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Abstract 
Parkinson’s disease (PD) is a progressive, neurodegenerative disease that presents with 

significant motor symptoms, for which there is no diagnostic test. We have serendipitously 

identified a hyperosmic individual, a ‘Super Smeller’ that can detect PD by odor alone, and 

our early pilot studies have indicated that the odor was present in the sebum from the skin of 

PD subjects. Here, we have employed an unbiased approach to investigate the volatile 

metabolites of sebum samples obtained non-invasively from the upper back of 64 

participants in total (21 controls and 43 PD subjects). Our results, validated by an 

independent cohort, identified a distinct volatiles-associated signature of PD, including 

altered levels of perillic aldehyde and eicosane, the smell of which was then described as 

being highly similar to the scent of PD by our ‘Super Smeller’. 

 

Background 

Physicians in ancient times, including Hippocrates, Galenus, and Avicenna, used odor as a 

diagnostic tool. Although the olfactory skills of physicians are not routinely used in modern 

medicine, it is well documented that a number of conditions, predominantly metabolic and 

infectious diseases, are associated with a unique odor1, but there is scant evidence for odors as 

symptoms of neurodegenerative disorders. To the best of our knowledge this is the first study 

that demonstrates the use of sebum as biofluid to screen for Parkinson’s disease. There have 

been a small number of metabolomics studies of Parkinson’s disease using various biofluids such 

as blood, faeces, saliva, urine, cerebrospinal fluid as well as insect and mouse models of 

Parkinson’s as described in this recent review by Shao and Le2, there is no mention of a 'PD odor'. 
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Joy Milne, a Super Smeller whose husband Les was diagnosed with PD in 1986, has demonstrated 

a unique ability to detect PD by odor3. Joy has an extremely sensitive sense of smell, and this 

enables her to detect and discriminate odors not normally detected by those of an average 

olfactory ability. Preliminary tests with t-shirts and medical gauze indicated the odor was present 

in areas of high sebum production, namely the upper back and forehead, and not present in 

armpits3. Sebum is a waxy, lipid-rich biofluid excreted by the sebaceous glands in the skin, over-

production of which known as seborrhea, is a known non-motor symptom of PD4-5. Parkinson’s 

skin has recently been shown to contain phosphorylated α-synuclein, a molecular hallmark of 

PD6-7. Identification and quantification of the compounds that are associated with this distinctive 

PD odor could enable rapid, early screening of PD as well as provide insights into molecular 

changes that occur as the disease progresses and enable stratification of the disease in future. 

 

Volatile organic compounds (VOCs) are often associated with characteristic odors, although some 

volatiles may also be odorless. The term ‘volatilome’ describes the entirety of the volatile organic 

and inorganic compounds that may originate from any organism, or object, which may be 

analytically characterized. For any given sample under ambient conditions in a confined 

environment, collecting, identifying, and measuring molecules in its headspace will then define its 

volatilome. Such measurements can be performed with thermal desorption gas chromatography 

mass spectrometry (TD-GC-MS), where a sample is placed in a closed vessel. The sample is then 

heated to encourage the production of volatiles and the headspace is captured for analysis by GC-

MS. Investigation of volatile metabolites using mass spectrometry has proven to be extremely 

useful in clinical studies8-11  as well as in the analysis of the consistency and provenance of edible 

items12-14. Recently, TD-GC-MS has been used as a volatilome analysis platform for the detection 

of compounds from bacteria implicated in ventilator associated pneumonia10, for differentiation 

between odors due to human and animal decomposition15, as well as aerosol detection of the 

fumes from e-cigarettes16. This versatility of TD-GC-MS for samples from many sources renders it 

highly suitable for use in identifying the metabolites that give rise to the distinct scent of PD. We 

have established a workflow that starts in clinics with the collections of sebum samples from the 

upper backs of PD patients along with matched control subjects and progresses to the discovery 

of disease specific volatile metabolites, the odor of which is confirmed by our Super Smeller. 

(Figure 1, Supplementary information and Table S1A). 
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In the current study, VOCs from the sample headspace were measured in two cohorts: a 

‘discovery’ cohort (n=30) and a ‘validation’ cohort (n=31), to validate discovered biomarkers17 (for 

demographics of each cohort see Table S1B and S5). A third cohort consisting of three drug-naïve 

PD participants was used for mass spectrometry analysis in conjunction with a human Super 

Smeller via an odor port (Figure 1). This proof of principal study provides the first description of 

the skin volatilome in Parkinson’s disease compared to control subjects. 

 

Study Participants 

The participants for this study were part of a nationwide recruitment process taking place at 25 

different NHS clinics. The participants for this study were selected at random from these sites. 

The study was performed in three stages. The first two stages (discovery and validation) consisted 

of 61 samples (a mixture of control, PD participants on medication and drug naïve PD subjects as 

shown in Table S1B). The first cohort was used for volatilome discovery, and the second cohort 

was used to validate the significant features discovered in first cohort. A third cohort consisting of 

three drug naïve PD participants was used for smell analysis from the Super Smeller. Ethical 

approval for this project (IRAS project ID 191917) was obtained by the NHS Health Research 

Authority (REC reference: 15/SW/0354). The metadata analysis for these participants is reported 

in Table S1B. The study design was as outlined in Figure1. 

 

Sample collection 

The sampling involved each subject being swabbed on the upper back with a medical gauze. The 

gauze with sebum sample from participant’s upper back was sealed in background-inert plastic 

bags and transported to the central facility at the University of Manchester, where they were 

stored at -80 ⁰C until the date of analysis. 

 

 

Analytical Method: TD-GC-MS analysis 
 
Description of the technique 

A Dynamic Headspace (DHS) GC-MS method was developed for the analysis of gauze swabs 

which contained sampled participant sebum. DHS is a sample preparation capability for 

subsequent GC application using the GERSTEL MultiPurpose Sampler (MPS). DHS extracts and 

concentrates VOCs from liquid or solid samples. The sample is incubated while the headspace is 

purged with a controlled flow of inert gas through an adsorbent tube. Once extraction and pre-
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concentration are completed, the adsorbent tube is automatically desorbed using the GERSTEL 

Thermal Desorption Unit (TDU). Analytes are then cryo-focused on the GERSTEL Cool Injection 

System (CIS) Programmed Temperature Vaporizer (PTV) injector before being transferred to the 

GC for analysis. 

In order to correlate the PD molecular signature to the PD smell, the same setup was used in 

combination with the GERSTEL Olfactory Detection Port (ODP). The ODP allows detection of 

odorous compounds as they elute from the GC by smell. In fact, the gas flow is split as it leaves 

the column between the detector of choice (in our case MS) and the ODP to allow simultaneous 

detection on the two analytical tools.  The additional smell profile information can then be 

acquired as an olfactogram. Voice recognition software and intensity registration allow direct 

annotation of the chromatogram.  

 

Method details 

Gauze swabs were transferred into 20 mL headspace vials and then analyzed by DHS-TD-GC-MS. 

For the DHS preconcentration step, samples were incubated for 5 min at 60 ⁰C before proceeding 

with the trapping step. Trapping was performed by purging 500 mL of the sample headspace at 

50 mL.min-1 through a Tenax® TA adsorbent tube kept at 40 ⁰C (GERSTEL, Germany). Nitrogen 

was used as purge gas. To release the analytes, the adsorbent trap was desorbed in the TDU in 

splitless mode. The TDU was kept at 30 ⁰C for 1 min then ramped at 12 ⁰C.sec-1 to 250 ⁰C and held 

for 5 min. Desorbed analytes were cryofocused in the CIS injector. The CIS was operated in 

solvent vent mode, using a vent flow of 80 mL.min-1 and applying a split ratio of 10. The initial 

temperature was kept at 10 ⁰C for 2 min, then ramped at 12 ⁰C.s-1 to 250 ⁰C and held for 10 min. 

The GC analysis was performed on an Agilent GC 7890B coupled to an Agilent MSD 5977B 

equipped with high efficiency source (HES) operating in EI mode. Separation was achieved on an 

Agilent HP-5MS Ultra inert 30 m x 0.25 mm x 0.25 µm column. The column flow was kept at 1 

mL.min-1. The oven ramp was programmed as following: 40 °C held for 5 min, 10 °C.min-1 to 170 

°C, 8 °C.min-1 to 250 °C, 10 °C.min-1 to 260 °C held for 2 min for a total run time of 31 min. The 

transfer line to the MS was kept at 300 °C. The HES source was kept at 230 °C and the Quadrupole 

at 150 °C. The MSD was operated in scan mode for mass range between 30 and 800 m/z. For the 

olfactometry approach, the chromatographic flow was split between the mass spectrometer and 

the GERSTEL Olfactory Detection Port (ODP3) using Agilent Technologies Capillary Flow 

Technology (three-way splitter plate equipped with make-up gas). The ODP3 transfer line was 

kept at 100 °C and humidity of the nose cone was maintained constant. 
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Data pre-processing and deconvolution  

TD-GC-MS data were converted to open source mzXML format using ProteoWizard. Each cohort 

data were deconvolved separately using eRah package for  R18. Upon deconvolution, in discovery 

cohort 207 features and in validation cohort 210 features were assigned to detected peaks. The 

deconvolved analytes were assigned putative identifications by matching fragment spectra with 

compound spectra present in Golm database, NIST library and Fiehn GCMS library. In discovery 

cohort 163 features were assigned an identification and in validation cohort 156 features were 

assigned an identification. The resulting matrices for each cohort consisted of variables and their 

respective area under the peak for each sample. All data were normalised for age and total ion 

count to account for confounding variables (Table S1B).  

 

Statistical analyses 

The discovery cohort data included a global analysis of all the detected compounds. PLS-DA 

modelling was carried out using all the measured features. We have not included PCA results 

because using this unsupervised clustering method, we were unable to see any clustering of data. 

We attribute this to the complex nature of metabolomics data especially for volatile metabolites. 

This results in high dimensionality of the data and it is unrealistic to expect that the separation 

between PD and controls to be the most dominating variance in the data and thus results in 

poorer display on PCA/MDS plots. Often supervised modelling is required to train the models to 

find defined differences by overcoming noise.  

 

The data were log-scaled, and Pareto scaled prior to Wilcoxon-Mann-Whitney analysis, PLS-DA 

and the production of ROC curves. The PLS-DA was created and executed using MATLAB 

(2018a)19-20 and the MATLAB functions are freely available from our in-house cluster toolbox 

hosted at https://github.com/biospec. ROC curves were generated using the R package called 

pROC21. The samples from both cohorts were combined, thus increasing sample size and 

providing better statistical power while evaluating the performance of this panel of biomarkers 

(Figure 2C, Figure S1). ROC curves were generated by Monte-Carlo cross validations (MCCV) 

using balanced sub-sampling. In each of the MCCV, two thirds of the samples were used to 

evaluate the feature importance. The top two, three, five, seven and nine important features 

were then used to build classification models, which were validated using the remaining one third 

of the samples. The process was repeated 500 times to calculate the average performance and 

https://github.com/biospec


 Page 6 

confidence interval of each model. Classification and feature ranking were performed using a 

PLS-DA algorithm using two latent variables (Figure 2C).  

When performing k-nearest neighbours analysis, k was chosen to be 5 given the small sample 

size, the distance parameter used was Euclidean distance which was used as weights such that 

closer neighbours of a query point have a greater influence than the neighbours further away. 

During random forest analysis of the same data, 10 decision trees were grown, and the growth 

control was achieved by not splitting into subsets smaller than five. SVM model was built using 

LIBSVM, implemented in e1071 package of R22, with a linear kernel. The cost (C) and regression 

loss epsilon () were determined by performing a grid search and were set at C=10 and  was set 

at 0.10.   

 

Results and discussion 

Mass spectrometry data were collected, deconvolved and pre-processed as described in the 

supplementary information. A partial least squares discriminant analysis (PLS-DA) model was 

built using the discovery cohort data (Figure 2). The classification accuracy of this model was 

validated by bootstrapping approach (n=1000). The variables contributing to classification (n=17) 

were selected using variable importance in projections (VIP) scores where VIP > 1. We note at this 

stage that one of the 17 metabolites found is 3,4-dihydroxy mandelic acid, a metabolite of 

norepinephrine in humans. This catechol is also a metabolite of L-dopa, one of the most 

commonly prescribed medication for Parkinson’s. In this study, 3,4-dihydroxy mandelic acid is 

observed in both drug naïve participants and control participants indicating its presence may 

originate from endogenous mandelic acid instead of PD drugs. Norepinephrines including 3,4-

dihydroxy mandelic acid are key molecules in the anabolism of brain neurotransmitters. Changes 

in neurons and neurotransmitters is an extremely well-known characterization of PD23, for 

instance the decrease of dopamines, a precursor to 3,4-dihydroxy mandelic acid is a known 

characterization of PD. It could, therefore, be hypothesized that the presence of endogenous 3,4-

dihydroxy mandelic acid could be indicative of altered levels of neurotransmitters in PD. 

 

The measured volatilome in the validation cohort data (from a different population than the 

discovery cohort) was targeted for the presence or absence of these discovered biomarkers. Out 

of these 17 metabolites, 13 were also found in the validation cohort data, and nine of these had 

retention times that allowed us to confidently assign them as identical (Table S2). These nine 

biomarkers found in both cohorts were selected for further analysis and statistical testing. To 
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evaluate the performance of these biomarkers, we conducted receiver operating characteristic 

(ROC) analyses with data from both the discovery cohort and the validation cohort (Figure S1). 

ROC curves and Wilcoxon-Mann-Whitney tests as well as fold-change calculations on individual 

metabolites shows four out of these nine metabolites had a similar trend in regulation between 

the discovery and validation cohorts and their performance was also similar as measured by AUC 

(Table 1, Figure 3). The results from the combined analysis using both cohorts as a single 

experiment, indicate increased confidence in the data (p-values in Table 1, confidence intervals in 

Figure S1).  

 

We adhered to the Metabolomics Standards Initiative (MSI) guidelines for data analysis and for 

assignment of identity to features of interest17 and all identified features are at MSI level two, 

which means these are putatively annotated compounds (e.g. without chemical reference 

standards, based upon physicochemical properties and/or spectral similarity with 

public/commercial spectral libraries). The compounds perillic aldehyde and eicosane are 

significantly different between PD and control in both the cohorts (p < 0.05): perillic aldehyde was 

observed to be lower in PD samples whereas eicosane was observed at significantly higher levels. 

Although hippuric acid and octadecanal were not significantly different (p > 0.05), the AUC and 

box plots (Figure 3) between the two cohorts were comparable and showed similar trends of 

being increased in PD. Previous studies have reported varying abundances of these compounds in 

other biofluids (Table 2). 

 

Using an odor port attached to the GC-MS instrument, the Super Smeller identified times at 

which any smell was present and also more importantly the times at which a specific ‘musky’ 

smell of PD was detected. Data were presented in the form of an olfactogram, where the 

presence and relative intensity of each smell were recorded at its corresponding chromatographic 

retention time. Olfactogram results obtained from the odor port were overlaid on the respective 

total ion chromatogram from GC-MS (Figure 4A). There was significant overlap between regions 

that contained up-regulated compounds and regions in which a smell similar or identical to that 

of PD scent was present. In the chromatographic trace the region between 19 and 21 min is of 

particular interest (Figure 4B) since the smell associated with the mixture of analytes in that 

window was described as “very strong” and “musky”. This is the same region where three 

compounds viz. hippuric acid, eicosane and octadecanal have been detected in both cohorts and 

all three were found to be up-regulated in PD subjects.  
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In order to validate mass spectrometry led biomarkers and to verify the resultant scent, the 

candidate compounds listed in Table S2 (n=17) were purchased and spiked onto gauze swabs 

(Table S3). An exploratory study with our Super Smeller was performed in which multiple 

mixtures of compounds (n=5) were spiked onto both blank gauze swabs and swabs that contained 

control sebum. Two final dispensed volumes of the mixtures were tested (40 µL and 100 µL) and 

all compounds used were at a single concentration (10 µM). In these blinded tests the Super 

Smeller grouped the samples in order of PD-like odor. She was able to isolate the swabs with a 

sebum background matrix and described them as more familiar to the PD-like smell than without 

control sebum. Further tests utilized control sebum as a background matrix for spiking candidate 

compounds and a range of concentrations was then selected for testing. Mixtures of the 

candidate compounds (n=17) were prepared at a range of concentrations (10 µM, 5 µM, 0.5 µM, 

0.05 µM, 0.005 µM) and presented to the Super Smeller in a second blinded test, she was again 

asked to rank in order of PD-like smell. These results demonstrated she could detect (although 

not systematically order) the whole range of concentrations offered, and a concentration 

between 0.05 µM and 0.5 µM gave her the best response. A validation study consisting of three 

compound mixtures with significance from the MS analysis aimed to distinguish the combination 

that best gave rise to the most PD-like smell. Three mixture combinations were chosen at a single 

concentration (0.5 µM); all candidate compounds (n=17), all compounds identified in both the 

discovery and validation cohorts (n=9) and the panel of compounds expressed in same direction 

and differential between PD and control (n=4). The mixture of 9 compounds was consistently 

described as being most akin to the PD-like odor and was slightly overlapped by description and 

rank with the mixture of 4 compounds. The mixture of 17 compounds was grouped as the same 

'smell' as the other two combinations however were described as significantly weaker. We 

hypothesize this is due to a lower concentration of each compound in the mixture and thus higher 

interference from background solvent smell. The results from these tests are depicted in Figure 

S2 whereby the intensity and correlation to the PD-like smell partitions the groups of samples 

tested. We do not conclude that these chemicals alone constitute the unique smell associated 

with PD, rather we demonstrate that they contribute to it.  

 

From results obtained from three independent sets of data, from different people with one 

underlying factor (i.e. PD) separating them, it was clear that several volatile features were found 

to be significantly different between control and PD participants.  There were no significant 
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differences observed between PD participants on medication and drug naïve PD participants (p > 

0.05 for all measured volatiles), indicating that the majority of the analyzed volatilome and by 

inference sebum, are unlikely to contain drug metabolites associated with PD medication. In 

addition, applying machine learning approaches such as k-nearest neighbours, random forest and 

support vector machines (SVM) did not lead to a classification between drug naïve PD 

participants and PD participants on medication (results in Table S4).  

 

Perillic aldehyde and octadecanal are ordinarily observed as plant metabolites or food additives. It 

can be hypothesised that with increased and altered sebum secretion such lipid-like hydrophobic 

metabolites may be better captured or retained on the sebum-rich skin of PD subjects. Skin 

disorders in Parkinson’s have been observed previously and seborrheic dermatitis (SD) in 

particular has been flagged as a premotor feature of PD23. It has been reported by Arsenijevic and 

coworkers5 that PD patients who suffer from SD have increased Malassezia density on their skin 

and commensurate higher lipase activity required metabolically by yeast. This increased lipase 

activity could correlate with the enhanced production of eicosane, perillic aldehyde and 

octadecanal as highly lipophilic molecules since Malassezia requires specific exogenous lipids for 

growth.  Eicosane is reported as being produced by Streptomyces as an anti-fungal agent24 which 

also supports its increased presence on the skin of PD sufferers. The effects observed in our study 

could also signal altered microbial activity on the skin of PD patients that may affect the skin 

microflora causing changes in the production of metabolites such as hippuric acid25.  These 

potential explanations for the change in odor in PD patients all suggest a change in skin 

microflora and skin physiology that is highly specific to PD. 

 

Conclusion 

In conclusion, our study highlights the potential of comprehensive analysis of sebum from PD 

patients and raises the possibility that individuals can be screened non-invasively based on 

targeted analysis for these volatile biomarkers. We do acknowledge that the current study is 

limited with smaller sample size, but the power of this study is a different validation cohort that 

consisted of completely different participants. This validation cohort was able to verify the 

findings and classification model built using data from our discovery cohort.  A larger study with 

extended olfactory data from human smellers as well as canine smellers in addition to headspace 

analyses is the next step in further characterizing the PD sebum volatilome. This will enable the 

establishment of a panel of volatile biomarkers associated with PD and will open new avenues for 



 Page 10 

stratification as well as facilitate earlier detection of PD and further the understanding of disease 

mechanisms. 

 

Safety statement: No unexpected or unusually high safety hazards were encountered in the 

course of this work. 

 

Supplementary information includes description of sampling methodology, analytical methods 
used and has supplementary figures and tables as well as list of all the PIs from recruitment 
centers that participated in this study. 
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Figure 1: Schematic outline of the workflow described in this study - from sample collection to biomarker discovery. Parkinson's disease patient 
samples and control participant samples were collected from 25 sites across the UK using gauze swabs to sample the sebum from the top back 
region from 64 people. Thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) analysis was performed alongside olfactory 
analysis results of which were then combined. Statistical analysis was performed on two independent cohorts. Data from discovery cohort 
consisting of 30 participants were used to create a partial least squares-discriminant analysis (PLS-DA) model and differential features found as a 
result were then targeted for presence in a separate validation cohort consisting of 31 participants. The significance of these biomarkers was tested 
using receiver operating characteristic (ROC) analyses and Wilcoxon-Mann-Whitney test. Finally, four features that showed similar statistical 
significance and expression on both cohorts were selected for biological interpretation of data.  
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Figure 2: PLS-DA classification model (A) Classification matrix of PLS-DA model validated using 

5-fold cross validation showing 90% correct prediction of Parkinson’s disease samples (B) PLS-DA 

modelling was further tested using permutation tests (where the output classification was 

randomised; n=26) and results are plotted as a histogram which shows frequency distribution of 

correct classification rate (CCR) which yielded CCRs ranging between 0.4 to 0.9 for permutated 

models. The observed model was significantly better than most of the permuted models (p < 0.1); 

shown by the red arrow. (C) ROC plot generated using combined samples from both cohorts and 

the panel of four metabolites that were common and differential between control and PD. The 

shaded blue area indicates 95% confidence intervals calculated by Monte Carlo Cross Validation 

(MCCV) using balanced sub-sampling with multiple repeats. 
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Figure 3: ROC curves and box plots for analytes of interest: In each panel from top to bottom: ROC curves for both discovery (blue) and validation 

(red) cohort for four analytes common to both experiments. Confidence intervals were computed with 2000 stratified bootstrap replicates and 

diagonal black line represents random guess. Box plots show comparison of means of log scaled peak intensities of these analytes, where black dots 

were outliers. 
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Figure 4: Comparison of GC-MS chromatogram to description of olfactory data described by 

the Super Smeller: GC-MS chromatogram from three drug naïve Parkinson’s subjects and a 

blank gauze. (A) The 10 to 25 min retention time range of the chromatographic analysis in which 

the Super Smeller described various odors associated with different GC-MS peaks. The overlaid 

green shaded area shows the overlap between real time GC-MS analysis and the Super Smeller 

describing a 'strong PD smell' via the odor port.  

(B) A zoom of the green highlighted area from A. This region is of particular interest as 3 out of 4 

identified compounds are found here (Tables 1 and S2); it encompasses the time during which the 

Super Smeller described a musky PD-like scent as being 'very strong' (between the time lines at 

19 and 21 min) for the PD samples and not for the blank. It can be noted that none of these 

compounds are found in blank gauze (bottom chromatogram) within the same retention time 

window as shown by normalized relative peak intensities to the highest peak in each 

chromatogram. The area between black dotted lines highlight the presence of compounds in PD 

samples but complete absence in blank gauze.  

 

 

 

 

 

 

 

Table 1 : Panel of four volatile metabolites that were found to be differential between Parkinson’s 

and control samples, with similar trends observed in expression and AUC curves measured by 
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ROC analyses. Perillic aldehyde and Eicosane were significantly down-regulated and up-regulated 

in PD, respectively (FDR corrected p < 0.05) in both cohorts. 

 

 

Putative 

identification 

Parent 

Mass 

∆RT 

(min) 

FDR corrected p-value 

(Mann-Whitney test) 

Expression 

(PD/Control) 

   Discovery Validation Combined Discovery Validation 

Perillic aldehyde 150.22 0.15 0.0279 0.0403 <0.0001 Down Down 

Hippuric acid 179.17 0.09 0.1908 0.0403 0.1833 Up Up 

Eicosane 282.56 0.03 0.0279 0.0403 0.0013 Up Up 

Octadecanal 170.34 0.12 0.2605 0.0604 0.3040 Up Up 

 

Table 2: Known normal abundances of molecules of interest (listed in table 1) measured using 

mass spectrometry approaches, as reported in literature  

Molecule Biospecimen Abundance Reference 

Eicosane Faeces Not quantified Garner et al26 

 Saliva Not quantified Soini et al27 

 Saliva Not quantified Costello et al28 

Hippuric acid Cerebrospinal 

fluid 

3.0 (0.0-0.5) M Hoffman et al29 

 Urine Not quantified Hanhineva et al30 

 Blood 16.74  11.16 M Duraton et al31 

Octadecanal Faeces Not quantified Dixon et al32 

Perillic aldehyde Saliva Not quantified Costello et al28 
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Synopsis: 
 
Sebum from upper-back, analyzed using mass spectrometer hyphenated to an odour port reveals 
a unique volatilome associated to Parkinson’s disease (PD) smell, useful for diagnosing PD non-
invasively. 
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Supplementary Information 
 
Table S1A Details of the collecting sites in the UK and the lead PI at each site 

 SITE 
NUMBER 

SITE NAME PI 

1 Addenbrookes (Cambridge) Paul Worth 

2 Bournemouth Khaled Amar 

3 Cornwall/Truro Christine Schofield 

4 Lothian - Western General 
Edinburgh 

Gordon Duncan 

5 Edinburgh – Royal Infirmary of 
Edinburgh 

Gordon Duncan 

6 Edinburgh - Primary Care NHS 
Lothian (Seb Derm) 

Richard Weller 

7 Hampshire Sam Arianayagam 

8 Nottingham Gill Sare 

9 Pennine Jason Raw 

10 Salford Monty Silverdale 

11 Salisbury Diran Padiachy 

12 Sheffield Oliver Bandmann 

13 South Tees Neil Archibold 

14 Southern Health Helen Roberts 

15 Luton & Dunstable Anette Schrag 

16 Portsmouth Sean Slaght 

17 Northumbria Richard Walker 
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18 London North West Sophie Molloy 

19 Bath Veronica Lyell 

20 Gateshead Richard Athey 

21 Sunderland Uma Nath 

22 Plymouth Camille Caroll 

23 Newcastle Upon Tyne Hospitals 
NHS Foundation Trust (Newcastle 
University) 

Nicola Pavese 

24 Royal Devon and Exeter NHS 
Foundation Trust 

Robert James 

25 Imperial College Healthcare NHS 
Trust 

Sophie Molloy 

 

 

Table S1B: Participant numbers and metadata per wave.  

Discovery cohort 

 Control 

(n=10) 

Drug Naïve PD (n=10) PD on medication 

(n=10) 

p-value 

Age (years) 64.8 ± 3.06 72.82 ± 8.42 64.67 ± 2.55 0.01* 

BMI 27.10 ± 3.50 26.94 ± 4.08 25.33 ± 3.44 0.64 

Gender (M/F ratio) 0.84 1.20 0.80 0.88 

Alcohol intake (yes/no 

ratio) 

4.5 0.37 2 0.03* 

Smoker 1 0 0 0.39 

Validation cohort 

 Control 

(n=11) 

Drug Naïve PD (n=11) PD on medication 

(n=9) 

p-value 

Age (years) 55.78 ± 18.87 75.40 ± 6.85 68.90 ± 11.76 0.02* 

BMI 28.96 ± 11.01 25.74 ± 3.83 24.98 ± 3.54 1.00 

Gender (M/F ratio) 0.26 1.50 1 0.10 

Alcohol intake (yes/no 

ratio) 

0.8 9 1.5 0.10 

Smoker 0 0 1 0.24 
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Wave 3 (odor port validation, drug naïve PD subjects only, n=3) 

Age (years) 65.66 ± 3.30 

BMI 23.46 ± 1.80 

Gender (M/F ratio) 2 

Alcohol intake (yes/no 

ratio) 

2 

Smoker 0 

 
 * indicates significant difference between controls, drug naïve and PD with medication groups. 

 

Table S2: List of candidate volatiles putatively identified (MSI level 2) and matched across two 

different cohorts. Nine of out 17 metabolites listed were selected for further analysis since they 

had acceptable retention time drift between the two sets of experiments. 

 

 

 

 

 

 

Putative identification Mass 

Retention time 
(min) 

(discovery) 

Retention time 
(min) 

(validation) 

Retention time 
(min) 

difference Comments 

3,4-dihydroxy mandelic acid 184.15 20.87 Not found n/a Not found 

Artemisinic acid 234.34 12.97 12.83 0.14 Included 

Cyclohexasiloxane, dodecamethyl 357.57 16.47 16.06 0.41 Excluded 

Cyclohexylcyclohexane 357.57 15.36 14.71 0.65 Excluded 

Dodecane 170.34 13.20 13.27 -0.07 Included 

Eicosane 282.56 20.65 20.62 0.03 Included 

Gallic acid ethyl ester 198.17 11.40 10.99 0.41 Excluded 

Glutamine 128.09 21.73 21.09 0.64 Excluded 

Hexyl acetate  170.34 11.70 11.53 0.16 Included 

Hippuric acid 179.17 20.61 20.52 0.09 Included 

Neoabietic acid 302.46 21.66 Not found n/a Not found 

Octacosane 394.77 17.49 17.46 0.03 Included 

Octadecanal 170.34 20.87 20.75 0.12 Included 

Octanal 244.38 11.58 11.32 0.26 Included 

Perillic aldehyde 150.22 11.82 11.66 0.15 Included 

Proline 115.13 14.27 13.77 0.50 Excluded 

Tetracosane 338.65 18.17 Not found n/a Not found 
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Table S3: Various standards used to create chemical mixtures that were spiked on gauze 

containing human sebum, were made by dissolving them in appropriate solvents. The table 

shows solvents in which each of these standards were individually created, before forming 

mixtures at various concentrations used for validation of smell by the Super Smeller. 

Standard Solvent 

3,4-dihydroxy mandelic acid Water 
Cyclohexasiloxane, dodecamethyl Methanol 
Cyclohexylcyclohexane Methanol 
Diglycerol Water 
Dodecane Ethanol 
Eicosane Acetone 
Gallic acid ethyl ester Water 
Glutamine Water 
Hexyl acetate MeOH 
Hippuric Acid Water 
Hydroxymyristic acid Dichloromethane 
Octacosane Chloroform 
Octanal Methanol 
Perillic aldehyde Water 
Proline Water 

 

 

Table S4: Classification approaches attempted to distinguish between drug naïve PD participants 

and PD participants on medication did not show a very clear classification between the two 

groups in discovery cohort and validation cohort. K-nearest neighbours, random forest and 

support vector machines (SVM) classification algorithms were used. Using random sampling 

repeated 10 times, 60% data were used for training set and remaining data were used to test the 

model. Area under the curve (AUC) and averaged classification accuracy (ACA) for each model are 

shown.  

 Discovery cohort Validation cohort 

Method AUC ACA AUC ACA 
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Table S5: List of participants’ anonymized ID along with time since they were diagnosed with 

Parkinson’s as of the date of recruitment to this study. Median time since diagnosis for those in 

Drug Naïve group was 0 year whereas those in Medication group was 3 years.  

 

ID Year of diagnosis Group Time since diagnosis 

(years) when 

recruited 

210717_005 2017 Drug Naive 0 

210717_006 2017 Drug Naive 0 

210717_016 2013 Drug Naive 4 

210717_019 2017 Drug Naive 0 

210717_022 2016 Drug Naive 1 

210717_023 2015 Drug Naive 2 

210717_025 2017 Drug Naive 0 

210717_028 2013 Drug Naive 4 

210717_030 2016 Drug Naive 1 

210717_033 2017 Drug Naive 0 

210717_038 2015 Drug Naive 2 

181017_009 2017 Drug Naïve 0 

181017_016 2017 Drug Naive 0 

181017_019 2017 Drug Naive 0 

181017_020 2005 Drug Naive 12 

181017_021 2017 Drug Naive 0 

181017_023 2017 Drug Naive 0 

181017_024 2016 Drug Naive 1 

191017_003 2016 Drug Naive 1 

191017_004 2017 Drug Naive 0 

191017_007 2015 Drug Naive 2 

181017_004 2002 Medication 15 

kNN 78% 61% 57% 42% 

SVM 65% 60% 60% 35% 

Random Forest 66% 61% 54% 38% 
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181017_005 2016 Medication 1 

181017_006 2014 Medication 3 

181017_010 2016 Medication 1 

181017_012 2016 Medication 1 

181017_013 2013 Medication 4 

181017_018 2013 Medication 4 

191017_006 2007 Medication 10 

191017_008 2015 Medication 2 

191017_009 2014 Medication 3 

210717_009 2014 Medication 3 

210717_012 2016 Medication 1 

210717_018 2014 Medication 3 

210717_029 2014 Medication 3 

210717_031 2015 Medication 2 

210717_032 2015 Medication 2 

210717_034 2017 Medication 0 

210717_035 2014 Medication 3 

210717_037 2004 Medication 13 
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Figure S1: ROC plots generated using all nine metabolites that were common between the two 

cohorts (A discovery and B validation) (but not necessarily differential using Student’s t-test or 

expressed in the same direction between cohorts). Each model was built using PLS-DA to rank all 

variables and top two important variables were selected to start with. Then in each subsequent 

model additional variables by rank were added to generate ROC curve. Confidence intervals were 

calculated by Monte Carlo Cross Validation (MCCV) using balanced sub-sampling with multiple 

repeats.  
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Figure S2: Schematic to show qualitatively the results of a series of blind randomised studies 

performed by the Super Smeller to classify and score samples based on their similarity to the ‘PD 

smell’ and their overall intensity of smell, these scores were defined by both oral and physical 

denomination by the Super Smeller. All samples were presented on gauze swabs; purple 

pentagons display a cluster of swabs of multiple combinations of candidate compounds spiked 

onto blank gauze (no sebum), orange circles show gauze swabs containing only human control 

sebum (no compounds), blue squares depict three series of compound combinations based on 

MS analysis spiked on to control sebum and green triangles represent clinical gauze samples 

swabbed from PD patients. 

 

 

 
 
 

 
 


