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Abstract 

 Highly resolved paleontological records can address a key question about our current 

climate crisis: How long until the biosphere rebounds from our actions? There are many ways to 

conceptualize the recovery of the biosphere; here we focus on the global recovery of species 

diversity. Mass extinction may be expected to be followed by rapid speciation, but the fossil record 

contains many instances where speciation is delayed, a phenomenon for which we have a poor 

understanding. A likely explanation for this delay is that extinctions eliminate morphospace as 

they curtail diversity, and the delay in diversification is a result of the time needed for new 

innovations to rebuild morphospace which can then be filled out by new species. Here, we test this 

Morphospace Reconstruction Hypothesis using the morphological complexity of planktic 

foraminifer tests after the Cretaceous-Paleogene mass extinction. We show that increases in 

complexity precede changes in diversity, indicating that plankton are colonizing new morphospace 

and then slowly filling it in. Preliminary diversification is associated with a rapid increase in the 

complexity of groups refilling relict Cretaceous ecospace. Subsequent jumps in complexity are 

driven by evolutionary innovations (development of spines and photosymbionts) which opened 

new niche space. The recovery of diversity was paced by the construction of new morphospace, 

implying a fundamental speed limit on diversification after an extinction event. 
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Introduction 

 Although present rates of extinction do not (yet1) rival the Big Five mass extinctions, 

humanity is undeniably causing elevated rates of biodiversity loss through climate change, habitat 

destruction, invasive species introduction, etc.1 As we seek to mitigate this loss, we must also learn 

how long it will take for biodiversity and ecosystem functionality to recover after negative 

anthropogenic effects subside. The Cretaceous-Paleogene (K-Pg) mass extinction, caused by the 

impact of an asteroid on the Yucatán Platform in the southern Gulf of Mexico2, is the most recent 

and most rapid of the five major mass extinctions and is perhaps the only major event in Earth 

history which happened faster than modern climate change. Thus, it provides a unique analog for 

future recovery from rapid extinction. 

Following the geologically-instantaneous disappearance of a huge portion of the biosphere, 

it may be presumed that survivors would rapidly diversify to fill empty ecospace. The global 

recovery of planktic foraminiferal diversity following the K-Pg mass extinction is a classic 

example of such explosive adaptive radiation3-7. Survivor species, adapted for shallow water and 

marginal marine environments, gave rise to dozens of new taxa which recolonized the open marine 

ecospace vacated by the extinction event4,5,8-12. This explosive radiation occurred in several pulses, 

the latter of which were delayed for millions of years3,13-14. The initial early Danian burst in 

diversity only added about twenty species, less than a quarter of pre-extinction diversity11. Global 

richness increased unsteadily throughout the Paleocene, and did not begin to approach even mid-

Cretaceous levels until the Paleocene-Eocene boundary, 10 myr later (Fig. 1A). The full recovery 

of species- or genus-diversity took more than 20 myr, into the middle Eocene18, at which point it 

nearly matched the soaring heights of the Late Cretaceous. 
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Genus-level macrofaunal diversity data shows that a 10-myr delay in elevated rates of 

origination is a feature of all mass extinctions, including the K-Pg15-17. This delay has also been 

identified in marine plankton after the K-Pg (Fig. 1A)18-20, although its cause remains unknown. 

Explanations have tended toward external environmental controls like the delayed recovery of 

marine export production4, or the persistence of toxic metals or other lingering stressors affecting 

conditions in the upper water column well after the extinction21 possibly driven by Deccan 

Volcanism22-25. Productivity, however, was highly variable in the early Paleocene, with some 

localities showing a geologically-immediate increase after the extinction26. Even considering the 

longest possible delay in the recovery of global export productivity and the recolonization of 

deeper habitats13-14, about 4 myr, this still does not provide a satisfying explanation for why 

diversity might remain low for so much longer, up to 20 myr. No evidence of toxic metal 

enrichments has been found in early Paleocene sediments, and recent work within the Chicxulub 

Crater, where impact-driven environmental contamination would be worst, documented a rapid 

recovery there12. The lack of a discernable environmental driver has led many authors to propose 

that ecology, rather than environment, controls diversification after a mass extinction12,26-27. 

An important ecological control on diversification could be the time needed to reconstruct 

morphospace within ecosystems16, which we term the Morphospace Reconstruction Hypothesis. 

We often conceive of post-extinction radiations refilling empty niche space, but as Kirchner and 

Weil16 pointed out, the reduction of diversity caused by mass extinctions also destroys niche space 

(see also Erwin’s excellent review28). Although ecological niches can be conceptualized as slots 

in an ecosystem which different organisms can fit into, they are actually created by and are thus 

inseparable from the organisms which occupy them. In other words, organisms themselves 

construct the environments they inhabit28. This can be more properly conceived of as morphospace 
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(i.e., the range of morphologies occupied by a clade), which represents the range of successful 

strategies that a clade has made to adapting to its environment and pressure from other organisms28. 

“Ecological niches” are a simplified but handy way of conceptualizing this range of successful 

adaptations. 

Newly colonized morphospace can serve as a jumping-off point for further evolutionary 

innovation, which in turn opens additional ecospace, and so on, until a clade reaches its limits. 

Thus, once existing niches are full, additional diversification is dependent on evolutionary 

innovations to open new niche spaces, a concept borne out by modelling studies19,20. The time 

required to rebuild morphospace is an attractive explanation for the delayed recovery of taxonomic 

diversity following the K-Pg mass extinction. A large volume of literature has shown that, 

generally, morphological innovation is expected to lead diversity during radiations, including after 

mass extinctions28,31-33. But these have dealt primarily with higher orders of taxa, had limited 

temporal resolution, and, to our knowledge, have not explicitly tested the hypothesis that 

morphospace reconstruction is a limiting factor in diversification. Here, we use a highly resolved 

(both temporally and taxonomically) fossil dataset, the species-level diversity and morphological 

complexity of planktic foraminifera after the K-Pg mass extinction, to test the Morphospace 

Reconstruction Hypothesis.  

Complexity (here similar to disparity; see Methods) is calculated from a dataset of ten 

parameters attempting to capture the large-scale trends in the morphological evolution of the 

foraminifer test. The simple ‘survivor taxa’ of the immediate K-Pg recovery had simple 

morphologies and broad ecological niches7,9,34. Planktic foraminifera may be considered an analog 

for other zooplankton and larger organisms in the upper ocean which are not as well represented 

in the fossil record. 
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If diversification is delayed because of the need for new innovations to open new ecospace, 

we expect 1) that complexity recovers before diversity, 2) diversification to be associated with 

large jumps in complexity, suggesting morphospaces are colonized first, and then filled, 3) 

throwback-type ecospace (i.e., trophic strategies of Cretaceous survivors) to be refilled rapidly 

after the extinction and then stabilize, and subsequent diversification/increases in complexity to be 

associated with evolutionary innovations opening new morphospace.  

Results/Discussion 

There is a massive drop in mean morphologic complexity at the K-Pg boundary which is 

evident however complexity is plotted, whether mean or median complexity (Fig 1B), total 

complexity/diversity (Fig. 1C), or complexity by trophic strategy (Fig. 1D). Unlike diversity (Fig 

1A), however, morphologic complexity rebounds more quickly, reaching a plateau near its post-

extinction maximum within ~ 5 myr. This is roughly coincident with an increase in planktic 

foraminifer diversity, and is ~1 myr after the final recovery of surface to deep δ13C gradients3 and 

the marine carbon pump35. The recovery of morphological complexity indicates that the 

morphospace occupied by planktic foraminifera has been rebuilt to roughly Cretaceous values.  

To understand why morphologic complexity recovers before diversity, we plot them 

together as mean complexity/diversity (Fig. 1C). If morphospace expands at roughly the same rate 

as diversity, the mean complexity/diversity timeseries is a flat line; if morphospace is colonized 

first and then filled out (i.e., new, more complex species colonize a new ecospace, driving increases 

in mean complexity) then the mean complexity/diversity timeseries will have a very steep positive 

slope. This makes mean complexity/diversity the degree of partitioning in the morphospace. The 

nearly flat line in the Late Cretaceous (Fig. 1C) shows that this interval was characterized by 

matching increases in complexity and diversity filling out existing morphospace. In the Paleocene, 
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however, morphologic complexity significantly outpaces diversity. We observe three distinct 

intervals of increased complexity/diversity in the Paleocene (numbered in Fig. 1C), the latter of 

which are dwarfed by the huge peak in the basal Paleocene. Each of these intervals coincides with 

an interval of increasing diversity (the climaxes of which are marked with dashed lines on Fig. 1). 

This is consistent with the observation that morphological complexity tends to increase before 

taxonomic diversity during radiations31-33. Interestingly, the Eocene is associated with roughly flat 

complexity/diversity, indicating a return to more linear relationship between diversification and 

morphological change, despite continued diversification. 

 We can break these trends down further to understand which groups are driving change in 

each particular interval. Survivors from the Cretaceous were non-spinose and did not have 

photosymbionts6 and were therefore grazers, feeding on phytoplankton and organic detritus; here 

we call this group of foraminifera “throwback-type” since they represent the most common pre-

extinction lifestyle. The appearance of spines in the basal Paleocene family Globigerinidae allowed 

these foraminifera and their descendants to adopt a carnivorous lifestyle, feeding on any mobile 

zooplankton they might snare in their rhizopodal network5. The later acquisition of 

photosymbionts in the mid Paleocene, ~ 4 myr after the K/Pg extinction, allowed those new genera 

to supplement their food supply in oligotrophic waters3,13-14. 

 The initial increase in complexity/diversity was driven by both the radiation of throwback-

type forms filling niches similar to those occupied during the Cretaceous and the contemporaneous 

radiation of spinose forms colonizing novel ecospace (Fig 1C). Subsequent pulses in 

complexity/diversity are associated with evolutionary innovations within the new spinose group 

and the appearance and radiation of symbiont-bearing planktics (Fig 1C). 
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Overall, our data demonstrate that the generally marginal-marine Cretaceous survivors 

rapidly reoccupied and diversified within the vacant open-ocean ecospace during the early 

Paleocene. This interval may be considered the classic “refilling” of vacant niches after an 

extinction event, but represents more limited morphospace occupation compared to the Late 

Cretaceous. Because the bulk of morphospace available to planktic foraminifera disappeared along 

with its inhabitants at the K-Pg boundary, there was a more narrow range of successful life 

strategies available to planktic foraminifera, and thus diversity at this point is much lower than it 

was at the end-Cretaceous. Subsequent Paleocene radiations were driven by new evolutionary 

innovations that opened new morphospace (i.e., pulses in complexity/diversity). This relationship 

confirms the hypothesis16 that the reconstruction of morphospace is a prerequisite for the recovery 

of diversity after mass extinctions. It also suggests a fundamental speed limit on the rate of 

diversification. 

 Throughout their history, the turnover of planktic foraminifera has been driven by both 

climate36-39 and more basic macroevolutionary processes related to biology and ecological 

interactions between organisms19,40. To determine how climate may have affected the trends we 

observe, we compare our taxonomic and morphometric data with Paleocene-Eocene stable 

isotopes and key climate events. Following post-K-Pg warming, the Paleocene is characterized by 

a long, slow cooling and then a slightly faster (and more variable) warming trend leading into the 

Paleocene Eocene Thermal Maximum (PETM). This is punctuated by a few mild hyperthermal 

events, including the Dan-C2 event41, the Late Danian Event (LDE)42, and the Early Late 

Paleocene Event (ELPE)43. Prior to the obvious turnover at the PETM18,37 there is no clear 

relationship between either planktic foraminifer diversity or morphologic complexity and any 

particular climate event or trend. The Dan-C2 hyperthermal occurs after the rapid diversification 
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of the early Paleocene, and that event only lasted 400 kyr and thus doesn’t explain the diversity or 

complexity trends that occur after it. Likewise, our data don’t support the hypothesis that Deccan 

Volcanism impeded the recovery of diversity22-25, as the initial diversification in the early Danian 

occurs well before the end of Deccan volcanism (Figure 2)44 during an interval associated with 

environmental stress at some sites23-25. With the LDE we run into the limits of our bin size, as it 

appears that the evolution of photosymbionts coincides with this event when in reality it preceded 

it by ~400 kyr45 and the radiation of this group occurs after this event46. The ELPE occurs during 

a slight decline in overall diversity, but these trends extend far beyond it. Finally, the PETM clearly 

exerts an influence on richness at the end of the Paleocene, but this major climatic event is not 

associated with any changes in morphological complexity, which was already recovered by that 

point. 

This is not to say that climate did not influence the evolution of planktic foraminifera at all 

through this interval (or the structure of local populations), but that its influence was less important 

compared to the limit imposed by morphospace occupation. The pulses of evolutionary innovation 

opening novel morphospace that we describe all occur prior to the obvious turnover at the PETM37, 

and this is also (mostly) the interval of significantly elevated origination rates18. However, 

diversification continues into the Eocene, finally reaching roughly Late Cretaceous values ~ 20 

myr after the extinction18.  Significant macroevolutionary events throughout the Eocene (and later) 

are coincident with major climatic events, like the Paleocene-Eocene Thermal Maximum, Eocene 

Climate Optimum, etc.18 This suggests a two-phase period of recovery. In the first phase, the 

Paleocene, diversification was limited by the need to rebuild morphospace, which provided the 

scaffolding on which to evolve new species. Eventually, morphospace had been expanded to an 

extent which allowed climate to become the primary driver of diversity. Ezard et al.19 showed that 
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a clade’s ecology is a key factor in how successful it is in diversifying during different climate 

states. But after a mass extinction, ecospace must be rebuilt to the point where it can respond to 

changes in climate. Niche space reconstruction is therefore an essential first step in recovery, and 

a clear explanation for the observed 10 myr delay in speciation following mass extinction16,17. 

The generation of novel morphospace after the K-Pg extinction represents stepwise change 

into a wholly new Cenozoic planktic ecosystem, rather than a return to a mirror-version of the pre-

extinction Cretaceous ecosystem. This should serve as an important reminder16: some ecological 

niches lost due to anthropogenic climate change will never reappear. While the future biosphere 

may eventually regain pre-Anthropocene numerical biodiversity levels, it will be significantly 

different than the biosphere in which we evolved and presently co-exist. This recovery will likely 

take millions of years. 

  

Figure Captions 
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Figure 1. A) Planktic foraminifer diversity from the Late Cretaceous to middle Eocene. Black: 

throwback-type, Blue: spinose, Green: symbiont-bearing. B) Mean and median test complexity 

plotted over individual species’ complexity values (horizontal lines). C) Mean test complexity 

divided by diversity. D) Test complexity index by trophic strategy. Grey lines on B and D are 

individual species. Vertical dashed lines separate the three main peaks in Mean 

Complexity/Diversity (numbered 1-3 in C). Possible spinose and symbiont species in the 

Cretaceous are lumped as “throwback” on the Cretaceous side of this plot because not all 

Cretaceous planktics have been evaluated for these traits. All survivor species were non-spinose 

and non-symbiont bearing, and thus these traits had to re-evolve anyway. 
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Figure 2. Comparison of early Paleogene climate events with planktic foraminifer diversity and 

complexity trends. Oxygen (blue) and carbon (green) isotope curves and key climate events are 

taken from the Geologic Timescale47. Black bar and gray shading show the duration of post K-Pg 

phase of Deccan volcanism. See Figure 1 for explanation of diversity and complexity plots. Note 

that apparent mis-ties between boundaries and species ranges are the result the significantly higher 

resolution of the isotope record compared to our fossil data which is binned at 250 kyr. 

 

Methods 

 Planktic foraminifer diversity data and species ranges are based on those reported in Fraass 

et al.18, who compiled them from community-based atlas projects48-49. Such a global compilation 

avoids the problems of studying the recovery of diversity/complexity at any particular site, as it 

avoids the range of possible local effects on species diversity, and allows direct comparison to 

similar global diversity records15,18,19,29-33,40. The species included and their first and last 

occurrence datums are very similar to other recent efforts (e.g., Aze et al.50). Morphological 

complexity was calculated based on the following morphological attributes: circularity of final 

chamber, apical angle, number of chambers, chamber expansion rate, umbilical view area, the ratio 

of the final chamber area to the total area, clavateness, keeledness, biconvexity, and lobateness. 

Detailed explanation of each of these attributes can be found in Kelly et al.37. Attributes were 

measured primarily from holotypes or images sourced from community-based atlas projects48-49. 

A table showing the interrelationship of the ten morphological attributes is presented in 

Supplementary Information Table 1. This shows which morphological characters co-vary; 

although most do not co-vary strongly, some (like the ratio of the final chamber to total test area 

and expansion rate) do show a linear relationship.  
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Test complexity was calculated to be a rough estimation of how morphologically complex 

each species is, starting with assigning a “simple” morphology. Because describing any 

morphology as “simple” vs. “complex” is subjective, we define the simplest form as the average 

of two K-Pg survivor species, Muricohedbergella monmouthensis and M. holmdelensis. We feel 

these are good avatars of simplicity both because they represent a basic test morphology that was 

common throughout the Mesozoic and Cenozoic, and because they are the ancestors of many 

Cenozoic lineages (which become more complex over time49). The other important K-Pg survivor 

species, Guembelitria cretacea, is inarguably more complex based on the characteristics laid out 

in Table S1, and thus was not considered a useful definition of simplicity, although it also gave 

rise to a number of important and complex Cenozoic taxa49. For each attribute the mid-point 

between monmouthensis and holmdelensis was subtracted, then we took the absolute value of the 

result. Each attribute was then standardized to a scale of 0-1. Lastly, attributes were added together 

for each species, providing a score of the difference of each species from our pre-defined ‘simple’ 

survivor taxa. This essentially describes the disparity between all other taxa and the average of 

these two survivors. A principal component analysis, though analytically more complex, 

demonstrates similar results (see Supplementary Information).  

The mean and median complexity of all species within our study interval are reported in 

Figure 1B. All timeseries were calculated in 250 kyr bins. For mean Test Complexity / Diversity, 

mean complexity was calculated as a timeseries, as was diversity, then divided. Code can be found 

at Github.com/Fraass. 

 Foraminiferal trophic strategies are based on those reported by various authors3,49-50 as well 

as the online database Mikrotax (http://www.mikrotax.org/pforams/51). Generally, spinose 

foraminifera can be identified by careful microstructure examination for the presence of diagnostic 

http://www.mikrotax.org/pforams/
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spine holes5. Symbiont-bearing planktic foraminifera are commonly identified by the stable 

isotopic signature of their test tend to have tests relatively enriched in 13C, caused by the effect of 

algal photosymbionts on the microhabitat from which the foraminifer precipitates its calcite shell 

and relatively depleted in 18O, indicating a shallow water habitat52. Species with neither of these 

indicators, commonly referred to as microperforate or smooth normal perforate, are observed in 

the modern ocean to be mainly herbivores, feeding on phytoplankton and detritus5. 
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