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Abstract
We introduce amulti-agentmeta-modeling game to generate data, knowledge, andmodels thatmake predictions on constitutive
responses of elasto-plastic materials. We introduce a new concept from graph theory where a modeler agent is tasked with
evaluating all the modeling options recast as a directed multigraph and find the optimal path that links the source of the
directed graph (e.g. strain history) to the target (e.g. stress) measured by an objective function. Meanwhile, the data agent,
which is tasked with generating data from real or virtual experiments (e.g. molecular dynamics, discrete element simulations),
interacts with the modeling agent sequentially and uses reinforcement learning to design new experiments to optimize the
prediction capacity. Consequently, this treatment enables us to emulate an idealized scientific collaboration as selections of
the optimal choices in a decision tree search done automatically via deep reinforcement learning.

Keywords Directedmultigraph ·Data-driven constitutivemodeling ·Multi-agent deep reinforcement learning ·Combinatorial
optimization · Computational combinatorics

1 Introduction

In single-physics solid mechanics problems, the balance of
linear momentum is often used to provide constraints for the
motion of a body in the space-time continuum,while a consti-
tutive law is often supplied to replicate constitutive responses
at a selectedmaterial point of the body.Many successful com-
mercial and open-source codes now introduce mechanisms
or gateways that simplify the incorporation of material point
constitutive models into predefined solid mechanics solvers
(e.g. UMAT in ABAQUS) [14,15,28,57,66,67,81,83,99].
Once a constitutive law is formulated, algorithms are then
designed to approximate the mathematical model such that a
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computer can be used to run simulations. The algorithms that
approximate or enforce the constitutive laws are then veri-
fied, validated and eventually used in engineering practice
[31,34,94].

Conventionally, a constitutive model that replicates the
relation between the kinetic and kinematics quantities is
derived from a finite set of fundamental principles, assump-
tions and phenomenological equations [87,88]. For instance,
the laws of thermodynamics, material frame indifference,
and balance laws are universal principles that are widely
believed to be true for all materials under common cir-
cumstances. After enforcing those universal principles, there
often remains a finite set of choices a modeler can make to
construct a constitutivemodel. In particular, different types of
experiments are designed such that a proper set of additional
constraints can be generated. These constraints may not be
fully explained byuniversal principles but are added to ensure
the compatibility between observed and simulated mechan-
ical responses. In reality, the universal principles alone are
insufficient to complete most of the constitutive laws, regard-
less of the spatial scales these constitutive laws are designed
for. As a result, phenomenological relations are introduced
such that all constraints imposed by principles and observa-
tions can both be enforced.
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1.1 Rationales of phenomenological relations

Even though phenomenological relations cannot be fully jus-
tified via universal-principle arguments, it is understandable
that proposers of these phenomenological relations often
seek justifications by introducing new theories or incorpo-
rating microstructural information. For instance, the most
commonly used family of soil models, the critical-state plas-
ticity, relies on the existence of a critical state line in the
state path (i.e. specific volume against the natural logarith-
mic of effectivemean pressure) such that soil in the numerical
simulations may develop plastic shear strain without vol-
umetric deformation when reaching the critical state and
exhibit the plastic dilatancy or contraction at different void
ratio and overconsolidation ratio [7,12,44,56,69,80]. Exper-
imental evidences are then sought to either justify the claim
(cf. [100]), or redefine the applicability of the theory in light
of new evidences (c.f. [42,54,102]). The incorporation of
fabric tensors in critical state plasticity is another exam-
ple where sub-scale information is incorporated to enhance
forward prediction quality [42,92]. Other types of informa-
tion incorporated into the constitutive law may come from
microstructural attributes or the kinematics of microstruc-
tures. A classical example is crystal plasticity where the
kinematics of the plastic flow is restricted by the orientations
of the slip systems [2,9,52,57].

Finally, for practical reasons or due to lack of sufficient
experimental evidences to prove otherwise, assumptions
are sometimes made to interpret a phenomenological rela-
tion. A classical example for this type of phenomenological
approach is the effective displacement theory commonly
used in traction-separation models where one assumes that
a scalar kinematic measure, often a weighted norm of nor-
mal and tangential displacements, can be used to determine
a scalar traction measure that leads to the traction vector
[59,62]. Nevertheless, the distinction between phenomenol-
ogy that only enhances curve-fitting in calibration and the
counterpart that leads to more accurate, robust and reliable
predictions is often a blurred line and might be subject to
debate [88,95–97]. Furthermore, the popularity of a model in
the short term is also not necessarily purely based on the pre-
diction quality, but also ties to the difficulty in calibration and
interpretation of the model [39], the demand of experimen-
tal data [58,97], as well as the social, cultural and personal
influences (cf. [50]), among other factors . In the case where
a limited subset of data might be chosen to make a con-
stitutive law or theory sound plausible or consistent with a
physical phenomenon, the true forward prediction quality of
the model might take a toll while the apparent capacity of the
model could be exaggerated [55]. The underlying problem is
that this issue is very difficult to detect unless all the models
are compared objectively in the same benchmark study and
subjected to a universally agreed validation metric [11,60].

Hence, a validation procedure that employs blind predictions
is critical, regardless of the type of models used for predic-
tions.

1.2 Data-driven approaches as alternatives

An alternative to the conventional modeling approach is
the data-driven modeling in which constitutive responses
are predicted primarily based on the available data either
by black-box neural networks [22,25,41,93,94] or via mini-
mization problems in the phase space [34]. While the latter
approach, as outlined in [34,35], has shown great promises to
handle hyperelasticity problems, the extension to plasticity
problems likely requires either imposing further constraints
(e.g. perfect plasticity [31]) or creating a sufficiently large
database to capture the phase space of the history-dependent
responses. On the other hand, Lefik and Schrefler [41] has
demonstrated that a neural network can generate cyclic
elasto-plastic responses with some level of success. Never-
theless, despite the fact that a multi-layer neural network
can be considered as a universal approximator, as pointed
out in [29], this does not imply that the training of the neu-
ral network is always successful. In fact, failure to complete
the training is quite common and it might be caused by, for
example, (1) higher demand of data for the neural network
training compared to the material parameter identification in
conventional modeling, (2) the curse of high dimensionality
that leads to inconsistency between calibration and forward
prediction performance, (3) issues related to under-fitting and
over-fitting, and (4) the vanishing gradient issues that make
the algorithm unable to locate the global minimizer of the
loss function [94]. Furthermore, without special treatment to
extend the database for training the neural network, the resul-
tant models often exhibit dependence on coordinate systems.
Even though this issue has been addressed recently using
the spectral decomposition of tensorial inputs and outputs
in recurrent neural networks [94], this lack of consistency
with theory indicates that the domain expertise remains crit-
ical for evaluating the quality of the machine learning model
and finding remedies for issues not immediately apparent for
nonspecialists.

In the aforementioned data-driven approach, the demand
for big data remains an ongoing challenge [47,77,86]. In par-
ticular, machine learning models, especially those in most
generic forms (i.e. model-free approaches), may suffer a lack
of constraints imposed by material theory, thus increasing
the demand for data to generate the constraints. Hence, it is
important formodelers to be able to estimate the least amount
of data required to complete the training of a specific model.
The introduction of the two-player cooperative game in this
paper can provide a practical solution to find the required
amount and type of data for path-dependent materials.
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1.3 The hybridized theoretical/data-driven
approach

In this paper, our goal is to (1) introduce a meta-modeling
method to generate algorithms that hybridize theory, phe-
nomenological relations, and universal principles to auto-
matically generate constitutive laws that fulfill a specific
objective defined by the loss (objective function) in a
quantitatively optimal manner and (2) incorporate the rein-
forcement learning technique to select experiments that lead
to improvement in prediction capacity. We do not limit our-
selves to the approach in which the neural network model is
either used to replace the entire constitutive law or not being
used at all (cf. [24,34,94]). Instead, our goal is to find the
optimal way out of all the possible choices to construct a
constitutive law for a given material data.

To reach our goal, we employ two techniques of discrete
mathematics that are less commonly used in computational
mechanics, the directed multigraph and decision tree learn-
ing. First, the directed multigraph is used to recast the
available choices of constitutive laws as a family of pos-
sible ways to configure a graph of information flow from
the upstream (the source or input, such as the relative dis-
placement or strain) to the downstream (the target or output,
such as the traction or stress). A model is a path (in the ter-
minology of graph theory) of this directed multigraph that
optimizes an objective function. As such, a model is associ-
ated with a collection of physical quantities (vertices in the
directed graph) linked by either mathematical expressions or
machine learning models that connect the upstream to the
downstream (edges in the directed graph) (cf. [94]).

Within our framework, a black-box neural networkmodel,
for instance, is simply a model in which there are no human-
interpretable quantities connecting the input and output.
Many classical neural network models such as Ghaboussi
et al. [24], Lefik and Schrefler [41] and Wang and Sun
[94] all belong to this category, as neurons are the only
media that propagate the information flow. Meanwhile, a
classical theory-based constitutive law can be viewed as a
directed graph (or a particular path of the directed multi-
graph) inwhich all the edges aremappings that can bewritten
as mathematical expressions formulated by human. On the
other hand, a hybridized model could have a subset of neu-
ral network edges while having the rest edges theoretically
based.

Since the optimal configuration of the directed graph for
a given problem and the corresponding objective function is
not known a priori, we introduce mechanisms to hierarchi-
cally explore the possible modeling choices using a decision
tree. A decision tree is simply an explicit representation of all
possible scenarios such that the sequence of decisions (in our
case themodeling choices and data explorations) is evaluated
by an agent who then takes account of the possible observa-

tions (e.g. experimental observations), and state changes (e.g.
the changes of validation metrics or loss function values) to
estimate the best choices.

In this work, our major contributions are threefold. First,
we introduce the concept of labeled directed multigraph to
represent relational knowledge. Such a mechanism provides
a convenient mean to hybridize theory-based and data-driven
models to yield optimal forward predictions. Second, we
recast the reinforcement learning as the process of formulat-
ing constitutive laws as a combinatorial optimization prob-
lem formaking a large number ofmodeling choices. Through
an automated trial-and-error process, the AI agent continues
to improve its decision-making ability automatically without
human intervention. The resultant meta-modeling approach
therefore enables the AI to discovery model building knowl-
edge via the Edisonian approach, while overcoming the low
efficiency of the Edisonian approach through automation.
The application of concepts from graph theory, such as
directed graph and directed multigraph gives us hierarchi-
cal information that helps understand the causal connections
among events and mechanisms. As point out in [38], this
model-building approach has an advantage over the model-
free machine learning approaches in interpretability. As
considerable evidence has indicated that the model-based
planning, such as the one introduced in this paper, is not only
an essential ingredient of human intelligence, but also the key
step to enable flexible adaptation for new tasks and goals. The
importance of the usage of multigraph is that it enables us
to form complex idea, knowledge, prediction, inference and
response with a rather small set of simple elements. This
kind of application of the principle of combinatorial gen-
eralization has long been regarded as the key signature of
intelligence [6,13,30,38]. Third, we also introduce a coop-
erative mechanism to integrate the data exploration into the
modeling process. In this way, the framework can not only
generate constitutive models to make the best predictions
among the limited data, but also estimate the most efficient
way to select experiments such that the most needed infor-
mation is included to generate the knowledge closure.

1.4 Content organization

The rest of the paper is organized as follows. We first intro-
duce the meta-modeling cooperative game, including the
method to recast all possible modeling options as directed
multigraph, and the generation of decision tree (Sect. 2).
Following this, we will introduce the detailed design of the
data collection/meta-modeling game for modeling the col-
laboration of the AI data agent and the AI modeler agent
(Sect. 3). In Sect. 4, we then review the multi-agent rein-
forcement learning algorithms that enable us to find the
optimal decision for constitutive models, as well as the
corresponding optimal actions the data agent takes to max-
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imize the prediction quality of the AI-generated model.
We then present numerical experiments to assess the accu-
racy and robustness of the blind predictions of the model
generated via our meta-modeling algorithm operated on
the directed multigraph. To check whether our approach
is able to deal with a wide spectrum of situations and
can be generalized for different materials, the multigraph
meta-modeling algorithm is tested with distinctive types
of data (e.g. synthetic data from elasto-plastic models and
discrete element simulations). To aid the reproducibility
of our numerical experiments by the third party, these
data will be open source upon the publication of this arti-
cle.

1.5 Notations and terminologies

For convenience, we provide a minimal review of the essen-
tial terminologies and concepts from graph theory that are
used throughout this paper. Their definitions can be found
in, for instance, [4,27,98].

Definition 1 A n-tuple is a sequence or ordered list that con-
sists of n element where n is a non-negative integer and that
(unlike a set) may contain multiple instances of the same
element.

Definition 2 A directed graph (digraph) is an ordered pair
(2-tuple) G = (V,E) where V is a nonempty set of vertices
and E is a set of ordered pairs of vertices (directed edges)
where each edge in E connects a pair of source (beginning)
and target (end) vertices in a specific direction. Both vertices
connected by an edge in E must be elements of V and the
edge connecting them must be unique.

Definition 3 A directed acyclic graph is a directed graph
where edges do not form any directed cycle. In a directed
acyclic graph, there is no path that can start from a vertex
and eventually loop back to the same vertex.

Definition 4 A directed multigraph with a distinctive edge
identity (also called multi digraph) is an ordered 4-tupleG =
(V,E, s, t)whereV is a set of vertices,E is a set of edges that
connect source and target vertices, s : E → V is a mapping
that maps each edge to its source node, and t : E → V is a
mapping that maps each edge to its target node.

Definition 5 An underlying graph U of a directed multi-
graphG is a multigraph whose edges are without directions.

Definition 6 A subgraph G
′ of a directed multigraph G is

a directed multigraph whose vertex set V′ is a subset of
V ( V

′ ⊆ V), and whose edge set E
′ is a subset of

E ( E′ ⊆ E).

Definition 7 A labeled directed multigraph is a directed
multigraph with labeled vertices and edges which can be
mathematically expressed as an 8-tupleG = (LV,LE,V,E,

s, t, nV , nE)whereV andE are the sets of vertices and edges,
LV and LE are the sets of labels for the vertices and edges,
s : E → V and t : E → V are the mappings that map the
edges to the source and target vetrices, nV : V → LV and
nE : E → LE are the mappings that give the vertices and
edges the corresponding labels in LV and LE accordingly.

As for notations and symbols, bold-faced letters denote
tensors (including vectors which are rank-one tensors); the
symbol ’·’ denotes a single contraction of adjacent indices
of two tensors (e.g. a · b = aibi or c · d = ci j d jk ); the
symbol ‘:’ denotes a double contraction of adjacent indices
of tensor of rank two or higher ( e.g. C : εe = Ci jklε

e
kl );

the symbol ‘⊗’ denotes a juxtaposition of two vectors (e.g.
a ⊗ b = aib j ) or two symmetric second order tensors (e.g.
(α ⊗ β)i jkl = αi jβkl ). Moreover, (α ⊕ β)i jkl = α jlβik and
(α�β)i jkl = αilβ jk . We also define identity tensors (I)i j =
δi j , (I4)i jkl = δikδ jl , and (I4sym)i jkl = 1

2 (δikδ jl + δilδk j ),
where δi j is the Kronecker delta. As for sign conventions,
unless specified otherwise, we consider the direction of the
tensile stress and dilative pressure as positive.

2 Meta-modeling: derivingmaterial laws
from a directedmultigraph

In this section, we describe the concepts behind the proposed
automated meta-modeling procedure and the mechanism
of the learning process. The key departures of our newly
proposed method via the neural network approaches for con-
stitutive laws (e.g. [24,25,40,41,94]) is the introduction of
labeled directed multigraph that represents all possible the-
ories under consideration for modeling a physical process,
the acyclic directed graph that represents the most plausible
knowledge on the relationships among physical quantities,
and the data agentwhich enables users to estimate the amount
of data required to reach the point where additional informa-
tion no longer enhances prediction capacity for a given action
space. In this paper, our focus is limited to the class of mate-
rials that exhibits elasto-plastic responses while damage can
be neglected.We assume that the deformation is infinitesimal
and the material is under isothermal condition. The proposed
methodology, however, can be extended to other more com-
plex materials.

2.1 Material modeling algorithm as a directed
multigraph

The architecture of an algorithm is often considered as a
directed multigraph [18]. In essence, a material model can
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be thought as a procedure that employs organized knowledge
to make predictions such that relationships of components
and the universally accepted principles govern the outcomes
of predictions. For instance, we may consider a traction-
separation model as an information flow in a directed graph
where physical attributes, such as porosity, plastic flow, per-
meability, are considered as vertices and their relationships
are considered as edges [94]. The input and output of the
models (e.g. relative displacement history and traction) are
then considered as the sources and targets of the directed
graph.

However, in some circumstances, a physical relation can
be modeled by more than one methods, theories or con-
stitutive relations. To reflect the availability of options, a
generalized representation of the thought process is needed
when we try to use artificial intelligence algorithm to replace
human to write constitute models. This generalized thought
process, which we refer as meta-modeling (i.e. modeling
the process of writing a model), can be recast as a labeled
directed multigraph. The latter can be used where a pair of
connected vertices are not necessarily connected by one edge
but by multiple edges, each represents a specific model that
connects two physical quantities (e.g. porosity-permeability
relationship). A formal statement can be written as fol-
lows:

Possible configurations of constitutive laws as a
labeled directedmultigraphGiven a data set whichmea-
sures a set of physical quantities defined as V with a
corresponding set of labels LV where nV : V → LE is
a bijective mapping that maps the vertices to the labels.
Let VR ⊂ V and VL ⊂ V be the source(s) and tar-
get(s) of the directed multigraph. All possible ways to
write constitutive laws that map the input VR (e.g. strain
history) to output VL (e.g. stress) as information flow
can be defined by the sets of directed edges where each
edge that links two physical quantities E, the mappings
s : E → V and t : E → V that provide the direc-
tion of the information flow, and the surjective mapping
nE : E → LE that assigns the edge labels (names) to
the edges.

A simple example for traction-separation law can be found
in the Appendix A.

2.2 Recasting the process of writing constitutive
laws as selecting subgraphs in a directed
multigraph

In the first meta-modeling game introduced in this work,
we consider a scenario where a set of experimental data is
given. This experimental data include measurement of dif-

ferent physical quantities, but the inherent relationships are
unknown to the modeler. Furthermore, in the process of writ-
ing the constitutive law, themodelermust follow a set of rules
coined as universal principles (e.g. thermodynamic princi-
ples, material frame indifference) [34,94]. Here, we first
assume that an objective of writing the constitutive model
is well defined and hence a score system is available for the
deep Q-learning. We then idealize the process of writing a
constitutive lawwith a fixed set of data as a two-step process.
First, we consider all the possible ways to write a consti-
tutive law and represent all these possibilities in a labeled
directed multigraph. This labeled directed multigraph define
the action space of the meta-modeling game. Second, among
all the possible ways to write a constitutive law, i.e., on the
labeled directed multigraph, we seek the optimal configu-
ration that will lead to the best outcome measured by an
objective function. If the total number of possible configu-
rations is sufficiently small, then the optimal configuration
can be sought by building all the possible configurations and
comparing their performance afterward. However, this brute
force approach becomes infeasible when the total number
of configurations is very large as in the case of the game of
chess and Go [70,72]. As a result, the proposed procedure
of finding the optimal configuration of a constitutive law is
given as follow.

Instants of constitutive laws are considered as
directed graphs. Given a dataset that contains the time
history of measurable physical quantities of n types of
data stored in the vertices labeled by the vertex label
li ∈ LV and the labeled direct graph defined by the 8-
tuple G = (LV,LE,V,E, s, t, nV , nE), and objective
function SCORE and constraints to enforce universal
principles. Find an subgraph G

′ of G consists of ver-
tices V ∈ V

s ⊆ V and edges E ∈ E
s ⊆ E such that 1)

G
′ is a directed acyclic graph, 2) a score metric is max-

imized under a set of m constraints fi (l1, l2, . . . , ln) =
0, i = 1, . . . ,m where , i.e.,

maximize
li

SCORE(l1, l2, . . . , ln)

subject to fi (ii ) = 0, i = 1, . . . ,m.
(1)

Example 2 GameAction for traction-separation Laws. Given
an 8-tuple G = (LV,LE,V,E, s, t, nV , nE) with elements
defined in (66), (67), (72), (71). Find the subgraph G

′ of G
such that this subgraph becomes the directed acyclic graph
that maximizes the blind prediction accuracy defined by an
objection function. 
�
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3 Two-player meta-modeling game for the
discovery of elasto-plastic models through
modeling and automated experiments

In this work, we conceptualize the process of writing, cal-
ibrating and validating constitutive laws as a cooperative
two-player game played by one modeler and one exper-
imentalist (data) agent. These two agents, in theory, can
be played by either a human or an artificial intelligence
(AI) machine. To simplify the problems, we consider only
virtual experiments such as discrete element simulations
[46,82,91,94,101,105] and that the agents are not constrained
by the number of virtual experiment tests theymight conduct.
The control of the experimental cost and the ability to auto-
mate the execution of experiments are important topics but
are both out of the scope of this work.

As such two AI agents must be able to cooperate such that
they can find the hierarchical relationships among available
data and (2) come up with the experiment plan that helps
improve the performance of the blind predictions made by
the directed graph model, as shown in Fig. 1. This lead to a
multi-agent multi-objective problem that can be solved by
a deep reinforcement learning framework [65,85]. In this
work, the deep reinforcement learning algorithm is based
on a model-free policy gradient algorithm that employs a
neural network to estimate the Q values of the policies (cf.
[72,95]). In principle, it is possible to use other Bayesian
reinforcement learning approaches, such as Thompson sam-
pling, Bayesian upper confidence bounds, Bayesian sparse
sampling and other different decision making algorithms to
optimize the learning process. Finding the optimal strategy
for the deep reinforcement learning in specific applications
is an active research area, but is out of the scope of this study.
Interested readers are referred to [26] for a comprehensive
review on these reinforcement learning algorithms.

3.1 Data collection game for experimentalist agent

This section presents a design of the data collection game
involving the common decision-making activities of experi-
mentalists in testing the mechanical properties of a material.
The goal of this game is for the experimentalist agent to find
the optimal subset of tests for model generation and parame-
ter calibration within a set of candidate tests on the material.
The key ingredients of the game are detailed as follows.

3.1.1 Game board for experimentalist

Consider a set of possible mechanical experiments on a
material T = {T1, T2, T3, . . . , Tn}. The experiments can be
divided into two types: (1) a subset Tc of calibration exper-
iments for material parameter identification in a constitutive
model, (2) a subset Tv of validation experiments for testing

the forward prediction accuracy of the constitutive model.
T = Tc ∪ Tv , Tc ∩ Tv = ∅, Tc �= ∅ and Tv �= ∅. Suppose
the experimentalist has a priori preselected the elements in
both categories: Tc = T0

c = {Tc1, Tc2, Tc3, . . . , Tcn} and
Tv = T0

v = {Tv1, Tv2, Tv3, . . . , Tvn}. This selection could
be based on the availability of laboratory equipment, i.e.,
T0
c includes all tests that the experimentalist can perform in

the laboratory, while T0
v includes other tests that can only

be acquired from literature or third-party laboratories. The
experimentalist then chooses the final set of experiments
Tc ⊂ T0

c which could generate necessary and sufficient data
for the modeler agent to develop and calibrate a constitutive
model with the highest model score. The final validation set
Tv contains both experiments in T0

v and those not selected
in Tc, i.e., Tv = T0

v ∪ (T0
c\Tc). Hence the set T0

c constitutes
the “game board” for the experimentalist agent to play the
data collection game.

3.1.2 Game state for experimentalist

Themathematical description of the current state of the game
board is a list of binary indicators s = [ic1, ic2, ic3, . . . ,
icn, iterminate] representing whether a test Tci ∈ T0

c is
selected to be one of the calibration tests, and also whether
the game is terminated. If Tci ∈ Tc, the corresponding indi-
cator ici = 1, if Tci /∈ Tc ici = 0. If iterminate = 1, the game
reaches the end, otherwise the experimentalist can continue.
The initial state of the game is ici = 0, ∀Tci ∈ T0

c and
iterminate = 0. A special final state in which ici = 0, ∀Tci ∈
T0
c and iterminate = 1 indicates that no data is available for

model generation and calibration, hence the reward for this
state is set to 0.

3.1.3 Game action for experimentalist

At each state s, the experimentalist can select the next cali-
bration test Tci ∈ Tc, by changing the indicator ici from 0 to
1, or decide to stop the selection immediately, by changing
iterminate from 0 to 1.

3.1.4 Game rule for experimentalist

Generally, there are no specific rules constraining the selec-
tion of experiments for model parameter calibration. But the
game designer could always customize certain rules that pro-
hibit the coexistence of certain experiments in Tc. The game
rule can be reflected by a list of binaries Legal Actions(s) =
[i ic1, i ic2, i ic3, . . . , i icn, i iterminate], indicating whether an
element ici of the state s can be changed in the next action
step.

• If ici = 0 in the current state s, then i ici = 1 in
Legal Actions(s).
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Fig. 1 Scheme of the reinforcement learning algorithm in which two agents interact with environment and receives rewards for their corresponding
actions (writing models and conducting experiments)

• If ici = 1 , then i ici = 0.
• if iterminate = 0 , then i iterminate = 1.

We enforce a game rule that require the two tests Tci and
Tcj are mutually exclusive in Tc.

• If ici = 1 , then i icj = 0, and vice versa.
The initial legal actions are i ici = 1, ∀Tci ∈ T0

c and
i iterminate = 1.

3.1.5 Game reward for experimentalist

The reward from the game environment to the experimental-
ist agent should consider the scores of the constitutivemodels
generated by the modeler, given the calibration data and val-
idation data prepared by the experimentalist. For each result
of the data collection game Tc (hence its pair Tv = T\Tc),
the modeler could generate a number of different constitu-
tive models with scores [SCOREi, i=1,2,3,...]Tc . The reward
should also consider the total cost of the calibration tests Tc.
This reward for multiple objectives can be measured by a

weighted sum COST(Tc) = ∑T0
c wcost

ci ∗ ici , where wcost
ci

is the normalized cost for test Tci ∈ T0
c ,

∑T0
c wcost

ci = 1,
wcost
ci ∈ [0, 1].
If the experimentalist and the modeler are fully cooper-

ative on generating the constitutive model with the highest
score, the reward r is a functionof themaximummodel scores
for all possible Tc ⊂ T0

c and the total experimental cost of
Tc. Suppose that, since the beginning of the two-payer coop-
erative game (Fig. 1), the experimentalist have experienced
a number of calibration test sets Tc (they constitute a set
T
history
c ), and the modeler have generated constitutive mod-

els and evaluated their scores for these calibration test sets
([SCOREi, i=1,2,3,...]Tc , ∀Tc ∈ T

history
c ). Then, both agents

have the knowledge of the highest model score for each
Tc: SCOREmax

Tc
= max([SCOREi, i=1,2,3,...]Tc). Thus they

know the highest model score in the history of self-played

games: SCOREmax = max(SCOREmax
Tc

), ∀Tc ∈ T
history
c .

Then the agents can identify a set Tmax
c ⊂ T

history
c in which

the elements are all calibration test sets that can lead to maxi-
mum scores comparable to the highest score, i.e.,Tc ∈ T

max
c ,

if |SCOREmax
Tc

−SCOREmax| ≤ TOL, where TOL is a small
tolerance criteria.

From the perspective of the experimentalist agent, for a
fully cooperative game, Tc (represented by the state s) is
winning the data collection game if it is an element of the set
T
max
c , and its total cost is the lowest among all elements in

T
max
c . Hence the reward is designed as

r(s) =
{
1, if Tc ∈ T

max
c and COST(Tc) ≤ COST(∀Ti

c ∈ T
max
c )

0, otherwise
,(2)

3.1.6 Game choices for experimentalist

The elements in the set T = {T1, T2, T3, . . . , Tn} could be
all possible mechanical experiments performed on a mate-
rial. For example, for granular materials, the candidates can
include the following common types of tests in soil labora-
tories:

1. Drained conventional triaxial test (ε̇11 �= 0, σ̇22 = σ̇33 =
σ̇12 = σ̇23 = σ̇13 = 0).

2. Drained true triaxial test (ε̇11 �= 0, b = σ22−σ33

σ11−σ33
, σ̇33 =

σ̇12 = σ̇23 = σ̇13 = 0).
3. Undrained triaxial test (ε̇11 �= 0, ε̇11 + ε̇22 + ε̇33 = 0,

σ̇22 = σ̇33, σ̇12 = σ̇23 = σ̇13 = 0).
4. One-dimensional test (ε̇11 �= 0, ε̇22 = ε̇33 = ε̇12 =

ε̇23 = ε̇13 = 0).
5. Simple shear test (ε̇12 > 0, σ̇11 = σ̇22 = ε̇33 = ε̇23 =

ε̇13 = 0).

The loading conditions are represented by constraints on the
components of the stress rate and strain rate tensors
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ε̇ =
⎡

⎣
ε̇11 ε̇12 ε̇13

ε̇22 ε̇23
sym ε̇33

⎤

⎦ , σ̇ =
⎡

⎣
σ̇11 σ̇12 σ̇13

σ̇22 σ̇23
sym σ̇33

⎤

⎦ . (3)

Remarks on implementation In the numerical testing of
the constitutive models, the above material test conditions
are applied via a linearized integration technique for loading
constraints of laboratory experiments Sdσ + Edε = dY ,
combined with incremental constitutive equations, as pro-
posed in [5]. dσ and dε are Voigt forms of incremental stress
and strain, respectively. S and E are matrices of constraints
on incremental stress and strain, respectively. dY is a vector
of constraint values. See [5] for their formulations for differ-
ent loading constraints in geomechanics tests (e.g., drained
and undrained triaxial tests).

3.2 Meta-modeling game for modeler agent

This section presents a design of the constitutive modeling
game involving the common decision-making activities of
modelers in developing models to approximate the mechan-
ical properties of a material. The goal of this game is
for the modeler agent to find the optimal configuration of
the directed graph from a predefined directed multigraph
(Sect. 2) with its structure inherited from the graphs of the
classical infinitesimal strain elasto-plasticity models. The
key ingredients of the meta-modeling game consist of game
agents, game board, game state, game actions, game Rules,
game reward and game choices such that it constitutes
an agent-environment interactive system [8,95] which are
detailed as follows.

3.2.1 Game board for modeler

A constitutive model in the generalized elasto-plasticity
framework [63,104] requires four essential components of
“phenomenological relations” : (1) elasticity law (2) loading
direction (3) plastic flow direction (4) hardening modulus.
The process of obtaining a directed graph (the final state of
the game) from the game board, i.e., the direct multigraph
of the proposed framework is presented in Fig. 2. The quan-
tities are presented in the incremental form at discrete time
steps. A quantity a at the current time step tn is denoted as
an = a(tn). The next time step is tn+1 with the time incre-
ment �t = tn+1 − tn . Then the increment of the quantity a
within �t is denoted as �an+1 = an+1 − an . The essential
“definition” edges in the direct multigraph are written as

1 �σ n+1 = Ce
n : �εen+1

2 �εen+1 = �εn+1 − �ε
p
n+1

3 �ε
p
n+1 = �λn+1m

f low
n

4 �λn+1 =
{

nloadn :Ce
n :�εn+1

Hn+nloadn :Ce
n :m f low

n
if plastic loading

0 if elastic loading
,

(4)

where �λn+1 is the plastic multiplier and Hn is the gener-
alized plastic modulus.

The “elastic loading” and “plastic loading” states are
determined via the projection of the trial elastic stress incre-
ment �σ e

n+1 = Ce
n : �εn+1 on the loading direction nloadn .

If there is no assumed yield surface, then

{
�σ e

n+1 : nloadn �= 0 → plastic loading

�σ e
n+1 : nloadn = 0 → elastic loading

, (5)

or if there exists a yield surface f (σ , q piv
n (ξ

piv
n )), then

{
f (σ n + �σ e

n+1, q
piv
n (ξ

piv
n )) > 0 → plastic loading

f (σ n + �σ e
n+1, q

piv
n (ξ

piv
n )) ≤ 0 → elastic loading

, (6)

where ξ
piv
n is a vector of strain-like plastic internal variables

and q piv
n is a vector of stress-like plastic internal variables

conjugate to ξ
piv
n . ξ

piv
n may include the following internal

state variables accumulated during the deformations from
the initial time t0 to the current time tn ,

5

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λn =
∫ tn

0
λ̇dt

ε̄
p
n =

∫ tn

0
||ε̇ p||dt

ε̄ p
vn

=
∫ tn

0
tr(ε̇ p)dt

ε̄
p
sn =

∫ tn

0
||ε̇ p − 1

3
tr(ε̇ p)||dt

en = e0 +
∫ tn

0
ėdt = e0 +

∫ tn

0
(1 + e)ε̇vdt

, (7)

where ε̄ p, ε̄ p
v and ε̄

p
s are accumulated total, volumetric and

deviatoric plastic strains, respectively. e is the void ratio for
granular materials, defined as the ratio between volume of
the void and the solid constituent. We assume that the yield
function is isotropic and therefore can be expressed in terms
of stress invariants [9]. As a result, the phenomenological
relations can be represented as functions of a stress invariants
σ ivr
n , which may include
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Fig. 2 Directed multigraph of an elasto-plasticity model.The yellow
nodes of the strain εn , stress σ n and strain increment�εn+1 refer to the
root nodes, the pink node of the stress increment�σ n+1 refers to the leaf
node, and the cyan nodes refer to intermediate nodes. The black arrows
refer to “definition” edges. The color arrows refer to “phenomenological

relations” edges. In theMeta-modeling game, themodelerAI agent gen-
erates the optimal configuration of the model from the labeled directed
multi-graph for a given set of data. In the case of reverse engineering,
the modeler AI agent should be able to recover the original constitutive
laws when given the corresponding types of data. (Color figure online)

6

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

pn = tr(σ n)

3

qn = √
3J2 =

√
3

2
||sn||

θn = 1

3
sin−1(−3

√
3

2

J3

J 3/22

), −π

6
≤ θ ≤ π

6

(8)

where J2 = 1
2 trace(s

2
n), J3 = 1

3 trace(s
3
n), sn = σ n − pn I

and θn is the Lode’s angle, the smallest angle between the
line of pure shear and the projection of stress tensor in the
deviatoric plane [49]. The constitutive relation between the
loading direction nload and the state variables ξ

piv
n , σ ivr

n can
be defined either by formulating a yield surface f such that,

nload = ∂ f

∂σ
||∂ f

∂σ
||−1, (9)

or, in the case yield surface is absence, directly inferred from
observations as those in the generalized plasticity framework
(cf. [44,48,63]),

nload = nloadv nv + nloads ns . (10)

where

⎧
⎪⎪⎨

⎪⎪⎩

nv = ∂ p

∂σ
= 1

3
I

ns = ∂q

∂σ
=

√
3

2
√
J2

S.

(11)

Similarly, the constitutive relation between the plastic flow
direction m f low and the state variables ξ

piv
n , σ ivr

n can be
defined either by formulating a plastic potential surface g
such that,

m f low = ∂g

∂σ
|| ∂g

∂σ
||−1. (12)

or directly inferred from observations as those in the gener-
alized plasticity framework (cf. [44,48,63])

m f low = m f low
v nv + m f low

s ns . (13)

3.2.2 Game states for modeler

Themathematical description of the current state of the game
board is a list of binary indicators s = [ie1, ie2, ie3, . . . , ien]
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representing whether a labeled edge Eei in the labeled edge
set LE of the directed multigraph G is selected in the final
directed graphG′. If Eei is included inG′, the corresponding
indicator iei = 1, otherwise iei = 0. The initial state of the
game is iei = 0, ∀Eei ∈ LE.

3.2.3 Game actions for modeler

At each state s, the modeler can select the next labeled edge
Eei ∈ LE, by changing the indicator iei from 0 to 1.

3.2.4 Game rules for modeler

The modeling choices for the four essential components
in an elasto-plasticity model are not fully compatible with
each other. For example, a J2 yield surface only has the
yield stress as the stress-like plastic internal variable, while a
strain hardening law for a Drucker–Prager yield surface has
both frictional and cohesion hardening laws. These restric-
tions on compatible edge choices are specified by a list of
binaries Legal Actions(s) = [i i1, i i2, i i3, . . . , i in] of legal
choices for each state. Another set of game rules consist of
universal principles on the constitutive models. For exam-
ple, thermodynamic consistency would require that rate of
mechanical dissipation remains non-negative for isothermal
process [9,73], i.e.

D = σ : ε̇ − dψ

dt
≥ 0, (14)

where σ : ε̇ represents the stress power per unit volume and
dψ
dt represents the rate of change of Helmholtz free energy,
which may take the following form,

ψ(εe, ξ) = ψe(εe) + ψ p(ξ). (15)

where ψe(εe) and ψ p(ξ) are the elastic and plastic contri-
butions of the Helmoltz free energy and xi is a collection of
history-dependent internal variables. In our implementation,
we assume that the deformation is infinitesimal. As a result,
the additive decomposition of the total strain rate into the
elastic and plastic components is valid and Eq. (14) could
also be rewritten as [9],

D = (σ − ∂ψr

∂εe
) : ε̇ + σ : ε̇ − ∂ψ p

∂ξ
· ξ̇ ≥ 0. (16)

Readers interested to obtain further information on the con-
straints due to the thermodynamic laws are referred to
[9,73,88]. In the cooperative game, the thermodynamic laws
are converted into game rules then enforced implicitly by
introduce a penalty t the model score. If the final model
in an episode violates this rule, the final model score is

set to be 0. This low score is then used as training mate-
rial for the mastermind modeler agent such that it reduces
the policy probabilities of the choices that violate univer-
sal principles as shown in Fig. 3. As the deep reinforcement
learning progresses, the modeler agent will gradually learn
to avoid generating models that violate the thermodynamic
rules through the low policy values. Since the training of the
constitutive law can only be completed if the score of the best
candidate model is sufficiently high, this prevents the meta-
modeling algorithm from generating any model that violates
the first principles.

Note that the thermodynamic laws are not the only game
rules in the cooperative game. Another physical law we
enforced in this game is the frame indifference, first discussed
in [40]. In this work, the frame indifference is enforced by
representing tensors in spectral forms, then using Lie-algebra
to establishing the mapping from one orthogonal basis to
the other. The detailed operations have been documented in
[94,95] and will not repeat in this paper for brevity.

3.2.5 Game reward for modeler

A score system must be introduced to evaluate the generated
directed graphs for constitutivemodels such that the accuracy
and credibility in replicating themechanical behavior of real-
world materials can be assessed. This score system may also
serve as the objective function that defines the rewards for the
deep reinforcement learning agent to improve the generated
digraphs and resultant constitutive laws. In this work, we
define the score as a positive real-valued function of the range
[0, 1]which depends on themeasures Ai (i = 1, 2, 3, . . . , n)

of n important features of a constitutive model,

SCORE = F(A1, A2, A3, . . . , An), (17)

where 0 ≤ Ai ≤ 1. Some features are introduced to mea-
sure the performance of a model such as the accuracy and
computation speed. Other features are introduced to enforce
constraints to ensure the admissibility of a constitutivemodel,
such as the frame indifference and the thermodynamic con-
sistency. Suppose there are npfm measures of performance

features Apfm
i and ncrit measures of critical features Acrit

i in
the measure system of constitutive models, the score takes
the form,

SCORE =
⎛

⎝
ncrit∏

j=1

Acrit
j

⎞

⎠ ·
(npfm∑

i=1

wi A
pfm
i

)

, (18)

where wi ∈ [0, 1] is the weight associated with the measure
Apfm
i , and

∑npfm
i=1 wi = 1.

For example, for measures of accuracy Aaccuracy of cal-
ibrations and forward predictions, we introduce a cross-
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validation procedure inwhich the dataset used for training the
models (e.g. identifying material parameters (e.g. [45,97])
or adjusting weights of neurons in recurrent neural networks
(e.g. [40,94]) is mutually exclusive to the testing dataset used
to evaluate the quality of blind predictions. Both calibration
and blind prediction results are compared against the tar-
get data. The mean squared error (MSE) commonly used in
statistics and also as objective function in machine learning
is chosen as the error measure for each data sample i in this
study, i.e.,

MSEi = 1

Nfeature

Nfeature∑

j=1

[S j (Y
data
i j ) − S j (Y

model
i j )]2, (19)

where Y data
i j

and Ymodel
i j

are the values of the j th feature
of the i th data sample, from target data value and predic-
tions from constitutive models, respectively. Nfeature is the
number of output features. S j is a scaling operator (stan-
dardization, min-max scaling, …) for the output feature
{Yi j }, i ∈ [1, Ndata].

The empirical cumulative distribution functions (eCDFs)
are computed for MSE of the entire dataset {MSEi }, i ∈
[1, Ndata], for MSE of the training dataset {MSEi }, i ∈
[1, Ntraindata] and for MSE of the test dataset {MSEi }, i ∈
[1, Ntestdata], with the eCDF defined as [33],

FN (MSE) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, MSE < MSE1,

r

N
, MSEr ≤ MSE < MSEr+1, r = 1, . . . , N − 1,

1, MSEN ≤ MSE,

(20)

where N = Ndata, or Ntraindata, or Ntestdata, and all {MSEi }
are arranged in increasing order. A measure of accuracy is
proposed based on the above statistics,

Aaccuracy = max

(
log[max(εP%, εcrit)]

log εcrit
, 0

)

, (21)

where εP% is the Pth percentile (the MSE value correspond-
ing to P% in the eCDF plot) of the eCDF on the entire,
training or test dataset. εcrit � 1 is the critical MSE chosen
by users such that a model can be considered as “satisfacto-
rily accurate” when εP% ≤ εcrit.

Once a complete constitutive model is generated, the
model score is evaluated. The final reward is defined as: if
the current score is higher than the average score of models
from a group of already played games by the agent, then the
current game wins and rT = 1, otherwise, the current game
loses and rT = −1. The average score can be initialized to 0
for the first game.

3.2.6 Game choices for modeler

This section specifies the candidate edges in the directed
multi-graph of elasto-plasticity models (Fig. 2) for the mod-
eler agent to choose during deep reinforcement learning.
The edges are categorized into four groups representing the
four essential constitutive relations in the model. The edges
σ ivr
n → Ce

n and ξ
piv
n → Ce

n represent the elasticity law. The

edges σ ivr
n → nloadn and ξ

piv
n → nloadn represent the def-

inition of the loading direction. The edges σ ivr
n → m f low

n

and ξ
piv
n → m f low

n represent the definition of the plastic
flow direction. The edges σ ivr

n → Hn and ξ
piv
n → Hn rep-

resent the hardening law. Each edge allows multiple choices
extracted from the phenomenological relations developed in
the computational plasticity literature. In this paper, for sim-
plicity of illustration of the meta-modeling game framework,
the edge choices are not exhaustive. The following lists only
contain common representative choices for geomaterials. But
the designer of the meta-modeling game is always free to add
more edge choices to expand the action space.

The edges for elasticity law (σ ivr
n → Ce

n and ξ
piv
n → Ce

n)
represent the definition and evolution of the elastic stiffness
tensor

Ce
n = K I ⊗ I + 2G

(

I4sym − I ⊗ I
3

)

, (22)

where K is the tangential elastic bulk modulus and G is the
tangential shear modulus.

Three common formulations of the elastic stiffness tensor
for granular materials are available for model choice:

(E1) Linear elasticity

{
K = K0

G = G0
, (23)

where K0 and G0 are constants.
(E2) Nonlinear elasticitywith dependence on themean pres-

sure p [51]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

K = K0

(
p

pat

)a

G = G0

(
p

pat

)a , (24)

where pat is the atmospheric pressure (≈ −100kPa)
and a is a material constant.
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(E3) Nonlinear elasticitywith dependence on themean pres-
sure p and the void ratio e [19]

⎧
⎪⎪⎨

⎪⎪⎩

K = 2(1 + ν)

3(1 − 2ν)
G

G = G0 pat
(2.97 − e)2

1 + e

(
p

pat

)1/2 , (25)

where ν is the constant Poisson’s ratio.

The edges (σ ivr
n → nloadn and ξ

piv
n → nloadn ) represent

the definition and evolution of the loading direction. nloadn
can be either derived from an assumed yield surface f ≤ 0
or defined explicitly in the space of stress invariants σ ivr

n .
The following common formulations of loading direction

for granular materials are considered for model choices:

(L1) Yield surface of J2 plasticity f = q − σy and linear
hardening law

σy = σy0 + H0ε̄
p, (26)

where σy0, H0 are material parameters.
(L2) Yield surface of J2 plasticity f = q −σy and σy is the

solution of the power law equation

σy

σy0
=

(
σy

σy0
+ 3G

σy0
ε̄ p

)n

, (27)

where σy0, n are material parameters, G is the elastic
shear modulus.

(L3) Yield surface of J2 plasticity f = q − σy and Voce
hardening law

σy = σy0 + H0ε̄
p + H∞(1 − exp(−bε̄ p)), (28)

where σy0, H0, H∞, b are material parameters.
(L4) Yield surface ofDrucker–Prager plasticity f = q+α p

and α evolves according to

α = a0 + a1ε̄
p exp(a2 p − a3ε̄

p), (29)

where a0, a1, a2, a3 are material parameters [89].
(L5) Yield surface ofDrucker–Prager plasticity f = q+α p

and α evolves according to

α = a0 + 2a1

√
kε̄ p

k + ε̄ p
, (30)

where a0, a1, k are material parameters [9].

(L6) Yield surfaceof three-invariantMatsuoka–Nakaimodel
[10]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f = (k1 I3)
1/3 − (I1 I2)

1/3

k1 = c0 + κ1

(
pat
I1

)m

κ1 = a1ε̄
p exp(a2 I1) exp(−a3ε̄

p)

, (31)

where c0, a1, a2, a3,m are material parameters.
(L7) Yield surface of Nor-Sand [1,32]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f = ζq + ηp

ζ = (1 + ρ) + (1 − ρ) cos 3(θ + π/6)

2ρ

η =
{
M[1 + log(pi/p)] if N = 0

(M/N )[1 − (1 − N )(p/pi )
N/(1−N )] if N > 0

ṗi = −
√
2

3
h(pi − p∗

i )||ėp||, ėp = ε̇ p − 1

3
tr(ε̇ p)I

p∗
i

p
=

{
exp(ᾱψi/M) if N̄ = N = 0

(1 − ᾱψi N/M)(N−1)/N ] if 0 ≤ N̄ ≤ N �= 0

ᾱ = −3.5
1 − N̄

1 − N

ψi = e − ec0 + λ̃(pi/pat )
a

,(32)

where ρ, N , N̄ , M, h, ec0, λ̃, a are material parame-
ters.

(L8) Yield surface in the shape of a small cone [19]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f = ||S − pα|| − √
2/3pm

α̇ = λ̇(2/3)h(αb
θ − α)

αb
θ = √

2/3[ 1
ζ
M exp(−nbψ) − m]n

ζ = (1 + ρ) + (1 − ρ) cos 3(θ + π/6)

2ρ

n =
S
p − α√
2/3m

ψ = e − ec0 + λ̃(p/pat )
a

, (33)

where ρ,m, M, nb, h, ec0, λ̃, a are material parame-
ters.

(L9) Loading direction defined as [63,104]

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

nloadv = d f
√
1 + d2f

nloads = 1
√
1 + d2f

d f = (1 + α)(M f + q/p)

, (34)

where α, M f are material parameters.
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(L10) Loading direction defined as [44]

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

nloadv = d f
√
1 + d2f

nloads = 1
√
1 + d2f

d f = (1 + α)(M f exp(m f (1 − e)) + q/p)

, (35)

where α, M f ,m f are material parameters.
(L11) Loading direction given by a neural network trained

with data inversely computed from experimental data
(described later in the definition of plastic modulus
edges).

The edges (σ ivr
n → m f low

n and ξ
piv
n → m f low

n ) repre-
sent the definition and evolution of the plastic flow direction.
m f low

n can be either derived from an assumed plastic poten-
tial surface g = 0 or defined explicitly in the space of stress
invariants σ ivr

n .
The following common formulations of the plastic flow

direction for granular materials are considered for model
choices:

(P1) Plastic potential surface of J2 plasticity g = q − cg
and cg is a parameter to ensure that the stress point is
on the potential surface when the plastic deformation
occurs.

(P2) Plastic potential surface of Drucker–Prager plasticity
g = q + β p − cg and β = α − β0, where α can be
defined throughEq. (29) or (30), andβ0 is an additional
material parameter.

(P3) Plastic potential surface of three-invariant Matsuoka–
Nakai model [10]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g = (k2 I3)
1/3 − (I1 I2)

1/3

k2 = c0 + κ2

(
pat
I1

)m

κ2 = ακ1

, (36)

where κ1 can be defined through Eq. 31 and β0 is an
additional material parameter.

(P4) Plastic potential surface of Nor-Sand [1,32]

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

g = ζ̄q + η̄p

ζ̄ = (1 + ρ̄) + (1 − ρ̄) cos 3(θ + π/6)

2ρ̄

η̄ =
{
M[1 + log( p̄i/p)] if N̄ = 0

(M/N̄ )[1 − (1 − N̄ )(p/ p̄i )
N̄/(1−N̄ )] if N̄ > 0

, (37)

where ρ̄, N̄ , M are material parameters and p̄i is a
free parameter to ensure g = 0 when the material is
undergoing plastic deformation.

(P5) Plastic flow direction defined as [19]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m f low = Bn − C

(

n2 − 1

3
I
)

+ 1

3
D I

B = 1 + 3

2

1 − c

cξ
cos 3(θ + π/6)

C = 3
√
3/2

1 − c

cξ

D = Ad(α
d
θ − α) : n

αd
θ = √

2/3

[
1

ζ
M exp(ndψ) − m

]

n

, (38)

where ρ,m, M, nd , Ad , ec0, λ̃, a are material param-
eters.

(P6) Plastic flow direction defined as [63,104]

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

m f low
v = dg

√
1 + d2g

m f low
s = 1

√
1 + d2g

dg = (1 + α)(Mg + q/p)

, (39)

where α, Mg are material parameters.
(P7) Plastic flow direction defined as [44]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m f low
v = dg

√
1 + d2g

m f low
s = 1

√
1 + d2g

dg = (1 + α)(Mg expmgψ + q/p)

ψ = e − ec0 + λ̃(p/pat )
a

, (40)

where α, Mg,mg, ec0, λ̃, a are material parameters.
(P8) Plastic flowdirection given by a neural network trained

with data inversely computed from experimental data
(described later in the definition of plastic modulus
edges).

The edges (σ ivr
n → Hn and ξ

piv
n → Hn) represent the

definition of the generalized hardening modulus. Hn can
be either derived from an assumed yield surface f ≤ 0 or
defined explicitly.

The following common formulations of hardening modu-
lus for granular materials are considered for model choices:
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(H1) Hardening modulus derived from classical yield sur-
face f (σ , ε p) and a chosen m f low.

H = −∂ f /∂ε p : m f low

||∂ f /∂σ || . (41)

(H2) Hardening modulus defined as [63,104]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

H = H0(−p)H f (Hv + Hs)

H f =
(

1 + q

pM f

α f

1 + α f

)4

Hv = 1 + q

pMg

Hs = β0β1 exp(−β0ε̄
p
s )

, (42)

where α f , M f , H0, ec0, Mg, β0, beta1 are material
parameters.

(H3) Hardening modulus defined as [44]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

H = H0
√
p/pat H f

(

1 + q

pMb

)

Mb = Mg exp(−mbψ)

H0 = HL0 exp(m0(1 − e))

H f =
(

1 + q

pM f

α f

1 + α f

)4

, (43)

where α f , M f , HL0,m0, Mg,mb, ec0, λ̃, a are mate-
rial parameters.

(H4) Hardening modulus given by a neural network trained
with data inversely computed from experimental data.

The stress increment at each time step is known from the
experimental data �σ data

n+1 = σ data
n+1 − σ data

n . For a chosen

elasticity law Ce
n(σ

ivr
n , ξ

piv
n ), the data of incremental plastic

strain at each time step is given by [using Eq. (4)]

�ε
p
n+1 = �εn+1 − (Ce

n)
−1 : �σ data

n+1 . (44)

Then the incremental plasticmultiplier is�λn+1 = ||�ε
p
n+1||

and the plastic flow direction is obtained by m f low
n =

�ε
p
n+1/�λn+1.Assumingassociativeflowrule, thennloadn =

m f low
n . In this way, the plastic modulus can be uniquely

inversely computed as

Hn = nloadn : Ce
n : �εn+1

�λn+1
− nloadn : Ce

n : m f low
n . (45)

3.2.7 Game choice alternatives: training neural network
edges

In addition to the mathematical edges described above, we
also consider the possibility of replacing any part of the

elasto-plastic model with machine learning edges. In this
framework, the machine learning models are not used to
directlymap strain history to stress, but are used for each indi-
vidual edge in the directed graph to map the input vertices
to the output vertices. For instance, the mapping of vari-
ables in the generalized plasticity framework can be obtained
by training a recurrent neural network that represents the
path-dependent constitutive relation between the history of
input vertices of σ ivr

n (p, q, θ ) and ξ
piv
n (ε̄ p, ε̄

p
v , ε̄

p
s , e) and

the output vertices of nloadn , m f low
n and Hn . The details

of training data preparation, network design, training and
testing are specified in the previous work on the meta-
modeling framework for traction-separation models with
data of microstructural features [95]. In this framework, all
neural network edges are generated using the same neu-
ral network architecture, i.e., two hidden layers of 64 GRU
(Gated recurrent unit) neurons in each layer, and the out-
put layer as a dense layer with linear activation function. All
input and output data are pre-processed by standard scaling
using mean values and standard deviations. Each input fea-
ture considers its current value and 19 history values prior to
the current loading step. Each neural network is trained for
1000 epochs using the Adam optimization algorithm, with a
batch size of 256. Finally, it should be noticed that one can
further generalize the meta-modeling game by considering
multiple neural network architectures as possible edges in the
meta-modeling game. This generalization will be considered
in the future but is out of the scope of the current study.

3.2.8 Directed labeled multi-graph and sub-graph training
via supervised machine learning

To create the directed labelled multi-graph that represents
the action space of the modeling agent, we first consider the
directed graph that represents the hierarchical relationships
among all the vertices, i.e. G = (V,E) where

V = {εn, σ n, ξ
piv
n , σ ivr

n ,Ce
n,m

flow
n , nloadn , Hn,�εn+1,

�λn+1,�ε
p
n+1,�εen+1,�σ n+1} (46)

E = E1 ∪ E2 ∪ E3 ∪ E3 ∪ E4 ∪ E5 ∪ E6 ∪ Egame (47)

E1 = {Ce
n → �σ n+1,�εen+1 → �σ n+1} (48)

E2 = {�ε
p
n+1 → �εen+1,�εn+1 → �εen+1} (49)

E3 = {mflow
n → �εen+1,�λn+1 → �εen+1} (50)

E4 = {�εn+1 → �λn+1,Ce
n → �λn+1,mflow

n

→ �λn+1, nloadn → �λn+1, Hn → �λn+1}
(51)

E5 = {εn → ξ
piv
n } (52)

E6 = {σ n → σ ivr
n } (53)

Egame = {ξ piv
n → Ce

n, σ
ivr
n → Ce

n, ξ
piv
n
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→ mflow
n , σ ivr

n → mflow
n ,

ξ
piv
n → nloadn , σ ivr

n → nloadn , ξ
piv
n

→ Hn, σ
ivr
n → Hn}. (54)

In this directed graph, the labels corresponding to the
edge elements in the edge sets {E1,E2,E3,E4,E5,E6 area
already pre-determined as they are simply mathematical def-
initions or rules that are of sufficient certainty (cf. [94]).
Therefore, they can be excluded from the meta-modeling
games. The rest of the edges are elements of the edge subset
Egame. The goal of the modeling agent is therefore to find the
subset of the edge set Egame and identify the optimal “edge
labels” for each element in this subset such that the perfor-
mance of the constitutive laws measured by the objective
function can be optimized. Note that these edge labels can
be mathematical expressions or machine-learning-generated
operators, each of them provides a mapping that links the
first and second elements of the ordered pair of vertices.

As a result, the directed labeled multi-graph that repre-
sents all the possible choices of modeling choices considered
in the meta-modeling game are generated the directed
graph Ggame = {Vgame,Egame}, a sub-graph of G, where

Vgame = {ξ piv
n , σ ivr

n ,Ce
n,m

flow
n , nloadn , Hn}. Meanwhile, the

edge labels LE we considered in this game are discussed in
Sects. 3.2.6 and 3.2.7, i.e.,

LE ={E1, E2, E3, L1, L2, L3, L4, L5, L6, L7, L8, L9, L10,
L11, P1, P2, P3, P4, P5, P6, P7, P8, H1, H2, H3, H4}

(55)

After the experimental agent make the decision on the
data, the modeler agent first generate a new directed graph
based on the Q values estimation for each label in LE, then a
local inverse problem is solved to obtain either the material
parameters for each selected edges or to complete the training
of the neural network (if a neural net edge is chosen). Note
that the edges are not necessarily trained individually. For
each child vertex in the directed graph, all the edges that
connects the parent vertices to it must be trained together.
These subgraphs that connect one generation of relationship
are generated via Algorithm 1.

Remarks on implementation An elasto-plasticity model,
once generated fromAI, needs to be numerically integrated to
compute the predicted stresses under different types of tests.
Since the loading directions, plastic flow directions and hard-
ening modulus can have a large number of options and may
be exceedingly complex, we adopt a general-purpose explicit
integration algorithm for all AI generated models, instead of
using different implicit integration techniques necessary for
different models. This algorithm is a combination of (1) the
explicit integration with sub-stepping and automatic error

Algorithm 1 Backtracking generation of sub-graphs for
training of sub-models
Require: AI-generated directed graph G = (V,E) of the elasto-

plasticity model.
V = {�σ n+1, σ n,�εn+1,�εen+1,�ε

p
n+1,�λn+1, nloadn ,

m f low
n , Hn, pn, qn, θn, en} (see Sect. 3.1.1 for detailed definitions)

1: Identify all paths Path = {path1, path2, . . .} from the source
nodes �εn+1 and σ n+1 to the target node �σ n+1 in the directed
graph G.

2: Identify the “node ranks” NodeRank = [V1, V2, V3, . . .] in descen-
dant rank order (each node is assigned a higher rank than the highest
ranked node that point to it) for every nodes in all paths Path.

3: for Vi in NodeRank do
4: Regard Vi as the successor node V s

i = Vi , find its all predecessor
nodes V p

i .

5: Identify the sub-graph G
V p
i

V s
i
which has V p

i as the source nodes

(Input) and the target node V s
i (Output).

6: Train the sub-neural-network or calibrate the sub-model

SubModel
V p
i

V s
i

represented by the sub-graph G
V p
i

V s
i

with input data

V p
i and output data V s

i .

7: Collect all sub-neural-networks or sub-models SubModel
V p
i

V s
i
,∀Vi ∈

NodeRank
8: Exit

control [74,75] (2) explicit integration of (potentially non-
smooth) hardening laws [89] (3) integration of generalized
plasticity models [20,53] (4) linearized integration for load-
ing constraints [5]. The algorithm is detailed in Algorithm 2.
This explicit scheme is versatile and stable, but not as accu-
rate as fully implicit return mapping algorithms, hence for
the evaluation of model accuracy scores, small time steps are
required for the numerical integration.

4 Deep reinforcement learning for the
two-player meta-modeling game

With the two-player game completely defined in the previ-
ous section, a deep reinforcement learning (DRL) algorithm
is employed as a guidance of taking actions of both exper-
imentalist and modeler in the game to maximize the final
model score (Fig. 3). The learning is completely free of
human interventions after the game settings. This tactic is
considered one of the key ideas leading to the major break-
through in AI playing the game of Go (AlphaGo Zero) [70],
Chess and shogi (Alpha Zero) [71] and many other games. In
[95], the key ingredients (Policy/Value network, confidence
bound for Q-value, Monte Carlo Tree Search) of the DRL
technique are applied to a meta-modeling game for mod-
eler agent only, focusing on finding the optimal topology of
physical relations from fixed training/testing datasets. In this
work, the game design is further extended that (1) the mod-
eling game also involves the “component selection” from a
set of candidate edge choices having the same source and
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Algorithm 2 Explicit Integration Scheme
Require: AI-generated directed graph G = (V,E) of the elasto-

plasticity model.
Require: Initial values of stress σ n , strain εn , plastic internal variables

ξ
piv
n , and stress invariants σ ivr

n .
1: Identify elasticity model Ce(σ ivr , ξ piv), loading direction

nload (σ ivr , ξ piv) (or yield surface f (σ ivr , ξ piv) if it exists), plastic
flow direction m f low(σ ivr , ξ piv) (or plastic potential g(σ ivr , ξ piv)

if it exists), generalized hardening modulus H(σ ivr , ξ piv) from the
directed graph G.

2: Define matrices of loading constraints E, S, and dY [5].
3: Update the elastic stiffness tensor Ce

n(σ
ivr
n , ξ

piv
n ), its Voigt form De,

and the hardening modulus Hn(σ
ivr
n , ξ

piv
n ).

4: Solve for the strain increment tensor �εn+1 from Voigt form equa-
tion (SDe + E) · dε = dY .

5: Compute the trial elastic stress increment �σ e
n+1 = Ce

n : �εn+1
and the trial stress state σ e

n+1 = σ n + �σ e
n+1.

6: Determine the ’Elastic Loading’ or ’Plastic Loading’ condition from
Eqs. (5) and (6).

7: if Elastic Loading then
8: σ n+1 = σ e

n+1, εn+1 = εn + �εn+1, ξ
piv
n+1 = ξ

piv
n .

9: Exit
10: if Plastic Loading then
11: if yield surface f exists then
12: Find α such that f (σ n +α�σ e

n+1, ξ
piv
n ) = 0 (Pegasus inter-

section scheme [75]).
13: else
14: Set α = 0.
15: Set T = 0, �T = 1, �λ = 0, σ T = σ n + α�σ e

n+1, εT =
εn + α�εn+1.

16: while T < 1 do
17: Compute nload (σ T , ξ

piv
n ), m f low(σ T , ξ

piv
n ).

18: Update the elasto-plastic stiffness tensor Cep = Ce − 1
χ
Ce :

m f low ⊗ nload : Ce, where χ = nload : Ce : m f low + Hn and its
Voigt form Dep.

19: Solve for the strain increment tensor �εT from Voigt form
equation (SDep + E) · dεT = (1 − α) · �T · dY .

20: Update �σ e ← Ce : �εT .
21: Compute �λ1 = 1

χ
nload : �σ e, �σ 1 = �σ e − Ce :

�λ1m f low

22: Compute nload (σ T + �σ 1, ξ
piv
n ), m f low(σ T + �σ 1, ξ

piv
n ).

23: Compute �λ2 = 1
χ
nload : �σ e, �σ 2 = �σ e − Ce :

�λ2m f low

24: Compute σ̃ T+�T = σ T +0.5 · (�σ 1 +�σ 2), and determine
the relative error RT+�T = max( ||�σ 2−�σ 1||

2||σ̃ T+�T || , EPS)

25: if RT+�T ≤ ST OL then
26: σ T+�T = σ̃ T+�T , εT+�T = εT + �εT , �λ ← �λ +

0.5 · (�λ1 + �λ2).
27: T ← T + �T
28: Determine new �T for the next substep [75].
29: else
30: Determine new �T for this failed substep [75].
31: σ n+1 = σ T , εn+1 = εT , update ξ

piv
n+1 from Eq. (7).

32: Exit

target nodes (derive a directed graph from a directed multi-
graph) and (2) the choice of training dataset is carried out by
an additional experimentalist agent. Since DRL needs to fig-
ure out the optimal strategies for two agents, the algorithm is
extended tomulti-agentmulti-objectiveDRL [21,84,85]. The

AI for the experimentalist and modeler are separate agents,
each has its own Policy/Value network and decision tree
search. But their intelligence are improved simultaneously
during the self-plays of the entire Data collection/Meta-
modeling game, according to the individual rewards they
receive from the game environment and the communica-
tions between themselves (Fig. 3). The strategies of both
agents can be cooperative or competitive of different degrees,
depending on the design of the game reward system (for
example, the video game of Pong in [84]). In this work, we
consider only the learning of fully cooperative strategies, as
shown in the game reward system designed in Sects. 3.1 and
3.2.

The pseudocode of the reinforcement learning algorithm
to play the two-player meta-modeling game is presented
in Algorithm 3. This is an extension of the algorithm in
[95]. As demonstrated in Algorithm 3, each complete DRL
procedure involves numI ters number of training iterations
and one final iteration for generating the final converged
digraph model. Each iteration involves numEpisodes num-
ber of game episodes that construct the training example set
trainExamples for the training of the policy/value network
fθ . For decision makings in each game episode, the action
probabilities are estimated from numMCT SSims times of
MCTS simulations.

Remark 1 Non-cooperative meta-modeling game and Nash
equilibrium. In the case of the cooperative game where both
agents share the same goal or score system, there is no need
to determine the Nash equilibrium as the joint actions of
the experimentalist/modeler group takes a collective of pay-
offs. However, in many realistic situations in modern-day
research, it is possible that the data and modeler agents may
have different or even conflicting goals and hence finding the
best strategies the two agents take is equivalent to finding the
Nash equilibrium. The meta-modeling model, in this case,
is not only helpful for generating models but also helps us
understand the relationships among objectives between the
data and modeler agents, the resultant actions taken by both
players, and the outcomes, assuming each player is acting in
a rational manner.

5 Numerical experiments

In this section, we present two cooperative modeling games
with different data to demonstrate the intelligence, robustness
and efficiency of the deep reinforcement learning algorithm
on improving the accuracy and consistency of the gener-
ated elasto-plasticity models through self-plays. In the first
example, synthetic data computed fromselected J2,Drucker–
Prager and Matsuoka–Nakai plasticity are used to train
the data and model agents, to validate the meta-modeling
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Fig. 3 Multi-player interactive deep reinforcement learning for gen-
erating optimal strategy to automate the modeling, calibration and
validation of an elasto-plasticmodel. In this framework, two deep neural
networks are used tomakedecisions as themastermindmodeler anddata

agents, while the modeler agents may also employ different strategies,
including neural networks, mathematical expressions or other forms of
mapping operators to complete a constitutive law

framework and show that theAI has the ability to react appro-
priately such that the correct interpretation (i.e. the model
itself if the data is generated from that model) can be recov-
ered from the data. In the second example, sub-scale discrete
element simulations (DEM) are used to generate synthetic
benchmark data for model calibrations and blind predic-
tion evaluations to mimic data from real-world granular
materials.

5.1 Numerical experiment 1: verification and testing
the ability of AI to reverse engineering
constitutive laws

The correctness of the implementation proposed meta-
modeling framework is first verified through a series of tests

on “virtual materials” having exact elasto-plastic constitutive
behaviors.

This numerical experiment, as illustrated in Fig. 3.2, is
introduced to (1) validate the implementation and (2) check
whether the Monte Carlo tree search works when the model-
ing agent is given a sufficient amount of “perfect data”. Note
that fulfilling both requirements (1) and (2) is a necessary
but not sufficient condition for the modeler agent to generate
predictive models. On the other hand, if the modeling agent
can recover the right model each time it fed with the corre-
sponding model, then this ability can be leveraged to a new
finite element library architecture in which material model
library can be replaced by the model component library and
a material model can be automatically generated and cali-
brated simultaneously by running the meta-modeling game.
The test models for the AI to recover are, respectively,

123



Computational Mechanics

Algorithm 3 Self-play reinforcement learning of the coop-
erative data collection/meta-modeling game
Require: The definitions of the cooperative data collection/meta-

modeling game: game boards (Sects. 3.1.1 and 3.2.1), states
(Sects. 3.1.2 and 3.2.2), actions (Sects. 3.1.3 and 3.2.3), game
rewards (Sects. 3.1.5 and 3.2.5), game rules (Sects. 3.1.4 and 3.2.4).

1: Initialize the policy/value networks f Dataθ and f Model
θ for both data

agent andmodel agent. For fresh learning, the networks are randomly
initialized. For transfer learning, load pre-trained networks instead.

2: Initialize empty sets of the training examples for both data agent and
model agent trainExamplesData ← [], trainExamplesModel ←
[].

3: for i in [0,…, numI ters (number of training iterations)-1] do
4: for j in [1,…, numEpisodes (number of game episodes)] do
5: Initialize the starting game state s.
6: Initialize empty tree of the Monte Carlo Tree search (MCTS),

set the temperature parameter τ = 1 for “exploration and exploita-
tion”.

7: while True do
8: Check for all legal actions at current state s according to

the game rules.
9: Get the action probabilities π(s, ·) for all legal actions by

performing numMCT SSims times of MCTS simulations.
10: Sample action a from the probabilities π(s, ·)
11: Modify the current game state to a new state s by taking

the action a.
12: if s is the end state of a game then
13: Evaluate the score of the constructed digraph.
14: Evaluate the reward r of this game episode according

to the model score.
15: Break.
16: Append the history in this game episode [s, a, π(s, ·), r ] to

trainExamplesData and trainExamplesModel.
17: Train the policy/value networks f Dataθ and f Model

θ with
trainExamplesData and trainExamplesModel.

18: Use the final trained networks f Dataθ and f Model
θ in MCTS for one

more iteration of “competitive gameplays” (numEpisodes games)
to generate the final converged digraph model.

19: Exit

1. J2 model with Von Mises yield function and an isotropic
hardening with power law.

2. Drucker–Pager model with frictional hardening.
3. Three-invariant Matsuoka–Nakai model.

In the reverse engineering numerical experiments, we first
implemented three implicit return mapping algorithms and
calibrated them to generate a fixed set of material parame-
ters. The experimentalist agent is then given the executable
files of the return mapping algorithms of these models and
run these executable files to generate artificial data.We inten-
tionally withhold the information about the data, such as the
material parameters and the corresponding graph represen-
tation of the constitutive laws, from the modeling agent to
text whether it can recover such information. In each exper-
imentalist’s turn, an experimentalist is given the option of
either generating an additional set of data listed below or ter-
minating its involvement of the game (i.e. stop generating
new data). If (1) the modeling agent is capable of learning

the graph-based knowledge and (2) the artificial data are gen-
erated from sub-graphs of the labeled directed multi-graph,
then the modeling agent must be able to recover all these
subgraphs without any prior knowledge and obtain perfect
scores, whenever given sufficient data. Failure to do so indi-
cate the failure of the reinforcement learning process. This set
of experiments is conducted to check whether the modeling
agent can pass this necessary test. The choices of experi-
mental tests available for the experimentalist agent are listed
below:

T1: One-dimensional extension test (ε̇11 > 0, ε̇22 = ε̇33 =
ε̇12 = ε̇23 = ε̇13 = 0, p0 = −200kPa)

T2: One-dimensional compression test (ε̇11 < 0, ε̇22 =
ε̇33 = ε̇12 = ε̇23 = ε̇13 = 0, p0 = −200kPa).

T3: Drained triaxial extension test (ε̇11 > 0, σ̇22 = σ̇33 =
σ̇12 = σ̇23 = σ̇13 = 0, p0 = −200kPa).

T4: Drained triaxial compression test (ε̇11 < 0, σ̇22 =
σ̇33 = σ̇12 = σ̇23 = σ̇13 = 0, p0 = −200kPa).

T5: Undrained triaxial extension test (ε̇11 > 0, ε̇11 + ε̇22 +
ε̇33 = 0, σ̇22 = σ̇33, σ̇12 = σ̇23 = σ̇13 = 0, p0 =
−200kPa).

T6: Undrained triaxial compression test (ε̇11 < 0, ε̇11 +
ε̇22 + ε̇33 = 0, σ̇22 = σ̇33, σ̇12 = σ̇23 = σ̇13 = 0,
p0 = −200kPa).

T7: Simple shear test (ε̇12 > 0, σ̇11 = σ̇22 = ε̇33 = ε̇23 =
ε̇13 = 0, p0 = −200kPa).

The modeling choices available for the modeler agent are
specified in the Game Choices of the Sect. 3.2. The model
score is defined as:

SCORE = 0.5 ∗ Acalibration
accuracy + 0.5 ∗ Aprediction

accuracy , (56)

where P% = 80% and εcrit = 1e−5 for Eq. (21) of accuracy
evaluations. The DRLmeta-modeling procedure (Algorithm
3) contains numI ters = 10 training iterations of “explo-
ration and exploitation” of game strategies, by setting the
temperature parameter τ to 1. Then an iteration of “com-
petitive gameplay” (τ = 0.01) is conducted to showcase
the performance of the final trained AI agent. Each itera-
tion consists of numEpisodes = 30 self-play episodes of
the game. Hence one execution of the entire DRL proce-
dure contains numI ters ∗ numEpisodes = 10 ∗ 30 = 300
game episodes for training the policy/value neural network.
Each game starts with a randomly initialized neural network
for the policy/value predictions, and each play step requires
numMCT SSims = 30 MCTS simulations. Then the play
steps and corresponding final game rewards are appended to
the set of training examples for the trainingof thepolicy/value
network.

Figures 4, 5 and 6 present the example model predictions
and calibration tests during the DRL improvement of the
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Fig. 4 Knowledge of elasto-plastic models learned by deep reinforcement learning in Numerical Experiment 1 using synthetic data from J2
plasticity. Four representative games played during the DRL iterations and their prediction accuracy against synthetic data are presented

experimentalist and modeler agents. Both agents try out dif-
ferent combinations of calibration data and model choices,
and evaluate theirmodel scores and individual game rewards.
The agents learn from all the gameplay results that they
have experienced and converge their individual strategies to
the optimal ones that eventually generate the optimal set of
experiment tests for model calibration and exactly recover
the plasticity model used to generate the synthetic data. The
“cooperative” convergence of the strategies of both agents
is of crucial importance, since the calibration dataset and
the selected model must be simultaneously optimal for the
final model score to be maximum. Although the gameplays
could be different in each separate run of the two-player DRL
algorithm due to the randomness in initial Policy/Value net-
works and the action possibilities involved in Monte Carlo
Tree Search, the optimal strategies are always recovered if
the exploration is sufficient. This is confirmed in Figs. 7 and
8 in which the statistics of the gameplay scores of 20 separate
executions of the two-player DRL algorithm are analyzed.

The fact that the two-player meta-modeling game is able
to reach a perfect score in blind prediction indicates that
it has successfully reverse engineered the constitutive law.
The ability to automatically reverse-engineering a consti-

tutive model could be of potential commercial value, as it
allows one to understand attributes of legacy or proprietary
software even when only the executable is available. Even in
the case when reverse engineering fails to recover the consti-
tutive responses perfectly, the score can indicate how close
the DRL-generated model replicates the constitutive law in
the legacy or proprietary codes.

Furthermore, the fact that the training is able to recover
the model also enables us to use a different architecture
for computational mechanics software in which the material
model library does not necessarily contain multiple consti-
tutive laws categorized by labels or model names. Instead,
any new model in the literature that contains new “action”
not available in the previous constitutive law can be decom-
posed into directed graphs and subsequently be merged with
the existing pool of actions such that the modeler agent can
have more tools to generate new models that optimize objec-
tive functions. Since (1) new actions will only be picked by
the modeler agent if they can help it achieve a higher score,
and (2) should this happens, the improvement in prediction
quality is quantified by the increase of the score, the meta-
modeling game can be used as a tool to evaluate the true
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Fig. 5 Knowledge of elasto-plastic models learned by deep reinforcement learning in Numerical Experiment 1 using synthetic data from Drucker–
Pager plasticity. Four representative games played during the DRL iterations and their prediction accuracy against synthetic data are presented

benefit of any new action that departs from the state-of-the-
art.

5.2 Numerical experiments 2: testing the ability of
AI for forward predictions

In this numerical experiment, we examine the ability of the
proposed meta-modeling agents to (1) generate the knowl-
edge andmodel represented by the directed graph from given
data, (2) decide the set of experiments that aids data-driven
discovery and (3) terminate the learning processwhen further
experiments no longer benefit predictions.

5.2.1 Data generation from discrete element simulations

In this test, we consider an idealized situation in which the
data is generated from discrete element simulations for gran-
ular materials [17,37,96]. While the constitutive responses
from the discrete element simulations may contain fluctua-
tion, we do not introduce any contaminated noise on purpose
to test how the meta-modeling procedure might be affected
by noise. While this could be addressed using dropout layers
as shown in [94], a comprehensive study on learning with
noisy data is out of the scope in this study but will be con-
sidered in the future.

The data for calibration and evaluation of prediction accu-
racy of the deep-reinforcement-learned constitutive models
are generated by numerical simulations on a representative
volume element (RVE) of densely-packed spherical DEM
particles. The open-source discrete element simulation soft-
ware YADE for DEM is used by the experimentalist agent to
generate data, including the homogenized stress and strain
measures and the geometrical and microstructural attributes
such as coordination number, fabric tensor, porosity [76,79].
The discrete element particles in the RVE have radii between
1±0.3mmwith a uniformdistribution. TheCundall’s elastic-
frictional contact model ([17]) is used for the inter-particle
constitutive law. The material parameters are: interparticle
elastic modulus Eeq = 0.5GPa, ratio between shear and nor-
mal stiffness ks/kn = 0.3, frictional angle ϕ = 30◦, density
ρ = 2600 kg/m3, Cundall damping coefficientαdamp = 0.6.

The test data constitute of triaxial tests on DEM samples
with different initial confining pressure and void ratio σ̇33 =
σ̇12 = σ̇23 = σ̇13 = 0, b = σ22−σ33

σ11−σ33
.

T1: ε̇11 < 0, b = 0, p0 = −300 kPa, e0 = 0.539.
T2: ε̇11 < 0, b = 0, p0 = −400 kPa, e0 = 0.536.
T3: ε̇11 < 0, b = 0, p0 = −500 kPa, e0 = 0.534.
T4: ε̇11 > 0, b = 0, p0 = −300 kPa, e0 = 0.539.
T5: ε̇11 > 0, b = 0, p0 = −400 kPa, e0 = 0.536.
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Fig. 6 Knowledge of elasto-plastic models learned by deep reinforcement learning in Numerical Experiment 1 using synthetic data fromMatsuoka–
Nakai plasticity. Four representative games played during the DRL iterations and their prediction accuracy against synthetic data are presented

Fig. 7 Violin plots of the density distributions of model scores in each
DRL iteration inNumerical Experiment 1. Statistics of themodel scores
in deep reinforcement learning iterations from 20 separate runs of the
DRL procedure for Numerical Experiment 1. EachDRL procedure con-
tains ten iterations 0–9 of “exploration and exploitation” (by setting the
temperature parameter τ = 1.0) and a final iteration 10 of “competitive

gameplay” (τ = 0.01). Each iteration consists of 30 games. The shaded
area represents the density distribution of scores. The white point repre-
sents the median. The thick black bar represents the inter-quartile range
between 25% quantile and 75% quantile. The maximum and minimum
scores played in each iteration are marked by horizontal lines

T6: ε̇11 > 0, b = 0, p0 = −500 kPa, e0 = 0.534.
T7: ε̇11 < 0, b = 0.5, p0 = −300 kPa, e0 = 0.539.
T8: ε̇11 < 0, b = 0.5, p0 = −400 kPa, e0 = 0.536.
T9: ε̇11 < 0, b = 0.5, p0 = −500 kPa, e0 = 0.534.
T10: ε̇11 > 0, b = 0.5, p0 = −300 kPa, e0 = 0.539.

T11: ε̇11 > 0, b = 0.5, p0 = −400 kPa, e0 = 0.536.
T12: ε̇11 > 0, b = 0.5, p0 = −500 kPa, e0 = 0.534.
T13: ε̇11 < 0, b = 0.1, p0 = −300 kPa, e0 = 0.539.
T14: ε̇11 < 0, b = 0.1, p0 = −400 kPa, e0 = 0.536.
T15: ε̇11 < 0, b = 0.1, p0 = −500 kPa, e0 = 0.534.
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Fig. 8 Mean value (red dots) and ± standard deviation (error bars) of model score in each DRL iteration in Numerical Experiment 1. (Color figure
online)

T16: ε̇11 > 0, b = 0.1, p0 = −300 kPa, e0 = 0.539.
T17: ε̇11 > 0, b = 0.1, p0 = −400 kPa, e0 = 0.536.
T18: ε̇11 > 0, b = 0.1, p0 = −500 kPa, e0 = 0.534.
T19: ε̇11 < 0, b = 0.25, p0 = −300 kPa, e0 = 0.539.
T20: ε̇11 < 0, b = 0.25, p0 = −400 kPa, e0 = 0.536.
T21: ε̇11 < 0, b = 0.25, p0 = −500 kPa, e0 = 0.534.
T22: ε̇11 > 0, b = 0.25, p0 = −300 kPa, e0 = 0.539.
T23: ε̇11 > 0, b = 0.25, p0 = −400 kPa, e0 = 0.536.
T24: ε̇11 > 0, b = 0.25, p0 = −500 kPa, e0 = 0.534.
T25: ε̇11 < 0, b = 0.75, p0 = −300 kPa, e0 = 0.539.
T26: ε̇11 < 0, b = 0.75, p0 = −400 kPa, e0 = 0.536.
T27: ε̇11 < 0, b = 0.75, p0 = −500 kPa, e0 = 0.534.
T28: ε̇11 > 0, b = 0.75, p0 = −300 kPa, e0 = 0.539.
T29: ε̇11 > 0, b = 0.75, p0 = −400 kPa, e0 = 0.536.
T30: ε̇11 > 0, b = 0.75, p0 = −500 kPa, e0 = 0.534.

The candidate tests for the calibration data generation
include T0

c = {T 1, T 2, T 3, . . . , T 11, T 12} and the valida-
tion tests are T0

v = {T 13, T 14, T 15, . . . , T 19, T 30}. As
explained in Sect. 3.1, the tests not selected in the final
calibration set by the experimentalist agent will be moved
to the final validation set to evaluate the blind prediction
performance. The parameters for the DRL procedure are
numI ters = 10, numEpisodes = 30, numMCT SSims =
300.

5.2.2 Statistics of game scores via DRL iterations

The statistics of the gameplay results from 5 separate runs
of the DRL procedure are presented in Fig. 9. We observe
efficient improvements in the generated elasto-plasticmodels
over the DRL training iterations with the discrete element
simulation data.

Figure 10 presents the example model predictions and
calibration tests during the DRL improvement of the experi-
mentalist andmodeler agents. Thefinal converged calibration

test set chosen by the AI experimentalist after the DRL pro-
cedure consists of the triaxial extension and compression
tests with b = 0 and b = 0.5 under initial pressures of
−300kPa and −500kPa. Accordingly, the final converged
elasto-plastic model generated by the AI modeler after the
DRL procedure is composed of the non-linear elasticity of
Eq. (24), the loading direction defined as Eq. (35), the plastic
flow direction defined as Eq. (40), and the hardening modu-
lus defined as Eq. (42). The resultant model is a generalized
plasticity model (without explicitly defined yield surface and
plastic potential) combined with the critical state plasticity
theory (dependence on the p, q, θ stress invariants and the
void ratio e). Figure 11 presents five representative examples
of blind predictions of this selected model and the selected
calibration data. This optimal model for the given action
space is generated from data obtained from 9 experiments
in the following order: [T1, T3, T4, T5, T7, T9, T10, T11,
T12].

One interesting aspect revealed in this numerical exper-
iment is the potential of using the meta-modeling game as
a tool to evaluate and analyze of relative policy values of
the ingredients of constitutive laws in a prediction task. For
instance, this numerical experiment reveals that the opti-
mal configuration of the constitutive model for predicting
the behavior of monotonic loading triaxial compression test
should not contain any neural network edge (Eq. (44), (45) in
Sect. 3.2) This could be attributed to the facts that the train-
ing data of the loading directions, plastic flow directions and
hardening moduli from the DEM experimental data contain
high-frequency fluctuations and that our testing data, which
are used to evaluate the forward prediction performance, con-
tain only monotonic stress paths. Since the high-frequency
fluctuation makes the neural network easily to exhibit over-
fitting responses, and the relatively simple stress paths make
it less advantageous to use a high-dimensional universal
approximator like a neural network in any component of the
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Fig. 9 Statistics of the model scores in deep reinforcement learning
iterations from 5 separate runs of the DRL procedure for Numeri-
cal Experiment 2. Each DRL procedure contains ten iterations 0–9 of
“exploration and exploitation” (by setting the temperature parameter
τ = 1.0) and a final iteration 10 of “competitive gameplay” (τ = 0.01).
Each iteration consists of 30 gameplay episodes. a Violin Plot of model
scores played in eachDRL iteration. The shaded area represents the den-

sity distribution of scores. The white point represents the median. The
thick black bar represents the interquartile range between 25% quantile
and 75% quantile. The maximum and minimum scores played in each
iteration are marked by horizontal lines. b Mean model score in each
iteration and the error bars mark ± standard deviation. (Color figure
online)

constitutive models, the edges that map input from the out-
put vertices through mathematical expressions are revealed
to have higher policy values as the game progresses and ulti-
mately become the selected models.

Note that this result is in sharp contrast with the meta-
modelinggame results of the traction-separation law inwhich
the neural network edges become dominant and yield con-
sistently good forward predictions [94,95]. Comparing the
choices the agents made in the two games reveal that the
autonomous agents are capable of adjusting their decisions
based on the availability of the data and the type of the for-
ward prediction tasks. In other words, the agents are able
to make judgments such that it employs edges that contain
low-dimensional mathematical expression when the regu-
larization (avoiding the curse of high dimensionality) is
more critical than high-dimensionality afforded by the large
numbers of neural network nodes (in this case), but also
able to select the high-dimensional neural network options
when the advantages of the options outweigh the draw-
backs (in the traction-separation law game in [95]). Note
that this optimal configuration sought by the meta-modeling
game is sensitive to the available actions. For instance,
the improvements of the neural network could be achieved
by introducing techniques to filter out the noisy data and
employing advanced neural networks with noise-resistant
architecture [78]. These changes can impose adjustments in
the policy values and therefore affect the optimal configu-
ration. The incorporation of de-noising mechanisms and the
investigation of the influence of data quality on the meta-

modeling game framework will be conducted in the future
study.

Thisautomated strategy change by theAI agents is signif-
icant as it demonstrates that the agent system is able to adapt
to the environment (availability of calibration data and the
types of testing data) to make rational choices like a human
modeler should when given different prediction tasks of dif-
ferent complexities.

5.2.3 Post-game performance analysis

Another important implication of themeta-modeling game is
its ability to quantitatively analyze the performance of fam-
ilies of models currently (or historically, if possible to be
inferred from reverse engineering) available in the literature
for an intended prediction task. Table 1 shows the post-game
analysis of the performance of the 112 models automatically
generated from the two-player game. The resultant models
are grouped into five different classes based on the types
of the edges used in the game. The interesting aspect of
the data in Table 1 is that it provides users a quantitative
measure that configurations based on generalized plasticity
and critical state outperform all the other 90 configurations.
This result is consistent with the convention understanding
from soil mechanics in which the classical critical state plas-
ticity theory and the resultant plastic dilatancy/contraction
predictions is regarded as the key ingredient for predictive
constitutive laws. Examinations on models in Class 1 also
reveals that three-invariant generalized plasticity with criti-
cal state perform the best in the blind predictions, especially
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Fig. 10 Knowledge of elasto-plastic models learned by deep reinforce-
ment learning in Numerical Experiment 2 using data from drained
triaxial tests. Four representative games played during the DRL itera-
tions and their prediction accuracy against synthetic data are presented.

The color edges illustrate different labeled edges selected in the con-
stitutive models. The labels are represented by equation numbers and
these equations are detailed in Game Choices in Sect. 3.2

Fig. 11 Five examples of blind predictions from the optimal digraph configuration (The 4th digraph in Fig. 10) against data from the tests
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Table 1 Five classes of the constitutive models generated during the deep reinforcement learning

Model class Number of models Mean score Standard deviation Generalized
plasticity
‘GP’

Critical state ‘CS’ Classical pressure
dependent
elasto-plasticity ‘DP’

Others ’O’

1 22 0.603 0.054 � �
2 25 0.565 0.051 �
3 13 0.295 0.028 � �
4 19 0.450 0.086 �
5 33 0.163 0.063 �

when the material states of the granular materials in the cali-
bration tests (e.g. confining pressure, initial void ratio, stress
path) are significantly different than the ones in blind predic-
tions.

However, comparisons of the results in Classes 1, 2,3 and
4 shown in Fig. 12 reveal a somewhat surprising conclusion
in which the generalized plasticity seems to be consistently
themore important ingredient than the critical state theory for
yielding predictive models. Although it is important to stress
that this conclusion must be interpreted with respect to the
types and amount of data available and the intended predic-
tion task, this result does provide further evidence to support
the speculations that the generalized plasticity, if calibrated
properly, does likely to improve the accuracy of blind predic-
tions of the responses of granular materials in the monotonic
triaxial compression tests [43,63,68,103].

In conclusion, this numerical experiment shows that the
meta-modeling game can provide three important types of
knowledge, the knowledge on the hierarchy of informa-
tion flow, the estimation on the amount of data required
to reach the state-of-the-art performance for a given action
space and specifiedobjective, and the relative values/benefits/
importance of each model/theoretical/data-driven compo-
nents revealed in the post-game analysis.

Remark 2 Note that applying the meta-modeling game to
predicting responses of granular materials under different
water drainage conditions may likely yield a very differ-
ent conclusion where machine learning edges could be more
widely used in the optimal configuration. This is because of
the lack of a constitutivemodel that can quantitatively capture
the constitutive responses of granular materials in drained
and undrained conditions [23,51,64,80,104]. The creation of
models for more generic purposes and the estimation of the
trusted range of application are both important issues, which
will be considered in future studies but are out of the scope
of this paper.

Fig. 12 Distribution of the scores of the models generated during the
deep reinforcement learning. The models are grouped into five fam-
ilies (see Table 1). The curves present the Gaussian kernel density
estimation of the model score distributions (The estimated function
fh(x) = 1

nh

∑n
i=1 K (

x−xi
h ) for score data (x1, x2, . . . , xn), K (x) is

the standard normal distribution function, h is the bandwidth parameter
determined by Scott’s rule h = 3.5σ̂

n1/3
, where σ̂ is the standard deviation)

5.3 Numerical experiment 3: AI-generatedmaterial
models in finite element simulations

To demonstrate the applicability of the AI-generated models
from the plays of the data collection/meta-modeling game
presented in Numerical Experiment 2, we conduct finite ele-
ment simulations of a plane strain compression test on a
rectangular specimen in which the AI-generated model is
used to provide the incremental constitutive update. The
numerical specimen is assumed to be in quasi-static condition
and the Galerkin form of the balance of mass is solved incre-
mentally with an implicit solver. The tangent of the residual
is obtained via a perturbation method. The geometry, mesh

123



Computational Mechanics

and the boundary conditions of the simulations are given in
Fig. 13. The specimen is initially consolidated to isotropic
pressure of p0 = −400kPa, and have a uniform initial void
ratio of 0.536. The specimen is compressed from the top sur-
face, while the constant pressure p0 are maintained on the
lateral surfaces. Slight imperfection is introduced at the mid-
dle of the specimen to trigger heterogeneous deformation and
shear bands. Three simulations are performed with the mate-
rial properties given by the three example models generated
during the DRL in Numerical Experiment 2 (1st, 3rd and 4th
digraphs in Fig. 10).

The finite element implementation of the AI generated
digraph-based model is simple and convenient. All mod-
eling choices (Sect. 2) and the general purpose integration
scheme (Algorithm 3) are already implemented in a single
material model class. The FEM program is free to switch to
other models simply by loading the digraphs and the corre-
sponding calibrated parameters from the gameplay into this
material class. The local distribution of the deviatoric strain
εs and the volumetric strain εv in the specimen from the three
models are compared in Figs. 14 and 15, respectively. The
global differential stress - axial strain and volumetric strain
- axial strain curves are compared in Fig. 16. The results
demonstrate that all the local constitutive models, regardless
of the quality, can all be implemented in the finite element
solver. As mentioned previously this meta-modeling game
can be easily incorporated in a new finite element solver
architecture in which material library commonly used in the
current paradigm is replaced by one single labeled directed
multigraph and the conventional material identification pro-
cess is replaced by the meta-modeling game such that both
the optimal combination of model components and mate-
rial parameters are simultaneously selected. Furthermore,
the results also indicate that the qualities of the constitutive
laws are continuously improved in each iteration of themeta-
modeling game. In particular, we see that the correct type of
shear band for dense granular assembles (dilatant shear band)
is reproduced in the numerical specimens after 5th iterations
(cf. [3,80]), and the shear band mode converges in the 8th
iteration.

6 Efficiency compared to the brute force
approach

Consider the case in which reinforcement learning is not
used. Instead, one simply generates all the possible directed
graph from the labeled directed graph. In this case, the data
agentmust generate all possible sequences of calibration tests
from the 12 candidates in the calibration test set (T1, T2, T3,
…, T11, T12), so there are 212 − 1 = 4095 possible (with-

Fig. 13 Description of the geometry, mesh, boundary, and loading con-
ditions of the plane strain compression problem

out considering the orders of tests) subsets of calibration test
combinations. Note that the order of the tests provided to the
modeler agent actually influences the Q value estimation of
the modeler agent and hence this number is a lower bound
of the total number of possible test sequences. Meanwhile,
the modeler agent must select a model (directed graph) from
the following possibilities (all specified in Sect. 3.2.6). In this
smallmeta-modelinggame, there are 3 choices for the elastic-
ity law, 11 choices for loading direction definition, 8 choices
of plastic flow direction, 4 choices of hardening law. The
total number of model combinations is therefore 3*11*8*4
= 1056. Each subset of tests chosen by the data agent is
used to calibrate a model chosen by the modeler agent, so
the brutal force evaluations in total would be 4095*1056 =
4,324,320. In the DRL approach, there are 10 training iter-
ations, each iteration has 30 gameplay episodes, and each
gameplay episodehas 300MCTS (MonteCarloTreeSearch).
So in the DRL there are in total 10*30*300 = 90,000 eval-
uations. The percentage of DRL evaluations versus brute
force evaluations is 90,000/4,324,320 = 2.08% to obtain the
optimal model score of 0.652. Whether the DRL-generated
model is the ultimate optimal model among all the possibil-
ities is unknown in this game (unless all the configurations
have been tried out).However, it is possible to conduct bench-
mark experiments for a smaller game that has limited among
of configurations.
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Fig. 14 Distribution of local deviatoric strain εs within the specimen
at the end of the plane strain compression loadings. The finite element
solutions using three models generated during the deep reinforcement

learning of the meta-modeling game are compared (Model 1 is gener-
ated in the 1st DRL iteration in Fig. 10, Model 2 in the 5th iteration,
Model 3 in the 8th iteration, Model 4 in the 10th iteration)

Fig. 15 Distribution of local volumetric strain εv within the specimen
at the end of the plane strain compression loadings. The finite element
solutions using three models generated during the deep reinforcement

learning of the meta-modeling game are compared (Model 1 is gener-
ated in the 1st DRL iteration in Fig. 10, Model 2 in the 5th iteration,
Model 3 in the 8th iteration, Model 4 in the 10th iteration)
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Fig. 16 Evolution of the global
differential stress
(q = |σyy − p0|,
p0 = −400 kPa, and σyy is the
stress on the top surface) and the
global volumetric strain εv of
the specimen with respect to the
axial strain εyy computed using
three models generated during
the deep reinforcement learning
of the meta-modeling game
(Model 1 is generated in the 1st
DRL iteration in Fig. 10, Model
2 in the 5th iteration, Model 3 in
the 8th iteration, Model 4 in the
10th iteration). Each simulation
terminates when the finite
element solutions start to
diverge

7 Conclusion and future perspectives

We introduce a new multi-agent meta-modeling game in
which the experimental task, i.e. the generation of data, and
the modeling task, the interpretation of data, are handled by
two artificial intelligence agents. Mincing the collaboration
of a pair of experimentalist and modeler collaborating to
derive, implement, calibrate and validate amodel to explain a
path-dependent process, these two agents interact with each
other sequentially and exchange information until either the
model and data they reach the objectives or when further
action does not generate a further reward. The major con-
tribution of this research is as follows. First, we introduce
the idea of using labeled directed multi-graph to mathemat-
ically represent the action space of the modeling agent. This
action space can be expanded by adding plausible actions
invented by previous human modelers or by generated new
actions from deep neural networks or other machine learn-
ing methods. This invention therefore enables us to idealize
the process of writing constitutive models as a continuous
decision-making process in an action space of very high
dimensions such that a pre-defined objective function can be
maximized. As shown previously in work such as AlphaGo
[71,72], using deep neural networks in a deep reinforcement
learning framework to search proper actions from a very
large number of possible moves is shown to achieve superior
performance. To the best knowledge of the authors, this is
the first time the ideas of using deep reinforcement learning
applied on generating the knowledge graph and constitutive
laws for history-dependent responses of materials.

The introductions of the graph, directed graph and labeled
directedmultigraph in themeta-modeling game enables us to
recast the scientific process as a combinatorial optimization
problem. Coupled with a reinforcement learning algorithm,
the search for the optimal sequence of decision leads to a
meta-modeling game closely resembles a more human-like

iterative cyclical scientific process through which informa-
tion is continuously gathered, hypotheses are continuously
tested and the plausible understanding is continually revised.
The major elements of scientific methods used by human,
including characterization (observation and measurement
stored in vertices, definition stored in edges), hypotheses
(selection of a particular form of edges and edge sets), pre-
dictions (the information flow from root to leave of the
directed graph obtained from the meta-modeling game) and
experiments are all incorporated and automated. This new
approach produces a forecast engine that can make pre-
dictions, but more importantly has the ability to generate
human-interpretable knowledge on the relationships among
different measurable physical quantities. This feature is sig-
nificantly unique among other neural network approaches
which often produce black-box models with no easy way to
interpret the rationale of the predictions. It should be pointed
out that models generated from the meta-modeling game do
not discriminate the types of the edges used. They can be any
operator that links the input to output, including but not lim-
ited to regression, support vector machine, neural network,
mathematical expression or a bootstrapped version of them.
These edges are only being formed by the AI when they are
estimated to have higher policy value according to a specific
objective function.

By introducing a gateway tomerge existing and newmod-
els and introduce a seamless integration of data generation
and data-driven discovery. Since the meta-modeling game
stops when further action does not yield reward, this frame-
work enables one to determine the best configuration of
model one can possibly obtain within a well-defined action
space for a given set of data. As shown in Sect. 5.2, this ability
is not only important in making better predictions, but also
help us identify the limitation of the action space. Given that
modern constitutive laws have become increasingly complex
and are often combined products of multiple material theo-
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ries, concepts and assumptions created by different schools
or theoretical backgrounds, the quantifiable policy values of
the edges in the edge label set, if used properly, may enable
us to pin down the relative values of each component of
the constitutive laws while avoiding any potential implicit
bias. As a result, the cooperative game enables us to make
forward predictions while controlling the cost of generating
the experimental data. Unlike other AI field which is largely
driven by the exponential growth of available data, extracting
an adequate amount of reliable experimental data remains a
challenging task for the field of mechanics. The cooperative
game designed in this paper does not only provide a tool to
optimize the collaborations of the AI agents, but also shed
lights on how tomake productive scientific discovery through
emulating the research progress in a setting where data gen-
eration can be costly.

In this work, we assume that the data obtained from
experiments are perfect and without any significant noise.
Furthermore, the meta-modeling game is also operated in
a setting where the vertex set and the corresponding label
are fixed. Future work will consider how to introduce
quantifiable assurance of the meta-modeling game, incor-
porate sensitivity analysis in the validation and predictions,
and quantify different types of uncertainties. For instance,
one trains Bayesian neural network to generate edges that
deliver not only deterministic predictions but also perform
variational inference. By quantifying the sensitivity of the
predictions, one may explore the weakness of the existing
action space for both the modeler and experimentalist agents
and use this knowledge to generate new actions. Work in this
area is currently in progress.

Example 2 GameAction for traction-separation Laws. Given
an 8-tuple G = (LV,LE,V,E, s, t, nV , nE) with elements
defined in (66), (67), (72), (71). Find the subgraph G

′ of G
such that this subgraph becomes the directed acyclic graph
that maximizes the blind prediction accuracy defined by an
objection function. 
�
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A Appendix: Traction-separation example

In this appendix,we provide an additional simple example for
traction-separation law to (1) demonstrate how to selection
components from a combinations of existing hand-crafted
and machine-generated operators/mappings, (2) provide one
possible example to form the the directed labeledmulti-graph
from existing mappings in the plasticity literature and (3)
show the inclusive nature of the multi-graph approach by
demonstrating how tomergemultiple sub-graph into amulti-
graph.

Example 1 Traction-separation Law. Given a pre-defined
objective function, assume that the only known theoreti-
cal traction-separation model incorporated in the labeled
directed multigraph are the Tvergaard model (cf. [90]) and
the Ortiz–Pandolfi model (cf. [61]). In addition, we also
consider using a neural network that incorporates porosity
to predict traction-separation relations. Define the labeled
directed multi-graph that provides all the options available.

First, we convert the traction-separation laws into directed
graphswhere the relative displacement vector is the input and
the traction is the output. Notice that both Tvergaard [90] and
Pandolfi et al. [61] are effective displacement models where
an effective displacement � is used as additional input to
predict the traction. In [90],

Tn = T (�)

�

�n

δn
, (57)

Tt = T (�)

�
α

�n

δt
(58)

and the effective displacement and effective traction are
scalars defined as,

� =
√

(�n/δn)2 + (�t/δt )2, (59)

T (�) = 27

4
σmax�(1 − 2� + �

2
), (60)

where δn and δt are the characteristic length corresponding
to the fracture energy and cohesive strength of the normal
and tangential opening modes, α is a non-dimensional mate-
rial parameter. As pointed out in [62], the traction-separation
model in [61] can be expressed in the forms of Eqs. (57) and
(58) with the alternative definition of effective displacement
and traction separation law, i.e.,

� = �̃/δn , �̃ =
√

�2
n + β2�2

t (61)

T (�) = k� + c (62)

where k is typically negative and c is the effective cohe-
sive strength. Finally, we consider a neural network model
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Pandolfi et al. [1999]

Tvergaard [1990]

Wang & Sun [2018]
Directed multi-graph that contains all 
actions of three previous modelers 
recorded in Tvergaard, 1990, Pandolfi et 
al, 1990 and Wang & Sun [2018]

Fig. 17 The generation of directed multi-graph by expanding action space using previous models

in which the traction depends on the porosity φ f [16,82,92],
i.e.,

Tn = f LSTM(φ f ,�n), (63)

Tt = gLSTM(φ f ,�t ), (64)

where the exact expression of the function f LSTM and gLSTM

are determined by adjusting the weight of the neurons in the
recurrent neural network [36,94]. Assuming that the solid
constituent is incompressible, the porosity reads,

φ f = φ
f
o (1 + �n�t ) (65)

The multi-graph that combines all the possible choices of
the three traction separation laws can therefore be defined by
multi-graph statement with the following sets,

V = {�n,�t , Tn, Tt ,�, T , φ f } (66)

E = E1 ∪ E2 ∪ E3 (67)

E1 = {�n → �,�t → �,�n → φ f ,�t → φ f ,�n

→ Tn,�t → Tt } (68)

E2 = {� → T , φ f → Tn, φ
f → Tt ,�n → Tn} (69)

E3 = {T → Tn, T → Tt } (70)

LV = {normal disp., tan. disp., normal traction, tan.,

traction eff. disp., eff. traction, porosity} (71)

LE = {Eq.(57),Eq.(58),Eq.(59),Eq.(60),Eq.(61),Eq.(62),
Eq.(63),Eq.(64),Eq.(65)} (72)

Since nV is a bijective mapping, the labeling of the ver-
tices is trivial. The rest of the mappings, i.e. s, t and nE
can be visualized in a labeled directed multigraph as shown
in Fig. 17. Essentially, the process of creating the directed
multigraph is to mathematically represent all the possible
options modelers can have when they are tasked to create a
constitutive model for a data set. 
�
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