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Abstract—Recent work has studied modifications to DC-OPF
computations so as to better account for risk arising as a result
of stochastic variation in the output of renewable sources. Typ-
ically such modifications rely on mathematical constructs such
as chance-constraints that can still yield convex formulations.
However, numerical simulations show that the computed policies
can translate into power flow patterns with high variance. We
introduce a number of convex variants of OPF that trade-off vari-
ance and cost minimization, describe practical algorithms for the
solution of such problems, and present numerical experiments.

Index Terms—Chance-constraints, stochastic generation, OPF.

I. INTRODUCTION

A number of trends in power engineering practice have
resulted in increasing exposure of transmission systems to
risk in the form of variability and more broadly unpredictable
behavior. Renewable penetration has been an early driver in
this direction, to which one should probably add ’smart’ loads,
the use of distributed photovoltaics used in response to market
signals, and other factors.

One impact of such stochasticity is the potential for in-
creased equipment overloads. Prior research has addressed
this problem by developing alternative formulations for the
Optimal Power Flow (OPF) problem that also include mod-
ifications to balancing mechanisms. An example is provided
by chance-constrained formulations for OPF (see [1]–[11]),
which yield both generator output values but also participation
factors, so that the probability that any given line exceeds its
operational limit is upper bounded by a small value, under
some assumptions on the stochasticity of uncertain sources.

Even though such schemes are risk-aware they may nev-
ertheless fail to capture another (and important) facet of risk.
In particular, numerical experiments such as those discussed
herein, show that dispatch and participation decisions com-
puted by the chance-constrained formulation may yield real-
time power flows with high variability; specifically with the
feature that some transmission lines have high variance of
power flow. Such a feature is, likely, undesirable from a
real-time operational perspective. See [12], which discusses
negative impact of power flow variability on voltage profile
and transformer operation. In general, high variance will likely
hamper system understanding and control, and pricing policies
(see [13], [14], [15] for work on pricing under uncertainty).
[16] describes an optimization method for selecting a mix of
renewable generation (under Gaussian stochastics) so as to

attain a desirable mean-variance trade-off in flows on tie lines
of a balancing area. Also see [17].

This paper continues the work initiated in [18]. We describe
modifications to the OPF problem which we term variance-
aware OPF. In these modifications we explicitly trade-off
variance in power-flow related quantities to operational cost.
We provide computational experiments with several variance-
aware schemes, and present an analysis of the variance-cost
trade-off that borrows ideas from the classical “Sharpe-ratio”
perspective in economics.

In Sections II-III we review prior work and introduce some
basic concepts and formulations. Section IV presents a simple
example of the impact of variance. Section V presents our
main variance-aware formulations, and Section V-D describes
numerical experiments with larger systems. Section VII dis-
cusses a different convex optimization formulation for address-
ing the trade-off between OPF cost and solution variance.

II. NOTATION AND BASIC FORMULATIONS

In this paper we will focus on the linearized, or DC
model for power flows. We will use the following selected
nomenclature, with additional terms described later:

B = set of buses, n = |B|; B = bus susceptance matrix.
B̂ = B, with the last row and column removed

B̆ =

[
B̂−1 0

0 0

]
; B̆i = ith row of B̆.

θi = phase angle at bus i, θ̄i = E(θi).
E = set of lines; m = |E|.
fmax
ij , bij = power flow limit, and susceptance, for line ij ∈ E .
fij = power flow on line ij, f̄ij = E(fij) = bij(θ̄i − θ̄j)
πij

.
= B̆Ti − B̆Tj for each line ij ∈ E

G = set of generator buses; we assume at most one generator
per bus

pmini , pmaxi = minimum and maximum output of i ∈ G.
S = set of stochastic injection buses, µk + ωk = stochastic
injection at bus k ∈ B,
• µk = constant, ωk = zero-mean random variable.
• µk = ωk = 0 if k /∈ S,
• Ω = covariance of ω, an n× n matrix,
• W = support of distribution for ω,
R = set of buses participating in balancing
A = matrix of participation factors; αij = (i,j)-entry of A,
• A is n× n
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• αij = 0 if i /∈ R or j /∈ S
• V(A) = vector with entries b2ijπ

T
ij(I −A)Ω(I −AT )πij

(variances) for ij ∈ E
K = convex set of allowable participation factor matrices
p = vector of generation amounts, extended to all b ∈ B

(forcing pb = 0 when b /∈ B).
c(p) = (convex) cost of generation vector p.
d= (fixed) vector of loads.

The standard DC-OPF formulation, using this notation, is
as follows:

min
p
c(p) (1a)

s.t. Bθ = p − d (1b)
∀ij ∈ E : bij |θi − θj | ≤ fmax

ij (1c)

∀i ∈ G : pmini ≤ pi ≤ pmaxi (1d)

A well-known simplification to constraints (1b)-(1c) relies
on a pseudo-inverse for the B matrix (see, for example [1],
[3]). For a line ij, et πTij denote the row of the pseudo-
inverse corresponding to ij. Then the power flow on ij equals
bijπ

T
ij(p− d). Using this equation we reduce (1b)-(1c) to the

system

∀ij ∈ E : bij |πTij(p− d)| ≤ fmaxij (2)

III. SECURITY-CONSTRAINED FORMULATIONS

Previous research [1], [2], [3], [4], [5], [7], [9], [19] has
focused on alterations to DC-OPF models which take into ac-
count uncertain injections so as to adjust generation decisions
the use of AGC (Automatic Generation Control).

The methodology proposed in [1], [3], [9], modifies the
DC-OPF computation so as to output both a vector p̄ of
controllable generation amounts and (as in [9]) an n × n
matrix A used to model controllable generator participation in
balancing. In this scheme, a vector ω ∈ W of output variation,
is balanced by generation changes given by Aω, with the result
that the total generator output at bus i is

pi = pi(ω) = p̄i − [Aω]i = p̄i −
∑
j∈B

αijωj . (3)

For simplicity, when i is not a controllable generator bus, we
write αij = 0 for all j. As a result the vector of net injections
equals p̄−d+µ+ω−Aω. For the system to be balanced we
need the stochastic condition

∀w ∈ W :
∑
i∈B

(p̄− d+ µ+ ω −Aω)i = 0. (4)

Suppose we also require
∑
i∈B(p̄ − d + µ)i = 0, i.e. absent

stochastics the system is balanced. Then (4) is the same as

∀ω ∈ W : ωi −
∑
j∈B

αijωj = 0, ∀ i ∈ B. (5)

This condition will be satisfied if we impose [9]

1 =
∑
j∈B

αij ∀ i ∈ B, (6)

which is an equation in ω-space (thus removing one degree
of freedom in ω). If W is full-dimensional then (6) is in fact
required for (4) [20]. Of course, we may impose additional
requirements on A, for example by having bounds on individ-
ual αij . We may also impose a “global” policy [9], namely
that for every bus i ∈ R 1, αij = αik for every j 6= k.
Notation. We will denote by A ∈ K a generic set of admis-
sible participation matrices A, typically described by convex
constraints.

In summary, where fij denotes flow on line ij, we have

∀ij ∈ E : fij = bijπ
T
ij(p̄− d+ µ+ ω −Aω), (7a)

E(fij) = bijπ
T
ij(p̄− d+ µ). (7b)

Likewise by construction

V(A)ij
.
= Var(fij) = b2ijVar(πTij(I −A)ω) =

b2ijπ
T
ij(I −A)Ω(I −AT )πij (8)

Depending on how randomness is modeled, or whether the
matrix A is fixed or subject to optimization, one obtains a
number of variants of the problem (1).

The use of chance constraints has emerged as a central idea
in the modeling of safe operation. Consider a given line ij. A
chance constraint on this line is of the form

P(|fij | > fmax
ij ) < ε (9)

where 0 < ε < 1 reflects the planner’s tolerance for risk (or
perhaps, perception on the impact of risk on the system). A
relaxation of this requirement is that

P(fij > fmax
ij ) < ε and P(fij < −fmax

ij ) < ε. (10)

When ω is Gaussian, (10) can be summarized as

|E(fij)| + Φ−1(1− ε)Std(fij) ≤ fmax
ij (11)

where Φ−1(1−ε) is the ε-quantile for a normal distribution and
Std is standard deviation. System (11) is SOCP representable
[1], [3].

A. Modifications used in this paper

We substitute (11) with

|E(fij)| + νij Std(fij) ≤ fmax
ij . (12)

Here, νij is a safety parameter. As outlined above in the
Gaussian case (12) is equivalent to (9) when νij = Φ−1(1−ε).
However, the Gaussian case is not the only one where such
an equivalence holds; see the discussion in [18]. In each
case one needs an appropriately constructed parameter νij =
νij(ε). Additionally (12) can be used to tightly approximate
distributionally robust (or “ambiguous”) chance constraints.
Refer e.g. to [21]. In any case, one could argue that even
when the stochastics of ω is poorly understood or nontrivial
with the result that it is difficult to fully justify a particular
choice for the safety parameters, in general we will still be
able to compute Ω, or in the worst case estimate it from
data. The safety-parameter approach would still be practicable

1In the sequel, a participating bus.
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and relevant even though it is equipped with a satisfactory
mathematical guarantee. We will term (12) a safety constraint.

Using matrix Ω we can provide a different expression for
the variance of a line flow fij . Let us write

D
.
= B̆A, and (13a)

∀ k ∈ S : γij,k
.
= B̆ik − B̆jk −Dik +Djk. (13b)

Lemma 1. For any line ij, the variance of flow on ij under
scheme (3) is given by

Var(fij) = b2ij γij Ω γTij (14)

A proof of this result can be obtained by substituting (13)
into (8) (also see prior work: [1], [3], [9]). It is also important
to note that (14) holds for all probability distributions.

Similar developments apply to generator output. Let gener-
ation cost at a bus i be given by ci(p)

.
= ci0p

2 + ci1p+ ci2a,
and let the ith row of A be denoted by Ai. Then one easily
shows that:

Lemma 2. Let i be a bus. Then Var(pi) = ATi ΩAi, and
E(ci(pi)) = ci0(p̄2

i +ATi ΩAi) + ci1p̄i + ci2.

Next we provide our initial formulation, which extends the
chance-constrained formulation in [3]. Let n = |B| and also
m = |E| (see Section II). As inputs to the formulation we have
safety parameters νij and νi for each line ij and generator i,
respectively (νi = 0 at non-generator buses). The formulation
uses variables p̄, θ̄ (n-vectors), f̄ (m-vector), A, D (|S| × |S|
and n× |S| matrices, respectively), and γ and s (an m× |S|
matrix and m-vector, respectively). As above, we use A ∈ K
to denote a given set of convex constraints on A.

min
∑
i∈G

E(ci(pi)) (15a)

s.t. A ∈ K (15b)
Bθ̄ = p̄+ µ− d (15c)
f̄ij = bij(θi − θ̄j) (15d)
bij |f̄ij |+ νij sij ≤ fmax

ij ∀ij ∈ E , (15e)

B̆A = D (15f)

γij,k = B̆i,k − B̆j,k −Di,k +Dj,k, ∀ij ∈ E , k ∈ B
(15g)

sij ≥ bij

√
γijΩγTij ∀ij ∈ E (15h)

∀i ∈ G :

pmini + νi

√
ATi ΩAi ≤ p̄i ≤ pmaxi − νi

√
ATi ΩAi. (15i)

It is straightforward to verify that this formulation captures the
desired features. This is a second-order cone program which is
amenable to solution by many current optimization packages.
On the minus side, [9], [3], [19] have highlighted numerical
challenges arising when attempting solutions of models like
(15), on large transmission systems, by appealing to black-box
solvers. A practical alternative is that of relying to simple but
effective cutting-plane methods. We will return to this point
later on.

To close this section, we point out some alternative model-
ing perspectives. See e.g. [22], [2]). An “ambiguous” model,

that is to say, a distributionally robust model under Gaussianity
is studied in [4].

IV. AN EXAMPLE OF THE VARIANCE-COST TRADE-OFF

To motivate the forthcoming discussion, in this section we
present a small example of problem (15) where there is a
strong trade-off between cost and a system variance measure.
Consider Figure 1.

0
1

a

b

k

b = stochastic node

0,1,...,k+1 = generators

1, ...,k+1 = participating

 b = load

generators

k+1

k+2 

k+D

Fig. 1. High-variance example.

Here,
• k is large, as is D.
• The load at bus b equals L units.
• At bus b, stochastic output at bus is denoted by ω, with

E(ω) = µ < L and Var(ω) = σ2.
• At bus i (0 ≤ i ≤ k + 1) there is a generator. Its cost

function is linear, of the form ci1pi. Here c01 < c11 =
c21 . . . = ck1 < ck+1,1.

• Generator at bus 0 has capacity larger than L and does
not participate..

• At buses 1, 2, . . . , k + 1 generators are all participating.
Their lower limit is zero, their safety parameter is 3.

• There is no load, generation or stochastic injection at
buses a, k + 2, . . . , k +D.

• Line limits are large.
Denote the participation factor for generator i ≥ 1 as αi.

It can be shown that the following solution,

p̄0 = L− µ− 3σ (16a)
αi = 1/k and p̄i = 3σ/k, for 1 ≤ i ≤ k. (16b)
αk+1 = p̄k+1 = 0, (16c)

is optimal (in fact: uniquely optimal) for the case of problem
(15) in Figure 1. For a proof, see [18].

It is clear that the stochastic flow on line ab equals L−µ−ω,
with variance σ2. Thus fab displays the entirety of stochastic
injection variance. Further, the sum of flow variances equals
σ2(1 + 1/k) ≈ σ2 since k is large.

Suppose we attempt to decrease Var(fab) by a factor of
Γ < 1. This goal will be achieved by setting

∑k
i=1 αi =

√
Γ

and thus αk+1 ≈ 1 −
√

Γ. In that case the sum of variances
will be at least Γσ2 + (D + 1)(1 −

√
Γ)2σ2. When D = 10

and Γ = .5 this quantity equals approximately 1.44σ2: in other
words the sum of line flow variances has increased by more
than 40%. As the reader no doubt has anticipated, putting
emphasis on a particular variance metric brings forth a trade-
off with other (perhaps equally compelling) metrics.

For a more extreme example, suppose now that the line
limits are not very large. Consider an alternative variance
metric that does take into account line limits:∑

ij∈E

Var(fij)

(fmax
ij )2

(17)
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We modify the data in the example above as follows:
• µ = L/4 and σ = µ/2 = L/8.
• Lines 0a and ab have limit 9L/8.
• Lines ia (1 ≤ i ≤ k) and lines on the path from k+ 1 to
b all have limit 2σ.

• Line safety parameters are set to 3.
It can again be easily shown [18] that the solution given by
(16) remains feasible, and is the sole optimal solution. The
variance metric (17) attained by solution (16) equals 1/81 +
1/(4k) ≈ .0123 for k large.

Suppose that, as above, we wish to reduce the variance
of fab by 0 ≤ Γ < 1. The participation factors that attain
the correction will now attain a variance metric of (at least)
Γ2/81 + (1−

√
Γ)2(D + 1)/4. In the case D = 10, Γ = 0.5

this quantity is approximately 0.242. In other words, in our
attempt to reduce variance in one line we have increased the
variance metric (17) by approximately a factor of 20. And
even if D = 3 the variance metric at the new solution equals
0.092: an increase by more than 8 times relative to the original
value.

To conclude this section we point out that:
1) It is not true that every feasible solution to the security-

constrained problem will accumulate variance on line ab.
In fact our analyses show that we can transfer variance
to the path k + 1, k + 2, . . . , b. Doing so, however, will
increase cost and total system variance.

2) This example is arguably unrealistic – different pa-
rameter choices will result in less radical behavior.
Nevertheless, it is not difficult to see that the example
can be modified to obtain a system setup that is not
obviously extreme, while preserving or even amplifying
the effect depicted above. The salient point is that the
underlying economics and network structure is arguably
efficient, because the large, most efficient generator can
be used for deterministic demand coverage, while many
participating generators are near the load.

3) The variance-concentration in the example, in summary,
is due to interaction of network topology, load structure
(i.e. location of loads, stochastic injection nodes and
responding buses) and cost structure resulting in large
variance caused by overlap of flow paths. To put it dif-
ferently, a variance-aware reformulation of the security-
constrained problem will tend to manage, or reduce,
risky overlap of flow paths.

In the next section we will consider, in a systematic fashion,
how to addresses the cost-variance trade-off.

V. VARIANCE-AWARE PROBLEMS

Here we describe a generic procedure that modifies problem
(15), so as to better manage the trade-off between cost and a
number of variance metrics. Our procedure seeks to find good
solutions for a problem of the general type

min
∑
i∈G

E(ci(pi)) + ∆(f̄ , s2) (18a)

s.t. 15b - 15i (18b)

where s2 is a vector of variances. To fix ideas, an example
is that where s2 = {s2

ij} are the line flow variances of line
flows, which depend on the participation matrix A as in (13),
(14)). Finally,

∆(f̄ , s2) =
∑
ij∈E

∆ij(f̄ij , s
2
ij). (19)

is the variance metric. Here each ∆ij is a nonnegative function
chosen to highlight a specific penalty as a function of expected
flow and variance.

Formulation (18) includes all constraints of the safety-
constrained problem (15) but the objective forces the desired
trade-off. The formulation (and our templates below) are easily
modified to account for many other variance metrics, for
example, variability of output of participating generators.

As the reader can observe, one can scale the ∆ term in (18a)
by a positive constant, obtaining a problem with the same
functional form that places a different emphasis on the cost-
variance trade-off. Seen from this perspective, problem (18)
bears a resemblance to traditional mean-variance optimization
problems arising in financial portfolio analysis; see [23]. In
Section VI we will return to this viewpoint.

A. Some variance metrics

Here we describe several relevant variance metrics. Also see
Section VI.
(I) For all ij ∈ E , ∆ij is convex and nondecreasing in s2

ij .
The simplest case is that where ∆ij(f̄ij , sij) = ψijs

2
ij

where ψij ≥ 0. When ψij = 1 or ψij = (1/fmaxij )2

∆(f̄ , s2) we recover the metric in the examples in Section
IV .

(II) Let N > 0 be a given integer, and consider a function ∆
of the form

∆(f̄ , s2) =
∑
ij∈F

ψijs
2
ij . (20)

Here the ψij ≥ 0 are given and F ⊆ E is a solution-
dependent set, for example:

(II.1) the set of N lines with largest average flow
magnitude.

(II.2) the set of N lines with largest flow variance.
In either model, we do not know in advance the set F to
be summed over. In case of Model (II.2), problem (18)
can be written as

min
∑
i∈G

E(ci(pi)) + V (21a)

s.t. V ≥
∑

(i,j)∈H

s2
ij , ∀ H ⊆ E with |H| = N (21b)

(15b) - (15i). (21c)

Formulation (21a) is an SOCP of exponential size. How-
ever the formulation suggests a practical algorithm (i.e.
a cutting-plane algorithm) as well as a theoretically
sound polynomial-time method (relying on the ellipsoid
method). We theorize that Model (II.1) can also be
formulated as a convex program that is polynomially
solvable.
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(III) Let:

∆ij = − ρij log(s2
ij − b2ijγijΩγTij), if s2

ij > b2ijγijΩγ
T
ij

= +∞, otherwise,

(where ρij > 0 is given) i.e. the standard logarithmic
barrier function [24]. In this setting, the conic constraints
(15h) would not be used. When the ρij are all equal
to a common value ρ the solution to (18) (with (15h)
not imposed) will converge to an optimum solution for
(15) as ρ → 0+. Moreover, the structural form of this
particular ∆ function, for any choice of the ρij , already
imposes a trade-off of risk against operating cost – the
tradeoff reflects the “nearness” of each line to its limit,
in a natural sense, but without the explicit (and very
computationally expensive) enforcement of the conics
(15h). Of course, this risk perspective is, potentially, not
necessarily the same as a variance-aware stance, because
a line whose flow is not near the limit may still experience
high variance of flow, and controlling such variance may
be deemed important. Nevertheless, a line whose average
flow is near the line limit is one where it is important
to control variance, from a very direct perspective, as
implied e.g. by constraints (15e), (15h) of (15).
We find this choice of metric appealing because of the
success of very mature state-of-the-art logarithmic barrier
solvers, which can furthermore be adapted to handle
additional, non-convex features [25], [26].

B. Iterative solution

In this section we focus on problem (18). Rather than
discussing direct solution to this problem, however, we will
instead suggest an iterative corrective procedure that appro-
priately modifies an optimal solution to the standard safety-
constrained problem (15) so as to make it into a “much more”
variance-aware solution that is still near-optimal for (15).

There are two separate (but related) reasons for this goal.
First of all, previous work in the literature on chance-
constrained DC-OPF [3], [6] has shown that direct solution
to (15), using a standalone solver, can be a challenging
numerical task in the case of large transmission systems.
However, this difficulty is easily resolved by employing a
cutting-plane algorithm that iteratively outer-approximates the
conic constraints (15h) using linear inequalities. In other words
we rely on an algorithm that repeatedly solves problems of the
form (15) with all constraints (15h) removed; the algorithm
opportunistically detects which constraints (15h) are violated
by a computed solution and approximates such violated con-
straints using tangent hyperplanes. It has been observed that
such an approximation algorithm typically requires relatively
few iterations to converge, and, most important, the number
of lines ij that demand attention in the approximation is very
small.

Beyond the purely computational insight (which of course
is important) this observation brings forth an important risk-
related perspective; namely, that only a few lines appear
exposed to risk in the context of our generic problem (15).
One may wonder why it is the case that realistic transmission

systems have this behavior. To a certain extent this observation
has been known in the industry in the context of non-risk aware
DC-OPF. Recent work [27] performs systematic experiments
that analyze the solution to the standard DC-OPF problem.
They find that the number of tight constraints (1c) is limited
to a few percent of the total and sometimes even less than that.
Additionally, even large changes in the loads do not change the
set of risky lines. We conclude that this is indeed a persistent
feature in realistic cases.

In any case, these observations suggest an algorithm that
shifts risk (in our context, variance) from what should be a
small set of lines, to a broader set. The algorithm would start
from an optimal solution to the standard safety-constrained
problem (15), and correct that solution by taking simple,
variance-metric reducing steps. In doing so we would be
attaining three goals at once: (i) reduce the numerical com-
plexity, which may be worse for the variance-aware problem
(18) than it is for (15), (ii) leverage the underlying economic-
risk dynamic we have just discussed, and (iii) explicitly reveal
to a decision maker the set of lines that are exposed to high
variance. A template for our scheme is given next:

Template V.1. GENERIC CORRECTION TEMPLATE

Input: an instance of the safety-constrained problem
(15) and a variance metric.
Step I. Solve (15), with solution (p̄∗,A∗).
Step II. Execute a small number of iterations that
transform (p̄∗,A∗) into a new feasible solution to (15)
which attains a decreased value of the variance metric,
while also moderately increasing generation cost.

An appropriate implementation of Step II is important. Below,
we focus on a strategy that amounts to solving a convex
optimization problem with relatively few constraints.

C. Implementing the template

To simplify the presentation we will assume that for each
line ij, ∆ij(f̄ij , s

2
ij) = ∆ij(s

2
ij), i.e. our metric only depends

on variance, but we stress that the analysis of procedure V.3
given below extends to the more general case. We also assume
that ∆ij(s

2
ij) is convex nondecreasing.

Further,

Definition V.2. Let f̄ be a flow vector and A ∈ K a matrix of
participation factors. We define the pair (f̄ ,A) as compatible
(or say that A is compatible with f̄ ) for (15), if there exist
p̄, θ̄, D, γ and s so with (p̄, f̄ , θ̄,A, D, γ, s) feasible for (15).

Hence (f̄ ,A) is compatible if they give rise to a feasible
solution to (15).

We describe an implementation of Step II of Template V.1
which repeatedly solves two convex optimization problems –
a formal procedure is given in Procedure V.3 given below. We
will next describe the two problems and comment on their
use afterwards with Procedure V.3 presented after that. Let
0 < τ < 1 be fixed.
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The first problem is denoted by Reroute(Â, τ). Its inputs
are a compatible pair (f̂ , Â) and the vector ŝ2 = V(Â) of
line flow variances (under participation factor matrix Â).

min
p̄,f̄ ,θ̄

∑
i∈G

ci0(p̄2
i + ÂTi ΩÂi) + ci1p̄i + ci2 (22a)

s.t. Bθ̄ = p̄+ µ− d (22b)
bij |f̄ij |+ νij ŝij ≤ (1− τ)fmax

ij ∀ij ∈ E , (22c)

f̄ij = bij(θ̄i − θ̄j) ∀ij ∈ E , (22d)
∀i ∈ G :

pmini + νi

√
ÂTi ΩÂi ≤ p̄i ≤ pmaxi − νi

√
ÂTi ΩÂi. (22e)

Our second problem takes as input a compatible pair
(f̄ ′,A′). In the description of the problem, we write s′ij =√

Var(A′)ij , and T(f̄ ′,A′, τ) denotes the family of lines
whose which the safety constraint is almost tight under the
participation matrix A′:

T(f̄ ′,A′, τ) = { ij : |f̄ ′ij |+ νijs
′
ij ≥ (1− τ)fmaxij }. (23)

The problem, denoted VShift(f̄ ′,A′, τ), is as follows:

min
s,A

∑
ij

∆ij(s
2
ij) (24a)

s.t. A ∈ K (24b)

s2
ij ≥ b2ijπ

T
ij(I −A)Ω(I −AT )πij ∀ ij ∈ E (24c)

|f̄ ′ij | + νij sij ≤ fmax
ij ∀ij ∈ T(f ′,A′, τ). (24d)

Comments: Reroute(Â, τ) minimizes expected generation
cost using the constant participation matrix Â. It imposes
tighter line safety constraints (i.e. by a factor of (1 − τ) in
(22c)). Thus, this procedure reroutes flow so as to create slack
capacity in all lines. Let an optimal solution be (p̄∗, f̄∗, θ̄∗),
assuming feasibility. Then clearly (f̄∗, Â) is compatible for
(15), with “slack” at least 1−τ on each line (multiplicatively).
Choosing τ large can cause infeasibility of Reroute(Â, τ);
but in our implementation of Procedure V.3, τ will be small,
which as a byproduct will only slightly increase expected
generation cost.

With regards to VShift(f̄ ′,A′, τ), its purpose is to improve
on the variance metric while keeping flows and average
generation fixed. Let us call the optimal solution Â, and the
corresponding line flow standard deviations, ŝ. The fact that
the functions ∆ij are nondecreasing implies, without loss of
generality, that at optimality all constraints (24c) will be tight.
Thus, by (24d), on lines ij ∈ T(f ′,A′, τ) |f̄ ′ij | + νij ŝij ≤
fmax
ij . The definition of the set T makes it tempting to say that

(f ′, Â) are compatible: that |f̄ ′ij |+νij ŝij ≤ fmax
ij holds for all

lines ij and not just for ij ∈ T, and thus we get a reduction of
variance metric “for free” (without cost increase). As we will
see below, the desired compatibility will in general not hold,
and an appropriate algorithmic correction will be needed. The
numerical difficulty entailed by problem (24) will depend on
the number of constraints (24d) which, as we have discussed,
is frequently quite small.

Our formal template is as follows:

Procedure V.3. Variance-shifting

Input: Feasible solution (p̄0, f0,A0) to safety-
constrained problem (15), variance metric ∆,
parameters 0 < τ < 1, K > 0. Let s20 = V(A0).
For k = 1, 2, . . . ,K perform iteration k:
1. Solve Reroute(Ak−1, τ).

If infeasible, STOP.
Else, let (p̄k, f̄k, θ̄k) be the optimal solution.

2. Solve VShift(f̄k,Ak−1, τ), with solution (̂sk, Âk).
3. Choose 0 ≤ λ ≤ 1 largest, so that

(f̄k, (1− λ)Ak−1 + λÂk) is compatible.
4. Set Ak ← (1− λ)Ak−1 + λÂk, s2k = V(Ak).
5. If ∆(s2k) ≥∆(s2k−1). STOP.

Next we comment on this algorithm2 with a formal analysis
provided below.

In Steps 3-4 we take a convex combination of the previous
and the new participation matrices so as to obtain compati-
bility. For any line ij, V((1 − t)Ak−1 + tÂk)ij is a convex
quadratic over 0 ≤ t ≤ 1 and thus the determination of λ (Step
3) can be done exactly. Usually ∆(̂s2k) < ∆(̂s2k−1) (by choice
of (̂sk, Âk) in Step 2). Hence choosing λ as large as possible
will help toward reducing variance metric. This is why we use
inequality (24d) in VShift(f̄k,Ak−1, τ): without it, each ij
in T(f̄k,Ak−1, τ) with ŝk,ij large would force a small value
for λ.

Moreover, the procedure could terminate in Step 1 of some
iteration. This feature is avoided by, e.g. scaling τ by a factor
of 1/2 and then repeating Step 1 (until feasibility is attained).
We have not implemented this strategy as it did not prove
necessary for small values of τ and K.

Next we provide an analysis of Procedure V.3. Lemmas 4
and 5 are the critical result; together they essentially show
that, under fairly general conditions, any execution of Steps
2-3 is guaranteed to make progress in the sense that a positive
length stepsize λ can be chosen. Theorem 6 is an important
corollary; it shows that if the algorithm ever stops in Step 5,
then under Model (I) variance metric has reached its minimum
possible value.

Remark 3. Let A,A′ ∈ K. Then for any 0 ≤ t ≤ 1, (1− t)+
A + tA′ ∈ K and for any line ij, V((1 − t)A + tA′)ij is a
convex quadratic function of t.

Proof. The first claim follows since K is convex and the second
using expression (8).

Lemma 4. Suppose that in iteration k the algorithm reaches
Step 2. Let A ∈ K be an arbitrary participation matrix. Then
there exists 0 < γ ≤ 1 such that for all 0 ≤ t ≤ γ,

( f̄k, (1− t)Ak−1 + tA )

is a compatible pair.

2motivated by [28]
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Proof. Consider any line ij. For real 0 ≤ t ≤ 1 let s2
ij(t) =

V((1− t)Ak−1 + tA). By construction in Step 1,

|f̄kij |+ νijsij(0) ≤ (1− τ)fmaxij .

Hence we can find γij > 0 with

|f̄kij |+ νijsij(t) ≤ fmaxij

for all t ≤ γij . The result is obtained by setting γ = minij γij .

Lemma 5. Suppose that the algorithm reaches Step 2 of iter-
ation k. Suppose Ā is any matrix with ∆(V (Ā)) < ∆(s2

k−1).
Then for any 0 < t ≤ 1,

∆(V( (1− t)Ak−1 + tĀ )) < ∆(s2
k−1). (25)

Proof. Consider any line ij. Since

s2
ij(t)

.
= V((1− t)Ak−1 + tĀ)

is a convex quadratic function of t,

s2
ij(t) ≤ (1− t)s2

ij(0) + ts2
ij(1),

and therefore, since ∆ij(s
2
ij) is convex and nondecreasing in

sij ,

∆ij(s
2
ij(t)) ≤ (1− t)∆ij(s

2
ij(0)) + t∆ij(s

2
ij(1)).

Summing this expression over all ij we obtain

∆(s2(t)) ≤ (1− t)∆(s2
k−1) + t∆(V (Ā)) < ∆(s2

k−1) (26)

since t > 0.
Let A∗ and ∆∗ denote, respectively, the participation matrix

with minimum variance metric, and the metric it attains, i.e.

A∗ .= argminA∈K∆(V(A)) and ∆∗
.
= ∆(V(A∗)). (27)

Based on the above results we can state an important conse-
quence under Model (I) of the variance metric (Section V-A).

Theorem 6. Under Model (I) if Procedure (V.3) stops at Step
5 of iteration k then ∆(s2k−1) = ∆∗.

Proof. Assume, by contradiction, that ∆∗ < ∆(s2
k−1). The

contradiction we will provide will show that the procedure
does not stop at Step 5. By Lemma 5, applied to matrix A∗,
we have that

∆(V( (1− t)Ak−1 + tA∗ )) < ∆(s2
k−1) ∀ 0 < t ≤ 1. (28)

And if we apply Lemma 4, also to matrix A∗, we have that
there exists 0 < γ ≤ 1 such that

( f̄k, (1− γ)Ak−1 + γA∗ )

is a compatible pair. Hence (1 − γ)Ak−1 + γA∗ is feasible
for VShift(f̄k,Ak−1, τ). Since (Step 2) Âk is the optimal
solution to this problem, we therefore have by (28)

∆(V(Âk)) < ∆(V(Ak−1)).

Now we apply Lemma 4 to Âk, and conclude that the stepsize
λ computed in Step 5, is strictly positive. And if we also apply
Lemma 5 to matrix Âk we obtain that

∆(V( (1− t)Ak−1 + tÂk )) < ∆(s2
k−1) ∀ 0 < t ≤ 1. (29)

Evaluating (29) at t = λ yields the desired contradiction, i.e.
∆(s2k) < ∆(s2k−1).

D. Numerical examples for the correction template

In this section we apply Procedure V.3 to the Polish grid
example case2746wp [29]. This system has 2746 buses, 3514
branches, 520 generators total load 24873. We introduced 22
stochastic injection sites, with total average injection 4611.57
(i.e., roughly 18.5% penetration). The ratio of standard devia-
tion to mean of stochastic injections was 0.3, and it is assumed
that injections at different stochastic sites were independent.
All safety parameters (for lines and generators) were set to
3. All generators were made available for balancing. These
choices follow the setup in [3]. We also chose τ = 0.1 and
K = 2.

The variance metric we selected is nonconvex. We used∑
ij∈F

s2
ij , (30)

where the set F = F(f̄ , s) ⊂ E of lines is, as our notation
indicates, flow and variance dependent and is designed to
highlight lines that are “at risk”; it is made up by the
combination of two sets:
(a) The 100 lines that attain largest average flow magnitude,

as in Model (II.1).
(b) All lines ij for which |f̄ij | + νijsij ≥ (1 − τ)fmaxij , in

other words, lines whose flow and variance characteristics
place them in a near-risk condition.

The computation of the solution (p̄0, f0,A0) to safety-
constrained problem (15) was performed using Cplex [34]
and required approximately one CPU minute (on a standard
workstation) and 29 cutting-plane steps. The computation
selected 11 generators with positive participation parameer α
and in the rest of the procedure we used this subset of buses
as the set of participating buses.

We then applied the iterative component of Procedure V.3.
We provide a brief outline of the run, next.

Iteration k = 1, Step 1. This computation took 1.12 seconds,
and produced a solution whose expected generation cost
≈ 1.1 × 1006, which is nearly identical to that in the initial
chance-constrained OPF solution.
Iteration k = 1, Step 2. As anticipated by the above dis-
cussion, the set T (see (23)) of risky lines in the solution
computed in Step 1 is quite small – just five lines are in the
set. As a result, in (30) we have |F| = 105, with variance
metric taking value 6.3× 1004.

Problem VShift(f̄1,A0, τ) had, roughly, 14000 variables
and 1e06 nonzeros. Nevertheless, it was solved using Gurobi
7.02 [35] in just 2.3 seconds. The updated variances, ŝ21 and
f̄1, attained metric (30) of ≈ 2.3 × 1004– of course this
computation is done using the set F = F(f̄1, s0), rather
than the correct set, F(f̄1, ŝ1). As such the value we have
just provided is not a correct calculation of variance metric,
however it indicates a large potential decrease of metric
compared to that in the solution obtained in Step 1 (which was
nearly three times larger). In fact, Â1 is not necessarily even
compatible with f̄1. Steps 3 and 4 will recover compatibility.
Iteration k = 1, Step 3. The stepsize computation yields
λ ≈ 0.55.
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Iteration k = 1, Steps 4 and 5. Updating the participation
matrix yields variances s21 whose metric is ≈ 4.65× 1004.
Summary. In just one iteration, Procedure V.3 keeps gener-
ation cost approximately constant and reduces our variance
metric by, roughly, 35%.
Iteration k = 2, Step 1. Similar behavior as in iteration 1.
Iteration k = 2, Step 2. The number of nearly-tight
lines grows to 24; and now F = 120. Solution for
VShift(f̄2,A1, τ) are similar to those for iteration 1. In this
case, f̄2 together with ŝ2

2 attain variance metric 2.89 × 1004,
with the same caveat as indicated for Iteration 1, Step 2.
Iteration k = 2, Step 3. Now λ ≈ 0.29.
Iteration k = 2, Steps 4 and 5. After the update, f̄2 and s22
yield a metric of approximately 4.50× 1004.
Summary. Thus, in just two iterations of Procedure V.3 we
once again maintain nearly constant expected generation cost,
but variance metric is decreased by roughly 40% compared to
the original value.

It is also useful to consider the structure of the power
flows. At termination, the largest magnitude average line
flow magnitude is approximately 817. The third largest flow
has value 632 and the corresponding line attains the largest
single standard deviation; roughly 91. In contrast, the 101st

largest flow magnitude is approximately 144 and lines below
that ranking attain far smaller standard deviation of flow;
approximately 15. In other words the procedure transfers
variance away from high flow lines while avoiding the creation
of lines with high variance but low expected flow.

VI. NUMERICAL EXPERIMENTS WITH VARIANCE-AWARE
PROBLEMS

Our formal problem (18) enforces a tradeoff between “per-
formance,” i.e. expected cost given in the first term of (18a),
and “risk” which is the second term in (18a). The more weight
that is placed on the risk term, i.e. the more risk-aware the
computation is, the less emphasis that the optimization will
place on performance. This is the “cost of variance”. For any
given structural form of the variance metric one can scale (up
or down) the contribution of variance to the objective of (18).
For example, in Models (I) and (II) of Section V-A one can
scale the parameters ψij by a common positive constant so
as to adjust the impact of variance. Different choices of this
common scale factor imply a different risk posture and likely
a different solution to problem (18). In essence, thus, problem
(18) represents a number of choices of operating solutions,
each driven by a different risk posture.

To better examine the performance-risk tradeoff we slightly
alter formulation (18): we choose parameters Λ = 0 or 1 and
0 ≤ Π, and address the problem

min Λ
∑
i∈G

E(ci(pi)) + Π∆(f̄ , s2) (31a)

s.t. 15b - 15i. (31b)

When Λ = 1 and Π = 0 the variance term is ignored and
we obtain the standard chance-constrained DCOPF problem.
When Π > 0 and Λ = 0 the goal is to minimize variance
metric and cost is ignored. For Λ = 1, larger choices of Π

represent a more risk-aware stance; the larger Π is, the more
emphasis is placed on variance reduction. Thus when Λ = 1,
problem (31) amounts to a version of (18) with scaling of
the variance metric. [ Remark: (31) is more flexible than (18)
because it allows us to ignore either cost or variance ].

We first describe experiments using case2746wp as in Sec-
tion V-D. Again we assume independence of the stochastic in-
jections, and that the variance of the injection at bus k is given
by σ2

k. We simplify the controllable generator setup (3) so that
for each controllable generator i there is a constant αi with the
stochastic response at i given by pi(ω) = p̄i − αi

∑
j∈B ωj ,

rather than the more general (3). Then the variance of gen-
eration at i is given by Var(pi) = α2

i (
∑
j σ

2
j ). We tackle

problem (31) using a variant of the cutting-plane algorithm
in [3], which computes a solution that is both optimal and
feasible within numerical tolerance.

We first consider the variance metric given by∑
i∈BVar(pi), i.e. the sum of variances of output of

controllable generators. In Table I, “cost” is expected
generation cost and “var” is the variance metric.

TABLE I
RESULTS ON PROBLEM (31) FOR VARIANCE METRIC

∑
i∈B Var(pi)

(Λ,Π) 1.0,0.0 1,1e1 1,1e2 1,1e3 0.0,1.0
cost 1.262e7 1.269e7 1.284e7 1.291e7 1.935e8
var 9.21e4 6.55e3 1.08e3 7.48e2 7.37e2

Comment. The problems solved when both Λ = 1 and
Π > 0 show a large range of values for system variance,
with small but significant changes in generation cost. Note
that the cost in the (1, 2e3) case is approximately 3% higher
than in the standard chance-constrained solution (i.e. the
(1, 0.0) case), a nontrivial increase. The problems solved when
(Λ,Π) = (1, 0) or (0, 1) disregard, respectively, variance and
generation cost. The high variance metric attained in the
(1, 0) case highlights the potential danger in optimizing with
respect to cost alone. In fact, a comparison of the (1, 0) and
(1, 1e3) columns illustrates what might be termed the “cost of
variance”.

The second set of tests that we perform use, as variance
metric, a sum of variances of flow on “important” lines.
In particular we use the quantity

∑
ij∈E(N) s

2
ij where for

an integer N > 0, E(N) is the set of lines with largest
variance in the solution to the standard chance-constrained
DCOPF problem (CCOPF problem in the sequel; this is related
to Model (II) in Section V-A). To set up these tests, we
first consider Table II, which shows various values of the
variance metric that are attained by the solution of the standard
problem. In our variance-aware problem, we again consider

TABLE II
VARIANCE METRIC

∑
i∈E(N) s

2
ij IN STANDARD CCOPF SOLUTION

N 10 50 200 500
metric 1.2e4 4.03e4 7.35e4 1.13e5

problem (31) with the metric
∑
ij∈E(N) s

2
ij . We used Λ = 1.0.

Parameter Π was chosen so as to attain a meaningful tradeoff
between the two terms in (31a) while avoiding numerical
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difficulties in the underlying solver. Results are given in Table
III. Note that the variance metric of interest (third row of Table

TABLE III
RESULTS ON PROBLEM (31) FOR VARIANCE METRIC

∑
ij∈E(N) s

2
ij

N 10 50 200 500
Π 1e3 1e3 1e3 1e3∑

ij∈E(N) s2ij 9.78e3 3.06e4 5.49e4 8.12e4∑
ij∈E s2ij 2.07e5 1.90e5 1.86e5 1.97e5

cost 1.27e7 1.27e7 1.27e7 1.27e7

III) is reduced as compared to Table II, as desired. In this case
generation cost (fifth row) remains near-constant. Total line
variance (fourth row) does not show large changes.

VII. SHARPE-RATIO PROBLEMS

In the previous section we performed experiments involving
problem (31a) which optimizes a blend of performance and
risk, with parameterization used to take a stance on the relative
importance of variance reduction. This task may be nontrivial
though an experienced operator may be able to tailor the trade-
off based on an assessment of current operating conditions. In
this section we describe an approach that bypasses the need
for parameter choice and, informally, seeks to maximize “cost
savings per unit of variance”. We will make this statement
clearer below.

For completeness, we first describe an approach found
in the economics literature that provides an alternative to
solving problem (18). Here, one chooses a desired level of
maximum risk (variance metric) that can be tolerated and solve
a CCOPF variant that caps variance metric at that maximum
level. Or, conversely, one can place an upper bound on cost
and minimize variance metric subject to that upper bound on
cost. Formally, one would choose parameters ρs and ρc, and
consider problems

c∗(ρs)
.
= min

∑
i∈G

E(ci(pi)) (32a)

s.t. 15b - 15i (32b)

∆(f̄ , s2) ≤ ρs (32c)

and

∆∗(ρc)
.
= min ∆(f̄ , s2) (33a)

s.t. 15b - 15i (33b)∑
i∈G

E(ci(pi)) ≤ ρc (33c)

The first problem minimizes cost subject to a limit on variance,
and viceversa. When ∆(f̄ , s2) is convex, so are both problems.
We note that (32) and (33) are analogues of well-known prob-
lems in the (financial) portfolio optimization literature, termed
the maximum return and minimum risk problems (resp.), see
[30]. We have the (straightforward) result:

Lemma 7. Let ĉ and ∆̂ denote the expected cost and variance
metric (resp.) attained by an optimal solution to the variance-
aware problem (18), or to problem (31) with Λ = 1 and 0 < Π.
Then: c∗(∆̂) = ĉ and ∆∗(ĉ) = ∆̂.

Clearly an approach relying on problem (32a) or (33a) is
not parameter-free – we need to specify ρs or ρc. Either choice
represents a risk-stance on the part of the planner. However,
again, either problem may be of interest to an experienced
operator.

In the remainder of this section we present a parameter-free
approach, which applies when the generation cost functions
are strictly convex and the when the variance metric is convex
and of appropriate structure, and is motivated by the classical
“Sharpe ratio” problem in economics [31]. Formally, we
proceed as follows:

Step 1. Let us assume that the generation cost functions are
of the form ci(p) = ci0p

2 + ci1p + ci2 (as discussed above)
and thus, as per Lemma 2, E(ci(pi)) = ci0(p̄2

i +ATi ΩAi) +
ci1p̄i + ci2. We will further assume that ci0 > 0 for each
generator i ∈ G. Defining

υi
.
= p̄i + ci1/2ci0

then E(ci(pi)) = ci0υ
2
i + ci2 − c2i1

4ci0
+ ci0ATi ΩAi. Hence, up

to an additive constant, the expression
∑
i∈G E(ci(pi)) is a

convex quadratic (i.e. no linear term!) of the υ and A.

Step 2. Formulation (31) includes linear equations and in-
equalities, as well as conic constraints. In order to simplify the
discussion below, we will use streamlined notation, as follows.
g.1 We will use the generic term “x” so as to refer to the

vector of variables appearing in problem (18), including
the υ just defined (see the paragraph preceding the
statement of problem (15) for a complete list of all
its variables). Some additional variables, such as the vi
above, will be included for problem reformulation.

g.2 Constraints (15b)-(15i) are represented using the generic
form Φ(x) ≤ b. Here Φ(x) is a vector-valued function;
each row of Φ(x) ≤ b corresponds to a row of (15b)-
(15i) with equations (such as (15c)) equivalently restated
as two inequalities. We further assume that constraint
(15b), i.e. A ∈ K, is polyhedral or second-order cone
representable. Thus, in other words, the constraint system
Φ(x) ≤ b is made up of linear and second-order cone
constraints.

g.3 The expected cost term,
∑
i∈G E(ci(pi)), is represented

by a strictly convex quadratic g(x) with no linear term.
g.4 The variance-metric term will be denoted as S2(x). We

assume this function is convex and homogeneous of
degree-2, i.e. S2(tx) = t2S2(x) for any scalar t. The
variance metric given by (II.2) in Section V-A is of this
form.

Under assumptions g1.-g4 we can equivalently rewrite the
generic variance-aware safety-constrained problem (31) (with
Λ = 1) as

min g(x) + ΠS2(x) (34a)
s.t. Φ(x) ≤ b (34b)

Now we will replace problem (34) with one that does not
require the choice of Π, and yet captures the interplay between
performance and risk.
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Step 3. We assume that there is a constant κ2 > 0 such that a
solution to the safety-constrained problem is of interest so long
as its expected cost is less than κ2. In other words this constant
represents the maximum that we are willing to pay for a safe
solution. We will further assume that such “cheap enough”
safe solutions exist, and that they always attain positive (e.g.
nonzero) variance metric.

With Steps 1-3 in place, we can now state a formal
optimization problem, namely:

R1
.
= max

κ2 − g(x)

S2(x)
(35a)

s.t. Φ(x) ≤ b (35b)

We will show that this problem is SOCP-representable. Prior
to proving this fact we can discuss the structure and rationale
behind this problem. The proofs below, at a very high level,
are directed by the traditional analysis of the Sharpe ratio.
• The numerator κ2 − g(x) in (35a) measures the savings

in expected cost relative to the benchmark κ2. Intuitively
we are optimizing the “cost savings per unit of variance”.

• By assumption (Step 3 above) the ratio κ2−g(x)
S2(x) is positive

and well-defined (nonzero denominator) for solutions x
of interest.

• Under the assumption that the generator cost functions
are strictly convex quadratics, the units in g(x) are
“megawatts squared”. In many cases of the variance
metric described above, the units in S2(x) are of the same
type.

• If the generation costs are all linear (which is the case
in some of the larger examples available in e.g. MAT-
POWER) one can replace the ratio in (36) with one where
the denominator is

√
S2(x) and the analysis below will

carry through.
• In analysis of actual transmission systems, the solution

of problem (35) may simply be used as a “benchmark”
for other operating plans, rather than as a plan to be
actually implemented. A network operator may choose to
implement a particular plan if e.g. that plan looks “good
enough” benchmarks well against the the solution to (35).

We will now prove the stated convexity result. Toward this
goal, let

R2
.
= max

1

S2(x)
(36a)

s.t. Φ(x) − Θb ≤ 0 (36b)

κ2Θ2 − g(x) ≥ 1 (36c)
Θ ≥ 0. (36d)

Constraints (36b) are the homogenization of constraints (35b),
and the new variable Θ is usually termed the homogenization
constant. For example, constraint (15f) in (31), B̆A = D,
becomes B̆A −ΘD = 0 in (36), constraint (15e) bij |f̄ij |+
νij sij ≤ fmax

ij becomes bij |f̄ij | + νij sij − fmax
ij Θ ≤ 0

and constraint (15h), sij ≥ bij

√
γijΩγTij , remains unchanged

since it has no constant term.
We will next show that (a) problems (35) and (36) are

equivalent (Lemmas (8) and (9)) and (b) problem (36) is
convex. Prior to the proofs we note that:

• since g(x) is strictly quadratic, g is homogeneous of
degree-2, i.e. g(tx) = t2g(x), for every scalar t,

• We also have Φ(tx) = tΦ(x) for any scalar t ≥ 0 (refer
again to problem (15)).

Lemma 8. R1 ≥ R2.

Proof. Let (x̄, Θ̄) be optimal for (36). By (36c) Θ̄ > 0 since
g(x) ≥ 0. Thus, define z .

= x̄/Θ̄. Then f(z) = Θ̄−1f(x̄) ≤ b
(by (36b)) and so z is feasible for (35).

Moreover,

κ2 − g(z) =
1

Θ̄2
(κ2Θ̄2 − g(x̄)),

and Θ̄2S2(z) = S2(x̄). Thus

1

S2(x̄)
=

1

Θ̄2

1

S2(z)
≤ 1

Θ̄2

κ2Θ̄2 − g(x̄)

S2(z)
=
κ2 − g(z)

S2(z)
,

where the inequality follows from constraint (36c). The right-
most term in this expression is the objective attained by z for
problem (35).

Lemma 9. R2 ≥ R1.

Proof. Let x̃ be optimal for (35). By assumption on the
quantity κ2, κ2 > g(x̃). Define

Θ
.
= (κ2 − g(x̃))−1, and y .

= Θx̃.

Then κ2Θ2 − g(y) = Θ2(κ2 − g(x̃)) = 1, and f(y) − Θb =
Θ(f(x̃)−b) ≤ 0, where the inequality follows from feasibility
of x̃ for (35). In other words, (y,Θ) is feasible for problem
(36). Moreover,

R1 =
κ2 − g(x̃)

S2(x̃)
=

1

Θ2

κ2Θ2 − g(y)

S2(x̃)
=

1

S2(y)
,

from which the result follows.
As a consequence of Lemmas 8 and 9 we obtain R1 = R2

and indeed the proofs show that problems (35) and (36) are
equivalent.

There remains to show that problem (36) is convex. First,
the objective can be rewritten as minS2(x) which is convex
and will be SOCP-representable in many of the cases described
above. As discussed, the constraints (36b) are either linear
or convex-conic. Finally we have κ2Θ2 − g(x) ≥ 1. This
constraint, which implies Θ ≥ 1/κ, can be restated as

κ2(Θ + 1/κ)(Θ− 1/κ) ≥ g(x).

Since g(x) is a convex quadratic this constraint is SOCP-
representable. See, e.g. [32].

VIII. CONCLUSION

In this work we have considered the interplay between
expected cost minimization in operation of power grids under
stochastic injections, and variability. We presented numeri-
cally efficient procedures that post-process non-variance aware
minimum-cost solution so as to reduce its variance while
controlling costs as w ell as theoretically efficient cost-variance
tradeoff procedures, in particular a generalized Sharpe-ratio
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maximization procedure. An interesting topic for future re-
search concerns the analysis of concrete (“real-world”) trans-
mission system with particular emphasis on studying relevant
variance metrics, i.e. variability of transformer operation. Such
problems may lead to non-convexity, but as argued here may
be amenable to efficient post-processing through appropriate
algorithms. Capturing important engineering details may call
for advanced numerical optimization tools, such as derivative-
free optimization [33]. A further issue of interest is the explo-
ration of the performance-risk frontier through techniques such
as those described in Section VII, which may prove helpful
in concrete pricing mechanisms that account for variability of
renewable output.
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