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Highlights 

� Electrochemical characterisation of nanoparticulate ZrO2-on-Au is investigated for flow-based analysis.  

� Electrochemical reversibility and 100% increase of effective surface area are achieved in ZrO2-Au. 

� LODs of ascorbic acid, 2,3-dihydroxybenzoic acid, and pyrocatechol are the lowest achieved to-date. 

� Stability of ZrO2-Au electrode in continuous-flow system is the highest reported to-date (8.5 hr). 

Graphical abstract 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT 

  | 2 

Abstract 

The modification of gold (Au) electrode using zirconium dioxide nanoparticles (ZrO2 NPs) has been investigated for enhanced 

electrochemical (EC) detection in flow-based analytical systems. The average size of ZrO2 NPs deposited in a facile procedure 

on the Au electrode surface was calculated as 22.5±7 nm. Redox behaviour of a test solute, ferrocyanide [Fe(CN)6]
4-

, on the 

bare- and ZrO2-Au electrodes was initially investigated using cyclic voltammetry. From the voltammograms of bare- and ZrO2-

Au electrodes, the EC reversibility values and effective surface area were experimentally determined for the first-time in this 

study. Further, EC reversibility and 100% increase in effective electrode surface area were confirmed in ZrO2-Au electrode 

through investigating the detection response (current). The EC performance of the ZrO2-Au electrode was then investigated 

in amperometric detection of selected electroactive solutes separated by reversed-phase HPLC. The limits of detection 

(LODs), based upon an injection volume of 10 µL for ascorbic acid, 2,3-dihydroxybenzoic acid and pyrocatechol were 0.09 

μM, 0.04 μM, and 0.10 μM, respectively (RSD 2.5 %, n= 9, r
2 

= 0.99 for concentration range 1-100 μM). These LODs for the 

ZrO2-Au electrode were 2-times lower for 2,3-DHBA, and pyrocatechol than the lowest LODs reported in the literature for EC 

detection in HPLC. The ZrO2-Au electrode demonstrated satisfactory repeatability of preparation, detection reproducibility 

and high stability (8.5 hr) during continuous-flow in FIA and 45 days during intermittent use with HPLC, at flow rate of 

0.6 mL min
-1

. This work has demonstrated a comprehensive EC characterisation of Au electrode with nanoparticulate ZrO2 for 

flow-based analytical systems. 
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2,3-DHBA 2,3-dihydroxybenzoic acid 

ACN  Acetonitrile 

AD  Amperometric detection 
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CV  Cyclic voltammetry    

EC  Electrochemical 

FC  Flow cell 

 [Fe(CN)6]
4-  

Ferrocyanide 

LODs  Limits of detection 

NMs  Nanomaterials 

NPs  Nanoparticles 

S/N  Signal-to-noise ratio 

SEM  Scanning electron microscopy 

TEM  Transmission electron microscopy 

WE  Working electrode 

ZrO2  Zirconium dioxide 

1. Introduction 

The use of nanomaterials (NMs) [1-7] as electrode surface modifiers for enhanced electrochemical (EC) detection, 

has become one of the hottest fields of research in electroanalytical chemistry. The increasing interest in NMs is 

driven by their unique chemical and physical properties [2, 8]. For example, metal NMs act as electrocatalysts by 

decreasing the overpotential of many EC reactions and increasing the electrical conductivity of modified surfaces by 

enhancement of faster transfer of electrons in EC analysis [2, 8, 9]. Kleijn et al. [10] also reported the use of NMs on 

electrode surface resulting in an increased rate of mass-transport to the electrode surface via the formation of 

diffusion layers above each NP or NPs agglomerates. These properties make them extremely suitable for augmenting 

the performance of EC detection in terms of larger effective surface areas and better EC response (in terms of peak 

current, EC reversibility, and EC conversion efficiency) [2], including when used within flow-based analytical 

platforms, such as flow injection analysis (FIA), capillary electrophoresis, and high-performance liquid 

chromatography (HPLC) [11, 12]. The most reported NMs used for electrode modification in flow-based analytical 

systems have been silver (Ag) [2], gold (Au) [2, 13, 14], nickel (Ni) [15, 16], platinum (Pt) [2], boron (B)-doped 
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diamond [17-19], iron (Fe) oxide-reduced graphene oxide [13, 20], and manganese (Mn) dioxide [2]. These materials 

are widely used due to their high electrical conductivity (Ag > Au > Ni > Fe > Pt > Mn > B [21]) as well as due to the 

inert properties.  

The drawbacks associated with the use of NMs for conventional or disposable electrode modification process 

include time consuming multiple steps in modification techniques such as electrodeposition [13, 16] and sol-gel 

processes [22, 23], the requirement of polishing the electrode surface before modification [13, 14, 24], the use of 

reagents to enhance the porosity of the electrode surface [25], the requirement of technical skills for modification 

[13, 16, 22, 23], and the limited stability of the modified electrode surface, usually 5-7 days [26, 27]. Most recent 

reports on the preparation and/or modification of electrodes with NMs have drawbacks such as use of large 

quantities of NMs (e.g. ca. 965 mg in [24]) together with expensive modification techniques [7, 13-17, 22, 23, 25]. 

Further, to-date the EC reversibility, effective surface area, and stability of the NMs modified-electrode surface in 

continuous-flow has not been experimentally investigated [7, 28], and the often limited stability of modified-

electrode surfaces [26, 27] significantly hinders the potential of using modified-electrodes in flow-based analytical 

systems [7, 13, 28-30]. Therefore, the integration of disposable electrodes with flow-based analytical systems 

requires accurate characterisation of bare and modified surface areas in terms of current, EC reversibility, effective 

surface area, and stability of the modified-electrode surface in continuous-flow as well as intermittent use within an 

analytical platform.  

In this context, zirconium dioxide nanoparticles (ZrO2 NPs) have been reported in the literature as electrocatalyst [9, 

28, 30-38] for use in EC techniques in stopped-flow mode such as cyclic voltammetry (CV), linear sweep 

voltammetry, and differential pulse voltammetry , particularly due to the ZrO2 NPs’ stability upon the modified 

electrode surface [28, 30, 34], good electrical conductivity (Pt > Zr > Mn [21]), high strength and resistance to 

fracturing, high melting point, low thermal conductivity and high corrosion resistance, as well as the fact that the 

ZrO2 NPs are non-toxic [28, 37]. In 2017, Mohammadizadeh et al. [28] reported ZrO2 NPs-modified porous graphite 

surfaces with a better EC response for the determination of propranolol using CV, LSV, and DPV. In 2015, Gholivand 

et al. [38] proposed a new electrode composed of a ZrO2 NPs carbon-paste electrode modified with 3-(4′-amino-3′-

hydroxybiphenyl-4-yl)-acrylic acid for the determination of hydrazine in aqueous solutions using CV. In 2013, 

Mazloum-Ardakani et al. [9] prepared a mobil crystalline material/ZrO2 NPs-modified carbon-paste electrode that 

required no additional electron transfer mediator or reagent, for simultaneous and selective CV determination of 
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epinephrine and acetaminophen. Some interesting applications of ZrO2 NPs in different research fields have been 

reported such as their use as catalysts in gas-sensing, use in photocatalysis, wastewater treatment, and as stable 

column packing materials for elevated temperatures [28, 32-35]. However, to-date there have been no reports of 

using ZrO2 NPs-modified electrodes for EC detection in analytical flow techniques (such as HPLC and FIA). The use of 

low-cost ZrO2 NPs to modify disposable electrodes [22, 39] can be beneficial in terms of a rapid modification process 

(approx. 10 min) for the formation of the porous electrode surface that can provide a larger electro-active surface 

area for an enhanced EC response (current) [9, 28, 30, 38] and facilitate reversible (Nernstian) EC reaction [28, 40, 

41]. In addition, the use of ZrO2 NPs can increase the stability and corrosion resistance [28, 37] properties of the 

electrode in flow-based analysis.  

Therefore, the aim of this study was to investigate EC detection using disposable Au electrode modified with ZrO2 NPs 

(termed here as ZrO2-Au) within flow-based analytical systems. We also aimed to demonstrate the enhanced EC performance 

using CV in terms of peak current, resulting EC reversibility and effective surface area. Additionally, we demonstrated 

enhanced amperometric response (current) using the disposable ZrO2-Au electrode with a miniaturised EC detector coupled 

to an HPLC for detection of electroactive analytes including ascorbic acid (considered as an antioxidant [42]), 2,3-

dihydroxybenzoic acid (2,3-DHBA, a biological marker for the detection and quantification of OH
•
 radicals [43]), and 

pyrocatechol (a possible human carcinogen classified by International Agency for Research on Cancer (IARC) [44]). The 

stability test of ZrO2-Au electrode is also investigated for continuous-flow in FIA and intermittent use in HPLC. 

2. Experimental 

2.1 Chemicals 

Analytical grade standards and reagents were used in this study. These were potassium ferrocyanide trihydrate 

(K4Fe(CN)6.3H2O, Ajax, Australia), potassium chloride (KCl, Sigma-Aldrich, Sweden), ascorbic acid, 2,3-

dihydroxybenzoic acid (2,3-DHBA), pyrocatechol, citric acid, sodium citrate dihydrate (Sigma-Aldrich, USA), 

acetonitrile (ACN, 99.8% HPLC grade, VWR, Australia), and milli-Q water (Millipore, USA). HPLC grade solvents were 

used for all separations. All test solutes and mixtures were freshly prepared in ACN and citrate buffer which was 

used as HPLC mobile phase. The suspension of ZrO2 NPs (10 wt. % in H2O, Sigma-Aldrich, USA) was used for preparation of 

ZrO2-Au electrode. 
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2.2 Instrumentation 

A simple CV platform was assembled using a uProcess (LabSmith™, USA) microfluidic system. The platform 

consisted of two programmable microsyringe pumps (model: SPS01) with 100 μL glass syringes, one four port valve 

(‘L’ pattern flow, and a two-position switching valve, model: AV201-C360). All pumps and switching valves were 

connected via PEEK tubing (Polyether ether ketone, 150 μm i.d., 360 μm o.d.) on a uProcess™ Breadboard. The 

software uProcess™ was used for controlling the various components and the volumetric flow rate of the 

microsyringe pumps [45]. A polyimide coated fused silica capillary (100 μm i.d., 360 μm o.d., length 7 cm, 

TSP100375, Polymicro Technologies™, USA) was used to connect the switching valve and the EC detector gap flow 

cell (gap-FC) [12]. The full instrumental scheme is shown in the SI (see Error! Reference source not found.). 

The HPLC (Alliance Waters 2690, Waters, USA) consisted of an injector valve (SM4, Waters, USA), a thermostatted 

reversed-phase (RP) column (YMC Pac Pro C18, length 25 cm x i.d. 4.6 mm, pore size 5 μm, YMC Co. Ltd, Japan), and 

an UV detector (model: 996 PDA detector, path length: 10 mm, cell volume: 8 µL, Waters, USA). The HPLC was 

operated by Empower software (Waters, USA). The gap-FC was coupled to HPLC as illustrated in SI Error! Reference 

source not found.. In UV detector, we have observed a higher signal (peak height) at 254 nm for ascorbic acid, and 

at 280 nm for 2,3-DHBA, pyrocatechol, and dopamine. Therefore, we used both 254 nm and 280 nm for UV 

detection in this study. 

The EC detection in both CV and HPLC configurations was performed using the commercially available screen-

printed electrodes of dimensions: length 25.40 x width 7.26 x height 0.63 ± 0.05 mm (model: sensor AC1W2RS, BVT 

Technologies, Czech Republic). The electrode consisted of a Au working electrode (diameter: 2 mm), a Ag reference 

electrode, and a Pt auxiliary electrode. Further details of electrode materials and fabrication can be found in recent 

reviews by Li et al. [39] and Couto et al. [22]. A potentiostat (model ER466CE, eDAQ Pty Ltd, Australia) was 

connected to the gap-FC and operated with eDAQ software (eDAQ Pty Ltd, Australia) to perform EC detection. 

Transmission electron microscopy (TEM, model: HT7700, Hitachi, Japan) and scanning electron microscopy (SEM, 

model: Hitachi SU70, Hitachi, Japan) were utilised for characterising the modified electrode surface in terms of size 

distribution and morphology of ZrO2 NPs in this study. 
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2.3 Modification of electrode 

The bare-Au surface was rinsed thoroughly with water and dried with inert nitrogen gas. The surface of the Au was coated 

with 10 μL aliquot of the filtrated ZrO2 NPs/H2O suspension (10 wt. % in H2O) and the solvent was allowed to evaporate for 

approx. 10 min at room temperature 20 °C. The ZrO2 NPs were attached to the electrode surface by physical adsorption (i.e. 

weak Van der Waals forces) [46]. 

2.4 ZrO2 NPs size distribution 

The TEMs of ZrO2 NPs (see SI Error! Reference source not found.) and SEMs of bare- and ZrO2-Au electrodes surface 

(see SI Error! Reference source not found.) are given in SI. The histogram illustrated in SI Error! Reference source 

not found. shows a Gaussian distribution of size (diameter) of ZrO2 NPs. The mean diameter of ZrO2 NPs was 

calculated to be 22.5±7 nm using a Gaussian model (Origin 2016, OriginLab Corporation, USA) from the histogram. 

The resulting 22.5±7 nm diameter of ZrO2 NPs confirmed that the agglomeration effect of ZrO2 NPs from the 

ZrO2/H20 suspension on Au surface was insignificant. The porosity, as defined in [47, 48], was calculated by 

measuring particle density [49] and bulk density of ZrO2 NPs [50] (approx. 94.5 %, for detail calculation see SI 

section Error! Reference source not found.). The formation of porous surface by the ZrO2 NPs was also observed in 

SEM (see SI Error! Reference source not found.). 

3. Results and discussions 

Initially, CV was performed to study the EC behaviour of species involved in redox (reduction and oxidation) 

reactions at electrodes [51]. From voltammograms of bare- and ZrO2-Au electrodes, the peak current, EC 

reversibility, and effective surface area are compared in the following section. This investigation was undertaken 

prior to demonstrating the analytical application of ZrO2-Au electrode in FIA and HPLC for enhanced EC detection of 

target solutes. The AD in FIA and HPLC was performed under optimised conditions reported in Islam et al. [12], with 

a flow rate of 0.6 mL min
-1

, capillary i.d. 100 μm (UV-gap FC), and a gap distance (capillary outlet-electrode) of 30 

μm. Additionally, the optimised applied potential +800 mV was obtained for ZrO2-Au electrode in terms of signal-to-

noise (S/N, see SI Error! Reference source not found.). 

3.1 Cyclic voltammetry 

The peaks response (current) for the EC redox behaviour of potassium ferrocyanide at bare- and ZrO2-Au electrodes 

are shown in Fig.  1. The redox peak currents of ±50 μA at ±160 mV obtained for the bare-Au, which were ca. 100% 
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increased to ±100 μA at ±185 mV for ZrO2-Au electrode with the same scan rate of 700 mV s
-1

. In our study, the use 

of ZrO2 NPs on Au electrode increased the electrical conductivity of modified surfaces via faster transfer of 

electrons. We also attribute this increase of peak current to the formation of a porous electrode surface that 

increased the electro-active surface area, and facilitated reversible (Nernstian) EC reaction [28, 40, 41]. 

EC reversibility can be achieved when the redox reaction is at equilibrium, no side reactions take place and electron 

transfer kinetics are fast to keep the surface concentrations of redox-active species at certain values expected by 

the Nernst equation [40]. Nie et al. [40] suggested EC reversibility as the difference in peak potentials as shown in 

equation 1. 

��� =	��� − ��� =
	


�
	   (1) 

where, ���  (in mV) = difference in peak potentials, ���= anodic peak potential, and ���= cathodic peak potential, 

and �= the number of electrons transferred. 

From equation 1, the complete EC reversibility can be achieved when ���= 59 mV (when, �= 1 in this study). We 

observed ��� and ���  from Fig.  1 and calculated ���  of [Fe(CN)6]
4-

 for bare- and ZrO2-Au electrodes as ca. 10 mV 

and 59 mV, respectively (where, � = 1) by employing equation 1. This evaluation of peak potentials shows that a 

complete EC reversibility was achieved by using ZrO2-Au electrode (where, ���  = 59 mV). We attribute the increase 

of ���  values from 10 mV to 59 mV by using ZrO2 NPs for the formation of porous electrode surface. 
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Fig.  1. The cyclic voltammogram of 100 μM [Fe(CN)6]
4-

 in 0.1 M KCl at a scan rate 700 mV s
-1

 for bare- and ZrO2-Au electrodes. The 

voltammogram for the EC redox reaction of [Fe(CN)6]
4-

 was investigated from -1 V to 1 V at scan rates 10-800 mV s
-1

 (see SI Error! 

Reference source not found.). Two overlaid cathodic peaks were observed due to the presence of impurities in KCl (see further 

explanations of overlaid cathodic peaks in SI Error! Reference source not found.). 

In the reversible redox analysis, we observed the different peak current at bare- and ZrO2-Au electrode for same 

geometrical surface area of electrode (ca. 2 mm
2 

in this study). Therefore, the effective surface area [52, 53] of 

bare- and ZrO2-Au electrodes were calculated using the Randles-Sevcik equation (equation 2) [25, 54-56] for a 

reversible redox analysis. 


� = 269	���
�
�� �

�
�� �

�
��     (2) 

where, 
� = peak current [A], � = effective surface area [mm
2
], � = concentration [mM], � = diffusion coefficient 

[cm
2 

s
-1

], and � = potential scan rate [V s
-1

]. 

The peak current for the EC redox reaction of [Fe(CN)6]
4-

 was investigated over a wide range of potential scan rates 

from 10 to 800 mV s
-1

 (see SI Error! Reference source not found.). The anodic peak currents reflected the oxidation 

of [Fe(CN)6]
4-

 to [Fe(CN)6]
3-

, and were measured at +160 mV. The plots of current vs. square root of scan rate for 

both bare- and ZrO2-Au electrodes are illustrated in Fig.  2. 

 

Fig.  2. Anodic peak current of 100 μM [Fe(CN)6]
4-

 in 0.1 M KCl for bare- and ZrO2-Au electrodes. Conditions: peak current measured at +160 

mV and potential scan rate ranging from 10 to 800 mV s
-1 

(n= 3). At zero scan rate, charging current resulting from the double layer effects 

[57, 58] was observed during the measurement. 
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The resulting peak current for the reversible redox analysis can be defined by Equation 2. According to the equation, 

the magnitude of peak current has a linear dependence on the concentration of the test solute and the square root 

of the potential scan rate. Here, a linear fit with � equal to slope/269��
�
�� �

�
��  was obtained [25] for the test 

solute, 100 μM [Fe(CN)6]
4
. � was calculated to be 135 mm

2
 and 270 mm

2
 for bare- and ZrO2-Au electrodes, 

respectively (where, slope (
� [A]/�
�
�� [V s

-1
])= 0.0001 for bare-Au and 0.0002 for ZrO2-Au electrode in Error! 

Reference source not found., �= 100 μM (i.e., 0.1 mM) [Fe(CN)6
4-

], n= 1, and diffusion coefficient, �
�
�� = 0.0027 cm

2 

s
-1

 [25, 54-56]). The results obtained for the ZrO2-Au electrode indicates a 100% increase of �	which is due to the 

presence of ZrO2 NPs on the surface of the Au. Importantly, the changes in effective surface area of using modified 

electrode is experimentally determined for the first time amongst the reported EC detection studies to-date [9, 28, 

38]. This investigation also showed the resulting current obtained in EC detection is influenced by the effective 

surface area rather than the geometrical surface area of electrode. The comparison between voltammograms of 

bare- and ZrO2-Au electrode (see Fig.  1 and Error! Reference source not found.) demonstrates the beneficial effect 

of ZrO2 for the enhanced EC response of target solutes (such as ascorbic acid, 2,3-DHBA, and pyrocatechol in this 

study) by minimising the capacitance of double layer [59, 60] (see SI section 3.2). These characterisations can be 

beneficial specially for miniaturised flow-based analytical systems (such as µFIA-EC and capillary-LC-EC, see our 

previous work [12]), where ZrO2-Au can provide enhanced EC signal (current) to overcome the limitations of 

measuring effective cell volume and EC conversion efficiency, when flow rate < 0.1 µL min
-1

. 

3.2 HPLC-UV-EC 

In this study, the analytical application of ZrO2-Au electrode was investigated for enhanced EC detection of test 

solutes, namely ascorbic acid, 2,3-dihydroxybenzoic acid and pyrocatechol. Under optimised conditions, the 

chromatograms of test solutes using ZrO2-Au electrode in HPLC are illustrated in Fig.  3. The calibration curves for 

both UV and EC detection were plotted using peak heights for each solute (see SI Error! Reference source not 

found.). There was a significant difference observed in the limits of detection (LODs) obtained using UV and EC 

detection. The LOD values from EC detection were approx. 4-49 times lower than those obtained with UV detection 

at 254 nm and 280 nm. The LODs obtained for the AD using the ZrO2-Au electrode were 0.09 μM, 0.04 μM, and 0.10 

μM for ascorbic acid, 2,3-DHBA, and pyrocatechol, respectively (see Table 1, n= 9, determination coefficient r
2
= 0.99 

for 1-100 μM). Furthermore, the LODs obtained using the ZrO2-Au electrode in a HPLC-EC system are comparable 
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with the lowest reported for EC detection in flow-based analytical systems. The calculated LODs are about 2-times 

lower than the lowest reported LODs in our previous work [12] for 2,3-DHBA, and pyrocatechol as illustrated in 

Table 1. In this study, we observed 95 to 180-times improvement of current at 800 mV while comparing the 

voltammograms of solutes (ascorbic acid, 2,3-DHBA, and pyrocatechol, see SI Error! Reference source not found.) 

using bare- and ZrO2-Au electrode. The results from Table 1 also provide a significant reduction (ca. 3-times) of the 

baseline noise and enhanced peak efficiency ca. 4-8% compared to reported EC detection in flow-based analytical 

systems [12] for all solutes, namely ascorbic acid, 2,3-dihydroxybenzoic acid and pyrocatechol. 

The Student’s �-test and �-test were conducted to express confidence intervals of LODs in our study compared with 

HPLC-AD work reported by Pluangklang et al. [61]. The value of �-test and �-test were calculated using the 

equations (see SI section Error! Reference source not found.) given by Harris [34]. The calculated confidence level 

ranged from 90 to 95% for 2,3-DHBA, and pyrocatechol. The �-test resulted two standard deviations are 

significantly different for 2,3-DHBA (where, �calculated 4.3 > �table 3.39), however the difference is insignificant for 

pyrocatechol (�calculated 3.09 < �table 3.39). 

The performance of gap-FC in terms of peak asymmetry, peak efficiency and peak FWHM were also compared with a UV 

detector in this platform (see Table 1). The delay time between chromatograms for UV and EC detection in this study were 

4.9-5 s, the peak efficiency decreased 1.5-6% in EC detection and approx. 2.5% peak broadening was also observed for the EC 

detector. We attribute these insignificant differences in peak efficiency and broadening in EC detector due to the connecting 

pathways [62], geometry [63] and effective volume of the FC [34]. EC detection in our previous studies also reported minor 

differences in peak efficiency and broadening compared to the UV detection [12]. 
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Fig.  3. Chromatograms showing separations of ascorbic acid, 2,3-DHBA, and pyrocatechol using a HPLC (a. UV detection, and b. EC 

detection). Conditions: mobile phase (v/v= 60:20:20): ACN: water:25 mM citrate buffer (pH 3.5), elution: isocratic, flow rate: 0.6 mL min
-1

, 

sample injection volume: 10 µL, HPLC column (injector-UV detector): YMC Pac Pro C18 reversed-phase column (length: 25 cm, i.d: 4.6 mm, 

particles size: 5 μm), column oven temperature: 25 
o
C, pressure: ca. 1050 psi (73 bar), capillary (UV-gap-FC) i.d: 100 μm (length: 7 cm), gap 

distance: 30 μm, WE: ZrO2-Au, potential: +800 mV. UV absorbance wavelength: 254 nm (see SI Error! Reference source not found.) and 

280 nm. 
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Table 1. Comparison of the analytical performance of EC and UV detection in a HPLC. * 

Detector 

(WE) 

Analyte Void  

Volume 
a
 

[mL] 

Peak 

asymmetry 

factor 
b
 

Peak efficiency  

(plate number
 c
/ 

column length)  

[N m
-1

] 

Peak 

FWHM 

[min] 

Baseline 

noise (SD)  

  

 

LOD 
d
 

[μM] 

RSD 

[%] 

 

 

Sensiti

vity 
e
 

 

Ref. 

UV Ascorbic acid 0.1 1.1-1.3 39900-62000 0.12-

0.16 

0.07 [mAU] 

(254 nm) 

0.05 [mAU] 

(280 nm) 

0.37 1.1-

4.8 

1.9 This 

work 2,3-DHBA 0.83 0.6 

Pyrocatechol 4.90 0.1 

EC  

(Pt) 

Ascorbic acid - 1.0-1.2 

 

 36000-55500 0.10-

0.13 

0.5 [nA] 0.10 1.3-

4.9 

15.9 [12] 

 2,3-DHBA 0.09 17.8 

Pyrocatechol 0.20 8.1 

EC  

(ZrO2-Au) 

Ascorbic acid - 1.2-1.3 

 

39300-58000 0.09-

0.13 

0.16 [nA] 0.09 1.6-

2.8 

5.5 This 

work 2,3-DHBA 0.04 13.4 

Pyrocatechol 0.10 5.1 

*
 Solvent (v/v): 25 mM citrate buffer, pH 3.5:ACN (20:80), flow rate: 0.6 mL min

-1
, and applied potential: 800 mV. 

a
 Void volume calculated by multiplying flow rate and the elution time for mobile phase or unretained solute when the first baseline 

disturbance is observed [34].  

b
 Peak asymmetry factor, �� =

��
��

, where  ! is the distance from the peak midpoint (perpendicular from the peak highest point to baseline) 

to the trailing edge of the peak and  " is the distance from the leading edge of the peak to the peak midpoint measured at 10 % of peak 

height [34].  

c
 Plate number, #� = 5.54	(

(�
�) *⁄

)�, where �! is retention time and  - �⁄  is width of the peak at half height [34].  

d 
LODs were calculated by dividing the three-times of standard deviation (SD) of a blank response (noise level) by the slopes of the 

corresponding calibration curves [34]. In UV detection, LODs calculated at 254 nm for ascorbic acid and 280 nm for 2,3-DHBA, and 

pyrocatechol. 

d 
Sensitivity was calculated from 0.1 to 100 µM in this study (0.5-100 µM in our previous work [12]). The sensitivity units are mAu µM

-1
 (UV 

detection) and nA µM
-1 

(EC detection). 

3.3 Stability tests  
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The stability of the ZrO2-Au electrode surface was tested in FIA and HPLC at room temperature (ca. 20 
o
C). In the FIA 

platform (see Fig.  4), 100 μM of 2,3-DHBA was continuously injected at flow rate 0.6 mL min
-1 

(50 injections, with 

10 min analysis time per injection). It was observed that the ZrO2-Au electrode was stable for 8.5 hr at 0.6 mL min
-1

 

(RSD ca. 2.6%) in continuous-flow. Most EC measurements reported stability of modified electrodes ranging ca. 5-7 

days [26, 27]. However, there are no reports on stability of modified electrodes when used in continuous-flow 

modes such as in FIA to date. The analysis time reported in EC detection in continuous flow modes using FIA ranged 

up to ten minutes [11, 64]. As our measured stability of the modified electrode was significantly higher than those 

reported in previous studies [11, 64], we did not continue the stability test in continuous mode beyond 8.5 hours in 

FIA. 

 

Fig.  4. Stability test of ZrO2-Au electrode (a) continuous-flow in FIA and (b) intermittent use with HPLC. Conditions (a): solute: 100 μM 2,3-

DHBA, mobile phase (v/v= 60:20:20): ACN:water:25 mM citrate buffer (pH 3.5), elution: isocratic, flow rate: 0.6 mL min
-1

, sample injection 

volume: 1 µL, capillary (UV-gap-FC) i.d: 100 μm (length: 7 cm), gap distance: 30 μm, WE: ZrO2-Au, potential: +800 mV. Conditions (b): same 

conditions for 2,3-DHBA in Fig.  3. The modified electrodes were stored at room temperature (ca. 20 
o
C) in an air-tight container with silica 

beads supplied by vendor during intermittent use of the electrodes with HPLC (up to 45 days). 

The reproducibility of stability achieved via FIA as shown in Fig.  4a was translated to HPLC experiments by repeating 

the injection of the 2,3-DHBA 5 times each on 3 different days (day 1, day 30, and day 45) and is illustrated in Fig.  

4b. The resulting sensitivity 13.35 nA μM
-1 

(RSD 2.7%) shows the stability of ZrO2-Au electrode was 45 days in the 

HPLC. The demonstrated stability of ZrO2-Au electrode in a flow-based analytical platforms is the highest amongst 

the modified EC sensors reported [26, 27] to-date.  
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3.4 Real sample analysis  

To demonstrate the applicability of the ZrO2-Au electrode to real sample analysis, tap water from chemistry 

laboratory and river water samples obtained from the Derwent River (Hobart, Australia) were spiked with ascorbic 

acid, 2,3-DHBA, and pyrocatechol. Then, amperometric current of real samples at the ZrO2-Au electrode in HPLC 

were recorded under optimized conditions. The results are summarized in Table 2 and the calculated recovery 

values were in the range of 98-102.5%. Therefore, the ZrO2-Au electrode can be applied for practical and low-cost 

analysis of target solutes in water using flow-based analytical system. 

Table 2. Determination of ascorbic acid, 2,3-DHBA, and pyrocatechol in real water samples (n= 3). 

 

Solutes  

Added 

[μM] 

Tap water River water 

Found 

[μM] 

Recovery 

[%] 

Found 

[μM] 

Recovery 

[%] 

Ascorbic acid 0.5 0.49 ± 0.03 98 0.49 ± 0.03 98.7 

1 1 ± 0.03 99.6 1 ± 0.04 100.3 

5 5.07 ± 0.04 101.3 5.07 ± 0.03 101.5 

2,3-DHBA 0.5 0.5 ± 0.03 99.3 0.5 ± 0.01 99.7 

1 1 ± 0.02 99.6 1.01 ± 0.02 100 

5 5.02 ± 0.04 100.4 5.04 ± 0.03 100.7 

Pyrocatechol 0.5 0.49 ± 0.02 98.7 0.5 ± 0.01 100 

1 1.01 ± 0.02 100.7 1.02 ± 0.02 101.7 

5 5.09 ± 0.08 101.8 5.12 ± 0.03 102.5 

4. Conclusions 

In this study, a comprehensive EC characterisation of Au electrode with nanoparticulate ZrO2 is investigated for flow-based 

analytical systems. Voltammograms show that ZrO2-Au electrode provides faster electron transfer rates, with current and 

effective surface area increased by approx. 100% compared to the bare-Au, for enhanced redox abilities towards the test 

solute. We demonstrate the use of ZrO2 NPs-modified electrodes for EC detection in flow-based analytical systems including 

HPLC and FIA for the first time. Using AD in HPLC, we obtained LOD values for the test solutes (2,3-DHBA, and pyrocatechol) 

which were approx. 2 times lower than reported LODs to-date. The results provided ca. 3 times reduction in baseline noise 

compared to previously reported EC detection. Moreover, the ZrO2-Au electrode demonstrated good repeatability, 
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reproducibility, and stability for 8.5 hr in continuous-flow in FIA and 45 days during intermittent use with HPLC at flow rate of 

0.6 mL min
-1

. 
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