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Riccardo De Benedictis

Beyond the Frontiers of Timeline-based Planning

Abstract

Any agent, either biological or artificial, understands how to behave in its environment
according to its prior knowledge and to its prior experience. The process of deciding
which actions to undertake and how to perform them so as to achieve some desired
objective is called deliberation. In particular, planning is an abstract and explicit delib-
eration process that chooses and organizes actions, by anticipating their expected out-
comes, with the aim to achieve, as best as possible, some pre-stated objectives called
goals. Among the most widespread approaches to automated planning, the classi-
cal approach broadly pursues to the following definition of planning: starting from a
description of the initial state of the world, a description of the desired goals, and a
description of a set of possible actions, the planning problem consists in synthesizing
a plan, i.e., a sequence of actions, that is guaranteed, when applied to the initial state,
to generate a state, called a goal state, which contains the desired goals.

In order to cope with computational complexity, however, the classical approach
to planning introduces some restrictive assumptions. Among them, for example, there
is no explicit model of time and concurrency is treated only roughly. Additionally,
goals are specified as a set of goal states, therefore, objectives such as states to be
avoided and constraints on state trajectories or utility functions are not handled. In
order to relax these restrictions, some alternative approaches have been proposed over
the years. The timeline-based approach to planning, in particular, represents an ef-
fective alternative to classical planning for complex domains requiring the use of both
temporal reasoning and scheduling features. This thesis focuses on timeline-based
planning, aiming at solving some efficiency issues which inevitably raise as a con-
sequence of the drop out of these restrictions. Regardless of the followed approach,
indeed, it turns out that automated planning is a rather complex task from a compu-
tational point of view. Furthermore, not all of the approaches proposed in literature
can rely on effective heuristics for efficiently tackling the search. This is particularly
true in the case of the more recent and hence less investigated timeline-based formu-
lation. Most of the timeline-based planners, in particular, have usually neglected the
advantages triggered in classical planning from the use of Graphplan and/or modern
heuristic search, namely the capability of reasoning on the whole domain model. This
thesis aims at reducing the performance gap between the classical approach at planning
and the timeline-based one. Specifically, the overall goal is to improve the efficiency
of timeline-based reasoners taking inspiration from techniques applied in more classi-
cal approaches to planning. The main contributions of this thesis, therefore, are a) a
new formalism for timeline-based planning which overcomes some limitations of the
existing ones; b) a set of heuristics, inspired by the classical approach, that improve the
performance of the timeline-based approach to planning; c) the introduction of sophis-
ticated techniques like the non-chronological backtracking and the no-good learning,
commonly used in other fields such as Constraint Processing, into the search process;
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d) the reorganization of the existing solver architectures, of a new solver called ORA-
TIO, that allows to push the reasoning process beyond the sole automated planning,
winking at emerging fields like, for example, Explainable Al and e) the introduction of
a new language for expressing timeline-based planning problems called RIDDLE.
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Introduction

An agent (from the Latin agere, to do) is an autonomous entity which acts within a
given environment. In particular, as depicted in Figure 1.1, an autonomous agent is
anything that can, autonomously, perceive its environment through sensors and act
upon that environment through actuators. A human agent, for example, has eyes, ears,
and other organs as sensors for perceiving the environment, and hands, legs, mouth, and
other body parts as actuators for acting upon it. In a similar way, a robotic agent might
have cameras and infra-red range finders as sensors and several motors as actuators.
Moreover, a software agent might receive text messages, sensory inputs or files and act
on the environment by displaying content on a screen, by writing files or by sending
network packets.

Intuitively, in order to act in an effective manner, any agent should understand how
to behave in its own environment according to its prior knowledge and, possibly, its
prior experience. The process of deciding which actions to undertake and how to per-
form them so as to achieve some desired objective is called deliberation. Specifically,
deliberation consists in the reasoning process which, by exploiting the knowledge of
the environment and the prior experience of the agent, allows to simulate what will
happen if the agent performs some actions. In particular, through the study of Artifi-
cial Intelligence (see [96]) and, more specifically, of automated planning, an area of
Artificial Intelligence that studies this deliberation process from a computational point
of view [58], we are interested in investigating the deliberation capabilities that allow
artificial agents to reason about their actions, how to choose them, how to organize
them purposefully, and how to deliberately act so as to achieve some desired objec-
tives. Planning, specifically, is an abstract, explicit deliberation process that chooses
and organizes actions by anticipating their expected outcomes. This particular deliber-
ation process aims at achieving, as best as possible, some pre-stated objectives called
goals.

Depending on the environment the agent acts upon, deliberation must take into
account different aspects. Sensors, for example, might not provide a complete and pre-
cise access to the environment. According to this aspect, indeed, the environment can
be distinguished into fully observable and partially observable. Examples of fully ob-
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Figure 1.1: An autonomous agent perceives the environment through sensors, it delib-
erates according to its prior knowledge and experience and acts upon that environment
through actuators.

servable environments are the board games, in which the state of the world is perfectly
defined and known. A robotic agent which acts in a real environment, on the contrary, is
likely to perceive it as partially observable, since sensors might be noisy and inaccurate
or, simply, because parts of the state are missing from the sensor data. Furthermore,
if the next state of the environment is completely determined by the current state and
by the action taken by the agent, the environment is said deterministic. An example of
deterministic environment is a software agent which tries to solve a fifteen puzzle. It
might happen, however, that the environment is non deterministic either because it is
partially observable or because the outcome of the agent’s actions might be uncertain.
Another factor to be taken into account in the description of the environment is whether
the environment is episodic or sequential. In episodic environments the agent’s expe-
rience is divided into atomic episodes. Each of these episodes is characterized by a
perception and by a single action. The crucial aspect is that the next episode is not
dependent from the previous action. An example of episodic environment is an agent
which performs a classification action since, typically, classifying an object does not
affect the classification of another object. In sequential environments, however, the
outcome of an action might influence the future decisions. An example of sequential
environment is an agent which plays chess. Finally, the last aspect to be taken into
account is whether the environment is (perceived as) discrete or continuous. In the for-
mer case, the duration of the actions does not affect (or, in the case, it does negligibly)
the behavior of the agent. Examples of discrete environments are, again, board games,
in which the duration of moving a piece can be neglected. Taking time into account,
however, might be important in some scenarios. A typical example in which time is
important, indeed, is when preparing a meal, since it might avoid burning the food is
being cooked.
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1.1 Different approaches at automated planning

Since there are various types of actions, there are also various forms of planning. Ex-
amples include path and motion planning, perception planning and information gather-
ing, navigation planning, manipulation planning, communication planning, and several
other forms of social and economic planning. A natural approach for these diverse
forms of planning is to address each problem with the specific representations and
techniques adapted to the problem. Although these domain-specific approaches are
certainly well justified and highly successful in most of the their specific application
areas, they present some weakness:

— Some commonalities among these forms of planning are not addressed in the
domain-specific approaches. The study of these commonalities is needed for
understanding the process of planning and it may help to improve the domain
specific approaches.

— It is more costly to address each planning problem anew instead of relying on
and adapting some general tools.

— Domain-specific approaches are not satisfactory for studying and designing an
autonomous intelligent machine. Its deliberative capabilities will be limited to
areas for which it has domain-specific planners, unless it can develop by itself
new domain-specific approaches from its interactions with the environment.

The domain-independent approach to planning aims at mitigating the above weak-
nesses. For solving a particular problem, a domain independent planner takes as input
the problem specification and the knowledge about its domain synthesizing a set of ac-
tions which, starting from some given situation, if executed, would achieve the desired
goals. Compared to the domain-specific one, for which it is easier to exploit domain
specific knowledge, the domain-independent approach, however, being more general,
has to deal with issues related to performance. Without relying on carefully designed
heuristics, indeed, such approaches can easily generate solutions in an unreasonable
amount time, severely affecting their usefulness.

Additionally, while remaining within the domain-independent case, the different
choices in representing the environment and the actions, as well as the adopted strate-
gies for performing the reasoning process, have led, over the years, to the emergence
of different approaches at automated planning. Based on mathematical logic, the “clas-
sic” approach to automated planning is the oldest one and, till now, the most common
approach within the automated planning research community. Despite the interesting
results achieved in this field over the years, classical planning presents some limitations
which make it quite cumbersome to apply in most of the real-world applications. The
environment, for example, as will be explained in greater detail later on, is typically
considered as fully observable, deterministic, sequential and discrete. Actions, for ex-
ample, are seen as atomic entities that are taken one at a time in a sequence. As a con-
sequence, with the years, several extensions to classical planning have been proposed
aimed at facilitating its application in real contexts and, in parallel, new approaches
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have emerged adopting a different representation which is closer to the practical appli-
cations. When multiple things might happen at the same time, it is necessary to take
into account the duration and the concurrency of the actions. Temporal planning is an
approach to automated planning which takes into account these aspects.

Not all of such approaches, however, can rely on effective heuristics. Despite the
minor relevance for practical applications, classical planning is remained the most pre-
dominant field and, as a consequence, the one that has led to the greatest results. For
other approaches, however, either heuristics are unavailable or they result to be not
much effective in guiding the resolution process. This thesis aims at reducing the per-
formance gap between two of the existing approaches at domain-independent planning
by introducing new heuristics for one of them. In particular, the thesis aims at reproduc-
ing some of the results which have been successfully applied in classical planning in
another approach to planning, called timeline-based, which is better suited at address-
ing real-world applications, yet, till now, less efficient from a performance perspective.

The overall goal of this thesis is to improve the efficiency of timeline-based reason-
ers, possibly taking inspiration from techniques applied in other approaches to plan-
ning. To this end, Chapter 2 introduces, from a formal perspective, what automated
planning is and some of the most relevant approaches at solving automated planning
problems. Chapter 3 describes a first attempt at narrowing the performance gap be-
tween classical and timeline-based planning. Since the obtained results were not satis-
factory enough, two new heuristics have been proposed. The implementation of such
a heuristics, however, required a general reorganization of the existing solver architec-
ture. While Chapter 4 introduces the data structures which allowed the reorganization
of the architecture, Chapter 5 introduces the reorganization of the solver architecture,
which has led to the development of a new timeline-based solver called ORATIO, and
the new heuristics. Chapter 6 describes the RIDDLE language which has been created
for describing timeline-based planning problems for the ORATIO solver. Finally, by
relying on the same principles introduced in Chapter 3, Chapter 7 attempts at going
“beyond” automated planning, showing how it is possible to integrate, in a whole, dif-
ferent forms of reasoning.



An Introduction to Automated Planning and some of
its Challenges

This chapter introduces, from a formal perspective, what automated planning is and
three different approaches at solving automated planning problems: the classic ap-
proach, the partial-order approach and the timeline-based one. Since the main objec-
tive of this thesis consists in improving the performance of timeline-based planners
through the introduction of effective heuristics, it is important to have a good under-
standing of the classic approach, i.e., the one in which the most effective heuristics
have been developed. This will lay the foundation for understanding classic heuristics
and the characteristics of classical planning that allow such heuristics to significantly
increase the performance of solvers. Before introducing the timeline-based approach,
it might be interesting to introduce an approach at solving classical planning problems
called partial-order based. Although this approach aims at solving the same class of
problems of the classical approach, it does so in a very different way, losing those
features which allow to the classic heuristics to be effective. Partial-order planning,
however, possesses some characteristics that, more than other approaches, allow rea-
soning on temporal aspects. For this reason, it is one of the most used approaches in
temporal planning. Additionally, as will be shown soon, this approach shares some
commonalities with the timeline-based approach, hence representing a good bridging
point between the classical approach and the timeline-based one.

Regardless of the chosen approach, a typical way to introduce the reader to au-
tomatic planning consists in relying on a conceptual model, i.e., an abstraction for
describing in a simple manner the main elements of a problem, called state-transition
systems [34]. Although, as will be shown soon, it can significantly depart from the
computational aspects for solving the problem, this conceptual model can be very use-
ful for explaining the underlying basic concepts.

Formally, a state-transition system is a 4-tuple X = (S, A, E,7), where:

— S={s1,52,...} is a finite or recursively enumerable set of states;

— A=/{ay,a,...} is a finite or recursively enumerable set of actions;

5
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— E ={ey,ey,...} is a finite or recursively enumerable set of events; and

— Y=S8x (AUE) — 25 is a state-transition function.

Figure 2.1 represents a state transition system with states S = {s1,...,s7}, actions
A ={ay,...,as}, events E = {e],ey,e3} and a state transition function y such that, for
example, returns state s4 if applying action a; in state s; or, similarly, state s¢ if event
e, occurs in state s7.

It is worth to notice that both actions and events contribute to the evolution of
the system. However, while actions are controlled by the agent, events represent con-
tingent transitions which, although might be taken into account by the agent, are not
controllable by it.

Given a state transition system X, the purpose of automated planning is to find
which actions to apply to which states in order to achieve some objective when starting
from a given situation. A plan is, indeed, a structure characterized by such appropriate
actions. The objective can be specified in several different ways.

— The simplest specification consists of a goal state s, or, more in general, a set
of goal states S,. In this case, the objective is achieved by any sequence of state
transitions that ends at one of the goal states.

— More generally, the objective might consist in satisfying some conditions over
the sequence of states followed by the system. For example, one might want to
require states to be avoided, states that the system should reach at some point,
and states in which it should stay for some time.

— Another alternative is to specify the objective as the tasks that the system should
perform. These tasks can be defined recursively, for example, as sets of actions
and other tasks.

It is worth highlighting that the above concept of what a plan is, is shared among the
different approaches at automated planning. Such approaches, however, differ mainly
on how the states, actions and events, are represented as well as for the different ca-
pabilities in reasoning about objectives. Before moving further in describing some of
these approaches, however, it is worth introducing some basic terminology related to
formal logic. Such terminology, indeed, is often shared among the different approaches
and is therefore preparatory to the understanding of the topics that will be dealt with
later.

In formal logic [11] all expressions are composed of constants (e.g., Alice, Bob),
variables (e.g., x, y), predicate symbols (e.g., Father, Married) and function symbols
(e.g., age, distance). The difference between predicates and functions is that predi-
cates take on values of True or False, whereas functions may take on any constant as
their value. It is customary to use lowercase symbols for variables and functions and
capitalized symbols for constants and predicates.

From these symbols, expressions are built up as follows: a ferm is any constant,
any variable, or any function applied to any term (e.g., Alice, x, age (Bob)). A lit-
eral is any predicate, or its negation, applied to any term (e.g., Father (Alice, Bob),



Figure 2.1: A state transition system example.

—GreaterT han (distance (A, B),120)). If a literal contains a negation (—) symbol, we
call it negative literal, otherwise we call it positive literal. Such a characteristic is also
called the polarity of the literal.

A clause is any disjunction of literals. More specifically, a Horn clause is a clause
having at most one positive literal, such as

HV L V...V L,

where H is the positive literal, and —~L; V- - -V =L, are negative literals. Since (BV —A) =
(B<+—A)and - (AV B) = (—AV —B), the above Horn clause can alternatively be written
in the form

H (LiA...AL,)

Whatever the notation, the Horn clause preconditions L; A ... AL, are called the
clause’s body or, alternatively, the clause’s antecedents. The literal H that forms the
postcondition is called the clause’s head or, alternatively, the clause’s consequent. Ad-
ditionally, a Horn clause with exactly one positive literal is called a definite clause; a
definite clause with no negative literals is called a fact; and a Horn clause without the
positive literal is called a goal clause.

Finally, in the non-propositional case, all variables in a Horn clause are implicitly
universally quantified with the scope being the entire clause. Thus, for example:

—Human (x) V Mortal (x)

stands for
Vx (~Human (x) V Mortal (x))

which is logically equivalent to

Vx (Mortal (x) < Human (x))
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Once described part of the basic formalism, it is possible to introduce some of the
most common approaches to automated planning. As we will see, some of these ap-
proaches will require the introduction of further formalisms. For the moment, however,
it will be provided a glimpse of what automated planning is through its simplest (yet,
most studied) approach.

2.1 Classical planning

This section describes classical planning', an approach to automated planning which
makes use of mathematical logic for representing and reasoning about knowledge. His-
torically, this approach began with the early works on GPS [86] and on situation cal-
culus [79] and continued for one of the most influential works on automated planning:
STRIPS [43]. Tt is worth to notice, indeed, that the high expressiveness of the state
transition system X, as introduced in the previous section, has to cope with compu-
tational complexity and efficiency issues. When applied to some realistic scenarios,
indeed, the number of states can be extraordinarily huge. Searching for a path, within
the system, that allows the achievement of prefixed objectives could be non-trivial.
Additionally, dealing with uncertainty coming from the non-determinism of the envi-
ronment, might result to be extremely challenging. For these reasons, in the past, it has
been often chosen to simplify the model. A restricted state-transition system is one that
meets some restrictive assumptions on the characteristics of the state transition system
Y. The typical restrictions are the following ones:

Finite set of states. The system X has a finite set of states.

Fully observable states. The system X is fully observable, i.e., one has complete
knowledge about the states of X.

Deterministic states. The system X is deterministic, i.e., for every state s and for
every event or action u, |Y(s,u)| < 1. If an action is applicable to a state, its application
brings a deterministic system to a single other state. In other words, applying an action
is always successful and its outcomes are always predictable, regardless of any possible
uncertainty. It is worth recalling that this is not always obvious since, for example, a
robot might fail in grasping some object or, in case of rolling a dice, the outcome of an
action might not be predictable.

Static states. The system X is static, i.e., the set of events E is empty. ¥ has no
internal dynamics; it persists in the same state until the controller applies some action.

Restricted goals. Goals are specified either as an explicit goal state s, or as a set of
goal states S, therefore, we are aiming at any sequence of state transitions that ends at

!'This class of planning problems is also referred to in the literature as STRIPS planning, in reference to
STRIPS, an early planner for restricted state-transition systems [43].
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any of the goal states. Extended goals such as states to be avoided and constraints on
state trajectories or utility functions are not handled under this restricted assumption.

Sequential plans. A solution plan to a planning problem is a linearly ordered finite
sequence of actions.

Implicit time. Actions and events have no duration; they are instantaneous state tran-
sitions. This assumption is embedded in state-transition systems since time is not rep-
resented explicitly.

Offline planning. The reasoning process is not concerned with any change that may
occur in X while it is happening, focusing on the given initial and goal states regardless
of the current dynamics, if any.

In case all of these simplifications apply, planning can be reduced to the following
problem:

Given ¥ = (S,A,7), an initial state so and a set of goal states Se, find a
sequence of actions {(aj,as,...,a;) corresponding to a sequence of states
<S0,S17 e ,Sk> such that s; € ’Y(So,al) ,8 € ’Y(Shag) yee ey Sk € ’Y(Skfl,ak)
and s; € S,.

Classical planning refers generically to planning for this kind of restricted state-
transition systems. Although classical planning is not the unique possible relaxation,
many others have been, indeed, proposed, it is worth talking about it since many heuris-
tics have been developed for efficiently solving these kinds of problems, allowing sig-
nificant performance improvements. Such heuristics, as we will see, will be a foun-
dation for the development of new heuristics that will allow us to increase the perfor-
mance of reacher models such those based on timelines. In the following, some formal
definitions and some hints on how to solve these problems are given.

Definition 1. Let L = {py,...,pn} be a finite set of proposition symbols. A planning
domain on L is a restricted state-transition system ¥ = (S, A7) such that:

— S C2% ie., each state s is a subset of L. Intuitively, s tells us which propositions
currently hold. If p € s, then p holds in the state of the world represented by s,
and if p ¢ s, then p does not hold in the state of the world represented by s.

— Eachaction a € A is a triple of subsets of L, which we will write as a = (precond (a),
effects™ (a) ,effects™ (a) ). The set precond (a) is called the preconditions of a,
and the sets effects” (a) and effects™ (a) are called, respectively, the positive
and negative effects of a. We require these two sets of effects to be disjoint,
ie., effects™ (a) Neffects™ (a) = 0. The action a is applicable to a state s if
precond (a) C s.

— S has the property that if s € S, then, for every action a that is applicable to s,
the set (s — effects™ (a)) Ueffects™ (a) € S. In other words, whenever an action
is applicable to a state, it produces another state. This is useful to us because
once we know what A is, we can specify S by giving just a few of its states.
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a3
s, precond: {p,, ps}
effects’: {p;}
P2 effects: {}
Ps
a
precond: {p;, p,}
S1 effects*: {p;} dq, dg Sy
P, effects: {p,} Sg P1
()
P2 Ps P
a3
S3
a, P1 % d { }
recond: {p,,
precond: {p;, p,} Ps P Py P

effects*: {}

effects*: {ps} effects’: {p,}
‘1P

effects™ {p,}

Figure 2.2: A restricted state transition system example.

— The state-transition function is Y(s,a) = (s — effects™ (a)) Ueffects™ (a) ifa € A
is applicable to s € S, and Y(s,a) is undefined otherwise.

The above definition establishes one of the possible ways to represent the states
and, consequently, the actions of X. Specifically, states are represented by a set of
propositions which are either true or false. Actions can be applied in a given state if
some of such propositions (i.e., the preconditions of the action) are true in the state.
Finally, the outcome of an action consists in making some of the propositions (i.e.,
the positive effects) true and some others (i.e., the negative effects) false. Figure 2.2
shows a synthetic example of such a restricted state transition system. In the example,
L={p1,p2,p3} sothe size of S is at most 2> = 8. The set of actions A = {ay,a2,a3,a4}
is such that both a; and a, having the set of propositions {p;, p2} as preconditions,
are applicable both in the 51 and s4 states. However, while applying a; in the s; results
in the addition of p3 and in the removal of p;, hence in the state s, applying a, in the
same state results in the addition of p3 and in the removal of p;, hence in the state s3.

By exploiting propositions, it is similarly possible to define a planning problem.

Definition 2. A planning problem is a triple P = (¥,s0,g), where:
— S0, the initial state, is a member of S.

— g C Lis a set of propositions called goal propositions that give the requirements
that a state must satisfy in order to be a goal state. The set of goal states is
S;={seS|gCs}

Specifically, the initial state is described, like other states, by means of a set of
true and false propositionsz. A set of propositions, however, is used to describe the

2Usually, relying on the closed world assumption, those propositions which are not expressed as true are
by default considered as false.
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set of goal states. In particular, any state in which the goal propositions are true is, by
definition, a goal state. Following the example of Figure 2.2, the initial state s can be,
for instance, s1, and is hence described by so = {pi, p2,—p3}. Suppose, however, the
set of goal propositions is g = {p1, p3}, the set of goal states is given by S, = {s3,54}
(i.e., all of which the propositions p; and p3 concurrently hold).

The following definition formally describes what a plan is.

Definition 3. A plan is any sequence of actions © = (ay,...,a;), where k > 0. The
length of the plan is given by |1t| = k the number of its actions.

The state produced by applying the plan T to a state s is the state that is produced
by applying the actions of 7 in the given order. The state-transition function y can be
extended as follows:

s if k=0 (i.e., wis empty)
Y(s,®) = < Y(y(s,a1),{az,...,ar)) if k>0 and a is applicable to s
undefined otherwise

Definition 4. Let P = (X,s0,8) be a planning problem. A plan w is a solution for P if
8 € (0, ).

As an example, a possible solution for a planning problem having the state transi-
tion system of Figure 2.2, the initial state s; and the goal propositions g = {py,p3} is
T = (a1,as,as,az)>. Applying such a plan to the initial state s1, indeed, would result
in the state s3 in which the goal propositions hold.

It is worth noting that most of the common formalisms (e.g., [43, 56, 45]) shrink the
representation of the state by exploiting predicate symbols. Although such predicates
do not make the formalism more expressive, the description of the domain models,
especially regarding the actions, becomes more compact and readable. For example,
instead of using the propositions at_roomg and at_room, for representing the position
of a robot, it is possible to use a predicate Az (?x) whose parameter ?x € {roomyg, room }
represents all the possible locations of the robot. Similarly, different actions, differing
in the value of certain parameters, can be grouped together in operators. For example,
the operator GoTo (?x), representing a robot going to a given location x, can be used to
compactly describe the two actions GoTo (roomg) and GoTo (roomy).

Classical planning introduces restrictions to the representation of state transition
system which, in some cases, may be too steep. For this reason, through the years, it has
incorporated an increasing number of extensions including durative-actions and nu-
meric fluents [45, 53], derived predicates and timed initial literals [41], state-trajectory
constraints and preferences [55] and object-fluents*. It is not surprising, being the fore-
runner, that representing the state by means of propositions constitutes one of the most
widely used approaches [88, 96, 58].

3A common solution evaluation criteria consists in measuring the length of the plan (also called
makespan). With respect to this criteria, the best plan for the above planning problem would have been
T = <a2>.

4http://www.plg.inf.uc3m.es/ipc2011-deterministic/attachments/Resources/
kovacs-pddl-3.1-2011.pdf
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Pan-tilt unit
Operators
straight

left D — right LookAt(?from, ?to) TakePicture(?at, ?pntng) GoTo(?from, ?to)
pre: {PntngAt(?from)} pre: {At(?at), PntngAt(?pntng)} pre: {At(?from)}
eff*: {PntngAt(?to)} eff*: {TakenPic(?at, ?pntng)} eff*: {At(?to)}
eff: {PntngAt(?from)} eff: {} eff: {At(?from)}

Navigation module
pos;
Initial state

Goal propositions

pos2 poss At(pos,) TakenPic(pos,, right)

PntngAt(straight)

pos,

Figure 2.3: The classic rover domain.

Instead of using propositional atoms, however, it is worth noting that some ap-
proaches rely on multi-valued state-variables which, usually, allow a more natural rep-
resentation of the domain and, in some cases, a significant reduction of the computa-
tional complexity. Among such approaches it is worth mentioning the SAS+ formalism
[3], on which the well-known Fast Downward planning system [62] and the LAMA
planner [92] rely, and the Functional STRIPS one [52].

The classic rover domain. Let us introduce a simple planning problem which might
help in understanding concepts. As depicted in Figure 2.3, we have a rover on Mars>
which has two components: (a) a navigation module, for navigating within the envi-
ronment, and (b) a pan-tilt unit, for orienting its camera. The state of our domain can
be modeled by means of the predicates Az (?x), whose parameter ?x € { pos1, posa,
pos3, pOS4} represents the position of the rover, PntngAt (?y), whose parameter ?y €
{le ft,straight,right} represents the orientation of the camera, and TakenPic (?x,?y),
whose parameters ?x € {posi, posy, poss, poss} and ?y € {left,straight, right} rep-
resent pictures taken at position ?x with an orientation of the camera ?y. Three op-
erators are introduced for controlling the robot: (i) GoTo (?from,?%0), moving the
robot from position ? from to position to, has the set {Ar (?from)} as preconditions,
the set {Az (?t0)} as positive effects and the set {Az (?from)} as negative effects; (ii)
LookAt (?from, o), turning the camera from orientation ? from to orientation ?to, has
the set { PntngAt (?from)} as preconditions, the set { PntngAt (?t0)} as positive effects
and the set {PningAt (?from)} as negative effects; and (iii) TakePicture (?at, ?pning),
taking a picture, has the set {Ar(?at),PntngAr (?pning)} as preconditions, the set
{TakenPic (at,pntng)} as positive effects and an empty set as negative effects. Ini-
tially, the rover is at position pos, and its camera is looking straight forward. The initial
state is hence described by the set of propositions {At (pos,) , PntngAt (straight) }°. Fi-
nally, we want to take a picture at position poss while pointing at right, hence, the set
of goal propositions is {TakenPic (poss,right)}.

3This problem is a simplification of the GOAC problem as described in [49].
®Notice that, by relying on the closed world assumption, the propositions {—At (pos;), At (pos3), ...},
also, hold in the initial state.
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Solving classical planning problems

Now that the basic ingredients have been introduced, some hint on how to solve clas-
sical planning problems will be provided. To begin, the simplest classical planning
algorithms are state-space search algorithms. These are search algorithms in which
the search space is a subset of the state space: each node corresponds to a state of the
world, each arc corresponds to a state transition, and each plan corresponds to a path
in the state transition system starting from the initial state. Two simple algorithms that
solve the classical planning problem will be informally presented: (a) a first algorithm
that searches forward from the initial state of the world trying to find a state that sat-
isfies the goal formula and (b) a second algorithm that searches backward from the
goal formula trying to find the initial state. It is worth noting that both the algorithms,
as well as all those following in this chapter, are presented as non-deterministic, i.e.,
they involve non-deterministic choices, for exposure purposes. Each non-deterministic
choice, however, might be seen as the spawning a set of parallel CPUs which, in par-
allel, proceed according to their own execution traces. The set of execution traces can
be represented as an execution tree in which each node represents an execution trace,
till a non-deterministic choice is taken, and its children represent the subprocesses
spawned by the non-deterministic choice. This tree is called the procedure’s search
tree or search space. Any practical implementation, however, must be deterministic,
hence, must have a control strategy for visiting the nodes of the tree. Any tree traversal
strategy like depth-first, breadth-first, best-first, A*, etc. can, in principle, be exploited
for making the following algorithms deterministic, however, choosing the right one
might strongly affect the efficiency of the algorithm.

Forward search

One of the simplest planning algorithms for solving classical planning problems is the
FORWARD-SEARCH algorithm. The idea is, intuitively, to start from the initial state
applying actions until a state in which the goal propositions are satisfied. It is worth
noting that since we envision uses in which the number of actions applicable to any
given state might be quite large, such a simple system would generate an undesirably
large tree of states and would thus result to be impractical [43]. It is worthwhile, in any
case, to introduce this approach for didactic, as well as historical reasons.

A non-deterministic version of this algorithm is shown through the pseudo-code
in Figure 2.4. The algorithm takes as input the planning problem ? = (X,s9,g). If
P is solvable, then FORWARD-SEARCH (X, 59, g) returns a solution plan; otherwise it
returns L. After initializing the s variable with the initial state and the plan ® with the
empty plan, the algorithm enters into the main solving loop. In case s satisfies g (i.e.,
all the propositions in g are true in s) the 7 plan is returned, otherwise, the algorithm
collects all the actions which are applicable in the state s and, for each of them, creates
a branch and, non-deterministically, chooses an action a, applies a in s, replacing s with
the state resulting from the application of the action and, finally, adds a to the current
plan T.
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procedure FORWARD-SEARCH(L, 5o, g)

S < S0

T < the empty plan

loop
if s satisfies g then return 7
applicable < {a | a is an action in X, and precond (a) is true in s}
if applicable = 0 then return |
non-deterministically choose an action a € applicable
s+ Y(s,a)
T4+ T.a

Figure 2.4: A non-deterministic forward search planning algorithm.

Solving the classic rover domain through forward search. In the classic rover
domain many actions (i.e., GoTo (posa, posl), GoTo (posz, pos3), GoTo (posz, pos4),
PningAt (straight,left), PntngAt (straight, right) and TakePicture (pos,, straight), etc.)
are applicable in the initial state. The algorithm has, hence, to non-deterministically
choose an action between them. Applying the action GoTo (posy, pos3), for exam-
ple, results in the state described by the propositions {At (pos3), PntngAt (straight)}’.
Finally, by applying the actions LookAt (straight,right) and, subsequently, the newly
become applicable action TakePicture (poss,right), results in the state described by
the propositions {Az (pos3) , PntngAt (right) , TakenPic (poss,right)} in which the goal
propositions (i.e., TakenPic (pos3, right)) hold. As a consequence, the plan T = (GoTo(pos>,
pos3),LookAt (straight, right), TakePicture(poss, right)> represents a solution plan.

Backward search

Conversely to the forward case, planning can also be done using a backward search.
The idea is to start from the goal and apply inverses of the actions to produce subgoals,
stopping if we produce a set of subgoals satisfied by the initial state. The set of all
states that are predecessors of states in S is:

g = {5 there is an action a such that v ! (g,a) satisfies g}

This is the basis of the BACKWARD-SEARCH algorithm and it is shown through
pseudo-code in a non-deterministic version in Figure 2.5. After initializing the plan 7
with the empty plan, the algorithm enters into the main solving loop. The algorithm
selects all the actions which are relevant for achieving the goal propositions g and,
for each of them, creates a branch. Subsequently, an action a is non-deterministically
chosen, it is added to (the left of) the current plan 7 and the set of goal propositions is
updated by removing the positive effects of a and by adding the preconditions of a.

Choosing between the forward and the backward approaches can be guided by the
topology of the restricted state transition system. In case the number of outgoing edges

7 Again, by relying on the closed world assumption, the propositions {—=At (pos ), —At (pos>) ...}, also,
hold in the resulting state.
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procedure BACKWARD-SEARCH(L, s, g)

T < the empty plan

loop
if 50 satisfies g then return ©
relevant <— {a | a is an action in X that is relevant for g}
if relevant = 0 then return L
non-deterministically choose an action a € relevant
T4 a.n

g+ v '(ga)

Figure 2.5: A non-deterministic backward search planning algorithm.

in the system greatly exceeds the number of incoming edges, for example, it might be
preferable the backward approach since the branching factor is greatly reduced. Con-
versely, in case the number of incoming edges greatly exceeds the number of outgoing
edges, for the same reason, the forward approach is preferable. Finally, in the degen-
erate case in which the number of incoming (outgoing) edges is at most one, problems
can be easily solved in polynomial time (i.e., without the need of searching for a solu-
tion) through the backward (forward) approach.

Solving the classic rover domain through backward search. In the classic rover
case only TakePicture (poss,right) is relevant for achieving the goal propositions. By
applying this action backward, the proposition TakenPic (poss,right) is removed from
g while the set {Ar (pos3),PningAt (right)} is added to g. Relevant actions are now,
for example, GoTo (posa, pos3), which removes the proposition Az (pos3) from g and
adds the proposition At (pos3) to it. Finally, by applying LookAt (straight, right), the
proposition PntngAt (right) is removed from g while PntngAt (straight) is added to g
resulting in a set of goal propositions which are satisfied in go.

2.1.1 Heuristics for classical planning

Despite the restrictions imposed by classical planning, the search space might become
exponentially large (see [12] for a computational complexity analysis of classical plan-
ning). As a consequence, by relying on some heuristics, most of the planning algo-
rithms attempt to find a solution without exploring the entire search space. Finding
domain-independent heuristics for planning is a research field which has been inaugu-
rated in [10] by introducing the h,44 and the hy,,, heuristics described in this section.
Since the introduction of such heuristics, furthermore, many heuristics have been pro-
posed mostly relying on delete-relaxation, like the K heuristic [66] and the causal
graph heuristics [62], on landmarks, like in [67, 89], on the critical path, like the h™
heuristic [61, 60] or, lastly, on abstraction, like in [40] or in [63, 64]. It is worth
anticipating that the heuristics that allow to efficiently solve timeline-based planning
problems, described later on in this thesis (Section 5), are strongly inspired by the /44
and the h,,,, heuristics.
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Before going into details of the /.4, and the Ay, heuristics, some general basic
concepts about heuristics are provided. To make informed guesses about which choices
are more likely to lead to a solution, indeed, it is common to use a heuristic function
h : s — R that returns an estimate of the minimum cost of getting from a state s to a
state satisfying g. Specifically, this heuristic function can be defined as:

h(s) ~ h*(s) = min{cost(x) | y(s,n) satisfies g}

where /i* (s) represents the real, unknown, cost to reach a goal from the state s.

In case the heuristic function never overestimates the #* (s) cost of reaching the
goal state, i.e., the estimated cost from the current point in the path to a solution is
never higher than the lowest possible cost (formally, 0 < & (s) < h* (s)), the heuristic
function is said to be admissible.

Clearly, the computational effort for building a heuristic function might be consid-
ered worthwhile whenever the function can be computed in a lower (possibly, polyno-
mial) amount of time than directly finding the solution, providing a (possibly, expo-
nential) reduction in the number of nodes searched by the planning algorithm. As an
example, the simplest possible heuristic function is /g (s) = 0 for every state s. This
heuristic is admissible and trivial to compute. Unfortunately, it provides no useful in-
formation. We usually would want a heuristic function which would provide a better
estimate of the costs for solving our problems.

The best-known way for obtaining heuristic functions is relaxation. Specifically,
given a restricted state-transition system X = (S,A,7Y) and a planning problem 2P =
(X,50,8), relaxing means weakening some of the constraints that restrict what the
states, actions, and plans are, when an action or a plan is applicable and/or what goals
it achieves. A very intuitive relaxation technique for the classical planning problems,
for example, is to completely ignore the effects™ (a) list of the actions. Automated
planning literature refers to this relaxation as delete relaxation®. Many heuristics are
based on this relaxation.

The following sections present some of the most popular heuristics that allowed
considerable increases in performance in solving classical planning problems.

The h,,, heuristic

The hyyq heuristic (see [10]) is one of the first heuristics developed with the aim of
efficiently solving classical planning problems. According to this heuristic, both the
initial state and the actions can be exploited for defining a graph in the propositions
space in which for every action a there is a directed link from the preconditions of a to
its positive effects. The cost of achieving a proposition p is then reflected in the length
of the paths that lead to p from the initial state.

Definition 5. Let s € S be a state, p a proposition, and g a set of propositions. The
minimum distance from s to p, denoted by A* (s, p) is the minimum number of actions
required to reach, from the state s, a state containing p. The minimum distance from s
to g, A* (s,g), is the minimum number of actions required to reach, from the state s, a
state containing all the propositions in g.

8The effects™ (a) list is also called delete list of the action a.
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The huqq heuristic represents one of the first attempts to estimate this minimum
distance. The heuristic, indeed, ignores the effects™ (a) list of all the actions and ap-
proximates the distance to g as the sum of the distances to the propositions in g. The
estimate A,y is then given by the following equations:

Agad (s,p) =0 ifpes
Auaa (s,8) =0 ifgCs
Agdq (8,p) = o0 if Va € A, p ¢ effects™ (a)

otherwise:

Auda (5, p) = ming {1+ Agqq (s,precond (a)) | p € effects™ (a) }

Aaaa (5:8) =Y Aaaa (s.p)
PEg

As mentioned earlier, these equations give an estimate of the distance from s to g
in the relaxed problem and might be used to guide the search of the unrelaxed problem.
The first two equations are simple termination conditions. The third one says that p
is not reachable from s if the domain contains no action that produces p. The fourth
equation defines Ay (s, p) recursively with respect to Ag (s, g). Finally, the last equation
states that the distance to g is the sum of the distances to its propositions. Note that
these formulas do ignore the negative effects of the actions. Furthermore, the relaxation
intuition, called independence relaxation, that each proposition in g can be reached
independently of the others, is followed.

We can now define a heuristic function /44 (s) that gives an estimate of the distance
from a node s to a node that satisfies the goal g of a planning problem:

hada (8) = Aaa (5, 8)

As an example, the estimate A,q4 (50,A? (pos3)), in the case of the classic rover
problem described earlier, is 1. On the contrary, the estimate A,q4 (so, TakenPic(poss,
right)) is 3. Among the possible actions for achieving the proposition TakenPic(pos3,
right), indeed, the one whose sum of the estimates for achieving its preconditions is
minimum is TakePicture(poss,right) since the estimate for achieving the sum of its
preconditions is 2.

The h,,,,, heuristic

The hgyqq heuristic is not admissible. In other words, the estimate A4 (s,g) is not a
lower bound on the actual minimal distance A* (s, g).

It can be desirable to use admissible heuristic functions for two reasons: (i) we may
be interested in getting the shortest plan, or (ii) there may be explicit costs associated
with actions and we are using a best-first algorithm for obtaining an optimal (or near
optimal) plan. More interestingly, admissible heuristics permit a safe pruning: let ¢ be
the cost (or the length) of a known plan, if & (u) > ¢, with & being admissible, then we
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are sure that no solution of cost (or length) smaller than ¢ can be obtained from the
node u. Pruning u is safe in the sense that it does not affect the completeness of the
algorithm.

Instead of estimating the distance to a set of propositions g to be the sum of the
distances to the elements of g, we estimate it to be the maximum distance to its propo-
sitions. This leads to an estimate, denoted Ay, which is defined by changing the last
equation of the A4y estimate to the following:

Apax (5,8) = max{Apax (5,p) | p € g}

The heuristic function A, (s) (refer to [10] for further details), which gives an
estimate of the distance from a node s to a node that satisfies the goal g of a planning
problem, is now defined as:

Pimax (S) = Apax (Sag)

Roughly speaking, the cost for achieving a set of goals g is given by the maximum
of the costs of the prepositions in g. On the other hand, the cost for achieving a single
proposition p is given by the minimum the costs for achieving the preconditions of
every action having the proposition p in its positive effects.

As related to the classic rover example, the estimate A,y (s0,A? (pos3)) is, again, 1.
The estimate A4 (S0, TakenPic (poss,right)) is, however, 2. Among the possible ac-
tions for achieving the proposition TakenPic (poss,right), indeed, the one whose sum
of maximum estimate for achieving its preconditions is minimum is TakePicture(poss,
right) since the maximum estimate for achieving each of its preconditions is 1.

Popular heuristics are not limited to those mentioned. In [61], for example, the
authors notice that the #,,,, heuristic can be modified to compute costs for pairs of
atoms and, once computed for pairs, it can be generalized for triples, quadruples, etc.
establishing, actually, a family of heuristics usually known as 2™, form > 1 (form =1
™ behaves equally to h,,,). These heuristics are, with the growth of m, increasingly
more informative, yet more costly to compute. As will be shown in Section 5, however,
applying the 4™ heuristics (for m > 1) to the timeline-based case did not prove fruitful
since computing the heuristics resulted to be too costly in proportion to the increase in
provided information.

2.2 Partial-order planning

In the previous section, planning has been considered as the search, either forward or
backward, for a path in the graph ¥ of a state-transition system. Indeed, in the state-
space planning case, the search space is given directly by X. This section considers a
more elaborate search space which is not X anymore, but a space in which nodes are
partially specified plans and arcs are plan refinement operations intended to further
refine a partial plan, i.e., to achieve an open goal or to remove a possible inconsis-
tency. The reason for introducing partial-order planning, as will be shown in details
in Section 2.3, consists in its many analogies with the approach we are interested in:
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timeline-based planning. As such, it represents a good bridging point between the two
approaches.

The overall idea underlying the partial-order approach resides in considering search
for a solution as two separate operations: (1) the choice of the actions, and (2) the
ordering of the chosen actions so as to achieve the desired goals. Finding a solution
to a planning problem through this search space, indeed, is typically called plan-space
search or partial-order planning. This approach was firstly introduced by the NOAH
[97] and by the NONLIN [106] planners, both of which combined plan-space search
with hierarchical task refinement, proceeding, some years later, for the SNLP [78] and
the UCPOP [88, 112] planners. Compared to classical planning, this approach appears
to be more suitable to handle some extensions to the restricted state-transition system
(e.g., temporal planning) and, in some cases (see, for example, [4]), might lead to
some efficiency gains. Nonetheless, it is undeniably more complex and, consequently,
inherently more inefficient than the total-order case.

In order to make up for this loss of efficiency, some works, related to partial-order
planning performance, have been proposed investigating aspects of the search control
and pruning [54], commitment strategies [81, 82], strategies which leverages state-
space planning heuristics [109] and domain features [72]. Additional, it is worth to
mention the [87] work which merges most of the above techniques. None of these
approaches, however, nowadays, seem to stand the competition. As will be clearer
soon, what the partial-order approach misses, compared to the state-space approaches,
is a good estimate of the distance between the current state of the solver and a solution
state. Such a distance, embodied, for example, by the %,y and h,,,, heuristics, might
be used to make the search for a solution more efficient. With the loss of an explicit
representation of the state, however, it is not clear how to get such an estimate.

Before introducing partial-order planning, however, it is worth introducing some
basic formalism about constraint networks on which plan-space search strongly relies.
Specifically, the main ingredients of constraint networks are variables and constraints.

Definition 6. A variable is an object that has a name and is able to take different
values.

A variable (whose name is) x must be given a value from a set that is called the
domain of x and is denoted by dom (x). The domain of a variable x may evolve in time
but is always included in a set called initial domain. Depending on the nature of these
domains, variables can be distinguished between continuous, having an infinite initial
domain usually defined in terms of real intervals, and discrete, whose initial domain
contains a finite number of values.

Definition 7. A constraint is a restriction on combinations of values that can be taken
simultaneously by a set of variables.

A constraint c¢ is defined over a set of variables which constitute the scope of ¢ and
are denoted by scp (c).
A structure composed of variables and constraints is called a constraint network.

Definition 8. A constraint network A is composed of a finite set of variables, de-
noted by vars(N)), and a finite set of constraints, denoted by cons(N), such that

Ve € cons (N),scp (c) C vars (N).
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Additionally, an evaluation of a constraint network is an assignment of values to
some or all the variables. An evaluation is said to be consistent if it does not violate any
constraint. An evaluation is said to be complete if it includes all the variables. Finally,
given a constraint network, the problem of finding a consistent and complete evaluation
is called Constraint Satisfaction Problem (CSP) (refer to [35, 75] for a comprehensive
introduction to CSPs).

The introduction of the previous definitions allows to better describe the main con-
cepts underlying partial-order planning. This approach at planning, indeed, uses a plan
structure which is more general than a sequence of actions. Specifically, a plan-space
plan is defined as a set of planning operators together with ordering and binding con-
straints and, in general, it may not correspond to a simple sequence of actions.

Definition 9. A partial plan is a tuple T = (A, <, B, L) where:
- A={ay,...,ai} is a set of partially instantiated actions.

— < is a set of ordering constraints on A of the form a; < a;

— B is a set of binding constraints on the variables of the actions in A of the form
X =y, x#yorx € D, where D, is a subset of the domain of x.

— Lis a set of causal links of the form a; 2, aj, such that a; and a; are actions in A,
the constraint a; < aj is in <, the proposition p is an effect of a; and a precondi-
tion of aj, and the binding constraints for variables of a; and aj appearing in p
are in B.

The interesting aspect of this approach consists in having the actions only partially
(as opposed to fully) instantiated. In other words, the actions’ parameters can be lifted.
If on the one hand this allows to significantly reduce the branching factor, given that
a large number of actions are considered simultaneously through partially instanced
operators, it is also true that, in order to manage these operators, a data structure is
needed to handle variables and constraints, hence the introduction of the constraint
network.

With this in mind, a plan space is an implicit directed graph whose vertices are
partial plans and whose edges correspond to refinement operations. An outgoing edge
from a vertex 7 in the plan space is a refinement operation that transforms 7 into a
refined partial plan 7', Intuitively, a refinement operation consists of one or more of the
following steps:

Add an action to A

Add an ordering constraint to <

Add a binding constraint to B

Add a causal link to L
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Plan-space planning is the search in this graph of a path from an initial partial plan
denoted 7 to a node recognized as a solution plan. Since partial plans are defined
through actions and their relationships, both goals and the initial state have to be repre-
sented into Ty. This can be achieved describing Tty by means of two dummy actions ag,
an action with no preconditions and whose effects represent the initial state, and a.., an
action with no effects and whose preconditions are the goals g.

Before introducing the planning algorithms in the plan space, however, we need
to formally specify what a solution plan in this space is. Plan-space search, indeed,
differs from state-space search not only in its search space but also in its definition of a
solution plan.

Definition 10. A partial plan T = (A, <,B,L) is a solution for a planning problem
P =(X,50,8) if

— its ordering constraints < and binding constraints B are consistent

— every sequence of totally ordered and totally instantiated actions of A satisfying
< and B is a sequence that defines a path in the state-transition system X from
the initial state sy corresponding to effects of action ay to a state containing all
goal propositions in g given by preconditions of de.

Unfortunately, this definition does not provide a computable test for verifying plans.
In order to establish a resolution procedure for our plan-space planning problem we re-
fer to the concepts of threats and flaws.

Definition 11. An action a; in a plan T is a threat on a causal link a; La i
— ay has an effect —q that is possibly inconsistent with p, i.e., q and p are unifiable;
— the ordering constraints a; < ay and ay < a;j are consistent with <;
— the binding constraints for the unification of q and p are consistent with B.
Definition 12. A flaw in a plan n = (A, <, B, L) is either:
— a subgoal, i.e., a precondition of an action in A without a causal link;

— a threat, i.e., an action that may interfere with a causal link.

These new definitions allow us to redefine the concept of solution plan in a way
which is suitable for being exploited by a resolution procedure.

Proposition 1. A partial plan 7 = (A, <,B,L) is a solution for a planning problem
P = (X,50,8) if ® has no flaws and if the set of ordering constraints < and binding
constraints B is consistent.

Figure 2.6 shows an example of partial plan for the classic rover domain. Filled
blocks represent the (partially instantiated) actions with their preconditions above and
effects below the box. While solid arrows represent the ordering constraints, dashed
arrows represent causal links. It is worth noting that the ? from parameter of the GoTo
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Figure 2.6: A partial plan for the classic rover domain.

action is lifted, indicating a movement of the rover towards a specific direction yet
starting from a direction which is still uncertain. Similarly, each action has its own
numerical variable representing the time the action applies. Exception made for the ag
action, which is constraint to happen at time zero, also temporal variables are lifted.
Finally, it is worth to highlight that all these variables, as well as the constraints among
them, are maintained in a constraint network.

The most interesting aspect of the above definitions and propositions, compared to
the state-space planning case, resides mainly in the fact that the generated plans allow
two different types of flexibility: (i) actions do not have to be totally ordered and (ii)
they do not have to be totally instantiated. This remark applies also to action a.. there-
fore partial-order planning allows us to handle partially instantiated goals (e.g., in the
classic rover domain it is possible to express goals like { TakenPic (poss,?pntng_at)}
without the need of instantiating the ?pnfng_at variable, aiming at expressing the de-
sire of taking a picture at pos3 while looking at any direction). These aspects related to
flexibility are particularly relevant when tackling plan execution. When dealing with
dynamic environments, indeed, failures are not uncommon. Further constraints, for ex-
ample, might become available at execution time requiring the adaptation of the plan to
the actual needs. Additionally, partial-order planning allows to slightly reduce the re-
strictions of classical planning. As an example, it is much easier to manage constraints
about the desired trajectories within the state-transition system X since it is possible in-
troduce goals into Ty and enforce temporal constraints on them. Finally, partial-order
planning allows to express goals in terms of tasks which should be performed by the
agent. All of these features, as well as most of the concepts underlying the search al-
gorithms, are in common with timeline-based planning. Before introducing this third
approach at automated planning, however, it is worth to provide a typical algorithm for
searching in the plan space.

2.2.1 An algorithm for partial-order planning

Intuitively, since T is a solution when it has no flaw, the main principle is to refine T,
while maintaining < and B consistent, until it has no flaw. The basic operations for
refining a partial plan 7 toward a solution plan are the following:

— Find the flaws of &, i.e., its subgoals and its threats.
— Select one such flaw.

— Find ways to resolve it.
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procedure PSP(m)
flaws < OpenGoals (1) U Threats ()
if flaws = 0 then return ©
select any flaw ¢ € flaws
resolvers <— Resolve (0, )
if resolvers = 0 then return failure
non-deterministically choose choose a resolver p € resolvers
7’ < Refine (p, )
return PSP (1)

Figure 2.7: The PSP procedure.

— Choose a resolver for the flaw.

— Refine 7 according to that resolver.

Figure 2.7 specifies a recursive non-deterministic procedure called PSP (for Plan-
Space Planning) for resolving plan-space planning problems. Specifically:

— flaws denotes the set of all flaws in © provided by procedures OpenGoals and
Threats; ¢ is a particular flaw in this set.

— resolvers denotes the set of all possible ways to resolve a specific flaw ¢ in a plan
7 and is given by the procedure Resolve. The resolver p is a particular element
of this set.

— 7’ is the new plan obtained by refining 7 according to the resolver p as a conse-
quence of the procedure Refine.

The PSP procedure is called with an initial plan 7ty and each successful recursion is
a refinement of the current plan according to the given resolver. Each invocation of the
Resolve procedure introduces new variables and/or constraints to an underlying dy-
namic constraint network which is responsible for maintaining consistent the domains
od the variables with the < and B constraints. Intuitively, refinement operations avoid
adding to the partial plan any constraint that is not strictly needed for addressing the
refinement purpose (this is called the least commitment principle). It is worth noticing
that more than in finding a complete assignment for all the variables of the constraint
network, we are interested only in checking its consistency. Because this check should
be made for each node of the search space we are interested in efficient polynomial
procedures even at the cost of some compromise (i.e., the possibility for false positives
in the consistency check procedure). Moreover, since the real world has high degrees
of uncertainty, we are interested in maintaining different possible solutions in a sin-
gle constraint network which might come in handy at plan execution time in order to
handle possible unforeseen events.
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Solving the classic rover domain. What happen if we apply the partial-order ap-
proach at the rover domain? Initially, the 7y partial plan contains the ag action, at time
zero, having {Ar (pos,) , PntngAt (straight)} as positive effects. Additionally, Ty con-
tains the ajy action, whose temporal variable has domain, initially, within the [0, + inf]
interval, having {TakenPic (poss,right)} as preconditions. The OpenGoals procedure,
initially, returns the sole TakenPic (poss,right) goal which can be resolved by intro-
ducing both a partial instantiation of the TakePicture (?at,?pntng_at) operator and a
causal link linking its effect to the precondition of the ajys action. It is worth noting
that while the introduction of the operator introduces three variables in the underlying
constraint network (i.e., the ?ar variable, the pntng_at variable and the action’s tem-
poral variable), the introduction of the causal link constraints the ?at and the pntng_at
variables to assume, respectively, the posz and the right values. Furthermore, the intro-
duction of the ordering constraint reduces the domain of the ajn¢’s temporal variable to
the [1, +inf] interval. The OpenGoals procedure is called again returning, this time, the
At (pos3) and the PntngAt (right) flaws. The first one can be solved by introducing a
partial instantiation of the GoTo (? from, ?to) operator and a causal link linking its pos-
itive effect to the precondition of the earlier introduced TakePicture (?at,?pntng_at)
action. This leads to the situation depicted in Figure 2.6. The flaws to be solved are,
now, Az (?from) and the still unsolved PntngAt (right). While the first one can be re-
solved by introducing a causal link between the Af (pos;) effect of the ap action and
the At (?from) GoTo’s precondition, reducing the domain of the ? from variable to the
sole pos, allowed value, PntngAt (right) can be solved by introducing a new partially
instantiated operator, i.e., LookAt (? from,?t0), a causal link linking its positive effect
and the PntngAt (right) precondition of the TakePicture (?at,?pntng_at) action. Fi-
nally, a causal link linking the PntngAr (straight) effect of the ag and the precondition
of the last introduced action would result in a solution plan. It is worth noting that, con-
versely to the previously described classical approach, the achieved solution plan does
enforces an ordering constraint between the GoTo action and the LookAt one, hence
the gain in flexibility at execution time (and the partial-order name of the approach).

It is worth to highlight the fact that the order in which flaws are processed is not
important neither for the soundness nor for the completeness of the procedure. It is,
however, very important for efficiency aspects. In this regard, it is worth noting that
the notion of explicit states, within the search procedure, is lost. State-space planners
receive huge benefit from heuristics which, as has been briefly mentioned in Section
2.1.1, are explicitly defined on the concept of states. Although there are some attempts
to generalize state-space heuristics to plan-space planning [87], it turns out that, in
general, plan-space planners are not competitive enough with respect to state-space
planners on the computationally efficiency field.

2.3 Planning with timelines

Timeline-based planning was first introduced in [85, 84] and, since then, many timeline-
based planners have been proposed like, for example, IXTET [57], EUROPA [69], AS-
PEN [20], the TRF [48, 14] on which the APSI framework [49] relies and, more re-
cently, PLATINUm [107]. Some theoretical work on timeline-based planning like [47]
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was mostly dedicated to explain details of [69], identifying connections with classical
planning a-la PDDL [45]. The work on IxTET and TRF has tried to clarify some key
underlying principles but mostly succeeded in underscoring the role of time and re-
source reasoning [17, 73]. The planner CHIMP [104] follows a Meta-CSP approach
having meta-Constraints which havely resembles timelines. The Flexible Acting and
Planning Environment (FAPE) [39] tightly integrates timelines with acting. The Ac-
tion Notation Modeling Language (ANML) [101] is an interesting development which
combines the HTN decomposition methods with the expressiveness of the timeline
representation. Finally, it is worth mentioning that the timeline-based approaches have
been often associated to resource managing capabilities. By leveraging on constraint-
based approaches, most of the above approaches like IxTgT [74, 73], [18], [102] or
[110] integrate planning and scheduling capabilities. Finally, [22] proposes a recent
new formalization of timeline-based planning.

Despite the above systems have been deployed in demanding applications, for ex-
ample, for controlling autonomous space systems and underwater vehicles, the search
control part of these reasoners has always remained significantly unexplored, missing,
in fact, the performance boost that has characterized classical planning in recent years.
By generalizing the reachability and dependency graphs of state-space planning, [7]
represents one of the few works which propose an elaborate heuristic for these repre-
sentations.

As we have seen in the previous sections, in order to cope with computational
complexity, classical planning assumes some strong restrictions on the state transition
system X. Partial-order planning aims at relaxing some of the above restrictions pay-
ing, however, a cost in terms of efficiency. Timeline-based planning goes even further
in this direction. Similarly to the partial-order case, goals can be specified by means of
desired trajectories of modeled systems’ subcomponents or, possibly, tasks that such
systems should perform. Additionally, the timeline-based approach to planning explic-
itly addresses temporal aspects. The restrictions about the set of states, about the goals
definition, about the implicit representation of time as well as about sequential plans,
as a consequence of the richer expressiveness, have been therefore relaxed, resulting in
an effective alternative to classical planning for complex domains requiring the use of
both temporal reasoning and scheduling features. As expected, however, compared to
partial-order planning, performance degrades even more. Before addressing the perfor-
mance issue, however, it is mandatory to formally introduce what timeline-planning is
and how to solve problems in this formalism. Since its first introduction in 1991, how-
ever, the concept of timeline-based planning has been reworked several times, adapting
it to the specific needs of the moment. The goal of this section is to provide a new
definition of timeline-based planning which is as general as possible, so as to include
all the characteristics of the timeline-based approaches proposed so far.

In essence, within the timeline-based approaches, planning is addressed by model-
ing the problem by means of a set of relevant features of the planning domain, called
timelines, which need to be controlled in order to obtain a desired temporal behavior.
Timelines model entities whose properties may vary in time and which represent one or
more physical (or logical) subsystems which are relevant to a given planning context.
The planner/scheduler plays the role of the controller for these entities, and reasons in
terms of constraints that bound their internal evolutions and the desired properties of
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Figure 2.8: Different types of timelines: a symbolic timeline, a piecewise constant
timeline and a continuously changing timeline.

the generated behaviors.
In generic terms, a timeline is a function from time, either continuous or discrete,
to a set of values. Formally,

Definition 13. A timeline T is a function
T:-T— %

where T is the (either discrete or continuous) domain of time and V is the (possibly
infinite) codomain of the timeline.

According to the modeled subsystem, the codomain ¥’ of a timeline can be either
symbolic or numeric. Additionally, in case of numeric timelines, the domain can be
either discrete or continuous. Finally, in case of timelines with continuous domains,
values can change either piecewise or, according to some (more or less complex) phys-
ical law, continuously. Figure 2.8 shows three examples of such types of timelines: a
symbolic timeline, a piecewise constant timeline and a continuously changing timeline.

Since the definition of timeline is completely general, it is possible to represent,
through these, extremely heterogeneous concepts. There is the need, therefore, of a
unifying element that allows to represent contents homogeneously, in a way which is
agnostic from the nature of the timeline, so as to allow reasoning. To this end, the
concept of foken is introduced. Despite the different nature of the timelines, indeed,
their values over time are a direct consequence of the tokens that are enforced on them.
Without loss of generality, a token is an assertion over a temporal interval. An addi-
tional argument is used to indicate the timeline on which the token applies. Formally,

Definition 14. A token is an expression of the form:
n(xo,...,xx) @|[s,e, 1]

where n is a predicate name, Xy, ...,X; are the parameters of the predicate (i.e., con-
stants, numeric variables or symbolic variables), s and e are the temporal parameters
of the token (i.e., constants or variables) belonging to T such that s < e and 7 is the
scope parameter of the token (i.e., a constant or a symbolic variable) representing the
timeline on which the token apply.

Roughly speaking, the expression on the left of the “@” symbol represents the
assertion while the expression at its right represents the interval. In other words, a token
n(xg,...,xx) @ [s,e, 7] asserts that Vz such that s < ¢ < e, the relation n (xo, ..., x;) holds
at the time ¢ on the timeline T. How the timelines’ temporal evolutions are extracted by
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the tokens enforced on them depends on their specific nature (some relevant examples
will be provided later).

A critical aspect to keep in mind is that, in general, tokens’ parameters are vari-
ables (see Definition 6) and, as such, can be constrained. In other words, in order to
reduce the allowed values for the tokens’ constituting parameters, and thus decreasing
the modeled system’s allowed behaviors, it is possible to impose constraints among
such variables (and/or between the parameters and other possible variables). Such con-
straints include temporal constraints, usually expressed by means of interval relations
[1], binding constraints between symbolic variables as well as (non)linear constraints
among numerical variables (possibly including temporal variables). Finally, it is worth
to notice that in a grounded plan each token applies to a specific timeline, reflecting
the intuition that tokens describe some aspect of the timeline (i.e., its state or behavior)
in time. However, in general, the commitment to a specific timeline may not yet have
been made and T can be treated as any other variable of a constraint network.

Similarly to partial-order planning, the set of tokens and constraints is used to de-
scribe the main data structure that will be used to represent nodes of the timeline-based
search space: the foken network.

Definition 15. A token network is a tuple © = (T,C), where:

- T =Ato,...,t} is a set of tokens.
— C is a set of constraints on the variables of the tokens in T.

C is required to be consistent, i.e., there exist values for the variables that meet all
the constraints. As introduced in Section 2.2 and similarly to is done in partial-order
planning, a possible solution for checking the consistency of a token network is to
associate it to a constraint network, linking each parameter of each token to a variable
of the constraint network and enforcing the constraints C on them.

Additionally, tokens can be partitioned into two groups: facts and goals. While
facts are, by definition, inherently true, goals need to be “achieved”. Specifically,
causality, in the timeline-based approach, is defined by means of a set o rules indi-
cating how to achieve goals. Formally,

Definition 16. A rule is an expression of the form
n(xg,...,x) @[s,e,T] < r
where:

- n(xo,...,xx) @|[s,e,1] is the head of the rule, i.e., an expression in which n is a
predicate name, Xy, . . . Xy are the parameters of the head (i.e., constants, numeric
variables or symbolic variables), s and e are the temporal parameters of the head
(i.e., constants or variables) belonging to T such that s < e and 7 is the scope
parameter of the head (i.e., a constant or a symbolic variable) representing the
timeline on which the rule apply.
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— ris the body of the rule (or the requirement), i.e., either a slave (or target) roken,
a constraint among tokens (possibly including the xq...xy,s,e,T variables), a
conjunction of requirements or a disjunction of requirements (in the latter case,
the disjuncts might be characterized by a cost).

Rules define causal relations that must be complied to in order for a given goal to
be achieved. Roughly speaking, rules define how to achieve goals: in order for a goal,
having the form of the head of a rule, to be achieved, the body of the rule must be within
the plan. It is worth noticing that by combining tokens, constraints, conjunctions and
disjunctions, requirements allow to express complex concepts. By assigning costs to
disjuncts, additionally, it is possible to assert preferences [80, 95], indicating desires
and/or satisfaction levels on the generated plans.

It is worth noticing that tokens included in the body of the rules might represent
other goals which might need be achieved too. As a consequence, according to the
chosen resolution procedure, other rules might require to be applied, in order to achieve
them. Intuitively, the resolution process continues until either a fact is met (which, by
definition, is already true), or another goal, which is already known how to achieve, is
met. In both cases we talk about unification of the goal with either a fact or another
goal.

The last aspect to be addressed is the definition of the timeline-based planning
problem which can rely on the above requirement concept.

Definition 17. A timeline-based planning problem is a triple P = (T, R,,r), where:
— T is a set of timelines.
— R is a set of rules.

— r is a requirement, i.e., either a fact token, a goal token, a constraint among
token arguments, a conjunction of requirements or a disjunction of requirements
(in the latter case, similar to rules, the disjuncts might be characterized by a
cost).

It is worth noting that the above formalism slightly differs from the one usually
accepted as standard (i.e., [20, 47] and [22]). In particular, since state-variables are just
one of the possible types of timeline, it is preferable, whenever possible, to eliminate
from the formalism those peculiarities specifically related to them. According to the
author, indeed, there is no reason to include, in the formalism, the transitions, from one
value to another, within the same state-variable. Such transitions, whenever needed,
can be easily specified through rules while leaving to the user, as well, the possibility
to not specify them at all. The definition of the transitions, indeed, implies having the
state-variables completely specified for the whole planning horizon. Again, this behav-
ior can easily be enforced through the use of rules, nonetheless, there are cases in which
it is preferable to leave the state-variables as partially specified so that during execu-
tion, for example, they can be “filled” with values derived from the interaction with the
external environment (i.e., exogenous events). The introduction of value transitions,
furthermore, associates to each state-variable its own state transition system. Nonethe-
less, it is not always possible to represent timelines as a sequence of stepwise values
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or, in some cases, it might be cumbersome. Consumable resources, for example, are
timelines having a continuous update of their value in time, therefore, value transitions
completely lose their meaning. Similarly, reusable resources might be cumbersome in
such a formalism. Although such resources are, in principle, representable by means of
a state transition system, this system would be completely connected losing, de facto,
the usefulness of such a representation. Conversely, in case such resources are modeled
by means of continuous (as opposed to discrete) amount of resource usage, the num-
ber of states becomes infinite. It is worth noting that also those extensions to classical
planning that include numeric fluents, as reported in [53], are not exempt from this
issue. The big issue, indeed, might concern the definition of timeline which both in
[20], in [47] and [22] is probably faulty (or, at least, counter intuitive): although state-
variables are timelines, the opposite is not necessarily true. Similarly to state-variables,
resources represent another kind of timeline. In other words, state-variables are just a
subset of the possible timelines and, in principle, many others can be defined.

Although the change might seem minor, compared to previous formalisms, there
is also an inversion in the direction of the arrow in the rule definition (which, in other
formalisms, are also called synchronizations or compatibilities). Goals are objectives
which, by definition, require to be achieved. Rules tell how to achieve goals: the
body of a rule specifies what is needed for a goal, of the kind specified in the head of
the rule, to be achieved. Although it may seem a mere stylistic effort, this inversion
deeply modifies the approach that a potential user has with the formalism, paving the
way, additionally, for applying classical planning heuristics to the timeline-based case.
Despite the appropriate adaptations, indeed, rules can be seen as classical planning
operators, having the body of the rule as preconditions and the head of the rule as
the sole positive effect. Both the head of the rule and its body, however, might involve
combinations of numeric variables (e.g., temporal variable) and constraints, making the
migration of the heuristics from classical planning to timelines not so straightforward
as it might seem at a first step.

The rover domain revised. In order to further clarify the just introduced concepts,
it is worth to redesign the rover domain so as to exploit the timeline-based capabilities.
Specifically, since the rover is composed of two components, it seems more intuitive,
compared to the classical approach, to model the system by means of two timelines rep-
resenting, respectively, the evolution over time of the navigation module and the evolu-
tion over time of the pan-tilt unit. While the allowed values of the navigation timeline
can be either Az (?x,?y), representing the rover standing at coordinates ?x and ?y, or
GoingTo (?x,?y), representing the rover going to coordinates ?x and ?y, the allowed
values for the pan-tilt unit can be either LookingAt (?pan, tilt), representing the pan-
tilt unit pointing at polar coordinates ?pan and tilt, or RotatingTo (?pan, ?tilt), repre-
senting the pan-tilt unit rotating toward the polar coordinates ?pan and ?tilt, or, even,
TakingPic (?x,?y, ?pan, ilt), representing the camera taking a picture while the rover
is at coordinates ?x and 7y while pointing to the ?pan and ?¢ilt polar coordinates. The
problem would be defined by introducing two fact tokens representing the current state
of the system like, for example, Az (0,0) @ [0, e, nav] and PointingAt (0,0) @ [0, e, pantilt],
and a goal token like, for example, TakingPic (1,5,2,7) @ [s, e, pantilt]. The left part
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Rules

TakingPic(?x, ?y, ?pan, ?tilt) € { RotatingTo(?pan, ?tilt) < {

Pan-tilt unit la: LookingAt(?pan, ?tilt) la: LookingAt()
y o la.end == start la.end == start
LookingAt(?pan, ?tilt) gt: nav.At(?x, %) ) Initial state
RotatingTo(?pan, Ptiltly” ¢~ “\TakingPic(x, 7, ?pan, ilt) ~ Btstart<=start
gtend>= end At(Zx, ) € { ﬁ ‘Z‘:{Z‘"T"f‘(u' R
. 2, 2 - =
AN } 8t: GoingTo(7x, 7) fact la: pantilt.LookingAt(0, 0)
gtend = start la.start == 0
Navigati dul LookingAt(?pan, ?tilt) & { }
avigation module rt: RotatingTo( %pan, ?tilt)
rt.end == start GoingTo(?x, ?y) ¢ { Goal propositions
At(2x, 7 GoingTo(?x, 7 "
{7 ) m oingTo(?, ) Yor{ at: At() goal tp: pantiltTakingPic(1, 5, 3, 7)

tp: TakingPic(?x, 7, ?pan, ?tilt)  at.end == start
tp.end == start

}

Figure 2.9: The rover domain represented through timelines.

of Figure 2.9 shows the allowed values and the possible value transitions within the two
timelines. A token At (?x,?y) @ [s, e, T], for example, would represent the rover stand-
ing at coordinates ?x and ?y from time s to time e while, given the simplicity of the
domain, the T variable would represent the sole navigation module timeline. Finally,
the right part of Figure 2.9 shows the rules for the rover domain. As an example, in
order for a goal represented by the token At (?x,?y) @ [s,e, 7] to be achieved, either it
is already achieved by another token (and, hence, we have an unification of the token
with the other token) or the associated rule’s requirement must be present in the current
token network. In the latter case, a new GoingTo (?x,?y) @ [s, e, T] token called, locally
to the rule, gz, is added to the token network and its ending time is constrained to be
equal to the starting time of the newly achievable goal. The new goal will eventually
undergo the same destiny either unifying with another token or another rule rule would
be applied. Finally, it is worth to notice how the TakingPic rule introduces tokens on
another timeline (the nav timeline represents the timeline associated to the navigation
module) and how the LookingAt rule introduces a disjunction.

2.3.1 Interactions among tokens: the timelines

From a planning perspective, the easiest way to describe a timeline is to consider it as
a mere collection of tokens (i.e., those tokens whose T parameter assumes, as allowed
value, the timeline). The values that the timelines assume over time, as well as the
behavior assumed by the planner when new tokens are added to a timeline, depend
not only on the tokens and on the modeled domain (i.e., the defined rules), but also
on the nature of the timeline itself. Timelines, indeed, introduce further implicit (and
higher level) constraints to the set of constraints C of a token network that, similarly
to the partial-order planning case, can be explicated through the concept of threat. In
the timeline-based case, however, threats might assume different semantics according
to the nature of the involved timeline. Typical examples of timelines are multi-valued
state-variables [84]. Renewable and consumable resources, like those commonly used
in constraint-based scheduling [73], however, also fit within the above definition of
timeline.

State-Variables. The state-variable is the most used type of timeline in this approach
to planning. Predicates allowed by state-variables are defined by the user during the
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At(l,)@[s3, €3] I t
Going(1,)@[s, e;] Use(a))@[sy, e,]

At()@[s,, ]

Use(a)@[sy, e;]

(a) An example of state-variable ~ (b) An example of reusable resource

Consume(a;)@[s,, ;] Produce(a;)@[ss, €]

Consume(a,)@[s,, €,]

(c) An example of consumable resource

Figure 2.10: Different kinds of timelines.

definition of the domain. The semantics of a state-variable is that for each time instant
t € T the timeline can assume only one value. This corresponds to a temporally mutual
exclusion rule between the tokens on the same state-variable. One option to manage
this type of constraint is as follows: whenever there is an overlap of two or more tokens
on the same state-variable, there is a threat which can be resolved by the solver either
by imposing a temporal constraint, for ordering the tokens in time, or by imposing a
constraint on their T variables, indicating on which timeline the tokens should apply
(roughly speaking, the tokens are separated on different state-variables). Intuitively,
the temporal evolution of a state-variable (i.e., its value in time) is given directly by the
tokens which are applied on it. Figure 2.10(a) represents an example of state-variable
with its tokens (the T variable is omitted for sake of space). Further examples of state-
variables are the timelines used in the revised rover domain.

Consumable Resources. A consumable resource is a timeline characterized by a re-
source level £ : T — R, representing the amount of available resource at any given
time. The resource level is increased or decreased by some activities of the modeled
system. Additionally, consumable resources are characterized by a max € R level,
representing the physical upper limit of the resource as well as by a min € R level,
representing the physical lower limit of the resource. Finally, consumable resources
require an initial amount init € R representing the initial level of the resource. An
example of consumable resource is a reservoir whose content is produced when some
activity “fills” it (e.g., a tank refueling task) and consumed when some activity “emp-
ties” it (e.g., driving a car uses gas). Consumable resources can be modeled through
timelines whose tokens’ values allow only two predicates: a predicate Produce (a) to
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represent a resource production of amount a, and a predicate Consume (a) to represent
a resource consumption of amount a. Extracting, from the tokens, the temporal evolu-
tion of a consumable resource (i.e., the resource level) is more complicated than in the
state-variables’ case since it depends on how resource productions and consumptions
are placed in time. Additionally, the planner may need to identify an ordering of the
involved activities in order to avoid overproductions (resource level £ cannot exceed
the upper limit max) as well as overconsumption (resource level £ cannot cannot be
lower than the lower limit min). Clearly, overproductions and overconsumption can
be managed as threats raised by consumable resources which, similarly to the state-
variable threats, can be resolved either by imposing a temporal constraint for ordering
the tokens in time, or by imposing a constraint on their T variables indicating on which
resource the token applies. Furthermore, constraints on the amounts of the productions
and consumptions might also resolve the threat’. Figure 2.10(c) represents an example
of consumable resource with its tokens and its profile.

Reusable Resources. The last commonly used timeline type, quite popular in the
scheduling literature, is the reusable resource. An example of reusable resource is the
collection of available programmers of an IT company. Such programmers might be
assigned to a given project for a specific amount of time after which the resource be-
comes, again, available. Reusable resources can be modeled as consumable resources
whose tokens consume an amount of resource at their start time and produce the same
amount at their end time. Rather than a min and a max level, these timelines are char-
acterized by a resource capacity C € R, representing the physical limit of the available
resource. The initial amount of available resource is assumed to be equal to the resource
capacity. The sole allowed predicate for reusable resources is Use (@) that represent an
instantaneous consumption of resource of amount a at time s and an instantaneous
production of resource of amount a at time e for each token assigned to the reusable
resource. Let’s assume, for example, that there are two tokens, 7y and #1, assigned to
the same reusable resource, such that the constraint 7g.s < ty.e At;.s < ty.e holds (this
constraint simply forces their overlapping). The expected behavior of the resource is to
have a resource usage of #p.a during fy’s duration when there isn’t overlapping with 7y,
a resource usage of f9.a +t;.a when ty overlaps with #;, a resource usage of ¢;.a during
t1’s duration when there is no overlapping with ¢y and a resource usage of 0 elsewhere.
In other words, reusable resources’ temporal evolution is simply given by the concur-
rent resource usages. Finally, resource overuses might be managed as threats raised
by reusable resources which, similarly to state-variable threats and the consumable re-
source ones, can be resolved either by imposing a temporal constraint for ordering the
tokens in time or by imposing a constraint on their T variables indicating on which re-
source the token applies. Constraints on the amounts of the uses might also resolve the
threat. Figure 2.10(b) represents an example of reusable resource with its tokens and
its profile.

91t is worth to notice that threats on consumable resources might also be solved through the addition of
further productions and consumptions. This aspect makes the reasoning on consumable resources, in general,
non-monotonic. A possible workaround, as proposed in [73], consists in closing the consumable resource,
preventing the introduction of further tokens on the resource, before resolving threats on it.
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It is worth to notice that resources have their own tokens which might be, in prin-
ciple, unrelated by other state-variables’ tokens. This separation of concepts allows
to easily model pure constraint-based scheduling problems without relying on the us-
age of state-variables. Furthermore, this allows for greater flexibility in constraining
tokens of a state-variable with the resources usages (e.g., we can model a resource
usage which starts at some given time after an activity represented by a token on a
state-variable). Finally, it is worth to highlight that the proposed formalism is open
and can easily (in principle) introduce new kinds of timelines (e.g., batteries, whose
overcharges represent wastes of energy, classical planning agents, etc.).

2.3.2 Algorithms for timeline-based planning

Despite the differences in representing the state-transition system X, the search space
of partial-order planners and timeline-based planners is mostly the same. Specifically,
the main difference related to the search space consists in the fact that timeline-based
planners generalize the partial-order planning concept of threat including any possible
inconsistency which might appear in the timelines. Since there are different kinds of
timelines, there might be different types of inconsistencies. Despite the generalization,
however, the search space (and, consequently, the solving algorithm) remains substan-
tially unchanged compared to the Algorithm 2.7 for partial-order planning.

Definition 18. A flaw in a token network n = (T,C) is either: (i) an open goal (i.e., a
token having an undecided value for its & variable), (ii) a threat or (iii) a disjunction.

Similarly to the partial-order case, while flaws can be of different types and can
arise for different reasons, what they all have in common is that a search choice is
necessary to solve each of them, thus the basic operations for refining a partial plan 7
toward a solution plan are the following:

1. Find the flaws of T, i.e., its open goals, its threats or its disjunctions.
2. Select one such flaw.

3. Find ways to resolve it.

4. Choose a resolver for the flaw.

5. Refine 7 according to that resolver.

The process proceeds until there is no flaw in 7 and all of its constraints are con-
sistent. In case this condition occurs then T is a solution to the planning problem.
Similarly to the partial-order case, by following the least commitment principle, the re-
finement operations tend to avoid adding to the token network those constraints which
are not strictly needed. Starting from an initial node corresponding to a token network
containing the problem requirement, the search aims at finding a final node containing
a solution plan that correctly achieves the required goals. This algorithm is represented
as a recursive non-deterministic schema in Figure 2.11.
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procedure TP(m)
flaws < OpenGoals (1) U Threats (1) U Disjs ()
if flaws = 0 then return ©
select any flaw ¢ € flaws
resolvers <— Resolve (0, )
if resolvers = 0 then return L
non-deterministically choose a resolver p € resolvers
7' < Refine (p, )
return TP (1)

Figure 2.11: The Timeline-based Planning (TP) procedure.

The TP procedure is called initially with the token network 7y containing the prob-
lem requirement. Each successful recursion is a refinement of the current plan accord-
ing to a given resolver. The correct implementation of the non-deterministic “choose”
step is the following:

— When a recursive call on a refinement with the chosen resolver returns a failure,
then another recursion is performed with a new resolver.

— When all the resolvers have been tried unsuccessfully, then a failure is returned
from that recursion level back to a previous choice point. This is equivalent to
an empty set of resolvers.

Before moving further, let us detail the variables and the procedures that are used
in TP:

— flaws denotes the set of all flaws in 7 provided by procedures OpenGoals, Threats
and Disjs; ¢ is a particular flaw in this set.

— resolvers denotes the set of all possible ways to resolve the current flaw ¢ in
partial plan 7 and is given by the procedure Resolve. The resolver p is an element
of this set.

— 7’ is a new plan obtained by refining T according to resolver p through the use
of the Refine procedure.

OpenGoals (1). This procedure finds all the tokens in T which are not causally sup-
ported. Notice that this procedure can be efficiently implemented with an agenda data
structure from which draw out flaws. For each new token ¢ in &, ¢ is added to the
agenda; the token is removed from the agenda if it is either unified or its associated
rule is applied.

Threats (1). Threats are sets of possibly conflicting tokens like different values over-
lapping on a state-variable, resource overuses as well as resource overproductions and
resource overconsumptions. Notice that, compared to [74], resource conflicts are in-
cluded into the set of flaws.
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Disjs (1). These correspond to a syntactical facility that allows one to specify in a
concise way several rules into a single one. Although they lead to an exponentially
larger search space, they can be easily managed by including them into the same
agenda data structure. Whenever the draw out flaw corresponds to a disjunction, a
non-deterministic choice, among the available disjuncts, takes place. Disjunctions are
also used for choosing the value of object variables.

Resolve (¢,). This procedure finds all ways to solve a flaw ¢. If ¢ is an open goal g;
then its resolvers are either of the following:

— An unification constraint g; = #; if there is a token ¢;, already in T, that is compat-
ible with g; (i.e., the variables of g; and #; can be made pairwise equal).

— The application of the rule associated with the goal g;. This resolver adds a new
token ¢; for each target token #; € R, a new constraint c; for each constraint ¢; € R
and a new disjunction d; for each disjunction d; € R.

If ¢ is a threat among a set of tokens, its resolvers dependent on the nature of the
timeline on which the threat arises and might include temporal constraints for ordering
in time each couple of the conflicting tokens as well as constraints on their values
reducing, for example, the amount of resource consumption or, even, constraints on
their T variables “moving” the tokens on other timelines. Finally, if ¢ is a disjunction,
its resolvers are the disjuncts of the disjunction.

Refine (p, ) This procedure refines the partial plan T with the elements in the re-
solver, adding to T constraints, new tokens and new disjunctions. This procedure is
straightforward: no testing needs to be done because we have checked, while finding
a resolver, that the corresponding constraints are consistent with 7. Refine just has to
maintain incrementally the the agenda.

It is worth noting that while the choice of the resolver is a non-deterministic step
(i.e., it may be required to backtrack on this choice), the selection of a flaw is a deter-
ministic step (i.e., there is no reason to backtrack on this choice) as all flaws need to be
solved before or later in order to reach a solution plan. Similarly to the partial-order
case, however, the order in which flaws are processed is very important for the effi-
ciency of the procedure yet is unimportant for its soundness and completeness. More-
over, a deterministic implementation of the TP procedure should rely on algorithms
like A* or IDA* otherwise the search may keep exploring deeper and deeper a single
path in the search space, adding indefinitely new tokens to the partial plan and never
backtracking. As a consequence, similarly to the partial-order planning case, choos-
ing the right flaw and the right resolver becomes a crucial aspect for coping with the
computational complexity and hence efficiently generating solutions.

Solving the rover domain. In case of the rover domain there are, initially, two to-
kens in the token network representing the two facts while the goal is in the agenda.
Additionally, the token network contains two constraints that force the two facts to
start at time 0. The algorithm selects the initial TakingPic (1,5,3,7) goal, let us call it
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¢, as the sole flaw returned by the OpenGoals (1) procedure. Since it is not already
known how to achieve this goal, the Resolve (¢, Tt) procedure returns the sole resolver,
let us call it pg, corresponding to the token’s associated rule application. Finally, the
Refine (pg,T) procedure applies the rule and adds the token to the token network. As a
consequence of the rule application, the two goals LookingAt (3,7) and At (1,5), let us
call them, respectively, ¢; and ¢,, are added to the agenda for further resolution. At the
next step one of the flaws of the agenda is selected like, for example, ¢;. Since there
is no other token available assuming the same value, its corresponding rule is applied
and the token is added to the token network. The application of the last rule introduces
a disjunction flaw, let us call it ¢3, into the agenda which now contains the previous
0, and the new ¢3 flaws. Again, a flaw from the agenda, for example ¢,, is selected
and, again, a rule is applied. A goal GoingTo (1,5), called ¢4, is added and selected
for resolution through its corresponding rule application which, finally, leads the the
introduction of a new goal Az (?x,?y) which can be called ¢s. It is worth noting that
the Resolve (¢, 1) procedure, till now, has always returned a single resolver, hence, all
the above steps were mandatory and did not require any decision to be taken. However
the agenda, now, contains the two flaws ¢3 and ¢s each resolvable through different
ways. The ¢3 flaw, indeed, represents the disjunction described into the LookingAt rule
and can be solved either applying the first disjunct or the second. The ¢5 flaw, on the
other hand, can either represent the initial Az (0,0) fact, in which case can be resolved
through an unification, or not, in which case can be resolved through its corresponding
rule application. The best choice is, for both of the flaws, the first option. In case
of the ¢5 flaw flaw, its corresponding token is unified with the initial fact resulting in
the constraining of the variables to be pairwise equal (i.e., x ==0, y==0, s == 0,
etc.). In case of the ¢3 flaw, the disjunct introduces a new RotatingTo goal whose rule
application would introduce a LookingAt (?pan, ?tilt) which, in turn, would unify with
the initial fact resulting in a solution plan. Figure 2.12 represents a partial plan for the
rover domains. Boxes represent tokens with their predicate names and their parame-
ters. Solid arrows represent causal relations while dashed arrows represent the equality
constraints introduced by the application of the rules. While the solid boxes represent
the tokens in the token network, the dotted ones represent the unified ones. Finally,
dashed boxes represent tokens which are still in the agenda. It is worth noting that, by
unifying the dashed token in the Figure with the one on top of it, we obtain the solution
described above.

2.3.3 Timeline-based planning vs other approaches

Rather than through propositions, timeline-based planning models the world by means
of different features which evolve in time. Such features are represented by the tem-
poral evolution of the timelines as a consequence of the tokens which are imposed
on them. Before going further within the dissertation, it is worth highlighting some
of the main differences in this way of making automatic planning compared to other
approaches.
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Figure 2.12: A partial plan for the rover domain.

An explicit representation of time. Compared to other approaches, timeline-based
frameworks reason explicitly about time. It is worth noting that partial-order ap-
proaches have to tackle ordering constraints and hence should implicitly maintain tem-
poral information about facts. In general, however, this type of information may be
limited to the qualitative option and remains mostly transparent to an external user
who has no chance to enforce temporal constraints in order to model more accurately
reality. Temporal planning, introduced in [45], represents an enhancement to classical
planning which, among the other things, addresses the lack of an explicit representa-
tion of time. Although it represents a significant step forward in the planning problems
modeling capabilities, time appears explicitly only in the duration of the actions which
need to be arranged in order to manage concurrency. Specifically, actions’ precondi-
tions are temporally annotated, making it explicit whether the associated propositions
must hold at the start of the interval (the point in which the action is applied), at the
end of the interval (the point in which the action terminates) or over all the interval (in-
variant over the duration of the action). Similarly, the annotations on the effects make
explicit whether the effect is immediate (it happens with the start of the action) or de-
layed (it happens at the end of the action). Temporal evolution of the state is, hence,
only affected indirectly through the application of the actions. Timed initial literals, in-
troduced in [41], represent a further enhancement which allows the modification of the
state, in specific times, independently of the actions. Despite by combining temporal
planning and timed initial literals it is possible to achieve results which are similar to
those of the timeline-based approaches, often, when it is required to explicitly reason
about time, modeling problems through a timeline formalism could be more conve-
nient!”.

A different representation of the state. Timeline-based frameworks represent the
states of the state transition system X in a different manner compared to those of clas-
sical and temporal planners. Specifically, the proposition symbols L are replaced by
timelines which, in a more compact manner, can represent complex behaviors through

10A step toward an explicit representation of time as related to the classical approaches can be found in
[76].
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tokens. In this regard, it is worth to mention the SAS+ formalism (see [3]) which
represents a planning problem using multi-valued state-variables instead of the propo-
sitional symbols L. Timeline-based planning goes further in this direction representing
values through predicate symbols and parameters. It is worth to note that, by allowing
numeric variables in the token parameters, the size of the state space could potentially
become infinite.

Facts and goals. Although there are some extension of classical planning (i.e., timed
initial literals and trajectories) which try to mitigate this gap, most of the approaches at
planning describe the state of the world by means of a collection of facts which are true
at the beginning of the planning horizon while goals describe the characteristics that
a desired state, eventually, must have. In other words, planning problems are usually
described by means of the initial state, a set of possible actions and a set of goal states
which, eventually, have to be reached by applying the actions. This approach precludes
the possibility of introducing some desired behavior within the plan. Classical and
temporal planning approaches address this lack trough the introduction of state trajec-
tories [55]. The unified representation of concepts through the tokens, together with
a richer model of time, however, allow timeline-based planning framework to natively
represent such desired behaviors.

No distinction between actions and states. Classical and temporal planning ap-
proaches are historically characterized by the dichotomy between agents and envi-
ronment. In such approaches, the agents observe the environment and, consequently,
perform some actions which, in turn, end up to alter the environment. It seems natu-
ral, therefore, to separate these two concepts. Timeline-based planning, on the contrary,
uses the unified concept of token to represent both the state of the world and the actions
of the agents. The motivations underlying this deviation mostly relies in the higher
flexibility in imposing richer constraints among actions and the state of the world. This
allows, for example, in contrast to classical planning (also in the extended version with
time, i.e., PDDL2.1), to express natively the requirement that a proposition must hold
for an interval of time. Furthermore, despite not having its own conceptual autonomy,
agent’s actions have their own representation allowing us to impose constraints among
actions as, for example, directly limiting time between two actions (e.g., to serve a
dish, after it has been cooked, yet before it gets cold). Again, by combining temporal
planning and timed initial literals, it is still possible, for temporal planning approaches,
to achieve, through some artifacts, similar results. Modeling such problems into these
formalisms, however, represents a challenge both for the planner and for the user who
has to model the problem.

Exogenous events. Since there is a single primitive for representing information (i.e.,
the token), such primitive might be used for representing exogenous events, raising
at execution time, as well. Timeline-based planning can hence more easily adapt to
unforeseen events avoiding, in some cases, the need to regenerate plans from scratch
in order to tackle the emergent states. As regarding this topic, it is worth to mention
the PDDL+ formalism described in [44] which introduces the possibility to reason on
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events. Like classical planning actions, PDDL+ events are modeled as instantaneous
state transition functions which, however, can have numeric preconditions and effects.
The key difference from classical planning actions, however, consists in the fact that
PDDL+ events cannot be selected by the planner during the development of a plan but
must be applied whenever their preconditions are verified. Therefore, although these
types of events go in the direction of handling situations not directly controllable by
the planner, they are still bound to the planning phase and not to the execution one.

Flexible plans. Timeline-based planning natively represents plans by means of a net-
work of constraints. Similarly to partial-order planning, some of the involved variables
might be maintained flexible. Usually, start and end times of tokens are left flexible
allowing the final plan to represent envelops of plans. This flexibility assure robustness
during plan execution, especially in such situations in which it is not possible to exactly
know in advance the duration of some activities.

Modularity. Most of the modern artifacts are made of a number of separated compo-
nents connected together. The ability to describe such components each other indepen-
dently, proves to be a precious help in managing complexity at modeling time. Most of
the Timeline-based planning frameworks allow decomposition of the domain model,
resulting in a reduction the overall complexity at design phase.

2.4 The performance gap between timeline-based and
other approaches

As shown in 2.1.1, the idea underlying classical planning heuristics consists in esti-
mating the minimum distance A* (s,g) from a state s to a solution state containing all
the propositions in g. This estimation is useful for taking decision during the search
phase. The given hint is: choose the action that will lead to a state which is the closest
as possible to a solution. How to estimate this distance depends on the chosen heuristic
and, as already mentioned, represents, more in general, the main topic of a research
field called heuristic planning. Intuitively, the more accurate the estimation is, the
harder is to compute it, yet the more it will lead the search phase straight toward a so-
lution, producing shorter plans and avoiding computationally expensive backtracking
steps. Despite the introduction of concurrency, the approaches used to make efficient
the reasoning in temporal planning follow a similar idea. Specifically, actions having a
duration (a.k.a. durative actions) are treated as a couple of classical planning actions,
one of which starts the action and the other concludes it. Different strategies are then
applied to manage the concurrency [27, 25, 26].

Compared with classical and temporal planning, timeline-based planning has a
clear advantage in being able to decompose problems into subproblems. Although
these planners capture elements that are very relevant for applications, their theories
are often quite challenging from a computational point of view and their performance
is rather weak compared with those of other state of the art planners. As we have
seen, timeline-based planners are mostly based on the notion of partial-order planning
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[112] and have almost neglected advantages in classical planning triggered from the
use of Graphplan and/or modern heuristic search [9, 10]. Similarly to the partial-order
approach, indeed, timeline-based planning suffers for not representing states directly,
making it harder to estimate “how far” a partial plan is from being a solution. At
present time, there is less understanding of how to compute accurate heuristics for
timeline-based planning than for classical and temporal planning. As a consequence,
timeline-based planners are, typically, inherently quite inefficient and rely on a care-
ful engineering phase of the domain, possibly supported by the definition of domain-
dependent heuristics. With a few exceptions (e.g., [7, 108]), the search control of these
planners has always remained significantly under explored.

In general, the different branching schema does not seem to allow effective pruning
mechanisms during search hence dead-ends are discovered too late and, as a conse-
quence, the size of the search tree is likely to explode. Similar to most partial-order
planners, timeline-based planners tend to reason about the sole elements in the current
partial plan [111], widely relying on the sole temporal reasoning aspects, and mostly
overlooking possible subsequent plan refinements. The key question is: “how is it pos-
sible to reason on tokens that have not yet been added in the current partial plan, since
some rules have not yet been applied?”. When building and using the planning graph,
Graphplan reasons, in a limited way, on all the possible plans underlying a domain
specification, hence producing a wider view of the problem to be solved (the same
holds for the heuristic search approaches based on [10] and derivatives).

The order in which flaws are selected by the search algorithm and, particularly
(since all of them must be solved), the choice of the resolver, have been recognized
as key issues. Intuitively, solving, at first, the most complex flaws would allow an
early detection of inconsistencies. An ideal flaw ordering would select, at first, a small
strong backdoor, i.e., a set of flaws which, once solved, make the remaining problem
easy to solve. Once chosen a flaw, however, it would be preferable to resolve it in a
way that most likely would lead to a solution. The real challenge is than reduced at
finding the “right” flaw and ordering its associated resolvers in an “right” way. Un-
fortunately, finding an optimal ordering is at least as difficult as solving the problem
itself. Introducing some form of randomization into a given flaw and/or resolver order-
ing heuristic can cause great variability in performance. In conclusion, timeline-based
planning leaves room for two types of heuristics: heuristics for selecting the next flaw,
and heuristics for choosing the resolver of the selected flaw. The next chapters, indeed,
will be focused on the effort in finding such heuristics.



Narrowing the Performance Gap with ILOC

As seen in Section 2.1, classical planning imposes strong restrictions in order to cope
with computational complexity and performance issues. Possible enhancements come
in two main flavors: either extend the classical planning state representation (by intro-
ducing durative-actions and numeric fluents [45], derived predicates and timed initial
literals [41), state-trajectory constraints and preferences [55] and object-fluents') or
follow the timeline-based way.

Exception made for some special cases in which concurrency is limited, namely
those domains which are not temporally expressive [28], both alternatives lack of valid
heuristics. This section presents ILOC, an initial attempt at bridging the performance
gap between timeline-based planning and other more efficient approaces. ILOC rep-
resents the natural evolution of previous works on timeline-based planning carried on
during the development of this thesis [29, 30, 31, 32].

3.1 Theintegrated Logic and Constraint Reasoner (1ILOC)

Taking inspiration from both Constraint Programming (CP) and Logic Programming
(LP), the 1ILOC (for integrated Logic and Constraint Reasoner) domain independent
planning system is a timeline-based planner that allows to model both planning and
scheduling problems according to a uniform schema. By pursuing the goal of going
beyond the timeline-based representation, however, the ILOC framework slightly rede-
fines the concepts of tokens and compatibilities as defined in Section 2.3.

The first consideration it is worth doing, in the case of existing formalisms for
timeline-based planning, regards, indeed, the token concept. The idea underlying the
token concept resides in the need for having a representation in time of a relation which
is expressed by means of a predicate and its parameters. A token, indeed, is nothing
more than a temporally scoped value applied to a timeline. Once introduced the con-
cept of predicate and their parameters which, nevertheless, is required by the token

Thttp://www.plg.inf.uc3m.es/ipc2011-deterministic/attachments/Resources/
kovacs-pddl-3.1-2011.pdf
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formalism, it is possible to embed in it both the temporal variables and the object vari-
able representing the timeline on which the token applies. The resulting data structure
is just a first-order atomic formula called, for brevity, atom. More formally,

Definition 19. An atom is an expression of the form:
n(xg,...,Xxk)

where n is a predicate name, Xy, .. . Xy are constants, numeric variables or object vari-
ables.

The s and e temporal variables, representing the starting and the ending time of the
token, as well as the T object variable, representing the timeline on which the token
applies, might (as opposed to must, hence, the more generality) be included in the
parameters of the predicate. The ILOC added value, in this case, lies in the possibility
to reason even (and, if needed, at the same time) on those atoms which do not have
such variables. It would not make much sense, as an example, to introduce a predicate
such as Know (x), indicating the fact that an agent knows some concept x, and to assign
it to some temporal interval on a timeline.

Replacing tokens with atomic formulas has at least two benefits: (a) allows to un-
fasten the formalism from the timeline specific features without, of course, forbidding
them, thus constituting an overwhelming set of concepts that can be represented and
(b) avoids the introduction of an additional concept (i.e., the token), thus allowing us
to rely more firmly on the theories related to first-order logic. By relying on the type
of the 7 variable, if present among the atoms’ parameters, it is possible to inject some
domain-specific (and, thus, more efficient) knowledge within the framework without
affecting the formalism. This is the case, for example, of the specific reasoning capa-
bilities required in order to maintain the consistency of the state-variables as well as of
the consumables and renewable resources.

A direct consequence of introducing the concept of atom is the requirement of a
slight formal adaptation for the token network. Specifically, the token network concept
is replaced by an analogous concept called atom network. Despite the names, the two
concepts are, nonetheless, basically identical. More formally:

Definition 20. An atom network is a fuple T = (A,C), where:
- A=A{ap,...,a} is a set of atoms.
— C is a set of constraints on the variables of the atoms in A.

A further distinction with default timeline-based planners, implemented in ILOC,
lies in the more general concept of fype. In particular, the timeline types (i.e., state-
variables, reusable and consumable resources, etc.) are special kinds of types. The
advantage, here, is twofold: (i) the introduction of new types, as well as their domain-
specific (and, thus, more efficient) knowledge, does not affect the formalism and (ii) it
is possible to introduce new types, as well as their domain-specific knowledge, which
are not necessarily timelines (i.e., do not involve explicit reasoning about time like, for
example, in the case of a computational linguistic module).

Within 1ILOC, also the definition of rule slightly changes, becoming simpler and
more expressive at the same time. Formally,



3.1. THE INTEGRATED LOGIC AND CONSTRAINT REASONER (ILOC) 43

Definition 21. A rule is an expression of the form
n(x,...,xg) <1
where:

— n(xg,...,xx) is the head of the rule, i.e., an expression in which n is a predi-
cate name and xy, . . . , Xy are the parameters of the head (i.e., constants, numeric
variables or symbolic variables).

— r is the body of the rule (or the requirement), i.e., either a slave (or target) to-
ken, a constraint among tokens (possibly including the xq . .. x; variables), a con-
junction of requirements or a disjunction of requirements (in the latter case, the
disjuncts might be characterized by a cost).

Finally, ILOC problems can be described as a set of objects (including, possibly,
the timelines) each having associated a type, a set of rules and a requirement. More
formally,

Definition 22. An 1ILOC problem is a triple P = (O, R.,r), where:

— Ois a set of objects.
— R is a set of rules.

— r is a requirement, i.e., either a fact atom, a goal atom, a constraint among
atoms’ arguments, a conjunction of requirements or a disjunction of require-
ments (in the latter case, similar to rules, the disjuncts might be characterized
by a cost).

The definition of rule, given above, does not differ much from the definition of
a logic programming rule. While the head of a first-order rule can be replaced with
the head of a timeline-based rule, the body of a first-order rule can be replaced with
a requirement. Additionally, while first-order rules having the same head are consid-
ered disjunctive, timeline-based rules explicitly allow the definition of disjunctions?.
It is worth noticing that constraints are, ultimately, conditions which might be either
satisfied or not and hence easily fit among the literals of the body of the rules. Con-
sequently, the ILOC problem can be described by a collection of Horn clauses any of
which belonging to three categories: (i) a Horn clause with exactly one positive literal
(i.e., a definite clause, as described in Section 2.1) called a rule; (ii) a rule with no
negative literals called a fact; and (iii) a rule without the positive literal called a goal.
As a consequence, an ILOC problem strongly resembles a logic programming problem.
This similarity will allow, in Chapter 7, to use the results presented in this thesis in con-
texts that go “beyond” the timelines, such as those related to logical programming and
abdutive reasoning. Unlike the logic programming case, however, rather than demon-
strating goals, TLOC resolves flaws. This distinction is important because, except in

2This is, ultimately, nothing more than syntactic sugar which allows, in those cases in which disjunctive
rules share some code, a more compact representation.
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Figure 3.1: A high-level view of the ILOC reasoning engine.

the case of basic flaws (i.e., facts, goals and disjunctions), flaws (and their resolvers)
can be defined by the specific types from which they might arise (i.e., state-variables,
reusable and consumable resources, etc.).

An additional consequence of the analogies with the logic programming approach
lies in the possibility of sharing the resolution algorithms. From an operational point
of view, indeed, ILOC uses an adaptation of the resolution principle [94] for first-order
logic, extended for managing constraints in the more general scheme usually known
as constraint logic programming (CLP) [2]. Starting from an initial atom network,
containing the requirement as defined by the problem, the solver maintains an agenda
of the current flaws and, incrementally, choses one of them. By exploiting the set
of rules, the solver resolves the chosen flaw until the agenda becomes empty. The
underlying constraint network, as usual, must always by maintained consistent. As
already mentioned, the possibility for sharing the resolution algorithms can be seen as
an added value also from the other side point of view. Specifically, the development of
heuristics for solving timeline-based planning problems can be exploited to solve, also,
constraint logic programming problems. To the best of the author’s knowledge such
heuristics do not yet exist at all. Typical logic programming approaches, indeed, select
goals according to a queue (i.e., according to a first in first out strategy) subject to how
goals raise. The same approaches, furthermore, apply rules according to their order of
declaration. Both these choices are rather poor from a performance perspective.

Figure 3.1 shows a general description of the ILOC reasoning engine. Specifi-
cally, the system maintains a set of rules (i.e., the domain theory). A working memory
maintains information about the current objects and the current constraints among such
objects (i.e., the atom network). An agenda maintains information about all the flaws
to be resolved. Finally, an inference engine has the dual role of solving all the flaws of
the agenda while maintaining consistent all the constraints among the objects. Notice
that, despite the slightly different nomenclature, which allows greater flexibility in the
representation of the domain models, the resolution algorithm is practically identical
to a standard timeline-based resolution algorithm as described in Section 2.3. The fi-
nal aim of the resolution process is, indeed, to remove all the flaws from the agenda
while maintaining all the constraints consistent. The process follows a best-first search
strategy, according to some heuristics which will be defined in the next sections of this
chapter, proceeding until there are no more flaws into the agenda and while all the
constraints in the working memory are consistent. Whenever the constraint network
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Figure 3.2: The static causal graph associated to the rules of the rover domain and the
costs estimated by the ALLREACHABLE heuristic.

becomes inconsistent, the system performs a backtracking step.

3.2 Preliminary heuristics for ILOC

Since all the flaws must be solved sooner or later, there is almost no difference among
which flaw is solved first. As already mentioned, however, selecting the “right” flaw
heavily impacts with the efficiency of the resolution algorithm. A possible way for
approaching the problem is to see the resolution procedure as a meta-CSP (refer to
Section 2.2 for a brief introduction on CSPs). By considering the resolution process as a
meta-CSP, indeed, it is possible to take inspiration from those heuristics, developed for
solving CSP problems, which have proven to be effective. Specifically, decision points
can be seen as CSP variables and decisions can be seen as choosing the assignment
value for a given variable. Looking at things from this perspective might help to define
the new heuristics. In particular, one of the most effective CSP strategies consists in
choosing the most constrained CSP variables (in our case, flaws) first, so as to allow,
in case, an early detection of inconsistencies, while trying to assign them the least
constraining values (resolvers) first. Effectively measuring along these dimensions,
however, might not be trivial. As a first attempt, [31] builds a data structure, called
static causal graph (since it doesn’t change during the resolution process), aimed at
producing some kind of information which might be used to guide the search process.
Specifically, the causal graph has a node for each of the predicates that appear in the
rules and, for every rule, an edge from each of the predicates that appear in the body of
the rule to the predicate in the head of the rule. As an example, Figure 3.2 shows the
static causal graph resulting from the rules of the rover domain as defined in Section
2.3.

Roughly speaking, this graph provides some initial information on how to achieve
a specific goal because the slave atoms of the corresponding rule must also be in the
atom network. The main underlying idea consists in creating a simple data structure
(keeping Graphplan as a reference) that takes into consideration something more than
the sole atoms in the current atom network. Such a data structure, indeed, allows to
reason, although in a very limited way, about all possible plans, producing a wider view
of the problem to be solved. By exploiting the topology of such a graph it is possible to
extract the values for the above (variable and value selection) heuristics. Specifically, in
choosing meta-variables, the furthest flaws from a solution will receive higher priority.
On the contrary, meta-values (i.e., resolvers) will be assigned giving higher priority to
those which are more likely to lead to a solution.
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3.2.1 The ALLREACHABLE heuristic

The static causal graph roughly represents the causality of the domain from which it is
extracted. In case of the rover domain, for example, in order for an Az goal to be solved,
a GoingTo atom must also be present in the atom network. In other words, for reaching
an Ar goal, you have necessarily to pass for a GoingTo node. As a first attempt, the esti-
mated cost for solving a goal, therefore, can be considered as the number of nodes from
which the node relative to the predicate associated to the goal is reachable. Atoms hav-
ing those predicates as their values, indeed, must also be present in the atom network.
Such costs, in the case of the rover domain, are indicated by the numbers of Figure
3.2. As an example, the cost for solving an Ar goal is 1 (since At is reachable by the
sole node GoingTo) while the cost for solving a TakingPic goal is 4 (since TakingPic
is reachable by all the nodes GoingTo, At, LookingAt and PointingAt). This evaluation
criteria provides an aproximate estimation of the cost for solving a goal. Since the
most constrained variable is preferable, higher priority is given to those flaws which
have a higher estimated cost since they are, probably, harder to be solved. Suppose, as
an example, the initial problem contains two goals At and TakingPic, the latter will be
chosen, first, and a resolver will be applied so as to resolve it. Notice that this strategy
is analogous to the strategy proposed in [108] for choosing a flaw since higher level
flaws in a hierarchy are also, according to the ALLREACHABLE heuristic, the most
expensive ones.

Additionally, by considering the cost for an atom network as the sum of all the flaws
which still have to be solved, each, evaluated with the above criteria, it is possible to
exploit the same graph also to estimate the cost for the resolvers, foreseeing, to some
extent, the number of flaws which will have be solved before applying the resolver.
This allows, additionally, to evaluate disjunctions as the minimum cost of its disjuncts.
Suppose, as an example, two goals on the rover domain ask (a) to go at a location [y
and (b) to either go at some other location /1 or to take a picture on another location /5.
Notice that the latter can be achieved by means of a disjunction involving an Ar goal,
on a first disjunct, and a TakingPic goal, on a second disjunct. Since both flaws are
equally evaluated (i.e., 1), any of the two is chosen, e.g., the latter. Now, since the first
disjunct would lead to a partial plan having cost 2, as the result of the contribution of
the Ar goal (i.e., 1) plus the contribution of the first disjunct (i.e., 1), and the second
disjunct would lead to a partial plan having cost 5, as the result of the contribution of
the At goal (i.e., 1) plus the contribution of the second disjunct (i.e., 4), the former is
chosen.

To sum up, when choosing the next flaw to be solved, choose the flaw having the
maximum estimated cost, when choosing the next resolver to apply, choose the one
which would lead to having the minimum estimated distance from the solution. [31]
calls such a strategy ALLREACHABLE. The idea behind this strategy is to evaluate
flaws by considering a kind of worst case scenario where none of the atoms unify.
Clearly, this graph and, consequently, the costs for each of its nodes, solely depends
on the rules and, thus, can be built once and for ever at the beginning of the solving
process (whence the name static), allowing constant-time cost retrieval. The heuristic,
however, completely neglects all the possible disjunctions (resulting from rules having
the same head) of the domain theory. Furthermore, the arguments of the predicates are
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Figure 3.3: The AND/OR static causal graph associated to the rules of the rover domain
and the costs estimated by the MINREACH heuristic.

ignored as well as the constraints among them.

3.2.2 The MINREACH heuristic

A slight improvement to the above heuristic can be achieved by introducing disjunc-
tions into the static causal graph. Specifically, it is possible to enhance the causal graph
by means of two special nodes representing conjunctions (AND nodes) and disjunc-
tions (OR nodes). Figure 3.3 shows the enhanced static causal graph generated from
the rules of the rover domain. The cost for solving a flaw is now evaluated as the min-
imum number, without repetitions, of all the nodes from which the node associated to
the goal predicate is reachable. [32] calls such a strategy MINREACH heuristic. As an
example, the cost for solving a LookingAt goal is now reduced from 4 to 1 since the
LookingAt node is reachable either from the TakingPic node, having cost 3 or from the
RotatingTo node, having cost 1. Introducing the sole RotatingTo atom, however, is
probably preferable than introducing a TakingPic atom which would require, also, an
At atom and a GoingTo atom and, clearly, and far more preferable than introducing all
of the above atoms as expected by heuristic ALLREACHABLE.

3.3 Experimental evaluation

To assess the value of our heuristics, we have endowed ILOC with the above described
MINREACH (MR) and ALLREACHABLE (AR) heuristics and tried to compare the re-
sulting system with different planners on different benchmarking problems. Specifi-
cally, we have selected three planners that are interesting for their features and com-
pared them with ILOC: VHPOP [100] shares with our planner the partial-ordering ap-
proach, OPTIC [6] and COLIN (see [24]) are both based on a classic FF-style forward
chaining search [65]. All the tests have been executed with default configurations for
every planner. It is worth to say that, although VHPOP is slightly dated, both OPTIC
and COLIN are quite recent works.
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The blocks world domain

We start the comparison by solving the Blocks World domain, a workhorse for the
planning community. The reason for choosing this domain relies, basically, in its sim-
plicity even if it is not that easy from a computational point of view. In this domain,
the aspects related to temporal reasoning are practically absent. The actions, indeed,
do not have a duration or, in any case, it can be considered negligible for the sake of
solving the problem. These features make it a challenging problem for timeline-based
planners that work well in those cases in which temporal aspects are predominant, yet
less well when the logical/causal reasoning aspects prevail.

As known, in this domain a set of cubes (blocks) are initially placed on a table. The
goal is to build one or more vertical stacks of blocks. The catch is that only one block
may be moved at a time: it may either be placed on the table or placed atop another
block. Because of this, any blocks that are, at a given time, under another block cannot
be moved. We used the 4-operator (i.e., pick-up, for picking a block from the table,
put-down, for putting a block on the table, stack, for stacking a block on another and
unstack, for picking a block from another block) version of the classic Blocks World
domain, as found on the IPC-2011 website, as a starting point. Furthermore, we use
a simpler variant of the general problem (usually called Tower) in which, in the initial
state, all the blocks are on the table and whose goal is to stack all the blocks on a single
tower. Specifically, for each block, we defined a state-variable for representing what is
on top of the block (i.e., either another block or the value “Clear”’) and a state-variable
for representing if the block is on the table or not. An additional state-variable has
been defined for modeling the robotic arm supporting values that represent either the
arm holding a block or the value “Empty”. Finally, we defined an “Agent” complex
type for modeling the agents’ actions. Rules have been defined so as to have an atomic
formula for each effect of the PDDL actions as head and an atomic formula for the
actions as body (modeled as a subgoal), aside from rules having an atomic formula for
each PDDL action as head and an atomic formula for their preconditions (modeled as
subgoals) and effects (modeled as facts) as body. Temporal constraints have been con-
veniently added for guaranteeing that preconditions precede actions and effects follow
actions.

The Temporal Machine Shop domain

The Temporal Machine Shop problem is the only temporally expressive problem of
the International Planning Competition (IPC) and, within the same competition, it is
solved by the sole ITSAT planner (see [91]). The problem models a baking ceramic
domain in which ceramics can be baked while a kiln is firing. Different ceramic types
require a different baking time. While a kiln can fire for at most 20 minutes at a
time (and then it must be made ready again), baking a ceramic takes, in general, less
time, therefore we can save costs by baking them altogether. Additionally, similar
to [91], we have slightly complicated the domain by considering the possibility for
ceramics to be assembled, so as to produce different structures which should be baked
again to obtain the final product. Specifically, for each kiln we defined a state-variable
for distinguishing either the kiln is “Ready” or “on Fire”. In addition, each kiln has
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associated a reusable resource for representing its capacity. For each ceramic piece we
defined a state-variable for representing either the piece is “Baking” (with an additional
parameter for representing the kiln in which is baking), or the piece is “Baked”, or the
piece is “Treating”, or the piece is “Treated”. Similarly, for each ceramic structure
we defined a state-variable for representing either the structure is “Assembling”, or the
structure is “Assembled”, or the structure is “Baking” (with an additional parameter
for representing the kiln in which it is baking), or the structure is “Baked”. Rules force
these values to appear in time, in each state-variable, in the intuitive manner (i.e., in
the order in which these values have just been introduced). The interesting aspect,
however, is that ceramic structures can bake concurrently with ceramic pieces both
while (hence the temporal expressiveness) the kiln is firing.

The Cooking-carbonara domain

The Cooking Carbonara domain represents another temporally expressive problem in
which the aim is the preparation of a meal, as well as its consumption by respecting
constraints of warmth. Problems cooking-carbonara-n allow to plan the preparation of
n dishes of pasta. The concurrency of actions is required to obtain the goal because it
is necessary that the electrical plates work in a way that water and oil are hot enough
to cook pasta and bacon cubes. It is also necessary to perform this baking in parallel
to serve a dish that is still hot during its consumption. Specifically, for each plate
we defined a reusable resource for representing its (unary) capacity. For each pot we
defined a state-variable for distinguishing either the pot is “Boiling” (with an additional
parameter for representing the plate on which is boiling) or the pot is “Hot”. For each
pan we defined a state-variable for distinguishing either the pan is “Boiling” (with an
additional parameter for representing the plate on which is boiling) or the pan is “Hot”.
Each portion of spaghetti has associated a state-variable for distinguishing either the
portion is “Cooking” (with an additional parameter for representing the pot in which is
cooking) or the portion has been “Cooked”. For each bacon portion we defined a state-
variable for distinguishing either the bacon is “Cooking” (with an additional parameter
for representing the pan in which is cooking) or the bacon has been “Cooked”. Each egg
has associated a state-variable for distinguishing either the egg is “Being beaten” or the
egg has been “Beaten”. Finally, for each carbonara portion we defined a state-variable
for distinguishing either the portion is “Cooking” (with an additional parameter for
representing the plate on which should be cooked), or the portion has been “Cooked”,
or someone is “Eating” the portion or the portion has been “Eaten”. Again, rules force
values to appear in time, in each state-variable, in the intuitive manner (i.e., in the order
in which these values have just been introduced). Furthermore, carbonara portions
should be cooking after spaghetti, bacon and eggs have been correctly prepared, hence
requiring spaghetti to be “Cooking” while the water in pots is “Hot” as well as bacon
to be “Cooking” while the oil in pans is “Hot”. Finally, cooking carbonara portions,
boiling water in pots and oil in pans should be performed while plates are available.
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Figure 3.4: Blocks world.

3.3.1 Results

Starting from the blocks world (the problem in which logical/causal reasoning pre-
vails), we can see, in Figure 3.4, that despite the introduction of these heuristics,
planners endowed with “classical heuristics™ still perform significantly better than our
approach. Thanks to the MINREACH heuristic, however, we were able to boost the
system performance appreciably, allowing us to find solutions up to, approximately,
one third of the time it was required before. Such partial results for ILOC should not
come as a surprise since its current heuristics, as will be clearer in the next chapters,
neglect much of the precious information like the initial working memory, the con-
straints among objects and the constraints defined within rules. Not considering such
information is, probably, the explanation for the performance gap still existing between
ILOC and COLIN or OPTIC — both planners coming from a longer history about causal
reasoning.

Experimental results on the other domains (Figures 3.5 and 3.6) show that ILOC
performs competitively with respect to COLIN and OPTIC. It is worth observing that
the heuristics neither guarantee a substantial improvement nor their overhead produces
a significant worsening (performance remains almost unchanged). This is explained by
the fact that the temporal/resource reasoning features of ILOC are not much affected
by the causal heuristics. Furthermore, even though COLIN performs better than ILOC,
it is not able to solve problems with more than 50 ceramics since it runs out of memory
(we used the default configuration for the planner). This aspect is much more evident
in the Cooking Carbonara domain which, since it does not contain a maximum duration
for plate firing, can be easily reduced to a basic scheduling problem and, as such, easier
for the timeline formalism.

A separate discussion it is worth doing concerns the modeling capabilities of ILOC.
All the competing planners use the PDDL2.1 language (see [45]) for modeling their
planning problems and, in general, it is quite cumbersome to impose temporal con-
straints among plain PDDL actions. In the Cooking Carbonara domain, for example, it
is important that the cooking happens before the eating but eating should not start too
late to avoid that food becomes cold. In [77] a PDDL extension is proposed to over-
come this issue and to model properly the domain, however, none of the available plan-
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ners supports this extension and thus they have been evaluated in a simplified domain
in which the warmth constraint decays and dishes can be served anytime after they have
been cooked. It is worth noting that this extension does not affect the expressiveness
of the language. These constraints can be represented indirectly by forcing, through
causal constraints, the application of actions. This trick, however, makes harder the
modeling of the problem, by the modeler, as well as harder the resolution, by the plan-
ner, which can not exploit some knowledge of the domain since it is provided in an
indirect way. This constraint is naturally captured in the ILOC modeling language by
creating a rule having as head an action and as body a second action in conjunction
with a constraint among the temporal parameters of the two actions.

3.4 The gap does not narrow enough

Finding the right balance between the informativeness and the computational complex-
ity of a heuristic is not an easy task. In any case the current level of informativeness is
not satisfactory and should be clearly increased. Although in a limited way, Graphplan
and other planners based on heuristic search allow to reason, at once, about all possible
plans (all the plans achievable unfolding the domain theory). The ALLREACHABLE
and the MINREACH heuristics have been developed trying to reproduce these capabil-
ities while keeping the original architecture. It is worth noting, indeed, that each of
the nodes of the search space has its own atom network with associated its own flaw
agenda. These data structures are dynamically modified during the resolution process.
By solving a flaw in the agenda, indeed, requires removing it from the agenda and, as a
consequence of applying a resolver, adding further flaws to the agenda as well as atoms
and constraints to the atom network. The representation of such possible plans within
the above graphs, however, is still too weak, leading to too uninformed search strate-
gies. The above heuristics completely ignore the constraints within the rules’ bodies,
solely relying on the pure causality relations among predicates. Similarly, predicate
arguments and constraints among them, coming from the facts and goals initially ap-
pearing in the working memory, are neglected as well. All this information is directly
available from the domain theory and from the initial problem specification and should
be, somehow, exploited.

A first refinement step might be to consider the initial state of the atom network.
Consider again the graph in Figure 3.3. Now suppose two At and LookingAt facts
are initially present in the working memory. We might imagine that eligible subgoals,
coming from the application of the rules, will eventually unify with the above facts.
We might consider such information for enhancing the informativeness of the heuristic
by pruning, in general, the causal graph. In such a circumstance, indeed, the cost
for solving a TakingPic goal is now further reduced from 3 to 0. Indeed, despite
they are two, we might consider the Ar and LookingAt subgoals as preferable, since
they will be unified, compared to the sole RotatingTo subgoal which would be cho-
sen by the MINREACH heuristic. Consider, furthermore, the graph in Figure 3.3. The
two edges outgoing from node LookingAt represent the eventual unification of two
atoms having a LookingAt predicate. Now suppose, as an example, that the initial
state contains a fact stating that the pan-tilt unit is LookingAr (0,0) and a goal stat-
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ing as TakingPic (1,5,2,7). Clearly, the LookingAt (2,7) subgoal, generated from the
TakingPic goal, will not unify with the LookingAz (0,0) fact, hence, the choice for the
disjunction goes back to be the RotatingTo one.

If we want to consider more information within our heuristic, a possible path to
follow might be to replace, in the causal graph, predicates, directly, with atoms. This
generally means considering, at the beginning of the planning process, all the atoms
that will be part of all the possible plans, having the cautiousness of activating those
that will be part of the solution. Unfortunately, this transition is not as straightforward
as it might seem. The atom network concept, indeed, should melt with the static causal
graph and, as a consequence, the flaw agenda should be highly revisited, representing
no longer the flaws of the atom network which require to be solved. Additionally,
atoms should be endowed with an additional variable for representing their state (i.e.,
ACTIVE, INACTIVE and UNIFIED) since not all of them, present in the atom network,
will be part of the solution plan. Furthermore, an ad hoc data structure which does not
propagate constraints in case of disjunctions (we recall that such disjunctions represent
branches in the search tree), yet powerful enough to propagate constraints that allow
to recognize ineligible unifications, should be created and integrated with the above
graph. While the following chapter introduces such a data structure, Chapter 5 exploits
the data structure and, referring to some of the concepts introduced in this chapter
and on Chapter 2.1, introduces a new heuristic which is able to overcome the above
limitations.
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The SMT-based Constraint Network

The ILOC system is largely inspired by OMPS [48] and, with it, shares some strengths
and defects. As an example, while ILOC manages the temporal constraints by means
of a temporal constraint network [36], other kinds of constraints, like those among
non-temporal parameters, are managed through the Choco’s [90] constraint network.
Although Choco can generate explanations for inconsistencies and, although it is possi-
ble to generate explanations for inconsistent temporal constraint networks [103], none
of these is exploited for enhancing the search performance through backjumping. Fur-
thermore, the Choco solver cannot take advantage of temporal inconsistencies nor the
temporal constraint network can exploit Choco’s constraint network inconsistencies.
Additionally, since no information is learned from the inconsistencies, it is not un-
common that the overall solving procedure reaches different situations that share the
same issue, resulting in a marked reduction in performance. Among the most interest-
ing aspects of ILOC, the introduction of the concept of type is aimed at encapsulating
the reasoning power of dedicated solvers and/or the complexity of non-symbolic state
maintenance. Furthermore, ILOC introduces the concept of atom network, i.e., a con-
straint network of atoms on the different components which the planner leverages to
propagate new decisions and constraints that are synthesized during planning.

Although this multiple solvers architecture is, in principle, commendable, its im-
plementation presents some weaknesses which might make it inefficient. Specifically,
the atom network is the only available tool which allows communication among such
different dedicated solvers. As a consequence, exchanged information results to be
too abstract, preventing the solvers to help each other when problems arise. The only
exchanged information, indeed, is YES (i.e., no inconsistency has been found) and No
(i.e., some inconsistency has been found). In case of inconsistencies it is not possible,
for a given solver, to generate any failure explanation and, even worse, ILOC lacks of
a common language which might be used to exchange information among solvers.

By relying on the concept of reification [35, 75], a first attempt to narrow this per-
formance leak has been made in [29]. Specifically, reified constraints are a typical CSP
technique which make it possible to express constraints involving logical connectives
such as disjunctions, implications, and negations. A reified constraint is obtained, sim-
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ply, associating a propositional variable to a constraint. The role of such a variable is
twofold: control the application of the constraint (i.e., in case the variable is asserted,
the constraint is enforced, in case the variable is negated, the negation of the constraint
is enforced) and verify the satisfiability of the constraint (i.e., in case the constraint is
satisfied, the variable is asserted, in case the constraint is unsatisfiable, the variable is
negated). To further clarify this concept, let us suppose a constraint network having
two object variables x € {a,b} and y € {a}. In order to reify a x ==y constraint we
can associate to it a propositional variable p = ||x == y||. The p variable is, initially,
unassigned. While asserting p would result in the removal of the b value from the x’s
domain, asserting the —p would result in the removal of the a value from the x’s do-
main (or, analogously, in asserting the x # y constraint). Suppose, for some reason, the
b value is removed from the x’s domain, the x == y constraint is necessarily satisfied,
hence, the TRUE value is assigned to the p variable. Finally, in case the a value is
removed from the x’s domain, the x == y constraint is unsatisfiable, hence, the FALSE
value is assigned to the p variable. The overall idea, pursued in [29], was to use the
propositional logic language as a glue among the different dedicated solvers and to
apply the reification concept also to the resolvers, so as to allow a uniform language
for conflict analysis results and, thus, enhancing performance by exploiting no-good
learning and non-chronological backtracking.

Also in this case, however, a commendable idea was realized in the wrong way,
resulting in other kinds of inefficiency issues. The main issue, in this case, derived
from the use of arc-consistency techniques (see, for example, [35, 75]) for propagating
numeric constraints which, in the case of inconsistent instances and large domains,
might be prohibitively expensive. Think of, for example, the trivial case in which two
integer variables x and y are constrained by [x < y] A [x > y]. Such a problem is clearly
unsatisfable. Suppose, however, the initial domain of the variables is x € [0, +inf]
and y € [0,+inf], arc-consistency starts to perform bound propagation resulting in x €
[1,+inf], y € [2,+inf], x € [3,+inf], etc. proceeding, clearly, ad infinitum. Although
some attempts were made to narrow this inefficiency, they resulted to be insufficient
and the solvers, consequently, inefficient. As demonstrated in the previous minimal
example, arc-consistency on numeric variables is applicable only on (small) bounded
variables. Choosing such bounds, however, might not be straightforward since there is
a risk of losing completeness due to overly stringent domains. Although most of the
CSP solvers (e.g., Choco, Gecode [51], JaCoP [70], etc.) provide convenient software
interfaces to exploit their underlying constraint networks, all of them, to the best of
the author’s knowledge, exploit arc-consistency techniques for propagating numeric
constraints and, hence, result to be not suitable for our needs.

The idea of using propositional logic as a common language to exchange informa-
tion among different solvers appears to be the leading concept of Satisfability Modulo
Theory (SMT) [98], a technique which has already been sucesfully used for solving
planning problems in, for example, SMTPlan [13]. Specifically, by leveraging on the
recent improvements of SAT solvers (e.g., [83, 42]), SMT solvers (e.g., [33], [21],
[23]) use the concept of theory in a similar and, in some respects, more general way
than the OMPS components. Furthermore, thanks to the work described in [37], it
is possible to replace arc-consistency in managing numerical constraints and, relying
on the simplex method, efficiently reason on linear arithmetic while leaving numeric
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variables’ domains unbounded. Once again, however, the particular structure of the
addressed problem is such that the existing techniques are not sufficient to efficiently
solve it. The reason is twofold. Firstly, SMT based heuristics are too weak for support-
ing the search of a constraint-based planning problem, resulting in the exploration of
unprofitable sections of the search space. In other words, we need to build higher level
heuristics allowing us to take advantage of the intrinsic structures of the faced planning
problem. Secondly, in building such a heuristic, we need to create an extremely huge
SMT problem containing many variables whose values, mostly, we are not interested
at all. This is the case, for example, of the variables associated to those atoms that are
not part of the solution since they are neither active nor unified. There is no reason
to waste computational power in reasoning about them, yet the problem structure is
useful for extracting information that can be exploited to guide the search process. Un-
fortunately, although most of them are open-source, common SMT solvers, conversely
to CSP solvers, are more closed, with less or none documentation for defining new
heuristics nor for redefining search strategies. Hence the need for building something
from scratch.

The following sections present an SMT-based constraint network leveraging on a
propositional constraint network which controls the associated theories. Two theo-
ries are also implemented, i.e., a linear real arithmetic theory, for managing numeric
variables and linear constraints among them, and a var theory, for managing object
variables and (in)equality constraints among them. A new timeline-based solver called
ORATIO, a theory itself, will be built on top of such network exploiting it both for
producing a new heuristic, based on a relaxed version of the timeline-based planning
problem, and for solving the whole timeline-based planning problem.

4.1 The SAT core

At the core of the needed data structure there is a component which we have named
sat_core. It is, basically, a MINISAT [42] implementation stripped of those charac-
teristics strictly related to the search like, for example, the DPLL algorithm and the
variable/value selection heuristics. The implementation retains, however, those char-
acteristics (i.e., the watched literals) aimed at efficiently propagating the propositional
constraints which constitute the hallmark of CHAFF [83]. At the same time, the idea of
generating an explanation as a result of a conflict analysis, as presented in [99], is pre-
served, allowing backjumping (a.k.a. non-chronological backtracking). It comes out a
backtrackable data structure, which might be called propositional constraint network,
whose characteristics are: (i) efficient propagation of propositional constraints, (ii) the
ability to generate explanations (and, consequently, no-goods) in case of conflicts and
(iii) transparent integration with theories. Most of the following code is an adaptation
of MINISAT.

The external interface of such a data structure, through which a user application
can specify sat_core problems, is the following.
class sat_core {

var new_var ()
bool new_clause(vector<lit> lits)
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bool assume(lit p)

bool check ()

bool check(vector<lit> lits)
1bool value(var x)

Intuitively, variables are introduced by calling new_var(). From these variables,
clauses are built and added by means of the new_clause() procedure which, in some
cases, might detect trivial inconsistencies (in which case it returns false). The assume()
method is responsible for assuming a literal after creating a branching point. Further-
more, check() propagates clauses, returning false if the problem is unsatisfable and
true if no inconsistencies have been found (which, in general, does not necessarily im-
plies that the problem is solved!). Similarly, the second check() method first assumes
the given literals and then propagates clauses, returning false if the problem is, as-
sumed the given literals, unsatisfable and true if no inconsistencies have been found.
Finally, value() allows for retrieving the value (TRUE, FALSE or UNASSIGNED) of the
given propositional variable in the current state (or, in case of a conflicting state, an
unreliable value).

The lit abstract data type, representing literals, is simply described by a variable
and the sign of the variable within the literal. Utility methods can be used for returning
the negation of a literal (i.e., a literal having the same variable but different sign) and
the value of a literal (exploiting the above mentioned value() method for retrieving the
value of a variable). Given the simplicity of the data structure, further details are not
provided.

class 1lit {

lit  op—()
var v
bool sign

}

lbool is used for representing lifted propositional domains, hence containing the
elements TRUE, FALSE and UNASSIGNED:

enum lbool { True, False, Unassigned }

Finally, var is a type synonym for an unsigned int, with two special constants
Lyar =0and T,, = 1 for representing, respectively, the FALSE and the TRUE propo-
sitional constants.

4.1.1 The solver state

Since the sat_core must never be in a conflicting state, there is not anything that
remembers it, hence, any method that puts the network in a conflicting state must com-
municate it. A number of things, however, need to be stored for representing the state:

vector<clause> constrs // the list of all problem constraints ..

// for each literal ’'p’, a list of constraints watching ’p .
vector<vector <clause >> watches
queue<lit > prop_q // the propagation queue ..

vector<lbool> assigns // the current assignments ..
// the list of assignments in cronological order..
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vector<lit> trail

// separator indices for different decision levels in ’trail ’..
vector <unsigned> trail_lim

// for each variable, the constraint that implied its value..
vector<clause> reason

// for each variable, the decision level it was assigned..
vector <unsigned> level

vector <theory> theories // the list of bound theories ..
vector<vector <theory>> binds // for each variable, the bound theories ..

From a quick comparison with the MINISAT implementation it is immediately ev-
ident the removal of those components responsible for the heuristics like, for example,
the activity of variables for the variable selection heuristic. Furthermore, the current
implementation does not keep track of the learnt clauses which, unlike in MINISAT,
are never removed. This choice has been made as an implementation simplification.
Future versions, indeed, could take account of learnt clauses in order to implement,
for example, random restart strategies. In addition to the MINISAT implementation,
however, a reference to all the bound theories is maintained and, moreover, for each
variable, a collection of theories interested in the variable assignment is maintained.

Together with the above state variables, the following helper methods are also de-
fined:

class sat_core {
Ibool value(var x) { return assigns[x] }
Ibool value(lit p) { return p.v ? assigns[x] : —assigns[x] }
unsigned index (lit p) { return p.sign ? p.v << 1 : (p.v << 1) ~ 1 }
bool root_level () {return trail_lim.empty() }
void bind(var x, theory th) { binds[x].add(th) }

Notice that multiplications by 2 are replaced with shift (and bitwise) operators.
Since these operators do not involve arithmetical operations are more efficient on most
of the available architectures. In simple terms, the index of a p literal is given by the
index of its p. v variable times two, if the literal is positive (e.g., x). On the other hand,
the index of a literal is given by the index of its variable times two plus one, if the literal
is negative (e.g., —x).

The propagation of the sat_core constraints is largely inspired to that of MINISAT
which, in turns, is an adaptation of CHAFF [83]. Specifically, for each literal, a list of
constraints is kept. These are the constraints which may propagate unit information
whenever the literal becomes FALSE!. Note that there is no need for propagating infor-
mation whenever a literal becomes TRUE since, a clause which is known to be satisfied
does not propagate information. As a consequence, two unbound literals p and g are
selected and references to the clause are added to the lists of —p and —q respectively.
The literals are said to be watched and the lists of constraints are referred as to be the
watcher lists. Whenever a watched literal becomes FALSE, the constraints in its as-
sociated watched list are checked to see if information might be propagated. Notice

IThe semantic, here, is the inverse of the one used in MINISAT and in CHAFF which propagate unit
information whenever the literal becomes TRUE. There is no reason for choosing a semantic respect to the
other except for the fact that our semantic seems more intuitive and easier to understand. Switching to the
MINISAT semantic simply requires inverting the if of the index() function.
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that, when backtracking, no adjustment to the watcher lists need to be done, therefore,
backtracking is very cheap. It is worth to notice that, conversely to a standard arc-
consistency algorithm, the watch list is based on literals and not on variables, making
the propagation algorithm more selective. Furthermore, each clause watches only on
two literals rather than on all of its literals. Although this strategy makes the propaga-
tion of a clause slightly more complicated, the overall number of propagation is largely
decreased. The combination of these two choices, i.e., watching literals rather than
variables as well as watching only two literals rather than all the literals of each clause,
makes the CHAFF implementation extremely efficient.

4.1.2 Variables and constraints

The first code fragment that will be presented is the one that allows the creation of new
propositional variables:

var new_var() {
var x = assigns.size ()
watches.add(vector<clause >())
watches .add (vector<clause >())
assigns .add(Unassigned)
level.add (0)
reason .add(null)
binds .add (vector <theory >())
return x

Intuitively, the new variable is given by the size of the assigns vector. The proce-
dure makes room for the watcher lists associated both to the directed and to the negated
literal and the Unassigned value is assigned to the new variable. Other parameters are
also set, the meaning of which will be clearer soon.

Although MINISAT can, in principle, handle arbitrary constraints over proposi-
tional variables, we have limited ourselves to the implementation of the sole clause
constraint. Its propagate() method is called in case the clause is found in the watcher
list during propagation of unit information p. In this case the constraint is removed
from the list and is required to add itself into a new (or into the same) watcher list. If
successful, true is returned; conversely, if a conflict is detected, false is returned. In
the latter case the clause represents the cause of the inconsistency and, as will be shown
later, will be used to generate an explanation of the conflict. Since there is no need for
any SAT related heuristics code, the implementation of the clause constraint becomes
straightforward being limited to its constructor and to the propagate() method which,
as suggested by [42], should be the primary target for efficiency.

class clause {

clause (sat_core s, vector<lit> lits) : s(s), lits(lits) {
s.watches[s.index(—1lits [0])].add(this)
s.watches[s.index(—1lits [1])].add(this)

1

bool propagate(sat_core s, lit p) {
// make sure false literal is lits[1]..
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if (lits[0].v == p.v)
lit tmp = lits [0], lits[0] = lits[1], lits[l] = tmp

// if Oth watch is true, the clause is already satisfied ..
if (s.value(lits[0]) == True) {
s.watches[s.index(p)].add(this)
return true

}

// we look for a new literal to watch..
for (unsigned i = 1; i < lits.size(); i++) {
if (s.value(lits[i]) != False) {
lit tmp = lits[1], lits[1] = lits[i], lits[i] = tmp
s.watches[s.index (—~1lits [1])].add(this)
return true
}
}

// clause is unit under assignment..
s.watches[s.index (p)].add(this)
return s.enqueue(lits [0], this)

vector<lit> lits

Implementing the add_clause() method of the sat_core API is just a matter of
creating a new clause instance and adding it to the constrs vector of stored constraints.
Some optimizations, however, can be implemented. Clauses which are already satisfied
(i.e., at least one of their literals is TRUE) are not created at all. Similarly, clauses which
represent tautologies (i.e., both p and —p occur in their literals) are not created at all.
Additionally, FALSE literals can be filtered out before creating a new clause. In case
the resulting list of literals becomes empty (i.e., all of the initial literals were FALSE)
a trivial conflict is detected and false is returned. Finally, in case the resulting list
contains a single literal, the clause is unit and the single literal representing the unit
fact is enqueued for propagation without any need of creating a new clause. Notice
that the current implementation allows calls of the add_clause() method only at top-
level or there might be problems in the filtering of literals already assigned at lower
decision levels.

bool add_clause (vector<lit> lits) {
vector<lit> Is
for (lit 1 : lits) {
switch (value (1)) {
case True: return true // the clause is already satisfied ..
case Undefined:
if (ls.contains(—1)) return true // the clause is a tautology ..
else if (!ls.contains(1l)) Is.add(l)
}
}

if (1ls.empty()) {
return false // inconsistency ..
} else if (ls.size == 1) {
enqueue (1s [0]) // wunit fact is enqueued (cannot fail )..
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} else {
constrs .add (new clause (lits))

}

return true

4.1.3 Reified constraints

As already mentioned, reifying a constraint means associating a propositional variable
to the constraint so as to represent whether the constraint is satisfied or not. In other
words, reifying a constraint means that we allow constraints not to be satisfied. Since
reified constraints might be useful, the sat_core provides a software interface for
defining them. Specifically, the following code defines a reified conjunction:

var new_conj(vector<lit> lits) {

var ¢ = new_var ()

vector<lit > tmp

tmp.add(lit(c, true))

for (lit 1 : lits) {
new_clause( {1, lit(c, false)} )
tmp.add(—1)

}

new_clause (tmp)
return c

The above method introduces new clauses, in the number of the literals of the con-
junction plus one, and a new variable, which will be returned, whose value determines
whether the constraint is satisfied or not. In other words, while assigning TRUE to the
returned variable forces the conjunction to be satisfied, assigning FALSE to it forces
the conjunction to be not satisfied. Similarly, in case the constraint is necessarily sat-
isfied, TRUE is assigned to the returned variable and, in case the constraint becomes
unsatisfiable, FALSE is assigned to the returned variable.

Similarly to the conjunction case, the following code defines a reified disjunction:

var new_disj(vector<lit> lits) {

var ¢ = new_var()

vector<lit > tmp

tmp.add(lit(c, false))

for (lit 1 : lits) {
new_clause( {—-1, lit(c, true)} )
tmp.add (1)

}

new_clause (tmp)

return c

Finally, the sat_core interface provides the possibility for defining an “exactly
one” constraint stating that exactly one, from a collection of literals must be TRUE.
Although there exist more efficient implementations as, for example, the one proposed
in [71], a naive encoding, combining the at-most-one and the at-least-one constraint,
requiring the introduction of O(n?) new clauses, is used:
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var new_exct_one(vector<lit> lits) {
var ¢ = new_var()
vector<lit > tmp
tmp.add(lit(c, false))
for (unsigned i = 0; i < lits.size(); i++) {
for (unsigned j = i + 1; j < lits.size(); j++) {
// the at—most—one constraints ..
new_clause( {—lits[i], —lits[j], lit(c, false)} )

}
tmp.add(lits[i])
1

// the at—least—one constraint..
new_clause (tmp)
return c

Similarly to the conjunction case, the returned variables of the disjunction and of
the exactly one cases determine whether the constraints are satisfied or not. In other
words, while assigning TRUE to the returned variable forces the constraint to be satis-
fied, assigning FALSE to it forces the constraint to be not satisfied. It is worth noting
that, conversely, assigning values to the variables of the constraints might lead, through
propagation, to the assignment of values to the returned variables.

4.1.4 Theories

Compatibly with the DPLL(T) architecture proposed in [50] the theory abstract class
needs to be notified, through the propagate() method, whenever some literal is as-
signed. The method replies with a boolean representing whether the theory propagation
succeeded or some inconsistency is found. In case of failure, the cnfl vector is filled
with the reason for the failure. Specifically, in case of conflict, this vector would be
filled with a collection of assigned literals (possibly, a strict subset of all the assigned
literals) that, together, would reproduce the conflict. An additional method check(),
which might be less cheap than propagate(), checks for the consistency of the theory
returning, similarly to the propagate() method, a boolean representing whether the
theory is consistent. Again, in case of failure, the cnfl vector is filled with the reason
for the failure. Finally, two methods push() and pop() notify the theory whenever a
new backtracking point might be required or a backtracking step is performed.
class theory {

bool propagate(lit p, vector<lit> cnfl)

bool check(vector<lit> cnfl)

void push ()
void pop ()

4.1.5 Propagation

The propagation algorithm keeps a set of literals (unit information) that is to be prop-
agated into a queue called propagation queue. Whenever a literal is inserted into the
queue the corresponding variable is immediately assigned. For each literal in the queue,
the corresponding watcher list indicates the constraints which might be affected by the
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assignment, therefore, their propagate() method needs to be called in order to check
if more unit information might be inferred (and, consequently, enqueued). The process
continues until either the queue becomes empty or a conflicting clause is found.

As opposed to MiniSat and, albeit with some adaptation, consistently with [50],
the original propagation procedure has been slightly adapted to consider theory propa-
gation.

bool propagate(vector<lit> cnfl) {
while (!prop_p.empty()) {
lit p = prop_q.dequeue ()
vector<clause> tmp = move(watches[index(p)])
for (unsigned i = 0; i < tmp.size (); i++)
if (!tmp[i].propagate(this, p)) {
// the constraint is conflicting ..
for (unsigned j = i + 1; j < tmp.size (); j++)
watches[index (p)].add(tmp[j])
prop_q.clear ()
cnfl.add_all(tmp[i]. lits)
return false

}

// theory propagation ..
for (theory th : theories)
if (!th.propagate(p, cnfl)) {
prop_q.clear ()
return false

}

// theory check ..
for (theory th : theories)
if (!th.check(cnfl)) return false

return true

The method for enqueuing information is rather straightforward. Specifically, enqueue()
puts a new fact into the propagation queue and immediately updates the variable’s value
in the assignment vector. If a conflict arises, false is returned. The parameter from
contains a reference to the constraint from which p was propagated (defaults to null
if omitted). This is used for generating explanations when a conflict arise. Note that
the same fact can be enqueued several times, as it may be propagated by several con-
straints, yet it is put in the propagation queue only once.
bool enqueue(lit p, clause from = null) {

switch (value(p)) {
case True:
return false
case False:
return true

case Unassigned:
// new fact, store it

assigns[p.v] = p.sign ? True : False
level[p.v] = trail_lim.size ()
reason[p.v] = from

trail .add(p)
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prop_q.add(p)
return true

Notice that the above method does not directly notify theories for new assignments.
This task is, as we have seen, left to the propagate() method which, in case of need,
can handle theory conflicts. More details about theory propagation will follow soon.

4.1.6 Learning

The final aspect worth to be investigated regards conflict-driven clause learning. This
technique was first described in [83] and is considered one of the major advances of
SAT technology in the last decades. The algorithm starts from a clause, called conflict
clause, which is not satisfied by the current assignment. Let us assume this clause is,
for example, (xo V x; V x2). The set {—xp, —x1, ~x2} is called the reason of the conflict
which is, basically, the assignments which make the clause unsatisfied. Suppose, for
example, xp is false becouse —xg was propagated from some constraint, for example,
(—x3V —x4 V —xp). The reason for propagating —xg is, therefore, {x3,x4}. Indeed, x3
and x4 are the assignments which, through the clause (—wx3V —w4V —xg), propagated
—xo. From this little analysis it is possible to deduce that the set {x3,x4, oy, X}
would also lead to a conflict, hence, it is possible to prohibit this conflict by adding
the learnt clause (—x3V —wg VX1 Vxp). In this example, only one literal (i.e., xo) was
analysed, however, the process of expanding literals can be iterated until all the literals
of the conflict set are decision variables (i.e., whose level is lower than the current
decision level).

It might be worth to further clarify this concept with a complete example. Let us
consider the following set of clauses:

= (x1 Vxp)
x1 Vx3 \/X7)

wq = (—x4 V X5 \/Xg)

wi = (

W2=(

w3 = (ﬁXz\/ﬁX3 \/)C4)

(

ws = (g Vxg V xg)
6= (

w —xs V —xg)

Suppose that at the first decision level (i.e., root level), following some heuristic,
the literal —x7 is assumed. The propagation procedure cannot deduce any further value
for the other variables. The heuristic is then queried again and again assuming, for
example, the literals —xg and —x9, none of which propagates information. At this point
the heuristic decides to assign the value FALSE to the variable x;. The propagation
procedure, through the ®; clause, infer x, = TRUE and, combining the previous x; =
FALSE assignment and the ®; clause deduces x3 = TRUE. The propagation procedure
continues on this line generating the graph, called implication graph, of Figure 4.1 until
x5 = FALSE is deduced by clause mg. Since x5 cannot be both TRUE, as a consequence
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xg = FALSE@1

x, = TRUE@3 x5 = TRUE@3
wq w3
x; = FALSE@3 g = TRUE @3 %s = RALSE@3
Wr =5 De
x¢ = TRUE@3
w x3 = TRUE@3 e
x7 = FALSE@O X9 = FALSE@2

Figure 4.1: Implication graph containing a conflict.

of the propagation of the clause ®4, and FALSE, because of wg, the implication graph
contains an inconsistency which is represented by the conflict clause .

Notice that the implication graph does not need to be represented explicitly as a
graph. An equivalent representation is given by the reason state variable containing,
for each variable, the clause that propagated a value for the variable itself. Different
learning schemas based on the above process as, for example, the “Last Unique Impli-
cation Point” (Last UIP) [5], have been proposed. Experimentally, the “First Unique
Implication Point” (First UIP), detailed by the following code snippet, has been shown
to be effective [113]. A further comparison between these techniques, in our specific
case, however, would be desirable.

void analyze(vector<lit> confl, vector<lit> out_learnt, unsigned out_btlevel) {
out_learnt.add() \\ leave room for the asserting literal ..
out_btlevel = 0
set<var> seen
lit p = trail.last()

vector<lit> p_reason = confl
int counter = 0
do {

for (lit q : p_reason) ({
if (!seen(q.v)) {
seen.add(q.v)
if (level[q.v] == trail_lim.size()) {
counter++
} else if (level[q.v] > 0) {
out_learnt.add(q)

out_btlevel = max(out_btlevel , level[q.Vv])
}
}
}
do {
p = trail.last()
p_reason = reason[p.v].lits/{reason[p.v].lits[O]}
pop_one ()

} while (!seen(p.v))
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counter —
} while (counter > 0)
out_learnt[0] = —p

}

The idea behind the above algorithm is, simply, to walk breadth-first the implica-
tion graph starting from the conflict clause until a unique implication point, as close as
possible to the conflict, is found. In doing so, the algorithm exploits the assignment or-
der of the literals (i.e., the trail state variable), adding those visited literals which were
assigned at a lower level excluding, for optimization reasons, those which were as-
signed at root level. The unique implication point, in the above example, is constituted
by the node x4 = TRUE, being a unique node which, together with other previously
assigned literals (i.e., xg and x9), would arouse the conflict. The learnt clause (i.e.,
(—xa Vxg V x9)) can be safely added to the set of clauses since it contains information
which is deducible from the original set of clauses. Furthermore this clause, interfer-
ing with the propagation procedure, will avoid that the conflict will reappear again in
different areas of the search space. Finally, the backtracking level, computed while
analyzing the conflict, is the lowest decision level which makes the conflict clause unit,
hence, we can backtrack until the learnt clause is applicable (i.e., any of the variables
associated to its literals has UNASSIGNED value). Backtracking as far as possible is
highly advantageous [83] and is usually referred, in the literature, as back-jumping or
non-chronological backtracking.

Finally, the record() method stores a new learnt clause. Similarly to the new_clause()
method, this method avoids the creation of new clauses in case the clause is unit. Since
this method can, in principle, be called at any level, filtering on assigned literals is
skipped.
void record(vector<lit> lits) {

if (lits.size() == 1) {

enqueue (lits [0]) // cannot fail at this point..
} else if (value(lits[0]) != Unassigned) ({

clause ¢ = new clause(lits)

enqueue (lits [0], c)

constrs .add(c)

4.1.7 Search

As mentioned earlier, the sat_core module does not implements a complete search
algorithm. Search is, indeed, demanded to the sat_core user applications. Further-
more, given the specific nature of our problem, we do not want solutions having all
the propositional variables assigned and, moreover, SAT based heuristics are not infor-
mative enough for solving our higher level problem. The assume() method, however,
from the external interface, allows the users to assign TRUE to literals returning false
if some immediate conflict is found (i.e., the literal is already FALSE).

bool assume(lit p) {

trail_lim.add(trail .size ())
for (theory th : theories)
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th . push ()
return enqueue(p)

}

In addition to the above assume() method, the check() method propagates clauses
and, in case a conflict is found, it first calls the analyze() method for analyzing the
conflict and generating a no-good, it then backtracks to the proper decision level and,
finally, it adds the new learnt clause to the problem constraints. Finally, the check()
method returns t rue if the propagation is successful or false if the problem is unsolv-
able. Notice that, the successfulness of propagation does not necessarily imply that a
solution to the sat_core problem has been found. Specifically, further assignments
and, consequently, checks, might be required to reach a solution state. On the contrary,
in case the problem is recognized as unsolvable, it is possible to infer that there is no
solution to the problem.
bool check () {

vector<lit> cnfl
while (true) {
if (!propagate(cnfl)) {
if (root_level()) return false
vector<lit> no_good
unsigned bt_level
analyze (cnfl , no_good, bt_level)
while (trail_lim.size () > bt_level) {
pop ()
}
record (no_good)
cnfl.clear ()

} else
return true

It is worth to notice that the above check() method might bring the sat_core at a
lower level than the invoking decision level. As it will be shown soon, however, the
pop() method will notify the bound theories.

The second check() method is aimed at assuming a given set of literals returning
whether, after the assumptions and propagation, the problem has not detected inconsis-
tencies. Before returning a value, however, this method is responsible for restoring the
state as it was before the invocation.
bool check(vector<lit> lits) {

unsigned c_level = trail_lim.size ()

vector<lit> cnfl
for (lit p : lits) {

if (!assume(p) |l !propagate(cnfl)) {
while (trail_lim.size() > c_level)
pop ()

return false
1
}
while (trail_lim.size() > c_level)
pop ()
return true



4.2. THE LINEAR REAL ARITHMETIC (LRA) THEORY 69

It is worth to notice that the above check() procedure does not generate no-goods. It
might be interesting to check whether analyzing the conflicts returned by the propaga-
tion procedure would return effective no-goods which would improve the performance
of the resolution process. Nonetheless, allowing to backjump to a decision level that is
lower than the one that is calling the procedure might make the software interface less
intuitive.

Finally, the next two methods are utility methods for managing backtracking. Specif-
ically, the aim of the pop() method is to revert to the state before the last push().
Additionally, pop() notifies the theories that sat_core is backtracking.
void pop() {

while (trail_lim .last () < trail.size())
pop_one ()

trail_lim .pop ()

for (theory th : theories)
th . pop ()

The pop_one() method, instead, is used for undoing a single assignment. In other
words, it simply unbinds the last variable on the trail.

void pop_one () {
lit p = trail.last()

assigns[p.v] = Unassigned
reason[p.v] = null
level[p.v] = 0

trail . pop ()

4.2 The Linear Real Arithmetic (LRA) theory

How is it possible to reason on numerical constraints avoiding the use of (in our
case) inefficient arc-consistency based propagation techniques? A possible alterna-
tive would be to exploit one of the different proposed techniques based on the Simplex
method. Given our specific application, however, the reason for not using any of them
is twofold: (a) most of the constraints, in our case, involve no more than two variables,
against a number of variables that grows to tens of thousands (i.e., the matrix, built by
the Simplex method, would be highly sparse) and (b) we need to add new variables
and add new constraints, in case of assumptions, or remove existing constraints, when
backtracking, easily, avoiding expensive copies of matrices. Usually, a tableau can be
constructed and updated incrementally: rows are added and later removed when back-
tracking. These frequent addition and removal of rows (and the related bookkeeping),
however, might have a significant cost. For example, backtracking may require pivot-
ing operations. In other words, we need some kind of efficient incremental capabilities
which reduces as much as possible this overhead.

The combined solution of the two previous problems is described in [37]. Specif-
ically, the original arithmetic formula @ (i.e., a conjunction of arithmetic constraints)
is transformed into an equisatisfable formula ®4 A ®' which is easily embeddable into
the above sat_core module as a theory.
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4.2.1 Preprocessing

The preprocessing step is aimed at rewriting the original arithmetic formula ® into an
equisatisfable formula ®4 A ®'. Specifically, ®, is a conjunction of linear equalities
and @' is a conjunction of elementary atoms of the form x > ¢ where x is a variable and
c is a rational constant (> is one of the operators <, <, =, >, >). The transformation
is straightforward and can be shown through a simple example (used, also, in [37]).
Suppose we want to preprocess the following ® formula

x>0AN(x+y<2Vx+2y—z>6)A(x+y=2Vx+2y—z>4)

Like in the Simplex method, it is possible to introduce two slack variables s; and
s> and rewrite ® as &4 A D':

(s1=x+yAsa=x4+2y—2)A
x>0A(s1 <2V >6)A(s1 =2Vsy >4)

which is, clearly, equisatisfable as ®. In general, starting from a formula ®, the trans-
formation introduces a new slack variable s; for every linear term #; that is not already
a variable occurring as the left side of an atom ¢#; > ¢ of ®. Given this, ®4 becomes the
conjunction of all the equalities s; = #; while @' is obtained by replacing all the terms
t; by the corresponding s; in .

The formula ®4 can be written in a matrix form as Ax = 0, where A is a fixed m x n
rational matrix, m is the number of additional slack variables sy, ..., s, # is the number
of initial variables xi,...,x, and x is a vector in R". The rows of A, by construction,
are linearly independent so A has rank m. The interesting aspect of this transformation
consists in the fact that the formula 4 must always be satisfied, regardless of any
transformation (i.e., pivoting) is performed on the A matrix. On the contrary, each of
the elementary atoms in @’ can be associated (we say bound) to a propositional variable
of the sat_core module which will decide if (and how, according to the assignment
of the propositional variable) the elementary atom will be enforced or not. In other
words, only the elementary atoms in @' are reified. Additionally, it is worth to notice
that, overall, rewriting ® as ®4 A ®’ leads to problems with fewer variables compared
to the standard Simplex method. Furthermore, some of the variables in ®4 can be
further simplified by applying Gaussian elimination.

In order to avoid the possibility of incurring in approximation issues, a new data
structure is introduced for representing rationals. Specifically, both the numerator and
the denominator are explicitly represented by means of two integer values. Addition-
ally, arithmetic operators, not reported here for sake of space, are redefined so as to
maintain the two numbers as normalized while handling special cases like +oo (i.e.,
1/0) and —oo (i.e., —1/0).
class rational {

long num // the numerator of the rational ..
long den // the denominator of the rational ..

}

Finally, it is worth to notice that strict inequalities can be managed by introducing
infinitesimals. As an example, a strict inequality like x > 0 can be rewritten ad x >=¢€
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where € represents an infinitesimal value which is as small as needed. Rather than
explicitly computing a value for the infinitesimal, however, it is possible to treat it
symbolically. Numeric values could be represented, therefore, by means of pairs of
rationals so as to represent values such as, for example, 1/3+ 1/5¢.

class inf_rational {

rational rat // the rational part..
rational inf // the infinitesimal part.

The following operations and comparison, however, need to be defined on such
values:

(raty,info) + (raty,infi) = (rato + raty,info +infi)
ax (rat,inf) = (a x rat,a x inf)
(raty,info) < (rat1,inf1) = (raty < raty) V (raty = rat; Ninfy < infi)

where a is a rational number.

Both bounds and variable assignment now range on such values. Specifically, each
of the involved numerical variable x; is associated to three values: /; (an inf_rational),
representing the lower bound of the x; variable, u; (another inf_rational), represent-
ing the upper bound of the x; variable and J; (yet another inf_rational), initially set
to 0, representing the current assigned value of the x; variable.

4.2.2 The Application Programming Interface (API)

We start by presenting the linear real arithmetic theory’s external interface, with which
a user application can specify, along with the sat_core module, linear arithmetic prob-
lems.
class la_theory : theory {

var new_var ()

var leq(lin 1, lin r)

var geq(lin 1, lin r)

interval bounds(var x)

inf_rational value(var x)

Similarly to the sat_core module, new variables are introduced by calling the
new_var() procedure. var is, analogously, a type synonym for an unsigned int. Unlike
the sat_core module, however, rather than a propositional variable, new_var() returns
an arithmetic variable. Such variables can be combined, together with coefficients and
constants, to generate the /in linear expressions which, in turn, can be combined to
form constraints. Specifically, the leq() and the geq() methods are used generate the
reified < and > constraints which are represented by means of the returned propo-
sitional variables which, in turn, are bound to the sat_core module. Enforcing (or
negating) such constraints can be done by assigning these propositional variables the
TRUE (or FALSE) value, through the sat_core module, either by means of proposi-
tional constraints (e.g., clauses) or by means of direct assumptions (i.e., the assume()
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method of sat_core). Finally, given an arithmetic variable x, the bounds() and value()
methods return the bounds (an interval, as will soon be explained, is a basic data type
for representing, together, a lower and an upper bound) and the current value of the x
variable.

Before proceeding further, it is worth to introduce the basic data structures needed
for implementing our linear arithmetic theory and to bind it to the sat_core module.
Specifically, the /in data structure is used for representing linear expressions.
class lin {

map<var, rational> vars
rational known

Since this Simplex method implementation relies on the Bland’s pivot-selection
rule to ensure termination, which in turn relies on a total order on variables, the above
map is implemented through a Red-Black tree which, by construction, maintains the
map keys ordered according to their default ordering. Furthermore, arithmetic opera-
tors (i.e., +, —, X and =) are overridden, while preserving linearity (i.e., avoiding the
introduction of non-linear expressions), in order to facilitate the combination of linear
expressions.

The interval class, on the other hand, simply represents the bounds of a variable.
Such bounds are initialized, respectively, to —eo and to co.
class interval {

inf_rational 1b
inf_rational ub

}

Even in this case, arithmetic operators (i.e., +, —, X and =), together with some
boolean relations (e.g., <, <, =, >, >, etc.) are overridden allowing a subset of interval
algebra over such intervals.

4.2.3 The solver state

Similarly to the sat_core case, also in the linear arithmetic solver state a number of
things need to be stored:

sat_core sat // the sat core..

// the current bounds (i.e., lower and upper bounds)..

vector <bound> bounds

vector<inf_rational > vals // the current values ..

// the expressions (string to numeric variable) for which already
// exist slack variables ..

map<string , var> exprs

// the assertions (string to propositional variable) used for reducing
// the number of propositional variables ..

map<string , var> s_asrts

// the assertions (propositional variable to assertion) used for
// enforcing (negating) assertions ..

map<var, assertion> v_asrts

// for each variable ’'v’, a list of assertions watching v’
vector<vector<assertion >> a_watches
// for each variable ’v’, a list of tableau rows watching v’

vector<vector <row>> t_watches
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// the bounds stored before being updated ..
vector <map<unsigned , bound>> layers

Specifically, the sat field is a reference to the sat_core needed for creating and
binding new propositional variables. The bounds field, relying on the bound data struc-
ture described later, stores the lower and the upper bound, as well as the reason for
having the bound, for each of the arithmetic variables and, thus, allow reification of
constraints. As will be shown soon, it is possible to retrieve these bounds by means
of two utility functions which translate a var to its respective lower and upper bound
index. Additionally, the vals field stores, for each arithmetic variable, its current value.
The elements stored within the exprs map represent all the already seen expressions.
Functional to the transformation of the original linear arithmetic formula & to the eq-
uisatisfable formula @4 A @', this map has string representations of the expressions
as keys and arithmetic variables as values. The s_asrts and the v_asrts maps, on the
other hand, are used for binding elementary atoms, hereafter called assertions, with
propositional variables of the sat_core module. Specifically, the s_asrts uses string
representations of the assertions as keys and propositional variables as values. This map
is used for avoiding the creation of different propositional variables associated to the
same assertion. The v_asrts map, conversely, is used for asserting atoms whenever the
propagate() method of the theory is called by the sat_core module. When the corre-
sponding literal becomes TRUE, this map is used for retrieving the proper assertion so
as to allow its enforcement. In a nutshell, the s_asrts and the v_asrts maps represent,
together, the @' formulas. Similarly to the sat_core’ watches, the a_watches and the
t_watches vectors are used for maintaining, for each variable v, respectively, the list
of assertions and the list of of tableau raws watching v. As will be shown soon, these
watch-lists are used for implementing theory propagation. Finally, the layers field, for
each decision level, stores a map having the index of the bound as key and the bound
as value.

In addition to the above state variables, the solver state includes a tableau derived
from the A matrix which can be written in the form

X; = Z a;jjx; XxXi €B
XjEN

where B and A denote the set of basic and non-basic variables, respectively. Ad-
ditionally, B corresponds, initially, to the set of the newly introduced slack variables
S1,...,5u. The tableau is practically represented through the following map.

// the (sparse) matrix ..
map<var , row> tableau

In a nutshell, the tableau map is used for representing the ®4 equalities. As already
said, this Simplex method implementation relies on the Bland’s pivot-selection rule to
ensure termination, hence we need a total order of the keys of the above map. Such
a total order can be achieved efficiently by means of Red-Black trees. Notice that
by using maps, both in the tableau and in the linear expressions, we can significantly
reduce the size of the matrix while preserving the efficient introduction of new rows as
well as the efficient mathematical operations (i.e., pivoting).
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A distinguishing factor between basic and non-basic variables consists in the fact
that the values assigned to the non-basic variables must always be consistent with their
bounds. This is not the case for basic variables which, in some cases, might have values
outside of their bounds. The check() procedure, described later, will be responsible for
adjusting these temporary flaws. By contrast, the assigned values, both for basic and
non-basic variables, are always maintained consistent through the ®4 and @’ formulas.

For the sake of completeness, the bounds are stored by means of the following
data structure which allows to store, together, the value of the bound and, represented
through a literal, its reason.

class bound {
inf_rational val
lit reason

Finally, the following helper methods are defined for readily retrieving the bounds
and the current values of both variables and linear expressions.

inf_rational lb(var x) { return bounds[Ib_index(x)] }
inf_rational ub(var x) { return bounds[ub_index(x)] }
interval bounds(var x) { return interval (lb(x), ub(x)) }
interval bounds(lin 1) {
interval bs = 1.known
for (var x : 1.vars.keys) { bs += 1.vars[x]xbounds(x) }
return bs
}
inf_rational value(var x) { return vals[x] }
inf_rational value(lin 1) {
inf_rational val = 1.known
for (var x : l.vars.keys) { val += l.vars[x]xvalue(x) }
return val
}
unsigned 1b_index (var v) { return v << 1 }
unsigned ub_index(var v) { return (v << 1) ~ 1 }

4.2.4 Variables and constraints

The following code snippet is aimed at creating arithmetic variables. The code initial-
izes the bounds and the current value of the new variables. In addition, it creates a
watch list for theory propagation and stores a new expression, consisting of the sole
variable, within the exprs map.

var new_var() {
var x = bounds.size ()
bounds.add (bound(—eo, null)) // the lower bound..
bounds.add(bound (e, null)) // the upper bound..
vals .add (0)
exprs["x" + x] = x
a_watches.add(set<assertion >())
t_watches.add(set<row>())
return x
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Since there are two kinds of formulas (i.e., @4 and ®') there are also two kinds
of linear constraints. Specifically, we use rows to represent the tableau rows. These
constraints are used to represent the &4 formula and are always satisfied. Additionally,
we use assertions to represent the relations between variables and values within the
@’. Such assertions are, to all effects, reified constraints and are, hence, associated
to a propositional variable. Notice that the satisfaction of an assertion can be either
imposed by the sat_core, by invoking the theory’s propagate method during proposi-
tional propagation, or detected by the theory itself if, as a consequence of imposing an
assertion, the bounds of a variable taking part in another assertion become such as to
establish, incontrovertibly, that the other assertion is satisfied or not.

As already mentioned, the row class is a specific linear constraint aimed at repre-
senting tableau rows. In particular, the x variable represents the basic variable while the
[ field is used to represent the associated linear expression. Instances of these classes
are stored within the t_watches map so as to allow theory propagation by means of
the propagate_lb (and propagate_ub) methods. Specifically, these methods notify the
constraint that the lower bound (respectively, upper bound) of a variable has changed.
This change might lead to the change of a bound of the basic variable x which, if tak-
ing part in an assertion, might propagate information to the sat_core regarding the
(un)satisfaction of the assertion. In case an inconsistency is detected, the cnfI vector is
filled with an explanation of the inconsistency. More details about theory propagation
will follow later.

class row {
row(la_theory th, var x, lin 1) {
for (var x : l.vars) { th.t_watches[x].add(this) }
}

bool propagate_lb(var x, vector<lit> cnfl)
bool propagate_ub(var x, vector<lit> cnfl)

var x // the basic variable ..
lin 1 // the linear expression ..

The assertions, on the other hand, are aimed, as already briefly mentioned, at rep-
resenting relations between variables and constants (i.e., at imposing bounds on the
variables’ domains). Instances of these classes are stored within the s_asrts (actually,
only a string representation of the assertion is stored within the s_asrzs map) and within
the v_asrts map so as to represent the @’ set of elementary atoms.

class assertion {
assertion (la_theory th, op o, var b, var x, inf_rational v) {
th.a_watches[x].add(this)
1

bool propagate_lb(var x, vector<lit> cnfl)
bool propagate_ub(var x, vector<lit> cnfl)

op o // the operator kind ..
var b // the propositional variable ..
var x // the arithmetic variable ..

inf_rational v // the constant..
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This data structure stores the propositional variable (i.e., b) bound with the theory,
the arithmetic variable (i.e., x) and the constant value with which the arithmetic variable
is constrained (i.e., v). The operator op € {<, >} represents the relation between the
arithmetic variable and the constant value. This class is used both for asserting atoms
and for performing unate propagation. Roughly speaking, in case of a < assertion,
as soon as TRUE (or FALSE) is assigned to the propositional variable b, the x < v
(x > v) assertion is enforced. Conversely, as soon as the constraint becomes asserted
(i.e., ub, <v) or negated (i.e., [b, > v), as a consequence of theory propagation, a new
literal (i.e., b or b ) is enqueued into the sat_core module.

Regarding the implementation of the methods for creating the constraints, they are,
conceptually, all alike and, therefore, only one will be shown. The implementation of
the < constraint is quite simple. At first, a new linear expression expr is created as the
difference of the given expressions. Afterwards, all of its basic variables are replaced
with their corresponding linear expressions from the tableau. Subsequently, by means
of the mk_slack() method, the resulting linear expression, deprived of the known term,
is then equalled with a slack variable enriching the set of equalities of ®4. Finally,
the slack variable is constrained, accordingly with the specific constraint method, with
the negated known term of the linear expression. Notice that comparing the negated of
the resulting linear expression’s known term with the expression itself, deprived of the
known term, can, in some cases, avoid the creation of new variables.
var leq(lin 1, lin r) {

lin expr = left — right
for (var x : expr.vars.keys) {
if (tableau.find(x)) {
rational ¢ = expr.vars[x]
expr.vars.erase(Xx)
expr += tableau[x] * c

}
}

inf_rational val = —expr.known
expr.known = 0
interval i = bounds(expr)

if (i <= val)

return T,, // the constraint is already satisfied ..
else if (i > val)

return 1., // the constraint is unsatisfable ..

var s = mk_slack(expr)
string asrt = "x" + s +
if (s_asrts.find(asrt))

return s_asrts[asrt]

" "

<= + val

else {
var ctr = sat.new_var()
s_asrts[asrt] = crt

assertion a = new assertion (this, le, ctr, s, val)
v_asrts[ctr].add(a)

sat.bind(ctr, this)

return ctr
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It is worth noting that in case the inequality is strict, the val value involves an
infinitesimal and is, hence, created considering both the negation of the expression’s
known term and a negative infinitesimal as described by the following code snippet.

inf_rational val = inf_rational(—expr.known, —1)

Starting from a linear expression, the utility method mk_slack() is responsible for
creating a new slack variable or, whenever possible, to reuse an already existing vari-
able. Thanks to the exprs map, indeed, it is often possible to reuse existing expressions
without the need to create new slack variables. Notice that, in case the given linear
expression is such that a new slack variable needs to be created, the current value for
the new variable is initialized accordingly to the values of the linear expression and a
new row is added to the tableau.
var mk_slack(lin 1) {

string s_expr = to_string (1)

if (exprs.find(s_expr))
return exprs[s_expr]

else {
var slack = new_var ()
exprs[s_expr] = slack
vals[slack] = value(l)
tableau[slack] = new row(slack, 1)
return slack

It is worth noting that implementing an equality constraint between two linear ex-
pressions is straightforward and can be realized as a conjunction of < relation and of
a > one (e.g., xo == x1 = x9 < x1 Axg > x1). Finally, since the equality constraint
returns, as any reified constraints, a propositional variable, realizing a disequality con-
straint (e.g., xo 7 x1) can be realized through the negation of the propositional variable
returned by the equality constraint.

4.2.5 Updating variables and pivoting the tableau

The following code snippets represents two helper methods which are used to handily
modify B. Specifically, update() sets the value of the non-basic variable x; to v and
updates the values of the basic variables, which have some connection to x;, so that all
the equations remain satisfied.

void update(var x;, inf_rational v) {

for (row r : t_watches[x;])
vals[r.v] += r.l.vars[x;]*(v — vals[x;])
vals[x;] = v

}

The purpose of pivot_and_update() is to apply pivoting to the basic variable x;
and the non-basic variable x;. Additionally, it sets the value of x; to v and updates the
values of the basic variables, which have some connection to x; within the tableau, so
that all the equations remain satisfied.
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void pivot_and_update(var x;, var x;, inf_rational v) {
inf_rational 6 = (v — vals[x;]) / tableau[x;].1.vars/[x;]
vals [x;] = v
vals [x;] += 0
for (row r : t_watches[x;])
vals[r.v] += r.l.vars[x;]*0
pivot(xi, xj)

Finally, the pivor() procedure makes a simple pivoting operation between a basic
variable x; (since this basic variable leaves the base, it is also called exiting variable)
and a non-basic variable x; (since this non-basic variable enters in the base, it is also
called entering variable).

void pivot(var x;, var x;) {
row r = tableau[x;]
lin 1 = move(r.1)
tableau.erase (x;)
// remove ’r’ from the watches ..
for (var x : 1.vars)
t_watches[x].erase(r)

rational ¢ = 1.vars[x;]
l.vars.erase (x;)

1 /= —c

l.vars[x;] =1 / ¢

for (row c_r : move(t_watches[x;])) {
rational cc = c_r.l.vars[x;]
c_r.l.vars.erase(x;)
t_watches[x;].erase(c_r)
for (entry term : c_r.l.vars) {
if (c_r.l.vars.contains (term. first)) {
c_r.l.vars[term. first] += term.secondx*cc
if (c_r.l.vars[term. first] == 0) {
c_r.l.vars.erase(term. first)
t_watches[term. first ].erase(c_r)
} else {
c_r.l.vars[term. first] = term.secondxcc
t_watches[term. first ].add(c_r)
}
1
}

tableau [x;] = new row(x;, 1)

}

It is worth to notice that the above pivot() procedure is also responsible for main-
taining updated the watch-lists so as to allow theory propagation.

4.2.6 The check() procedure

As already mentioned, the main procedure is based on the Simplex method and relies
on Bland’s pivot-selection rule to ensure termination. Specifically, it relies on a total or-
der on variables. Such an ordering can be efficiently maintained, as already mentioned,
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by making use of Red-Black tree based maps for representing both the tableau (using
the basic variables as key and the linear expression as value) and the linear expressions
(using the involved variables as key and their coefficients as values). The main pro-
cedure searches for a basic variable whose current value is outside of its bounds. If
no such variable is found, the procedure terminates successfully. If such a variable is
found, new assignments are produced and a new basis is found so that all the bounds
are satisfied. Finally, if it is not possible to find such values, an unsatisfable constraint
is found and used to generate an explanation for the conflict. The code for the check
procedure is the following.

bool check(vector<lit> cnfl) {
while (true) {
var x; = find_if(x €38,
vals[x] < 1b(x) | wvals[x] > ub(x))
if (x;, == null) { return true }
if (vals[x;] < Ib(x)) {
var x; = find_if (x € A(,
(tableau[x;][x;] > 0 & vals[x;] < ub(x;)) |
(tableau[x][x;] < 0 & vals[x;] > 1b(x;)))
if (x; == null) {
for (var x € A[")
cnfl.add (! bounds[ub_index(x)].reason)
for (var x e N\)
cnfl.add (! bounds[1lb_index(x)].reason)
cnfl.add (!bounds[Ib_index (x;)].reason)
return false
}
pivot_and_update (x;, x;j, lb(x;))
}
if (vals[x;] > ub(x;)) |
var x_j = find_if(x €A,
(tableau[x;][x;] < 0 & vals[x;] < ub(x;)) |
(tableau[x][x;] > 0 & vals[x;] > 1b(x;)))
if (x; == null) {
for (var x € (")
cnfl.add (! bounds[lb_index(x)].reason)
for (var x ¢\ )
cnfl.add (! bounds[ub_index(x)].reason)
cnfl.add (! bounds[ub_index (x;)].reason)
return false
}
pivot_and_update (x;, xj, ub(x;))
}
1
}

where A\ represents those non-basic variables, in a row whose basic variable’s value
violates its bounds, whose coefficients are greater than 0 while A~ represents, con-
versely, those non-basic variables whose coefficients are lower than 0.

The idea behind generating explanations consists in finding a basic variable whose
value is not consistent with its bounds. Furthermore, the value of the non-basic vari-
ables of the corresponding row of the tableau are already at their bounds, hence, such
values cannot be adjusted without violating other bounds. The literals which estab-
lished the bounds of these non-basic variables, together with the literal that established
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the violated bound of the basic variable, represent the unsat core, i.e., the set of literals
which explain the inconsistency. Demonstrating that such an explanation is minimal is
easy, yet, out of the scope of this document.

4.2.7 Theory propagation

An important aspect to consider when building a theory is theory propagation. In case
of the linear real arithmetic theory, specifically, propagation results useful only in case
if it can be done cheaply. As highlighted in [37], indeed, full propagation is just too ex-
pensive and results to be worthless. Nonetheless, no propagation is also a poor choice.
Given a set of elementary atoms 4 from the formula &', unate propagation is very
cheap to implement. For example, if a lower bound x; > ¢ has been asserted, then, any
unassigned atom of 4 of the form x; > ¢’ with ¢’ < ¢ is immediately implied. Similarly,
the negation of any atom x; < ¢”, with ¢ < ¢, is also implied. Furthermore, in case
these procedures are refining the bounds of non-basic variables, the bounds of the basic
variables can be deduced by the bounds of the non-basic variables through a bound re-
finement procedure. These computed bounds may imply unassigned elementary atoms
in 4. Notice that these computed bounds are often weaker than the current bounds.
Nonetheless, these kinds of propagations are very cheap to implement and in practice,
often, result to be useful.

Taking inspiration by the watched literals of the sat_core, the a_watches and the
t_watches fields keep track of those assertions and tableau rows which watch on vari-
ables. Specifically, whenever a watched variable updates its bounds, the constraints in
its associated watched list are checked to see if some information might be propagated.

Propagating atoms, however, represents just one of the aspects of theory propa-
gation which relies on the enqueue() method of the sat_core module. Specifically,
unless the theory is at root level, the reason (i.e., a propositional constraint) for prop-
agating any atom must be generated and sent to the enqgueue() method. Since the
analyze() method of the sat_core module strongly relies on such reasons, generat-
ing them is mandatory in order to produce explanations whenever an inconsistency is
detected.

The propagate() function is called by the sat_core module both for notifying the
theory of new assignments and for inducing theory propagation. The function imple-
mentation is the following.

bool propagate(lit p, vector<lit> cnfl) {

assertion a = v_asrts[p.v]
switch(a.o) {
case leq:
if (p.sign)
return assert_upper(a.x, a.v, p, cnfl)
else
return assert_lower(a.x, a.v, p, cnfl)
case geq:
if (p.sign)
return assert_lower(a.x, a.v, p, cnfl)
else

return assert_upper(a.x, a.v, p, cnfl)
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Specifically, the function relies on the following two basic procedures for updating
the bounds of a variable. These procedures have no effect if the imposed bounds are
weaker than the current ones. Conversely, if the new bounds generate an inconsistency
(e.g., they impose, for a given variable, an upper bound to be lower than a lower bound
or, on the contrary, a lower bound greater than an upper bound) a minimal explanation
must be generated. This explanation consists, straightforwardly, of the negation of the
literal whose assignment gave rise to the propagation together with the negation of the
literal that, previously, imposed the conflicting bound. Since a bound can, in general,
be updated several times within the same decision level, it is stored only the first time it
is updated. The assert_upper() method works just the opposite way and is not reported
for sake of space.

bool assert_lower(var x, inf_rational c, lit p, vector<lit> cnfl) {
if (¢ <= 1b(x)) return true
if (¢ > ub(x)) {
// either the literal ’'p’ is false
cnfl.add (!p)
// .. or what asserted the upper bound is false ..
cnfl.add (! bounds[ub_index(x)].reason)
return false

}

// stores the current bound for subsequent backtracking ..
if (!layers.empty() && !layers.top ().contains(x)) { layers.top().lb[x] = ¢ }

bounds[1lb_index (x)] = bound(c, p)
i f(x eA & vals[x] < c¢) update(x, ¢)

// theory propagation ..
for (assertion asrt : a_watches[x])

if (!lasrt.propagate_lb(x, cnfl)) return false
for (row r : t_watches[x])

if (!r.propagate_lb(x, cnfl)) return false

return true

As can be seen from the previous code, most of the complexity of theory propa-
gation is demanded to the propagate() procedures of the assertions and of the tableau
rows. In case of assertions, the first aspect to notice is that, either the assertion repre-
sents a < relation or a > one, the propagation of a lower bound update can take place
only if the lower bound of the variable is strictly greater than the value of the assertion.
This is because the bounds of the variables, already verified within the assert_lower()
and assert_upper() procedures, are not in dispute per se. The propagated information
is, conversely, related to the value of the variable b of the assertion.

In order to allow a better understanding of the theory propagation, the update of the
lower bound of a variable x in an x < ¢ assertion, such that the lower bound becomes
greater than c, is represented in Figure 4.2. Initially, the lower bound of the x is lower
than the ¢ constant of the < assertion. The upper bound of the same variable, however,
is greater than ¢ making it impossible to determine if the assertion is satisfied or not. As
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x<cb-l
lower bound o

Yo i x>ch->T

Figure 4.2: Propagating a lower bound update of x such that Ib(x) > ¢ in an x < ¢
assertion. The propagation results in assigning to the variable b the value FALSE, in
case of a < assertion, and the value TRUE, in case of a > assertion.

a consequence the update of the lower bound o x, the procedure is called and, because
the lower bound has now become greater than ¢, we can infer that the assertion is
unsatisfiable and, hence, b = L is propagated. Several cases might occur: in case b
can be made FALSE (i.e., its current value is Unassigned), propagation succeeds and
a reason for the new value of b must be provided; similarly, in case b cannot be made
FALSE (i.e., its current value is TRUE), propagation fails and a reason for the conflict
must be provided; finally, in case b is already FALSE, no information is propagated.
Notice that the literal that enforced the current lower bound of the x variable, referred
as p, represents both the reason for the propagation and part of the explanation for the
conflict, beside being the last literal, until now, propagated by the sat_core.
The following procedure describes the propagation of a lower bound change for a
variable within an assertion.
bool propagate_lb(var x;, vector<lit> cnfl) {
if (th.1lb(x;) > v) {
switch (o) {
case le:
switch (sat.value(b)) {
case True:

// inconsistency ..

cnfl.add(lit (b, false))

cnfl.add (—th.bounds[1lb_index (x;)].reason)

return false

case Undefined:
// propagation is safe..
th.record(lit(b, false), —th.bounds[lb_index(x;)].reason)

}
break

case ge:

}
}

return true

The > case is symmetrical since, conversely to the < case, the assertion becomes
satisfied and, as a consequence, rather than b = FALSE, b = TRUE is propagated. This is
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reflected in the polarity of the b variable which, both in the conflict and in the reason for
the propagation, appears directed. Given its simplicity, this case will not be described.

The propagation of the bounds, in the case of the rows of the tableau, takes place
in a similar way. In case of tableau rows, however, more variables are involved and,
computing the reason for the propagation or the cause for a conflict might result to be
slightly more cumbersome. The following procedure describes the propagation of a
lower bound change for a variable involved in a tableau row.

bool propagate_lb(var v, vector<lit> cnfl) {
cnfl.add(lit (0, false)) // make room for the first literal ..
if (l.vars[v] > 0) {

inf_rational 1b = 0 // the lower bound of the basic variable ..
for (entry term : 1.vars) {
if (term.second > 0) {
if (th.lb(v) == —oo) {

// nothing to propagate ..
cnfl.clear ()
return true
} else {
1b += term.second x th.Ib(term. first);
cnfl.add (! th.bounds[1b_index (term. first )].reason)
}
} else {

}
}

if (Ib > th.lb(x)) {
// lb is a better bound..
// we check if we can propagate some assertion ..
for (assertion a : th.a_watches[x]) {
if (1b > a.v) {
switch(a.o) {
case le:
cnfl[0] = lit(c.b, false);
switch (th.sat.value(b)) {
case True:
// inconsistency ..
return false
case Undefined:
// propagation is safe ..
th.record(cnfl)
}
break
case ge:

cnfl.clear ()
return true
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4.2.8 Backtracking

The last aspect to consider for the linear real arithmetic theory regards the data struc-
tures and the procedures for storing the context and allowing backtracking. Since the
number of backtracks is often very large, efficient backtracking is, indeed, important.
As explained in [37], the strengths of the above proposed approach relies in the need
to restore the sole bounds of updated variables as well as the reason for having updated
them. Backtracking does not require saving the current values of variables before up-
dating since the updated values must be compatible with the bounds of lower levels
and, most interestingly, does not require to revert the performed pivotings.

It is worth to recall that, whenever a literal is assumed, through the assume()
method of the sat_core, the push() method of every theory is called, allowing theories
to store context for subsequent backtracking. The real linear arithmetic theory, simply,
adds a layer whenever its push() method is called. By doing so, the assert_lower()
and assert_upper() procedures are enabled to store, before updating, the bounds.

void push() { layers.add(map<unsigned, bound>()) }

Finally, the pop() method of the sat_core calls the pop() method of every theory
for restoring the context of the theory before push() was called. In our case, we simply
restore the updated bounds.
void pop() {

for (entry b : layers.top()) { bounds[b.first] = b.second }

layers .pop ()
}

4.3 The Object Variables theory

A second theory, which will come back useful, concerns the management of object
variables and the constraints among them. Strongly relying on the sat_core, the Ob-
ject Variables (OV) theory is responsible for creating object variables, having a set of
values as initial domain, and enforcing equality (i.e., =) constraints between them. In
particular, the overall idea underlying the object variables theory consists in associat-
ing a propositional variable to each of the allowed values of each object variable and
enforcing an exactly-one constraint among them. These variables will indicate whether
the corresponding allowed value belongs to the domain of the variable.

The object variable theory’s external interface, with which a user application can
specify, along with the sat_core module, problems, is described by the following
code:
class ov_theory : theory {

var new_var(set<value> vs)
var eq(var 1, var r)
var allows(var x, value v)

set<value> value (var x)

}

Specifically, new variables are introduced by calling the new_var() procedure tak-
ing, as a parameter, the set of allowed values representing the initial domain. value, in
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particular, is nothing more than a marker interface. var is, again, a type synonym for
an unsigned int. In the case of this theory, however, the new_var() procedure returns
an object variable. Such variables can be used for generating equality constraints, by
means of the eq() procedure, which are represented by propositional variables which, in
turn, are bound to the sat_core module. Enforcing (or negating) such constraints can
be done by assigning these propositional variables the TRUE (or FALSE) value, through
the sat_core module, either by means of propositional constraints (e.g., clauses) or
by means of direct assumptions (i.e., the assume() method of sat_core). Given an
object variable x and a value v, the allows() procedure returns a propositional variable
indicating whether the v value can be assumed by x the variable. Finally, given an x
object variable, the value() procedure returns the set of allowed values associated to
the x variable.
The following things need to be stored for representing the state:

sat_core sat // the sat core..

// the current assignments (i.e., the allowed values)..

vector <map<value , var>> assigns

// the expressions (string to object variable) for which already
// exist slack variables ..

map<string , var> exprs

In particular, the sat field is a reference to the sat_core needed for creating and
binding new propositional variables. The assigns field stores, for each object variable,
a mapping between each of its allowed values and the corresponding propositional
variable describing the presence of the value within the domain of the object variable.
Finally, the elements stored within the exprs map represent all the already seen expres-
sions.

4.3.1 Variables and constraints

The following code snippet is aimed at creating new object variables. The code initial-
izes the initial domain of the new variables assigning, for each of its allowed values, a
propositional variable and enforcing, among them, an exactly-one constraint.

var new_var(set<value> vs) {
var x = assigns.size ()
assigns .add (map<value , var>())
if (vs.size() == 1)
assigns [x][vs[O]] = T4
else {
vector<lit> lits
for (value v : vs) {
var bv = sat.new_var()
assigns[x][v] = bv
lits .add(bv)
bind (bv)
}
exct_one(lits)

}

return x
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where the exct_one() procedure represents a utility method for enforcing an exactly-
one constraint among the given literals. Notice that, conversely to the sat_core’s
new_exct_one() procedure, this procedure does not create a reified constraint and,
hence, does not return a propositional variable. Similarly to the sat_core case, how-
ever, the procedure generates a naive encoding, combining the at-most-one and the
at-least-one constraint, requiring the introduction of O(n?) new clauses. For sake of
completeness, the following code snippet describes the exct_one() procedure:

void exct_one(vector<lit> lits) {
vector<lit > tmp
for (unsigned i = 0; i < lits.size(); i++) {
for (unsigned j =i + 1; j < lits.size(); j++) {
// the at—most—one constraints ..
sat.new_clause( {—lits[i], —lits[j]} )

}
tmp.add(lits[i])

}

// the at—least—one constraint..
sat.new_clause (tmp)

}

Suppose, for example, we want to create two object variables oy € {a,b} and
o1 € {b,c}. By calling the new_var() procedure a first time, two new propositional
variables by and b, associated to the a and b allowed values, are created and the
clauses (—bg, b ), representing the at-most-one constraint, and (b, b ) representing
the at-least-one constraint, are enforced so as to guarantee the exactly-one constraint
between by and b;. Analogously, by calling the new_var() procedure a second time,
two new propositional variables b, and b are created and the (—by,—b3) and (b2, b3)
constraints are enforced.

As regards the procedure for creating the equality constraint, its role can be re-
duced at enforcing the equality, subject to the controlling propositional variable, of the
propositional variables corresponding to the same values. The following code snippet
describes the equality constraint:
var eq(var 1, var r) f{

if (1 == r) return T,,
if (1 > r) return eq(r, 1)
string asrt = "e" + 1 + " = ¢e" + 1
if (exprs.find(asrt))
return exprs[asrt]

else {
set<value> intrsct
for (value v : assigns[1].keys)

if (assigns[r].find(v))
intrsct.add(v)
if (intrsct.empty()) return L,

var ctr = sat.new_var()
exprs[asrt] = crt
for (value v : assigns[l].keys)

if (!intrsct.find(v))
sat.new_clause({ lit (ctr, false), lit(assigns[v], false)})
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for (value v : assigns[r].keys)
if (!lintrsct.find(v))
sat.new_clause({ lit (ctr, false), lit(assigns[v], false)})

for (value v : intrsct) {
sat.new_clause({ lit (ctr, false),
lit (assigns[1][v], false),
lit (assigns[r][v], true)})
sat.new_clause({ lit (ctr, false),
lit (assigns[1l][v], true),
lit (assigns[r][v], false)})
sat.new_clause({lit (ctr, true),
lit (assigns[1][v], false),
lit(assigns[r][v], false)})
}

return crt

Specifically, after a preprocessing phase, aimed at avoiding creating several times
the same constraint, the intersection intrsct of the allowed values of the two variables
is computed. In case the intersection is empty, the two object variables cannot be equal
and, therefore, the L, variable is returned, otherwise, a new propositional variable ctr
is created. Constraints are added so that, as a consequence of making the ctr variable
TRUE, the propositional variables, associated to those values which are not within the
intersection, are constrained to be FALSE while the propositional variables, associated
to those values which are within the intersection, are constrained to be pairwise equal.

As an example, creating the o9 = 0] constraint results in the creation of a new
propositional variable b4 and in the enforcement of the constraints (—b4, —bg), (—ba,b3),
(—bg,—b1,b2), (—bs,by,—b2) and (by,—by,—b2) and returns by. Assigning the value
TRUE to by would result in the assignment of the value FALSE to both by (as a con-
sequence of the propagation of the first constraint) and b3 (as a consequence of the
propagation of the second constraint) and in the assignment of the value TRUE to both
b1 and b, (as a consequence of the propagation of the exact-one constraints).

Finally, by checking the values of the corresponding propositional variables, the
value() procedure returns a set of those values which are not excluded from the domain
of the given object variable.

set<value> value (var x) ({
set<value> vals
for (value val : assigns[v])
if (sat.value(assigns[val]) != False)
vals .add(val)
return vals

By calling the above procedure with the oy parameter, for example, would return
the {a,b} set, before the assignment of the value TRUE to by and the {b} set, after the
assignment of the value TRUE to by. It is worth noting that assigning the value FALSE
to b4 would result in the enforcement of the oy # 0 constraint.
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4.4 The constraint network

By relying on the sat_core module, as described in Section 4.1, on the linear real
arithmetic theory, as described in Section 4.2, and on the object variables theory, as
described in Section 4.3, it is possible to create new propositional, numeric and object
variables and enforcing constraints on them. Moreover, in case of inconsistencies,
it is possible to generate explanations which can be used to allow no-good learning,
avoiding the reemergence of similar, inconsistent, situations, and non-chronological
backtracking.

Thanks to the linear real arithmetic theory, which abandons arc-consistency prop-
agation in favor of the Simplex method, the introduced constraint network is able to
manage numeric variables with an initial infinite domain. Nonetheless, inconsistent
situations are quickly detected and exploited, in concert with other theories and with
the sat_core module, to allow no-good learning and non-chronological backtracking.
Numeric variables can be used to represent, uniformly, different numeric aspects of the
planning problem including time, resource consumption amounts, resource capacities,
etc. The link between temporal variables and other dimensions becomes, therefore,
easy, allowing to relate, for example, resource consumption amounts to temporal spans.

As mentioned earlier, the sat_core module does not implement any search al-
gorithm. Unless it is an explicit consequence of constraints propagation, non of the
variables will be assigned. Search is, in other words, demanded to the sat_core’s user
applications that can choose which literal to assume and, consequently, what variables
consider as relevant in generating solutions. The resulting constraint network will be
exploited, in the following chapter, both for generating a new heuristic and for propa-
gating constraints during the resolution process.



The Critical-Path Heuristics and the oRATIO Solver

By relying on the data structures presented in Chapter 4, this chapter introduces two
new heuristics and a new solver architecture for solving timeline-based planning prob-
lems. The overall proposed idea consists in applying, in a coarse way, all possible
resolvers for all possible flaws until some termination criteria, i.e., unifications and re-
solvers which do not add further flaws, is met. Specifically, since flaws and resolvers
are causally related (i.e., resolvers might introduce flaws which are solved by other re-
solvers) it is possible to build an AND/OR graph for representing such causal relations.
By exploiting the topology of such a graph it is possible to generate an estimation of
“how far” a flaw is from being solved and exploit this estimation for guiding the res-
olution process. Specifically, taking inspiration from the /.4, and the h,,,, heuristics
introduced in Section 2.1.1, the cost of a resolver, which can be seen as an AND node,
can be estimated as the sum (or the maximum, in case of h,,,,) of the estimated costs
of the flaws introduced by the resolver itself plus an intrinsic resolver’s cost, while the
estimated cost of a flaw, which can be seen as an OR node, can be estimated as the
minimum of the estimated costs of its possible resolvers. It is worth noting that gener-
ating such a cost estimation is equivalent to identifying a critical path within the causal
graph that can be used for choosing resolvers at resolution time, hence, the name of the
heuristic.

Conversely from the h,;; and the h,,,, heuristics for classical planning, the pro-
posed heuristic does not rely simply on propositions. The state is, indeed, described,
also, by numerical variables representing, for example, time, precluding, in the most
general case, the possibility of generating ground expressions. This enhancement re-
sults into the need to manage the atomic formulas while keeping the variables lifted
and, hence, similarly to what has been done in [46] in the case of functional STRIPS
[52], strongly relying on constraint propagation capabilities already in the heuristic
generation phase. Furthermore, continuing in the wake of [29] and somehow inspired
by [111], the concept of reification is applied, in addition to resolvers, to flaws as well.
As a consequence, rather than maintaining the flaws into an agenda data structure, as
proposed in Section 2.3 and implemented in common timeline-based planners, flaws

89
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Figure 5.1: The topology of the causal graph is exploited for recognizing a critical path.

arise as a consequence of the sat_core module’s propagation. Additionally, the atom
network should be adapted so as to maintain, besides the sole atoms in the solver’s
current state, also all the possible atoms that may exist in all possible states that can
be reached by the planner. As we shall see, this can be achieved by introducing a state
variable G to be assigned to each atom of the atom network and including, among the
constraints, also the causal ones. This paradigm shift, however, requires a complete
architecture refactoring which has lead to the development of a new planner, called
ORATI0, and to the introduction of a new language, called RIDDLE (from oRatlo Do-
main Definition LanguagE), for expressing timeline-based planning problems.

Figure 5.1 shows a synthetic example of such a generated graph. In the picture,
flaws are represented through boxes and, since any of their resolvers should be applied
to resolve a flaw, are OR nodes. As an example, flawg can be solved either by apply-
ing the resg resolver or by applying the res; resolver. Resolvers, on the other hand, are
represented through ovals and, since all the flaws introduced by them must be solved,
are AND nodes. As an example, resolving flawg through resy introduces both the
flawy and flaw, flaws. The critical path for solving the problem is highlighted in the
figure. In particular, once built the graph, a possible solution for the planning prob-
lem might consist in applying, at first, resolver resy. This results in the “activation” of
flaws flaw; and flaw, which might be solved by applying, respectively, the res3 and
ress resolvers. It is worth noting that resolvers resy, ress, ress and resg, as well as the
flaws flaws, flaws, flaws and flawg, although not included into the final solution,
are nonetheless considered into the graph. Furthermore, their associated atoms and
constraints, included the causal ones, must be introduced into the atom network and,
hence, into the underlying constraint network. Building such a graph allows to con-
sider, in a relaxed way, all the possible plans which can be generated starting from a
given planning problem. Relaxation, in particular, comes from neglecting the possible
interactions among resolvers/subgoals. It might be the case, for example, that resolvers
res3 and resy, both in the identified critical path, although individually applicable, are
not applicable simultaneously.

Before going into further details in explaining the heuristic, however, it is worth to
introduce some of the main concepts underlying the solver. In particular, as a conse-
quence of flaws and resolvers reification, it is worth to explain in detail how such data
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Figure 5.2: The overall ORATIO architecture.

structures are made. This would allow to have a better idea of how the graph is built
and how the solving process works.

5.1 The ORATIO architecture

Figure 5.2 broadly describes the ORATIO architecture. While the lower part refers to
the data structures introduced in Chapter 4 (i.e., the sat_core presented in Section 4.1,
the LRA theory presented in Section 4.2 and the OV theory presented in Section 4.3),
the upper part refers to the main data structures introduced in this chapter. To begin,
the external interface of the ORATIO solver, through which a user can specify problems
and solve them, is the following.

class solver : theory {

void read(string script)
void read(vector<string> files)
void solve ()

sat_core sat
la_theory la
ov_theory set

Intuitively, the solver is feed through the two read() methods which, respectively,
parse a RIDDLE script and a collection of files containing RIDDLE code (for a complete
description of the RIDDLE language refer to Chapter 6). The problem is subsequently
solved through the solve() method which either finds a solution or returns with an
unsolvable exception. Finally, the solver maintains a reference to the sat_core, to the
linear real arithmetic theory and to the object variables theory presented in Chapter 4.

It is worth to notice that the solver is, itself, a theory and is bounded to the sat_core.
Specifically, as a theory, the solver is notified for the assignment of the bound variables
by the sat_core which, additionally, calls the solver’s push() and pop() methods for
allowing it to store the context before creating a branch. As will be shown soon, this
will allow the solver to receive updates about flaws activation and resolvers’ state.
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Figure 5.3 describes, in further details, some of the most important data structures
required by the solver for maintaining information. Specifically, env and scope rep-
resent abstract data structures for retrieving instances, types and predicates. The item
structure is used for representing instances of a specific type. It contains, indeed, a ref-
erence to the type data structure which is used for representing such types. It is worth
to notice the two depicted operations for the item type (i.e., equates and eq). Specif-
ically, equates compares efficiently, yet incompletely, two items returning a boolean
indicating whether the comparison was successful. This method makes it possible to
make the unification checking process more efficient by discarding, without the need to
create new variables, those unifications which are trivially unfeasible. Two arithmetic
variables whose domains are, respectively, [0, 10] and [20,30], for example, regardless
of the involved constraints, can never be made equal. On the other hand, the eq method
deeply compares two items returning a propositional variable which, like the reified
constraints described in Section 4.1.3, represents whether the unification constraint is
satisfied or not. Both the methods are applied iteratively to all the member fields of the
items (i.e., those contained in the items field of the env data structure). It is worth to no-
tice that although knowing two items equate does not imply their unifiability, knowing
two items do not equate ensures that the two objects are not unifiable.

Bool items, arithmetic items and var items are specific data structures for managing
instances of primitive types which, in addition to keeping references to literals, linear
expressions and object variables, as defined in Chapter 4, redefine the equates and eq
operators. Finally, while atoms are a special kind of items, predicates are modeled as a
special kind of types. This allows to efficiently recover all atoms having a given pred-
icate and, thus, useful for computing unifications, and, at the same time, to associate a
predicate to each atom.

It is worth to notice that while the parameters associated to the atoms are retriev-
able through the items field of the env abstract data structure, to which the equates and
eq methods also refer, each atom has its own state variable ¢ € {INACTIVE, ACTIVE,
UNIFIED}. Such a variable indicates the state of the atom and allows for all the possible
atoms, including those which are not in the current partial solution, to stay, together,
in the same atom network. By exploiting the features of the SMT-based constraint net-
work presented in Section 4, these variables can be represented through propositional
variables with the assumption that UNASSIGNED variables indicate INACTIVE atoms,
TRUE assignments indicate ACTIVE atoms and FALSE assignments indicate UNIFIED
atoms.

The last aspect to consider regards timelines. As already said in Chapter 3, and as it
will be further detailed in Section 5.6, timelines are specific types whose role consists in
generating further flaws which are peculiar to the specific timeline type (e.g., different
states overlapping on a state-variable, resource overusages, etc.).

5.2 Building the causal graph
As already mentioned in Section 2.4, the key question which pervades the whole thesis

is: “since some of the rules have not yet been applied, how is it possible to reason on
atoms that have not yet been added in the current atom network?”. The answer pursued
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Figure 5.3: UML class diagram of the new solver.

by this chapter is, trivially: it is not possible. The main idea pursued to work around this
issue is to apply, in parallel, enough resolvers, in a rather coarse way, so as to provide
some “insight” on how to solve the planning problem. The result is a Directed Graph
(DG), called causal graph, which interleaves flaws and resolvers. By exploiting the
topology of such network, flaws and resolvers can than be evaluated through heuristics
similar to the h,44 and hy,,, described in Section 2.1.1, subject to replacement of goals
with flaws and actions with resolvers. Notice that the resulting graph is similar to the
AND/OR graph generated in [8], yet with a smarter weighting function.

It is worth to notice that different resolvers for a given flaw might interfere each
other. In Figure 5.1, as an example, either resolver resy or resolver res; is applied
for solving flaw flawgy. Applying both resolvers might easily result in introducing
inconsistencies. For this reason, in general, resolvers are not added directly within the
partial plan but are associated to a propositional variable p that determines their activity
according to the reification principle. Once built the causal graph, the role of the solver,
rather than collecting flaws and applying resolvers, will be “reduced” to the problem of
assigning truth values to such variables. Theory propagation will do the rest. Clearly,
applying resolvers could introduce new flaws (e.g., subgoals and/or disjunctions) which
have to be causally constrained to the generating resolver’s p variable. This can be
achieved by assigning to each flaw another propositional variable, ¢, and constraint it,
through a set of clauses called causal constraints, to the p variables of the resolvers
that have given rise to the flaw.

The construction of the graph and the addition of causal constraints is possible
thanks to the presence of the following variables which, together with the sat_core
and to the theories, represent the state of the solver.

var v = T, // the controlling variable ..

queue<flaw> flaw_q // the flaw queue ..

set<flaw> flaws // the current active flaws ..

map<atom, flaw> reason // the reason for having an atom..

stack <layer> trail // the list of resolvers in cronological order..

Specifically, the v variable represents the current propositional variable from whose
trueness all the assertions depend. The idea behind this variable is that every assertion
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o which is asserted as, for example, a linear constraint, is not asserted directly, rather,
the (—v, o) clause is added. The presence of the v variable allows to “execute” RIDDLE
snippets in a uniform manner regardless the code represents the problem’s goals and
facts, the body of a rule or a disjunct of a disjunction. This is allowed, among other
things, by the reorganization of the problem as described in Chapter 3 which makes
the problem requirement and the rule requirement homogeneous. The Vv variable is
initialized at T,,, since the problem requirement, that is the first RIDDLE snippet that
is executed, must be in the solution. From time to time, however, the v variable will be
replaced with the p variable of the resolver that is going to be applied.

Similarly to the sat_core’s prop_g variable, the flaw_g variable maintains a
queue of flaws for which resolvers have not yet been computed. The flaws variable
represents the set of currently active flaws. Since the resolving procedure catches the
flaws that are to be solved from this variable, this set represents the counterpart of the
agenda data structure as described in Chapter 3. The reason map is intended for keep-
ing track of the flaws that introduced the atoms and is aimed at retrieving, given an
atom, its reason flaw. Finally, the trail state variable is responsible for maintaining,
in chronological order, the chosen resolvers as well as for storing the context so as to
allow backtracking. Specifically, the layer data structure is described by the following
code snippet.

class layer {
lit decision
map<flaw , rational> f_costs
map<resolver , rational> r_costs
set<flaw> new_flaws
set<flaw> solved_flaws

In particular, decision represents the literal which introduced the new layer (typi-
cally, the directed p variable of a resolver). The f_costs (r_costs) map is used for stor-
ing, for each flaw (resolver) whose cost has been updated, the cost before the update
and will be used, when backtracking, for restoring the costs. The new_flaws and the
solved_flaws sets, respectively, are used for storing those flaws which have become
active and those flaws which have been solved at the current decision level. Again,
when backtracking, these sets will be used, respectively, for removing (those who have
been activated) and for re-adding (those who have been solved) flaws from/to the flaws
variable. Finally, the solver relies on the following maps for efficiently retrieving flaws
and resolvers by their ¢ and the p variables.

map<var, vector<flaw>> ¢s // allows flaw’s retrieval by its ¢ var..
map<var, vector<resolver>> ps // allows resolver’s retrieval by its p var..

Notice that, since different flaws and different resolvers might share the same
propositional variable, the above two maps have as index the ¢ and p variables while
they have as value a collection of, respectively, flaws and resolvers. Before explain-
ing how the graph is built, however, a detailed explanation of flaws and resolvers is
required.
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5.2.1 Representing flaws

As mentioned in Section 2.3, while flaws can be of different types and can arise for
different reasons, what they all have in common is that a search choice is necessary to
solve each of them. Such choices are represented by means of a collection of resolvers,
called the resolvers of the flaw, each of which can resolve the flaw. Additionally, each
flaw has another collection of resolvers, called the cause for the flaw, containing all
those resolvers that give rise to the flaw. As an example, since top-level flaws (i.e.,
those introduced directly by the problem instance as goals) have no cause, the cause
set, for them, is empty. The cause set of a subgoal contains the sole resolver which in-
troduced the flaw (i.e., the application of a rule). Finally, inconsistencies arising from
types (e.g., different atoms temporally overlapping on a state-variable) might have dif-
ferent resolvers as cause (i.e., in case of a state-variable, the resolvers that introduced
the temporally overlapping atoms). Furthermore, each flaw has a third collection of
resolvers, initially equal to the cause, which contains the supports of the flaw and
represents all those resolvers which are supported by the flaw. Unlike the cause, initial-
ized, once and for all, the latter collection is dynamically updated, for example, every
time an atom flaw is used as the target of a unification. In summary, the state of a flaw
is described by the following state variables.

bool exclusive

bool expanded = false

var ¢

rational est_cost = +oo // the estimated cost of the flaw ..
vector<resolver> resolvers // the resolvers for the flaw ..
vector<resolver > cause // the cause for having the flaw ..

vector<resolver> supports // the resolvers supported by the flaw ..

Specifically, a flaw is called exclusive if any of its resolvers implies the negation of
the other resolvers. Consequently, a non-exclusive flaw allows the application of more
than one of its resolvers. Since object variables can assume no more than one value,
flaws arising as a consequence of object variables are exclusive resolvers. Similarly,
tokens associated to goals can either unify or be activated, therefore flaws arising by
goals are also exclusive flaws. On the contrary, flaws arising as a consequence of dis-
junctions, as a consequence of values temporally overlapping on state-variables as well
as resources overusages, represent examples of non-exclusive flaw since the different
choices can be simultaneously part of a solution. The expanded variable maintains in-
formation about whether the resolvers of the flaw have been computed or not. ¢ is the
propositional variable associated to the flaw and is initialized through the init () initial-
ization procedure described later. est_cost is the currently estimated cost, computed by
the heuristic, for solving the flaw. Finally, the resolvers, cause and supports variables
represent, respectively, the resolvers of the flaw, its cause and the resolvers supported
by the flaw, as previously defined.

In addition to these variables, the following procedures define the behavior of each
flaw.

class flaw {

void init ()
void expand ()
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0 initialization | Exclusive flaws Inclusive flaws
0= A rp <ﬁ¢, D r-p) (wb, Vv r-p)
recause reresolvers reresolvers

Table 5.1: A summary of the causal constraints.

void compute_resolvers ()
retional get_cost() { returnm est_cost; }

Specifically, the init() procedure is responsible for initializing the ¢ variable as the
reified conjunction of the cause’s p variables, introducing a first example of causal con-

straint. Formally, = A r.p or, in case the cause of the flaw is empty (i.e., the flaw
recause
is introduced directly by the problem as a top-level one) ¢ = T,,,. In other words, the ¢

variable is TRUE if and only if all the p variables of the resolver constituting the cause
for a flaw are TRUE. The ¢ variable is than bound to the sat_core which will notify
the solver whenever a value is assigned to it. In particular, in case the TRUE value is
assigned to the ¢ variable, the flaw becomes active and is added to the flaws set of the
active flaws which have to be resolved. Notice that the ¢ variable cannot be initialized
at flaw’s initialization phase since it might require the introduction of new reified con-
straints (which, as described in Chapter 4 requires, in turn, the sat_core being at root
level). As a consequence, although not all flaws are created at root level, all of them
must be initialized at root level. The expand() method, on the contrary, first calls the
compute_resolvers() which, dependently on the specific flaw, is responsible for filling
the resolvers collection with the admissible resolvers, and then enforces a new causal
constraint which depends on whether the flaw is exclusive or not, setting, finally, the
value of the expanded variable to t rue. In case the flaw is marked as exclusive, the en-

forced constraint is (ﬁq), &b r.p), where the €@ symbol is used for representing
reresolvers
the exactly-one constraint. In case of a non-exclusive flaw, conversely, the enforced

constraint is (—\(1), V r.p). Specifically, the above causal constraints represent
o N reresolvers . .
logic implications having the ¢ variable as antecedent and, respectively, an “exactly

one” and a disjunction of the p variables of the resolvers as consequent. Finally, the
procedure for computing the resolvers of a flaw is dependent on the specific kind of
flaw and will be explained, in detail, later. This specificity, in any case, does not inter-
fere with the procedure for building the graph which can be explained, independently
of it, earlier.

Table 5.1 contains a summary of the introduced causal constraints emphasizing the
OR nature, either exclusive or inclusive, of the flaws. Specifically, the ¢ variable is
initialized as the reified conjunction of the p variables of the flaw’s cause. Addition-
ally, the ¢ variable logically implies, in case of exclusive flaws, the reified exactly-one
constraint of the p variables of the flaw’s resolvers or, in case of inclusive flaws, the
reified disjunction constraint of the p variables of the flaw’s resolvers.
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5.2.2 Representing resolvers

On the other side, with respect to flaws, resolvers represent what is to be done in order
for a flaw to be solved. Specifically, the state of a resolver is described by the following
state variables.

var p

rational intrinsic_cost // the intrinsic cost of the resolver ..
rational est_cost = +eo // the estimated cost of the resolver ..
vector <flaw> preconditions // the preconditions of the resolver ..
flaw effect // the flaw solved by the resolver ..

The p variable is the propositional variable associated to each resolver establishing
whether the resolver is active or not. The intrinsic_cost value represents the intrin-
sic cost of the resolver. Different resolvers, indeed, can have different intrinsic costs.
Since it is possible to characterize the cost of the whole plan as the sum of these values,
for all the active resolvers, this expression can be exploited to manage preferences. In
case of disjunctions, indeed, such costs can be defined, through the input language,
by the user. The est_cost rational represents the current estimated cost, computed by
the heuristic, for applying the resolver and is initialized at +co. The role of the graph
building procedure and, more in general, of the heuristic, consists in assigning values
to the est_cost field of the resolvers. Such values will be used by the solving procedure
to efficiently select flaws (i.e., those having the most expensive resolvers among their
cheapest ones) and their resolvers (i.e., the cheapest ones). The preconditions variable
is filled while applying the resolver with those flaws which arise by the application it-
self. These are the flaws which would become active whenever the resolver’s p variable
becomes TRUE. Finally, the ef fect variable maintains a reference to the flaw which is
solved by the resolver. It is worth noticing that the structure of a resolver resembles that
of a classical planning action, as defined in Section 2.1, having a set of preconditions,
which require to be fulfilled before the action can be introduced, and a single (positive)
effect, hence the idea of using an adaptation of the A,y and h,,,, heuristics. Despite
the simplification, compared to classical planning actions, of having only a single ef-
fect, it is worth remembering that both the preconditions’ and effect’s parameters can
be continuous, resulting in a size of the state space which can potentially be infinite.

In addition to the previously defined variables, associated to each resolver there is
the apply() procedure which is responsible for applying the resolver. For example,
in case the resolver represents the application of a rule, applying the resolver means
adding subgoals and/or constraints, as defined in the rule, by “executing” the rule’s
body. Applying a resolver, however, depends, in general, on the specific nature of the
resolver (which, in turn, depends on the specific nature of the flaw solved by the re-
solver). As already mentioned, the application of a resolver does not impose, directly,
constraints, rather, it causally links constraints to the p variable of the resolver. In other
words, whenever the TRUE value is assigned to the p variable, all the constraints of the
resolver are enforced. Additionally, assigning the TRUE value to the p variable also
implies that all the preconditions become active, fulfilling the AND nature of the re-
solvers. This behavior can be obtained easily, and independently from the resolver, by
temporarily replacing, from time to time, the solver’s v variable before the application
of the resolver. Finally, similarly to the flaws’ case, a ger_cost() procedure is respon-
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sible for computing the cost of a resolver as the sum of its estimated cost est_cost and
its intrinsic cost intrinsic_cost values.

5.2.3 Building the graph

Once the building blocks of the causal graph (i.e., flaws and resolvers), although in
their abstract form, have been presented, it is finally possible to explain the proposed
algorithm for building the graph.
void build () {
while (3 f € flaws: f.get_cost() == +e) {
if (flaw_q.empty ()) throw unsolvable_exception
flaw f = flaw_q.dequeue ()
f.expand ()
for (resolver r : f.resolvers) {
var tmpy = V
V=r.p
r.apply ()
VvV = tmpy
if (r.preconditions .empty ())
set_est_cost(r, 0)

}

if (! sat.check()) throw unsolvable_exception

Specifically, while exists, among the current active flaws, a flaw having an infinite
estimated cost (i.e., the graph has not been able to find a possible resolution for the
flaw) and the flaw queue is not yet empty (i.e., it is not possible to find a solution to
the problem), a flaw f is dequeued and expanded. The flaw’s expansion procedure
computes all possible resolvers for the f flaw which can than be applied. Before the
application, however, the resolver’s p variable is assigned to the v variable. Finally,
after the application, the v variable is restored and, in case the resolver’s preconditions
vector is empty, it is possible to update the cost of the flaw f as the minimum between
the current cost and the intrinsic cost of the resolver. It is worth noting that expand-
ing the flaw initially computes the resolvers and than enforces the causal constraints.
During the graph building procedure the sat_core might become inconsistent and is,
therefore, checked. In case of failure, it is possible to establish that the problem has no
solution, therefore, an exception is launched and the procedure terminates.

Since efficiency is strictly related to the number of involved variables, reducing
the number of atoms in the planning graph may result, in some cases, in a significant
increase in performance. As a consequence, the graph building procedure can be en-
hanced for managing deferrable flaws. Specifically, a deferrable flaw is a flaw having
any of its ancestors with a finite estimated cost. The idea, here, is to leave out those
flaws constituting the preconditions of already, possibly, solved flaws, deferring them
in case we find, through the search, that the ancestor was not, actually, solvable. The
procedure for checking whether a flaw is deferrable is straightforward and reported for
sake of completeness.

bool is_deferrable (flaw f) {
queue<flaw> q
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q.push(f)
while (!q.empty()) {
flaw c_f = q.dequeue ()
if (c_f.get_cost() < +o0)
return true
else
for(r : c_f.causes)
q.push(r.effect)
}

return false

Given the above procedure, it is possible to rewrite the graph building procedure so
as to do not expand deferrable flaws, nor to apply its resolvers, re-enqueuing them, on
the contrary, for further future checks.

5.2.4 Updating flaws’ and resolvers’ estimated costs

Updating the estimated cost of a resolver might result in updating the estimated cost of
other flaws and resolvers depending from the updated one. Potentially, the resolvers’
costs propagation procedure can reach those flaws contained in the flaws variable thus
affecting, among other things, the exit condition of the graph building procedure. For
this reason, it is necessary to introduce a separate procedure dedicated to propagating
the flaws’ and resolvers’ estimated costs.

void set_est_cost(resolver r, rational cost) {
if (r.est_cost != cost) {
if (!trail .empty() && !trail.top().costs.contains(r))
trail .top (). r_costs[r] = r.est_cost
r.est_cost = cost

resolver bst_res = min r.get_cost()
rereffect.resolvers

rational efct_cost = bst_res.get_cost()

if (r.effect.est_cost != efct_cost) {
if (! trail .empty() && !trail.top().costs.contains(r))
trail .top (). f_costs[r.effect] = r.effect.est_cost
r.effect.est_cost = efct_cost

queue<resolver> resolver_q
for(resolver c_r : r.effect.supports)

resolver_q.push(c_r)

while (!resolver_q.empty()) {

resolver c_r = resolver_q.dequeue ()
rational r_cost = evaluate(c_r.preconditions)
if (c_r.est_cost != r_cost) {
if (!trail .empty() && !trail.top().r_costs.contains(c_r))
trail .top (). r_costs[c_r] = c_r.est_cost
c_r.est_cost = r_cost
bst_res = min c_r.get_cost()

rec_reffect.resolvers
efct_cost = bst_res.get_cost()
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if (c_r.effect.est_cost != efct_cost) f{
if (!trail .empty() && !trail .top().f_costs.contains(c_r.effect))
trail .top (). f_costs[c_r.effect] = c_r.effect.est_cost
c_r.effect.est_cost = efct_cost

for (supp : c_r.effect.supports)
resolver_q .push(supp.effect)
}

}
resolver_q.pop ()

}
}
}
}

The procedure updates the resolver’s estimated cost, after having stored its previ-
ous cost, checking whether the update results in a change in the estimated cost of the
resolver’s effect (i.e., the flaw solved by the resolver). If this is the case, all the ef-
fect’s supports are enqueued for possible, further, estimated costs updates. The above
procedure should, furthermore, clarify the need for distinguishing among flaws’ cause
and supports. The evaluate() procedure deserves a special mention. Specifically, this
procedure returns an estimation of the cost of a set of flaws as the sum (in case the
hgqq heuristic is chosen) or as the maximum (in case the /,,,, heuristic is chosen) of
the estimated costs of the flaws.

5.2.5 Choosing the right flaw and the right resolver

Choosing the right flaw is crucial for performance reasons, however, applying resolvers
in parallel results in introducing many flaws which do not require being solved. For this
reason, each flaw’s ¢ variable is bounded to the sat_core allowing the solver to be no-
tified when a value is assigned to it. Similarly, in case propagation makes any resolver
inapplicable, the estimated costs can be updated and propagated so as to improve the
heuristic’s accuracy. Each resolver’s p variable is bounded to the sat_core allowing
the solver to be notified when a value is assigned to such variables. As in any theory, as
described in Section 4.1.4, this is accomplished by the propagate() procedure which,
in case of the solver, is defined as follows.

bool propagate(lit p, vector<lit> cnfl) {

if (¢s.contains(p.v))
for (flaw f : ¢s[p.v])
if (p.sign) {
flaws .add (f)

trail .top ().new_flaws.add(f)
1

if (ps.contains(p.v))
for(resolver r : ps[p.v])
if (!p.sign)
set_est_cost(r, —+o)

return true // cannot fail ..

}
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The above procedure allows maintaining updated the flaws solver’s variable with
all the active flaws. Additionally, the procedure detects those resolvers which become
inapplicable, setting their estimated cost to +oo. It is heuristic’s responsibility, follow-
ing the hy,4,’s intuition, choosing, among such flaws, the most expensive one (i.e., the
one that most likely will lead to a conflict, fostering early detection of inconsistencies)
and, among its resolvers, the cheapest one (i.e., the one that most likely will lead to
a solution). It is worth noting that the overall idea underlying the proposed heuristic
consists in extracting the critical path from facts to goals. The cost of the path is given
from the intrinsic costs of all the resolvers on which the path passes by. It is worth
noticing that the flaws solver’s variable should always contain flaws whose estimated
cost is finite, otherwise the solving procedure would not be able to chose among them.

5.2.6 The causal graph applied to the rover domain

In order to further clarify the graph building procedure, it is worth to apply it to the
rover domain. Figure 5.4 shows the resulting graph depicting flaws as boxes and re-
solvers as ovals. The estimated cost is on the top right of each flaw (resolver) while,
on their top left, the ¢ (p) variables. The value of these variables is described by the
boxes (ovals) outlines. Specifically, continuous lines correspond to variables whose
assignment is TRUE while dashed lines correspond to variables whose current value
is UNASSIGNED. In order to do not introduce an overly complex symbolism, in the
following we will identify flaws and resolvers by their propositional variables.
Initially, the flaw_g queue contains the flaws (corresponding to variables) @1, ¢
and ¢3. Since these flaws do not have a cause, their ¢ variables are initialized at T .
All the three flaws have, initially, an infinite estimated cost, therefore, the graph build-
ing procedure dequeues the first one (i.e., ¢1) and expands it. Flaw ¢, in particular,
represents a fact which cannot unify with any other active atom. Its sole possible re-
solver (i.e., p1) consists, hence, in adding the fact. Additionally, since facts are exclu-

sive flaws, the [ —¢1, ) r.p | causal constraint is introduced forcing at TRUE
regy.resolvers

the assignment of p;. Finally, since resolver p; does not contains any precondition, its
estimated cost is set to 0, resulting in an estimated cost of 0 also for the ¢; flaw. Its
least expensive resolver, indeed, is, precisely, p;. The ¢, flaw is dequeued and solved
in a similar way by introducing into the graph the resolver p». It is now the turn of
¢3 which, not being able to unify, is solved through resolver p; corresponding to the
application of the associated rule and, thus, resulting in the introduction of the two new
flaws ¢4 and 0s. It is worth noting that both the cause collections of such flaws, as well
as the supports collections, contain, at this stage, the sole p3 resolver. Additionally,
the p3 resolver has two preconditions (i.e., ¢4 and ¢5) and, hence, its estimated cost,
as well as ¢3’s one, is still at +co. Finally, both ¢4 and ¢s are initialized as the reified
conjunction of the flaws’ causes, hence, both ¢4 and ¢s are initialized at p3 and assume
the TRUE value.

At this stage, the flaws set contains flaws ¢, with an estimated cost of 0, ¢,, with
an estimated cost of 0, and ¢3, with an estimated cost of 4o, therefore, the graph build-
ing procedure goes on. Flaw 04 is dequeued from flaw_g and solved by introducing
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Figure 5.4: The causal graph generated from the rover domain.

the resolver ps4 which, in turn, introduces the flaw ¢¢. Flaw ¢5 is dequeued and solved
by introducing the resolver ps which introduces the disjunction flaw ¢7. Flaw ¢g is
dequeued and solved by introducing the resolver pg which introduces the flaw ¢g. Till
now, all the causal constraints are such that both ¢ and p variables must assume the
TRUE value and, hence, all the involved constraints are propagated. It is now flaw ¢7’s
turn whose expansion introduces the disjunct resolvers p; and pg. Both the p; and
pg variables assume, conversely to previous ones, the UNASSIGNED value. In other
words, it is not clear, at this time, whether p;7 and pg will assume a TRUE or a FALSE
value in the plan. This decision will be taken during the resolution phase, furthermore,
their estimated cost is, for both of them, still 4. Since ¢7 assumes the TRUE value,
it is, however, certain that this decision must be eventually taken. It is now flaw ¢g’s
turn whose atom, however, can unify with the atom associated to ¢;. Since unification
is possible, resolver pig is introduced and the estimated costs are propagated. Specifi-
cally, p1o’s estimated cost is set at O which, added to the intrinsic cost of the unification
(i.e., 1), gives a total cost for the resolver of 1. As a consequence, the estimated cost for
flaw ¢g is set at 1. Cost propagation goes on and p¢’s estimated cost is set at 2 (1 4 1)
as well as its effect flaw ¢¢’s estimated cost, p4’s estimated cost is set at 3 and ¢4’s
estimated cost at 3. It is worth noting that p3’s estimated cost is still at 4o since the
maximum estimated cost of its preconditions (i.e., §5) is still at +oo. Additionally, pg
is not the only possible resolver for flaw ¢g. Resolver pg, representing the application
of the rule, is, indeed, also added. Again, choosing between pg and pig is a decision
which will be taken at resolution time. In this case, however, while the estimated cost
for pg is +oo, the estimated cost for pjg is 1 making the latter option far more enticing.
A similar fate belongs to the other flaws in the flaw_g queue until the py3 resolver is
introduced resulting in a similar propagation of the costs till to the ¢3 flaw obtaining,
eventually, the graph of Figure 5.4. Furthermore, since ¢3’s estimated cost is now fi-
nite, the graph building procedure is interrupted and the control flow is passed to the
resolution procedure which can now exploit the generated estimated costs for choosing
the most expensive flaws and their least expensive resolvers.

It is worth noting that the generated graph reasons purely on causal aspects while
demanding constraint reasoning to the underlying constraint network. As an example,
the ¢4 flaw is a goal which must be achieved, from a causal point of view, before ¢3
one. Nonetheless, the atom associated to the ¢4 flaw, i.e., Az (1,5), takes place over a
period of time which includes the time in which the atom associated to the ¢3 flaw takes
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place, as required by the rules in Figure 2.9. In other words, TakingPic (1,5,3,7) takes
place during the rover is Az (1,5). The temporal relation is guaranteed by the trueness
of the p3 variable and, again, it is not evident from the graph.

5.3 The new solving algorithm

Enhanced with the generated estimated costs, the solving algorithm simply proceeds
selecting the most expensive flaw f from the flaws set, selecting its cheapest resolver r
and assuming, through the sat_core’s assume() method, the trueness of ’s p variable.

void solve () {
build ()

while (true) {
solve_inconsistencies ()

flaw f_next = select_flaw ()
if (f_next != null) {
if (f_next.est_cost == +oo) {
next ()
continue
}
resolver r = f_next.select_resolver ()
if (!sat_core.assume(r.p) Il !sat_core.check())
throw unsolvable_exception
} else

return // a solution has been found!!

In particular, once built the graph, the procedure enters into the main solving loop.
The solve_inconsistencies() procedure solves all the inconsistencies that may arise
from the types. The select_flaw procedure purges from the flaws set those flaws
which are already solved and returns, if any, the most expensive flaw. If the estimated
cost for such a flaw is infinite, the next() procedure either backtracks, if possible, or
adds a new layer to the graph. Among the applicable flaw’s resolvers, the cheapest one
is chosen by the select_resolver() procedure, it’s p variable is assumed as TRUE and
the sat_core’s check procedure is called. Finally, in case there are no more flaws, the
select_flaw procedure returns a null flaw, indicating that a solution to the timeline-
based planning problem has been found.

By applying the above algorithm to the graph of Figure 5.4 the most expensive
flaw, i.e., ¢7, is selected and its cheapest resolver, i.e., P2, is chosen. The TRUE value
is assigned to variable p, and the sat_core’s check procedure is invoked guaranteeing
constraint consistency. As a consequence of constraint propagation, ¢11 flaw becomes
active and is added to the flaws set. The select_flaw procedure, again, selects the
most expensive flaw which is either ¢g or ¢ (they are equally evaluated). Suppose, as
an example, that g is selected, its cheapest resolver, i.e., pig is selected and its variable
is assumed. As a consequence of the unification, the ?x and ?y variables of the atom
associated to the ¢g flaw, for example, would both assume the value O just as the values
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of the parameters of the atom associated to fact ¢;. Finally, resolver p;3 would be
selected for the sole remaining active flaw ¢1; producing, without ever backtracking, a
solution for the original planning problem.

5.3.1 The role of pruning

It is worth noting that after the invoking of the graph building procedure many flaws
might have been remained in the flaw_g queue which have not yet been expanded. In
case of the causal graph of Figure 5.4, for example, ¢19, ¢12 and ¢;3 are still in the
queue. Two considerations on such flaws are valid: (i) their estimated cost is necessar-
ily 40 and (ii) it is not known, giving the current graph topology and the computed
estimated costs, how to solve them. There is no reason for maintaining the possibility
for such flaws to be chosen by the select_flaw procedure and is, hence, possible to as-
sume the value of their ¢ variables as negated. Similar to the one proposed in [111], this
kind of pruning is quite efficient since it strongly reduces the size of the search space.
In case of Figure 5.4, for example, assigning FALSE to ¢, results in the impossibility
of choosing the pg resolver whose pg variable, as a consequence of propagating the
causal constraints, becomes FALSE. However, since the ¢g variable assumes the TRUE
value, it is the case that either pg or pjo must assume the TRUE value and, hence, since
P9 is now FALSE, TRUE is assigned to the pjg variable. Similarly, FALSE is assigned to
both p; and pg, resulting in the assignment of the TRUE value to the p; and p;3 vari-
ables resulting in the solution of the original planning problem without ever needing to
start the search procedure.

Although this pruning procedure does not allows us to always find solutions di-
rectly, it has, nonetheless, the capability of enclosing the planner’s search space within
a well-defined bounding box. This allows us, among the other things, to exploit the
no-good learning and the non-chronological capabilities of the underlying constraint
network as described in Chapter 4. It is worth to notice, indeed, that in case of realistic
domains, inconsistencies barely arise and, consequently, the conflict analysis proce-
dure is rarely invoked. By enclosing the planner’s search space within precises bounds,
conflicts can occur much more easily and a finer analysis can be conducted so as to
reduce unfruitful parts of the search.

As already briefly mentioned, a similar pruning is performed in [111] which, how-
ever, rather than on pure causality, relies on the plan’s length. Although in case of
prefixed durations the pruning is the same, in case of flexible durations it might be hard
to foresee the plan’s makespan at heuristic building time resulting in prunings which
can be either too strict, requiring a relaxation of the pruning, or too broad, resulting in
an excessive search. By intervening on the purely causal aspects while leaving aside
temporal reasoning, the proposed approach is more robust on this side.

Unfortunately, it is not always the case that the graph building procedure introduces
enough flaws and resolvers for finding a solution and, similar to [111], it might happen
that the pruning requires a relaxation. Specifically, it is possible to expand those flaws
which remained pending within the flaw_g queue. However, since their ¢ variables
assume now the FALSE value as a consequence of pruning, expanding the graph might
result in a waste of time. Furthermore, all the no-goods learned during the resolution
process, might be strictly related to the graph and, hence, to the pruning. A possible
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workaround consists in introducing a new propositional variable v, representing the
validity of the graph, and linking the pruning by means of clauses to y. By assigning
TRUE to v, the pruning would be enforced. In case of failure, however, the generated
no-goods would involve the Y variable assigning FALSE to it (in which case the graph
would be recognized as incomplete/invalid and a graph expansion procedure would be
called). In case of the rover domain, as an example, the constraint (—y, —¢;2) would
guarantee, after assigning TRUE to 7, the negation of ¢1, and the smooth execution of
the search algorithm without the risk, among other things, that the heuristic becomes
blind by assigning infinite values to the costs of an active flaw.

5.4 Increasing the heuristic accuracy

As already mentioned, the estimated costs for the nodes of the causal graph are strongly
inspired by the h,q; and A,y heuristics for classical planning. Such heuristics, how-
ever, as stated by its authors in [10], might be not accurate enough. Specifically, the
heuristic completely ignores the possible interactions between the subgoals introduced
by the application of the resolvers. While this might not be a problem, in some cases,
there are cases in which the interactions are so strong that neglecting them could result
in a not so accurate estimation of the costs. Suppose, for example, there is a rule that
introduces two goals which, according to some constraints, cannot be both achievable
at the same time although, individually, they are. In such a case, the two goals are
called mutually exclusive or, more shortly, mutex and, in the classical planning case,
are managed, for example, by the 4" class of heuristics [61, 60]. Exception made for
some trivial cases in which the constraint network’s propagation capabilities are suf-
ficient to detect such inconsistencies, an estimated cost would be associated to each
of the goal and their sum (or, according to the chosen heuristic, maximum) of them is
associated to the resolver. Since the subgoals are not achievable at the same time, how-
ever, it would be not possible to apply the resolver. In other words, its estimated cost
should be 4o and the FALSE value should be assigned to its p variable. This would
allow, at heuristic building phase, to produce a more accurate estimate of all the goals
and resolvers in the ancestors of the inapplicable resolver. Although more accurate,
however, it has not yet been found an efficient graph building procedure which would
build such a heuristic estimate without performing too much constraint propagations
which, currently, would result to be excessively expensive.

5.5 Different flaws (and their resolvers)

This section presents, more in detail, the basic flaws and their resolvers which consti-
tute the backbone of the environment. Specifically, the presented flaws are introduced
for managing object variables, allowing to choose a value for them, disjunctions, al-
lowing to choose for a disjunct, and atoms, which might be either activated resulting,
in case of goals, in the associated rule’s application, or unified with any of the other
already activated atom.
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5.5.1 Object variable and disjunction flaws

The first and, probably, easier flaw, is the object variable flaw. Similarly to CSPs’ vari-
ables, whenever a new object variable, having different allowed values in its domain,
is introduced (e.g., as a parameter of an atom), a value for such a variable has even-
tually to be chosen. This decision can be easily integrated into the resolution process
by exploiting the flaw and the resolver concepts. Specifically, an object variable flaw
is created for each object variable maintaining a reference to the variable itself. The
implementation is straightforward and will not be detailed. The compute_resolvers()
procedure simply creates a resolver for each of the allowed values establishing for them
an intrinsic cost of 1/#,41,es (With #4145 Tepresenting the number of allowed values).
Assigning the TRUE value to the p variable of such resolvers would result in assigning
a value to the associated object variable. Since each object variable has a propositional
variable for each of the allowed values, as described in section 4.3, such a variable can
be used in place of the p variable. Clearly, object variable flaws are exclusive. Notice
that the cost assignment is uniform among the flaw’s resolvers and, although it allows
choosing those object variables which have less allowed values first (i.e., those that
have a higher cost), it does not help in choosing a value for the variable. Finally, it
is worth recalling that the atoms’ T variables are, to all effects, variables and, as such,
could introduce object variable flaws.

Unlike the object variable flaws, disjunction flaws are aimed at managing dis-
junctions. Whenever a new disjunction arise, indeed, a disjunction flaw is created.
Even in this case, the implementation is straightforward and will not be detailed. The
compute_resolvers() procedure, indeed, simply creates a resolver for each of the dis-
juncts of the disjunction. The intrinsic cost of such resolvers can be either specified by
the user, so as to realize a strategy for preferences management, or it can be defaulted
to 1. The apply() procedure for the disjunct resolvers is responsible for “executing”
the RIDDLE code inside the disjunct after having temporally replaced the v variable
of the solver with the corresponding p variable. This would guarantee that assigning
the TRUE value to the p variable of such resolvers would result in activating the cor-
responding disjunct. Contrary to the object variable flaws, disjunction flaws are non
exclusive.

5.5.2 The atom flaw

Among the different basic flaws, the atom flaw, for managing facts and goals, is def-
initely the most complex and interesting one. Specifically, atom flaws are aimed at
justifying atoms (i.e., either by activating them or by unifying them with other already
active atoms), representing either facts or goals. It is worth to recall that facts can unify
just as goals. Activating facts, however, does not imply applying the corresponding
rule. The compute_resolvers() procedure is mainly aimed at finding adequate candi-
dates for unification creating, for each of them, a unification resolver. It is worth to
notice, however, that each unification resolver has, as a precondition, the flaw associ-
ated to the target of the unification (i.e., the flaw associated to the atom with which
unification is going to happen). For this reason, one must be careful not to introduce
unification resolvers which could result in causal cycles into the causal graph. In ad-
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dition to the unification resolvers, compute_resolvers() always adds a further resolver
aimed at applying the corresponding rule, in case the atom is a goal, or at simply ac-
tivating the atom, in case it is a fact. The following code snippet describes the atom
flaw’s compute_resolvers() procedure.

void compute_resolvers () {
set<flaw> ancestors
queue<flaw> q
q.add(this)
while (!q.empty()) {
flaw f = q.dequeue ()
if (! ancestors.contains (f)) {
ancestors .add(f)
for (resolver s : f.cause)
if (sat.value(s.p) != False)
q.add(s.effect)
}
}

for (atom a : atm.tp.get_instances ()) {
if (a == atm) continue
if (sat.value(atm.c) == False) continue
if (latm.equates(a)) continue

atom_flaw trgt = reason[a]
if (!trgt.expanded) continue

if (ancestors.contains(trgt)) continue

var eq_v = atm.eq(a)

if (sat.value(eq_v) == False) continue
vector<lit> unif_lits = {atm.c, —-a.c, eq_v}
unify_atom u_res = new unify_atom (atm, a, unif_lits)

resolvers.add(u_res)
u_res.preconditions .add(trgt)
trgt.supports.add(u_res)
set_est_cost(u_res, trgt.get_cost())
sat_core.add_clause(trgt.¢ V —u_res.p)
ps.add(u_res.p)
bind(u_res.p)

}

if (is_fact) resolvers.add(mew activate_fact(atm))
else resolvers.add(new activate_goal (atm))

}

The first section of the above procedure is aimed at computing the ancestors of the
atom flaw so as to avoid causal cycles. Next, all the atoms having the same predicate
are checked for unification, however, many of them can be easily discarded. First of all,
atoms cannot unify with themselves nor with other unified atoms. The equates() pro-
cedure is than invoked for efficiently excluding also those atoms which are obviously
too different for allowing unification. The atom flaw associated to the target atom is
than retrieved through the solver’s reason map (which can be filled, for example, at
atom flaw initialization phase). In order for the unification to be valid, such a flaw
must have already been expanded and should not be part of the flaw’s ancestors so as
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to avoid the introduction of cycles within the causal graph. Finally the eg() procedure
is invoked returning the propositional variable representing the reified conjunction of
all the equality constraints of the parameters pairwise. If this variable already assumes
the FALSE value, the target atom is excluded from the unification, otherwise, we can
establish, with reasonable certainty, that the unification will be successful and, hence,
a unification resolver is added to the collection of resolvers. Additionally, the flaw as-
sociated to the target atom is than added to the preconditions of the unification resolver
and the unification resolver is added to the supports (yet, not on the cause) of the flaw
associated to the target atom. It is worth noting that this is the only place in which the
supports set is differentiated from the cause one. The cost of the unification resolver
is set as the cost of the target atom flaw. Furthermore, a clause that invalidates the
unification resolver in case the target flaw becomes inactive is also added. Finally, the
unification resolver and its p variable are added to the ps map and the p variable is
bound to the sat_core waiting for notifications which might result in resolvers esti-
mated costs updates.

The unification resolver, the activate fact resolver and the activate goal one have,
respectively, intrinsic cost of 1, 0 and 1. Additionally, for sake of completeness, it
is worth to describe in detail the three apply() procedure of the involved resolvers.
Specifically, the unification resolver’s apply() procedure simply enforces that all lit-
erals of the unification literals (i.e., the target atom’s G, the negation of the unifying
atom’s ¢ and the equality propositional variable) list must be true whenever the unifi-
cation resolver’s p variable becomes true.
void apply () {

for (lit 1 : unif_lits)
sat_core.new_clause(—p V 1)

In case of the apply() procedure of the resolver demanded at activating facts, it
simply enforces that the atom’s G variable is TRUE whenever the resolver’s p variable
becomes true.

void apply () {
sat_core.new_clause(—-p V atm.o)

}

Finally, in case of the apply() procedure of the resolver demanded at activating
goals, it first enforces that the atom’s G variable assumes value TRUE whenever the
resolver’s p variable becomes TRUE and than applies the rule associated to the atom’s
predicate.
void apply () {

sat_core.new_clause(—-p V atm.o)

atm.tp.apply_rule (atm)
}

It is worth to recall that since the p variable has been temporarily assigned to the v
variable, as described in Section 5.2.3, this procedure easily binds the activation of all
the constraints and the preconditions contained in the rule to the resolver’s p variable.

Notice that atom flaws might introduce cycles in the causal graph which should
be managed by the cost propagation procedure. Suppose, for example, in the rover
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Figure 5.5: An example of cyclic causal graph.

domain, that the rover is initially at position (0,0). Two goals require that the rover is,
in any order, at position (0, 1) and (1,0). The graph building procedure would build the
graph in Figure 5.5. In particular, both flaw ¢g can be solved with resolver pg and flaw
¢7 can be solved with resolver pjg. Removing one of such resolvers would eliminate
the cycle while forcing an ordering between the high level goals and thus dropping the
completeness of the resolution algorithm. As an example, removing pjo would force
the rover to go at (1,0) strictly before going at (0, 1).

5.6 Defining the timelines

Since most of the flaws and resolvers are managed by the solver itself, independently
from the involved timelines, thanks to the previously introduced data structures (i.e.,
object variable flaws, disjunction flaws and atom flaws), from a practical point of view,
the role of timelines resides, mainly, in generating further flaws for the causal graph
which are peculiar to the specific timeline type (e.g., different states overlapping on
a state-variable, resource overusages, etc.). From an implementation point of view,
therefore, timelines are specific fypes with a characteristic procedure for generating
flaws as described by the following snippet.

class timeline : type {

vector <flaw> get_flaws ()

}

The implementation of the get_ flaws() procedure, as well as the kind of returned
flaws, is, however, dependent on the specific timeline. The following sections, there-
fore, detail some of the most used timeline types.

5.6.1 The state-variable

The state-variable type is used for generating state-variable flaws. Since state-variable
flaws represent different values overlapping on the same state-variable, resolvers rep-
resent, mostly, ordering constraints between atom pairs. The detection procedure for
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state-variable flaws recalls the one described in [18] although the lower bounds of the
temporal variables are replaced by the current values of the numeric variables as de-
scribed in Section 4.2. The procedure, for each state-variable, groups all the active
atoms (i.e., those whose ¢ variable assumes value TRUE) by the value of their T vari-
able. In other words, all the atoms of all the state-variables are partitioned according
to the state-variable on which the atoms could apply. Subsequently, for each state-
variable sv, the atoms applied on it are grouped by means of their starting and ending
times, according to the following code snippet.

// for each pulse, the atoms starting at that pulse..
map<inf_rational , vector<atom>> starting_atoms;

// for each pulse, the atoms ending at that pulse ..
map<inf_rational , vector <atom>> ending_atoms;

// all the pulses of the timeline ..
set<inf_rational > pulses;

for (atm : atoms) {
starting_atoms [la.value (atm.items["start"].1)].add(atm)
starting_atoms [la.value (atm.items["end"].1)].add(atm)
pulses.add(la.value(atm.items|["start"].1))
pulses.add(la.value(atm.items["end"].1))

Since the pulses set, containing all the starting and ending times, must be ordered,
it is implemented by means of a red-black tree relying on the comparison operators
for the rationals with infinitesimals as defined in Section 4.2. The pulses set is than
visited and, relying on the above starting_atoms and the ending_atoms variables, a
set of currently overlapping atoms is kept updated and, in case its size exceeds one, a
state-variable flaw is created. The procedure is described through the following code
snippet.

set <atom> overlapping_atoms

for(p : pulses) {
overlapping_atoms .add(starting_atoms|[p])
overlapping_atoms .remove(ending_atoms[p])

if (overlapping_atoms.size () > 1)
flaws .add (new sv_flaw (overlapping_atoms))

It is worth noting that the cause for each state-variable flaw is given by the collec-
tion of resolvers that activate the overlapping atoms. As a consequence, a state-variable
flaw will become active whenever all the overlapping atoms, constituting the flaw, be-
come active. State-variable flaws can be solved either by ordering each couple of the
overlapping atoms, let us say (atmg,atm;), by means of the atmg.end < atm; .start
constraint or of the atmj.end < atmy.start constraint. Additionally, state-variable
flaws can be solved by “moving” the atoms on other state-variables by means of the
atmgy.tT # atm.T constraint. While expanding each state-variable flaw, a resolver is
created for each of the available possibilities.
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5.6.2 The reusable resource

Similarly to the state-variable case, the reusable resource type is used for generating
reusable resource flaws. Reusable resource flaws represent resource overuses charac-
terized by a concurrent, excessive, use of the resource. Reusable resource flaws are de-
tected in a way which is similar to the state-variable case. However, instead of relying
on the number of overlapping atoms, the extraction procedure compares the resource
capacity with the concurrent resource usages as in the following code snippet.

set<atom> overlapping_atoms

for(p : pulses) {
overlapping_atoms .add(starting_atoms|[p])
overlapping_atoms .remove (ending_atoms[p])

inf_rational usage
for(a : overlapping_atoms)
usage += a.items["amount"].1

if (usage > la.value(rr.items["capacity"].1))
flaws .add (new rr_flaw (overlapping_atoms))

Considerations related to the flaw’s cause and to the alternative ways for resolving
it are analogous to those of the state-variable case. Specifically, the cause for each
reusable resource flaw is given by the collection of resolvers that activate the over-
lapping atoms. Indeed, a reusable resource flaw will become active whenever all the
overlapping atoms, constituting the flaw, are active. Similarly to state-variable flaws,
reusable resource flaws can be solved either by ordering a couple of the overlapping
atoms, let us say (atmg,atm;), by means of the atmg.end < atm.start constraint or
of the atm;.end < atmyg.start constraint, or by “moving” the atoms on other reusable
resources by means of the atmg.t # atm;.T constraint. Additionally, reusable resource
flaws can be solved by constraining the sum of the overlapping atoms to be less or
equal than the capacity of the resource. While expanding each reusable resource flaw,
aresolver is created for each of the available possibilities.

5.7 Experimental results

Evaluating the proposed heuristic is not an easy task. Directly comparing a timeline-
based planner with a classical planner on a classical planning domain is, indeed, clearly
unfair. The expressiveness of the timeline-based approach proceeds along with com-
plex data structures which inevitably results in a slow down of the resolution process.
Additionally, the lack of feasibility in making the atoms ground, due to the presence
of numeric variables representing, for example, time, introduces the need for propagat-
ing constraints which, if performed too many times, results in a source of inefficiency.
Classical planning benchmarks do not suffer from such issues. Even those domain
models which explicitly represent time, they do it in such a way that temporal reason-
ing can be mostly ignored, reducing the temporal planning problem to a classical one
which, once solved, is re-enriched with temporal aspects. In other words, except for
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some sporadic exception, planning benchmarks are not temporally expressive (refer
to [28] for a convenient classification of domain models). It is worth to notice, how-
ever, that the simple heuristics implemented in ILOC, proposed in Section 3.2, were
sufficient to solve temporally expressive problems, yet failed in solving those prob-
lems which required a more pervasive use of purely causal reasoning (e.g., the blocks
world). The proposed heuristics, indeed, proceed in this direction: without neglecting
aspects related to temporal reasoning, the heuristics aim at enhancing those aspects
which are mostly related to causal reasoning representing the main cause of ineffi-
ciency of timeline-based planners. The first comparisons, therefore, will be made with
the old heuristics on those domains already described in Section 3.3.

A C++ implementation of the ORATIO solver, together with benchmarking do-
mains, can be found on-line!. In order to further investigate the graph building pro-
cedure, atom flaws have been implemented in two different ways: (i) the one defined in
section 5.5.2 and (ii) a more “accurate” one, in which unifications are further checked.
In the latter case, a collection of unification literals is built containing, both for the
current flaw and for the target flaw, all the p variables of each resolver from the flaw
to the first resolver of the cause which is necessarily active and, together with the tar-
get atom’s state, the negation of the unifying atom’s state and the equality variable, is
checked to the sat_core. Only in case all of these literals can be simultaneously made
true we can establish, with reasonable certainty, that the unification will be successful
and, hence, a unification resolver is added to the collection of resolvers. Additionally,
we are interested in understanding how useful is filtering out deferrable flaws in the
graph building procedure. As a consequence, four possible solvers have been com-
pared: (a) ORATIO, in which deferrable flaws are considered and unifications are not
checked; (b) ORATIO accurate, in which deferrable flaws are considered and unifica-
tions are checked through the sat_core before adding the corresponding resolvers to
the atom flaws; (c) ORATIO undef, in which deferrable flaws are not considered and
unifications are not checked; and (d) ORATIO undef+accurate, in which deferrable
flaws are not considered while unifications are checked. For all of them, the maximum
cost of the preconditions, hence following the A,,,, approach, was used for estimating
costs?.

5.7.1 Results

Figure 5.6 shows the execution times of ORATIO in case of the Blocks World domain.
The first lesson to learn regards the accuracy, intended as checking the unifications by
propagating constraints, of the heuristic. A more accurate heuristic, indeed, results
in a smaller graph or, more likely, in a graph having less edges, with more precise
estimated costs. Since this kind of accuracy requires propagating further constraints,
however, it turns out that it does not worth the effort. As shown in Figure 5.7, related to
the instance with 22 blocks of the blocks world domain, the number of flaws created by
the graph building procedure is the same in the less accurate case (Figure 5.7(a)) and in
the accurate one (Figure 5.7(b)). The number of solved flaws in the less accurate case

Thttps://github.com/pstlab/oRatio
2Since estimating costs using the sum of the preconditions, hence following the /g approach, gave
similar results, they are not reported
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Figure 5.6: Execution time of different ORATIO implementations on the tower domain.

(Figure 5.7(c)), however, is greater than the number of solved flaws in case the more
accurate heuristic is used (Figure 5.7(d)). This can be explained through the fact that,
being the estimated costs less accurate, the search algorithm makes more mistakes and,
hence, more search is needed. Furthermore, this is confirmed by the overall solving
time which is 79% demanded to search in the inaccurate case (Figure 5.7(e)) vs only
42% in the accurate case (Figure 5.7(f)). As shown in Figure 5.6, however, the greater
complexity required by a more accurate heuristic does not compensate the reduction of
the search time. In addition, as expected, efficiency is strongly affected by the number
of involved variables, hence, it benefits from the filtering out of the deferrable flaws in
the graph building procedure.

It is worth to notice that both in the less accurate case and in the more accurate one,
the number of solved flaws is quite lower than the number of flaws created by the graph
building procedure. The reason is twofold: (a) the heuristic, both in the less accurate
case and in the accurate one, actually allows to identify the flaws to be solved and the
resolvers to solve them; and (b) the pruning procedure, described in Section 5.3.1, is
effective in constraining the problem so as to force the resolution of some of the flaws.
The latter case is, indeed, the reason for the elimination of all the object variable and
the disjunction flaws.

Figure 5.8 compares the critical path heuristic with the previous heuristics (i.e.,
ALLREACHABLE and MINREACH) and with other classical planners as described
in Chapter 3. The figure shows that ORATIO effectively improves over the previous
heuristics, suggesting that the taken direction is the right one. Additionally, although
classical solvers are still much more efficient than ORATIO which, on classic problems,
at present time, is not able to compete, it is worth to notice that ORATIO scales much
more gracefully thanks, mostly, to the pruning phase. The reasons for the better effi-
ciency of classical solvers can be sought in the fact that classical planners, typically,
rely on a grounding phase of the predicates. Such a grounding, however, is, in gen-
eral, not allowed in timeline-based planning due to the presence of numeric parameters
(e.g., time and/or resource usages). Furthermore, classical planners, rather than explic-
itly maintaining a representation of temporal variables, reason in terms of subsequent
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Figure 5.8: Execution time of different solvers on the tower domain.

steps, completely eliminating the need of propagating constraints and for managing
threats. The presence of numerical variables, overall, if on the one hand requires more
execution time, on the other, allows a greater accuracy of the modeled processes. It will
be left to the end user’s responsability to decide for the right balance between expres-
siveness and performance according to the specific needs of the faced planning prob-
lem, while taking into account the fact that performance improved significantly, thanks
to the proposed critical-path heuristic, compared to the first timeline-based planners.

A separate discussion must be made regarding the quality of the produced solu-
tions. The critical path heuristic, indeed, produces plans which are optimal from a
purely causal point of view which, in the specific case of the blocks world domain,
correspond to the optimal solution from a plan length point of view. As a conse-
quence, while ORATIO produces, on these instances, optimal solutions, both OPTIC
and COLIN introduce, in the plan, some unstack actions resulting in longer plans.

As regards the Cooking Carbonara domain, Figure 5.9 shows a comparison of
the execution times of ORATIO with the previous ALLREACHABLE and MINREACH
heuristics as well as with other classical planners. The introduction of the critical
path heuristic, as shown in the figure, introduces a slowdown in the overall resolution
procedure. Nonetheless, performances remain better than those of the other classical
planners, despite, it is worth recalling, such planners solve a slightly easier problem
in which the constraint that eating should not start too late after the meal is cooked is
removed due to the difficulty of modeling it.

An interesting aspect of this domain, as shown from the charts in Figure 5.10,
regards the number of inconsistencies compared to the total number of flaws. Such
inconsistencies, in order to be introduced by the graph building procedure, require the
introduction of causal constraints and, hence, the need of backtracking at root level.
This, at present time, constitutes an element of inefficiency which is not yet completely
clear how to solve. If on the one hand it is possible to efficiently manage disjunctions,
through the constraint network, it is not yet clear how to introduce new constraints
without backtracking at root level.

As regards the Temporal Machine Shop domain, as shown in Figure 5.11, com-
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Figure 5.9: Execution time of different solvers on the cooking carbonara domain.
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Figure 5.11: Execution time of different solvers on the temporal machine shop domain.

pared with the ALLREACHABLE and MINREACH heuristics, performance, unfortu-
nately, rapidly degrade. The reason for such a degradation, on such a domain, consists
in the need, for the planner, to extend the graph several times. Specifically, the domain
“confuses” the heuristic making the graph building procedure believe that a solution
has been found. As a consequence, the searching phase starts for, quickly, failing. A
further layer is added to the graph and search starts again until a solution is found. This
phenomenon would be highly limited by the introduction of an #™ heuristic which,
however, would require too much propagation resulting in an excessively expensive
graph building procedure. Hints for workarounds could be found in approaches like
those described in [59, 68, 46]. Such approaches, however, have not yet been investi-
gated in the case of timeline-based planning.

Finally, it is worth to spend some words for what concerns the GOAC [49, 15] do-
main. Specifically, the Goal Oriented Autonomous Controller (GOAC) was an ESA
initiative aimed at defining a new generation of software autonomous controllers to
support increasing levels of autonomy for robotic task achievement. In particular, the
GoAC domain emerged from the GOAC project and is an extension of what we have
called the rover domain. Specifically, the domain aims at controlling a rover to take a
set of pictures, store them on board and dump the pictures when a given communica-
tion channel was available. The interesting aspect of this domain is that communication
can only take place within specific visibility windows that take into account the astro-
nomical motions of the planets/satellites which, in some cases, may stand between the
transmitting and receiving stations. The presence of these visibility windows, in par-
ticular, requires an explicit modeling of temporal aspects in order to adequately plan
the transmission of information and can hence easily modeled through and solved by
timeline-based planners. The problem is made more interesting by the presence of con-
straints which include the available resources (e.g., memory and battery) as well as by
having a distance matrix, among the possible locations, which might be not completely
connected.

Figure 5.12 shows the execution times of different solvers (AP2 [49], EPSL [19]
and J-TRE [29], one of the precursors of ORATIO) in solving different instances of
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Figure 5.12: Execution time of different solvers on the Goal Oriented Autonomous
Controller (GOAC) domain.

the GOAC problem. In particular, problems are obtained by varying the problem com-
plexity along the the number of pictures to be taken and the number of communication
windows (from 1 to 4 visibility windows). Notice that if on the one hand the increas-
ing number of communication windows raises the complexity of the planning problem
with a combinatorial effect, on the other hand an higher number of such windows might
allow the planner to more easily find room for transmitting. More in general, among
all the generated problem instances, the ones with higher number of required pictures
and higher number of visibility windows result as the hardest ones. The right mix
of causal and temporal aspects makes the GOAC problem particularly complex to the
point that the other planners, beyond a certain number of pictures to collect and dump,
show serious scalability issues. As shown in the figure, besides being considerably
more efficient, ORATIO is also able to solve more complex instances.

In conclusion, the introduction of the critical path heuristics to the timeline-based
case proves able to reduce inefficiency issues in those problems which have a preva-
lence of goal and/or disjunction flaws. In those cases in which most of the flaws are
inconsistencies, the ORATIO architecture shows some issues related to the dynamic in-
troduction of new constraints due to the dynamic detection of new flaws making an
architecture similar to ILOC more efficient. Finally, the current critical path heuristics



5.7. EXPERIMENTAL RESULTS 119

result efficient in those cases in which subgoals have a high degree of independence.
In those problems, indeed, in which subgoals interact in a rather complex ways, such
interactions are overlooked by the underlying h,44 and A4, heuristics producing inac-
curate cost estimations and, even worse, causal graphs which do not contain solutions,
resulting in an inefficient alternation of procedures for extending the graph with proce-
dures aimed at searching for a solution.

It should be noted, however, that the proposed heuristics are the first one, as far as
I know, which breaks down purely causal aspects from the temporal ones. In addition,
similar to the classical planning case, one of the proposed heuristic (i.e., hyqy) is ad-
missible, producing plans which are optimal according to the intrinsic cost of the those
resolvers which are active in the final solution. As it will be shown in Chapter 7, these
characteristics make the system suitable for integrating into planning other forms of
reasoning.
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The RIDDLE Language

In order to feed timeline-based planners and, more specifically, the ORATIO planner, it
is necessary to establish a language for the definition of the problems that is as adequate
as possible to carry out its task and, at the same time, easy to use by the end users.
This chapter describes the RIDDLE (for oRatlo Domain Definition LanguagE) domain
description language which is used by ORATIO for representing physical domains (a
complete Extended Backus-Naur form is given in Appendix A). Compared to earlier
languages for timeline-based planning (e.g., [16]), the RIDDLE language introduces a
pure object-oriented approach to the definition of timeline-based domains and problem
definitions and, therefore, allows an higher decomposition of the domain model and
an increase of modularity, resulting in a reduction of the the overall complexity at
design phase. Furthermore, thanks to the object-oriented approach, UML modeling
features can be naturally exploited to enhance the design phase. In addition, aspects
related to first order logic are further made explicit, allowing a uniform representation
of planning and scheduling concepts. Finally, although the language is based on a
multi-sorted first order logic core, from which the object-oriented approach comes, it
has been designed for allowing extensibility and is, hence, agnostic of complex types
such as state-variables or resources.

Overall, the language is structured so that input problems can be decomposed into
different compilation units (i.e., several files) which can possibly interact each other.
Each compilation unit can contain, in general, several declarations of different types
and/or several statements. Such units are given to the solver in different sorted groups
(i.e., a list of lists of files). Furthermore, these groups can be sent to solver at differ-
ent times so as to provide plan adaptation features. Although not strictly required, it
is common practice to separate the type declarations from the statements in different
units (e.g., a first unit for type declarations and a second unit for statements, so as to
resemble classical planning problems). Furthermore, type declarations can be spread
on different units so as to improve model decomposition. In this regard, we tried to
facilitate the definition of the domains by internally implementing forward declaration.
Specifically, types, methods and predicates can be used before of being declared, under

121



122 CHAPTER 6. THE RIDDLE LANGUAGE

Domain model
Problem Adaptation

CommunicationSubsystem
Instances Facts
Facts Goals
Goals Constraints
NavigationSubsystem Constraints

Robot

Figure 6.1: Structuring the code in different compilation units.

the obvious assumption that these types (methods and predicates) are defined sooner
or later within the same group of units within which the type (method or predicate) is
used (or, alternatively, in a group previously send to the solver). On the contrary, both
for defining problem instances and for defining rules’ body, statements are always ex-
ecuted sequentially. It is, therefore, not allowed, for example, to use a variable which
has not been previously declared.

To sum up, the suggested methodology, as summarized in the example of Figure
6.1, consists in providing to the solver a set of compilation units containing the defini-
tion of types, methods and predicates, so as to inform the solver of the domain model
within which it will have to reason. At a later time, a new compilation unit is provided
to the solver containing the statements relative to the declaration of the instances, the
facts and the goals. At this point, if a solution to the proposed problem exists, the solver
will be able to find it and will return T, if not, it and will return L. Finally, if needed,
the solution can be adapted, several times, by providing further compilation units.

6.1 An Object-Oriented language

As introduced in previous chapters, the basic core of the architecture provides an
object-oriented virtual environment for the definition of objects and constraints among
them. Every object in the environment is an instance of a specific fype. There is, as will
be further clear soon, an important distinction between primitive types (i.e., bools, ints,
reals, enums and strings) and user defined complex types (e.g., rovers, trucks, locations,
etc.). Before going further, however, it is worth to introduce some naming conventions.

6.1.1 Identifiers

The names of variables, constants, methods, predicates, as well as types and objects, are
called identifiers. A valid identifier for our domain description language is a sequence
of one or more letters, digits, or underscore characters (_). Spaces, punctuation marks,
and symbols cannot be part of an identifier. In addition, identifiers shall always begin
either with a letter or with an underline character ().

The domain description language uses a number of keywords to identify operations
and data descriptions; therefore, identifiers created by a domain modeler cannot match
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these keywords. The standard reserved keywords that cannot be used as identifiers are:

bool, class, enum, fact, false, goal, new, or, predicate,
real , return, string, this, true, typedef, void

It is worth to notice that the domain description language is a “case sensitive” lan-
guage. This means that an identifier written in capital letters is not equivalent to another
one with the same name but written in small letters. For example, the variable names
MAX and max will be considered as separate identifiers. Here are some examples of
identifiers:

i
MAX
max

first_name
_second_name

6.1.2 Primitive types

The domain description language is a strongly-typed language therefore it requires
every variable to be declared with its type before its first use. The resolving framework
needs to have precise information about the type of the variable we want to define. If
we want to represent a number, for example, the framework needs to know that the
declared variable represents a number and, furthermore, needs to know the specific
type of the number (i.e., either an integer or a real).

The simplest way for declaring and instantiating a variable is through the syntax
<type> <id> that declares a variable of type <type> and identifier <id>. If declaring
more than one variable of the same type, they can all be declared in a single statement
by separating their identifiers with commas. Once declared, the variables can be used
within the rest of their scope in the program. Unless explicitly specified, the variable
will assume a default initial domain which is based on the type of the variable. It is
worth to note that, unlike an ordinary programming language, like Java or C++, rather
than assuming a value, variables assume a domain of values, therefore the semantic is
similar to the variables of a constraint network.

The domain description language provides a set of primitive types that allow us to
define basic types of variables. Primitive types for our domain description language
are: bool, int, real, string, typedef and enum.

bool The boolean type is the simplest type provided by the domain description lan-
guage. Booleans are used to represent boolean states (i.e., t rue and false). Unless ex-
plicitly specified, a boolean variable will assume possible values within the set {true,
false}. This means that the allowed values of the variable is decided by the solver ac-
cording to the current constraints. For example, in the limit case in which no constraint
insists on the variable, the domain of the variable will be maintained equal to the set
{true, false}.

int The integer type is used to represent the set of integers, so to speak “without
comma”, positive and negative (e.g., 1, 2, 43, -89, 4324). The internal representa-
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tion format of integers (i.e., 16 bits, 32 bits, arbitrary-precision, etc.) is dependent on
the implementation of the framework and is beyond the description of the language.
Unless explicitly specified, an integer variable will assume possible values within the
bounds [-inf, +inf]. Similar to the boolean variables, the allowed values of integer
variables is decided by the solver according to the current constraints.

real The real type is used to represent the set of reals, so to speak “with comma”,
positive and negative (e.g., 2.7, -3.14, 15.3). Similarly to the integers, the internal
representation format of reals (i.e., 16 bits, 32 bits, arbitrary-precision, etc.) is de-
pendent on the implementation of the framework and is beyond the description of the
language. Unless explicitly specified, a real variable will assume possible values within
the bounds [-inf, +inf]. This means, again, that the allowed values of the variable
is decided by the solver according to the current constraints.

string In order to represent texts, the domain description language provides the string
type. Unless explicitly specified, a string variable will assume the empty string value
(i.e., ).

typedef The purpose of typedef is to assign alternative names to existing primitive
types and possibly to redefine them. This allows us, for example, to define a primitive
type called “Angle” which might be a real whose allowed values are within the bounds
[0, 360]. In general, typedefs are utility constructs that allow the definition of more
synthetic code. Indeed, the same behavior can be achieved by defining primitive type
variables and imposing constraint on it.

enum When defining an enumerated type variable, it is assigned a set of constants
called enumeration set. The variable can assume any of the constants of the enumer-
ation set. Unless explicitly specified, an enum variable will assume possible values
within the constants of the enumeration set. This means that the allowed values of the
variable is decided by the solver according to the current constraints, yet will contain
some (or all) of the constants of the enumeration set.

The following code snippet shows the definition of some primitive type variables:

// Primitives with (default) initial domains

int x0; // an int variable x0 with initial domain [—inf +inf]
real xI; // a real variable xI with initial domain [—inf +inf]
bool x2; // a bool variable x2 with initial domain {true, false}

// Enumerative custom type

enum Speed {"High", "Medium", "Low"};

// a variable x3 with possible values {"High", "Medium", "Low"}
Speed x3;

// Custom type definitions
typedef int [0, 360] Angle;
Angle x4; // an Angle (int) variable x7 with initial domain [0, 360]

Specifically, the first row defines an integer variable x0 with initial domain [-inf
+inf]. Follows the definition of a real variable x1 with initial domain [-inf +inf]
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and a boolean variable x2 with initial domain {true, false}. An enum type, called
Speed, is defined for allowing the creation variables representing the speed as, for
example, the x3 variable, whose initial domain is the set {High, Medium, Low}. Fi-
nally, a typedef called Angle is defined as an integer whose initial domain is within
bounds [0, 360]. The code snippet is closed with the definition of an x4 variable of
type Angle. Since none of these variables is subject to any constraint, their domain, at
the end of the execution of the code snippet, will remain untouched.

6.1.3 Operators

Once introduced to variables and constants, we can begin to operate with them by using
operators. We use operators to impose constraints on declared variables. The complete
list of operators is described in the following.

Assignment operator (=) The assignment operator assigns a value to a variable. For
example

55

[0, 201;

X
y

assigns the value 5 to the variable x and the domain [0, 20] to the variable y. The
assignment operation always takes place from right to left, and never the other way
around. For example

X =Y,

assigns the value y to variable x. The value of x, at the moment this statement is
executed, is lost and replaced by y.

It is worth noticing that we are assigning y to x therefore, if y changes at a later
moment, it will reflect on the value taken by x and the other way around. Variables x
and y will represent exactly the same object after this assignment statement is executed.

The assignment operator can be used, also, during variable declaration for assigning
to variables an initial domain through the syntax <type> <id> = <expr>.

Arithmetic operators ( +, —, *x, /) Operations of addition, subtraction, multiplica-
tion and division correspond literally to their respective mathematical operators. The
semantic, however, is taken by interval arithmetic. Specifically, arithmetic operations
are defined as:

— Addition: [xo,x1] 4+ [yo,y1] = [xo +yo,x1 +y1]
— Subtraction: [xg,x1] — [yo,y1] = [xo — Yo,%1 — 1]

Multiplication: [xo,x1]* [yo,y1] = [min(xoyo,Xoy1,X10,X1)1), max(xoyo, Xoy1,X1yo,
x1y1)]

— Division: [xo,x1]/[yo,y1] = [min(xo/yo,x0/y1,X1/y0,X1/y1),max(xo/yo0,x0/y1,
x1/50,%1/y1)]

For example:
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X =5 +y;

assigns to the variable x the expression 5 + y. Suppose the domain of variable y
is [10, 20], the domain of variable x will be [15, 25] after the execution of the
statement.

It is worth noticing that, similar to what happens for the simple assignment case,
we are assigning the expression 5 + y to x therefore, if y changes at a later moment, it
will reflect on the value taken by x and the other way around. Specifically, the variable
x and the expression 5 + y will represent exactly the same object after this assignment
statement is executed. As a consequence, if the domain of y becomes, for example,
[15, 20], the domain of x will become [20, 25]. The value of x, at the moment this
statement is executed, is lost and replaced by the expression 5 + y.

Relational and comparison operators ( ==, !=, >, <, >=, <=) Two expressions
can be compared using relational and equality operators to know, for example, if two
values are equal or if one is greater than the other. The result of such an operation is a
boolean variable representing the validity of the relation.

Be careful! The assignment operator (operator =, with one equal sign) is not the
same as the equality comparison operator (operator ==, with two equal signs); the
first one (=) assigns the expression on the right-hand to the variable on its left, while
the other (==) compares whether the values on both sides of the operator are equal.
Consider the following code snippet:

X = 5; // assigns 5 to x

X = 7; // assigns 7 to x

x == T7; // compares x with 7 returning true

X == 5; // compares x with 5 returning false

x == [6, 8]; // compares x with [6, 8] returning {true, false}

The first statement assigns value 5 to variable x. The second statement assigns value 7
to variable x. The third statement compares the variable x with the value 7 returning a
boolean constant t rue. The fourth statement compares the variable x with the value 5
returning a boolean constant false. Finally, the fifth statement compares the variable
x with the domain [6, 8] returning a boolean variable with domain {true, false}.

Logical operators ( !, &, |, © ) Logical operators return boolean variables repre-
senting the validity of the operator. To begin, the operator ! is the domain description
language operator for the Boolean operation NOT. It has only one operand, to its right,
and inverts it, producing false if its operand is true, and true if its operand is false.
Basically, it returns the opposite Boolean value of evaluating its operand. The logical
operators &, | and ~ are used when evaluating two (or more) expressions to obtain a
single relational result. Specifically, the operator & corresponds to the Boolean logical
operation AND, which yields true if both (all of) its operands are true, and false oth-
erwise. The operator | corresponds to the Boolean logical operation OR, which yields
true if any of its operands is true, thus being false only when both (all of) its operands
are false. Finally, the operator ~ corresponds to the Boolean logical operation EXACT-
ONE, which yields true if exactly one of its operands is true, thus being false all of its
operands are false ore more than one is true.
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Assertions An assertion is a statement that a boolean expression must be true. To
assert a boolean expression it is enough to specify the boolean expression as a state-
ment. Notice that enforcing a boolean expression to be true (or, more generally, to
false), can result in the updating of the values of the involved variables through con-
straint propagation. Suppose, for example, we execute the following snippet:

int x = [0, 10];

int y = [10, 20];

bool x_eq_y = x == y;

// Assertion: x_eq_y must be equal to true
X_€q_y;

In the above example we are creating an integer variable x having domain [0, 10],
an integer variable y having domain [10, 20], and a boolean variable x_eq_y having
domain {true, false}. With the execution of the assertion represented by the fourth
statement, however, the value of the variable x_eq_y is constrained to be equal to t rue.
This, in turn, results in forcing the constraint x == y to be equal to t rue which, in turn,
results in assigning to both variables x and y the value 10 (i.e., the only allowed value
that makes the two variables equal).

What happens now if we provide an infeasible problem? Suppose, for example, we
provide the following code:

int x = [0, 10];
int y = [20, 30];
X ==Yy,
The third statement asserts that the constraint x == y must be true, however the

initial domains of the variables x and y do not allow the constraint to be satisfied.
When these situations occur, we say that we have an inconsistency. The solver detects
the inconsistency and returns L. The domains of the variables, after an inconsistency
has been detected, are no more valid.

In conclusion, it is worth to notice that the combined use of operators allows to
obtain quite complex behaviors. As an example, consider the following code snippet:
// assert linear relations

x0 — x1 > x2 * 3;
x0 !'= x1;

// assert nonlinear relations
x0 == x2 * x3;

// assert conjunction of relations
x0 + x1 < 2 % x2 & x0 == x2 % x3 & x0 != x4;

// assert disjunction of relations
x0 < 10 | x0 > 100;

6.1.4 Complex types

A complex data type (a.k.a. composite data type or compound data type) is any data
type which can be constructed using the language’s primitive data types and other com-
plex types. Roughly speaking, a complex type is a group of data elements grouped
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together under one name. These data elements, known as members, can have different,
either primitive or complex, types.

The best way for defining new types is by means of the class keyword. Classes
define data types and allow the creation of objects according to characteristics defined
inside the class itself. In addition, classes allow fields of any type as well as methods
and constructors with any kind of arguments. Classes can be declared in our domain
description language using the following syntax:

class type_name {
member_typel member_namel ;
member_type2 member_name?2;
member_type3 member_name3;

In order to allow an initialization of the member variables of the type, classes can
include a special function called its constructor, which is automatically called when-
ever a new object of the class is created. This constructor function is declared just like
a regular member function, but with a name that matches the class name and without
any return type. Furthermore, when a constructor is used to initialize other members,
these other members can be initialized directly, without resorting to statements in its
body. This is done by inserting, before the constructor’s body, a colon (:) and a list of
initializations for class members. All types have at least one constructor. If a type does
not explicitly declare any, the solver automatically provides a no-argument constructor,
called the default constructor.

The following code, for example, defines a new data type (or class) called Block
containing an int field named id.

class Block {
int id;

Block (int id) : id(id) {}
}

Block b0
Block bl

new Block (0);
new Block (1), b2 = new Block(2);

The declared type Block is then used for instantiating three objects (variables)
called b0, b1 and b2. Note how, for creating a new instance of a complex type, the new
operator is used. Specifically, the new operator instantiates a class and, also, invokes
the object constructor, returning a reference to the newly created object. Notice that
the reference returned by the new operator does not have, necessarily, to be assigned to
a variable. Indeed, it can also be used directly in an expression.

It is important to clearly differentiate between what is the type name (Block), and
what is an object of this type (b0, bl and b2). As can be noted by the above example,
many objects (such as b0, bl and b2) can be declared from a single type (Block).
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6.1.5 Type inheritance

Inheritance allows us to define a class in terms of other classes. When creating a
class, instead of writing completely new fields and methods, the modeler can designate
that the new class should inherit the members of existing classes. Similarly to object
oriented programming, we call the existing classes the base classes, while the new
class is referred to as the derived class. The idea of inheritance implements the is a
relationship. For example, mammal IS-A animal, dog IS-A mammal hence dog IS-A
animal as well and so on. For example, through the code

class HeavyBlock : Block {
real weight;

HeavyBlock (int id, real weight) : Block(id), weight(weight) {}
}

we create a derived type HeavyBlock which inherits from the base type Block. Since
an HeavyBlock is-a Block, all instances of HeavyBlock will have a weight field of
type real as well as an id field of type int which, we say, is inherited from base type
Block.

Notice that a derived type must explicitly call a constructor of the base class from
which inherits. This explicit call, however, can be omitted in the case the base class
has a default constructor.

A class may inherit from more than one class by simply specifying more base
classes, separated by commas, in the list of a class’s base classes (i.e., after the colon).
Unless the base classes have a default constructor, the derived class must explicitly call
a constructor of each of the base classes.

6.1.6 Existentially scoped variables

Existential quantification is a type of quantifier which can be interpreted as “there ex-
ists”, “there is at least one”, or “for some”. Specifically, the domain description lan-
guage allows the modeler to retrieve a specific instance of a given type which meets
certain requirements. Creating an existentially scoped variable can be done, simply,
by indicating the type of the possible instances and an identifier for representing the

desired instance. For example:
Block b;

searches for a block b among all the instances of type Block. In other words, it creates
an object variable, called b, whose allowed values are all the instances of type Block.
Notice that, since HeavyBlock is actually a Block, the allowed values for the variable
b will include, also, all the instances of HeavyBlock. It is worth to note that, in case no
instances exist, the domain of the variable b will be empty and the solver will return L
(or, if possible, will backtrack).

The desired requirements are expressed by means of constraints. Consider, for
example, the following code:

Block b;
b.id <= 10;
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In this case the assertion will limit the domain of b to all the instances of Block whose
id is lower or equal that 10.

It is worth to note that it is possible to use comparison operators on existentially
scoped variables. For example

b != bl;

removes the instance represented by b1 from the allowed values of the variable b.

6.2 Defining predicates

As mentioned in Section 7, the solver reasons in terms of first-order Horn clauses
therefore each predicate is associated to a rule that must be complied with in order for
the atom, unifying with the head of the rule, to be valid. Consequently, the language
has been designed to define both predicates and rules together. Specifically, predicates
(and rules) are defined through the following syntax:

predicate <id> (<type> <id>, <type> <id>, ...) {
<rule body>

}

in which is represented the identifier of the predicate, a typed list of arguments, and the
body of the rule. Suppose, for example, we are interested in representing the location
of an agent, we might use the following rule:

predicate At (Location 1) {
}

The arguments of the predicates are considered as existentially quantified variables
within the body of the rule which might contain constraints on them and/or on other
variables. Specifically, the body of the rule contains a list of statement which is exe-
cuted for each atomic formula that does not unify. Suppose, for example, we want to
express the fact that our agent cannot go on a location outside of the first quadrant of
the Cartesian space, we might use the following rule:

predicate At(Location 1) {
1.x >= 0;
l.y >= 0;

}

In some cases, it might be useful to see the body of a rule as the preconditions that
must be respected in order for the atomic formula to be valid. The above example can
be therefore rephrased as: in order for a robot for being at a given location, the location
must be within the first quadrant of the Cartesian space.

Taking advantage of the similarity that a predicate (with its arguments) has a with
complex type (with its members) the domain description language gives to the modeler
the possibility to define inheritance among predicates, just as is the case of complex
types. Just note that the body of the base rules will be executed before the body of the
derived rule. The syntax for predicate inheritance is similar to the syntax used for type
inheritance.
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predicate LimitedAt() : At {

l.x <= 10;

l.y <= 10;
}

Predicates can be also defined within complex types. Each predicate defined within

a class has an implicit parameter called tau, representing the T variable of the corre-
sponding atoms, of the same type within which the predicate has been defined. As an
example, the following code defines a predicate At with an argument named 1 of type
Location and an implicit argument named tau of type Robot. The associated rule en-
forces that a robot cannot go on a location outside of the first quadrant of the Cartesian
space.

class Robot {

predicate At(Location 1) {
1.x >= 0;
l.y >= 0;
}
}

A similar result can be achieved by defining a predicate through

predicate At(Robot tau, Location 1) {

1.x >= 0;

1.y >= 0;
}

The language does not allow the definition of predicates having the same identifier
within the same class. We will see soon, in Section 6.2.2, how disjunctions can be
explicitly defined within the body of the rules.

6.2.1 Representing facts and goals

Once defined predicates and rules, we can now show how to describe facts and goals
for our problems. Still following the object-oriented paradigm, we consider facts and
goals as objects and, as such, we will create them through the new operator. However,
since, unlike other languages, we have no means to distinguish facts and goals, we have
to distinguish them explicitly through the keywords fact and goal as a prefix of the
identifier. Suppose, for example, we want to express the fact that our agent is at some
location, we might use the following statement:

fact at_0 = new At();

We can now address the arguments of the fact just as if they are members of the
object represented by at_0. So we can, for example, put constraints on the coordinates
of the locations.

at_0.1.x <= 10;

It is worth to note that creating a fact or a goal will, unless specified, create exis-
tentially scoped variables for each of its arguments. As a result, the same rule valid for
existentially scoped variables, stating that at least one instance of the type must have
been previously created, applies also to the creation of facts and goals. Executing the
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previous example, without previously creating instances of locations, would result in
an inconsistent problem and, therefore, the solver would have returned L.

A convenient method to avoid the creation of existentially scoped variables is to
explicitly state the allowed values for an argument. This can be achieved by making use
of the syntax <id>:<expr>, where <id> represents the identifier of an argument and
<expr> is an expression, within the parenthesis of the new fact or goal. For example

Location 10 = new Location ();
fact at_0 = new At(1:10);

creates a new location 10 and a new fact at_0 whose parameter 1 assumes the value
10;
In order to better understand, let us consider a complete example:

// we define a Location class
class Location {

real x;
real y;

Location(real x, real y) : x(x), y(y) {}
}

// we define a predicate At
predicate At(Location 1) {
1.x >= 0;
l.y >= 0;
}

// we create three instances of location
Location 10 new Location(0, 0);
Location 11 = new Location(l, 1);
Location 12 = new Location(2, 2);

// we create an At fact
fact at_0 = new At();

// we add some constraints on the fact
at_0.1.x <= 1;
at_0.1 != 10;

// we create an At goal specifying its | parameter
goal at_1 = new At(1:12);

It is worth to note that both facts and goals can be created within the body of a rule.
This allows us to define subgoals for the reasoning process. Suppose, for example, we
want to express the fact that “All men are mortal”, we might use the following rule:
predicate Mortal (Thing x) {

goal m = new Man(x:x);

}

The creation of scoped formulas (i.e., formulas with a tau parameter), either facts
or goals, follows a similar syntax. However it is required that the scope is explicitly
specified. This can be achieved through the following syntax:

[fact | goal] <id> = mew <qualified_id >.<id>(<id>:<expr>, <id>:<expr>,
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where <qualified_id> identifies the scope. The following code, for example, creates
two robots and two facts having a different values for their respective tau parameters.

Robot r0 = new Robot();
Robot r1 = new Robot();
fact fO = new rO.At(1:10);
fact fl1 = new rl. At(l:11);

Note that the tau argument of the fact £0 is constituted by an object variable whose
domain contains the sole robot r0. Similarly, the tau argument of the fact £1 is consti-
tuted by an object variable whose domain contains the sole robot r1.

It is worth to notice that nothing prevents to create facts and goals having existen-
tially scoped variables as tau argument. As an example

Robot r0 = new Robot();
Robot r1 = new Robot();

// we create the existential variable
Robot r;

goal g = new r.At(1:10);

creates a goal g whose tau has, as allowed values, the two robots r0 and rl (i.e., its
allowed values is constituted by the set {r0, rl1}). This syntax allows the possibility
to leave to the solver the responsibility to decide which robot should achieve the 10
goal.

Finally, in case facts and goals are created within a rule, their scope is inherited
from the rule. Suppose, for example, the following rule stating that, in order for a given
robot to stay at a given location, the robot must go to that location, the scope of the gt
goal will be the same of the one that required the application of the rule. Similarly to
the above example, the following code leaves to the solver the responsibility to decide
which robot should achieve the 10 goal however, whatever the chosen robot, the same
robot will also require to go to the same location.

class Robot {

predicate At(Location 1) {
goal gt = new GoTo(l:1);
}
}

Robot r0 = new Robot();
Robot r1 = new Robot();
Robot r;

goal g = new r.At(1:10);

6.2.2 Disjunctions and preferences

Disjunctions constitute a tool offered by the language to express the fact that the solver
has to take a choice. As already mentioned above, the language does not allow the
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possibility to define predicates having the same name, so, how can we define dis-
junctions? The language offers the possibility to define disjunctions through the or
operator. Specifically, the syntax used for expressing disjunctions is the following:

{
) or |
};)r

Whenever the solver encounters a disjunction construct, it non-deterministically
creates a branch in the search three and executes, within each child, the code contained
within each block of code (a.k.a. disjunct). It is worth noting that disjunctions can
appear both in problems and within rules.

Suppose we want a rule stating that, for an agent to be at a given location, it is
required either to drive to that location or to fly to the same location. We might express
this disjunction within a predicate using, for example, the following code:

predicate At(Location 1) {
{
goal d = new DriveTo(1:1);
}oor {
goal f = new FlyTo(l:1);
1
}

In case it is needed, it is possible to nest multiple disjunctions one inside the other.
In other words, nothing prevents to define a disjunction within another disjunction.

Additionally, in order to express preferences, it is possible to assign a cost to dis-
juncts. Specifically, since the solver receives a penalty for each executed disjunct, it is
possible to control the search so as to achieve plans having desired, yet not necessar-
ily possible, characteristics. Costs can be expressed by adding a numeric expression,
in square brackets, at the end of the corresponding disjunct. Notice that, in case the
cost is not explicitly expressed, a default unitary cost is assigned. Suppose, like in the
previous example, we want to state the fact that, for an agent to be at a given location,
it is required either to drive to that location or to fly to the same location. However,
since driving is cheaper than flying, the former is preferable to the latter. This can be
expressed by means of the following code:

predicate At(Location 1) {
{

goal d = new DriveTo(1:1);
} [5] or {

goal f = new FlyTo(l:1);
} [200]

}

which give to the solver a penalty of 5, for choosing driving, and a penalty of 200 for
choosing flying.
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6.3 Representing timelines

The presented basic core is, probably, expressive enough to represent any problem
we are interested in (and, given the undecidability of the theory, even some problems
in which we are not interested in). It is worth to notice, in this regard, that nothing
prevents to use numeric variables as predicate arguments. It might be cumbersome,
however, to represent some specific problems for which we have specialized resolution
procedures. This introduces, also, some issues related to the efficiency which, probably,
would be affected if not using such specialized algorithms.

To this purpose, as already mentioned, it has been introduced a procedure for veri-
fying the consistency of the objects that appear as allowed values for all the tau vari-
ables of all the atomic formulas. Such consistency check allows the introduction of fur-
ther constraints (or, more in general, decision points) that will be automatically taken
into account by the resolution algorithm. The key point consists in calling different
consistency check procedures according to the type of the tau variable.

Note that this does not affect the structure of the language in any way. In particular,
the language does not require any changes in case the addition of additional features is
demanded. The basic core (and the solver, as well) will remain agnostic of the consis-
tency checking functions, implementing specialized algorithms, provided by possible
(future) extension modules. To demonstrate the effectiveness of this approach, how-
ever, it will be shown how it applies to the case of the timelines and, specifically, to
the most used of them. Specifically, each of the following timeline has its own specific
behavior therefore, in order to provide its specialized algorithm, each of these timeline
is implemented as a type in a native language (e.g., Java or C++).

First of all, any timeline-based planning problem requires the introduction of two
numeric variables which will become always accessible by any code block. Further-
more, two predicates will be introduced for representing temporal impulses and tem-
poral intervals. In all, before the definition of any timeline-based planning problem the
following code is sent to the solver:

predicate ImpulsivePredicate (real at) {
at >= origin;
at <= horizon;

}

predicate IntervalPredicate (real start, real end, real duration) {
start >= origin;
end <= horizon;
duration == end — start;
duration >= 0;

}

real origin;
real horizon;
origin >= 0;
horizon >= origin;

This will allow us to define some standard behaviors for all the timelines. In par-
ticular, this will allow us to easily express temporally scoped assertions. The following
sections describe, from a language point of view, how to use some of the timelines.
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6.3.1 State-variables

The first timeline that will be presented is the state-variable. As already mentioned
in Section 2.3, the semantic of a state-variable is that for each time instant t € T the
timeline can assume only one value. In order to define a state-variable it is sufficient
to define a new derived type whose base type is a StateVariable. All instances of
the derived type will be, consequently, state-variables. Similarly, the predicates defined
within the new type will be considered as predicates of a state-variable. This allows the
modeler to define predicates and rules for the state-variables at domain definition phase.
As an example, the following code creates a type Robot which is a StateVariable.

class Robot : StateVariable {

}

Every predicate associated to a state-variable implicitly inherit from the IntervalPredicate,
therefore there is no need to define start, end and duration arguments. Furthermore,
applying a rule on a derived predicate will result in the application of the IntervalPredicate
rule.

As an example, the following code

class Robot : StateVariable {

predicate At(Location 1) {
duration >= 1;
goal gt = new GoingTo(l:1, end:start);

}

predicate GoingTo(Location 1) {
duration >= 10;
goal at = new At(end:start);
}
}

defines a Robot, which is a StateVariable, which can navigate between locations. A
possible problem can be
Location 10 = new Location(0, 0);

Location 11 = new Location(1, 1);
Location 12 = new Location(2, 2);

Robot r = new Robot();

fact at_0 = new r.At(1:10, start:origin);
at_0.duration >= 1;

goal at_1 = new r.At(1:12);

Notice that the goal at_1 cannot unify with the fact at_0 because of the different
locations. Calling the consistency check procedure at this stage would put a constraint
between the goal at_1 and the fact at_0 (namely, at_1.start >= at_0.end) in or-
der to avoid the overlapping of different values in time, as required by the specific
behavior of a state-variable. At this stage, in order to achieve the goal at_1, the solver
would execute the body of the rule associated to the At predicate which, in turn, would
add the gt subgoal. Finally, the new sobgoal would be achieved by executing the code
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within the rule associated to the GoingTo predicate which would produce a new sub-
goal at that, at this stage, could unify with the initial fact at_0 leading to a solution
for the whole problem.

Notice that the sequence of the above steps is not related to the language but to
the solver. In particular, choosing when to call the consistency check procedures might
affect strongly the overall performance of the resolution process.

6.3.2 Reusable resources

Reusable resources are another predefined type offered by the solver and build on top
of the basic logic core. The semantic of a reusable resource is that concurrent usages of
the same resource cannot exceed the capacity of the resource. Since the sole distinctive
element among the different reusable resources is the capacity, the reusable resource
type is completely defined. Specifically, the reusable resource is defined as a type hav-
ing a single predefined predicate called Use with an amount argument representing the
amount of resource usage. The Use predicate inherits from the IntervalPredicate
the start, end and duration arguments as well as its temporal constraints. Conse-
quently, facts of type Use represent the usage of an amount of a resource in a given
temporal interval. In addition, reusable resources have a single field called capacity
which can be passed to the resource through its constructor. Finally, reusable resources
has a single constructor which instantiates the capacity of the resource.

The application programming interface (API) for a reusable resource is the follow-
ing:
class ReusableResource {

real capacity;

ReusableResource (real capacity) : capacity (capacity) {
capacity >= 0;

}

predicate Use(real amount) : IntervalPredicate () {
amount >= 0;
}
1

Notice that the capacity of the resource is constrained to be greater or equal than
zero. Similarly, the amount of each resource usage is constrained to be between zero
and the resource capacity. Furthermore, as a reinforcement to what has been said till
now, it is worth saying that creating such a type would not be enough for defining a
reusable resource. This is because, in the above code, there is no trace of the specified
algorithm which would avoid the temporal overlapping of too much resource usages.
For this reason reusable resources have been implemented in a native language and not
just in the domain description language.

The following code shows an example of reusable resources usage.

ReusableResource rr = new ReusableResource (5);

fact use = new rr.Use(amount:3, duration:5);
use.start >= 10;
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6.3.3 Consumable resources

Consumable resources are another predefined type offered by the solver. The semantic
of a consumable resource is that, despite productions and consumptions, its level must
be within a max and a min value. Associated to consumable resources, two prede-
fined predicates called Produce and Consume each one with its amount argument are
intended for representing resource productions and resource consumptions. Similarly
to the previous timelines, both the predicates inherit from the IntervalPredicate,
therefore there is no need to define start, end and duration arguments nor to intro-
duce temporal consistency constraints. Consumable resources have two fields called
min and max, representing the minimum and maximum availability of the resource. Ad-
ditionally, consumable resources have two fields called initial_amount and final_amount,
representing the initial and final amount of the resource. Finally, consumable resources
have a single constructor which takes four parameters representing the minimum and
maximum availability of the resource and the initial and final amount of the resource.

The API for a consumable resource is the following:
class ConsumableResource {

real min;

real max;

real initial_amount;
real final_amount;

ReusableResource (real min, real max,
real initial_amount ,
real final_amount) : min(min),
max (max) ,
initial_amount (initial_amount),
final_amount(final_amount) {
min <= max;

}

predicate Produce(real amount) : IntervalPredicate () {
amount >= 0;

}

predicate Consume(real amount) : IntervalPredicate () ({
amount >= 0;

}
}

Notice that the minimum availability of the resource is constrained to be lower than
the maximum availability of the resource.
The following code shows an example of consumable resources usage.

ConsumableResource cr = new ConsumableResource(—2, 7, 1, 5);

fact p = new cr.Produce(amount:3, duration:5);
p.start >= 10;
fact ¢ = new cr.Consume(amount:1, duration:5);
c.start >= 10;
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6.3.4 Batteries

Batteries are similar to consumable resources having the minimum availability of the
resource constrained to be greater or equal than 0. The behavior, however, is slightly
different. Specifically, batteries allow overproductions. In other words it is allowed to
exceed the upper limit, however, the surplus is lost. In addition, productions are called
charges.

The API for a battery is, therefore, is the following:

class Battery {

real min;

real max;

real initial_amount;
real final_amount;

ReusableResource (real min, real max,
real initial_amount,
real final_amount)
: min(min),
max (max) ,
initial_amount(initial_amount),
final_amount(final_amount) {
min >= 0;
min <= max;

}

predicate Charge(real amount) : IntervalPredicate () {
amount >= 0;

}

predicate Consume(real amount) : IntervalPredicate () {
amount >= 0;
}
}

6.4 From PDDL to timelines

The following timelines have been introduced to simplify the modeling of classical
planning problems. Given the different notion of causality, indeed, it turned out to
be useful the introduction of new timeline types which help in the resolution modeled
problem.

The overall idea is to introduce a new type, called PropositionalAgent, to rep-
resent classical planning agents able to execute both simple and durative actions. The
predicates for these agents resemble the actions of classical agents. For example, a clas-
sical action like pick-up (x - block) is translated into a predicate PickUp (Block
x). The body of the rules will contain a goal for each action precondition as well
as a fact for each action effect. It is worth to recall that it is possible to put disjunc-
tions within the body of the rules, hence classical planning disjunctions can be easily
modeled. Finally, facts and goals are temporally constrained to atoms representing the
action in an intuitive way (i.e., preconditions are before the action which is before the
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effects and, in case of durative actions, overall conditions are constrained to be during
the action).

A second type of timeline, called PropositionaState, is used for representing the
state. Also in this case the predicate signature (predicate symbol and its arguments) is
easily translatable however, since our framework cannot reason on false facts, we will
add a polarity argument to tackle negative atoms. Unlike classical planning, in which
atoms that are not not explicitly said to be true are assumed false, the initial state has to
be defined extensively by introducing facts and constraining their start argument to
be equal to the origin variable. Finally, goals of the problems will be added as goals
such that their end argument is constrained to be equal to the horizon variable.

It is worth to notice that constraint among actions and state are not necessarily
forced to be as those of classical planning. Specifically, we can easily model situations
like states which change some time after an action.

6.4.1 Propositional agents

As already mentioned, agent timelines have been introduced for representing classical
planning agents able to perform (durative) actions. Specifically, predicates associated
to such agents are intended to represent the actions of classical planning agents. Atomic
formulas associated to agents can overlap in a free way. Further constraints can be
added in order to respect a classical planning rule, called no moving targets, which
prevents two actions to overlap when they simultaneously make use of a value and one
of the two is accessing the value to update it. In other words, any action which has a
precondition p cannot temporally overlap with an action which has an effect —p. The
idea behind this rule is that any reliance on the values at the points of change is unstable.
Despite this rule looks anachronistic in a model that takes into account the time, some
benchmark domains exploit it to get a desired behavior. Furthermore, since durative
actions are kinda like two classical actions separated by a temporal interval, the no
moving targets rule applies both to the start and to the end of the actions. Practically
speaking, adding the ordering constraints dictated by the no moving target rule to the
start and to the end of the actions, if needed, is the main reason for introducing the
Agent type.

Similarly to state-variables, in order to define an agent it is sufficient to define a new
derived type whose base type is a PropositionalAgent. All instances of the derived
type will be, consequently, agents and the predicates defined within the new type will be
considered as predicates of an agent. This allows the modeler to define agent predicates
at domain definition phase. It is user’s responsability, however, conversely to the state-
variable case, to inherit from the IntervalPredicate, in order to represent durative
actions, or from the ImpulsivePredicate, for representing classical actions.

The following code shows an example of definition of an agent. The content of the
rule is omitted for sake of space.

class BlocksAgent : PropositionalAgent {
predicate PickUp(Block x) : ImpulsivePredicate {

}
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predicate PutDown(Block x) : ImpulsivePredicate {

}

predicate Stack(Block x, Block y) : ImpulsivePredicate {

}

predicate Unstack (Block x, Block y) : ImpulsivePredicate {

}

6.4.2 Propositional state

The last timeline which has been introduced for representing for representing classical
planning problem is the propositional state timeline. This timeline resembles the state
of a classical planning problem.

In order to define a propositional state it is sufficient to define a new derived type
whose base type is a PropositionalState. All instances of the derived type will
be, consequently, propositional states and the predicates defined within the new type
will be considered as predicates of an agent. This allows the modeler to define clas-
sical planning predicates at domain definition phase. Propositional state predicates
implicitly inherit from a new predicate called PropositionalPredicate which has a
boolean argument called polarity. This argument is used for representing the polarity
of classical planning predicates. Furthermore, PropositionalPredicate implicitly
inherit from the IntervalPredicate, therefore there is no need to define start, end
and duration arguments.

The PropositionalState type has been provided for adding implicit constraints
consisting in the threats defined in Section 2.2. Specifically, ordering constraints will
be added between two atoms if their arguments, except fro the polarity, unify and
the two atoms overlap in time.

An example of propositional state timeline is given by

class BlocksState : PropositionalState {
predicate HandEmpty () {
}
predicate Clear(Block x) {
} ..
predicate OnTable(Block x) {
}
predicate On(Block x, Block y) {

}



142 CHAPTER 6. THE RIDDLE LANGUAGE

}

in which the content of the rules is omitted for sake of space.

6.4.3 Putting it all together

Now that we have the basic ingredients to define a classic planning problem, we will
see how we can combine them. The basic idea is that we need an agent and a state. In
case the :typing requirement is present, the first thing to do is to define types. The
definition of types is given directly by the classical problem. We just introduce a basic
type called Object, representing the topmost element of the type hierarchy, with an
integer member called id. Consider, for example, the 4 Op-blocks world domain in
which the only type is block, we can define it as

class Object {
int id;

Object(int id) : id(id) {}
}

class Block : Object {

Block (int id) : Object(id) {}
}

The second step is to define the state. Since we need to assign goals to the agent, the
state needs a reference to the agent. We will exploit the forward declaration capabilities
and will use the agent reference before defining it. So, farther on with the 4 Op-blocks
world domain, we have

class BlocksState : PropositionalState {
BlocksAgent agent;

BlocksState (BlocksAgent agent) : agent(agent) {}

Analogously, since the agent needs to assign goals to the state, it needs a reference
to the state. So, continuing with our 4 Op-blocks world domain, we have

class BlocksAgent : PropositionalAgent {
BlocksState propositional_state;

PropositionalAgent () : propositional_state (new BlocksState(this)) {}
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We can now define predicates for our state and for our agent. As already mentioned,
the rules for the predicates relative to the state should contain goals on the agent rep-
resenting the possible actions, properly constrained, for achieving a given goal. On the
other hand, the rules for the predicates relative to the agent should contain goals for
the preconditions and facts for the effects. We show an example 4 Op-blocks world
domain:

class BlocksState : PropositionalState {
BlocksAgent agent;
BlocksState (BlocksAgent agent) : agent(agent) {}

predicate Clear(Block x) {
duration >= 1;
{
goal put_down = new agent.Put_down(at:start, x:x);
} oor |
goal stack = mew agent.Stack(at:start, x:X);
} or {
goal unstack = new agent.Unstack(at:start, y:x);

This, on the other hand, is an example, still in the 4 Op-blocks world domain, of a
predicate defined for the agent:

class BlocksAgent : PropositionalAgent {
BlocksState propositional_state;
BlocksAgent() : propositional_state (new BlocksState (this)) {}

predicate Pick_up(Block x) : ImpulsivePredicate {
goal clear_x = new propositional_state.Clear(polarity:true, x:x);
clear_x.start <= at — 1;
clear_x .end >= at;

goal ontable_x = new propositional_state.Ontable(polarity:true, x:x);
ontable_x.start <= at — 1;
ontable_x .end >= at;

goal handempty = new propositional_state .Handempty(polarity:true);
handempty . start <= at — 1;
handempty .end >= at;

fact not_ontable_x = new propositional_state.Ontable(polarity:false ,
X:X,
start:at);

not_ontable_x.duration >= 1;

fact not_clear_x = new propositional_state.Clear(polarity:false ,
X:X,
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start:at);
not_clear_x .duration >= 1;

fact not_handempty = new propositional_state.Handempty(polarity:false ,
start:at);
not_handempty . duration >= 1;

fact holding_x = new propositional_state.Holding(polarity :true,
X:X,
start:at);

holding_x.duration >= 1;

Now that we have defined all the types, the predicates and rules associated to them,
we can define the type instances

Block a = new Block (1);
Block b = new Block (2);

BlocksAgent agent = new BlocksAgent();

as well as the facts and the goals for our planning problem.

fact clear_a = new agent.propositional_state.Clear(polarity:true,
X:a,
start:origin);

clear_a.duration >= 1;

fact clear_b = new agent.propositional_state.Clear(polarity :true,
x:b,
start:origin);

clear_b.duration >= 1;

fact ontable_a = new agent.propositional_state.Ontable(polarity :true,
X:a,
start:origin);

ontable_a.duration >= 1;

fact ontable_b = new agent.propositional_state.Ontable(polarity :true,
x:b,
start:origin);

ontable_b.duration >= 1;

fact handempty = new agent.propositional_state.Handempty(polarity :true,
start:origin);
handempty . duration >= 1;

goal on_b_a = new agent.propositional_state.On(polarity :true,
x:b,
y:a,
end: horizon);
Notice that the translation from a classical planning problem to a timeline-based
planning problem is pretty straightforward, and, as such, can be easily automated.



Conclusions

The reorganization of the timeline-based formalism, already pursued by ILOC and
presented in Chapter 3, pushes toward the direction of solving more general problems
which might be not strictly related to timelines. The atom concept, for example, being
able to not necessarily represent temporal variables, constitutes a more general concept
respect to the previously concept of token. Similarly, the fype concept represents a
superset of the possible timeline types. If on the one hand this increase in generality
directly translates into an increase in computational complexity, the solver becomes,
indeed, definitely non-decidable, on the other hand, defining heuristics for those prob-
lem instances which are decidable becomes a work that can be done, once and for all,
for any problem.

The detachment from the strictly related timeline-based problem, for example,
could be exploited for the definition of problems for which it does not make sense
to reason in terms of temporal evolutions like those related to troubleshooting or to
diagnosis systems. Suppose, for example, we have a scooter ignition problem and we
want to troubleshoot it. In order to ignite, a scooter needs the gasoline tank to be
not empty, the fuel valve to be open and the carburetor to be clean. Additionally, we
might know that the probabilities of an empty tank are higher than the probabilities
of a closed valve which, in turn, are higher than the probabilities of a dirty carbu-
retor. Finally, we do not initially know whether the tank is empty, the fuel valve is
open and the carburetor is clean. We might solve the scooter ignition problem through
ORATIO by defining a rule which would explain the system failure as the one repre-
sented graphically through a graph in Figure 7.1. Since we do not have information
about the state of the system, we introduce three facts with lifted parameters, i.e.,
EmptyTank (?x), FuelValveClose(?y) and DirtyCarburetor (?z). Finally, we intro-
duce the EngineWontStart () goal and start the ORATIO solving procedure. The graph
building procedure would expand the EngineWontStart () goal introducing a disjunc-
tion flaw. Since one of the disjuncts contains a EmptyTank (True) subgoal which might
unify with the EmptyTank (?x) fact, the graph building procedure terminates, the prun-
ing procedure sets the EmptyTank (False) subgoal at False resulting in a solution in
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EmptyTank(False) \

FuelValveClose(True)
and

N

FuelValveClose(False) or
\ —/ or — EngineWontStart()

and /
EmptyTank(True)

DirtyCarburetor(True) /‘

Figure 7.1: Scooter ignition troubleshooting.

which the active disjunct is the one containing the EmptyTank (True) subgoal, suggest-
ing the most probable of the causes as the main issue of the scooter ignition problem.
Notice that, in case we knew the gasoline tank is not empty, the initial problem would
contain a EmptyTank (False) fact, the graph building procedure would have reached
the FuelValveClose (True) subgoal suggesting a different, yet still the most probable,
cause.

7.1 A heuristic for solving constraint logic program-
ming problems

More in general, the proposed critical path heuristic can be exploited, among other
things, for solving Constraint Logic Programming (CLP) problems. To the best of the
author’s knowledge, indeed, all of the logic programming implementations produce
demonstrations (i.e., the analogous of partial plans) in a specific deterministic manner:
(a) the next goal to be achieved is chosen according to the order goals arise by fol-
lowing a First-In-First-Out strategy; (b) goals are achieved by applying rules according
to the order they are defined. If on the one hand this deterministic behavior can be a
great help in debugging programs, on the other it can be an exceptional source of inef-
ficiency. Consider, as an example, the following CLP recursive program for calculating
the factorial function.
factorial (N,F) :—

N1 is N-1,

factorial (N1,F1),

F is N * Fl.

factorial (0,1).

Specifically, the above code snippet is aimed at computing the factorial of a num-
ber, let us say n, as n times the factorial of n — 1 until the factorial of 0 is asked and 1 is
returned. To the best of the author knowledge, there is no CLP implementation which
is able to solve the above problem. The main issue with the above implementation,
indeed, consists in having defined the base case affer the recursive case, resulting in
an infinite loop for any query'. The graph building procedure, as described in Chap-

ISeeing is believing: https://swish.swi-prolog.org


https://swish.swi-prolog.org

7.2. FUTURE WORKS 147

ter 5, would, on the contrary, introduce n atoms until a unification would be consid-
ered as feasible, introducing a single branching for deciding whether to unify with the
factorial (0,1) fact, with an estimated cost of 0, or to apply once again the recursive
rule, with an estimated cost of 4-o. Clearly, the former choice would be chosen from
the solving algorithm which would have no problem in returning a solution.

Although the previous case can be solved, trivially, by inverting the definitions
of the rules, applying the rules according to the order of definition, in general, could
easily result in insurmountable inefficiencies. It would be like, in the case of classical
planning, to establish an initial order for the selection of those operators to be applied
in order to achieve a given objective (e.g., in case of the blocks world, always choose to
put the block on the table before trying to put the block on another block, whenever you
want the hand to be empty). Despite the inefficiency, nonetheless, it is worth noting
that similar approaches are still applied in some recent works like FAPE [39, 38] or
CHIMP [104, 105].

7.2 Future works

As already mentioned, since the earliest introduction of heuristics in classical planning,
many heuristics have been proposed. It would be interesting to investigate, in addition
to the h,qy and the h,4, case, the applicability and the effectiveness of these more
recent heuristics to the timeline-based case. Given their nature, landmark based heuris-
tics, like those described in [67, 89], as well as abstraction based heuristics, like those
described in [40] or in [63, 64], represent the ideal candidates for further investigation.

Among the possible future works, additionally, it is worth noting that the proposed
approach might be easily applied for solving temporal planning problems. Specifically,
rather than distinguishing among at — start, at — end and overall conditions, it would
be possible to introduce numeric variables into predicates and consider conditions just
like preconditions in classical planning problems (enhanced with the proper temporal
constraints). Furthermore, as it is typically done in classical planning, it might be inter-
esting in building a similar planner which, rather than searching backward, would apply
the rules forward, starting from the body of the rules to the head. Viewing the timeline-
based planning problem as a classical planning problem whose operators are the rules
allows to exploit hints from classical planning community for solving timeline-based
problems. As we have already seen, the main issue that does not allow the use of a
classical planner in the resolution of timeline-based problems consists in the presence
of numerical variables among the parameters of the predicates and in the presence of
numeric constraints within the body of the rules. Specifically, the presence of numer-
ical variables do not allows making predicates ground. A possible workaround might
consist in exploiting discretization (in a somehow similar way to [93]). Instead of
considering all possible values for a temporal variable, for example, it might be pos-
sible to consider discrete times (e.g., a temporal variable might assume three values:
[0, 10], [10,100] and [100,+o<]). Despite the discretization procedure might be rather
expensive, according to the chosen resolution, it would result in a rather straightfor-
ward classical planning problem which would be solved in polynomial time. Finally,
it might be interesting to investigate other kinds of classical heuristics like those based
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on landmarks.

7.3 Conclusions

Planning is a complex task. In the last forty years, a great work in producing a clear
formalization and a syntactic standardization of the input/output languages of classical
planners has attracted numerous researchers who have produced, especially in the last
few years, impressive results. Specifically, the advancements made in the last decade
in the techniques for solving classic planning problems, such as domain independent
heuristics based on critical-path (e.g., hugyd» tmax Or ™), on delete-relaxation (e.g., i),
on causal graph or on landmarks, have allowed to solve very large instances of prob-
lems. The expressiveness of timeline-based planning languages, however, often clashes
with the efficiency of problem solving. The poor performances of modern timeline-
based planners, indeed, are mostly to be found in the backwardness of the resolutive
algorithms which, with a few exceptions, have remained substantially unchanged over
the last twenty years.

This thesis offers an initial contribution at reducing the performance gap between
classical and timeline-based planners. Despite the gap has not yet been closed and the
performance of timeline-based planning still needs to be improved, the main objective
of this thesis is to propose an orthogonal view of what causality, in the peculiar dec-
lination of timeline-based planning, is. More in general, this thesis wants to propose
a starting point for a general approach at the definition of new heuristics for solving
reasoning problems defined through more expressive languages which do not rely only
on propositional atoms. It turns out that generating such heuristics is itself intractable,
yet a cost-effective trade-off can be achieved by exploiting classical planning heuristics
and constraint propagation techniques.
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EBNF Specification of RIDDLE

This section contains the complete Extended Backus-Naur form (EBNF) of the RIDDLE
language.

<comp_unit> 1= (<type_decl>
| <method_decl>
| <predicate_decl >
| <statement >)x*

<type_decl> 1= <typedef_decl>
| <enum_decl>
| <class_decl>

<typedef_decl> ::= ’typedef’ <primitive_type> <expr> <ID> ’;’
<enum_decl> ::= ’enum’ <ID> <enum_consts>
(1’ <enum_consts>)x ’;’
<enum_consts> := {7 StringLit (’,’ StringLit)x ’}’
| <type>

<class_decl >

‘class’ <ID> (’:’ <type_list >)? ’{’ <member>* ’}’;

<member> = <field_decl>

| <method_decl>

| <constructor_decl >

| <predicate_decl >

| <type_decl>
<field_decl > 1:= <type> <variable_decl >

(’,’ <variable_decl >)*x ’;’

<variable_decl > = <ID> (’=’ <expr>)?
<method_decl> := ’void’ <ID> ’(’ <typed_list>? ’)’ ’{’ <block> '}’

| <type> <ID> ’(’ <typed_list>? *)’ ’{’ <block> ’}’
<constructor_decl > = <ID> ’(’ <typed_list>? )’
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160 APPENDIX A. EBNF SPECIFICATION OF RIDDLE

5

(’:7 <init_el> (’,
>{’ <block> '}’

<init_el >)x)?

<init_el > i= <ID> ’(’ <expr_list>? )’
<predicate_decl > ::= ’predicate’ <ID> ’(’ <typed_list>? ’)’

(’:7 <type_list >)? ’{’ <block> ’}’
<stmnt > 1= <assignment_stmnt>

| <local_var_stmnt>

| <expression_stmnt >

| <disjunction_stmnt>
| <formula_stmnt>

| <return_stmnt >

I

>{’ block ’}”

<block> 1= <stmnt>x
<assignment_stmnt> = (<q_id> ’.7)? <ID> ’=’ <expr> ’;’
<local_var_stmnt> 1:= <type> <variable_dec> (’,’ <variable_dec >)* ’;’
<expression_stmnt> 1= <expr> ’;’
<disjunction_stmnt> ::= <conjunction> (’or’ <conjunction >)+
<conjunction> i= {7 <block> "}’ (’[’ <expr> ]17)?
<formula_stmnt> ::= (’goal’ | ’fact’) <ID> ’=’

‘new’ (<q_id> ’.’)? <ID>

*(° <assignment_list>? )’ ;”

5

<return_stmnt > ::= ‘return’ <expr> ’;
<assignment_list > 1= <assignment> (’,’ <assignment>)x*
<assignment> = <ID> ’:’ <expr>

<expr> = <lit>

(7 <expr> )’
<expr> (%’ <expr>)+
<expr> (’/’ <expr>)+
<expr> (’+’ <expr>)+

<expr> ’>’ <expr>
<expr> ’'<’ <expr>

|

I

I

|

| <expr> (’=’ <expr>)+

| ’+’ <expr>

| =’ <expr>

| *!’ <expr>

| q_id

I (<q_id> ’>.’)? <ID> °(’ <expr_list?> )’
I >’ <type> ')’ <expr>

I ’[’ <expr> ’,’ <expr> ']’

| "new’ <type> ’(’ <expr_list>? ’)’
| <expr> ’==’ <expr>

| <expr> ’>=’ <expr>

| <expr> ’<=’ <expr>

|

I



<expr_list>

<lit >

<q_id>

<type>

<class_type >

<primitive_type >

<type_list>
<typed_list >

<ID>

<NumericLit>
<StringLit >

<ESC>

161

<expr> ’!=’ <expr>
<expr> '—>’ <expr>
<expr> (’1’ <expr>)+
<expr> (’&’ <expr>)+
<expr> (’A’ <expr>)+

<expr> (’,’ <expr>)x

<NumericLit>
<StringLit >
‘true’
>false”’

(’this’ | <ID>) (°.> <ID>)x;

<class_type >
<primitive_type >

<ID> (’.’ <ID>)x

“int’
‘real”’
’bool”’
‘string’

’

<type> (’,’ <type>)x

5

<type> <ID> (’,’ <type> <ID>)x

Ca’..’z I’A°..°Z ")
(Ca’..’z IPA L2 1000 L 09 0 0 )«

[0=9]+ (*.” [0=9]+#)? | . > [0-9]+
" (ESCl)x? "2
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