
 Craggs, B. (2019). A Just Culture is Fundamental: Extending Security
Ergonomics by Design. In 2019 IEEE/ACM 5th International Workshop on
Software Engineering for Smart Cyber-Physical Systems (SEsCPS) Institute
of Electrical and Electronics Engineers (IEEE).
https://doi.org/10.1109/SEsCPS.2019.00015

Peer reviewed version

Link to published version (if available):
10.1109/SEsCPS.2019.00015

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at https://ieeexplore.ieee.org/document/8823746. Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/211001672?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/SEsCPS.2019.00015
https://doi.org/10.1109/SEsCPS.2019.00015
https://research-information.bris.ac.uk/en/publications/a-just-culture-is-fundamental(c177ba19-c92e-41a2-be86-3372ebc3eb09).html
https://research-information.bris.ac.uk/en/publications/a-just-culture-is-fundamental(c177ba19-c92e-41a2-be86-3372ebc3eb09).html

A Just Culture is Fundamental:
Extending Security Ergonomics by Design

Barnaby Craggs
Department of Computer Science, University of Bristol, UK

Email: barney.craggs@bristol.ac.uk

Abstract—Human error when developing and using smart
cyber physical systems is inevitable. Earlier work has set out
Security Ergonomics by Design—principles by which developers
of systems can ensure that the active user error cannot occur
when latent system failures introduced in development are in
play. This paper underpins these principles by showing there
is a fundamental need to adopt a Just Culture within which
i) user error is captured for improvement in the development
cycle, and ii) to provide software engineers assurance that their
own mistakes are not automatically punished but rather treated
as learnings that can be fed back into building safer and more
secure practice.

Index Terms—Security Ergonomics, Just Culture, Human
Factors, Internet of Things, Cyber-Physical Systems

I. INTRODUCTION

Nascent technologies such as connected medical devices,
smart city sensor networks, autonomous vehicles, smart home
automation and connected toys present a number of design and
development challenges to ensure they remain both safe and
secure. Any single class of device can be a complicated mix of
software, hardware, human behaviour, environmental influence,
and cultural practice. Together, colloquially referred to as the
Internet of Things (IoT), these devices often occupy the same
physical spaces, are used by the same people, interact and
exchange information with each other. The IoT as a collection
of devices is a fantastically complicated system of systems.

In prior work Craggs and Rashid [1] recognised that flawed
design choices (latent failures) can lead to, and sometimes
make inevitable, human error in using IoT and other cyber
physical systems (CPSs)—this error resulting in devices that
at best become insecure and at worst become unsafe. By way
of mitigation, Craggs and Rashid drew upon methodology and
practice from other safety-concerned domains and proposed
Security Ergonomics by Design (SEbD), in which five key
design principles for smart cyber physical systems guided
developers in ensuring that:
• Proactive Design. The design of CPSs is proactive in

identifying existing and known latent failures and active
human error before they happen, rather than providing a
reactive response to events as they occur.

• Embedded Nature. The approach of security ergonomics
embeds directly into the design and architecture of CPSs,
rather than being applied retrospectively.

• Encouragement of Pro-Secure Behaviour. Non-erroneous
secure user behaviour is, by default, encouraged and possibly

even rewarded. In circumstances where it is critical to the
stability of systems as a whole such behaviour should be
enforced.

• Non-Alignment. Active user error and developer introduced
latent failure does not occur concurrently.

• External Validation. Security ergonomic based design is
introspective, recognising that designers and developers
themselves are human and prone to assumption, bias and
error. Best practice software engineering techniques to
remove that error should be employed, designs should be
validated by third-parties.

This paper continues and extends SEbD by addressing its
lack of method for the identification of existing latent failure
and active error, essential to enable Proactive Design and
therefore the whole principle set. Such a method can be drawn
from aviation and medical practice where this understanding
is critical to the re-design of previously failed and un-safe
systems. This method is:
• Just Culture. A safe environment within which security

incidents are captured, evaluated and post mortemed, without
automatic blame, in order to provide detail into the security
ergonomics approach for the design of safe and secure cyber-
physical systems.

II. JUST CULTURES

“Incidents are unplanned investments” Allspaw. 2018

Stemming from safety-aware domains, Just Culture [2] is
“a culture of trust, learning and accountability,” [3] which
provides a safe environment, after an incident has occurred,
within which interactions between aspects of a CPS—the
software, hardware, liveware (humans), culture and environment
(SCHEL) [4]—can be understood, and used to feedback into
systemwide improvement. Just Culture [2] can be viewed as
“necessary for operating safely” [5] by allowing a kaizen
approach to iterative and continuous system improvement
towards removing human error [6].

A. Blame Cultures Are Not Helpful
History is filled with examples where people have erred, ei-

ther accidentally or deliberately. In 2016, thousands of ordinary
users unwittingly bought and configured cheap, insecure web-
cameras using the simple usable security enhancing technique
of wireless protected setup (WPS) on their home routers. In that
simple process many forgot to change the default administration

credentials paving the way for the Mirai botnet to undertake
distributed denial of service attacks and reek global havoc [7].
In 2019 we are still seeing Mirai variants propagate on the
Internet.

In May 2017, the ransomware WannaCry targeted Microsoft
Windows XP based computers around the globe. In the
United Kingdom, the National Health Service (NHS) was
crippled [8], surgical operations were cancelled and the attack
was estimated to cost in excess of £92M. The NHS was not
a specific target for the attack, but an over reliance upon
key systems running Windows XP without national support
contracts being in place, and an organisational culture not
attuned to the vulnerability of critical services from cyber
attack meant it was severely impacted. In the days and
weeks after WannaCry surfaced, much attention was paid as
whom was to blame for the attack. Attribution was paid to
nation-states, the National Security Agency (NSA) who had
developed the initial underlying Windows exploit, Microsoft
for not providing critical patches to operating systems
in-perpetuity for free, the NHS for their lack of response,
the United Kingdom’s government for not funding needed
support contracts, training and staff. And by no means least,
the users of those NHS systems who had effectively spread
the worm, and failed to take immediate action to halt its spread.

This is a long list of potentially culpable parties and,
as Nietzsche [9] points out, the need to find a cause, or
person/party, responsible is somewhat fundamental to human
nature as to not do so implies a loss of control and is distressing.
The reality is they all played a role but the initial race to assign
blame did nothing to help understand and dissect the problem,
nor to ensure it could not happen again. The reason being
that when blame is applied to error, especially very public
potentially life-threatening error, all parties are keen to separate
themselves from being held accountable. And when the users,
owners, developers and maintainers of a system all actively
seek to avoid what might be a punitive situation, the facts of
what and how something occurred become lost in obsfucation.

B. The Benefits of Being Just
Dekker [10] states how maintaining a Just Culture benefits

all system stakeholders:
1) For the organisation itself, without a Just Culture it is all

but impossible to truly know what is going on.
2) For those who work in the organisation, the incentive is

being free to concentrate on doing a quality job rather than
on limiting personal liability. Research [11] has shown that
not implementing a Just Culture is detrimental to morale,
commitment, job satisfaction and willingness to step outside
their role.

3) For users, a Just Culture de-prioritises short-term liability
minimising measures and steers organisations towards long-
term investment in safe and secure products.

C. In Practice
Mature safety aware industries, such as aviation, have

recognised these benefits and developed Human Factors /

Ergonomics (HF/E) practice to help people avoid the dissonance
between the potential and automatic blame that traditionally
would have been applied even when doing the correct thing
and admitting they have erred. Without that insight it would
be impossible to re-design systems to perform better and with
less error.

In software development: One of the first software
development-based companies to adopt Just Culture was the
online marketplace for handmade & vintage items, Etsy.com. In
2012 John Allspaw, the then senior vice president of Etsy.com’s
infrastructure and operations team, wrote a blog post [12] as
to how they had discovered and were applying “blameless
postmortems” to their services development programme as a
technique for reducing software engineer-led error. Etsy.com’s
intent was to allow their software engineers, whose actions had
contributed to an error, to provide details about: i) the actions
they had taken and when, ii) the effects and impacts they had
personally observed, and iii) their own understanding of events
in chronological order.

Importantly Etsy.com had recognised that for software
engineers to willingly self-report they had to trust that by
doing so they would not automatically face some form of
punishment or retribution.

In CPS cyber security: In the domain of cyber security limited
attention has been paid to the application of HF/E methodology
for safe and secure systems, e.g., [1], [13], [14], [15], [16]. Just
Culture has been discussed by HF/E and security practitioners
in online forums, e.g., [17], [18]. Hayashi [19] lays claim to
the need for Just Culture when looking at schemes for securing
information systems, but focusses exclusively upon identifying
aspects of data processing more from a pre-emptive policy
perspective rather than as an approach to understanding security
events. At the time of writing, no academic work has looked
to the need for Just Culture as a fundamental requirement for
the development of safe and secure cyber physical systems.

III. JUST CULTURE AS THE FIRST PRINCIPLE

A. Enabling Security Ergonomics
To this point we have discussed Just Culture as being a

process for dissecting events for the purposes of understanding
what occurred and how this can be used for system improve-
ment. Within this context, Just Culture is an enabling process,
as it allows a space for security-related events to be safely
collated and to feed into the second principle of proactive
design.

Within SEbD, Just Culture plays an important second role
in recognising and capturing another form of human error -
that of the developer themselves, ala Etsy.com. Research in the
safety domain has shown that, whilst technological advances
can remove cognitive load from humans, and to a degree
mitigate user error, there comes a point where this “simply
shifts the error” [20] to those developing the system. Software
engineers are also prone to error and so it is vital for safe
and secure smart CPS that this error, as best as possible, is
removed from the development cycle. As such, and alongside

the principle of external validation, Just Culture should also
be practised within, and upon, the design and development
teams themselves.

Given the dual pivotal role within SEbD, this paper proposes
that Just Culture prepends the existing five principles, and
becomes the new first principle of Security Ergonomics
by Design, thusly: 1) Just Culture, 2) Proactive Design, 3)
Embedded Nature, 4) Encouragement of Pro-Secure Behaviours,
5) Non-Alignement, and 6) External Validation.

B. Considerations for Defining Just Culture
A Just Culture provides people with confidence that by

reporting errors, in confidence, they will be fairly investigated
and result in visible and positive change. This is not to say
accountability (or blame) is not a valid outcome—where deliber-
ate subversion of systems and processes occurs culpability can
lay with people. As with the prior set of principles, application
is not meant to be prescriptive of method—for example with
respect to external validation, the principle does not dictate
method but rather calls upon best practice as it pertains to the
environment within which the system is designed to reside. The
same is true of Just Culture. What works for one development
team as a process for capturing and dissecting developer error,
may not fit with another team.

To achieve a culture of trust, one in which people will report
errors, accidents and near-misses, the processes by which the
report is made, handled, discussed and acted upon needs to
be defined and clearly signposted for people to use. Crucially
to establish any just process three questions should be asked:
Firstly, who gets to draw the line between acceptable and
unacceptable behaviour? Secondly, what and where should the
role of domain expertise be in setting that line? And, thirdly,
how well insulated are internal Just Culture processes and data.

Dekker [10] suggests that in relation to who sets the line, the
clearer this responsibility is conveyed “practitioners [software
engineers] will suffer less anxiety and uncertainty... in the wake
of an occurrence.” Care should be taken with reliance upon
domain expertise alone, whilst experts are better able to
empathise and understand context and possibly be able to
better avoid hindsight bias, they can be subject to other bias in
line setting—for example by admitting that error is inherent in
their activity rather than personal failure is to see themselves
as equally vulnerable.

C. Application of Culpability
People err, both in developing and using smart systems.

This is inevitable at some point and SEbD guides software
engineers in how to avoid allowing this user (active error)
and developer error (resulting in latent failure) to coincide. In
applying Just Culture to the practice of software engineering,
Reason’s Culpability Decision Tree [21] (see figure 1) provides
a baseline for understanding and agreeing how developer error
can be assessed. The model, whilst generic and having been
developed initially for aviation post mortems, looks to five
areas of inquiry each of which ascribes diminishing blame
or culpability to the person who’s actions are in question.

Intention: Deliberate acts, even safety and security related
ones, are not automatically bad. The intention behind the act
is more important when understanding what happened and, to
what extent someone is culpable. Within software engineering
it is entirely possible, for example, that an error filled code
library is used with the intention of cryptographically signing
the communications between smart things. The intent was
wholesome. Where an engineer had deliberately altered the
code to break the cryptography the intent was subversive and
could be seen as a sabotage rendering the engineer culpable for
the latent failure of the system. Proactive Design & External
Validation (P2 & P6 of SEbD) provide guidance to firstly
expect potentially poor library code as a risk, and secondly to
utilise more than one person/method to check resultant code
prior to release.

Impairment: Following the same example, impairment simply
asks whether the engineer was using what would in their domain
be considered an unauthorised substance—one considered to
impair their cognitive ability to detect that erroneous code.
Domains will have differing viewpoints on impairment. How-
ever pressures on software engineers (for example, commercial
or timeliness) leads to longer and harder working practices,
and in turn, substance abuse [22]. This being clearly linked to
cognitive impairment [23]. Pro-Secure Behaviour (P4) would
be in play here as, clearly, being impaired is not pro-secure.
This may be an instance of where mandatory substance testing
might be an enforced pro-secure behaviour.

Violation: Humans routinely deviate from what procedure
considered safe (or secure), e.g., reusing simple passwords
for convenience. The inquiry here revolves around whether
the procedures themselves were not only available to the
engineer, but also workable. Using our example, procedure
that requires peer validation of security code libraries before
implementation may be documented, but if staffing pressures
meant peers were unavailable and self-acceptance of code
was the norm, then clearly the system (the organisation’s
project management in this case) plays a role and diminishes
personal culpability. Just Culture (P1) is the primary mitigating
principle, providing the mechanism by which a violation can
be safely reported. Knowing where software engineers might
deviate from procedure and feeding this into evolving procedure
through Proactive Design (P2), and Non-Alignment (P5) is
crucial in ensuring engineers do not violate (a form of active
error) when a latent failure in the procedures is known.

Substitution: Directly related to violation is the question of
whether any other engineer would, or could, have made the
same error. Clearly if peers were unavailable the system was
failing. But what training or skills should the engineer have had
and brought to bear? Where they personally negligent in self-
accepting or was that a result of a lack of training/experience?
Could the same outcome have occurred if another engineer
had been in place. Applying External Validation (P6) practice
to development can help to resolve substitution issues. If
techniques like pair-coding sees both engineers apply the same
error then patently substitution is applicable.

Sabotage,
malevolent

Substance abuse
without mitigation

Substance abuse
WITH mitigation

Possible reckless
violation

System-induced
violation

Possible negligent
error

System-induced
error

Corrective action
needed

No action required
(?)

N N Y

N YY Y N N Y

NY Y Y N

Y N
Blameless error

Diminishing culpability

Are there mitigating
circumstances?

(e.g. prescription)

Were procedures
available, intelligible,
workable & correct?

Were the
consequences
as intended?

Any deficiencies in
selection, training or

experience?

Principles 1 2 3 4 5 6

Were the
actions

as intended?

Principles 1 2 3 4 5 6 Principles 1 2 3 4 5 6 Principles 1 2 3 4 5 6 Principles 1 2 3 4 5 6

Does the person
have a history of

unsafe acts?

Were safe operating
procedures
knowingling

violated?

Was the person
using unauthorised

substances?

Could another
person have made

the same error under
similar conditions?

Fig. 1: Reason’s culpability decision tree, with SEbD principles as they relate to inquiry areas.

History: The final area looks to whether the engineer has a
history of similar behaviour. In software engineering terms
this is harder to conceptualise, however one example would
be someone who repeatedly self-accepts based on a lack of
experience and requires corrective action perhaps through
training or peer mentoring. A Just Culture (P1) should maintain
clear and confidential documentation of security related events—
both to be used within the improvement cycle but also to
facilitate the final historical line of inquiry should it be needed.

IV. CONCLUSION

Prior work presented Security Ergonomics by Design—a
set of principles to enable software engineers to develop safe
and secure smart cyber physical systems. This paper corrects
an omission of the fundamental need for a Just Culture in
underpinning these principles. Drawing on lessons and practice
from more mature safety domains, Just Culture enables the
capture of user error, and for engineers to share their own
development errors in a trusting environment which is designed
not to apportion blame but rather provide iterative systemwide
improvement based upon those failings.
Given the lack of research around the use of Just Culture
in security-related event reporting, future work is planned to
examine both the prevalence and use of Just Culture, and
in turn to derive domain-specific decision trees for event
post mortems and best practice for implementation within
organisations developing smart cyber physical systems.

ACKNOWLEDGMENT

This work has been funded by the UK EPSRC as part of
the PETRAS IoT Research Hub - Cybersecurity of the Internet
of Things grant no EP/N023234/1.

REFERENCES

[1] B. Craggs and A. Rashid, “Smart cyber-physical systems: beyond usable
security to security ergonomics by design,” in Proceedings of the 3rd
International Workshop on Software Engineering for Smart Cyber-
Physical Systems. IEEE Press, 2017, pp. 22–25.

[2] J. Reason and A. Hobbs, Managing maintenance error: a practical guide.
CRC Press, 2017.

[3] S. Dekker, Just culture: restoring trust and accountability in your
organization. CRC Press, 2018.

[4] F. H. Hawkins, Human Factors in Flight. Gower Technical Press, 1987.
[5] Maritime and Coastguard Agency, “Improving Safety and

Organisational Performance Through a Just Culture,” 2014.
[Online]. Available: https://www.gov.uk/government/uploads/system/
uploads/attachment data/file/286139/just culture.pdf [Accessed: Dec-18]

[6] B. Misiurek, Standardized Work with TWI: Eliminating Human Errors
in Production and Service Processes. CRC Press, 2016.

[7] B. Krebs. (2016) DDoS on Dyn Impacts Twitter, Spotify, Reddit.
[Online]. Available: https://krebsonsecurity.com/2016/10/ddos-on-dyn-
impacts-twitter-spotify-reddit/ [Accessed: Dec-18]

[8] G. Martin, S. Ghafur, J. Kinross, C. Hankin, and A. Darzi, “Wannacry a
year on.” BMJ (Clinical research ed.), vol. 361, p. k2381, 2018.

[9] F. Nietzsche, Götzen-Dämmerung, oder, Wie man mit dem Hammer
philosophirt. C.G. Naumann, 1889.

[10] S. Dekker, Just culture: balancing safety and accountability, 2nd Ed.
CRC Press, 2018.

[11] Y. Cohen-Charash and P. E. Spector, “The role of justice in organizations:
A meta-analysis,” Organizational behavior and human decision processes,
vol. 86, no. 2, pp. 278–321, 2001.

[12] J. Allspaw. (2012) Blameless PostMortems and a Just Culture. [Online].
Available: https://codeascraft.com/2012/05/22/blameless-postmortems/
[Accessed: Jan-17]

[13] P. Taylor, S. Allpress, M. Carr, E. Lupu, and J. Norton et al, Internet
of Things: Realising the Potential of a Trusted Smart World. Royal
Academy of Engineering, 2018.

[14] V. F. Mancuso, “Human Factors in Cyber Warfare II,” Proceedings of
the Human Factors and Ergonomics Society Annual Meeting, vol. 58,
no. 1, pp. 415–418, 2014.

[15] R. W. Proctor and J. Chen, “The role of human factors///ergonomics in the
science of security: decision making and action selection in cyberspace,”
Human factors, vol. 57, no. 5, pp. 721–727, 2015.

[16] P. Carayon, “Human factors of complex sociotechnical systems,” Applied
ergonomics, vol. 37, no. 4, pp. 525–535, 2006.

[17] R. Fielding. (2017) Miss IG Geek: Just Culture 2: Risky Behaviour. [On-
line]. Available: http://missinfogeek.net/just-culture-2-risky-behaviour/
[Accessed: Dec-18]

[18] R. Mogull. (2018) The Security Profession Needs to Adopt Just Culture.
[Online]. Available: https://securosis.com/blog/the-security-profession-
needs-to-adopt-just-culture [Accessed: Jun-18]

[19] T. Hayashi, “Schemes for realizing total security in information systems,”
in Proc. of 5th Int. Conf. on ICT and Higher Education, 2006.

[20] M. Bromiley. (2015) Human factors in clinical practice. [Online].
Available: https://vimeo.com/177542101 [Accessed: Jan-17]

[21] J. Reason, “Managing the risks of organizational accidents,” 1997.
[22] H. Somerville and P. May. (2014) Use of illicit drugs

becomes part of Silicon Valley’s work culture. [Online].
Available: https://www.mercurynews.com/2014/07/25/use-of-illicit-drugs-
becomes-part-of-silicon-valleys-work-culture/ [Accessed: Aug-18]

[23] B. Blume, “Alcohol and drug abuse in the encyclopedia of occupational
health and safety,” International Labour Office,, pp. 1572–1577, 1998.

