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ABSTRACT 
 

The evaluation of the seismic risk relies on the vulnerability of structural systems as functions of 

seismic intensity measures, such as the spectral acceleration. For these intensity measures to be 

sufficient, they need to fully define the response of the structural systems. This is possible only 

under the assumption that the response of complex structural system can be accurately 

approximated by the response of linear single-degree of freedom systems. Usually, these extreme 

events are often characterized by large magnitudes and relatively short epicentral distances. The 

response of structures subjected to such extreme excitation is highly non-linear, which exhibits a 

weak dependence between values of the spectral acceleration and the demand parameters. The 

correlation between ground-motion parameters and the structural demand must be analyzed using 

metrics of their statistical dependence. 

It is proposed to use directly parameters of the seismic process itself, such as the moment 

magnitude m and the epicentral distance r, which characterize more accurately the amplitudes and 

frequency content of the ground motion. Extreme-value theory is used to quantify the dependence 

between (m,r) and the structural demand. Simple linear and nonlinear systems subjected to ground 

motion-records of catastrophic events are used for numerical examples. Finally, the structural 

performance under seismic loading is evaluated using the traditional seismic intensity measures 

and the proposed ground-motion parameters, to compare the efficiency of the two approaches. 
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ABSTRACT 
 

The evaluation of the seismic risk relies on the vulnerability of structural systems as functions of seismic 

intensity measures, such as the spectral acceleration. For these intensity measures to be sufficient, they need 

to fully define the response of the structural systems. This is possible only under the assumption that the 

response of complex structural system can be accurately approximated by the response of linear single-degree 

of freedom systems. Usually, these extreme events are often characterized by large magnitudes and relatively 

short epicentral distances. The response of structures subjected to such extreme excitation is highly non-

linear, which exhibits a weak dependence between values of the spectral acceleration and the demand 

parameters. The correlation between ground-motion parameters and the structural demand must be analyzed 

using metrics of their statistical dependence. 

It is proposed to use directly parameters of the seismic process itself, such as the moment magnitude m and 

the epicentral distance r, which characterize more accurately the amplitudes and frequency content of the 

ground motion. Extreme-value theory is used to quantify the dependence between (m,r) and the structural 

demand. Simple linear and nonlinear systems subjected to ground motion-records of catastrophic events are 

used for numerical examples. Finally, the structural performance under seismic loading is evaluated using 

the traditional seismic intensity measures and the proposed ground-motion parameters, to compare the 

efficiency of the two approaches. 

 

 

Introduction 

 

Seismic fragility, defined as the probability of a structural system to exceed a critical threshold for 

a given level of ground-motion, is the main instrument used to characterize the seismic 

performance of buildings. Traditionally, the argument for fragility functions is chosen to be a 

ground-motion intensity measure, such as the peak-ground acceleration (𝑃𝐺𝐴) or the spectral-

acceleration (𝑆𝐴) [1, 2]; a vector-valued intensity measures, such as spectral values at specified 

structural periods [3]; or seismic-event parameters, such as moment magnitude 𝑚 and source-to-

site distance 𝑟 [4]. The limitations of scalar intensity measures have been noticed before [4, 5]. 

 

This paper investigates the usefulness of the widely-used 𝑆𝐴 and the earthquake-parameter 

vector (𝑚, 𝑟) in the estimation of the structural response of structural systems subjected to extreme 

ground motions. These events define the tail distribution of structural demand or structural damage 

during catastrophic earthquakes. These distributions may have a significant impact in the design 

of sensitive structures (e.g. schools, nuclear power-plants) and on the insurance industry, which is 

mostly interested in high-tail events. Engineering-design parameters 𝐷, such as the maximum 
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absolute displacement, or the inter-storey drift of structures, are accurately estimated by 

earthquake characteristics only under the assumption that these characteristics contain enough 

information about the seismic hazard to predict accurately the response of realistic, complex 

structural systems. The performance of SA and (m,r) is analyzed using elements of the extreme-

value theory. Fragility curves as functions of SA and fragility surfaces as functions of (m,r) are 

constructed for a simple linear single-degree-of-freedom (SDOF) system and a nonlinear Bouc-

Wen SDOF oscillator. Finally, the exceedance-probability curves of the demand parameters of 

these systems are calculated using both fragility curves and surfaces, for a seismic scenario in Los 

Angeles, CA. Ground-motion time histories for this site are simulated using a site-specific model 

based on the specific-barrier model [6, 7]. 

 
 

Seismic Hazard Characterization 
 

The site characterization of the seismic hazard is described by two elements: (1) the seismic 

activity matrix (SAM), which represents the occurrence probability 𝑷(𝑚, 𝑟) of an earthquake of 

moment magnitude 𝑚 and from source-to-site distance 𝑟; and (2) samples of simulated ground-

motion time histories for each (𝑚, 𝑟). The SAM for downtown Los Angeles is shown in Fig.1 

(left) and is calculated using the rates of earthquakes of (𝑚, 𝑟) at each site in the US, provided by 

the USGS. Ground-motion time histories are simulated for each (𝑚, 𝑟), as samples of a zero-mean 

Student’s T-distributed, non-stationary stochastic process 𝐴(𝑡), with second-order moment 

properties provided by the one-sided spectral-density function 𝑔(𝜐; 𝑚, 𝑟). The process 𝐴(𝑡) is 

defined by 

 

 𝐴(𝑡) = 𝑓(𝑡)𝐴𝑠(𝑡), 0 ≤ 𝑡 ≤ 𝑡𝑓, ( 1 ) 
 

where 𝑡𝑓 is the duration of the ground motion, 𝑓(𝑡) is a deterministic time-modulation function 

 

 𝑓(𝑡) = 𝛼𝑡𝛽𝑒−𝛾𝑡, ( 2 ) 
 

where 𝑡𝑓 and the scalar parameters 𝛼, 𝛽, 𝛾 are output also by the SBM; and 𝐴𝑠(𝑡) is a zero-mean, 

stationary, Student’s T process with second-order moment properties given by 𝑔(𝜈; 𝑚, 𝑟). The 

parameters of the marginal distribution for the process 𝐴𝑠(𝑡) are fitted to accommodate the kurtosis 

value of 14.4, characteristic for a generic-rock type of soil characterized by a shear-wave velocity  

𝑣𝑠30 = 620𝑚/𝑠. The frequency content of ground motions is a function of (𝑚, 𝑟), type of soil and 

seismic regime, and it is characterized by the SBM through the one-sided spectral-density function 

𝑔(𝜐; 𝑚, 𝑟). 𝑁 =  1000 samples of the ground motion are simulated for each (𝑚, 𝑟). 

 

Structural System Characterization 

 

Let 𝑋(𝑡) and 𝑌(𝑡) be the response-displacement processes of the SDOF linear and Bouc-Wen 

systems subjected to the ground acceleration 𝐴(𝑡): 

 

 Linear: 𝑋̈(𝑡) + 2𝜁0𝜈0𝑋̇(𝑡) + 𝜈0
2𝑋(𝑡) = −𝐴(𝑡) ( 3 ) 

 Bouc-Wen: 𝑌̈(𝑡) + 2𝜁0𝜈0𝑌̇(𝑡) + 𝜈0
2(𝜌𝑌(𝑡) + (1 − 𝜌)𝑊(𝑡)) = −𝐴(𝑡) ( 4 ) 

              𝑊̇(𝑡) = 𝛾𝑌̇(𝑡) − 𝛼|𝑌̇(𝑡)||𝑊(𝑡)|𝑛−1𝑊(𝑡) − 𝛽𝑌̇(𝑡)|𝑊(𝑡)|𝑛, 



 

where 𝜐0 = 2𝜋, 𝜁0 = 0.05, 𝜌 = 0.2,  𝛼 = 4,  𝛽 = −7,  𝛾 = 0.15, 𝑛 = 1.1. 

 
Figure 1. Seismic activity matrix (SAM) for Los Angeles (left); probability-density functions for 

spectral acceleration for the entire SAM –solid line– and for (𝑚, 𝑟) = (5,10𝑘𝑚) –

dashed line– (right). 

 

The maximum absolute displacement of the linear system, also known as the spectral 

displacement, is defined as 𝑆𝐷 = max
𝑡≥0

|𝑋(𝑡)|, while the (pseudo-)spectral acceleration is defined 

as 𝑆𝐴 = 𝜈0
2𝑆𝐷. The probability-density function 𝑓𝑆𝐴|(𝑀,𝑅)(𝑠𝑎) for the spectral acceleration SA 

can be calculated for each value of the vector (𝑀, 𝑅) from the samples 𝑠𝑎𝑘|(𝑀, 𝑅), 𝑘 = 1, … , 𝑁 of 

the 𝑆𝐴|(𝑀, 𝑅). The probability-density function for (𝑀, 𝑅) = (5, 10𝑘𝑚) is shown in Fig. 1 (right) 

with the dashed line. The probability-density function for SA at the site, 𝑓𝑆𝐴(𝑠𝑎), is also shown in 

the same figure (solid line) and can be calculated using all samples of 𝑆𝐴 from the entire SAM. 

The demand parameter for the Bouc-Wen system is calculated as 𝐷 =  max
𝑡≥0

|𝑌(𝑡)|. 

 

   
Figure 2.    Fragility curves for the linear SDOF oscillator –solid line–, and for the Bouc-Wen 

SDOF oscillator –dashed line–. 

 

The structural system’s seismic performance is characterized by fragility functions. Two 

types of fragility functions are constructed for the two systems, that is, the traditional fragility 



curves as functions of 𝑆𝐴, and the fragility surfaces as functions of (𝑚, 𝑟).  Conceptually, they 

both represent the probability of the demand parameter 𝐷 to exceedance a critical value 𝑑, for a 

given level of ground-motion expressed in either 𝑆𝐴 or (𝑚, 𝑟) coordinates. Both fragility curves 

and surfaces are calculated using the ground motion samples simulated for each values of the 

vector (𝑀, 𝑅). Thus, numerically, fragility curves are calculated as  

 

 𝑷(𝐷 > 𝑑|𝑆𝐴 = 𝑠𝑎𝑘) =
1

𝑛𝑘
∑ 𝟏(𝑑𝑘,𝑖 > 𝑑|𝑠𝑎𝑘,𝑖 ∈ [𝑠𝑎𝑘 − 𝜉, 𝑠𝑎𝑘 + 𝜉])

𝑛𝑘
𝑖=1 ,  ( 5 ) 

 

where 𝑑𝑘,𝑖, in the case of the Bouc-Wen model, is the maximum absolute displacement 𝑑𝑘,𝑖 =
 max

𝑡≥0
|𝑦𝑘,𝑖(𝑡)|, of the system’s response 𝑦𝑘,𝑖(𝑡) in Eq. (4) subjected to the sample 𝑎𝑘,𝑖(𝑡) of 𝐴(𝑡) 

with spectral acceleration 𝑠𝑎𝑘,𝑖 that belongs to a small interval [𝑠𝑎𝑘 − 𝜉, 𝑠𝑎𝑘 + 𝜉], centered around 

value 𝑠𝑎𝑘, with 𝜉 > 0. In other words, the ground motions simulated for the entire SAM are 

divided in bins of length [𝑠𝑎𝑘 − 𝜉, 𝑠𝑎𝑘 + 𝜉], each containing 𝑛𝑘 ground-motion samples. In the 

case of the linear SDOF system, 𝑑𝑘,𝑖 are samples 𝑠𝑑𝑘,𝑖 of the spectral displacement 𝑆𝐷. The 

fragility curves for the linear and Bouc-Wen systems are shown in Fig. 2. 

Fragility surfaces are calculated similarly, but using the already-divided ground-motion samples 

by the values of parameters (m,r): 

 

 𝑷(𝐷 > 𝑑|(𝑀, 𝑅) = (𝑚, 𝑟)) =
1

𝑁
∑ 𝟏(𝑑,𝑖 > 𝑑|(𝑀, 𝑅) = (𝑚, 𝑟))𝑁

𝑖=1 . ( 6 ) 

 

The fragility surfaces for the linear and Bouc-Wen systems are shown in the left and right 

panels of Fig. 3, respectively. A direct comparison between fragility curves and surfaces is not 

possible, since fragility surfaces are defined uniquely by (𝑚, 𝑟), while the probability density 

functions 𝑓𝑆𝐴|(𝑀,𝑅)(𝑠𝑎) for distinct (𝑚, 𝑟) values of (𝑀, 𝑅) have overlapping support. One 

advantage of using fragility functions in the (𝑚, 𝑟) space is their uniqueness since (𝑀, 𝑅) defines 

completely the probability law of the ground-acceleration process, to which the response of 

dynamic systems is sensitive.  

 

 
Figure 3.    Fragility surfaces for the linear SDOF oscillator (left), and for the Bouc-Wen SDOF 

oscillator (right). 

 

The performance of the fragility functions’ coordinates is discussed further on in the next 



section, in which a thorough analysis of their performance at extreme values is discussed. Finally, 

the overall performance of fragility surfaces versus curves is discussed in the final section in terms 

of exceedance probability of the absolute maximum structural response for the two systems 

analyzed. 

 

Extreme-value analysis 

 

Elements of extreme-value theory are employed to study the dependence between simultaneous 

large valued of the demand parameter D and their ground-motion predictor, in terms of the 

intensity measure SA, or the bi-variate vector (M,R). This dependence is particular important for 

the heavy-tail earthquakes, since the ground-motion intensity is assumed to define accurately high 

level of damage in the structure. Briefly, the method used for this analysis relies on the ranks 

method [5, 8], does not require any prior knowledge on the prior probability distribution of the 

demand D or the predictors SA, or (M,R), and consists of the following two main steps. 

 

 
Figure 4.    Scatter plot for the maximum absolute displacement 𝐷 of the Bouc-Wen system vs. 

the spectral acceleration 𝑆𝐴 (left); spectral measure 𝑠(𝜃) for the extreme values of 𝐷 

and 𝑆𝐴 indicated with red circles in the left panel (right). 

 

Step 1: Samples (𝑠𝑎𝐾, 𝑑𝐾) of (𝑆𝐴, 𝐷), or (𝑚𝑘, 𝑟𝑘 , 𝑑𝑘) of (𝑀, 𝑅, 𝐷) are mapped into polar 

or spherical coordinates, respectively, using their ranking order, that is: 

 

 (𝑠𝑎𝐾, 𝑑𝐾)  →  (𝑣𝐾 cos 𝜃𝑘 , 𝑣𝐾 sin 𝜃𝑘), ( 7 ) 

 

 (𝑚𝐾, 𝑟𝐾, 𝑑𝐾)  →  (𝑢𝐾 sin 𝜃1,𝑘 cos 𝜃2,𝑘 , 𝑢𝐾 sin 𝜃1,𝑘 sin 𝜃2,𝑘, 𝑢𝐾 cos 𝜃1,𝑘). ( 8 ) 

 

Step 2: The spectral measure 𝑠(𝜃) for (𝑆𝐴, 𝐷) is defined by the histogram of 𝜃 with the 

support [0, 𝜋/2]. If most of the mass of 𝑠(𝜃) is concentrated around the extremes 0 and 

𝜋/2, then extremes of 𝑆𝐴 and 𝐷 are nearly independent, and if the mass of 𝑠(𝜃) is 

concentrated around the midpoint of the support 𝜋/4, then the two variables are strongly 

dependent. Similarly, in the case of (𝑀, 𝑅, 𝐷), the spectral measure 𝑠(𝜃1, 𝜃2) is defined as 

the tridimensional histogram of (𝜃1, 𝜃2), with support on [0, 𝜋/2] × [0, 𝜋/2]. If most of 

the mass of 𝑠(𝜃1, 𝜃2) is concentrated around the extremes of the interval, then extremes of 



(𝑀, 𝑅) and 𝐷 are nearly independent, and if the mass of 𝑠(𝜃1, 𝜃2) is concentrated around 

the midpoint of the support (𝜋/4 , 𝜋/4) then their extreme values are strongly dependent. 

 

The left panel of Fig. 4 shows a scatter plot of all samples (𝑠𝑎𝐾, 𝑑𝐾) of (𝑆𝐴, 𝐷) simulated 

for the entire SAM. Samples circled in red are the ones used for the extreme-value analysis. The 

right panel of Fig.4 shows the spectral measure 𝑠(𝜃), which indicates that the variables 𝑆𝐴 and 𝐷 

are almost independent at the extremes.  

 
 

Figure 5.    Scatter plot for the maximum absolute displacement 𝐷 of the Bouc-Wen system vs. 

the vector (𝑀, 𝑅) (left); spectral measure 𝑠(𝜃1, 𝜃2) for the extreme values of 𝐷 and 

(𝑀, 𝑅) indicated with red circles in the left panel (right). 
 

The left panel of Fig. 5 shows a scatter plot of all samples (𝑚𝐾, 𝑟𝐾, 𝑑𝐾) of (𝑀, 𝑅, 𝐷) 

simulated for the entire SAM, with the red-circled samples used in the extreme-value analysis. The 

right panel of Fig.5 shows the spectral measure 𝑠(𝜃1, 𝜃2), which, unlike in the previous case, 

indicates that the variables (𝑀, 𝑅) and 𝐷 are not independent at the extremes. There is also not 

enough evidence of a strong dependence between (𝑀, 𝑅) and 𝐷, but a better performance of (𝑀, 𝑅) 

in predicting large values of 𝐷 may be inferred. Reliable results of the extreme-value analysis 

require the use of large number of samples. Thus, even though (𝑀, 𝑅) outperforms 𝑆𝐴, the results 

regarding the strong dependence between simultaneous large values or (𝑀, 𝑅) and 𝐷 may be 

inconclusive, and further investigations are required, such as the use of a larger number of samples 

for each value (𝑚, 𝑟), or selecting the pairs (𝑚, 𝑟) that produce heavy-tails for the demand 𝐷.  
 

Structural System Performance 

 

The structural performance of the measure used for the seismic ground-motion is assessed in terms 

of the tail distributions of the demand 𝐷 for the two linear and nonlinear Bouc-Wen SDOF 

oscillators. They are calculated using both the fragility curves as functions of 𝑆𝐴, and the fragility 

surfaces as functions of (𝑚, 𝑟). In order to show the importance of the seismic parameters in the 

analysis of the exceedance probability 𝐸𝑃(𝑑) = 𝑷(𝐷 > 𝑑) of the maximum absolute response D, 

three models are used: 

 

 𝐸𝑃1(𝑑) = ∑ 𝑷(𝐷 > 𝑑|(𝑀, 𝑅) = (𝑚, 𝑟))𝑷((𝑀, 𝑅) = 𝑚, 𝑟),𝑚,𝑟  ( 9 ) 



 𝐸𝑃2(𝑑) = ∑ ∫ 𝑷(𝐷 > 𝑑|𝑆𝐴)𝑓𝑆𝐴(𝑠𝑎)
𝑆𝐴

𝑑(𝑠𝑎)𝑚,𝑟 , ( 10 ) 

 𝐸𝑃3(𝑑) = ∑ ∫ 𝑷(𝐷 > 𝑑|𝑆𝐴)𝑓𝑆𝐴|(𝑀,𝑅)(𝑠𝑎)
𝑆𝐴

𝑑(𝑠𝑎)𝑷((𝑀, 𝑅) = 𝑚, 𝑟)𝑚,𝑟 . ( 11 ) 

 

The first model 𝐸𝑃1(𝑑) uses fragility surfaces 𝑷(𝐷 > 𝑑|(𝑀, 𝑅) = (𝑚, 𝑟)), weighed by the 

probability of each value (𝑚, 𝑟) given by the SAM. The other two models calculate the exceedance 

probability curves, using fragility curves 𝑷(𝐷 > 𝑑|𝑆𝐴), with one major difference, i.e., model 

𝐸𝑃2(𝑑) uses all ground-motion samples in the SAM without differentiating between the density 

of 𝑆𝐴 with respect to (𝑀, 𝑅), while model 𝐸𝑃3(𝑑) uses fragility curves deconditioning the 𝑆𝐴 by 

using the probability-density function 𝑓𝑆𝐴|(𝑀,𝑅)(𝑠𝑎) corresponding to each value (𝑚, 𝑟) of (𝑀, 𝑅). 

 
Figure 9.    Probability of exceedance of maximum displacement 𝐷 for the linear SDOF 

oscillator (left) and the Bouc-Wen oscillator (right). 

 

The left and right panels of Fig. 9 show the exceedance probability curves 𝐸𝑃𝑘(𝑑) for each model 

𝑘 = 1,2,3, for the linear and the Bouc-Wen oscillator, respectively. As expected, the results of 

models 𝑘 = 1 and 𝑘 =  3 are identical for the linear system, since the 𝑆𝐴 is a reliable measure 

for the SDOF linear system, by definition. However, results diverge in the case of the nonlinear 

system. Model 𝑘 = 2 performs poorly in both cases since it does not take into account the 

distribution of the 𝑆𝐴 by (𝑀, 𝑅), which is essential in the definition of the response distributions 

since the dynamic systems are sensitive to the (𝑀, 𝑅) −dependent frequency content of the motion. 

 

Conclusions 

 

This paper examined the performance of two distinct measures for the representation of extreme 

seismic events in the form of the widely-used intensity measure, spectral acceleration 𝑆𝐴; and the 

bi-variate vector of seismic-event parameters, with coordinates moment magnitude 𝑀 and source-

to-site distance 𝑅. Their performance was examined using elements of the extreme-value theory, 

which shows that 𝑆𝐴 provides limited information on the response 𝐷 of non-linear systems at 

extreme values. The performance of two linear and nonlinear single-degree-of-freedom systems 

in terms of measures 𝑆𝐴 and (𝑀, 𝑅), respectively, are examined by using seismic fragility and 

exceedance probability of the maximum absolute displacement 𝐷. It is shown that the distribution 

of earthquake parameters is essential in the estimation of the tail-distribution response, since they 

control the frequency content of the motion. The intensity measure 𝑆𝐴 performs well for the linear 

system, but provides limited information on the response of nonlinear systems. 
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