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Abstract

This paper presents a new method based on iterative improvement to generate the random microstructure of continuous fibre rein-
forced composite with high fibre volume fraction (up to 70%), overcoming the jamming limit of the traditional Random Sequential
Adsorption(RSA) method. The novelty of the proposed method lies in an iterative improvement of the generated microstructure
through separating initially randomly set positions of the fibres. Without complex heuristic steps, this algorithm can generate dif-
ferent fibre distributions with fast speed and great simplicity. The offset magnitude of the separation process is adjusted according
to fibre volume fractions to speed up the generation. Statistical analysis is then performed on the generated fibre distribution. Five
descriptors including Voronoi Polygon Area, Nearest Neighbour Distances, Nearest Neighbour Orientation, Ripley’s K Function
and Pair Distribution Function are used to compare the proposed algorithm and the RSA with completely spatial random (CSR) dis-
tribution for both short and far distances. Fibre distributions generated by this new algorithm are proved to have good randomness.
An FEA example is also presented to predict the effective elastic property of the carbon fibre epoxy composites, and a reasonable
agreement with the experimental result is achieved. The proposed algorithm provides a useful tool to generate micromechanical
models that can be used to predict and understand the mechanical behaviour of fibre reinforced composites.

Keywords: microstructure, statistics, elastic properties, random representative volume element

1. Introduction

Fibre reinforced composites (FRC), due to their high spe-
cific strength and stiffness, are widely used in many different
industries such as aeronautics, automobile, maritime etc[1]. In
the structure design process, it is important to obtain accurate
properties of the composite material. Experimental methods are
the most traditional and important ways to achieve this, which
however will cost a large number of resources. The prediction
methods based on micromechanical analysis appear as a good
alternative. Thanks to the development of computing technol-
ogy, the mainstream of predictions are based on one of the nu-
merical methods called finite element analysis with a represen-
tative volume element (RVE). Therefore, the generation of the
RVE model for FRC has been recognised as a valuable topic to
research. The RVE is normally built as a rectangle or square
area, the size of which can neither be too large nor too small.
A large RVE requires much time and resource for computation,
which is not economical or even possible to calculate. While
a small RVE could not be representative to reflect the macro-
scopic property of the composite. Upon this issue, Trais et al.[2]
reported the minimum size δ should be 50× fibre radius when
fibre volume fraction is over 50%.
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The spatial arrangement of fibre is also an important issue
to affect the mechanical property of the composite. In the early
day’s analysis of composites material, the spatial arrangement
usually was considered as regular and periodic for simplicity.
However, such models with regular spatial arrangement suffer
many limitations. Trias et al.[3] compared the stress/strain dis-
tributions of periodic and real spatial models under a transverse
tensile load. He found that periodic models predicted poorly on
properties related to damage and failure. Gusev et al.[4] pointed
out the randomness of the composite material microstructure
had a great influence on the transverse composite elastic con-
stants. Pyrz[5] concluded that in polymer matrix composite,
the type of spatial pattern had a significant impact on the over-
all failure stress. Therefore, for more accurate predictions, the
micromechanical model should take into account the stochastic
nature of the real fibre distribution.

The actual spatial distribution is very different from periodic
and highly depends on the manufacturing process[6]. To cap-
ture the irregular spatial distribution of fibres within a compos-
ite microstructure, the general approach is to develop a statis-
tically equivalent RVE (SERVE). A SERVE is the smallest re-
gion of a generated microstructure which exhibits the same ef-
fective stress-strain behaviour as the overall composite[7]. Ran-
dom sequential adsorption(RSA) method, also called hard-core
method is the most direct way to generate SERVE. In this method,
by searching one disk after another is randomly positioned into
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a position without overlapping with any previous disks until the
coverage is satisfied. However, due to its poor space utilisation,
RSA is subjected to a relatively low jamming limit. For circular
disks, the jamming occurs around coverage of 54.7%[8] which
is lower than the maximum volume fraction of typically achiev-
able in fibre composites. Therefore, many new approaches have
been developed for higher fibre volume fraction.

Previous methods generally can be classed into two types.
The first type is to generate a new distribution by perturbations
of the original RSA or periodic configuration. Wongsto[9] pro-
posed an algorithm that generates microstructure by disturb-
ing an initially hexagonal array. A.R.Melro et al.[6] developed
a faster method by processing two heuristics after the RSA
model. Zhang et al.[10] âs method disturbed the initial peri-
odic distribution by the eccentric collision algorithm. Zhu et
al.[11] invented a new perturbation algorithm initialised with
a model where fibres tangent to each other. These types of
methods have problems such as time-consuming and complex
to realise. The other type of methods can be named as random
sequential expansion(RSE), such as Yang et al.[12]. The main
idea is to generate the distribution from a central area and ex-
pands one by one until filling the overall area. This type of
methods has a great advantage since it can control the process
of fibre generation from the beginning to the end so that it is
very suitable to perform statistical reconstruction, which refers
to generating distribution with the same geometric feature as
the experimental samples. McCarthy et al.[13] conducted com-
bined experimental-numerical research and proposed the near-
est neighbour algorithm (NNA), generating the distribution based
on the nearest neighbour distribution of the samples. Later on,
Wang et al.[14] improved the NNA algorithm by introducing
the probability equation and the frequency updating equation
so that it enabled a closer representation of the realistic fibre
distribution. Still, some disadvantages exist such as hard to
guarantee the same appearance probability everywhere in the
RVE, the fibres gather in the centre area as the RVE window is
not fully filled.

All methods mentioned above discarded any situations of
overlapping throughout the generation process, which however
rejected many potential solutions in the search spaces. Instead,
if we start from an arbitrary spatial arrangement and improve
the overlappings gradually, it will take less time to find a solu-
tion. Following this idea, we provide a new method to generate
random fibre distribution based on the iterative improvement al-
gorithm. By setting parameters optimally, this new algorithm is
proved to be very efficient to generate spatial arrangement with
high fibre volume fraction(up to 70%). The algorithm is pre-
sented in section 2 and the microstructures generated are anal-
ysed with statistic descriptors to demonstrate the randomness in
section 3. Finally, as an example, the finite element analysis is
implemented to predict the elastic properties of the generated
RVE, and the result is compared with the experimental data to
show the efficacy of the model in section 4.

2. Algorithm Development

Before we proceed to present the algorithm, three assump-
tions were made on the microstructure: (1) the object window is
considered as a square area (a2); (2) the fibre as circular disks
with uniform radius r f ; (3) the interface area between matrix
and fibre is ignored. Therefore, the task can be seen as gener-
ating numbers of circles with a coverage of φ f inside a square
area, and the distribution of circles should have high-quality
randomness so that it can represent the real situation in the FRC.

This new algorithm solves the task by iterative improve-
ments, the general idea of which can be summarised as (1) de-
fine the initial state and the objective state (2) update the state
iteratively until it reaches the objective state. The initial state of
this algorithm is set to be a number of completely spatial ran-
dom positioning circles. In the objective state, none intersection
between circles exists and the coverage φ f should be satisfied,
which can be expressed as Eq.1√

(xi − x j)2 + (yi − y j)2 ≥ 2r f + lmin∀i, j ∈ Ni , j

N∑
i=1

Ai = φ f a2
(1)

Where, xi, yi are the position coordinates, lmin is the minimum
distance between fibres which can be adjusted to change the
fibre distribution and mitigate mesh difficulties of the FEA in
case of high fibre volume fraction. Numerical experiment shows,
in our algorithm it would be more efficient to separate numbers
of circles at once rather than introducing and separating them
one by one. Therefore, the number of fibre should be estimated
by Eq.2 at the beginning. Since some circles have very little
contribution to the overall coverage such as those near edge as
illustrated in Fig.1, the actual number of circles must be larger
than our initial estimation. Therefore, more circles need to be
introduced during the generation process.

N∗ = [(φ f a2)/(πr2
f )] (2)

The core part of the algorithm is how to improve the state. In
the generation process, there will be many situations of overlaps
among different states. Some will be better than others, which
are closer to the objective state. Similarly as the idea of ge-
netic computing, ’mutation’ can applied by random movement
of each circle, and a test should be set to compute whether the
result is ‘better’ or ‘worse’ than the original state. If it is worse,
we discard it; if it is better, we keep it, and that becomes the new
original. For this problem, however, since we already know
moving the circles away from each other will always be ’bet-
ter’ if they overlap. Therefore, we can design the algorithm as
Alg.1, where we check every circle position with other circles,
and offset them if there is any overlap. Gradually, the number
of overlap will decrease and finally reduce to 0 as illustrated in
Fig.2. Then we can check the coverage, if not satisfied, extra
fibre will be added. The detailed offset process is acheived as
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Figure 1: An illustration of RVE area, the square with solid line is the RVE win-
dow, and circles whose centre points are inside the dashed line will contribute
to the total volume fraction

Eq.3.

x1 = x1 +
x1 − x2

|x1 − x2|
· w · random(0, 1)

y1 = y1 +
y1 − y2

|y1 − y2|
· w · random(0, 1)

(3)

Where w is the magnitude of the offset in the separation process.
The model would have quicker converge and better randomness
if this value is optimally set. After a trial and error process, an
empirical function for setting of w is found as Eq.4

w = −11.5φ2
f − 4.3φ f + 8.5 (4)

In order to illustrate the effect of w adjustment, we compared
running times of algorithms with adjusted and fixed w. 8 differ-
ent δ=50 RVE, with φ f ranging from 45% to 65% were gener-
ated in this comparison, and each had 20 realisations. The Fig.3
presents the average running time, and error bars are included
to show standard derivations. We can conclude that the running
time decreases dramatically when w is optimally set, especially
for large volume fraction. Meanwhile using RVE with δ=50
and φ f =65% as a benchwork, we compared the speed among
different algorithms introduced in the literature. The results are
presented as Tab.1, from which we can see though neat and sim-
ple, the proposed algorithm is faster than any other methods.

Table 1: The reported average running time for δ=50, φ f = 0.65

Method Time

Current Algorithm 1.75min
M.V. Pathan[15] 107.02 min
RANDuS TRUGEN[6] 3.31 min
Wonggsto and Li[9] 7.20 min
Trias [3] 1145.09min

Algorithm 1 The algorithm to generate required random circles

Require: V f fibre volume fraction ,a ,r fibre’s radius
Ensure: The centre points of required circles

1: Initialization
2: for i = 0; i < num; i + + do
3: Initial Circle Positions
4: end for
5: while (total 6 a2φ f ) or (Flag = False) do
6: if Flag = True then
7: Add new circles
8: end if
9: Flag← True

10: for i = 0; i < len(arr); i + + do
11: for j = 0; j < len(arr); j + + do
12: if i , j then
13: if dis(i, j) 6 loverlap then
14: Flag← False
15: Move I away f rom J by x Unit
16: end if
17: end if
18: end for
19: total← total + area(Arr[i](x, y))
20: end for
21: end while

3. Statistical characterisation of the spatial distribution

In order to quantitatively characterise the randomness of fi-
bre spatial distribution within the generated RVE, 5 different
statistical descriptors are introduced.including Voronoi polygon
area, nearest neighbour distances, nearest neighbour orienta-
tion, Ripley’s K Function, and Pair Distribution Function.

3.1. Voronoi polygon area

The 2D Voronoi tessellation is a subdivision of region, de-
termined by a set of points, where each point has associated
with it a sub-region that is closer to it than to any other. The
standard deviation of the areas of the Voronoi polygons defines
the more or less periodic distribution of the circles. For exam-
ple, in a periodic arrangement of circles, each of the Voronoi
cell will have the identical area, so the deviation equals to 0.
Therefore, we can use the coefficient of variation which defines
as Eq.5 to compare the randomness of the distribution.

Cv = σ/µ (5)

Where σ and µ are mean and standard deviation respectively.
We extracted this coefficient for a generated microstructures
with δ = 50 and φ f = 65%, compared to those reported by
Pathan.[15], and listed in Table 2. At such volume fraction,
the proposed algorithm achieves a relatively high coefficient
of variation compared with other algorithms, indicating decent
randomness of the generated microstructures.
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Figure 2: An example of the spatial distribution of circles at initial state, 2 successive iterations and the final state
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Figure 3: The running times of algorithm with adjusted and fixed w for 8 dif-
ferent φ f for δ=50 RVE

Table 2: The reported average for δ=50, φ f = 0.65

Method Cv

Current Algorithm 0.110
M.V. Pathan[15] 0.114
RANDuS TRUGEN[6] 0.099
Wonggsto and Li[9] 0.077

3.2. Nearest Neighbour Distances

Nearest neighbour distances are always measured in Prob-
ability Density Function(PDF) of the distance from one typical
point to the its nearest neighbours. They provide information
on the short distance fibre interaction and indicate whether the
point pattern shows some degree of clustering. For example,
if the PDF plot shows a peak followed by a dramatic decrease,
this could indicate the clustering of the fibres, otherwise it is
caused by high fibre volume fraction if the 2nd or 3rd neigh-
bour distances PDF plot show a smooth decrease. This is one
of the most important descriptors, since Hojo et al.[16] found
that it had a crucial effect on the damage evolution in the fi-
bre/matrix interface, which influences the consequential failure
behaviour of the composites. Damage is more likely to initi-
ate in the clustering area. The study of nearest neighbour
distances of this algorithm including the first nearest neighbour

and second nearest neighbour distances. Choosing RVE with
σ = 50 and φ f = 50%, we compared the performance of distri-
bution generated by this algorithm and RSA method. The Fig.5
and Fig.6 present the average PDF of the first and second near-
est neighbour distance respectively, with error bars showing the
standard deviations. From these two graphs, we can see the dis-
tribution of neighbour distances in this algorithm is very similar
to that of the RSA, which shows this algorithm can achieve a
good randomness of distribution.

3.3. Nearest Neighbour Orientations
The nearest neighbour orientation can be determined eas-

ily given the first nearest neighbour position. The orientation
here is measured anti-clockwise in respect of the horizontal
axis. Different from the nearest neighbour distances, this one is
presented as a Cumulative Distribution Function(CDF). If the
distribution of the fibres is a perfectly random distribution, the
CDF curve will be a straight diagonal line, which means each
orientation has the same probability of occurring. Deviations
from this line will indicate some orientations are preferred. The
periodic distribution will then have a stair shape curve.
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Figure 7: The orientation CPD for RVE with δ = 50 and φ f = 0.5

Similarly, we compared the performance of this algorithm
and the RSA. Fig.7 shows both two curves are very close to the
straight line which indicates completely spatial random distri-
bution. Such comparison shows this algorithm is able to capture
the orientation randomness of fibres distribution in composites.
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Figure 4: Two examples of δ=50 RVEs with 60% and 70% coverage respectively
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Figure 5: First nearest neighbour distance PDF for RVE with δ = 50 and φ f =
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Figure 6: Second nearest neighbour distance PDF

3.4. Ripley’s K Function

Ripley’s K function, also known as second-order intensity
function, has been regarded as one of the most informative de-
scriptors of spatial pattern [5] which concerns the long distance
interaction of inclusion. It is defined as the ratio between the
number of additional points within a radial distance r of an ar-
bitrary points against the number of points per unit area. Cor-
related for the edge effects, the Ripley’s K function can be cal-
culated as:

K(h) =
A

N2

∑
i

∑
j,i

I(di j ≤ h)
w(li, l j)

(6)

Where A is the area of RVE window, N refer to the number of
fibres in the windows, di j is the distance between two points
i and j, I is an indicator which equal to 1 if the condition in
the bracket holds true, otherwise equal to 0. w(li, l j) denotes
the proportion of circumference of the circle with di j as radius
laying inside the window. For a completely random distribu-
tion, it is easy to derivate that Ripley’s K function: K(h) = πh2.
Above the Completely Spatial Random (CSR) pattern plot, in-
dicate clusterings in the distribution, otherwise, shows some de-
gree of regularity. A Stair-shaped plot exhibit the pattern has
periodicity such as square or hexagonal distribution [6]. It can
be seen from the Fig.8, both this algorithm and the RSA per-
fectly agreed with the CSR curve(K = πr2), only having a little
deviation at short distances. This indicates that generated distri-
bution conformed well to a CSR distribution, especially at long
distances.

3.5. Pair Distribution Function

According to Ripley’s K function, the pair function curve
can also be plotted as the figure 9. The curve is finally con-
verge into 1, which again proves the distribution generated with
this evolutionary algorithm largely conform to the CSR. There-
fore, this algorithm is proved to be capable of generating highly
random fibre distribution, which provides a powerful tool for
simulation with limited experimental data of fibre distribution.

5



0 5 10 15

0

2,000

4,000

6,000

8,000

V f %

se
co

nd
s

new algorithm
RSA
CSR

Figure 8: The Ripley’s function for RVEs with δ = 50 and φ f = 0.5
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Figure 9: Pair distribution function for RVEs with δ = 50 and φ f = 0.5

The pair distribution reflects the probability of finding an ad-
ditional point within an annular area with the thickness of dh,
which can be calculated as: [17]

g(h) =
1

2πNahḋh
·

1
N

N∑
i=2

ni(h) =
1

2πh
·

dK(h)
dh

(7)

Pair distribution function contains the same statistical informa-
tion as the K-function, but is more clear and easier to under-
stand. For CSR pattern, the g(h) have a constant value 1 for all
distances considered. In this sense, a statistically valid distri-
bution should oscillate close to 1 as the distance increases. In
Fig.9, both curves of this algorithm and RSA have fluctuant at
short distances, but tend to oscillate close to 1 as the distance
increases, which demonstrate the sufficient randomness of dis-
tributions.

4. Numerical verification

As a numerical verification, an effective elastic property
prediction is presented Table 3. Effective properties of fibre

Table 3: The constituent property of T300,BSL914C laminate

Fibre(T300 Carbon Fibre) Matrix(BSL914C epoxy)

Property Value Property Value

R f /µm 3.5 E/Gpa 4.0
E1/GPa 230 ν 0.38
E2/GPa 15
G12/GPa 15
G23/GPa 7
ν12 0.2
ν23 0.07
Volume Fraction 60%

Figure 10: A meshed RVE with δ = 50 and φ f = 60%

tows in a textile composite are generally obtained through mi-
cromechanical models based on the fibre volume ratio and con-
stitutive properties of each constituent[18]. In this example,
with the help of the algorithm, we can generate an FE model,
and carry out a numerically homogenisation. The model of car-
bon fibre reinforced epoxy composite is chosen as T300BSL/914C
is generated. The constituent properties of this composite are
given below[19]. A transversely cross-sectional area 175 ×
175 with the fibre coverage of 60% was generated with the
new algorithm. The longitudinal length is trivial and set to
be 0.5. This RVE was imported into ABAQUS with python
scripts and meshed with two types of elements hexahedral el-
ements(C3D8R) and tetrahedral elements (C3D6) for fibre and
matrix section respectively. Perfect interface was imposed be-
tween fibres and matrix, by tying them together. Totally, about
200000 elements were generated in the RVE as the Fig.10 Based
on a volume average approach[20], we can obtain the stiffness
matrix Ci j as Eq.8

σ̄i = Ci j ∗ ε̄ j

ε̄ =
1
V

ˆ
v
εi jdv

σ̄ =
1
V

ˆ
v
σi jdv

(8)
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Table 4: The simulation and experimental result

*Elastic Property FEA *Experiment

E1/GPa 135.86 138.0
E2/GPa 9.838 11.0
ν12 0.30 0.28
ν23 0.35 0.40
G12/GPa 4.185 5.5

Next, according to Eq.9[10], five engineering constants can there-
fore be calculated:

E1 = C11 − 2C2
12/(C22 + C23)

ν12 = C12/(C22 + C23)

E2 = [C11(C22 + C23) − 2C2
12](C22 −C23)/(C11C22 −C2

12)

ν23 = [C11C23 −C2
12]/(C11C22 −C2

12)
G12 = C66

(9)

The average values of engineering constants from 20 different
realisations are presented in the Table 4, from which we can
see the prediction has a good agreement with the experimental
results.

5. Conclusion

Based on the idea of iterative improvement, a new algorithm
has been developed to generate the random spatial distribution
for fibres in FRC with up to 70% fibre volume fraction. With-
out complex heuristic steps, this algorithm was proved to be
faster than most of the previous algorithms introduced in the
literature. In addition, evaluated with 5 different statistical de-
scriptors, the distribution generated by this algorithm turned out
to have very good randomness. The algorithm was employed to
predict numerically the effective elastic properties prediction of
unidirectional T300, BSL914C FRC from its constituent prop-
erties. The results show a good agreement with the experimen-
tal data. This algorithm, therefore, provides a powerful tool to
reproduce the microstructure of the composites when the actual
spatial information is not available.
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