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Abstract
Some trapezoid and mid-point type inequalities related to the Hermite–Hadamard
inequality on the disk of center C = (a,b) and radius R, D(C,R) ⊆ R

2, are investigated. It
is shown that the estimated value obtained in the trapezoid and mid-point type
inequalities has a relation with the integral of the partial derivative of the considered
function on ∂ (C,R), the boundary of D(C,R).
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1 Introduction
Let f : I ⊆ R → R be a convex mapping defined on the interval I of real numbers and
a, b ∈ I with a < b. The following double inequality

f
(

a + b
2

)
(b – a) ≤

∫ b

a
f (x) dx ≤ (b – a)

f (a) + f (b)
2

, (1)

is known in the literature as Hermite–Hadamard inequality for convex mappings. For
more results and generalization about (1), see [1, 5–11] and the references therein.

An interesting problem in (1) is estimating the difference between the right term and
the integral of f on [a, b] and also estimating the difference between the left term and the
integral of f on [a, b].

In [3], the authors have obtained an estimation for the difference between the right term
of (1) and the integral of f as follows.

Theorem 1.1 Let f : I◦ ⊆ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with a < b. If
|f ′| is convex on [a, b], then the following inequality holds:

∣∣∣∣
∫ b

a
f (x) dx – (b – a)

f (a) + f (b)
2

∣∣∣∣ ≤ 1
8

(b – a)2(∣∣f ′(a)
∣∣ +

∣∣f ′(b)
∣∣). (2)

As we can see in Theorem 1.1, the estimation value is in connection with the absolute
value of the derivative of the considered function on the boundary points of the corre-
sponding interval [a, b]. In fact the striped area shown in Fig. 1, which is equivalent to the
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Figure 1 Trapezoid type inequality

Figure 2 Mid-point type inequality

difference between the area of trapezoid abcd and the area under the graph of f , is esti-
mated in (2) as well. Due to this geometric property, we call inequality (2) trapezoid type
inequalities related to the Hermite–Hadamard inequality.

Also in [4], the author obtained an estimation for the difference between the left term
of (1) and the integral of f :

Theorem 1.2 ([4]) Let f : I◦ ⊆ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with
a < b. If |f ′| is convex on [a, b], then we have

∣∣∣∣
∫ b

a
f (x) dx – (b – a)f

(
a + b

2

)∣∣∣∣ ≤ 1
8

(b – a)2(∣∣f ′(a)
∣∣ +

∣∣f ′(b)
∣∣). (3)

According to (3), the striped area shown in Fig. 2, which is in fact equivalent to the dif-
ference between the area under the graph of f and the area of rectangle abcd, is estimated.
Due to this geometric property, we call inequality (3) mid-point type inequalities related
to the Hermite–Hadamard inequality.

Now let us consider a point C = (a, b) ∈R
2 and the disk D(C, R) centered at the point C

and having the radius R > 0. The following inequality has been obtained in [2], which is
a Hermite–Hadamard inequality related to convex functions defined on the disk D(C, R)
in R

2.

Theorem 1.3 If the mapping f : D(C, R) → R is convex on D(C, R), then one has the in-
equality

f (C) ≤ 1
πR2

∫∫
D(C,R)

f (x, y) dx dy ≤ 1
2πR

∫
∂(C,R)

f (γ ) dl(γ ), (4)
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where ∂(C, R) is the circle centered at the point C = (a, b) with radius R. The above inequal-
ities are sharp.

Motivated by the above-mentioned works, we investigate the trapezoid and mid-point
type inequalities related to (4). We show that on a disk D(C, R), these kinds of estimations
have a relation with the integral of | ∂f

∂r | (in polar coordinates) on ∂(C, R), the boundary of
the disk D(C, R), provided that | ∂f

∂r | is convex with respect to the variable r ∈ [0, R].

2 Main results
The first result of this section is the trapezoid type inequality related to (4).

Theorem 2.1 Consider a set I ⊂ R
2 with D(C, R) ⊂ I◦. Suppose that the mapping f :

D(C, R) →R has continuous partial derivatives in the disk D(C, R) with respect to the vari-
ables r and θ in polar coordinates. If, for any constant θ ∈ [0, 2π ], the function | ∂f

∂r | is convex
with respect to the variable r on [0, R], then

∣∣∣∣ 1
2πR

∫
∂(C,R)

f (γ ) dl(γ ) –
1

πR2

∫∫
D(C,R)

f (x, y) dx dy
∣∣∣∣ ≤ 1

6π

∫
∂(C,R)

∣∣∣∣∂f
∂r

∣∣∣∣(γ ) dl(γ ). (5)

Proof For a constant θ ∈ [0, 2π ], if we consider

x(r) = a + r cos θ

and

y(r) = b + r sin θ ,

then we have ([ẋ(r)]2 + [ẏ(r)]2) 1
2 = (sin2(θ ) + cos2(θ )) 1

2 = 1, where ẋ, ẏ are the derivatives of
x, y, respectively, with respect to the variable r on [0, R]. So, by the use of integration by
parts, we have the following equalities:

∫ R

0

∂f
∂r

(a + r cos θ , b + r sin θ )r2 dr = r2f (a + r cos θ , b + r sin θ )
∣∣∣∣
R

0

– 2
∫ R

0
f (a + r cos θ , b + r sin θ )r dr = R2f (a + R cos θ , b + R sin θ )

– 2
∫ R

0
f (a + r cos θ , b + r sin θ )r dr. (6)

The integration of (6) with respect to θ on [0, 2π ] implies that

R2
∫ 2π

0
f (a + R cos θ , b + R sin θ ) dθ – 2

∫ 2π

0

∫ R

0
f (a + r cos θ , b + r sin θ )r dr dθ

=
∫ 2π

0

∫ R

0

∂f
∂r

(a + r cos θ , b + r sin θ )r2 dr dθ .
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Since | ∂f
∂r | is convex with respect to the variable r on [0, R] for any θ ∈ [0, 2π ], then

∣∣∣∣R2
∫ 2π

0
f (a + R cos θ , b + R sin θ ) dθ – 2

∫ 2π

0

∫ R

0
f (a + r cos θ , b + r sin θ )r dr dθ

∣∣∣∣
≤

∫ 2π

0

∫ R

0

∣∣∣∣∂f
∂r

∣∣∣∣(a + r cos θ , b + r sin θ )r2 dr dθ

=
∫ 2π

0

∫ R

0

∣∣∣∣∂f
∂r

∣∣∣∣
(

r
R

(a + R cos θ , b + R sin θ ) +
(

1 –
r
R

)
(a, b)

)
r2 dr dθ

≤
∫ 2π

0

∫ R

0

r3

R

∣∣∣∣∂f
∂r

∣∣∣∣(a + R cos θ , b + R sin θ ) dr dθ

+
∫ 2π

0

∫ R

0
r2

(
1 –

r
R

)∣∣∣∣∂f
∂r

∣∣∣∣(C) dr dθ

=
R3

4

∫ 2π

0

∣∣∣∣∂f
∂r

∣∣∣∣(a + R cos θ , b + R sin θ ) dθ +
πR3

6

∣∣∣∣∂f
∂r

∣∣∣∣(C). (7)

Now, consider the curve γ : [0, 2π ] →R
2 given by

γ :

⎧⎨
⎩

x(θ ) = a + R cos θ ,

y(θ ) = b + R sin θ ,
θ ∈ [0, 2π ].

Then γ ([0, 2π ]) = ∂(C, R), and we write (integrating with respect to arc length)

∫
∂(C,R)

∣∣∣∣∂f
∂r

∣∣∣∣(γ ) dl(γ ) =
∫ 2π

0

∣∣∣∣∂f
∂r

∣∣∣∣(x(θ ), y(θ )
)([

ẋ(θ )
]2 +

[
ẏ(θ )

]2) 1
2 dθ

= R
∫ 2π

0

∣∣∣∣∂f
∂r

∣∣∣∣(a + R cos θ , b + R sin θ ) dθ . (8)

From (7) and (8) we obtain
∣∣∣∣R2

∫ 2π

0
f (a + R cos θ , b + R sin θ ) dθ – 2

∫ 2π

0

∫ R

0
f (a + r cos θ , b + r sin θ )r dr dθ

∣∣∣∣
≤ R2

4

∫
∂(C,R)

∣∣∣∣∂f
∂r

∣∣∣∣(γ ) dl(γ ) +
πR3

6

∣∣∣∣∂f
∂r

∣∣∣∣(C). (9)

Also using the convexity of | ∂f
∂r | in (4) we have

∣∣∣∣∂f
∂r

∣∣∣∣(C) ≤ 1
πR2

∫ 2π

0

∫ R

0

∣∣∣∣∂f
∂r

∣∣∣∣(a + r cos θ , b + r sin θ ) dr dθ

≤ 1
2πR

∫
∂(C,R)

∣∣∣∣∂f
∂r

∣∣∣∣(γ ) dl(γ ). (10)

So by replacing (10) in (9) we obtain

∣∣∣∣R
∫

∂(C,R)
f (γ ) dl(γ ) – 2

∫ 2π

0

∫ R

0
f (a + r cos θ , b + r sin θ )r dr dθ

∣∣∣∣
≤ R2

3

∫
∂(C,R)

∣∣∣∣∂f
∂r

∣∣∣∣(γ ) dl(γ ). (11)



Rostamian Delavar et al. Journal of Inequalities and Applications        (2019) 2019:105 Page 5 of 8

Finally dividing (11) with 2πR2 we get

∣∣∣∣ 1
2πR

∫
∂(C,R)

f (γ ) dl(γ ) –
1

πR2

∫∫
D(C,R)

f (x, y) dx dy
∣∣∣∣ ≤ 1

6π

∫
∂(C,R)

∣∣∣∣∂f
∂r

∣∣∣∣(γ ) dl(γ ). �

Example 2.2 Consider the bifunction f (x, y) = R –
√

(x – a)2 + (y – b)2 defined on the disk
D(C, R). In polar coordinates we have that

f (a + r cos θ , b + r sin θ ) = R – r

for 0 ≤ r ≤ R, θ ∈ [0, 2π ] and specially f (a + R cos θ , b + R sin θ ) = 0 for all θ ∈ [0, 2π ]. So

∣∣∣∣ 1
2πR

∫
∂(C,R)

f (γ ) dl(γ ) –
1

πR2

∫∫
D(C,R)

f (x, y) dx dy
∣∣∣∣

=
1

πR2

∫∫
D(C,R)

f (x, y) dx dy =
1

πR2

∫ 2π

0

∫ R

0
(R – r)r dr dθ =

R
3

. (12)

On the other hand, it is not hard to see that | ∂f
∂r |(a+R cos θ , b+R sin θ ) = 1 for all θ ∈ [0, 2π ],

and so

1
6π

∫
∂(C,R)

∣∣∣∣∂f
∂r

∣∣∣∣(γ ) dl(γ ) =
R
3

. (13)

Then identities (12) and (13) show that inequality (5) is sharp.

The following result is the mid-point type inequality related to (4).

Theorem 2.3 Consider a set I ⊂ R
2 with D(C, R) ⊂ I◦. Suppose that the mapping f :

D(C, R) →R has continuous partial derivatives in the disk D(C, R) with respect to the vari-
ables r and θ in polar coordinates. If, for any constant θ ∈ [0, 2π ], the function | ∂f

∂r | is convex
with respect to the variable r on [0, R], then

∣∣∣∣ 1
πR2

∫∫
D(C,R)

f (x, y) dx dy – f (C)
∣∣∣∣ ≤ 2

3π

∫
∂(C,R)

∣∣∣∣∂f
∂r

∣∣∣∣(γ ) dl(γ ). (14)

Proof As we have seen in the proof of Theorem 2.1, for a constant θ ∈ [0, 2π ], if we con-
sider x(r) = a + r cos θ and y(r) = b + r sin θ , then we have ([ẋ(r)]2 + [ẏ(r)]2) 1

2 = 1. So from
fundamental theorem of calculus we have

∫ R

0

∂f
∂r

(a + r cos θ , b + r sin θ ) dr = f (a + R cos θ , b + R sin θ ) – f (C).

Hence

∫ 2π

0

∫ R

0

∂f
∂r

(a + r cos θ , b + r sin θ ) dr dθ

=
∫ 2π

0
f (a + R cos θ , b + R sin θ ) dθ – 2π f (C),
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which implies that

∫ 2π

0

∫ R

0

∂f
∂r

(a + r cos θ , b + r sin θ ) dr dθ =
1
R

∫
∂(C,R)

f (γ ) dl(γ ) – 2π f (C). (15)

Now from (15) we obtain
∣∣∣∣ 1
2πR

∫
∂(C,R)

f (γ ) dl(γ ) – f (C)
∣∣∣∣

≤ 1
2π

∫ 2π

0

∫ R

0

∣∣∣∣∂f
∂r

∣∣∣∣(a + r cos θ , b + r sin θ ) dr dθ .

Since | ∂f
∂r | is convex, then it follows that

∣∣∣∣ 1
2πR

∫
∂(C,R)

f (γ ) dl(γ ) – f (a, b)
∣∣∣∣

≤ 1
2π

[∫ 2π

0

∫ R

0

∣∣∣∣∂f
∂r

∣∣∣∣
(

r
R

(a + R cos θ , b + R sin θ ) +
(

1 –
r
R

)
(a, b)

)
dr dθ

]

≤ 1
2π

[∫ 2π

0

∫ R

0

r
R

∣∣∣∣∂f
∂r

∣∣∣∣(a + R cos θ , b + R sin θ ) dr dθ

+
∫ 2π

0

∫ R

0

(
1 –

r
R

)∣∣∣∣∂f
∂r

∣∣∣∣(C) dr dθ

]

=
1

4π

∫
∂(C,R)

∣∣∣∣∂f
∂r

∣∣∣∣(γ ) dl(γ ) +
R
2

∣∣∣∣∂f
∂r

∣∣∣∣(C). (16)

From the triangle inequality and (16) we get

∣∣∣∣ 1
πR2

∫ 2π

0

∫ R

0
f (a + r cos θ , b + r sin θ ) dr dθ – f (C)

∣∣∣∣
≤ 1

4π

∫
∂(C,R)

∣∣∣∣∂f
∂r

∣∣∣∣(γ ) dl(γ ) +
R
2

∣∣∣∣∂f
∂r

∣∣∣∣(C)

+
∣∣∣∣ 1
πR2

∫ 2π

0

∫ R

0
f (a + r cos θ , b + r sin θ )r dr dθ –

1
2πR

∫
∂(C,R)

f (γ ) dl(γ )
∣∣∣∣. (17)

Since | ∂f
∂r | satisfies the Hermite–Hadamard inequality (4), then

∣∣∣∣∂f
∂r

∣∣∣∣(C) ≤ 1
2πR

∫
∂(C,R)

∣∣∣∣∂f
∂r

∣∣∣∣(γ ) dl(γ ).

So, by replacing (5) and the inequality in (17) above, we obtain
∣∣∣∣ 1
πR2

∫∫
D(C,R)

f (x, y) dx dy – f (C)
∣∣∣∣ ≤ 2

3π

∫
∂(C,R)

∣∣∣∣∂f
∂r

∣∣∣∣(γ ) dl(γ ). �

Remark 2.4 If the functions f and | ∂f
∂r | are convex on D(C, R), then by the use of inequalities

(5), (14), and (4) we have

0 ≤ 1
πR2

∫∫
D(C,R)

f (x, y) dx dy – f (C) ≤ 2
3π

∫
∂(C,R)

∣∣∣∣∂f
∂r

∣∣∣∣(γ ) dl(γ )
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Figure 3 Comparison between the graph of f and the graph of it’s partial derivative with respect to the
variable r

and

0 ≤ 1
2πR

∫
∂(C,R)

f (γ ) dl(γ ) –
1

πR2

∫∫
D(C,R)

f (x, y) dx dy ≤ 1
6π

∫
∂(C,R)

∣∣∣∣∂f
∂r

∣∣∣∣(γ ) dl(γ ).

Example 2.5 There exists a function satisfying all the conditions of Remark 2.4 as well.
Consider the function f (x, y) = x2 + y2 with (x, y) ∈ R

2 defined on a disk D((0, 0), R). It is
clear that f (r, θ ) = r2 and | ∂f

∂r | = 2r, which is equivalent to f (x, y) = 2
√

x2 + y2 with (x, y) ∈R
2

defined on a disk D((0, 0), R). As we can see in Fig. 3, the functions f and | ∂f
∂r | are convex.
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