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Abstract: To successfully predict the delamination behaviour of the laminated composite structures 

with fibre bridging, the R-curve has to be studied. This work experimentally investigates the complete 

R-curve behaviour of the unidirectional and multidirectional carbon/epoxy composite laminates. The 

delamination tests use the double cantilever beam (DCB), mixed-mode bending (MMB) and end-

notched flexure (ENF) specimens for mode I, mixed-mode I/II and mode II loading, respectively. The 

test results show that the interfacial ply and mode mixity (φ-ratio) have significant influences on the 

initial fracture toughness, steady-state fracture toughness and fibre bridging length. The ratio between 

the steady-state fracture toughness and its initial value is approximately same for both interfaces, 

which indicates a similar enhanced effect of the fibre bridging on the fracture toughness. The 

Benzeggagh-Kenane (B-K) criterion is capable of representing the relation between the fracture 

toughness and the φ-ratio. Based on the DCB and MMB test results, the predicted values of the mode 

II fracture toughness via the B-K criterion are very close to the experimental ones, which illustrates 
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the possibility of determining the mode II fracture toughness without executing the mode II 

delamination tests. Furthermore, a semi-empirical expression is proposed, which can well predict the 

mixed-mode I/II delamination behaviour. 

Keywords: Carbon fibre; Composite laminates; Delamination; R-curve 

1 Introduction 

Laminated carbon fibre reinforced polymer (CFRP) composites with high stiffness and strength-to-

weight ratios have been widely used in a large amount of advanced aerospace structures to achieve 

the goal of reducing the aircraft weight and increasing the fuel efficiency. Despite their excellent 

mechanical properties, laminated composite structures are susceptible to the initiation and growth of 

cracks between the plies, a phenomenon known as the delamination. Various external service loadings, 

or even manufacturing defects may cause a delamination in a composite laminate structure, which 

may lead not only to a stiffness loss, but also to a considerable degradation in the strength and the 

expected service life of the composite structure [1-5]. For damage tolerance designs of composite 

structures, the fracture toughness of the composite materials must be known in order to predict the 

delamination growth behaviour and hence the strength of the overall structure [6]. The delamination 

may occur in three distinct loading modes: mode I (opening), mode II (sliding shear) and mode III 

(tearing shear). In engineering practice, composite structures are usually affected by the mixed mode 

I/II delamination, while the mode III effects are negligible. Hence, in recent years, extensive studies 

have been reported on the mixed mode I/II delamination tests of various composite materials [7-12]. 

As a mixed-mode I/II delamination propagates along an interfacial ply, unbroken fibres may peel 

off from the matrix resin and join both crack surfaces in the crack wake, as shown in Fig. 1. The 

bridging fibres, which interconnect the crack faces, may bear some loads and hence reduce the local 

stresses at the crack-tip [1]. Thus they contribute to an increase in the mechanical energy required for 

further delamination propagation. Such a toughening mechanism, resulting in an increasing fracture 

toughness with the crack growth, has been reported by some experimental works as the R-curve 
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behaviour [6,13-16]. The R-curve is determined by three critical parameters: initial fracture toughness, 

stable steady-state fracture toughness and fibre bridging length. In order to realistically characterise 

the mixed-mode I/II delamination behaviour, the complete R-curve should be obtained. 

Less abundant, although of major interest, are the publications which take into account the effect 

of the fibre bridging and the resulted R-curve [17]. The majority of the previous works has been 

focused on studying the initial or stable steady-state fracture toughness. For example, Benzeggagh 

and Kenane [12], Ducept et al. [18], Boyina et al. [19] investigated the fracture behaviour of the 

glass/epoxy composite laminate under mixed-mode loading and the effect of the φ-ratio on the 

fracture toughness. Kim and Mayer [11], Pereira and Morais [9], Naghipour et al. [20] and Zhao et 

al. [8] quantitatively or qualitatively investigated the dependence of the mixed-mode I/II delamination 

fracture toughness on the fibre orientation and stacking sequence of the mid-plane plies. 

Charalambous et al. [21] and Czabaj and Davidson [10] addressed the effect of the temperature on 

the fracture toughness of a carbon/epoxy material (IM7/8552) system and woven fabric graphite 

polyimide composite, respectively. The reported test results showed that the mixed-mode toughness 

increased at elevated temperature and the toughening mechanisms were dependent on the φ-ratio. 

LeBlanc and LaPlante [7] made an investigation on the effects of the moisture on the mixed-mode 

I/II delamination growth in a carbon/epoxy composite and found that an exposure to moisture led to 

a decrease in the mixed-mode I/II delamination resistance. A considerably improved fracture 

toughness of the laminated composites was observed through an addition of the nanofillers into 

matrices [22-24]. Even though a great effort has been made in the past to characterise the mixed-

mode I/II delamination resistance of the composite laminates, the complete R-curve behaviour under 

the mixed-mode I/II loading was not fully investigated. Indeed, it is meaningful to obtain the complete 

R-curve, because it is more realistic in practice for determining the likelihood of the delamination 

propagation. 

In addition, most previous studies have been focused on the unidirectional laminates while only 
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limited R-curve data are available for multidirectional laminates, which are usually more preferable 

than the unidirectional ones in practical engineering applications. Significant differences may exist 

in the delamination behaviour of the multidirectional and unidirectional laminates [20,25,26]. The 

complex damage mechanisms, such as the crack migration [27,28] and the intra-ply cracking, will 

affect the amount of the bridging fibres. And it has been reported that the amount of the bridging 

fibres significantly depends on the interfacial ply [8]. Usually, more bridging fibres seem to occur in 

the delamination growth along a multidirectional interface than a unidirectional interface, which 

results in a much higher fracture toughness in the multidirectional laminates. Thus, interfacial plies 

play an important role in the delamination propagation behaviour. Based on the above discussions, 

two basic questions arise here: what is the effect of the interfacial ply on the fibre bridging under the 

mixed-mode I/II loading, and what is its influence on the R-curve behaviour? These questions need 

to be carefully addressed in order to have a better understanding of the fibre bridging effect on the 

mixed-mode I/II delamination growth, as well as to improve the design level for the damage tolerant 

composite structures. 

The main purpose of the present study, therefore, is to investigate the complete R-curve behaviour 

of the carbon/epoxy unidirectional and multidirectional laminates, and to reveal the effect of the 

interfacial ply on the R-curve behaviour and the influence of the fibre bridging on the mixed-mode 

I/II delamination growth. In addition, the predictability of the mode II results obtained by the DCB 

and MMB tests is also investigated. Finally, a semi-empirical expression is proposed for 

characterising the mixed-mode I/II delamination behaviour. 

2 Material and specimen descriptions 

The delamination specimens were manufactured from the T800 carbon-fibre/epoxy material system 

(Cytec Industries Inc). The lamina elastic properties are: E11 = 195 GPa, E22 = E33 = 8.58 GPa, ν12 = 

ν13 = 0.33, ν23 = 0.48, G12 = G13 = 4.57 GPa and G23 = 2.9 GPa. The average thickness of each lamina 

is 0.185mm. In this work, two types of the lay-ups are studied: 012//012 and (+22.5/-22.5)6//(+22.5/-
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22.5)6, where the symbol ‘//’ denotes the position of the initial delamination introduced during the 

fabrication process. The +22.5°/-22.5° interface adopted here can minimise the effect of the unwanted 

crack migration and matrix damage on the measurement of the fracture toughness. In order to produce 

the pre-crack, a single Teflon film with a thickness of 25μm was inserted across the width of the panel 

in the mid-plane of the laminate lay-up. After the curing processing in an autoclave according to the 

supplier’s recommendations, the cured panels were checked for flaws with the ultrasonic C-scanning. 

Only portions without detected flaws were cut by a diamond saw into individual specimens, which 

have a width of 25mm, a length of 150mm, and a thickness of 3.12 mm. The specimens with the same 

configurations were used for the DCB, MMB and ENF tests. 

3 Test set-up and procedures for the DCB, MMB and ENF tests 

The DCB, MMB and ENF tests, as sketched in Fig. 2, were used for the determination of the mode I, 

mixed-mode I/II and mode II interlaminar fracture toughness, respectively. Three φ-ratios, defined as 

the ratio between the mode II strain energy release rate (SERR) and the total SERR, i.e., GII/GT = 

0.25, 0.5, 0.75, have been considered for the MMB case. In order to change the φ-ratio, the lever 

length c of the MMB loading fixture was adjusted for each φ-ratio whilst keeping the half span-length 

L constant at 55 mm [7]. The detailed values of the lever length used for the MMB tests are listed in 

Table 1. 

Before the tests, the sides of the specimens were coated with a thin layer of a water-soluble 

typewriter correction fluid to enable a visual observation of the crack propagation during the tests 

[29]. A light source was used to enhance the observation of the delamination growth. A travelling 

microscope with a precision of 0.01 mm was used for identifying the exact location of the crack-tip. 

The corresponding load and displacement at the loading point were automatically recorded by the 

self-equipped sensor of the loading machine. The DCB and MMB tests were carried out according to 

the ASTM standard D5528-13 [30] and ASTM standard D6671/D6671M-13e1 [31], respectively. 

Both the DCB and the MMB tests were conducted in an MTS 880 servo-hydraulic machine equipped 
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with a load-cell with a capacity of 1500N. In order to ensure that the displacement loading was 

effectively applied to the central plane of the cantilever beams, an improved version of the quick-

mounted hinge referring to Ref. [32] was adopted in all DCB and MMB tests. In order to ensure a 

slow delamination growth and maximise the number of the data points, a low displacement-controlled 

loading rate of 0.1 mm/min was used for all DCB and MMB tests. 

For the MMB tests, before mounting the MMB specimen to the testing apparatus, a calibration 

specimen was required to determine the compliance of the loading system. The calibration specimen 

was a rectangular bar made from steel with an elastic modulus of 193 GPa and a flexural rigidity of 

about 90.12 N•m2 as suggested in the standard test procedure. Similar to the MMB specimen, tabs 

were applied to one end, then the MMB apparatus was loaded with the calibration specimen and the 

load-displacement response was recorded. The slope of this calibration load-displacement curve was 

then measured to calculate the compliance of the MMB testing system, which must be accurately 

determined for each φ-ratio and lever length. After the system calibration, the MMB tests were carried 

out by using the MMB apparatus (see Fig. 2). 

The scheme of the ENF tests refers to Ref. [33], where the ENF specimen was supported on two 

parallel rollers. The support span 2L was set as 70 mm and the effective crack length should not be 

less than 24.5 mm. The displacement was continually applied at the middle span position of the 

specimen until the delamination grew for about 5 mm. Then the loading was stopped and the support 

span was increased to 100 mm. The effective delamination length was re-adjusted to be 25 mm. The 

specimen was loaded continuously again until a noticeable momentary load drop occurred. The 

displacement loading rate for the ENF tests was set as 1 mm/min. 

To check the uniformity of SERR width-wise distribution [34], C-scan detections were done for 

typical tested specimens. And the C-scan images showed that the difference of crack growth in the 

both sides and heart of the specimen was small. 
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4 Calculation of the strain energy release rate 

The mode I fracture toughness GIC for the static test could be obtained by using the corrected beam 

theory [30] as 

( )
IC IC

IC '

3

2

P F
G

Nb a


=

+ 
,                            (1) 

where PIC and IC are the applied load and displacement, respectively. b is the specimen width, F is a 

correction factor for considering large displacements, N´ a correction factor for considering the load-

block effect, which is equal to 1 due to the quick-mounted hinge used in this study. And   can be 

obtained from the intercept of a linear plot of the cube root of the measured compliance values C1/3 

against the delamination length a.  

Considering the weight loading of the lever, the GI and GII values for the mixed-mode I/II 

delamination are calculated by the following equations: 
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where h is half-thickness of the tested specimen, L is half-span length of the MMB test apparatus, Pg 

is the weight of the lever and the attached loading apparatus, cg is the distance from the centre of 

gravity to the centre of the roller, Ef is the bending modulus of the lay-up of the whole specimen. 

The mode II fracture toughness GIIC could be obtained by the following equation: 

2
3IIC IIC

IIC 3 3
10

3

9

2 (2 )a

P a
G

b L




+
= ,                       (4) 

where PIIC is the critical load, δIIC is the deflection at the loading point, a is the effective crack 

length, b is the specimen width, and L is half of the support span. 

5 Results and discussions 

Two or three specimens were tested for each φ-ratio. The data scatter was small, and the typical load-
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displacement curves for the laminates with a 0°/0° interface and a +22.5°/-22.5° interface are shown 

in Fig. 3. The φ-ratio and the interfacial ply have significant influences on the load-displacement 

curves. The ultimate load increases with the increase of the mode mixity. In addition, the specimen 

with a +22.5°/-22.5° interface exhibits a lower structural stiffness, ultimate load and delamination 

onset displacement than the specimen with a 0°/0° interface. This is resulted from the increasing non-

zero plies. There is a clear non-linearity prior to the maximum load being reached. For each mid-

plane interface case, the load-displacement curve of the specimens increases linearly until some 

deviation occurs in the linearity (the point of damage initiation), finally followed by an obvious load 

drop. With the increase of the mode mixity, the load drop is more sudden, which means that the crack 

propagation is less steady. 

5.1 Experimental fracture toughness 

The experimentally measured load, displacement and crack length data are used to construct the R-

curve, which is the graph of the fracture toughness (G) versus the delamination or crack growth length 

(Δa). The G-Δa curves for the 0°/0° and +22.5°/-22.5° interfaces are shown in Figs. 4 and 5. An 

obvious R-curve behavior is observed for the G-Δa relation. The facture toughness for both interfaces 

exhibits the same tendency, which increases with the delamination growth length at the early stage 

and finally arrives at a steady-state value after a certain delamination growth length. For the MMB 

tests, the fracture toughness increases very rapidly from a low value until it arrives at a constant after 

a short delamination growth length. On the other hand, Figs. 4 and 5 also show the effect of the mode 

mixity on the R-curves, which leads to a significant increase in the fracture toughness with the 

increasing mode II loading. In order to quantitatively characterise the R-curve behaviour, the 

analytical formula [8,15,35] as defined by 

( ) ( )
2

- -bz bz

C Init Prop Init Prop Init

bz bz

( ) 2 1 - 1
l a l a

G a G G G G G
l l

     
 = − − − − −   

   
          (5) 

to consider the effect of the fibre bridging is adopted here to fit the experimental data. In Eq. (5), GInit 
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is the fracture toughness value for the crack initiation, GProp is the steady-state value of the fracture 

toughness which is constant or stable with respect to the delamination length, <> is the Macauley 

operator defined as 1
2
( )x x x = + . lbz is a fitting parameter and defined as the length of the fibre 

bridging zone, which is the length between the initial crack length and the crack length correspond to 

the steady-state value of the fracture toughness. 

From the data fitting curves, the detailed values of lbz, GInit and GProp are obtained and listed in 

Table 2, where the mode II fracture toughness data obtained from the ENF tests are also given. Only 

the initial fracture toughness GIIC for the tested specimens can be obtained. They are 2078.8 and 

2535.3 J/m2 for the 0°/0° interface and the +22.5°/-22.5° interface, respectively, which are necessary 

for checking the capability of the B-K criterion for predicting the mode II fracture toughness, as 

discussed in the following subsection 5.2. 

From Table 2, it can be seen that the fibre bridging length under the mixed-mode loading is similar 

for both interfaces. This is consistent with the reported results in Refs. [6,15,22,23]. However, the 

bridging length under the mixed-mode loading is much shorter than that under the mode I loading. 

This means that the introduction of a shear loading has a significant influence on the fibre bridging 

length and makes it easier to achieve that balance status between the fibre pull-out and the fiber 

breaking. However, it was observed that the φ-ratio has no effect on the fibre bridging length in the 

glass/epoxy laminates [6,15,22,23]. The reason for this controversy could be that the effect of φ-ratio 

on the fibre bridging length is dependent on the material system, stacking sequence, the adjacent fibre 

orientation, the geometry of the specimen and the loading condition. The ratio of GProp/GInit is almost 

the same (around 1.2~1.3) for all test cases of the 0°/0° interface, which indicates that the enhancing 

effect of the fibre bridging on the fracture toughness is independent on the φ-ratio for the 0°/0° 

interface. Similarly, the ratio of GProp/GInit also shows a slight variation with the mode mixity for the 

+22.5°/-22.5° interface in the mixed-mode regime. The interfacial ply stacking sequence has a 

negligible influence on the enhancing effect due to the fibre bridging under the mixed-mode loading. 
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However, the ratio of GProp/GInit is apparently higher in the mode I delamination for the +22.5°/-22.5° 

interface. This illustrates that more fibre bridging occurs and the effect of the fibre bridging under the 

mode I loading is dependent on the interfacial plies. 

For certain delamination growth lengths, Fig. 6 gives a presentation of the mode I energy 

contribution versus the mode II energy component. This representation includes the referred pure 

modes and the mixed-mode values measured using the MMB tests. An apparent “overshoot” 

phenomena can be seen in the GI versus GII plot. The experimental measurements of GC as a function 

of the φ-ratio are presented in Fig. 7. The B-K criterion [12,36] described by 

( )( )C IC IIC IC+G G G G


= −                         (6) 

which is able to capture the overshoot phenomena and one of the most widely applied criteria for 

predicting the mixed mode I/II delamination behaviour, is used here to quantitatively characterise the 

GC versus φ-ratio data. The B-K criterion also has the advantage of having only one fitting parameter 

 , which makes it less prone to over-fitting [7], and is also recommended by the ASTM standard [31] 

as the preferred interaction envelope for the mixed-mode I/II delamination [37]. 

Using a least-square fitting to the initial fracture toughness of the DCB and MMB tests, the values 

of η for the 0°/0° and +22.5°/-22.5° interfaces are 1.75 and 1.61, respectively. Thus, Eq. (6) can be 

rewritten as 

( )( )
1.75

C 338.9+ 2262.2 338.9G = − ,                    (7) 

( )( )
1.61

C 339.0+ 2765.8 339.0G = − ,                    (8) 

for the 0°/0° and +22.5°/-22.5° interfaces, respectively. As shown in Fig. 7(a), the B-K criterion 

provides a good fitting to the delamination initiation values for both interfaces, with the R-squared 

values being higher than 0.99 for both cases. The fitted curves are composed of two essential stages: 

(a) the first stage with 0%≤φ≤20%, where GC increases progressively with the φ-ratio; (b) the 

transition stage with 20%≤φ≤75%, where the curve takes a large radius towards higher values of 
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the fracture toughness than in the previous stage, which is due to the fact that the mode II loading is 

becoming more important [12]. 

Similarly, the same data fitting is conducted for the steady-state fracture toughness in Fig. 7(b). 

The values of η for the 0°/0° and +22.5°/-22.5° interfaces are 2.12 and 2.05, respectively. Thus, in 

this case Eq. (6) can be rewritten as 

( )( )
2.12

C 418.9+ 3400.4 418.9G = − ,                  (9) 

( )( )
2.05

C =699.0+ 3690.1 699.0G − .                  (10) 

The B-K criterion also provides a good fitting to the delamination steady-state values for both 

interfaces, with the R-squared values being higher than 0.98 for both cases. 

5.2 Prediction of the initial and steady-state fracture toughness of the mode II delamination 

Due to the formation of a significant fracture process zone in the crack-tip vicinity of the composite 

materials during the delamination propagation, the experimental measurements of the mode II 

delamination test data always present some difficulties and scatters [38]. For this reason, an idea is 

evolved to determine the mode II fracture toughness without carrying out experimental tests. In the 

present work, the applicability of applying the B-K criterion for predicting the mode II fracture 

toughness is thus checked. 

In the subsection 5.1, the values of the fitting parameter η have already been determined by fitting 

the experimental data from the DCB and MMB tests, thus the mode II fracture toughness can be 

obtained by the B-K criterion. The predicted values of the initial and steady-state fracture toughness 

for both interfaces are listed in Table 3. Because the experimental steady-state mode II fracture 

toughness is not available in literature, so the corresponding comparison can unfortunately not be 

made here. However, acceptable agreements are obtained between the predicted values of the initial 

mode II fracture toughness and those obtained from the B-K criterion. It is, therefore, reasonable to 

conclude that the B-K criterion is applicable to predict the mode II fracture toughness in composite 

materials. 
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5.3 A semi-empirical expression for predicting the mixed-mode R-curve and its validation 

In the subsection 5.1, it was observed that the fibre bridging length is approximately the same for the 

tested specimens under the mixed-mode I/II loading. This conclusion is also confirmed by other 

experimental works [6,15,22,23]. In addition, the initial and steady-state mixed-mode fracture 

toughness values can be well characterised by the B-K criterion as discussed before. The criteria for 

characterizing the initial and steady-state fracture toughness are re-written as following in general 

forms: 

( )( ) initinit init init

Init I II I+G G G G


= − ,                       (11) 

( )( ) propprop prop prop

Prop I II I+G G G G


= − ,                     (12) 

where 
init

IG  and 
init

IIG  are the initial values of the mode I and II fracture toughness, respectively; 

prop

IG  and 
prop

IIG  are the steady-state values of the mode I and II fracture toughness, respectively; and 

ηinit and ηprop are the corresponding fitting parameters, which are constants for a fixed interface ply. 

  Substituting Eqs. (11) and (12) into Eq. (5), a semi-empirical expression as defined by 

( )( ) ( )( ) ( )( ) 

( )( ) ( )( ) 

init prop init

prop init

-bzinit init init prop prop prop init init init

C I II I I II I I II I

bz
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I II I I II I

( ) + 2 + + 1

- + +
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l

G G G G G G
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 

  

 

  
      = − − − − − −      

 

                   − − −
   

2

-bz

bz

1
l a

l

  
− 

 

    (13) 

can be obtained for characterizing the mixed-mode I/II R-curve behaviour. To verify whether the 

proposed expression of Eq. (13) can well describe all measured data, this semi-empirical expression 

is used to predict the mixed-mode I/II R-curve behaviour of composite laminates, as the first attempt 

to demonstrate its accuracy and reliability. Fig. 8 presents a comparison between the experimentally 

measured and the predicted G-∆a curves. The predicted results for the 0°/0° interface at φ = 0.25 are 

slightly underestimated. Overall, the predicted results by Eq. (13) are close to the experimental values 

of the mixed-mode I/II tests, which illustrates the applicability of the proposed semi-empirical 

expression for predicting the mixed-mode R-curve behaviour when the φ-ratio is between 0.25 and 

0.75. Although only a limited number of specimens were tested in the present work, it would be 
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interesting to verify the validity of the semi-empirical expression for composites with several other 

different fibers and matrixes and interface plies. In addition, R-curve relative to the crack growth 

length is adopted in this study to describe the effect of fiber bridging on delamination behaviour. 

While the cracking opening displacement can be an alternative parameter more relevant for fibre 

bridging phenomena and R-curve, and related studies on this should also be interesting. 

6 Conclusions 

In this work, the mixed-mode I/II R-curves of the unidirectional and multidirectional laminates made 

from carbon/epoxy composites were experimentally determined using the mixed-mode bending tests. 

Additional experiments were conducted to characterise the mode I and mode II delamination 

behaviour by using the DCB and ENF tests, respectively. 

The obtained R-curves resulting from the fibre bridging are qualitatively analysed by three critical 

parameters in terms of the initial and steady-state fracture toughness and the fibre bridging length. It 

was found that the initial and steady-state fracture toughness values are strongly influenced by the 

interfacial ply and the φ-ratio. For each considered interface, the fibre bridging length under the mode 

I loading is much higher than that under the mixed-mode loading. This conclusion is different from 

the reported results in other references. The interfacial ply has an effect on the fibre bridging length. 

However, the fibre bridging length in the mixed-mode I/II delamination is approximately the same 

for each considered interface. The ratio GProp /GInit is almost the same (around 1.2~1.3) for the mixed-

mode I/II delamination. It illustrates that the interfacial ply and the φ-ratio do not affect the enhanced 

effect of the fibre bridging on the fracture toughness in the mixed-mode I/II delamination. Although 

only two kinds of the interface ply were tested in the present work, the influences of the interfacial 

ply on the fibre bridging and the resulting R-curve behaviour have been investigated at least in a 

qualitative manner, which may be further confirmed by more experimental data. 

The B-K criterion was used to represent the mixed-mode I/II delamination fracture toughness 

results, and it was found that it can represent the experimental data with a reasonable accuracy. The 
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unique parameter in the B-K criterion can be determined by the curve-fitting techniques after the DCB 

and MMB tests at limited φ-ratios, such as 0.25, 0.5 and 0.75. By using the obtained B-K criterion, 

the mode II fracture toughness can be predicted with a good estimation. Therefore, it provides a 

simple determination method for the mode II fracture toughness without executing the mode II test. 

Finally, a semi-empirical expression is proposed to characterise the complete R-curve behaviour in 

the mixed-mode I/II delamination. The predicted results by this semi-empirical expression are close 

to the test values, which illustrates the applicability of the proposed semi-empirical expression. 
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Figure Captions  

Fig. 1. A sketch showing the occurrence of the fibre bridging in the +22.5°/-22.5° interface. 

Fig. 2. Sketches of the experimental set-ups for the DCB, MMB and ENF tests. 

Fig. 3. Typical load-displacement curves for the DCB/MMB/ENF specimens with the (a) 0°/0° 

interface and (b) +22.5°/-22.5° interface. 

Fig. 4. Fracture toughness versus the delamination growth length for the 0°/0° interface. 

Fig. 5. Fracture toughness versus the delamination growth length for the +22.5°/-22.5° interface. 

Fig. 6. Fracture toughness GI versus GII for the (a) 0°/0° and (b) +22.5°/-22.5° interfaces. Note: a 

constant mode II fracture toughness is used for each interface. 

Fig. 7. Initiation and steady-state propagation failure loci for the (a) 0°/0° and (b) +22.5°/-22.5° 

interfaces. 

Fig. 8. Comparison of the experiment MMB R-curves and the predicted ones by Eq. (13), (a) 0°/0° 

interface and (b) +22.5°/-22.5° interface.  
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Fig. 1. A sketch showing the occurrence of the fibre bridging in the +22.5°/-22.5° interface. 

 

 

Fig. 2. Sketches of the experimental set-ups for the DCB, MMB and ENF tests.  
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Fig. 3. Typical load-displacement curves for the DCB/MMB/ENF specimens with the (a) 0°/0° 

interface and (b) +22.5°/-22.5° interface. 

 

 

Fig. 4. Fracture toughness versus the delamination growth length for the 0°/0° interface. 
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Fig. 5. Fracture toughness versus the delamination growth length for the +22.5°/-22.5° interface. 

 

 

Fig. 6. Fracture toughness GI versus GII for the (a) 0°/0° and (b) +22.5°/-22.5° interfaces. Note: a 

constant mode II fracture toughness is used for each interface. 
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Fig. 7. Initiation and steady-state propagation failure loci for the (a) 0°/0° and (b) +22.5°/-22.5° 

interfaces. 

 

 

Fig. 8. Comparison of the experiment MMB R-curves and the predicted ones by Eq. (13), (a) 0°/0° 

interface and (b) +22.5°/-22.5° interface. 
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Table Captions 

Table 1 Values of the lever length c for the MMB tests (Unit: mm). 

Table 2 Detailed values of lbz, GInit and GProp for each interface and φ-ratio. 

Table 3 Comparison of the experimental and predicted values of the mode II fracture toughness. 

 

Table 1 Values of the lever length c for the MMB tests (Unit: mm). 

Interface 
φ-ratio 

0.25 0.5 0.75 

0°/0° 81.6 45.6 31.7 

22.5°/-22.5° 81.0 44.7 31.5 

 

Table 2 Detailed values of lbz, GInit and GProp for each interface and φ-ratio. 

Interface φ-ratio lbz (mm) GInit (J/m2) GProp (J/m2) GProp/GInit 

0°/0° 

0 28.4 338.9 418.9 1.24 

0.25 1.2 531.5 697.6 1.31 

0.5 1.2 893.5 1029.2 1.15 

0.75 1.5 1507.5 2058.7 1.37 

1 / 2078.8 / / 

+22.5°/-22.5° 

0 32.6 339.0 699.0 2.06 

0.25 8.3 584.8 791.4 1.35 

0.5 8.8 1160.5 1475.0 1.27 

0.75 7.2 1997.1 2342.9 1.17 

1 / 2333.3 / / 

 

Table 3 Comparison of the experimental and predicted values of the mode II fracture toughness. 

Interface Initial value (J/m2) Relative error 

(%) 

Steady-state value (J/m2) Relative error 

(%)  Test Predicted Test Predicted 

0°/0° 2078.8 2262.2 8.8 / 3400.4 / 

22.5°/-22.5° 2535.3 2765.8 9.1 / 3690.1 / 

 

 


