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Abstract 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are the 

primary conduits of excitatory synaptic transmission. AMPARs are predominantly 

Ca2+-impermeable in the matured excitatory synapse, except under certain 

circumstances. Growing evidence implicates the Ca2+ permeability of AMPARs in the 

regulation of long-term synaptic plasticity and in the pathophysiology of several 

neurological disorders. Therefore, the Ca2+ conductance of AMPARs may have both 

physiological and pathological roles at synapses. However, our understanding of the 

role of Ca2+ permeable AMPARs (CP-AMPARs) in Alzheimer’s disease is limited. 

Here we discuss insights into the potential CP-AMPAR mediated pathophysiology of 

Alzheimer’s disease, including: 1. Ca2+-mediated aberrant regulation of synapse 

weakening mechanisms, and 2. neuronal network dysfunction in the brain. 

Consideration of CP-AMPARs as primary drivers of pathophysiology could help in 

understanding synaptopathologies, and highlights the potential of CP-AMPARs as 

therapeutic targets in Alzheimer’s disease. 

 

 



It has become increasingly evident that in certain pathological states, AMPAR 

expression is compromised, resulting in alterations to synaptic function. CP-AMPARs 

in particular have well-established roles in epilepsy (Grooms et al., 2000, 

Rajasekaran et al., 2012, Malkin et al., 2016), ischaemia (Kwak and Weiss, 2006), 

traumatic brain injury (Spaethling et al., 2008),  and illicit substance addiction and 

withdrawal (Pistillo et al., 2016, Wolf, 2016). Indeed, the contribution of CP-AMPARs 

to these disease etiologies has been thoroughly reviewed (Tanaka et al., 2000, Liu 

and Zukin, 2007, Henley and Wilkinson, 2016) and the potential for targeting 

AMPARs as a therapeutic strategy continues to be explored (Chang et al., 2012, 

Franco et al., 2013, Zaccara and Schmidt, 2016). In addition to these diseases, it has 

been postulated that CP-AMPARs might also contribute to progressive 

neurodegeneration (Weiss and Sensi, 2000, Kwak and Weiss, 2006). However, until 

recently, there has been limited evidence to support this claim. Thus, this review will 

discuss recent evidence implicating CP-AMPARs in Alzheimer’s Disease (AD), and 

describe how targeting AMPARs may offer a potential therapeutic strategy in treating 

AD patients. 

 

1. Ca2+-permeable AMPA receptors: structure, function and expression 

α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are 

ionotropic receptors, formed by the tetrameric assembly of GluA1-4 subunits, and are 

widely expressed throughout the central nervous system (Hollmann and Heinemann, 

1994). AMPARs are highly dynamic complexes, being able to transition between 

different subunit assembles depending on the synaptic environment (Schwenk et al., 

2014, Herguedas et al., 2016). In the adult hippocampus, AMPARs are typically 

composed of a combination of GluA1 and GluA2, or GluA2 and GluA3 subunits 

(Wenthold et al., 1996). The AMPAR subunits themselves have four distinct domains: 

an N-terminal extracellular domain; a ligand binding domain (composed of two 

extracellular polypeptide sections, termed S1 and S2 (Keinanen et al., 1990, Stern-

Bach et al., 1994); a membrane-localised channel domain (formed by three 

transmembrane α-helices and a channel pore loop, termed M1, M2, M3 and M4); 

and an intracellular C-terminal domain (Figure 1). 

  

The functional properties of AMPARs depend on the composition of its subunits. For 

instance, inclusion of the GluA2 subunit in a receptor confers Ca2+ impermeability 

and these are the major species of receptor found in glutamatergic neurons 

(Wenthold et al., 1996). The impermeability to Ca2+ is conferred by editing of the Q/R 



site of GluA2 pre-mRNA. Here, a glutamine (Q) codon (which lies within the channel-

forming M2 re-entrant membrane loop region) is modified into an arginine (R) codon 

(Sommer et al., 1991, Burnashev et al., 1992). However, AMPARs can be Ca2+ 

permeable in certain circumstances; (1) in the instances where they contain unedited 

GluA2(Q) subunits, or (2) when they are formed without the inclusion of the GluA2 

subunit. GluA2-lacking AMPARs, which are often homomeric for the GluA1 subunit, 

are termed Ca2+-permeable AMPARs (CP-AMPARs). CP-AMPARs are known to 

have greater single channel conductance than GluA2-containing AMPARs (Swanson 

et al., 1997), though less than N-methyl-D-aspartate receptors (NMDARs) 

(Dingledine et al., 1999). Additionally, CP-AMPARs have faster desensitization 

constants than GluA2-containing receptors (Traynelis et al., 2010) The majority of 

CP-AMPARs display a inwardly rectifying current-voltage relationship (though see 

Gilbertson et al., 1991), whereby the receptors do not permit the passage of current 

at depolarising membrane potentials, due to channel pore blockade by intracellular 

polyamines (Bowie and Mayer, 1995, Donevan and Rogawski, 1995, Guerra et al., 

2016); Figure 2A, B). This change in rectification properties conferred by 

endogenous intracellular polyamines is, however, subject to regulation by the 

AMPAR auxiliary subunit stargazin (Soto et al., 2007). Stargazin reduces the 

sensitivity of CP-AMPARs to polyamine block, as well as increasing single-channel 

conductance and slowing deactivation of receptors, altogether increasing the influx of 

Ca2+. This regulation of channel properties by stargazin may increase the functional 

diversity of CP-AMPARs, with populations of CP-AMPARs in regions where stargazin 

is not expressed displaying altered functional characteristics. The wide-ranging 

effects that external and internal polyamines have on AMPAR channel conductance, 

and contrasting data obtained from bi-polar retinal cells, has led some to question 

whether GluA2-containing AMPARs can actually display Ca2+-permeable 

characteristics (Bowie, 2012). Thus, it is highly evident that further investigation is 

required to substantiate the exact composition of the different populations of 

AMPARs. 

 

Expression of CP-AMPARs is evident during the early developmental stages of the 

hippocampus, compared to just a small fraction of CP-AMPARs present in mature 

hippocampal neurons (Wenthold et al., 1996, Rozov et al., 2012). This is in part due 

to the presence of unedited forms of GluA2 mRNA at embryonic stages, which later 

become almost entirely obsolete as the brain reaches maturity (Burnashev et al., 

1992, Kawahara et al., 2003). Coupled with a higher ratio of GluA1, GluA3, and 

GluA4 to GluA2 subunits, CP-AMPARs are known to be relatively prevalent in the 



hippocampus during the first few postnatal weeks (Pellegrini-Giampietro et al., 1992, 

Ho et al., 2007). However, a subsequent increase in edited GluA2 subunit expression 

can be seen after approximately 1-3 weeks of postnatal development (Pellegrini-

Giampietro et al., 1992, Pickard et al., 2000, Ho et al., 2007, Blair et al., 2013). A 

similar profile is found in other brain regions, where low GluA2 abundance in early 

developmental stages results in CP-AMPAR expression in neonatal neurons of the 

cortex, striatum and cerebellum, which gradually declines after a short developmental 

time window (Pellegrini-Giampietro et al., 1992, Kumar et al., 2002, Shin et al., 2007, 

Miyazaki et al., 2012). Other findings have shown that CP-AMPARs emerge at later 

time points in certain cell-types, replacing Ca2+-impermeable AMPARs in fast spiking 

interneurons of the prefrontal cortex during adolescence (Wang and Gao, 2010). 

Thus, the expression of CP-AMPAR is tightly regulated and linked to developmental 

stages, brain regions and distinct cell-types. 

 

2. Physiological roles of Ca2+-permeable AMPA receptors at the synapse  

Though limited in their expression in the mature synapse, CP-AMPARs are 

nevertheless thought to play important roles in the physiological function of neurons. 

AMPARs are pivotal in both the induction and expression of plasticity events that 

occur during synaptic stimulation (Henley and Wilkinson, 2016). The insertion of 

AMPARs at the synapse is an underlying molecular mechanism of long-term 

potentiation (LTP), a form of synaptic plasticity widely considered to be a correlate of 

learning and memory at the molecular level (Bliss and Collingridge, 1993). Whilst it 

was initially thought that only heteromeric assemblies of AMPARs containing both 

GluA1 and GluA2 subunits were trafficked to the synaptic membrane of CA1 

pyramidal neurons during synaptic stimulation, later studies have shown that 

expression of LTP requires the insertion of CP-AMPARs under certain circumstances, 

but that their expression is transient (< 25 min) in nature (Jia et al., 1996, Plant et al., 

2006, Jaafari et al., 2012, Park et al., 2016). It is however, debatable whether CP-

AMPARs are expressed during LTP induction (Adesnik and Nicoll, 2007, Gray et al., 

2007). Whilst these two studies bring in to question the importance of CP-AMPARs in 

the induction of synaptic plasticity, a possible explanation for these contradictory 

results may be related to the age of animal and experimental protocol. This was 

observed in a recent study, where LTP was blocked by IEM-1460 - a voltage-

dependent AMPAR open channel blocker selective for CP-AMPARs (Schlesinger et 

al., 2005) - in animals around 2 weeks of age (Sanderson et al., 2016). In contrast, 

LTP in animals closer to 3 weeks of age was insensitive to IEM-1460 treatment, 



illustrating the small time frame in which CP-AMPARs may contribute to synaptic 

plasticity. Here, we will not cover this debate further since it is beyond scope of this 

review, however it is clear that further work is required to fully understand the specific 

circumstances where CP-AMPARs are pivotal for plasticity induction. 

 

We have recently shown that in addition to possible roles in the induction of LTP per 

se, CP-AMPARs might also confer metaplastic properties to hippocampal neurons. 

We reported that acute stress or brief application of the GR agonist dexamethasone 

(DEX) results in a long-lasting increase in synaptic potentiation, which is mediated 

through the insertion of CP-AMPARs at the synaptic membrane (Whitehead et al., 

2013) (Figure 3). We showed that, whilst this stress-induced increase in LTP was, in 

part, mediated through activation of NMDARs, a portion of synaptic potentiation was 

found to be sensitive to treatment with IEM-1460, indicating the involvement of CP-

AMPARs. Moreover, acute stress resulted in an inwardly rectifying current/voltage 

(I/V) relationship, which is indicative of increased CP-AMPAR surface expression. 

We also found that the expression of CP-AMPARs required the protein kinase A 

(PKA)-mediated phosphorylation of the GluA1 serine 845 residue (S845), a known 

mechanism regulating CP-AMPAR synaptic expression (He et al., 2009). Consistent 

with our findings, a recent report has noted that acute footshock stress results in the 

rapid upregulation of S845 GluA1 phosphorylation, suggestive of the increased 

incorporation/stabilization of GluA1-containing AMPARs (Bonini et al., 2016). Further, 

phosphorylation of GluA1 at the serine 831 residue (S831) was found to occur under 

certain circumstances following acute swim stress (Fumagalli et al., 2012), which 

robustly increases single channel conductance (Kristensen et al., 2011). Taken 

together, these results suggest that CP-AMPARs can rapidly respond to 

environmental stimuli in order to regulate synaptic transmission and function. 

Interestingly, whilst the findings of CP-AMPARs in acute stress might suggest a role 

in enhancing memory or learning, conversely, CP-AMPARs have also been shown to 

also be important in memory erasure (Clem and Huganir, 2010). During the 

consolidation period following fear memory conditioning, expression of CP-AMPARs 

in the amygdala was found to be increased, which resulted in a greater magnitude of 

the long-term depression (LTD) form of synaptic plasticity and increased chance of 

memory extinction. Thus, it appears that CP-AMPARs can regulate both forms of 

synaptic activity – LTP and LTD. For example, it was shown that CP-AMPARs are 

recruited to the synaptic membrane during LTD induction, through activation of PKA 

anchored to a kinase anchor protein 150 (AKAP150), and phosphorylation of S845 



on the GluA1 subunit (Sanderson et al., 2016). Whilst LTD could be induced by 

NMDARs alone, the magnitude of LTD was smaller compared to when CP-AMPARs 

were expressed. Clearly then, CP-AMPARs can have a multitude of roles in normal 

physiological function of neurons. It is of interest therefore whether the molecular 

mechanisms that regulate CP-AMPARs are differentially regulated in pathological 

conditions in the brain. 

 

3. Potential role of Ca2+-permeable AMPA receptors in Alzheimer’s disease 

In an examination of postsynaptic density-rich fractions of human AD patients’ 

hippocampus, an increase in GluA1 levels was reported when compared with healthy 

control patients, whereas no changes to NMDAR subunit expression were observed 

(Marcello et al., 2012). This suggests a selective increase in GluA1-containing 

receptors at synapses in the AD hippocampus. Consistent with this, we have recently 

shown that direct infusion of oligomerised amyloid- (A) - thought to be a key driving 

force in AD pathogenesis (LaFerla et al., 2007) - into CA1 hippocampal neurons 

resulted in a rapid synaptic insertion of CP-AMPARs (Whitcomb et al., 2015).  This 

effect enhances AMPAR-mediated excitatory postsynaptic current (EPSCAMPA) and 

was absent in cells treated with IEM-1460 or in cells transfected with shRNA directed 

against the GluA1 AMPAR subunit. We also showed that these effects operate 

through PKA-mediated S845 GluA1 phosphorylation (see Figure 4) suggesting that 

A utilises a canonical mechanism of CP-AMPAR expression. In addition, a recent 

study of an AD transgenic mouse model reported aberrant CP-AMPAR expression 

and increased GluA1 phosphorylation specifically in young mice, prior to any overt 

neuropathology (Megill et al., 2015). Together, these findings indicate that CP-

AMPAR synaptic insertion may be an early-stage event in AD pathogenesis. 

 

What is currently missing in our understanding of CP-AMPAR function in AD 

pathology is how the expression of the receptor might translate into pathological 

consequences for the neuron. A compelling hypothesis is that aberrant CP-AMPAR 

expression causes excessive intracellular Ca2+ influx that leads to synaptic 

dysfunction and neurodegeneration. Physiologically, CP-AMPARs appear to be only 

transiently expressed in response to synaptic activity (Plant et al., 2006, Sutton et al., 

2006, Hou et al., 2008, Yang et al., 2010). If this is case, CP-AMPAR expression is 

tightly regulated as a physiological necessity, and this likely provides a mechanism 

that protects against aberrant and/or sustained Ca2+ flux through CP-AMPARs in 

excitatory synapses. Therefore, it is likely that aberrant activation of CP-AMPAR 



function may elicit Ca2+-mediated synaptic and neuronal degeneration. Indeed, 

alterations in Ca2+ homeostasis have been proposed to be crucial in the initial stages 

of AD development (LaFerla, 2002). Changes to Ca2+ signaling have been linked to 

dysregulation of amyloid precursor protein (APP) processing, responsible for Aβ 

production, and may augment the formation of toxic Aβ oligomers (Mattson, 1990, 

Mattson et al., 1993). Indeed, the increased production of Aβ oligomers in AD 

patients has been attributed to the higher incidence of epileptic seizures, especially in 

patients in the early stages of disease (Amatniek et al., 2006). It is also worth 

considering the overt link between CP-AMPAR expression and aberrant neuronal 

network activity that is prevalent in epilepsy (Rajasekaran et al., 2012), in the context 

of the seizure activity and cognitive impairments that are evident in APP transgenic 

mouse models and AD patients (Palop et al., 2007, Pandis and Scarmeas, 2012). 

These findings support the notion that dysregulated Ca2+ flux through sustained CP-

AMPAR expression in early phases of AD may accelerate the onset of neuronal 

network dysfunction and neuronal excitotoxicity, thus propagating cognitive decline 

(Palop and Mucke, 2009), though it remains to be seen whether CP-AMPARs are 

expressed solely at these initial stages of pathology, or again at a later point in the 

disease cycle. 

 

Aberrant synapse weakening, which promotes the elimination of synaptic 

connections, also appears to be an underlying feature of several neuropathological 

conditions (Hasbani et al., 2000, Bradley et al., 2012, Sheng et al., 2012, Park and 

Biederer, 2013). Synapse weakening processes involve a number of specific 

catalyzing signals (Collingridge et al., 2010). We have recently identified the 

activation of caspase-3 and glycogen synthase kinase 3 (GSK3β), and 

phosphorylation of the microtubule associated protein tau (pTau), as being pivotal 

and necessary end-point signals in synapse weakening (Kimura et al., 2014, Regan 

et al., 2015, Regan et al., 2016). Critically, aberrantly enhanced pTau is a common 

factor to synapse dysregulation and weakening induced by a variety of factors, 

including Aβ, stress and neurotrophins (Sotiropoulos et al., 2011, Pooler et al., 2014, 

Kailainathan et al., 2016). Given the aforementioned importance of CP-AMPAR 

expression to the initial synaptic alterations induced by stress and Aβ (Whitehead et 

al., 2013, Whitcomb et al., 2015), one favourable hypothesis is that CP-AMPAR 

expression leads to aberrant synapse weakening via the activation of signaling 

pathways culminating in tau phosphorylation. Interestingly, synaptic activity leading to 

accumulation of intracellular Ca2+ has been shown to increase phosphorylation of tau 

at serine residues 396/404 (S396/404), via Ca2+-dependent activation of GSK3β 



(Pierrot et al., 2006). In addition, hyperphosphorylation of tau has been linked to 

abnormal Ca2+ signaling through excitotoxic levels of glutamate (Guo et al., 1999, 

Leissring et al., 2000), and this dysregulated Ca2+ could serve as the conduit 

between CP-AMPAR expression and pTau. Further work is therefore required to fully 

determine the potential role of CP-AMPARs in synapse weakening pathways 

including pTau and other substrates. 

 

4. Conclusion and translation 

Neurodegenerative diseases such as AD are currently without effective treatments or 

cures (Casey et al., 2010). Given the growing evidence implicating CP-AMPARs in 

the onset of synaptic pathology (Grooms et al., 2000, Kwak and Weiss, 2006, 

Rajasekaran et al., 2012, Whitcomb et al., 2015), this form of AMPAR could well 

serve as a therapeutic target in the development of new treatments in AD and other 

neurodegenerative diseases. Indeed, targeting CP-AMPARs has been cited as a 

potential strategy in other neurological disorders (Henley and Wilkinson, 2016). 

However, in order to effectively develop novel methodologies to modulate CP-

AMPAR function in disease, we first require an understanding of the mechanisms by 

which CP-AMPARs aberrantly function, and the downstream consequences. In doing 

so, meaningful approaches in the development of CP-AMPAR regulators can be 

undertaken. Two non-competitive inhibitors of AMPA receptors, talampanel and 

perampanel, have shown some efficacy in reducing seizure activity in clinical trials 

(Chappell et al., 2002, Kerling and Kasper, 2013) and have been shown to reduce 

neuronal Ca2+ elevations in cultured neurons (Hanada et al., 2011, Paizs et al., 2011). 

However, whether these antagonists might prove to be a useful therapeutic strategy 

for AD remains to be seen. A promising strategy for limiting the progression of the 

disease could involve the development of a highly selective, bioavailable CP-AMPAR 

antagonist administered at an early, pre-symptomatic stage of AD. 



Figure Legend 

 

Figure 1. Structure and binding partners of AMPAR subunits. 

The structure of an AMPAR subunit, consisting of an extracellular N-terminal domain 

(NTD) and an intracellular C-terminal domain (CTD), three transmembrane domains 

(M1, M3, M4) and a channel pore loop (M2). The alternately spliced flip/flop site 

encodes a short amino-acid sequence within an extracellular domain of the AMPAR 

subunit and the Q/R editing site is shown within the channel pore loop. Depending on 

the AMPAR subunit, the CTD may be either short or long-tailed, which alters the 

trafficking properties and interacting partners of AMPARs. Shown are the AMPAR 

CTD binding proteins 4.1N, synapse-associated protein 97 (SAP97), post synaptic 

density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1), and zonula 

occludens-1 protein (zo-1) (PDZ), N-ethylmaleimide-sensitive factor (NSF), 

Glutamate receptor-interacting protein (GRIP), and protein that interacts with protein 

C-kinase 1 (PICK1).  

 

Figure 2. The role of CP-AMPARs in synaptic function. 

(A and B) CP-AMPARs exhibit a characteristic inward rectification, a result of 

channel pore block by intracellular polyamines that limits current flow at positive 

membrane potentials. This is in contrast to GluA2-containing AMPARs, which are 

insensitive to polyamine blockade, and therefore demonstrate a linear current flow as 

a function of membrane potential. (C) The C-terminal domain (CTD) of GluA1-

containing AMPARs is subject to several characterized phosphorylation events 

through a number of identified kinases, including Ca2+/calmodulin-dependent protein 

kinase II (CaMKII), protein kinase C (PKC), protein kinase A (PKA), and p21-

activated kinase 3 (PAK3). Phosphorylation at specific residues has downstream 

effects upon synaptic AMPAR trafficking. 

 

Figure 3. Stress-primed metaplasticity and CP-AMPARs. 

Release of glucocorticoids (GCs) during an acute stressor primes synapses for 

subsequent plasticity inducing events. Transient activation of glucocorticoid receptors 

(GR) promotes CP-AMPAR insertion at the synapse via PKA-mediated 

phosphorylation of the GluA1 CTD. A consequence of this is the facilitation of LTP 

due to the addition of an NMDAR-independent, CP-AMPAR-mediated component of 

synaptic potentiation. 

 

Figure 4. Intracellular amyloid- mediated CP-AMPARs trafficking. 



Intracellular amyloid- (A) oligomers promote CP-AMPAR insertion at the synapse. 

Presynaptic glutamate release activates postsynaptic GluA2-containing AMPARs to 

elicit excitatory postsynaptic potentials (EPSCs). Infusion of A oligomers induces 

the PKA-mediated phosphorylation of S845 of GluA1, promoting the synaptic 

expression of CP-AMPARs. The consequences of this in the short-term are a rapid 

enhancement of synaptic transmission and neuronal activity. 
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