectories
beyond this point? If so, then can we say what might happen physically?

1.1. The Painlevé paradox and impact without collision. Our work follows the formal-
ism and notation introduced in the recent review paper by two of us [1], to which we refer
the reader for the necessary motivation, historical context, and general formulation. Note
that there are other possible approaches to put the Painlevé paradox within a matheamtical
consistent framework; see, for example, the recent work of Paoli [14, 15]. Our specific goal
is to understand the dynamics of the G-spot singularity, following [3] and the more recent
study [18]. Rather than study one particular example though, we shall attempt to be general,
because, as argued in [1], an approach to a G-spot singularity is a generic phenomenon in
planar rigid body mechanics subject to unilateral point contact with dry frictional surfaces.

Specifically, we consider a multidegree-of-freedom Lagrangian planar rigid body system
with an isolated point of contact with a rigid surface, which is subject to Coulomb friction.
Using the notation introduced in [1], we find that projecting the Lagrangian equations of
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UNFOLDING THE PAINLEVÉ PARADOX 1269

motion onto tangential and normal directions gives scalar equations

u̇ = a (q, q̇, t) + λTA (q, t) + λNB (q, t) ,(1)

v̇ = b (q, q̇, t) + λTB (q, t) + λNC (q, t) .(2)

Here u and v are tangential and normal velocities of the contact point; q is a vector of
generalized coordinates and t is time; a, b, A, B, C, D are scalars subject to the constraints
that A > 0, C > 0, and AC−B2 > 0, which arise from the assumption of positive definiteness
of the mass matrix. The scalars λN ≥ 0 and λT represent normal and tangential contact forces,
respectively, and are Lagrange multipliers that satisfy the pair of complementarity conditions
0 ≤ λN ⊥ v, v̇ ≥ 0 of unilateral contacts. During contact, we suppose that Coulomb friction
applies, which gives rise to further complementarity relations

(3) 0 ≤ λT + µ sign(u, u̇)λN ⊥ u, u̇ ≥ 0,

where µ is the coefficient of friction. The Lagrange multipliers can be found using different
assumptions in each mode of motion (free, stick, or positive or negative slip).

Positive slip occurs during contact with λN > 0 and u > 0, so that λT = −µλN . To
sustain contact we must have v̇ = 0, which gives

(4) λN = − b
p
, where p := C − µB.

Here we dropped the superscript + on the Painlevé parameter p, adopted in [1], because this
paper shall, without loss of generality, only consider positive slip. If p is negative, we say
the Painlevé paradox applies for appropriate initial conditions, in which case (4) shows that
in order for λN to be positive we must have free normal acceleration away from the contact,
that is b > 0. This leads to multiplicity of solution, because for b > 0 lift-off could also occur.
However, it can be shown that slipping in regions with b > 0 is violently unstable [10, 5].
Nevertheless, there is another possibility, and indeed this is the only consistent possibility if
p < 0 and b < 0, namely that a so-called impact without collision (IWC) occurs; see [9, 1].

Impact in the present context defines a process in which rapid changes in normal and
tangential velocity occur over an infinitesimal timescale [16]. The impact process can then be
modelled as a composite mapping from an incoming velocity to an outgoing one:

(5) (u−, v−) 7→compression phase (u(0), 0) 7→restitution phase (u+, v+),

where v− ≤ 0 and v+ ≥ 0. In each of the compression and restitution phases, it is assumed
that the system behaves as a rigid body system (despite the presence of large forces), and one
needs to account for possible transitions from slip to stick. Complete results are summarized
in [9] for an energetic coefficient of restitution where the work done by the normal force during
restitution is −r2 times the (negative) work during compression. Similar calculations can be
carried out explicitly for a Poisson impact law where the normal impulse in restitution is −r
times that in compression (see, e.g., [2]). The distinction is not important here. During the
impact process, to leading order, the motion can be assumed to occur along straight lines
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Figure 2. (a) Representing trajectories during an impact for an initial condition u > 0 in the case when
p < 0 is small and constant. The solid line indicates a trajectory (labelled (i)) with initial v < 0, whereas the
dashed line indicates a trajectory (ii) undergoing IWC, in which the initial condition has v = 0. (b) Similar
impact events for p small and positive. Here one initial condition lifts off in slip, the other (with smaller initial
u) lifts off in stick. See [9] for details.

in the (u, v)-plane, with corners occurring at transitions between slip and stick during the
impact process; see Figure 2 for two examples.

Looking at Figure 2(a), note that in the case when p < 0, we can then have an impact
even when v− = 0. This would be an example of an IWC, also known as a tangential shock.

1.2. The G-spot. The question at the heart of the classical Painlevé paradox is what
happens next when a configuration with p = 0 is reached during regular slipping motion. As
first shown by Génot and Brogliato [3] for the classical Painlevé paradox (see [1] for a general-
ization), in fact the only possible way to approach such a transition is via the codimension-two
point in phase space where p = b = 0, i.e., the G-spot. They analyzed nearby trajectories by
introducing a singular rescaling of time

(6) dt = p dŝ

so that the G-spot becomes an equilibrium point in suitable variables that evolve on the
timescale ŝ. In so doing (see section 2 for details) we obtain a system of the form

d

dŝ
p = α1p,(7)

d

dŝ
b = α2p+ α3b,(8)

where the αi are constants to leading order, and, depending on the particular system in
question, can take on any combination of signs.

The dynamics of (7), (8) can be analyzed using phase plane analysis. Given an initial
condition in slip (b < 0, p > 0), there are then only three possible outcomes. Either (i) the
trajectory remains in slip leaving the vicinity of the G-spot without b or p changing sign; (ii)
it lifts off by passing through b = 0, p > 0, or (iii) it is attracted to the G-spot p = b = 0 as
ŝ→∞. Note though that the third scenario implies exponential convergence of p to 0 on the
timescale ŝ, and thus the rescaling (6) implies that ŝ→∞ corresponds to finite time t.
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bb

(a) Case I

b

(b) Case II

p

(c) Case III

pp lift off

Figure 3. Qualitative illustration of the dynamics of the singular system (7)–(8) in the (p, b) phase plane in
each of the cases I, II, and III with each of the α’s assumed to be constant. Here bold lines depict eigenvectors,
with double arrows showing the strong stable eigendirection and single arrows the weak stable direction. Thin
lines indicate individual trajectories in positive slip which can either be seen to lift-off (by reaching the positive
p-axis) or to undergo dynamic jam (by reaching the G-spot b = p = 0). The dashed line (green online) represents
the distingished maximally smooth trajectory (see section 5.2).

It is straightforward to show that this third possibility can only occur under specific sign
combinations of α1, α2 and α3 see [1, Figure 13]. The three relevant cases are summarised in
Figure 3:
Case I. If α2 < 0 and α1 < α3 < 0, then all initial conditions in the bottom right (p, b)-

quadrant approach the G-spot such that p/b→ 0 and the normal force λN →∞.
Case II. If α2 > 0 and α1 < α3 < 0, then initial conditions with α2p < (α1 − α3)b similarly

approach the G-spot with p/b→ 0 and λN →∞.
Case III. If α2 < 0 and α3 < α1 < 0, then the G-spot is approached tangent to the nontrivial

eigenvector α2p = (α1 − α3)b and λN approaches the finite limit α2/(α3 − α1).
Note that the calculation in [3] reveals that the attractive singularity P+

c1 of the classical
falling rod problem is in Case II. In what follows we shall introduce examples of all three
cases.

1.3. Continuation beyond the G-spot and contact regularization. The rest of this paper
concerns what happens to trajectories that pass through G-spot. As we shall see, even that
question cannot be answered in complete generality. Our approach though is to introduce a
different scaling than (6) that is singular at p = 0. In principle, a trajectory passing through
the G-spot could continue in (highly unstable) slip with b > 0, it could lift off, or it could
take an IWC (see Figure 4(a)). However, there is a subtle problem with this latter possibility,
as illustrated in Figure 4(b). Detailed calculations of the impact map (see [9]) reveal that
the slope of the impacting trajectory in the (u, v)-plane is proportional to p. But, precisely
at the G-spot we know that p = 0, so one has to consider a different scaling than is used in
[9] to calculate the impact map. In principle, as illustrated in Figure 4(b), the curvature of
the impacting trajectory in the (u, v)-plane could be such that the impact could terminate at
any u-value between u− and 0. In other words, we cannot tell a priori whether the impact
continues all the way to stick u = 0, or whether it terminates while the contact is still in slip
(u > 0).

The approach we shall take to addressing these questions is to study the problem via
contact regularization; that is, replacing the rigid constraint with a compliant one whose
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Figure 4. Qualitative representation of the main results. (a) Indicating the scaling of the inner region.
Specifically illustrated here is an example of Case III from Figure 3. In this and subsequent panels, a thick dashed
(green online) line is used to represent the distinguished trajectory, thin solid lines (blue online) represent
trajectories that lift off after passing through a neighborhood of the G-spot, and thin dashed lines represent
trajectories that take an impact without collision. (b) Indicating the process of IWC in the (outer) (u, v) co-
ordinates in a neighborhood of the G-spot. Depending on the global dynamics, the trajectory can either continue
all the way down to stick, or can curve upwards and lift-off while still slipping. (c)–(e) Representation of
dynamics of perturbations to the distinguished trajectory in the inner region: (c) Case III when [β] is an odd
integer; (d) Case III when [β] is even integer; and (e) Case II. (Here [·] represents the integer part of a positive
number.)

stiffness scales like some small parameter ε2; see [1] and references therein. In particular,
in [10] the idea was introduced of finding resolutions to certain indeterminate cases of the
Painlevé paradox via such an approach and taking the limit ε → 0. If there is a unique
solution that can be followed uniformly into this limit, then those dynamics are said to be
uniformly resolvable. This enables questions to be answered, for example, as to whether slip
with p < 0 could be stably observed in practice (it can’t; it is wildly unstable). This is
precisely the approach we shall take here. The key will be to find a consistent asymptotic
scaling that enables us to identify a distinguished trajectory that is smooth in both t and
ε in a neighborhood of the G-spot. Such a maximally smooth trajectory is illustrated as a
dashed red line in Figures 3 and 4. We then consider perturbations to this trajectory to decide
whether nearby trajectories take an impact or lift off, and over what timescale.

1.4. Summary of main results. The main result of the paper is to perform a matched
asymptotic expansion that enables a description of what happens beyond the G-spot for a
general planar rigid body system with an isolated frictional contact point. This is achieved by
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UNFOLDING THE PAINLEVÉ PARADOX 1273

finding a dinstinguished inner asymptotic scale for p (or, equivalently, time) of size O(ε2/3),
where ε−2 is the regularized contact stiffness. A matched asymptotic analysis then leads to
regular expressions as ε → 0. Figure 4 depicts a qualitative representation of the results for
small ε > 0. Specifically, we find the following:
Cases I and II. As depicted in Figure 4(e), all trajectories that pass through a small neigh-

borhood of the G-spot take an IWC. The process of what happens after this impact
cannot be analyzed by studying the dynamics of a neighborhood of the G-spot alone,
because the impact necessarily involves O(1) changes in u and v (as shown in Fig-
ure 4(b)) and could result in lift off with zero or finite tangential velocity u, depending
on the precise example system in question.

Case III. In this case, there is a distinguished trajectory, indicated by a dashed (red) line in
Figure 4(c), (d) that forms a canard solution for small ε > 0 which divides two different
behaviors. On one side of this distinguished trajectory, solutions lift off, whereas on
the other side, they take an IWC. Each time the ratio β = α1/α3 evaluated at the
G-spot passes through a positive integer, there is switching between which sign of
perturbation to the canard undergoes lift-off and which undergoes IWC.

More precise statements of these results are given in sections 4 and 5.

1.5. Outline. The rest of this paper is outlined as follows. Section 2 below introduces a
general formulation that includes constraint regularization via an additional degree of freedom,
which can be thought of as an additional spring. We also introduce a simple illustrative
example system in which many of the calculations can be done explicitly. Sections 3 and 4
then contain numerical and analytical calculations, respectively, on this example in order to
motivate and illustrate the general principles. Section 5 then contains a detailed asymptotic
derivation of the main results of this paper for arbitrary planar m-dimensional rigid-body
system with a single frictional point contact. Section 6 then contains application of the
results to the frictional impact oscillator illustrated in Figure 1(b). Finally, section 7 draws
conclusions and suggests avenues for other work.

2. Preliminaries. Consider a planar Lagrangian system with a unilateral constraint ex-
pressed in the form y > 0, where y is a smooth function of the co-ordinate variables qi. To
simplify notation, in what follows we group together all Lagrangian co-ordinates and veloc-
ity variables qi, q̇i, and (in the case of explicitly nonautonomous systems) t into a single
m-dimensional state vector ξ and consider systems that are written in the form

(9) ξ̇ = F (ξ) +GT (ξ)λT +GN (ξ)λN ,

where the scalar Lagrange multipliers λN and λT represent the normal and tangential forces at
the contact point. We also suppose that tangential and normal contact coordinates x(ξ) and
y(ξ) are smooth functions of ξ. Now we can express the quantities entering into the normal
and tangential equations (1) and (2) as

u = £Fx, v = £F y, a = £Fu, b = £F v,

A = £GT u, B = £GNu = £GT v, C = £GN v,

where £ denotes the Lie derivative. In this context, the Lie derivative £Gz of a scalar
function z(ξ) with respect to a vector field G(ξ) is just the total time derivative of z under
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1274 A. NORDMARK, P. L. VARKONYI, AND A. R. CHAMPNEYS

the assumption that ξ satisfies the dynamical system ξ̇ = G(ξ). Additionally, the Lagrangian
character of the system requires

(10) £GT x = £GNx = £GT y = £GN y = 0,

because x and y do not depend on q̇.
If we restrict our attention to positive slip, where λT = −µλN , we obtain

(11) ξ̇ = F (ξ) +G(ξ)λN ,

where G = GN − µGT . We can now further define

p = C − µB = £Gv, α1 = £F p, α2 = £F b, α3 = −£Gb

and again the Lagrangian character requires

(12) £Gp = 0.

Under these definitions, in positive slip the scalar quantities p(ξ), b(ξ), y(ξ), v(ξ) satisfy

ṗ = α1(ξ),(13)

ḃ = α2(ξ)− α3(ξ)λN ,(14)

ẏ = v,(15)

v̇ = b+ pλN .(16)

In what follows we will denote by ξ∗ a point that satisfies the conditions to be at a G-spot
in positive slip

p(ξ∗) = b(ξ∗) = y(ξ∗) = v(ξ∗) = 0,

and use an asterisk to denote functions evaluated at such a point.

2.1. Regularized contact motion. In the rigid limit, the constraint surface is given by
y(ξ) = 0. Following the approach outlined in the introduction, we shall analyze the system
by introducing a regularization in the form of a smoothing of the contact motion. Here we
introduce compliance via an additional degree of freedom with co-ordinate z that represents
the vertical deformation of the surface. Then the normal force λN becomes a function of z
and the vertical position y of the contact point of the rigid body; see Figure 5. Specifically,
we assume

(17) cż = −k1z − λN ,

(18) λN =

{
k2(z − y) if y < z,
0 otherwise,
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(a) (b)

slope λN

y

ε2

z

Figure 5. (a) Schematic diagram of the compliant surface model. (b) The compliant normal force versus
displacement relationship, which reduces to the usual rigid, unilateral contact law in the limit ε→ 0.

where k1,2 are O(ε−2) and c = O(ε−1) for some small parameter 0 < ε� 1.
This form of compliance, via the additional scalar deformation variable z, has an advantage

over other forms of contact regularization reviewed in [1] because both lift-off and touch-down
are given by the same condition y = z. Moreover, as we take the limit ε → 0, note that z
quickly relaxes to be equal to k2y/(k1 + k2) whenever y < 0 and equal to zero for y > 0.
Moreover, the level of deformation for a given force λN tends to zero as ε→ 0.

It is also worth noting that this impact model is consistent (in the limit of ε → 0) with
rigid impact models based on coefficients of restitution. For example, our model predicts an
ideally elastic impact (energetic coefficient of restitution = 1 in the sense of [16]) in any of
the following limits: c → 0, c → ∞, k2 → 0, or k1 → ∞. It predicts an ideally inelastic
impact (coefficient of restitution = 0) if k1 → 0 and simultaneously k2 → ∞. Nevertheless,
fixed values of k1, k2, and c do not correspond to fixed values of the coefficient of restitution
in general.

For convenience, in what follows we choose

(19) k1 = k2 =
1

ε2
, c =

1

ε
,

in which case the compliant version of the system is (9) together with

εż = −z − ε2λN ,(20)

λN =

{
ε−2(z − y) if y(ξ) < z,
0 otherwise.

(21)

This expression for λN is also used in (11) for the case of positive slip.
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2.2. A simple motivating example. Now, if the quantities α1, α2, and α3 are assumed
to be constant in (13)–(16), then we get

ṗ = α∗1,(22)

ḃ = α∗2 − α∗3λN ,(23)

ẏ = v,(24)

v̇ = b+ pλN ,(25)

εż = −z − ε2λN ,(26)

where λN is given by (21). Assuming y < z in (21), this set of equations admits a trivial
solution

p̄ = α∗1t,(27)

b̄ =
α∗2

α∗1 − α∗3
α∗1t,(28)

z̄ =
ȳ

2
= −ε2 α∗2

α∗1 − α∗3
,(29)

v̄ = 0,(30)

which, as we will see later, is a canard solution that passes through the G-spot in the limit
ε→ 0.

2.3. A less degenerate example. The question of whether IWC initiated at the G-spot
terminates in stick or in slip (as illustrated in Figure 4(b)) cannot be determined in the above
model because there is no variation of the tangential velocity. Thus the simple system (22)–
(26) can never undergo a transition to stick. To allow investigation of such a question, we
need to add tangential degrees of freedom to the model via introduction of variables x and

ẋ = u(31)

representing, respectively, the tangential position and velocity of the contact point. We also
have to include the nonsmooth Coulomb friction law. The contact force in stick or slip can
be expressed as the sum of a forward slipping and a backward slipping contact force. Let the
magnitude of the normal components of these two forces be given by λ+ and λ−, respectively.
Specifically we can write

(32) λ+ = ĉλN , λ− = (1− ĉ)λN ,

where ĉ = 1 for positive slip, ĉ = 0 for negative slip, and for stick ĉ takes an intermediate
value that shall be determined shortly.

The contact forces corresponding to positive and negative slip have different effects on the
dynamics; therefore, the terms α∗3λN and pλN of (23) and (25) must be replaced by general
functions of λ+ and λ−. For simplicity, in what follows we let the contact-dependent part of
ḃ be α∗3λ

+ and the contact-dependent part of v̇ be pλ+ + p−λ−, where p− is a scalar.
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A similar consideration is made for the dynamics of the new variable u, which is modelled
by the equation

(33) u̇ = a+ k+λ+ + k−λ−,

where a, k+, k− are also scalars. The condition u̇ = 0 for stick now allows us to determine
the missing value

(34) ĉ = (k− + λ−1
N a)/(k− − k+).

In addition to the necessary extensions outlined above, we also introduce a parametric
state dependence of α1 in the form of α1(ξ) = α∗1 +χb, for some scalar χ which allows two-way
coupling between normal and tangential dynamics. The resulting extended example system
can now be written in the forms (21), (31), (33), and

ṗ = α∗1 + χb,(35)

ḃ = α∗2 − cα∗3λN ,(36)

ẏ = v,(37)

v̇ = b+ pĉλN + p−(1− ĉ)λN ,(38)

εż = −z − ε2λN ,(39)

in which χ, α∗1−3, k±, and a are fixed constants and ĉ is given by (34) for stick and is equal
to 0 or 1 for negative and positive slip, respectively.

If p ≈ 0, then the negative Painlevé parameter must be positive [1], hence we choose
p− = 1. Finally, positive (respectively, negative) slipping contact forces typically accelerate
the contact point in the negative (positive) tangential direction, which motivates the choices

(40) p− = 1, k+ = −1, k− = 2, and a = 0,

where the choice a = 0 is simply made for convenience.
Note that this extended example system (21), (31)–(33), and (35)–(40) was not explicitly

derived from a Lagrangian system; nevertheless it can be written in the form (9) by taking

F (ξ) =



ξ2

0
ξ4

ξ6

α∗1 + χξ6

α∗2

 , GT (ξ) =



0
3

2(1−ξ5)

0
1
2
0
α∗3

2(1−ξ5)


, GN (ξ) =



0
1
2
0

1+ξ5
2
0

−α∗3
2


,

µ = 1− ξ5, x = ξ1, y = ξ3,

and it satisfies the relations (10), (12), which reflect the Lagrangian character of general
systems. It then follows that

u = ξ2, v = ξ4, p = ξ5, b = ξ6, α1 = α∗1 + χξ6, α2 = α∗2, α3 = α∗3.
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Note that the parameter χ can be effectively thought of as a homotopy parameter that allows
us to pass from a simple case (χ = 0) in which there is a trivial solution (similar to (27)–(30))
that passes through the G-spot to a more complicated case (χ = 1) in which there is no such
trivial solution.

3. Numerical results for motivating example. We consider first the simplified version of
the motivating example (22)–(26). We want to understand what happens to initial conditions
that are small perturbations from the trivial solution (27)–(30).

3.1. A dichotomy between lift-off and impact. First, note that the internal dynamics
of the compliant contact model creates damped oscillations. Clearly, this is an artefact of
our contact model and not important to our discussion. Note though an important feature
of these oscillations is that their frequency diverges to ∞ in the limit of ε → 0. This lack of
smoothness allows us to separate this component of the dynamics in any subsequent analysis.
In our preliminary simulations we minimize transient oscillations by choosing initial conditions
satisfying z = y/2, v = 0, and y = 2bε2/p, and by choosing an initial value p = 0.5, which is
sufficiently distant from the G-spot to allow for the z dynamics to relax.

The results of three simulations for different values of the scalar parameter

(41) β =
α∗3
α∗1

are presented in Figure 6. Panel (a) of the figure corresponds to Case I where α∗1 < α∗3 < 0.
Here we see that all initial conditions that pass through a small neighborhood of the G-spot
subsequently diverge towards y = −∞. This behavior is indicative of an IWC. The trivial
solution in this case is unphysical (bp > 0, implying λN < 0) and is not shown. We found the
results in Case II to be similar, that is, all initial conditions that pass through a neighborhood
of the G-spot take an impact.

Panels (b) and (c) of Figure 6 illustrate two different examples of Case III where β is 1.5
and 2.5, respectively. Here we see that there is a dichotomy in that there are some trajectories
that immediately lift off (which can be seen by rapid increases in y), whereas other trajectories
take an IWC. The trivial solution appears to form a separatrix between these two behaviors.
Interestingly, the set of initial conditions that impact or lift off are exchanged between the
two examples shown. That is, initial conditions with lower initial values of b(0) are the ones
that take an impact in panel (b) whereas it is those with the higher b(0) that take an impact
in panel (c).

3.2. Smoothness in the limit of ε → 0. The trajectories presented above not only
differ in their asymptotic behavior for large times, but also in their degree of smoothness
as a function of time in the limit ε → 0. To illustrate this property, we have repeated the
same simulations with ε = 10−5. The results are illustrated as plots of y as a function of
p in Figure 7 for all three values of β. Note that p scales linearly with time. The trivial
separatrix solutions appear for β = 1.5 and 2.5 as a straight line, which is, by definition,
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UNFOLDING THE PAINLEVÉ PARADOX 1279

Figure 6. Numerical simulation of (22)–(25) for ε = 10−3 with α∗1 = α∗2 = −1 and α∗3 = −β, where (a)
β = 0.5, (b) β = 1.5, or (c) β = 2.5. Initial conditions in each case are p(0) = 0.5; b(0) = −|ν·p(0)α∗2/(α

∗
3−α∗1)|,

where ν = 0.25, 0.5, 1, 2, 4, y(0) = 2ε2b(0)/p(0), z(0) = ε2b(0)/p(0), v(0) = 0. In each plot, a dot-dashed
(green online) line depicts the trivial solution, solid (red online) curves represent trajectories that lift off, whereas
dashed (blue online) curves represent trajectories that take an IWC.

infinitely smooth. At the same time, all other trajectories show some kind of divergence as
p → 0. For β = 0.5, y appears to diverge to infinity in the limit of small p. In contrast, for
β = 1.5, the first derivative of y appears to diverge. For β = 2.5, a more detailed analysis
(not included here) shows divergence of the second derivative of y. As we shall see shortly,
systematic variation of ε also confirms these observations.

Now, for the simple model system, we have a trivial solution that forms the separatrix.
For more general systems (as, for example, (35)–(40) with χ = 1) we shall demonstrate in
section 5 that there nevertheless exists a separatrix trajectory in Case III, which preserves a
higher degree of smoothness in the limit ε → 0 than any other trajectory. Specifically, the
method of construction will be used to develop an expansion for the trajectory that is at least
C∞ in t and ε. This property enables us to disregard all other trajectories (either with or
without oscillatory components) that are less smooth in the limit ε→ 0.

3.3. Asymptotic behavior for ε → 0. Our analysis of the dynamics near the G-spot
will make use of a carefully chosen inner scaling of the variables. To motivate the particular
scaling chosen in section 5, we now present the numerically observed dependence on ε of the
dynamics of the model system. We will use letters with a hat (ˆ) for the deviation of variables

D
ow

nl
oa

de
d 

06
/0

7/
19

 to
 1

37
.2

22
.1

90
.2

05
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1280 A. NORDMARK, P. L. VARKONYI, AND A. R. CHAMPNEYS

Figure 7. Numerical simulation of (22)–(25) for ε = 10−5 with the following: dot-dashed line (green
online) β = 0.5; dashed line (red online) β = 1.5; and solid line (blue online) β = 2.5. Other values are the
same as in previous simulations.

p, b, y, v, z from their values along the trivial solution, for example,

b(t, ε) = b̄(t, ε) + b̂(t, ε).

To learn how b̂, ŷ, and v̂ scale as ε→ 0, we have recorded their values at the time of passing
the G-spot (p = 0) in a series of simulations where ε was varied systematically. Three values of
β were considered, and the initial conditions used were the same as in the caption of Figure 6
with ν = 2. The results for b̂ are depicted in Figure 8. We specifically recorded the value of
b̂ at the time for which p = 0, and found a nearly perfect power-law relationship b̂ ≈ εγ , at
least for sufficiently small ε. The exponent γ was determined by linear regression; see Table
1(a). Similar results were obtained for v̂ and ŷ.

In a similar manner, we have also measured the time difference between passing the G-
spot (p = 0) and crossing b̂ = 0; see the last row of the table. Clearly the exponent of the
time-difference is close to 2/3 whereas other exponents appear to depend on β linearly. The
general asymptotic theory in sections 4 and 5 predicts that these exponents should, in the
limit ε→ 0, take the values 2β/3 (b̂), (2β+ 2)/3 (v̂), and (2β+ 4)/3 (ŷ). Table 1(b) gives the
theoretical values according to these formulae. We see that there is excellent agreement with
the numerical findings.

3.4. Possible dynamics beyond the G-spot. The above dynamics simply illustrate the
scaling of trajectories and whether they lift off or take an IWC. What happens after these
two possible events is also interesting in its own right. First, after lift-off we have λN = 0,
and thus ḃ = α∗2. In Case II, ḃ > 0, which means that b, y, and v will increase, and lift-off will
persist for some time. Nevertheless in Cases I and III, ḃ < 0, which eventually cause v and
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Figure 8. Logarithmic plot of b̂ at the time when p = 0 as ε varies for a perturbed initial condition close
to the G-spot. See text for details.

Table 1
(a) Numerically measured scaling exponents γ such that the named quantity in the first column scales like

εγ as ε→ 0. (b) Theoretical values of these exponents according to the asymptotic theory of sections 4 and 5.

(a) Measured (b) Theoretical
β = 0.5 β = 1.5 β = 2.5 β = 0.5 β = 1.5 β = 2.5

exponent for b̂ 0.3326 0.9982 1.6635 2β/3 0.3333 1.0 1.6667
exponent for v̂ 0.9983 1.6652 2.3396 (2β + 2)/3 1.0 1.6667 2.3333
exponent for ŷ 1.6538 2.3384 2.9808 (2β + 4)/3 1.6667 2.3333 3.000
exponent for t 0.6650 0.6656 0.6659 2/3 0.6667 0.6667 0.6667

y to decrease as well. Hence, lift-off will—at least in the limit of ε → 0—always terminate
shorty after passing the G-spot, and an impact with very low preimpact normal velocity (i.e.,
a quasi-IWC) will occur.

In order to examine what happens once an IWC is initiated, we have to consider the ex-
tended version of the example system (21), (31)–(33), and (35)–(39), which includes tangential
dynamics and possible transitions from slip to stick.

Two simulations are presented in Figure 9. For both, we use the same parameter values
and some of the initial conditions used in Figure 6(a), but compute for a longer timespan.
The initial value of u is u(0) = 70 whereas the initial value of x(0) is arbitrary, since x is a
cyclic coordinate. Furthermore, we use χ = 0 in the first simulation and χ = 1 in the second.
In the first case (continuous curve, red online), we observe that the near-tangential impact
continues all the way until the contact sticks (u̇ = 0). However, in the second (dashed curve,
blue online), the large contact force initiates a rapid increase of b (due to α∗3 < 0). For large
enough u(0), the variables p, v, and y all begin to increase before the contact sticks. In this
case the impact will terminate and a lift-off occur before we reach all the way to u = 0.
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1282 A. NORDMARK, P. L. VARKONYI, AND A. R. CHAMPNEYS

Figure 9. Two-dimensional projections of simulation results of the extended model system with u(0) = 70
and χ = 0 (solid curve, red online) or χ = 1 (dashed curve, blue online). Other parameter values are as in
Figure 6(a) except that results for two different ν-values are shown, namely ν = 0.25 and 4. Squares and circles
denote slip-stick transitions and liftoff, respectively. Notice that liftoff occurs without slip-stick transition in
one out of four cases.

4. Asymptotic analysis of the motivating example. Before presenting the general anal-
ysis, it is useful to explore the major ideas using the simplified version of the model system
(22)–(26), for which the details are eased because of the existence of a trivial smoothest
solution (27)–(30). We assume throughout that the system is in contact, so that

ε2λN = z − y,

and we suppose that α∗1 < 0, α∗3 < 0.
If we fix the origin of time so p(0) = 0, then p(t) = α∗1t. Inserting this into the other

equations, we can eliminate y, v, and λN by differentiating three times the ḃ equation with
respect to time and eliminating z and its derivatives via

α∗3(z − y) = ε2

(
α∗2 −

db

dt

)
, α∗3(ż − ẏ) = −ε2d

2b

dt2
, α∗3(z̈ − ÿ) = −ε2d

3b

dt3
.

We obtain

α∗3b+ α∗1t

(
α∗2 −

db

dt

)
+ ε

[
α∗3
db

dt
+ α∗1

(
α∗2 −

db

dt

)
− α∗1t

d2b

dt2

]
− 2ε2d

3b

dt3
− ε3d

4b

dt4
= 0,

which is a more convenient 3rd-order single equation for b(t). Note that the other variables
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can be recovered via

α∗3y = ε2

[
α∗3b+ α∗1t

(
α∗2 −

db

dt

)
− 2

(
α∗2 −

db

dt

)]
− ε3d

2b

dt2
− ε4d

3b

dt3
,(42)

α∗3v = −ε
[
α∗3b+ α∗1t

(
α∗2 −

db

dt

)]
+ 2ε2d

2b

dt2
+ ε3d

3b

dt3
,(43)

α∗3z = ε2

[
α∗3b+ α∗1t

(
α∗2 −

db

dt

)
−
(
α∗2 −

db

dt

)]
− ε3d

2b

dt2
− ε4d

3b

dt3
,(44)

α∗3λN = α∗2 −
db

dt
.(45)

We now want to find a time rescaling to desingularize the G-spot. One possibility would
be to rescale time using the value of p, (6), leading to (7)–(8) as in [3]. Unfortunately, such a
rescaling is too brutal to obtain information on what happens beyond the G-spot, not least
because the system can only be defined for p > 0. Instead, we shall seek a scaling in terms of
the parameter ε of the contact regularized system. In so doing we will get an outer dynamical
system, which will take the form of a fast-slow system [7]. Then we introduce a new inner
timescale which is O(ε2/3). This gives the ability to find a distingished limit in which the
singularity associated with the G-spot is balanced by the contact dynamics.

4.1. A distinguished trajectory. We shall start by considering the explicit trivial solution
(27)–(30). Note that this solution is smooth in both the variables t and ε. If the parameter
β (see 41) is not an integer, we will now show that it is the only solution that is smooth in t
and ε, and thus we designate it as the distinguished trajectory.

Such a smooth trajectory must have an expansion in ε,

b̄(t, ε) =
∑
n

bn(t)εn,

such that each bn(t) is a smooth function. Inserting this into (4), we find to order ε0 that

α∗3b0 + α∗1t

(
α∗2 −

db0
dt

)
= 0,

which has the general solution

b0(t) =
α∗2

1− β
t+

{
C1(−t)β if t ≤ 0,

C2(t)β if t ≥ 0.

Since β is not an integer, b0 is not smooth unless C1 = C2 = 0. Inserting this solution into
the order ε1 equation we get

α∗3b1 − α∗1t
db1
dt

= 0,

and again smoothness forces b1(t) = 0. Proceeding similarly, at O(εn), we get

α∗3bn − α∗1t
dbn
dt

= 0,
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and thus we need to choose bn(t) = 0 for all n > 0.
Hence the requirement of smoothness leads uniquely to

b̄(t, ε) =
α∗2

1− β
t,

from which we can recover the rest of the trivial solution (27)–(30) for the variables y, v, and
z using (42)–(44).

4.2. Deviations from the distinguished trajectory: Outer scaling. We now wish to con-
sider trajectories whose initial conditions near the G-spot are small perturbations from the
distinguished trajectory. Recall that b̂ denotes deviations from b̄. Then, b̂ satisfies

(46) α∗3b̂− α∗1t
db̂

dt
+ ε

[
(α∗3 − α∗1)

db̂

dt
− α∗1t

d2b̂

dt2

]
− 2ε2d

3b̂

dt3
− ε3d

4b̂

dt4
= 0,

while the deviations of the other variables from the distinguished trajectory can be recovered
using

α∗3ŷ = ε2

[
α∗3b̂− α∗1t

db̂

dt
+ 2

db̂

dt

]
− ε3d

2b̂

dt2
− ε4d

3b̂

dt3
,(47)

α∗3v̂ = −ε

[
α∗3b̂− α∗1t

db̂

dt

]
+ 2ε2d

2b̂

dt2
+ ε3d

3b̂

dt3
,(48)

α∗3ẑ = ε2

[
α∗3b̂− α∗1t

db̂

dt
+
db̂

dt

]
− ε3d

2b̂

dt2
− ε4d

3b̂

dt3
,(49)

α∗3λ̂N = −db̂
dt
.(50)

Assuming t is not close to zero, we can identify two timescales in (46); a slow timescale of
order O(1) and a fast timescale of order O(ε).

The fast system. Introducing a fast timescale tf via dt = εdtf , and reintroducing p = α∗1t,
we find that (46) becomes

−

[
p

(
db̂

dtf
+
d2b̂

dt2f

)
+ 2

d3b̂

dt3f
+
d4b̂

dt4f

]
+ ε

[
α∗3b̂+ (α∗3 − α∗1)

db̂

dtf

]
= 0.

Setting ε = 0, thus treating p as a constant, and looking for exponential solutions to the
resulting linear constant coefficient equation, we get the characteristic polynomial

(51) − λ
[
λ3 + 2λ2 + pλ+ p

]
= 0.

The first factor of (51) gives a zero root corresponding to the slow time scale, whereas the
nontrivial second factor corresponds to the dynamics of the fast system. For this second factor,
if p > 0, the Routh–Hurwith criterion implies that all roots have negative real parts, hence the

D
ow

nl
oa

de
d 

06
/0

7/
19

 to
 1

37
.2

22
.1

90
.2

05
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

UNFOLDING THE PAINLEVÉ PARADOX 1285

fast subsystem is stable. Hence, for p > 0, trajectories are attracted to a codimension-three
manifold, representing the slow dynamics.

In contrast, if p < 0, then the discriminant of the second factor ∆ = −p(4(p)2− 13p+ 32)
is always positive, which means that the fast system has three real eigenvalues. Note further
that the sum of the eigenvalues is −2 whereas their product is −p, which implies that precisely
one eigenvalue out of the three is positive for p < 0. Hence the slow dynamics for p < 0 are
normally hyperbolic with a two-dimensional stable manifold and one-dimensional unstable
manifold.

The slow system. This is obtained from (46) by letting ε→ 0 so that we obtain

α∗3b̂− α∗1t
db̂

dt
= 0,

with solution

(52) b̂(t) =

{
C1(−t)β if t ≤ 0,

C2(t)β if t ≥ 0,

and

ŷ

ε2
= 2

b̂

α∗1t
,

v̂

ε
= 0,

ẑ

ε2
=

b̂

α∗1t
, λ̂N = − b̂

α∗1t
, β =

α∗3
α∗1
.

4.3. Inner scaling. When t is close to zero, we can introduce a rescaled time variable via

t = δ2s, where δ = ε1/3,

in accordance with the observations in Table 1(a). Under such a rescaling, (46) becomes

(53) α∗3b̂− α∗1s
db̂

ds
− 2

d3b̂

ds3
+ δ

[
(α∗3 − α∗1)

db̂

ds
− α∗1s

d2b̂

ds2
− d4b̂

ds4

]
= 0.

Again we can identify two timescales: A slow timescale of order O(ε2/3) (O(1) in s) and a
fast timescale of order O(ε) (O(ε1/3) in s).

The fast timescale. This is defined by defining a new time variable sf so that ds = δdsf .
From this, (53) becomes

−2
d3b̂

ds3
f

− d4b̂

ds4
f

+ δ2α∗1s

(
db̂

dsf
+
d2b̂

ds2
f

)
+ δ3

[
α∗3b̂+ (α∗3 − α∗1)

db̂

dsf

]
= 0.

Letting ε → 0 we have a characteristic equation −λ3 [λ+ 2] = 0. There are three zero roots
corresponding to the slow time scale, and one real root λ = −2. We conclude that the fast
system is stable.
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The slow timescale. This is obtained by letting δ → 0 in (53), from which we obtain

(54) α∗3b̂− α∗1s
db̂

ds
− 2

d3b̂

ds3
= 0.

Upon rescaling
τ = κs, with κ = (−α∗1/2)1/3 > 0,

and setting b(s) = θ(τ) we get

(55)
d3

dτ3
θ − τ d

dτ
θ + βθ = 0

for
β = α∗3/α

∗
1.

Equation (55) has a solution that can be expressed in terms of generalized hypergeometric
functions, whose asymptotic properties are summarized in Appendix A. From that solution,
we can recover all other variables from b̂ via

(56) δ2α∗3
ŷ

ε2
= 2

db̂

ds
, δ2α∗3

v̂

ε
= 2

d2b̂

ds2
, δ2α∗3

ẑ

ε2
=
db̂

ds
, δ2α∗3λ̂N = −db̂

ds
.

4.4. Matching the inner and outer solutions. We know that the outer solution behaves
like

(57) b̂(t) ∼ C1(−t)β as t→ 0−,

and this must match the behavior of the inner solution b̂(s) as s→ −∞.
The asymptotics of the solution inner region s→ ±∞ can be established from the asymp-

totic behavior of θ(τ) given by (55), which is studied in Appendix A. The general solution is
a linear combination of a function h with power-law type behavior and two rapidly oscillating
functions er and ei. To get the desired behavior, the coefficients of er and ei must vanish, and
there is a unique solution Θ(τ, β) that behaves like (−τ)β as τ → −∞ (see (A.11)).

Matching with the small t limit (57) with the large negative τ limit, we find that the
leading-order inner solution matches if we take it to be

(58) b̂(s) = C1κ
−βε2β/3Θ(κs, β) ∼ C1κ

−βε2β/3(−κs)β = C1(−ε2/3s) = C1(−t)β,

where again κ = (−α∗1/2)
1
3 .

Combining (58) with (56), we find the scaling for all the perturbation variables of the
inner solution

b̂(s) = O(ε2β/3),

ŷ(s) = O(ε(2β+4)/3),

v̂(s) = O(ε(2β+2)/3),

ẑ(s) = O(ε(2β+4)/3),

λ̂N (s) = O(ε(2β−2)/3),

when s = O(1). Recalling that t = ε2/3s, we obtain the theoretical predictions given in Table
1.
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4.5. Interpretation for the dynamics. To determine whether lift-off (λN = 0) or impact-
like behavior (λN large) occurs for the inner solution we study

λN = λ̄N + λ̂N =
α∗2

α∗1 − α∗3
− C1

α∗3
κ1−βε(2β−2)/3dΘ

dτ
(τ, β).

In λ̂N , we must consider that ε(2β−2)/3 is very large or very small depending on whether β < 1
or β > 1. If β < 1, then the λ̂N term including ε(2β−2)/3 dominates over the λ̄N term. Thus,
a sign change from positive to negative for C1dΘ/dτ means a sign change of λN , i.e., lift-off,
whereas rapidly increasing positive values of C1dΘ/dτ correspond to the onset of an impact.
If β > 1, the size of dΘ/dτ must be very large to have any effect, i.e., the negative sign of λN
is preserved even when C1dΘ/dτ changes its sign. From Theorems 5 and 6 in Appendix A,
we know that

(59)
dΘ

dτ
(τ, β)


is negative for τ large and negative,

has sign of
Γ( 1−β

3 )
Γ(−β) for τ = 0,

is very large with sign of 1
Γ(−β) for τ large and positive.

Here Γ represents the Gamma function, and we recall that Γ(−β) is negative (respectively,
positive) whenever β ∈ (2n − 1, 2n) for positive integers n (respectively, β ∈ (2n − 2, 2n)).
Using this we can decide whether or not impact or lift-off happens as t passes through zero.

We are now in a position to piece together what happens to initial conditions that in the
outer scaling approach the G-spot. Let us treat two separate cases.
Cases I and II: 0 < β < 1. In this case, the distinguished trajectory represents the strong

stable manifold of the G-spot in the singular system. Note that all trajectories of
interest have C1 < 0. From (59) we can see that in the inner solution, λ̂N > 0 for all
three τ regimes. Numerical computation of the derivative of Θ supports that λ̂N > 0
for all τ = O(1). Further λ̂N always dominates λ̄N for small ε. Together, this is strong
evidence that an impact must occur, although not quite a proof because it is possible
that although Θ is very negative for large |τ | and for τ = 0 it is conceivable that it
might become positive for some intermediate τ -value. We have found no numerical
evidence that such a possibility occurs.

Case III: β > 1. We now no longer need to limit ourselves to trajectories with b̂(τ) < 0 for
large negative τ , and so we need to consider both possible signs of C1 in (58). Also
λ̄N dominates λ̂N for small ε and τ = O(1). Thus lift-off or impact is determined
by the behavior for τ large and positive in (59). We find that lift-off occurs when
C1/Γ(−β) < 0 due to the very large growth rate of Θ (see Theorem 6 in Appendix
A). Note that τlift-off grows very slowly as ε → 0, like log(ε)2/3. For the other sign of
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C1Γ(−β), we are in the same situation as above where there is strong evidence that
an IWC occurs. The distinguished trajectory, obtainable by setting C1 = 0, is the
dividing canard trajectory between lift-off and impact. Note that Γ(−β) changes sign
whenever β passes through a positive integer. So there is a side-switching between
which sign of perturbation from the distinguished trajectory that leads to lift-off and
which sign to impact.

5. Asymptotic analysis of a general system. Motivated by the previous example, we
shall now consider general systems of the form introduced in section 2. We shall find that
the hard part of the analysis is to determine the existence and properties of a distinguished
trajectory that is smooth in t and ε. Once this is established, the behavior of small deviations
from this trajectory will turn out to be precisely as in the motivating example.

Again, we will assume positive slip and contact, that is λT = −µλN and ε2λN = z− y(ξ).
Further, we will rename the functions y(ξ), v(ξ), p(ξ), and b(ξ) using the upper case variables
Y(ξ), V(ξ), P(ξ), and B(ξ) instead. Then we consider y, v, b, and p to be additional scalar
time-dependent variables, independent of ξ, that extend the system, but satisfy the same
differential equations as Y(ξ), V(ξ), P(ξ), and B(ξ) would. To restore the properties p(t) =
P(ξ(t)), etc., we need only synchronize them at one time point t0. Thus our full system
becomes

ξ̇ = F (ξ) +G(ξ)λN ,(60)

ṗ = α1(ξ),(61)

ḃ = α2(ξ)− α3(ξ)λN ,(62)

ẏ = v,(63)

v̇ = b+ pλN ,(64)

εż = −z − ε2λN ,(65)

ε2λN = z − y,(66)

with synchronization conditions

(67) y(t0) = Y(ξ(t0)), v(t0) = V(ξ(t0)), p(t0) = P(ξ(t0)), b(t0) = B(ξ(t0)).

A G-spot ξ∗ is characterized by

(68) Y(ξ∗) = 0, V(ξ∗) = 0, P(ξ∗) = 0, B(ξ∗) = 0,

which are four (assumed to be independent) conditions on the m-dimensional state ξ. To fix
a particular G-spot, it is convenient to introduce an (m− 4)-dimensional additional system of
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equations

(69) J (ξ∗) = 0.

Local uniqueness of ξ∗ is guaranteed if we assume the nondegeneracy condition that the m-
dimensional Jacobian

(70) [Pξ(ξ∗),Bξ(ξ∗),Yξ(ξ∗),Vξ(ξ∗),Jξ(ξ∗)] is nonsingular.

5.1. An inner scaling. We proceed very much as in the motivating example in section 4
by adopting an inner time scale

dt = δ2ds, δ = ε1/3.

Note though that for the motivating example, (4) is linear in b, so it was not necessary to scale
any of the dependent variables in the inner region. In general though, the system of equations
(60)–(66) is nonlinear in ξ. Therefore, it is convenient to scale the dependent variables like

ξ(t, ε) = ξ∗ + δ2ξ̃(s, δ),

p(t, ε) = δ2p̃(s, δ),

b(t, ε) = δ2b̃(s, δ),

y(t, ε) = δ6ỹ(s, δ),

v(t, ε) = δ4ṽ(s, δ),

z(t, ε) = δ6z̃(s, δ),

where ξ∗ is the location of the G-spot, and in what follows a tilde will be exclusively used to
represent these scaled inner variables. In the inner scale, the system becomes

ξ̃′ = F (ξ) +G(ξ)λN ,(71)

p̃′ = α1(ξ),(72)

b̃′ = α2(ξ)− α3(ξ)λN ,(73)

ỹ′ = ṽ,(74)

ṽ′ = b̃+ p̃λN ,(75)

δz̃′ = −z̃ − λN ,(76)

λN = z̃ − ỹ,(77)

with ′ = d
ds .

Let us set the origin of the new time variable s by requiring that p = 0 when s = 0 for all
δ:

(78) p̃(0, δ) = 0.
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Using the synchronization condition (67) at s = 0, we require for all δ:

P
(
ξ∗ + δ2ξ̃(0, δ)

)
− δ2p̃(0, δ) = 0,(79)

B
(
ξ∗ + δ2ξ̃(0, δ)

)
− δ2b̃(0, δ) = 0,(80)

Y
(
ξ∗ + δ2ξ̃(0, δ)

)
− δ6ỹ(0, δ) = 0,(81)

V
(
ξ∗ + δ2ξ̃(0, δ)

)
− δ4ṽ(0, δ) = 0.(82)

In addition, we will remove the (m− 4)-dimensional freedom in the location of the G-spot by
imposing the additional boundary conditions (69) on ξ at s = 0 for all δ:

(83) J (ξ∗ + δ2ξ̃(0, δ)) = 0,

where we still assume the nondegeneracy condition (70).
Note that the boundary conditions (78)–(83) provide only m+1 initial conditions to m+5

differential equations (71)–(76). Thus, to find a specific trajectory we have to specify four
further conditions.

5.2. A distinguished trajectory. The key step now is to establish that there is a unique
distinguished trajectory of the inner system of equations that plays the role of the explicit
trivial solution of the motivating example that passes through the G-spot in the limit ε→ 0.
This trajectory will have initial conditions that satisfy (78)–(83), which leaves four unspecified
initial conditions. Instead of four specific initial conditions, we will instead require that b(t, ε)
should be sufficiently smooth that it can be expressed as a regular power series in its arguments
up to arbitrary order.

To motivate this requirement, we already know from the phase plane analysis of the sin-
gular system (7), (8) in Figure 3 that when δ = 0, there is an open set of initial conditions, all
of which pass through a particular G-spot. Hence, one of these initial conditions is essentially
required to fix a particular distinguished trajectory in the (p, b)-plane. Consider, in particular,
Case III; the other two cases are somewhat more trivial. Looking at Figure 3 we note that
all trajectories approach the G-spot tangent to the weak stable eigenvector α2p = (α1−α3)b.
Then, according to recent results in stable manifold theory (see [4] and references therein),
of all the trajectories of the planar system (7)–(8), there is a unique one whose graph b(p) is
smooth up to order Cβ+1 at b = p = 0. Such a distinguished, maximally smooth trajectory is
indicated by the dashed (red) line in Figure 3 in each of the three cases. The remaining three
freedoms essentially arise by requiring that y, z, and v are chosen so that there is additional
smoothness in t and ε so that the trajectory in question does not blow up as ε→ 0.

We construct this maximally smooth trajectory as an asymptotic expansion. The pro-
cedure is a little involved, and makes use of special spaces of polynomials. Let Pn be the
polynomial space in s spanned by {sn, sn−3, sn−6, . . . , sq}, where 0 ≤ q ≤ n and q = n
(mod 3). We shall also extend this definition by assuming that for n < 0, Pn consists of the
zero function. The result can be expressed as follows.

Theorem 1. Let ξ∗ be a solution to (68)–(69) for which the nondegeneracy condition (70)
holds. Furthermore, let α∗1, α

∗
3 < 0, evaluated at this ξ∗, be such that β = α∗3/α

∗
1 is not an inte-
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ger. Then, there is a unique set of polynomial functions of s ξn(s) ∈ Rm and pn(s), bn(s), yn(s),
vn(s), zn(s), λn(s) ∈ R for which

˜̄ξ(s, δ) =

(
M−1∑
n=0

ξn(s)δn

)
+O(δM ),

˜̄p(s, δ) =

(
M−1∑
n=0

pn(s)δn

)
+O(δM ),

˜̄b(s, δ) =

(
M−1∑
n=0

bn(s)δn

)
+O(δM ),

˜̄y(s, δ) =

(
M−1∑
n=0

yn(s)δn

)
+O(δM ),

˜̄v(s, δ) =

(
M−1∑
n=0

vn(s)δn

)
+O(δM ),

˜̄z(s, δ) =

(
M−1∑
n=0

zn(s)δn

)
+O(δM ),

λ̄N (s, δ) =

(
M−1∑
n=0

λn(s)δn

)
+O(δM )

satisfy (71)–(77) up to order O(δM ), and (78)–(83) up to order O(δM+2). More specifically,
these functions belong to the spaces

p2ν(s), b2ν(s), ξ2ν(s) ∈ Pν+1, y2ν(s), z2ν(s) ∈ Pν , v2ν(s) ∈ Pν−1, λ2ν(s) ∈ Pν

for even powers n = 2ν of δ, and

p2ν+1(s), b2ν+1(s), ξ2ν+1(s) ∈ Pν−3, y2ν+1(s), z2ν+1(s) ∈ Pν−1,

v2ν+1(s) ∈ Pν−2, λ2ν+1(s) ∈ Pν−4

for odd powers n = 2ν + 1 of δ.

In what follows, for functions of ξ, like F , α2, or V, it is useful to introduce a notation for
the coefficients in a δ expansion:

f(ξ̄) =
n∑
k=0

fk(s)δ
k +O(δn+1).(84)

We also define fk(s) = 0 for all k < 0. Note that the use of the index k in fk(s) is equivalent

to that used for the scaled variables like ˜̄ξ, ˜̄p, or ˜̄v. If it were to be applied to the unscaled
variables, the index would be different. For example vk(s) is the coefficient of δk in an
expansion of ṽ, but the coefficient of δk+4 is an expansion of v itself, whereas fk is always the
coefficient of δk for a function f(ξ̄).

We begin by stating a useful result.
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Lemma 2. Assume f(ξ) is a Cn function. Then fn(s) only depends on ξk(s) for 0 ≤ k ≤
n− 2, and ξn−2 enters linearly with coefficient fξ(ξ

∗).
Assume further that ξ2k(s) ∈ Pk+1, ξ2k+1(s) ∈ Pk−3. Then if n = 2ν, then fn(s) ∈ Pν ,

and if n = 2ν + 1, then fn(s) ∈ Pν−4

Proof. The first part is immediate through Taylor expansion in δ.
For the second part, begin by noting that the product of a polynomial in Pk and one in Pl

is in Pk+l. Furthermore, note that fn(s) is a sum of products, each product being a product
of a constant and some ξki(s), where n =

∑
i(ki + 2). We consider the cases n even and odd

separately.
First, consider the case of even n, specifically n = 2ν. If all ki are even so ki = 2κi, then

the term is a product of a constant and some ξ2κi(s), each of which is in Pκi+1 and thus the
term is in P∑

i(κi+1). But 2ν =
∑

i(2κi+2) = 2
∑

i(κi+1) so the term is in Pν . If instead two
of the ki, say k1 = 2κ1 + 1 and k2 = 2κ2 + 1, are odd and the rest even (ki = 2κi for i > 2),
then the term is in Pκ1−3+κ2−3+

∑
i>2(κi+1), but 2ν = 2κ1 + 3 + 2κ2 + 3 +

∑
i>2(2κi + 2) =

2(κ1− 3 + κ2− 3 +
∑

i>2(κi + 1)) + 18 so the term is in Pν−9, which is included in Pν . In the
same way, each time there are two new odd ki, the resulting term order is lowered by 9.

Second, consider the case of odd n, specifically n = 2ν+ 1. If there is only one odd ki, say
k1 = 2κ1 + 1, and the rest even ki = 2κi for i > 1, then the term is in Pκ1−3+

∑
i>1(κi+1), but

2ν+1 = 2κ1 +3+
∑

i>1(2κi+2) = 2(κ1−3+
∑

i>1(κi+1))+9 so the term is in Pν−4. Again,
each time two more ki are odd, the term order is lowered by 9, and is included in Pν−4.

Proof of Theorem 1. To establish the expansion, we set up an iteration scheme to compute
the solution at order n in terms of the solutions at orders less than n. The iteration scheme
works as follows. Let n ≥ 0. If n > 0 then suppose that solutions for pk, bk, yk, vk, zk, λk, and
ξk have been computed for all 0 ≤ k ≤ n− 1 and they belong to the appropriate polynomial
spaces as specified by the theorem. We then find a solution at O(δn) through the following
steps.

1. Consider the order δn term of both the differential equation (72) and the initial con-
dition (78). This gives

(85) p′n = α1n

and pn(0) = 0, where owing to Lemma 2, the right-hand side is a known polynomial
of s in Pν if n = 2ν or Pν−4 if n = 2ν + 1. Integrating (85) yields a unique p2ν ∈ Pν+1

or p2ν+1 ∈ Pν−3. For example, we get p0 = α∗1s for all systems.
2. Consider the term of order δn in (73), which can be written

(86) b′n + α∗3λn = α2n −
n−1∑
k=0

α3n−kλk := rb,n(s),

where the right-hand side rb,n(s) is a known function. Using Lemma 2 and the known
polynomial form of λk, we find rb,2ν ∈ Pν and rb,2ν+1 ∈ Pν−4.
Similarly we can write the order δn term of (74) as

(87) y′n − vn = 0.
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The order δn term of (75) can be written

(88) v′n − bn − α∗1sλn =
n−1∑
k=0

pn−kλk := rv,n(s).

Here we have used p0 = α∗1s from the very first step, and note that we need pn from step
1. The known right-hand side is now found to be rv,2ν(s) ∈ Pν+1 or rv,2ν+1(s) ∈ Pν−3.
The order δn term of (76) and (77) can be written

(89) − zn − λn = z′n−1

and

(90) λn − zn + yn = 0.

Note that (89) remains true if n = 0 since we have defined z−1(s) = 0.
So far we have obtained a system of four coupled ODEs (86)–(89) and one algebraic
equation (90) for the unknowns bn, λn, yn, zn, and vn. Next, we eliminate four of these
variables one by one. First, differentiate (87), insert the result into (88), multiply the
resulting equation by α∗3, and finally eliminate λn using (86) to get

(91) α∗3y
′′
n − α∗3bn + α∗1sb

′
n = α∗1srb,n + α∗3rv,n.

Next, we can eliminate zn and λn from (86), (89), and (90) to get

α∗3yn − 2b′n = −α∗3z′n−1 − 2rb,n.

Differentiating twice and using the result to eliminate y′′n from (91) finally gives us

(92) 2b′′′n + α∗1sb
′
n − α∗3bn = 2r′′b,n + α∗3z

′′′
n−1 + α∗1srb,n + α∗3rv,n := rn(s).

The polynomial order for the known right-hand side can now be found to be r2ν ∈ Pν+1

or r2ν+1 ∈ Pν−3.
Now, note that (92) is a linear inhomogeneous equation. The solution is, in general,
composed of a complementary function plus a particular solution. But we know by
Theorem 4 (see Appendix A) that if β is not an integer, the complementary function is
a linear combination of generalized hypergeometric functions in the rescaled variables
s, δ, which does not satisfy the required smoothness assumptions. Therefore, we must
take the particular solution only.
Substituting a monomial sk for bn into the left-hand side of (92) gives

(kα∗1 − α∗3)sk + k(k − 1)(k − 2)sk−3.

Since we have assumed β = α∗3/α
∗
1 is not an integer, the coefficient of sk is nonzero.

This means we can make an ansatz b2ν ∈ Pν+1 or b2ν+1 ∈ Pν−3 and find its coefficients
one by one starting with the highest order.
Thus there is a unique particular integral solution with b2ν ∈ Pν+1 or b2ν+1 ∈ Pν−3.
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3. Having found bn, we can recover yn, vn, zn, and λn from

α∗3yn = 2(b′n − rb,n)− α∗3z′n−1,

α∗3vn = 2(b′′n − r′b,n)− α∗3z′′n−1,

α∗3λn = rb,n − b′n,
α∗3zn = b′n − rb,n − α∗3z′n−1.

By studying the right-hand sides for even and odd n, we can verify that yn, vn, and
zn are in the correct polynomial spaces.

4. Finally, consider the order δn term in the differential equation (71), which gives

(93) ξ′n = rξ,n(s) = Fn +

n∑
k=0

Gn−kλn,

where rξ,2ν ∈ Pν or rξ,2ν+1 ∈ Pν−4. Note we need λn from step 3 here. We obtain an
explicit expression for ξn by integrating both sides of (93). The integration constants
will be eliminated with the help of the order δn+2 terms in the m-dimensional initial
conditions (79)–(83):

[Pn+2(0)− pn(0),Bn+2(0)− bn(0),Yn+2(0)− yn−4(0),Vn+2(0)− vn−2(0),Jn+2(0)]

= [0, 0, 0, 0, 0].

According to Lemma 2, Pn+2(0), Bn+2(0), Yn+2(0), and Vn+2(0) depend only on ξk(0)
for 0 ≤ k ≤ n. Furthermore, the initial conditions can be rearranged to read

(94) [Pξ(ξ∗),Bξ(ξ∗),Yξ(ξ∗),Vξ(ξ∗),Jξ(ξ∗)]ξn(0) = rξ0,n,

where the left-hand side is linear in ξn(0) (see Lemma 2). The right-hand side rξ0,n is
then an m-vector, each component of which contains a a sum of two types of terms:
(i) constants times the products of lower-order terms ξk(0) (k < n) and (ii) terms that
involve pn(0), bn(0), yn−4(0), vn−2(0).
If we treat s as a free variable in the terms of type (i) (instead of having s = 0), then
each of them belongs to the polynomial class Pν+1 if n = 2ν or Pν − 3 if n = 2ν + 1.
This result can be proven in the same way as the second statement of Lemma 2, which
relies on the known polynomial class of ξk for k < n. It follows that the polynomials
(i) do not include zeroth-order terms and thus their values for s = 0 are 0, unless ν
(mod 3) = 2 and n = 2ν or ν (mod 3) = 0 and n = 2ν + 1.
The functions pn, bn, yn−4, and vn−2 appearing in terms of type (ii) also belong to
special polynomial classes as specified by the statement of the theorem, and as verified
in previous steps of the iteration scheme. It follows that the constant terms of these
polynomials must vanish, and thus their values for s = 0 are 0 for the exact same
values of n where the terms of type (i) also vanish.
Hence, we have found that rξ0,2ν are all zero unless ν (mod 3) = 2 and rξ0,2ν+1 are all
zero unless ν (mod 3) = 0. At the same time, the system matrix on the left-hand side
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of (94) is nonsingular by the assumption of the theorem. This implies ξ2ν(0) or ξ2ν+1(0)
is well defined, and is zero unless ν (mod 3) = 2 or ν (mod 3) = 0, respectively.
Hence, we have found the auxiliary conditions for (93) and we can conclude that the
integration of (93) yields a unique ξ2ν ∈ Pν+1 or ξ2ν+1 ∈ Pν−3. It is worth noting that
for all values of n for which the polynomial class Pν+1 (even n) or Pν−3 (odd n) does
not include constant functions, the previously described procedure obtains the initial
condition ξn(0) = 0, thus eliminating the integration constant.

Corollary 3. The polynomial classes established by Theorem 1 imply that each of the un-
scaled variables ξ, p, b, y, and v truncated to any finite order in δ can be written as a polyno-
mial in t, ε. Hence we can express the distinguished smooth trajectory as a regular asymptotic
expansion in ε.

Proof. We just demonstrate that the statement is true for p. The construction for the
other variables is similar. Note that the formula for ˜̄p(s, δ) in the theorem consists of a sum
of terms like

p2ν(s)︸ ︷︷ ︸
∈Pν+1

δ2ν and p2ν+1(s)︸ ︷︷ ︸
∈Pν−3

δ2ν+1

from which the rescaled version of this variable is a sum of terms like

p2ν(s)︸ ︷︷ ︸
∈Pν+1

δ2ν+2 and p2ν+1(s)︸ ︷︷ ︸
∈Pν−3

δ2ν+3

or equivalently

∑
ρ=ν+1,ν−2,ν−5,...

Ksρδ2ν+2 and
∑

ρ=ν−3,ν−6,ν−9,...

Ksρδ2ν+3,

where K represents any unspecified constant. Replacing s by t and δ by ε, these two terms
become

∑
ρ=ν+1,ν−2,...

Ktρδ2ν−2ρ+2 =
∑

0≤σ≤(ν+1)/3

Kδ6σtν+1−3σ =
∑

0≤σ≤(ν+1)/3

Kε2σtν+1−3σ

and

∑
ρ=ν−3,ν−6,...

Ktρδ2ν−2ρ+3 =
∑

0≤σ≤(ν−3)/3

Kδ9+6σtν−3−3σ =
∑

0≤σ≤(ν−3)/3

Kε3+2σtν−3−3σ,

respectively, which are regular polynomials in ε, t.
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Figure 10. Comparison between expansions for the distinguished trajectories for ε = 10−5.

Example. For the extended example system (35)–(39) with α∗1 = α∗2 = −1 and α∗3 = −3/2,
we find, with the aid of computer algebra,

˜̄p(s, δ) =− s+ s2χ δ2 + 2 s3χ2δ4 +
(
3 s4χ3 − 96 sχ3

)
δ6 +O(δ8),

˜̄b(s, δ) = 2 s+ 6χ s2δ2 +
(
12χ2s3 − 96χ2

)
δ4 +

(
138χ3s4

5
− 10368 sχ3

5

)
δ6 +O

(
δ8
)
,

˜̄y(s, δ) =− 4− 16χ sδ2 + 8χ δ3 − 48χ2s2δ4 + 48 sχ2δ5

+

(
−736χ3s3

5
+

13824χ3

5
− 48χ2

)
δ6 +O

(
δ7
)
,

˜̄v(s, δ) =− 16χ δ2 − 96 sχ2δ4 + 48χ2δ5 − 2208 s2χ3

5
δ6 +O

(
δ7
)
,

˜̄z(s, δ) =− 2− 8 sχ δ2 + 8χ δ3 − 24 s2χ2δ4 + 48 sχ2δ5

+

(
−368 s3χ3

5
+

6912χ3

5
− 48χ2

)
δ6 +O

(
δ7
)
.

Note that by construction, setting χ = 0 reconstructs the trivial solution (27)–(30). Figure
10 compares the solutions in the (b, p)-plane for different values of χ.

To demonstrate that each of the above expressions implies that the corresponding unscaled
variable is a polynomial in t and ε, consider, for example, the expansion for z̄ = δ6 ˜̄z in the
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UNFOLDING THE PAINLEVÉ PARADOX 1297

case χ = 1 under the substitution s = ε−2/3t and δ = ε1/3. We have

z̄(t, ε) = δ6 ˜̄z(s, δ) = δ6

(
−2− 8sδ2 + 8δ3 − 24 s2δ4 + 48sδ5 +

(
−368 s3

5
+

6672

5

)
δ6 +O

(
δ7
))

= ε2

(
−2− 8t+ 8ε− 24t2 + 48tε+

(
−368 t3

5ε2
+

6672

5

)
ε2 +O

(
δ7
))

= ε2

(
−2− 8t− 24t2 − 368

5
t3 + (8 + 48t)ε+

6672

5
ε2 +O(t4, εt2, ε2t, ε3)

)
.

Note that the distinguished trajectory exists for both t < 0 and t > 0 and so can correspond
to a canard solution that passes between the critical (slow) manifolds for p < 0 and p > 0.
This solution can play the role of the separatrix in the inner system that separates trajectories
that lift off from those that take an IWC. To see whether this is the case, we have to consider
other trajectories that are in the critical manifold for p < 0. In order to do this we need to
look at the outer scale and as p→ 0 consider the asymptotic behavior of solutions in the slow
manifold.

5.3. Fast-slow analysis of the outer system. Consider the general system (60)–(66).
Letting ε2yo = y, ε2zo = z, εvo = v gives

ξ̇ = F (ξ) +G(ξ)λN ,

ṗ = α1(ξ),

ḃ = α2(ξ)− α3(ξ)λN ,

εẏo = vo,

εv̇o = b+ pλN ,

εżo = −zo − λN ,
λN = zo − yo.

Note that this is a fast-slow system.
The fast system is obtained by letting ξ̇ = ṗ = ḃ = 0, in which case ξ, p, and b are constant

and we are left with a linear system for the remaining three variables

ε(ẏo, v̇o, żo)
T = M(yo, vo, zo)

T ,

where

M =

 0 1 0
−p 0 p
1 0 −2

 .
The characteristic polynomial of M is

λ3 + 2λ2 + pλ+ p = 0,

which is the same as that of the fast outer system in the motivating example (see (51)), with
the same conclusions regarding stability. Specifically, for p > 0 trajectories are attracted to
a codimension three manifold, representing the slow dynamics, whereas for p < 0 the slow
dynamics are normally hyperbolic with a two-dimensional stable manifold and one-dimensional
unstable manifold.
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The slow dynamics. These dynamics for ε = 0 occur on the slow manifold

yo = 2b/p,

vo = 0,

zo = b/p,

whose dynamics are given by the slow subsystem

ξ̇ = F (ξ)−G(ξ)b/p,

ṗ = α1(ξ),

ḃ = α2(ξ) + α3(ξ)b/p.

Now, according to Fenichel theory (see [7]), when the slow manifold in the singular limit
is normally hyperbolic, then there should exist a smooth critical manifold that is O(ε)-close
to slow manifold and inherets its stability properties. Hence, provided p is bounded away
from zero, this means there will be an attracting critical manifold for p > 0 and a saddle-type
critical manifold for p < 0 with a one-dimensional unstable bundle.

In order to understand as p → 0 the limit of the dynamics in the slow subsystem, it is
useful to rewrite it in the form

ξ̇ − (F (ξ) +G(ξ)λN ) = 0,

ṗ− α1(ξ) = 0,

ḃ− (α2(ξ)− α3(ξ)λN ) = 0,

− (b+ pλN ) = 0.

We also write slow variables as deviations from the distinguished trajectory

ξ = ξ̄(t, 0) + ξ̂(t),

p = p̄(t, 0) + p̂(t),

b = b̄(t, 0) + b̂(t),

λN = λ̄N (t, 0) + λ̂N (t).

Motivated by the example system in section 4, we seek an ansatz of the form

ξ̂(t) = ξ0(−t)r + o((−t)r),
p̂(t) = p0(−t)r+1 + o((−t)r+1),

b̂(t) = b0(−t)r + o((−t)r),
λ̂N (t) = λ0(−t)r−1 + o((−t)r−1)

for an unknown exponent r > 0, and using p̄(t, 0) = α∗1t+ · · · , we find to leading order that

[−rξ0 −G∗λ0] (−t)r−1 = o((−t)r−1),[
−(r + 1)p0 − α1

∗
ξξ0

]
(−t)r = o((−t)r),

[−rb0 + α∗3λ0] (−t)r−1 = o((−t)r−1),

[−b0 + α∗1λ0] (−t)r = o((−t)r).
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UNFOLDING THE PAINLEVÉ PARADOX 1299

From the last two equations, a solution with b0 6= 0 requires r = α∗3/α
∗
1 = β. Then we find

ξ0 = −G
∗

α∗3
b0,

p0 = 0,

λ0 =
1

α∗1
b0.

Thus

(95) b = b̄(t, 0) + b0(−t)β + o((−t)β).

5.4. Matching the inner and outer solutions. The inner system is given by (71)–(77).
There is a fast timescale δ (in s time units). The fast dynamics are one-dimensional and z̃
evolves quickly to the slow manifold as z̃ = ỹ/2. The slow system becomes

ξ̃′ = F̃ (ξ) + G̃(ξ)λN ,

p̃′ = α1(ξ),

b̃′ = α2(ξ)− α3(ξ)λN ,

ỹ′ = ṽ,

ṽ′ = b̃+ p̃λN ,

with λN = −ỹ/2.
Motivated by the preliminary simulations of section 3.3, we will look for solutions (in the

form of hatted variables) that are scaled deviations from the distinguished trajectory, so that

p̃ = ˜̄p(s, ε1/3),

b̃ = ˜̄b(s, ε1/3) + ε2(β−1)/3˜̂b(s),(96)

ỹ = ˜̄y(s, ε1/3) + ε(2(β−1)/3ŷ(s),

ṽ = ε4/3 ˜̄v(s, ε1/3) + ε(2(β−1)/3v̂(s).

Then, in the limit ε→ 0, to leading order in ξ, using the fact that ˜̄p = α∗1s+ · · · , we get

b̂′ = α∗3ŷ/2,

ŷ′ = v̂,

v̂′ = b̂− α∗1sŷ/2.

Elimination of ŷ and v̂ gives

b̂′′′ +
α∗1
2
sb̂′ − α∗3

2
b̂ = 0.

Rescaling time to τ = κs with κ = (−α∗1/2)1/3, we get precisely the same equation (55)
that we obtained for perturbations to the distinguished trajectory for the example system in
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section 4, whose asymptotics are summarized in Appendix A. The rest of the analysis of the
dynamics of this equation follows exactly as in section 4.4. In particular, matching with the
outer equation (95) shows that

b̂(s) = b0κ
−βε2β/3Θ(κs, β),

where the initial constant b0 determines the sign of the perturbation from the distinguished
trajectory. Thus, applying the results from Appendix A on the asymptotics of hypergeometric
functions, we get the same conditions (59) that determine whether lift-off or IWC occur.

Moreover, the implications for the dynamics are precisely as discussed in section 4.5.

6. Application to a frictional impact oscillator. We now apply the previously developed
theory to a frictional impact oscillator proposed by [8]; see also Figure 1(b). Our goal here is
to verify that the approximate solutions produced by the expansion scheme of section 5 match
the results of brute-force numerical simulation.

6.1. The system. The frictional impact oscillator consists of two point masses: two
springs and two dampers. The mass m1 is in unilateral contact with a moving belt with
friction coefficient µ. The system has two mechanical degrees of freedom and thus we use the
generalized coordinates

q =

(
φ
ψ

)
.

As [8] shows, its motion is governed by the equation

(97) M(q)q̈ = f(q, q̇) +QN (q)λN +QTλT ,

with

M(q) =

(
m1l

2 m1l sin(φ)
m1l sin(φ) m1 +m2

)
,

f(q, q̇) =

(
−kφ(φ− φ0)− cφφ̇−m1gl sin(φ)

−kψψ − cψψ̇ − (m1 +m2)g −m1l cos(φ)φ̇2

)
,

QT (q) = (∂x/∂q)T =

(
l cos(φ)

0

)
,

QN (q) = (∂y/∂q)T =

(
l sin(φ)

1

)
.

The horizontal and vertical positions of the contact point can be written in terms of the
generalized co-ordinates as

x(q) = l sin(φ), y(q) = ψ + l(1− cos(φ)).
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Assuming positive slip (i.e., λT = −µλN ), (97) can be written in the form of (11) with

ξ =


φ
ψ

φ̇

ψ̇

 , F =

 ξ3

ξ4

M−1f

 , G =

 0
0

M−1(−QN + µQT )

 .

Using the procedure described in section 2 we can derive expressions for v, p, b, α1, α2, and
α3. These are given in Appendix B.

To study the behavior near the singularity, we shall reduce the number of parameters by
setting

m2 = m1, µ =
25

12
, φ0 = φ∗ +

49

20
− 7

12
β − 9

50
κ,

kφ = m1gl, cφ = 0, kψ = κ
m1g

l
, cψ =

25

108
(18− 7β)m1

√
g

l
,

where the values of m1, g, and l determine a scale for mass, length, and time, but do not have
any other influence on the dynamics of the system. We shall allow the two scalar parameters
β and κ to be specified later.

The chosen values of µ and φ0 ensure that we have the singularity at

cos(φ∗) =
3

5
, sin(φ∗) =

4

5
, φ̇∗ = −

√
g

l
,

ψ∗ = −2

5
l, ψ̇∗ =

4

5

√
gl.

Furthermore, we have

α∗1 = −175

408

1

m1

√
g

l
, α∗3 = −175

408
β

1

m1

√
g

l
,

α∗2 =
30625β2 + 9450βκ− 61425β + 8262κ− 126765

55080
g

√
g

l
,

which means that the quotient between α∗3 and α∗1 is equal to β in accordance with (41), and
the sign of α∗2 is controlled by κ. Hence, the frictional impact oscillator may belong to any of
the cases I, II, and III. Furthermore, β may take any desired value.

6.2. Numerical verification in Case III. For numerical simulations, we use units based
on m1, l, and g. By taking β = 7/3, κ = 0, we get α∗1 = −0.4289, α∗2 = −1.8764, and
α∗3 = −1.0008, which corresponds to Case III. For contact smoothing, we use the compliant
model of section 2 with ε = 10−6. We consider two specific initial conditions. Specifically, we
set

either (i) φ = φ∗ + 0.1, φ̇ = −0.9, or (ii) φ = φ∗ + 0.1, φ̇ = −0.5,

and the linear coordinate is chosen to be just in contact (so that y = v = 0),

ψ = cos(φ)− 1, ψ̇ = − sin(φ)φ̇.
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Relaxation of the z dynamics was found to take about 10−3 time units, whereas the system
was simulated for O(10−1) time units. Additionally, a third initial condition (iii) is chosen
approximately on the distinguished trajectory at p = 0.01.

Figure 11 shows a p versus b diagram. The red/solid curve (first initial condition) passes
the (ghost) singularity, lifts off, and then touches down again, initiating an “impact.” The
blue/dashed curve (second initial condition) goes directly to an “impact.” The purple/dotted
curve is the trajectory using an initial condition approximately on the distinguished trajectory,
and the green/dash-dotted curve is the approximate distinguished trajectory itself, computed
from the power series with M = 15. These two are indistinguishable for p > 0, but although
the purple/dotted curve is able to follow the distinguished trajectory further into p < 0 than
the other initial conditions, it still eventually deviates. In all, these results are consistent with
our finding that the distinguished trajectory is on a separatrix.

Figure 12(a) shows a diagram of the deviation b̂ (see (96)) from the distinguished trajectory
versus t. The time origin is shifted to make p = 0 at t = 0. The red curve is a simulation using
the first initial condition. The blue curve is computed using the suitably scaled hypergeometric
function Θ, where the time scale is based on α∗1, and the amplitude scale is adjusted to make
the curves coincide when t = 0. Lift-off in the simulation takes place just after t = 10−3,
explaining the fast-growing deviation between the two curves for more positive times, since the
hypergeometric solution assumes contact. At the same time, the deviation for negative times
grows more slowly, and it is a natural consequence of the approximations used when developing
the inner system. Figure 12(b) shows the same thing for the second initial condition. In this
case there is no loss of contact, and the two curves fit each other very well for positive times.

7. Conclusion. The analysis in this paper provides a key step in the resolution of one of
the simplest consequences of the paradox on the inconsistency of rigid body mechanics subject
to Coulomb friction, first described by Painlevé in 1895 [13]. Despite numerous treatments in
the intervening 120 years or so, as pointed out in [1], there remain many unsolved problems.
Even for planar configurations with a single frictional point contact, it was previsouly known
that open sets of initial conditions can approach the finite-time singularity that is known
as dynamic jam, represented by the G-spot. What we have established in this paper is a
general method for establishing what happens beyond the G-spot, at least in theory, and also
an understanding of the sensitivity of what is observed for any smoothing through contact
regularization.

There are several weaknesses to the analysis we have presented. First, we have been
unable to resolve, in general, what happens beyond the first lift-off or onset of IWC. Not
only is there extreme sensitivity during an IWC, but lift-off occurs with vanishingly small free
normal acceleration as ε → 0. In cases III and I this would occur with ḃ < 0 so that lift-off
would lead rapidly to further impact with small normal velocity. Whether this impact would
again lead to further lift off close to the G-spot is unclear, in general. It is conceivable that in
the limit ε→ 0 one might have an infinite sequence of impacts, which might accumulate either
in forward time (chatter) or in reverse time (reverse chatter). The latter would represent a
point of infinite indeterminancy, as analyzed in [10]. Further analysis of the dynamics after
the first lift-off will form the subject of future work.

A second weakness is a lack of rigour. While we have formulated the existence of the
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-2 0 2 4 6 8 10

10
-3

-0.06

-0.04

-0.02

0

0.02

-15 -10 -5 0 5

10
-4

-4

-2

0

2

4
10

-3

Figure 11. Numerical simulations of p versus b for the frictional impact oscillator with three different
initial conditions (red/solid, blue/dashed, and purple/dotted curves), and asymptotic approximation of the
distinguished trajectory (green/dash-dotted curve). Lift-off events are marked with a solid circle symbol, touch-
down events with an asterisk symbol. The lower panel is a zoomed version of the same diagrams.
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Figure 12. Diagrams of b̂ versus time of the frictional impact oscillator for two initial conditions. The
blue curves were obtained by numerical simulation, whereas the red curves are given by the suitable scaled Θ
function.
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distinguished trajectory as a theorem, in general our analysis is asymptotic in nature. There
is also a frustrating lack of a proof in cases where we have identified that an IWC probably
occurs, because we cannot rule out the possibility of a lift-off in certain pathological examples.
In particular, even though the asymptotics indicate a trajectory for which ˜̂y diverges to −∞
for large s > 0 and ˜̂y � 0 for s = 0, this is not sufficient to show that ˜̂y remains negative for
all s > 0. Numerical results indicate that an impact always occurs. Perhaps further study of
the appropriate generalized hypergeometric functions will shed further light on this question.
During the final preparation of this manuscript we also became aware of the independent work
of Hogan and Kristiansen [6], who study a problem similar to the one considered here. They
use completely different methods, namely geometric singular perturbation theory, to establish
the existence of a canard trajectory. It is probable that a combination of their analysis with
the asympotitic analysis conducted here would lead to some more comprehensive results.

A third weakness is the lack of experimental work to confirm what might happen in
practice. In fact, while there have been several practical observations of the consequences of the
Painlevé paradox (see [1]), we are not aware of any detailed quantitative experimental studies.
One of the difficulties here is that dynamic jam represents a point of extreme sensitivity in the
dynamics, therefore what is observed is likely to be highly dependent on the precise details
of any imperfections or asperities in any practical model. Nevertheless, it would seem to be
high time for the design of a detailed test rig to demonstrate each of Cases I to III considered
here.

Finally, we should point out that the problem studied here is rather idealized. In prac-
tice, no structure ever undergoes point contact per se; there is always some form of regional
contact. As shown in [17] the dynamics of systems with multiple point contacts can be much
more complex, with various novel forms of Painlevé paradox that involve interaction between
simultaneous contacts. Also, as demonstrated in [1, sect. 7], there is yet more complexity
if we study fully three-dimensional dynamics. For example, for certain configurations it is
possible to enter the Painlevé region p < 0 without passing through a neighborhood of the
G-spot.

There are clearly many situations that require further analysis along the lines developed
in this paper.

Appendix A. Generalized hypergeometric functions and their large time asymptotics.
Consider the following third-order nonautonomous equation:

(A.1)
d3

dτ3
θ − τ d

dτ
θ + βθ = 0.

The solutions to this equation can be expressed in terms of generalized hypergeometric func-
tions. In particular, by standard results; see, e.g., [11, Chap. 16], we have the following
result.

Theorem 4. The general solution of the differential equation (A.1) can be expressed as

θ(τ) = θ(0) 1F2

(
−β

3
;
1

3
,
2

3
;
τ3

9

)
+

d

dτ
θ(0)τ 1F2

(
1

3
− β

3
;
2

3
,
4

3
;
τ3

9

)
+

d2

dτ2
θ(0)

τ2

2
1F2

(
2

3
− β

3
;
4

3
,
5

3
;
τ3

9

)
,
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where 1F2 is the generalized hypergeometric function with indices [1, 2].

We are interested in the asympotics of this solution as |τ | → ∞. Using the general
asymptotic expansion of 1F2 for complex arguments in the limit of large |τ |, we can formulate
the following results.

Theorem 5 (asymptotics of 1F2 for large negative τ). Define h as a formal series

(A.2) h(τ, β) = 3β/3−1(−τ)β
∞∑
k=0

1

k!3k(−τ)3kΓ(1 + β − 3k)
,

and er, ei as the real and imaginary parts of the formal series

(A.3) er(τ, β) + iei(τ, β) =
√
π3β/3−1(−τ)−β/2−3/4ei(πβ/6+π/4−2(−τ)3/2/3)

∞∑
k=0

ck(β)ik3k

2k(−τ)3k/2
.

Here the coefficients ck are determined via a somewhat complicated recurrence relation; see
[11, eq. 16.11.4]. In particular, we have

(A.4) c0 = 1.

Then, provided β is not an integer, asymptotically, as τ → −∞,

(A.5) 1F2

(
−β

3
;
1

3
,
2

3
;
τ3

9

)
∼ 3Γ

(
3 + β

3

)
h(τ, β) +

3

Γ
(
−β

3

)2er(τ, β),

(A.6)

τ 1F2

(
1

3
− β

3
;
2

3
,
4

3
;
τ3

9

)
,∼ −32/3Γ

(
2 + β

3

)
h(τ, β)− 32/3

Γ
(

1−β
3

) (er(τ, β)−
√

3ei(τ, β)
)
,

(A.7)

τ2

2
1F2

(
2

3
− β

3
;
4

3
,
5

3
;
τ3

9

)
,∼ 31/3Γ

(
1 + β

3

)
h(τ, β) +

31/3

Γ
(

2−β
3

) (−er(τ, β)−
√

3ei(τ, β)
)
.

We want to choose the specific solution θ(τ) = Θ(τ) whose initial conditions are such
that the coefficients of the highly oscillatory terms er and ei vanish. The remaining h term is
dominated by its first term, which is proportional to (−τ)β. In particular, using the particular
initial conditions

Θ(0) =
Γ
(
−β
3

)
3(3+β)/3Γ(−β)

,(A.8)

dΘ

dτ
(0) =

Γ
(

1−β
3

)
3(2+β)/3Γ(−β)

,(A.9)

d2Θ

dτ2
(0) =

Γ
(

2−β
3

)
3(1+β)/3Γ(−β)

,(A.10)
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we define a function Θ with the asymptotic behavior

(A.11) Θ(τ, β) ∼ 31−β/3Γ (1 + β)h(τ, β) ∼ (−τ)β

as τ → −∞.

Theorem 6 (asymptotic of 1F2 for large positive τ). Define e1 as the formal series

e1(τ, β) =
√
π3β/3−1(τ)−β/2−3/4e2τ3/2/3

∞∑
k=0

ck(β)3k

2k(τ)3k/2
,

where the ck coefficients are defined as in the previous theorem. Then asymptotically, as
τ →∞,

(A.12) 1F2

(
−β

3
;
1

3
,
2

3
;
τ3

9

)
∼ 3

Γ
(
−β

3

)e1(τ, β),

(A.13) τ 1F2

(
1

3
− β

3
;
2

3
,
4

3
;
τ3

9

)
∼ 32/3

Γ
(

1−β
3

)e1(τ, β),

(A.14)
τ2

2
1F2

(
2

3
− β

3
;
4

3
,
5

3
;
τ3

9

)
∼ 31/3

Γ
(

2−β
3

)e1(τ, β).

Applied to the Θ functions, this means

(A.15) Θ(τ, β) ∼ 31−β/3

Γ(−β)
e1(τ, β) ∼

√
π

Γ(−β)
exp((2/3)τ3/2)(τ)−β/2−3/4

as τ →∞, where we have used c0 = 1.

Appendix B. Expressions for the frictional impact oscillator.

v(φ, ψ, φ̇, ψ̇) = ψ̇ + l sin(φ)φ̇,

p(φ, ψ) =
m1 cos(φ)2 +m2 sin(φ)(sin(φ)− µ cos(φ))

m1(m2 +m1 cos(φ)2)
,

b(φ, ψ, φ̇, ψ̇) =
m1l cos(φ)

(
m2lφ̇

2 − cos(φ)(kψψ + cψψ̇)
)
−m2 sin(φ)(kφ(φ− φ0) + cφφ̇)

m1l(m2 +m1 cos(φ)2)
− g,

α1(φ, ψ, φ̇, ψ̇) = −
m2

(
µ
(
cos(φ)2 (m1 + 2m2)−m2

)
− 2m2 sin(φ) cos(φ)

)
m1 (m2 +m1 cos(φ)2)2 φ̇,
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α2(φ, ψ, φ̇, ψ̇) =
1

m2
1l

3 (m2 +m1 cos(φ)2)2

[
m2

1

(
m2 +m1 cos(φ)2

)
l3gcψ cos(φ)2

−m2
1

(
m2 +m1 cos(φ)2

)
l3kψ cos(φ)2ψ̇ +m3

1l
4cψ cos(φ)3φ̇2

−m2
1l

2cψ cos(φ)2 sin(φ)
(
kφ (φ− φ0) + cφφ̇

)
+m2

1l
3cψ cos(φ)2

(
kψψ + cψψ̇

)
−m1m2lcφ sin(φ)2

(
kψψ + cψψ̇

)
−m2

1m2l
2cφ cos(φ) sin(φ)2φ̇2−m2

1m
2
2l

4 sin(φ)φ̇3 +m2 (m1 +m2) cφ sin(φ)
(
kφ (φ− φ0) + cφφ̇

)
+ 4m2

1m2l
3 cos(φ) sin(φ)φ̇

(
kψψ + cψψ̇

)
− 3m1m

2
2l

2 cos(φ)φ̇
(
kφ (φ− φ0) + cφφ̇

)
+ 3m3

1m2l
4 cos(φ)2 sin(φ)φ̇3 +m2

1m2l
2 cos(φ)3φ̇

(
kφ (φ− φ0) + cφφ̇

)
−m1m2

(
m2 +m1 cos(φ)2

)
l2kφ sin(φ)φ̇− 4m2

1m2l
2 cos(φ)φ̇

(
kφ (φ− φ0) + cφφ̇

)]
,

α3(φ, ψ, φ̇, ψ̇) =
1

m2
1l

2 (m2 +m1 cos(φ)2)2

[
m2

1l
2cψ cos(φ)3 (µ sin(φ) + cos(φ))

+ 2m2
1m2l

2µ cos(φ)2φ̇+ 2m1m
2
2l

2 cos(φ) (µ cos(φ)− sin(φ)) φ̇

−m2(m1 +m2)cφµ cos(φ) sin(φ) +m2
2cφ sin(φ)2

]
.
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