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ABSTRACT 

Modeling of Affective State Patterns during Self-Regulated Learning in Physics Playground 

Shiming Kai 

 

This dissertation research focuses on investigating the incidence of student self-regulated 

learning behavior, and examines patterns in student affective states that accompany such self-

regulated behavior. This dissertation leverages prediction models of student affective states in 

the Physics Playground educational game platform to identify common patterns in student 

affective states during use of self-regulated learning behavior. In Study 1, prediction models of 

student affective states are developed in the context of the educational game environment 

Physics Playground, using affective state observations and computer log data that had already 

been collected as part of a larger project. The performances of student affective state prediction 

models generated using a combination of the computer log and observational data are then 

compared against those of similar prediction models generated using video data collected at the 

same time.  In Study 2, I apply these affective state prediction models to generate predictions of 

student affective states on a broader set of data collected from students participants playing 

Physics Playground. In parallel, I define aggregated behavioral features that represent the self-

observation and strategic planning components of self-regulated learning. Affective state 

predictions are then mapped to playground level attempts that contain these self-regulated 

learning behavioral features, and sequential pattern mining is applied to the affective state 

predictions to identify the most common patterns in student emotions.    

 Findings from Study 1 demonstrate that both video data and interaction log data can be 

used to predict student affective states with significant accuracy.  Since the video data is a direct 



measure of student emotions, it shows better performance across most affective states.  However, 

the interaction log data can be collected natively by Physics Playground and is able to be 

generalized more easily to other learning environments.  Findings from Study 2 suggest that self-

regulatory behavior is closely associated with sustained periods of engaged concentration and 

.self-regulated learning behaviors are associated with transitions from negative affective states 

(confusion, frustration, and boredom) to the positive engaged concentration state. 

The results of this dissertation project demonstrate the power of measuring student 

affective states in real time and examining the temporal relationship to self-regulated learning 

behavior within an unstructured educational game platform. These results thus provide a building 

block for future research on the real-time assessment of student emotions and its relationship 

with self-regulated learning behaviors, particularly within online student-centered and self-

directed learning contexts.  
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CHAPTER I. 

INTRODUCTION 

Background 

Self-regulated learning is an essential aspect of the learning process and has received 

much attention from researchers since the 1980s. While there are several theoretical models for 

the concept of self-regulation, self-regulated learning (SRL) generally can be defined as an 

iterative and internally driven process where learners construct their own learning goals and then 

monitor, regulate and control their cognition and behavior towards the accomplishment of these 

goals (Pintrich & Zusho, 2002). The capability to self-regulate is thus a process that plays a 

mediating role between cognitive and motivational factors as well as learner characteristics 

(Pintrich, 2003; Pintrich, 2000) to influence the learning process and in turn, learning outcomes. 

The emerging ability to monitor one’s own behavior and self-regulate is an important 

developmental task starting in early childhood (Kopp, 1982). Studies on individuals’ cognitive 

and emotional development have shown that the ability to regulate cognition and affect are 

necessary for success in school and academic achievement (Pintrich & de Groot, 1990; 

Zimmerman, 1998).  

While self-regulated learning is important in traditional education settings, it may be even 

more vital within online and informal learning contexts (Jonassen, 1995) where learning is more 

student-centered (Artino, 2008; Williams & Hellman, 2004). Multiple studies have demonstrated 

that the use of self-regulated learning strategies within learner-controlled online learning 

environments are correlated with achievement outcomes (Joo, Bong & Choi, 2000; Young, 1996; 

Land & Greene, 2000).  Another study found evidence that suggests that higher levels of learner-

choice allowed within an online learning environment benefits students with high  self-regulated 
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learning strategy use (McManus, 2000). Further studies have shown that students who 

demonstrate self-regulated behavior have a stronger a sense of connectedness and self-efficacy 

and a better student experience overall (Cho, Demei, & Laffey, 2010; Turker & Zingel, 2008). 

Given the far-reaching implications of SRL behavior and the increasing popularity of 

online and informal learning platforms, the ability to self-regulate has only become more critical 

as increasing numbers of students are learning in student-centered settings. As a result, the 

development of more accurate and reliable measures of student emotions and SRL behaviors will 

be critical for improving the student learning experience. Specifically, the proliferation of 

technology-based platforms that implement student-centered learning opportunities has created 

an urgent need to develop more technology-friendly methods to evaluate and identify student 

emotions and use of self-regulated learning within these platforms.  

Theoretical frameworks of self-regulated learning 

Multiple frameworks for self-regulated learning exist, but in general, frameworks for 

these strategies consist of a few chronological phases. One set of theoretical frameworks maps 

the various components of student SRL behavior or strategies during learning, based on the 

diversity of perspectives towards student learning. For example, the SRL framework based on 

the operant perspective (Mace, Belfiore & Hutchinson, 2001) emphasizes the students’ choices 

in alternative actions during the learning process. In comparison, the socio-cognitive perspective 

of SRL (Zimmerman, 2000) focuses more on the idea that each component of student self-

regulated learning behavior is situationally specific, such that students may engage in some of 

the components of SRL more in certain contexts than in others. Similarly, Winne & Hadwin's 

model framework (1998) based on the information processing perspective emphasizes the 

internal and external cognitive conditions that affect student use of SRL strategies, such as the 
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schemas available to the student, as well as her memory capacity during learning. 

While each of these theoretical frameworks emphasizes a different aspect of student SRL, 

they generally house SRL components within three main phases of learning:  

1) Forethought Phase - the planning phase before the start of a task 

2) Performance Phase – the phase when the student engages in the task 

3) Reflection Phase - the post-performance phase when the student evaluates her 

performance 

Strategic planning and goal setting occurs during the forethought phase (Zimmerman, 

2002) before the learning process begins, when the student analyzes the task and plans how she 

would go about achieving the learning objectives. The performance phase of learning follows the 

forethought phase, and consists of the self-observation and self-control components. Lastly, self-

reflection and evaluation may occur immediately after learning during the self-reflection phase, 

which involves students' reactions and feelings towards their performance as they review it in 

comparison to various sets of standards. 

Assessment of Self-Regulated Learning (SRL) 

Detection and assessment of specific emotions, strategies, and behavior related to self-

regulated learning (SRL) have been mostly limited to self-report questionnaires and interviews, 

or observational reports (Schmitz & Wiese, 2006; Zimmerman, 2008). Common questionnaires 

that were created to assess self-regulated learning strategies and behavior include the Learning 

and Study Strategies Inventory (LASSI, Weinstein, Schulte & Palmer, 1987), and the Motivated 

Strategies for Learning Questionnaire (MSLQ; Pintrich, Smith, Garcia, & McKeachie, 1993). 

These examples of extensive questionnaires assess the individual components of self-regulated 

learning across multiple sections.  However, these questionnaires could be further classified as 
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“aptitude” measures of self-regulated learning since they are designed to aggregate self-

regulatory behavior over time (Winne & Perry, 2000). 

In recent years, there has been a push to assess SRL more as a temporal “event”.  One 

area of research is the development of phase models of SRL that separates students’ SRL process 

into different learning phases before, during and after the students’ learning attempts (Boekaerts 

& Corno, 2005; Pintrich, 2000). Researchers have thus shifted towards alternative measures of 

SRL to capture instances of SRL temporally, such as think-aloud protocols, observations, and 

using online tools such as structured diaries, computer interaction logs and microanalytic 

measures in online learning environments (Zimmerman, 2008).  

One area of research that has received much attention in recent years has focused on 

identifying and evaluating student use of self-regulated learning using computer interaction logs 

from various technology-based learning platforms (Aleven, McLaren, Roll, & Koedinger, 2004; 

Azevedo, 2005; Roll, Aleven, McLaren, & Koedinger, 2011). In these studies, fine-grained data 

logs are available that allow researchers to identify specific student affect and behavior patterns 

within these technology-based learning platforms that constitute self-regulated learning. Aleven 

and colleagues (2006) identified and developed models of students' help-seeking behavior by 

capturing computational features that constituted effective versus ineffective help-seeking 

behavior during their interactions with the Cognitive Tutor in geometry. 

Past studies have compared the accuracy of technologically enabled methods against 

traditional methods for assessing SRL strategies.  One study found that student self-reports were 

generally less effective than computer interaction logs at accurately identifying various 

components of student self-regulated behavior (Winne & Perry, 2000).  While another study 

showed that questionnaires were less accurate than structured diaries in assessing students’ use 
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of self-regulated learning strategies (Schmitz & Wiese, 2006).  

Assessment of student affective states 

Several past studies have demonstrated that student affective states directly impact 

learning experiences, and in turn, their learning outcomes (Bower, 1992; Goetz, Pekrun, Hall, & 

Haag, 2006; Shutz & Pekrun, 2007). Additionally, emotional control is implicitly present within 

most self-regulated learning frameworks, often within the components of motivational or 

metacognitive control (Zimmerman & Schunk, 2001). Several studies have also shown that 

emotions are an important factor in students' use of SRL strategies during learning (Blair & 

Diamond, 2008; Mega, Ronconi, & De Beni, 2014; Reschly, Huebner, Appleton, & Antaramian, 

2008; Pekrun, Goetz, Titz, & Perry, 2002; Wolters, 1998).  In particular, Pekrun and colleagues 

(2002) were able to identify positive correlations between positive student emotions and 

students’ ability to make use of various self-regulated learning strategies during learning, using 

the Academic Emotions Questionnaire (AEQ). Similarly, Mega and colleagues (2014) were able 

to identify a positive relationship between student emotions, self-regulated learning and 

academic achievements, using a battery of self-report measures. In this study, they found that 

student emotions influence their use of self-regulated learning strategies, which in turn affects 

academic achievement. Furthermore, positive emotions were associated with academic 

achievement only if they were mediated by self-regulated learning and motivation (Mega, 

Ronconi & de Beni, 2014). 

However, while measures of SRL have taken advantage of technological advancements, 

measures of student emotions have been less common.  The assessment of emotions in 

educational psychology has been mostly limited to the use of traditional aggregated self-report 

questionnaires, expert coding, and field observations.  Some examples of questionnaires include 
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the 27-item Positive and Negative Affect Schedule (PANAS), which assesses how frequently an 

individual feels certain emotions (Reschly et al., 2008), the Academic Emotions Questionnaire 

(AEQ; Pekrun et al., 2002), and the Self-regulated Learning, Emotions and Motivation 

Computerized Battery (LEM-B; Mega et al, 2014), which comprise three separate self-report 

questionnaires on student self-regulated learning, emotions and motivation. More recent research 

in intelligent tutoring systems has investigated other methods of identifying student emotions and 

affective states during learning such as expert coding of video data and field observations (Craig, 

Graesser, Sullins, & Gholson, 2004; Dragon et al., 2008; Ocumpaugh, Baker, Gaudino, Labrum, 

& Dezendorf, 2013; Woolf et al., 2009). Despite being labor-intensive and time-consuming, 

observational measures provide some advantages in identifying high-level student learning 

behaviors and emotions (Winne & Perry, 2000). 

With the recent advancements in technology-based learning systems, native tools are now 

available to assess students’ emotions and affective states during learning. These tools include 

computer interaction logs, dialogue cues, as well as physiological sensors (Arroyo et al., 2009; 

Baker, Gowda, & Wixon, 2012; D’Mello et al., 2008).  Past studies that have identified student 

emotions and affective states using such methods have found relationships with student learning 

outcomes and achievement (Pardos, Baker, San Pedro, Gowda, & Gowda, 2014), as well as 

future college enrollment (San Pedro, Baker, Bowers & Heffernan, 2013). 

Advantages and limitations of fine-grained measures 

Self-report measures have been shown to hold certain advantages such as being an 

efficient and practical method of obtaining information about a study participant, as well as 

providing informational richness to the researcher (Paulhus & Vazire, 2005), with its potential to 

provide contextual clues and data. However, the use of self-reports also suffers from various 
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disadvantages, such as being subject to issues of credibility and accuracy due to inaccuracies in 

memory or self-deception (Paulhus & Vazire, 2005). Self-report items and questions may also be 

interpreted differently from intended by study participants, which could affect the cognitive 

validity of the self-report measure (Karabenick et al., 2007). Comparisons made between self-

report and fine-grained trace measures have found differences in their correlation with student 

learning outcomes. One study, compared students’ level of bias and accuracy in self-reporting 

their achievement judgments and self-regulatory strategies to the trace computer logs that were 

collected throughout the study (Winne & Jamieson-Noel, 2002).found that while the students’ 

judgments of achievement was significantly correlated to their actual scores.  However, the self-

reported self-regulated learning strategies were incongruent with trace computer logs and were 

not correlated to the actual strategies used. These results indicate that student self-reports of 

study tactics and strategies are often not congruent with actual test scores and thus tend to be 

fallible (Winne & Jamieson-Noel, 2002; Winne & Perry, 2000). 

Given the shortcomings of self-report measures, it would thus be more useful for 

researchers to use these measures in conjunction with more fine-grained trace measures, such as 

behavior and affective state models built through computer log data, which can provide a more 

balanced perspective to the researcher and practitioner. With the increasing use of technology-

based learning, it is now more possible than before to obtain such fine-grained measures of 

student SRL behavior, strategy use, and affective states through computer log data. Such 

measures would provide much-needed support to bolster and balance other self-report measures 

of SRL to provide researchers with a more accurate and reliable assessment of student self-

regulated learning. 

Despite the advantages of building behavior and affect models based off fine-grained 
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measures of SRL, there are various limitations. Behavior and affect models are built based on the 

computer log data specific to a technology-based learning platform. As such, issues arise with 

generalizing these models across populations (Jaclyn Ocumpaugh, Baker, Gowda, Heffernan, & 

Heffernan, 2014) and learning systems, despite a few exceptions (Paquette et al., 2013). Because 

behavior and affect models built based on computer log data are highly dependent on the 

computation of features that captures the students’ interactions with the specific learning 

platform, the type of features generated is contingent on the learning system itself, making it 

difficult to apply the same sets of features across different systems. 

Trace measures of SRL behavior have been constructed with some success within several 

online tutoring systems, such as the Cognitive Tutor in Geometry and Algebra (Aleven, Mclaren, 

Roll, & Koedinger, 2006; Roll et al., 2011), Betty's Brain (Biswas, Jeong, Kinnebrew, Sulcer & 

Roscoe, 2010), and several others (Greene, Azevedo, 2010; Lee, Lim & Grabowski, 2010). In 

the study by Aleven and colleagues (2006), features were created from computer log data to 

identify sequential patterns in student help-seeking behavior and their relationships with learning 

outcomes.  

 

Problem Statement 

Several model frameworks have been proposed to describe the different components of 

self-regulated learning (SRL) and its influence on the learning process.  Some recent theoretical 

frameworks have emphasized distinct components of SRL that occur during different phases of 

learning.  The growing popularity of frameworks that involve multiple components of self-

regulated learning has led to an increasing need for real-time assessments of different types of 

student SRL behavior within authentic contexts. To address this need, methods have been 
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developed to assess the sequential patterns of student behavior, allowing practitioners and 

researchers to make better inferences about student SRL behavior over time. (Zimmerman, 

2008). While various measures have been successfully implemented within technology-based 

learning platforms, most still involve post-hoc student self-reports in the form of think-aloud 

protocols, structured diaries and microanalytic surveys (Winne & Hadwin, 1998; Zimmerman, 

2008). As discussed above, student emotions have also been shown to impact SRL behaviors 

during learning (Blair & Diamond, 2008; Reschly, et al, 2008; Pekrun, et al, 2002; Wolters, 

1998). While research on the assessment of student emotions and affective states within different 

learning contexts have grown steadily in recent years (Ai et al., 2006; Calvo & D’Mello, 2010; 

Picard, 1997; Rodrigo & Baker, 2009; J. Sabourin, Mott, & Lester, 2011), few studies have 

looked at how to quantitatively measure the relationship between student emotions and SRL 

behavior, especially within self-directed learning environments. Established methods that do 

assess both SRL behaviors and student emotions are still largely confined to post-hoc self-report 

measures, rather than the application of fine-grained observational measures of student behavior 

and affect that can be assessed in real-time. These self-report measures have been shown to be 

less accurate than fine-grain measurements and cannot capture the temporal patterns of student 

emotions relative to SRL behaviors.    

This dissertation project thus aims to present a novel method to quantitatively assess the 

relationship between student emotions and aspects of self-regulated learning within a learning 

environment.  Additionally, in order to fully realize the potential of the new technology-enabled 

learning platforms, educators will need to develop automated methods for tailoring educational 

experiences to students when live human intervention is not possible.  In traditional settings, 

educators can observe cues for when students are struggling and not utilizing SRL behaviors, 
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then intervene to help support the student.  In comparison, self-directed learning platforms need 

to detect and pre-empt the occurrence of student struggles to adapt its programming to ensure 

continued student learning.   

Recent efforts have used a variety of increasingly sophisticated methods to assess various 

cognitive components of SRL as temporal “events”, as well as student emotions during learning. 

However, much less work has been done to quantify the mediating relationship between student 

emotions and self-regulated learning within the same learning context. Evaluating the temporal 

patterns of emotion associated with SRL will thus improve the understanding of the relationship 

between student emotions and self-regulated learning behavior in real-time. Furthermore, 

incorporating both cognitive and emotional features may improve the accuracy of SRL 

measurement and prediction.   

Many studies have examined the relationship between self-regulated learning and 

achievement, while others have investigated the relationship between student emotions and 

achievement in an open-ended educational game context.  However, far fewer studies have 

examined the relationship between student emotions and student self-regulated learning 

behavior.  Consequently, part of the analyses in this dissertation attempts to identify components 

of student self-regulated learning behavior (Study 2), and student affective states as they occur in 

conjunction with behavioral indicators of student self-regulated learning. From there, I will 

attempt to isolate specific patterns in affective states that could be indicative of the specific 

components of SRL, as well as various cognitive components of SRL. 

 

Research Objectives 

This dissertation aims to build models that can predict student affective states in the 
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context of an open-ended educational game platform, and using these predictions, identify 

patterns in student affective states that indicate specific components of SRL, as explained in 

detail below. 

 

Research Questions 

The research questions for this dissertation are: 

1. Which machine learning models best predict student affective states in the context of an 

open-ended learning platform? 

2. What are the most common patterns in student affective states (engaged concentration, 

boredom, confusion, frustration, and delight) that co-occur with self-regulated learning 

behaviors within an open-ended learning platform? 

 

Significance 

The measures of various aspects of SRL in intelligent tutoring systems and online 

learning platforms have evolved from trait-based formats (in the form of questionnaires and 

observations) to temporal-based formats (through think-aloud protocols and trace computer 

logs). While some studies have evaluated various aspects of student SRL behavior and strategies, 

such research has focused mainly on intelligent tutoring systems. To be able to identify student 

SRL behavior and strategies in a less structured learning environment would provide a look at 

how spontaneous use of various SRL strategies and behavior may occur in such environments. 

The ability to identify student affective states during the learning process within online 

learning environments has allowed teachers and facilitators to provide timely interventions to 

students at risk of becoming disengaged within these learning platforms. Additionally, 
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identifying the temporal patterns of students’ affective states and their relationship to SRL could 

provide facilitators with a better understanding of how to encourage student SRL during learning 

in less structured learning environments. 

This dissertation project provides a new methodological approach to identify self-

regulated learning behavior among students by identifying patterns in student emotions. In 

addition, the project aims to demonstrate a strong relationship between student emotions and 

self-regulated learning behavior, thus furthering the research in this field on the role of student 

emotions within self-regulated learning.    
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CHAPTER II. 

LITERATURE REVIEW 

This literature review section will discuss and compare the methodologies used to assess 

self-regulated learning (SRL).  It will focus on identifying student engagement in SRL within an 

exploratory educational game platform.  First, this section will discuss the cognitive science 

research around theoretical frameworks and measurement methods of student engagement in 

self-regulated learning strategies. Then, this section will explore existing research on automated 

behavior and affect models which have been successfully built into technology-based software.,  

These systems allow the evaluation and assessment of student engagement during self-regulated 

learning behaviors and strategies through the analysis of fine-grained measures.   

 

Self-Regulated Learning 

While there are several theoretical definitions of self-regulated learning, the common 

feature among these definitions is that self-regulated learners are active learners who manage 

their learning through monitoring of their strategy use (Boekaerts, Pintrich, & Zeidner, 2000; 

Paris & Paris, 2001; Pintrich, 2000; Winne & Hadwin, 1998; Winne & Perry, 2000; Zimmerman 

& Schunk, 2001). This process is mainly affected by the learners' characteristics as well as the 

contextual situations that students are learning in (Pintrich, 2000). Within these definitions lies 

the assumption that SRL involves processes and responses that students must proactively initiate, 

which imply that students may choose not to self-regulate during learning when they could 

(Zimmerman & Campillo, 2003). This creates an issue that researchers try to address with 

various cognitive models for SRL. These models have been posited to provide researchers with 

theoretical frameworks through which to examine how students evaluate and adapt their 
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learning. In this way, these models seek to explain how and when students choose to self-

regulate during learning, as opposed to when they do not. This project will focus on the SRL 

models and frameworks that have been applied to learning with hypermedia and technology-

based software. 

Several models of self-regulated learning have been developed by different groups of 

researchers over the last two decades, based on a diverse set of theories such as operant and 

phenomenological perspectives, as well as social-cognitive and information processing theories. 

Most of these theoretical model frameworks involve three or four main phases: the phase 

involving goal setting or task definition, followed by the phases involving the selection and 

monitoring of learning strategies and tactics, and lastly the phase of reflection and evaluation of 

learning (Pintrich & Zusho, 2002; Zimmerman, Bonner & Kovach, 1996; Zimmerman & 

Schunk, 2003). Within each phase, there are also various aspects of learning that the student may 

try to control or regulate, including internal conditions such as cognitive, affective (motivational) 

and behavioral aspects of the individual student, as well as the external context or environment 

that may be modified to improve the student's learning process (Pintrich & Zusho, 2002). 

One example of the theoretical frameworks that have tried to address the various theories 

definitions around SRL was proposed by Zimmerman (2000), based on the social-cognitive 

perspective and consists of three main phases of the SRL process: Forethought, Performance, 

and Self-reflection. Processes in the forethought phase occur before actual learning takes place, 

and influences the learning context that follows. Performance phase processes occur during 

learning and influence both student actions and attention, as well as the self-reflection phase 

afterward. The self-reflection phase occurs after the learning actions have taken place, and 
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influence the student's forethought process relevant to subsequent learning efforts, thus 

completing an SRL cycle (see Figure 1; Zimmerman & Campillo, 2003).  

 

Figure 1. Socio-cognitive framework for self-regulated learning (Zimmerman & Campillo, 

2003). 

 

Another theoretical framework was proposed by Winne & Hadwin (1998; see Figure 2), 

and based on the information processing perspectives. This theoretical framework is made up of 

4 phases of a student's learning, involving task definition, goal setting and planning, enactment 

and lastly, adaptation (Winne & Hadwin, 1998). According to Winne & Hadwin (1998), these 

phases of learning may be affected by various task and cognitive conditions, which may be 

transformed through cognitive operations and strategies. This interchange of operations and 

strategies that affect the students' learning conditions would, in turn, lead to re-evaluations of the 

different phases of learning, which may result in metacognitive monitoring and updates to the 

learning products within each phase. 
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Figure 2. Framework for self-regulated learning based on informational processing theories 

(Winne & Hadwin, 1998). 

 

Based on the various model frameworks within SRL, interventions targeting the 

development of self-regulated learning among students have focused largely on the sub-

processes within each phase or stage of a model framework. For example, interventions to 

improve students' use of goal-setting and task definition skills have been implemented to help 

students better understand their learning tasks and progress (Kitsantas, Robert & Doster, 2004; 
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Latham, 2004; Latham & Locke, 2007; Locke & Latham, 1990; Manderlink & Harackiewicz, 

1984; Zimmerman & Kitsantas, 1999). Other interventions have targeted the metacognitive 

monitoring sub-process in learning with a selection of strategies such as thinking aloud and help-

seeking strategies. Various research studies have also been conducted on the effects of holistic 

combinations of several self-regulated learning strategies (Cleary & Zimmerman, 2004; Winne, 

Nesbit, Kumar, Hadwin, Lajoie, Azevedo, & Perry, 2006). In Cleary & Zimmerman (2004), for 

instance, a school-based holistic program called the Self-Regulation Empowerment Program 

(SREP) was implemented within middle and high school classroom environments and was found 

to have positive effects on student achievement and motivation. 

 

Theoretical Frameworks of SRL 

Forethought Phase 

Most theoretical frameworks for the SRL process include a phase before the actual 

learning phase.  During this phase, students define the task and plan their actions during learning. 

Research on various interventions that encourage students to engage in setting goals or plan their 

activities towards the learning objectives has been shown to improve academic outcomes 

(Fireman & Solomon, 2003; Graham & Harris, 1989). Researchers studying goal-setting in 

learning contexts found that the impact of goals on behavior depends largely on the specificity, 

proximity and difficulty of the goals (Bandura, 1988; Locke & Latham, 1990; Latham & Locke, 

2007). For example, specific goals and proximal goals have been found to lead to better self-

efficacy because progress is more easily tracked (Schunk, 1983; Maderlink & Harackiewicz, 

1984; Locke & Latham, 1990).  As a result, students  show an improvement in the  ability to self-

regulate during learning. In the subject of reading and writing, for example, interventions that 
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introduce explicit instruction in pre-reading and pre-writing strategies have shown to be 

beneficial for elementary school students (Pressley, Johnson, Symons, McGoldrick & Kurita, 

1989). Research on goal-setting found ample evidence showing that self-set goals improve not 

only students' achievement outcomes, but also their metacognitive abilities and self-efficacy 

(Latham & Locke, 2007), thus constituting a key component within self-regulated learning 

(Latham, 2004). 

In addition to goal-setting, explicit instruction in strategic planning activities prior to the 

learning task has also been found to yield benefits to students learning outcomes. For instance, 

explicitly teaching 6th-grade students with learning disabilities a planning strategy for writing 

opinion essays was found to improve students' ability to address the topic in their writing (De La 

Paz & Graham, 1997; Graham & Harris, 1989). 

Performance Phase 

The performance phase of learning, as defined by Zimmerman (2000), occurs when the 

student begins interacting with the learning task or content. There are two categorizations of self-

regulated learning behavior during this phase: self-control and self-observations (Zimmerman, 

2002).  Several components of the SRL process occur during this period, as the student controls 

her behavior, emotions and attention during the learning process. It is also during this period of 

learning that students engage in self-observations, as they experiment with the task strategies 

employed and their effectiveness throughout the learning process, which help to inform their 

future attitudes and emotions towards the learning within the domain. 

Methods that encourage students’ self-awareness through self-observational techniques 

have been found to isolate “the source of error, confusion, or inefficiency” during learning 

(Zimmerman & Paulsen, 1995, p. 15), and increase their deliberate use of self-regulation 
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(Ferrari, 1996). Such techniques were thought to empower students by allowing them to make 

more accurate attributions for poor learning performance (Zimmerman, 1989), and enhance 

access to cognitive processes as well as other internal states (Gibbons, 1990). For instance, a 

study involving a form of self-observation on the speech fluency of college students found 

positive effects with the implementation of self-observational techniques. Specifically, the 

implementation of self-observational strategies resulted in reductions of self-recorded verbal 

non-fluencies (e.g. "um," "uh," "er," etc.) (Mace & Kratochwill, 1985). Student groups that made 

use of this self-observational technique experienced a decrease in the use of verbal non-fluencies 

as compared to groups that did not employ this self-observation method.  Other studies have also 

found that self-observational techniques can highlight a student's attention to her actions during 

learning, thus facilitating problem-solving performance (Fosnot, Forman, Edwards & Goldhaber, 

1988; Welsch, 1991). An example of such a study is one by Fireman, Kose & Solomon (2003), 

where elementary school students were shown video recordings of their spontaneous 

performance during a problem-solving Tower of Hanoi task, and their problem-solving 

performance was compared with students who watched video-recordings of other students' 

performance at the task. Results from the study showed that video self-observation significantly 

enhanced the acquisition and transfer knowledge required to complete a more difficult problem-

solving task (Fireman, Kose & Solomon, 2003). On the flip side, however, such self-observation 

may also have detrimental effects on student learning. Reid & Harris (1993), for instance, found 

that, although monitoring of off-task behavior reduced the occurrence of student off-task 

behavior, it also seemed to result in poorer learning, as students became overly focused on their 

behavior during the learning tasks. 
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Self-Reflection Phase 

After the learning phase, there is often a post-learning phase where students reflect on 

their performance and strategies and modify their behavior or learning strategies in future 

learning cycles. There are two main classes of self-reflection: self-evaluation and self-reaction. 

Self-evaluation refers to the comparisons of self-observed performance to other standards of 

performance (Zimmerman, 2002), such as previous standards or other external standards of 

performance. Self-evaluation or judgment may also involve causal attribution, where students 

attribute the causes behind their performance to internal or external factors. In turn, certain forms 

of causal attribution may affect students' motivation and beliefs about their learning and are 

hence very important as well to the learning process (Cleary & Zimmerman, 2004; Zimmerman 

& Kitsantas, 1999). To date, multiple types of studies have been conducted to assess the effects 

of different types of causal attribution to students’ motivation and beliefs, as well as the effects 

of different forms of interventions within this phase on student learning outcomes. In Schunk’s 

studies (1996) on elementary school students, for example, implementing self-evaluation 

strategies in combination with learning goals was found to increase student task orientation and 

lowered ego orientation, as well as improving self-efficacy and motivation. Among 

undergraduate students, frequent self-evaluation was shown to produce positive results in student 

achievement as compared to infrequent self-evaluation (Schunk & Ertmer, 1999). More recent 

studies such as one conducted on middle school students also showed that the implementation of 

self-evaluative strategies during learning positively affected student skill acquisition (Kitsantas, 

Reiser & Doster, 2004). 

In addition to self-evaluation, self-reaction also occurs during this phase of learning. Self-

reaction refers to the wide variety of students’ reactions to their performance after the learning 
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process, which ranges from strategy persistence to change as well as from greater goal 

commitment and goal adjustment (Zimmerman & Martinez-Pons, 1992). This process is also 

known as adaptive or defensive inferences, which refer to conclusions drawn by students on 

whether or not to modify their learning strategies during future learning attempts (Zimmerman, 

2000). From the socio-cognitive perspective, self-reactions may involve environmental, personal 

and behavioral self-reactions, as students make adaptive or defensive inferences based on their 

learning performance. Recent studies in these areas have also found correlations between 

students' use of self-regulated learning strategies and their affective states as well as levels of 

self-satisfaction. For instance, Zimmerman & Bandura (1994) found that students who displayed 

some level of satisfaction and who attributed poor performance outcomes to their choice of 

learning strategy were more likely to make adaptive inferences. In comparison, students who 

were dissatisfied with this performance and attributed poor performance to uncontrollable factors 

tended to make defensive inferences. In addition, adaptive inferences were found to lead to 

improvised strategic planning and shifts in goals that benefited future performance (Cleary & 

Zimmerman, 2001). 

 

Assessment of Self-Regulated Learning 

Self-regulated learning is generally measured in two ways: as an aptitude, and an event, 

with a variety of measurement protocols being commonly used. In this section, I will discuss the 

use of several protocols that have become increasingly popular in the measurement of self-

regulated learning as a temporal "event," focusing in particular on measurement protocols that 

are more commonly used in online learning environments. These measurement protocols include 

think-aloud protocols, error detection tasks, trace computer logs and expert observations of 
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performance. In particular, I will focus my discussion on the use of trace measures, which are 

unique to online learning environments and other learning systems where the use of a computer 

is integral to learning. 

Think-aloud measures 

Think-aloud protocols involve students reporting about thoughts and cognitive processes 

while performing a task, and provide richer information to researchers on how students engage in 

SRL behavior throughout an entire learning task. It is thus thought to be more appropriately 

aligned to the dynamic, event-based definition of SRL (Greene, Robertson & Costa, 2011). 

Learning tasks in which think-aloud protocols have been employed include complex science 

topics, as well as history and math (Greene et al., 2011). While think-aloud measures have been 

employed across a wide range subjects and grade levels (Winne & Perry, 2000), few standard 

procedures exist for this measure. A large section of self-regulated learning research with think-

aloud protocols involve the identification of cognitive and metacognitive processes students 

undergo when learning from text materials (Fox, 2009). Other studies are focused on 

relationships between student use of SRL strategies and the development of mental models in 

online learning platforms (Azevedo & Cromley, 2004; Greene & Azevedo, 2007), as well as 

relationships between the types of SRL strategies used when students fail to learn (Azevedo, 

Winters & Moos, 2004)  

Error detection tasks 

To trigger student use of SRL, error detection tasks have been used to allow researchers 

to observe whether students detect errors in their tasks and what they do upon detection (Perry & 

Winne, 2000; Pintrich, Wolters & Baxter, 2000). Within online learning systems, eye-tracking 

has been used as a fine-grained indicator for student monitoring learning materials for errors.  
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Observations of Performance 

Recent research in SRL has expanded to include the contextual relationships in student 

self-regulated learning. The advantages of observational measures are thus to provide contextual 

information about learners’ behaviors, hence addressing the limitations of self-report measures. 

Studies that employ the use of observational measures, such as the Child Independent Learning 

Development (CHILD) (Bryce & Whitebread, 2012; Whitebread et al., 2009), are mostly 

targeted for younger children in the 3-5 year age range, for whom self-report measures would not 

be appropriate.  

Trace computer logs 

Trace methods provide observable fine-grained indicators about students’ cognitive 

processes as they engage with a task. Recent studies that directly measure student engagement in 

self-regulated learning behavior and affective states employ a variety of analyses methods with 

the available computer data logs to explore different aspects of student self-regulated learning. 

Furthermore, the types of online learning systems through which student engagement in self-

regulated learning is being evaluated are varied, ranging from online software aiming to improve 

student studying techniques (Winne & Jamieson-Noel, 2002), to intelligent tutoring systems with 

teachable agents (Biswas, Roscoe, Jeong & Sulcer, 2009; Bouchet, Azevedo, Kinnebrew & 

Biswas, 2012). 

One example of an online software used in such studies is the gStudy program, which is a 

shell program that provides students with a learning kit to study about any given topic in any 

verbal, visual or written format (Winne, Nesbit, Kumar, Hadwin, Lajoie, Azevedo & Perry, 

2006). The gStudy program provides cognitive tools that students can use to engage with the 

different forms of multimedia information, such as analyzing, annotating, classifying, organizing 
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and cross-referencing. These cognitive tools were designed based on cognitive research that 

encourages the development and engagement of solo/collaborative learning as well as problem-

solving skills with student use.  Research studies that examined students' engagement in SRL 

strategies using gStudy as a platform makes use of computer trace logs to identify instances 

where students make use of certain cognitive tools provided during learning, which may indicate 

various aspects of engagement in SRL strategies (Winne & Jamieson-Noel, 2006; Hadwin, 

Oshige, Gress & Winne, 2010). Student interactions with the gStudy tools that indicate 

engagement in certain types of SRL strategies are coded and recorded. For example, student use 

of the setting goals strategy in the forethought phase of learning was coded as such when 

students click on the Objectives button to view objectives right at the beginning of the learning 

session. Similarly, student use of a planning strategy in the forethought phase of SRL may be 

inferred if students scrolled through the information first before using the annotation or notes 

tools. Frequencies of these actions are matched to equivalent self-report items on the 

Motivational Strategies and Learning Questionnaire (MSLQ) developed by Pintrich et al. (1991) 

calculated to determine the level of student engagement in the respective SRL strategies. 

The investigation of computer trace data in other technology-based learning platforms differs in 

various ways both in part because of the differing structures of these platforms. For instance, the 

MetaTutor (Bouchet, Azevedo, Kinnebrew, & Biswas, 2012) and Betty’s Brain (Biswas, Roscoe, 

Jeong, & Sulcer, 2009) are adaptive tutoring systems with multiple agents, while platforms like 

gStudy and ASSISTments (Feng, Heffernan, & Koedinger, 2009) are adaptive online tools that 

facilitate students’ learning as they practice and learn new content through texts and practice 

problems respectively. Still others, such as Physics Playground, provide open exploratory 

environments that help students apply academic content to the learning environment. 
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MetaTutor is an adaptive tutoring system that teaches biological science content (Bouchet 

et al., 2012). MetaTutor is a system that is grounded in a theory of SRL and thus contains a 

combination of features that encourage student engagement in various SRL strategies and 

process, including four pedagogical agents that function as embodiments of the four main phases 

of SRL based on Winne & Hadwin's (2009) theoretical model framework.  These pedagogical 

agents guide students through the learning process, prompt them to engage in the various self-

regulated learning strategies, and provided adaptive feedback on their actions within the tutoring 

system. To measure students' overall progress in SRL strategies, Bouchet et al. (2012) employed 

the use of multiple measures to track and code students' use of cognitive, affective and 

metacognitive processes at different points during learning. They then made use of clustering and 

pattern mining analyses techniques to identify distinct patterns of student actions and behavior 

within the tutoring system that could allow researchers to help facilitate real-time adaptation of 

the system to cater to different types of student learning. The pattern mining technique and 

clustering allowed the researchers to identify specific student actions that could differentiate 

between the various types of student learning. 

The Betty's Brain program (Biswas et al., 2009) is an adaptive tutoring program and is similar to 

the MetaTutor program in that it also involved intervention elements in the form of multiple 

online agents that help to promote students' use of metacognitive strategies during learning. 

Instead of the four pedagogical agents present in the MetaTutor, however, Betty's Brain program 

consisted of two: a mentor agent Mr. Davis, as well as a teachable agent named Betty. This 

learning platform detects instances during learning when the students' behavioral patterns 

indicate that metacognitive feedback may be useful. One example of such metacognitive 

feedback is when the student requests a quiz after teaching a computer agent a given topic using 
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concept maps, to assess the computer agent's learning progress but does not make improvements 

to her concept maps. 

In studies involving other intelligent tutoring systems, Roll, and colleagues (2006, 2007) 

examined students' help-seeking behaviors within the Cognitive Tutor in Geometry learning 

platform, through their behavioral patterns before and after asking for hints within the tutoring 

platform. They then created a model framework to differentiate between groups of students who 

differ in their help-seeking behaviors when using the Cognitive Tutor platform and built a help-

seeking detector based on this framework.   

On the other hand, computer logs of student actions within the learning platform were 

used in a slightly different manner in Winne & Jamieson-Noel's (2002) cross-platform 

researching system called gStudy. Timestamped log data of students' actions within the platform 

were logged and the frequencies of the selected student studying actions calculated at the end of 

the study session. These study actions were created based on items in the traditional MSLQ 

questionnaire, including student behaviors such as making up questions, outlining goals and 

summarizing ideas. 

  

Development of Affective State Models 

While research in the field of psychology has found relationships between student self-

reaction and the future use of self-regulated learning strategies and learning outcomes, there is a 

limited range of methods that could be used to identify what student behaviors and affect would 

manifest as a result of specific self-reactions or self-satisfaction. With new affordances in 

technology, however, improved methods have been created to detect user affect and behavior 

through the users' interactions with technology-based platforms. 
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The development of models that can automatically detect student affect now constitutes a 

considerable body of research (Calvo & D’Mello, 2010; Picard, 1997). Research in this area is  

particularly focused on computerized learning contexts (Ai et al., 2006; Rodrigo & Baker, 2009; 

Sabourin, Mott, & Lester, 2011), where researchers have successfully built affect-sensitive 

learning systems that aim to enhance learning outcomes (Arroyo et al., 2009; Dragon et al., 

2008; Graesser & McNamara, 2010). The definitions of affect and affective states in this study 

are based on affective phenomena covered in the field of affective computing and include 

emotions, feelings, moods, attitudes, and temperaments. Such affective states and phenomena 

may also be evaluated via several perspectives that have been derived from traditional theories of 

emotion. Some of these perspectives include expressions, embodiments, cognitive appraisal, as 

well as social constructs (Calvo & D’Mello, 2010). Human emotions and affect have 

traditionally been evaluated through several perspectives, including expressions, embodiments 

and cognitive appraisals. Emotional expressions refer to various facial expressions of basic 

emotions that have been universally recognized, such as anger, happiness, and disgust (Darwin, 

2002; Russell, 1994). Embodiments of emotion, on the other hand, refer to the physiological 

changes that an individual's body undergoes when he or she experiences an emotion (James, 

1884). Lastly, cognitive appraisals of emotion refer to emotions that are produced as outcomes of 

an unconscious process of evaluating an event or situation based on some factors such as 

urgency, novelty, etc. (Arnold, 1960; Dalgleish, Dunn & Mobbs, 2009). Many of the affect 

models built in the field of affective computing are hence mostly built based on the various 

traditional theories of emotions posited in research. 

In general, researchers attempting to develop affect models have developed systems 

falling into two categories: interaction-based models (Baker & Ocumpaugh, 2015) and physical 
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sensor-based models (Calvo & D’Mello, 2010). Many successful efforts to detect student affect 

in intelligent tutoring systems have used visual, audio or physiological sensors, such as 

webcams, pressure sensitive seat or back pads, and pressure-sensing keyboards and mice 

(AlZoubi, Calvo, & Stevens, 2009; Pantic, Pantic, Rothkrantz, & Rothkrantz, 2003; Sebe, 

Cohen, Gevers, & Huang, 2005; Zeng, Pantic, Roisman, & Huang, 2009). 

Interaction-based detection, too, (Baker & Ocumpaugh, 2015) has improved over the last 

decade. These models infer affective states from students’ interactions with computerized 

learning systems (Baker, Gowda, & Wixon, 2012; Baker, Ocumpaugh, Gowda, Kamarainen, & 

Metcalf, 2014; Baker & Ocumpaugh, 2015; D’Mello et al., 2008; Paquette et al., 2014; Pardos et 

al., 2014). The fact that interaction-based affect models rely on student interactions makes it 

possible for them to run in the background in real time at no extra cost to a school that is using 

the learning system. Their unobtrusive and cost-efficient nature also makes it feasible to apply 

interaction-based models at scale, contributing to the growing field of research in the 

measurement of student academic emotions in the classroom (Baker & Yacef, 2009). For 

example, interaction-based affect detection has been useful in predicting long-term student 

outcomes, including standardized exam scores (Pardos et al., 2014) and college attendance (San 

Pedro et al., 2013). Basing affect detection on student interactions with the system, however, 

give rise to issues with generalizing such models across populations (Jaclyn Ocumpaugh et al., 

2014) and learning systems. Because interaction-based models are highly dependent on the 

computation of features that captures the student’s interactions with the specific learning 

platform, the type of features generated is contingent on the learning system itself, making it 

difficult to apply the same sets of features across different systems. 

This project proposes the use of interaction-based models of student affect within 
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classroom settings to predict patterns in student affective states that are associated with students' 

behavioral indicators of specific SRL strategies, in the context of 8th and 9th-grade students using 

the Physics Playground exploratory game platform 
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CHAPTER III. 

METHODOLOGY 

In this dissertation project, I make use of computer interaction data from students 

participating in the Physics Playground platform (Shute, Ventura, & Kim, 2013). As part of a 

larger collaborative project, a team of researchers from Florida State University collected data 

from 137 students from the same school, who played Physics Playground for two hour-long 

sessions, two days in a row. Various forms of data was collected for this larger project, namely: 

1) pre- and post- tests examining students’ knowledge of simple machines 

2) computer interaction log data recording students’ actions within the game environment 

3) video camera data recording students’ facial expressions as they navigate the game 

environment 

4) observational data of student affective states during gameplay 

For this dissertation, I conducted analyses using the computer interaction log data 

collected for both Studies 1 and 2. In Study 1, I developed prediction models for students’ 

affective states based on the computer log and observational data obtained from the data 

collection phase. In Study 2, I made use of this computer log data as well to generate feature 

indicators of specific types of student self-regulated learning behavior.   

In addition to computer log data, video of student facial expressions during gameplay was 

collected to build detectors that could predict student affective states during learning. In the 

following sections, I describe how the data was collected for the studies. Following this, I discuss 

how the various affective states were modelled separately using computer log interaction data, 

such that predictions of these affective states may be made based on interaction data available. I 

then compare the resulting prediction models with similar detectors that were developed by 
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Bosch and colleagues (2014) using video data in the same learning environment. Finally, I 

applied these affective state detectors to predict the affective states accompanying student self-

regulated learning behavior within the Physics Playground environment, and study the affective 

state patterns that co-occur with such behavior.  

 

Physics Playground 

 Physics Playground, formerly known as Newton’s Playground, (Shute & Ventura, 2013) 

is a 2-dimensional physics game where students apply various Newtonian principles as they 

create and guide a ball to a red balloon placed on screen (Shute et al., 2013). It offers an 

exploratory and open-ended game-like interface that allows students to move at their own pace. 

Thus, Physics Playground encourages conceptual learning of the relevant physics concepts 

through experimentation and exploration. All objects in the game obey the basic laws of physics, 

(i.e., gravity and Newton’s basic laws of motion). Students can choose to enter one of seven 

different playgrounds, and then play any of the approximately 10 levels within that playground. 

Each level consists of various obstacles scattered around the space, as well as a balloon 

positioned at different locations within the space (see Figure 3). Students can nudge the ball left 

and right but will need to create simple machines (called "agents of force and motion" in the 

game) on-screen to solve the problems presented in the playgrounds. There are four possible 

agents that may be created: ramps, pendulums, levers, and springboards. Students can also create 

fixed points (called ‘pins’) along a line drawing to create pivots for the agents they create. 
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Figure 3. Screenshots of Physics Playground 

 

 Students use the mouse to draw agents that ‘come to life’ after being drawn, and use 

these agents to propel the ball to the red balloon. In other words, these agents or objects would 

behave as they would in a real-world context, such as responding to gravity, forces from other 

objects, etc. Students control the weight and density of objects through their drawings, making 

an object denser, for example, by filling it with more lines. Each level allows multiple solutions, 

encouraging students to experiment with various methods to achieve the goal and guide the ball 

towards the balloon. Silver trophies are awarded for achieving the goal objective while gold 

trophies are awarded for solutions deemed particularly efficient or creative (that perhaps includes 

fewer objects created), encouraging students to attempt each playground more than once. This 

unstructured game-like environment provides a rich setting in which to examine the patterns of 

students' affect and self-regulated learning as they interact with the game platform.  
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Data Collection 

The dataset used in these analyses is obtained from 137 students as they engaged in the 

Physics Playground platform for a total of approximately 2 hours each, over 4 days in groups of 

20-25. Students in the 8th and 9th grade were selected as participants for this due to the alignment 

of the curriculum in Physics Playground to the state standards at those grade levels. The study 

began with pre-tests of student content knowledge, followed by two sessions of actual gameplay 

with Physics Playground. Upon conclusion of the gameplay, students completed a post-test. 

Student learning outcomes were measured in the form of online pre- and post-tests on the first 

and last days of the study, that assessed their content knowledge and skills related to Newtonian 

physics.  

The data collection phase lasted two days (days 2 and 3), during which multiple classes 

of students worked with Physics Playground in a computer lab.  Class periods were 55 minutes 

in length and class sizes were about 20 students each.  Both video data and computer data logs 

were collected simultaneously during this time over two full sessions of game play.  Computer 

data logs were taken directly from the Physics Playground application, while video camera data 

recorded students’ facial features throughout their interactions with the game platform. 

The interaction log files contain all detailed data on students' attempts to complete each 

playground level and the time taken for each action. Segments of the raw interaction log files are 

shown below in Tables 1 and 2. Table 1 shows a segment of the raw computer log data that 

records the summary data of the ball attributes present in the game environment every second, 

while Table 2 shows a segment of the raw computer log data that records the positional and 

movement attributes of other objects and machines created in the game environment. A full list 
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of the attributes recorded in the raw computer logs and their respective descriptions can be found 

in Appendix I. 

 

Table 1 

Segment of raw computer log data recording details and position of ball within a playground 

level in summary data logs. 
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Data 
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-

8.8556 0 0.9383 0 40 

Lost    . . . . . . . . . 

Summary 

Data 

   

2000 0 1.0016 0 

-

0.6649 0 0.3602 0 40 

Summary 

Data 

   

3000 0 1.3176 0 

-

9.5201 0 0 0 40 

Lost    . . . . . . . . . 

Summary 

Data 

   

4000 0 1.0064 0 

-

1.3287 0 0.004 0 40 

Summary 

Data 

   

5000 0 1.3633 0 

-

10.182 0 0.0027 0 40 
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Table 2 

Segment of raw computer log data recording details and position of freeform objects drawn 

within a playground level. 
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203 41487 Draw 

freeform 

3 1812 2937 0.34178

2 

0.000287 0 0 0 

203 43858 Erase - - - - - - - - 

203 44958 Summary 

data 

- - - - - - - - 

203 44958 Draw 

freeform 

4 5360 936 0.50416

8 

0.001624 0 2 0 

203 44958 Summary 

data 

- - - - - - - - 

 

The first facet of the data contains identifiers for each student, the playground and level 

that was being attempted, as well as a timestamp for each event that occurred.  The specific 

facets of data that were collected are grouped into different types of events. The first type of 

event is related to initiating or ending a level as either a “Level Start”, “Level Restart” or “Level 

End”.  Level success (whether or not a badge had been achieved) and time is recorded each time 

a level is started, restarted, or ended,  

Within the game space, the ball is subject to the normal laws of physics and gravity, and 

would thus either move by itself due to gravity, or has to be clicked on to move in either the left 

or right direction. The summary data events thus record the ball’s position and distance it has 

moved (if any) every second in the game space.   

Single and multiple object events such as drawing and erasing of objects and pin will 

report the positional, movement and size data of each of the objects and pins created in the game 
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environment. Student actions involved in the creation of the freeform objects are also recorded, 

such as the distance that the mouse travels in the game space, the distance the mouse travels 

while drawing a line, even the number of mouse clicks that occurred that did not result in any 

object being created or ball being moved. Object and object interactions such as ‘collisions’ are 

also recorded as an event.  Additionally, when the game identifies one of the objects that the 

student drew as a simple machine, the events recorded will reflect the types of machine created, 

and other data recorded will include data on the position, rotational velocity, strength and 

direction at which the machine propels the ball. Data is also recorded on any ball movement and 

the distance it moves through the machine and within the game space. 67 raw attributes were 

recorded in the raw computer interaction log data, which were used in this dissertation project to 

generate aggregated features representing various patterns in student behavior. Overall, 27 action 

events may be recorded by the Physics Playground platform as the student navigates through the 

game environment (see Table 3). 

 

Table 3 

List of possible events recorded in the raw computer data logs of Physics Playground, during 

student gameplay. 

Event Type Description 

Camera Start Start of the video camera recording 

Click Mouse click 

Collision Collision between ball and object/machine/game environment 

Draw Freeform Freeform object created 

Draw Pin Pin object created 
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Erase Erase object created 

Game End Student exited game 

Hover Tutorial Student mouse hovered over Tutorial icon 

Level End End of playground level 

Level Pause Student paused playground level 

Level Restart Student restarted playground level 

Level Start Student started playground level for the first time 

Lever Lever object created 

Lost Ball was lost from game environment 

Menu Focus Student clicked on game menu 

Nudge Student clicked on ball to nudge the ball to move 

Object Limit Student reached the number limit of objects created 

Pendulum Object Pendulum object created 

Pendulum Strike Pendulum object struck ball 

Ramp Ramp object created 

Springboard Springboard object created 

Stacking Student stacked lines/objects on top of one another 

Stacking Warning Warning triggered when student stacked too many lines/objects on 

top of one another 

Summary Data Summary data of attributes of objects present in game 

environment, recorded periodically every second 

Watch Tutorial Student watched tutorial of game environment 
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As part of the larger project, data on student facial expressions were also recorded via 

video through computer webcams attached to each computer station that the students were using 

to explore the game environment.  

Field observations of student affective states were also recorded during the data 

collection phase. During these observations, observers coded students’ affective states and 

behavior following the BROMP 2.0 protocol and using the HART (Human Affect Recording 

Tool) app on an Android. The Baker Rodrigo Ocumpaugh Monitoring Protocol (BROMP 2.0) is 

a momentary time sampling system that has been used to successfully study behavioral and 

affective indicators of student engagement in a number of learning environments (Baker et al., 

2012; Baker, D’Mello, Rodrigo, & Graesser, 2010; Paquette et al., 2014; Rodrigo et al., 2009). 

BROMP coders observe each student individually, in a predetermined order. They record only 

the first predominant behavior and affect that the student displays, but they have up to 20 

seconds to determine what that might be. To reduce observer effects, observations were 

conducted using side glances so that students would not be aware that they were being observed. 

Observations were coded based on the raters’ judgment of students’ actions, utterances, facial 

expressions and body language, as well as their interactions with other students or the teacher in 

the classroom. These are in line with the information used to code student emotions in 

previously-used methods (e.g. Bartel & Saavedra, 2000), and follow Planalp et al.’s (1996) 

description that identification of affect is more accurate using multiple cues, rather than based on 

any individual cue.  

The coding process was implemented using the Human Affect Recording Tool (HART) 

application for Android devices (Ocumpaugh et al., 2015) which enforces the protocol while 

facilitating data collection. Both the Android devices used in the observations and the Physics 
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Playground software logging server were synchronized to the same internet time server during 

observations so that the logged student actions would correlate exactly with the observations. 

Interactions with the game environment during the twenty seconds before coding entry by the 

observer were aggregated as a clip and the data features distilled.  

In Study 1, observations of student affective states used a coding schema that had 

previously been used in several other studies of student engagement.  This schema included the 

affective states of boredom, confusion, concentration, delight and frustration as well as the 

behavioral states of off-task, on-task and on-task conversation. Given that the concentration 

affective state on its own could apply to both on-task and off-task students (eg. A student could 

be concentrating on her off-task activity); the engaged concentration affective state was derived 

from a combination of concentration affective state and on-task or on-task conversation 

behavioral states, in order to better capture the affective states of students who were 

concentrating on the task at hand. As a result, the on-task and on-task conversation states were 

ultimately dropped during the creation of our detectors.  

 

Data Analyses 

As mentioned above, data was collected as part of a larger project, from student 

gameplay in Physics Playground in various ways, including:  

1) computer interaction log data,  

2) video data of student facial expressions during gameplay, and 

3) observational data of student affective states within 20-second windows during gameplay 
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From these sources of data, I made use of a combination of the computer log and observational 

data to build a set of affective state prediction models, and compared its performance with a 

similar set of prediction models built using a combination of the video and observational data 

collected in the larger project (Study 1). Aggregated features from the raw computer data logs 

are then generated to create SRL behavioral indicators and mapped to affective state predictions 

to identify specific affective state patterns co-occurring with SRL behavior in Study 2.  

Two sets of analyses were conducted to answer my research questions in this dissertation 

project. In Study 1, field observations of student affective states were recorded and synchronized 

to aggregated features generated from raw computer log data. Aggregated features are 

measurable properties or characteristics of the target construct. In this case, the target construct is 

a student affective state, and the aggregated features created are measurable characteristics of a 

student’s behavior when she is experiencing a particular affective state. The machine learning 

process is then applied on the dataset, which involves using supervised learning algorithms (a set 

of predefined hypotheses) to build a mathematical model of sample data (ie. training data), that 

can produce a set of classification rules to make correct predictions to a target variable. 

Examples of supervised learning algorithms include classification algorithms such as JRip and 

support vector machines (SVM), as well as regression algorithms such as logistic and linear 

regression. Specifically, in this study I make use of the machine learning process with a selection 

of five learning algorithms to identify student affective states (whether a student experiences a 

certain emotion or not) within the Physics Playground dataset. This process have been previously 

applied to similar affective state models created in a variety of intelligent tutoring systems, 

including Cognitive Tutor Algebra (Baker, Gowda, & Wixon, 2012) and Reasoning Mind 

(Miller, Baker, Labrum, Petsche & Wagner, 2014). 
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Various machine learning algorithms (namely JRip, J48 decision trees, step and logistic 

regression, and Naïve Bayes) are applied to this dataset to select features that correspond most 

strongly with each of the affective state observations, thus creating models, or detectors, that can 

predict a student’s affective state based on a combination of aggregated features. A second set of 

prediction models, or detectors, were also built using a similar machine learning process, but 

using video data of student facial expressions during gameplay. The accuracy of these two sets of 

prediction models were then compared against each other using AUC as the performance metric. 

AUC refers to ‘Area under the ROC curve’, and provides an aggregate measure of performance 

across all possible classification thresholds (Fawcett, 2006). An ROC curve (receiver operating 

characteristic curve) refers to a graph that shows the performance of a classification model at all 

classification thresholds. One way of interpreting AUC is the probability that the model would 

rank a random positive example more highly than a random negative example. A model with an 

AUC of 1.0 means the model is 100% correct in its predictions, whereas an AUC of 0.5 implies 

that the model performs at chance level in generating correct predictions 50% of the time.   

In Study 2, the affective state detectors from Study 1 were used to generate predictions 

for students’ affective states throughout the whole dataset obtained during gameplay. A new set 

of aggregated features are created from the raw computer log data to identify playground level 

attempts where aspects of self-regulated learning behavior are shown. The affect predictions are 

then mapped to these level attempts, and sequential pattern mining is applied to the dataset to 

track how students’ affective states change over time within students’ attempts at each 

playground level. Sequential pattern mining is a popular data mining technique that 

automatically identifies frequent temporal patterns of actions in data (Agrawal & Srikant, 1995), 
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and can also be used to detect differentially frequent behavioral patterns of different student 

groups (Kinnebrew, Loretz, & Biswas, 2013). 

 In the following chapters, I discuss in detail the methods and measures used in each 

study, and report the corresponding results.  
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CHAPTER IV. 

STUDY 1: COMPARING PREDICTION MODELS FOR STUDENT AFFECTIVE 

STATES USING COMPUTER LOG DATA WITH MODELS BUILT USING VIDEO 

DATA 

Student affective states during learning have been successfully predicted in prior studies 

using various methods such as physical sensors, conversational cues and log file interaction data 

(Baker et al., 2007; Baker, Ocumpaugh, Gowda, Kamarainen & Metcalf, 2014; D’Mello & 

Graesser, 2012). How these types of detectors compared against one another in terms of accuracy 

and performance, however, have yet to be investigated. In this dissertation project, I compare the 

performance of affective state models for the states of boredom, frustration, confusion, delight 

and engaged concentration based on two forms of data: face-based video data (Bosch et al, 

2015), and computer log interaction data (Kai et al, 2015). The affective state detectors were 

built separately using comparable machine learning algorithms, and their respective 

performances (computed using the same metric) are then compared against one another.  

 

Prediction models for student affective states using computer log data 

We also built predictive models for same student affective states and behavior, this time 

using data from student interaction logs with the Physics Playground environment. Computer 

interaction log data of student actions were recorded during every second of gameplay. Segments 

of the raw interaction logs are shown below (Tables 4 and 5).  
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Table 4 

Segment of raw computer log data recording details and position of ball within a playground 

level in summary data logs. 
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Table 5 

Segment of raw computer log data recording details and position of freeform objects drawn 

within a playground level. 
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Feature Engineering 

 From the raw computer log data, interaction features were generated that provided 

aggregated student actions that may indicate specific affective states and behavior. The feature 

engineering process for this part of the study was based largely on previous research on student 

engagement, learning, and persistence. The final set of features comprised 76 gameplay 

attributes that potentially contain evidence for specific affective states and behavior. Some 

attributes included: 

 The total number of springboard structures created in a level 

 The total number of freeform objects drawn in a level 
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 The amount of time between start to end of a level 

 The average number of gold and silver trophies obtained in a level 

 The number of stacking events (gaming behavior) in a level 

Features created may be grouped into two broad categories. Time-based features focus on the 

amount of time elapsed between specific student actions, such as starting and pausing a level, as 

well as the time it takes for a variety of events to occur within each playground level. Other 

features take into account the number of specific objects drawn or actions and events occurring 

during gameplay, given various conditions. These features also involve the aggregation of 

specific attributes per student over varying grain sizes:  

1) over a 20-second clip within a given playground level,  

2) over a single playground level attempt, as well as  

3) across all level attempts within a single playground level.  

A complete list of the aggregated interaction features generated to build our affective state 

models can be found in Appendix II.  

Of the 2087 BROMP field observations that were collected, 214 instances were removed 

as most of these instances corresponded to times when students werenot physically at their 

workstations. Additional instances were removed where the observer recorded a ?, the code used 

when BROMP observers cannot identify a specific affective state or behavior. In total, 171 

instances of affect and 63 instances of behavior were coded as ?. As a result, these instances did 

not contribute to the building of the respective affect and behavior models.   
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Within the field observations (Figure 4), the most common affective state observed was 

engaged concentration with 1293 instances (62.0%), followed by frustration with 235 instances 

(11.3%).  Boredom and confusion were far less frequent despite being observed across both 

second and third days of observation: 66 instances (3.2%) for boredom and 38 instances (1.8%) 

for confusion. Delight was only coded on the third day, and was also rare (45 instances), but it 

still comprised 2.2% of the total observations. The frequency of off-task behavior observations 

was 4.0% (84 instances), which was unusually low compared to prior classroom research in the 

USA using the same method with other educational technologies (Ocumpaugh, Baker, Gaudino, 

Labrum, & Dezendorf, 2013; Rodrigo, Baker, & Rossi, 2013). On-task conversation was seen 

18.6% of the time (388 instances).  

 

Figure 4. Graph showing the relative frequencies at which each affective state that was observed 

during data collection. 
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Machine learning 

Data collection was followed by a multi-step process to develop interaction-based models 

of each affect. A two-class approach was used for each affective state, where that affective state 

was discriminated from all others. For example, engaged concentration was discriminated from 

all frustrated, bored, delighted, and confused instances combined (referred to as “all other”) (see 

Figure 5).  

Possible affective states Model of 

engaged 

concentration 

Engaged concentration Engaged 

concentration 

Boredom 
Not engaged 

concentration 

(All other) 

Confusion 

Frustration 

Delight 

Figure 5. An example of the 2-class approach for each affective state model: An example of the 

model of engaged concentration. 

 

 Because observations of some of the affective states were so infrequent during data 

collection (with confusion, boredom and delight making less than 5% of the total number of 

observations), there were large class imbalances in our data distribution. To correct for this, we 

made use of the cloning method to oversample our data. This was done by generating copies of 

cases associated with each of the smaller classes of affective states within the training data, to 

make the frequencies of each class more equally distributed for detector development. All test 

data, however, involved the original distributions.  
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Correlation-based filtering was used to remove features that had very low correlation 

with the predicted affect and behavior constructs (correlation coefficient < 0.04) from the initial 

feature set. This method involved the calculation of the Pearson’s Correlation coefficient 

between generated features and the respective affective states observed. Features with correlation 

coefficients < 0.04 for all of the five affective states were then removed from the overall feature 

set. A total of 25 aggregated features were removed from the initial set of features, leaving 76 

features that were ultimately used in the development of the affective state prediction models 

(see Appendix II).   

Feature selection for each detector was then conducted using forward selection within the 

Rapidminer platform, where each feature is evaluated individually. In the forward selection 

process, the first feature that results in the best performing model is selected, and then all 

possible combinations of that selected feature and a subsequent feature are evaluated. In this 

manner, subsequent features are selected and feature selection stops when the required 

predefined number of features is selected, or when the model does not improve any further with 

the addition of another feature. Models for each construct are built in the RapidMiner 5.3 data-

mining software, using common classification algorithms that have been previously shown to be 

successful in building affect models: JRip, J48 decision trees, KStar, Naïve-Bayes, step and 

logistic regression. Models are validated using 10-fold student-level batch cross-validation. In 

this cross-validation process, students in the training dataset are randomly divided into ten 

groups of approximately equal size. A detector is built using data from all possible combinations 

of 9 out of the overall 10 groups, and finally tested on the last group. Cross-validation at this 

level increases the confidence that the affect and behavior detectors will be more accurate for 

new students. To ensure comparability between the two sets of video-based and interaction-
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based detectors, the cross-validation process was carried out with the same randomly selected 

groups of students.  

 To handle missing data, several data imputation methods were tested with each machine 

learning algorithm to optimize model performance. This step was taken for all algorithms 

particularly since the step regression algorithm could not be conducted in the Rapidminer 

platform with missing data. We thus tested each algorithm with data that was imputed using 

zero, the average value, or with no imputation at all. With average imputation, missing values 

within the dataset would be replaced with the average value of all possible values for the given 

feature within the whole dataset, while zero imputation meant that missing values would be 

replaced with a ‘0’.  

Finally, theperformance metric of AUC was computed on the original, non-resampled, 

datasets. In our measures of model performance, we made use of AUC as the primary measure of 

model goodness, as this metric is recommended to be particularly suitable for skewed data (Jeni, 

Cohn & de la Torre, 2013). The AUC metric was computed using the A' implementation that 

incorporates the Wilcoxon statistic (Hanley & McNeil, 1982) (rather than computing the integral 

of the area under the curve) to avoid having artificially high AUC estimates due to having 

multiple data points with the same goodness, a bug in the integration-based estimates currently 

available in most packages (Baker & Ocumpaugh, 2015). A model with AUC of 0.5 performs at 

chance, and a model with AUC-ROC of 1.0 performs perfectly. It is worth noting that AUC 

takes model confidence into consideration. From the forward selection process, a combination of 

features was also selected in each of the affect and behavior models that provide some insight 

into the type of student interactions that predict the particular affective state. The prediction 

models developed using computer log data are then compared against similar models built using 
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video data. The section below gives a brief overview of how similar models are developed by 

another team working on the same project, using video data (Bosch et al., 2015). In this section, I 

specify several variables that were kept constant during machine learning to ensure a more 

equitable comparison.  

 

Prediction models for student affective states using video data  

Predictive models for the selection of student affective states were built by Bosch and 

colleagues (2015) using video facial data of student expressions during gameplay, and captured 

from web cameras affixed to the computers used during data collection.  

Feature Engineering 

Facial features were extracted using FACET, a commercialized version of the CERT 

computer vision software (Bosch et al, 2015). The Computer Expression Recognition Toolbox 

(CERT) (Littlewort et al., 2011) is a computer vision tool used to automatically detect action 

units as well as head pose and position information. The FACET tool provides likelihood 

estimates of the presence of 19 action units in total. Action Units (AUs) are labels for specific 

facial muscle activations (eg. lower brow, downturned lip) (Ekman & Friesen, 1978). These 

action units provide a small set of features that can be used to train AU detectors to identify 

various affective states, which can then be applied to new data to generate AU labels.  
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Figure 6. Screenshot of FACET program interface taken from an earlier study. 

 

Of the initial 2087 instances available to train the video-based detectors on, about a 

quarter (25%) were discarded because FACET was not able to register the face and thus could 

not estimate the presence of AUs or compute the features. Poor lighting, extreme head pose or 

position, occlusions from hand-to-face gestures, and rapid movements can all cause face 

registration errors; these issues were not uncommon due to the game-like nature of the learning 

environment and the active behaviors of the young students in this study. 9% of the instances 

were also removed because the window of time leading up to the observation contained less than 

one second (13 frames) of data in which the face could be detected, culminating in 1224 

instances where there was sufficient video data to train the affective state models. 

Facial features were thus created by aggregating AUs, orientation, position and body 

movement estimates in different windows of time (3, 6, 9, 12 and 20-second windows) leading 

up to each BROMP observation of student affective state. Feature selection was then applied to 

isolate a smaller set of features for classification, and a set of the highest ranked features were 

then used in the prediction models for each student affective state, using RELIEF-F (Kononenko, 
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1994) on the training data. Ten iterations of feature selection were run on the training data with 

nested cross-validation and using data from a randomly selected percentage of students within 

the training set for each iteration.   

Supervised Learning 

Separate detectors were then built for each affective state using a two-class approach, 

where each given affective state was discriminated from all others (eg. boredom vs. all other) 

(see Figure 5). A variety of supervised classifiers were experimented with to build the prediction 

models using the Waikato Environment for Knowledge Analyses (WEKA), a machine learning 

tool. Due to the high level of class imbalances among the various affective states, downsampling 

and the synthetic minority oversampling techniques (SMOTE) were used to create more equal 

class sizes in the training data. Both downsampling and oversampling techniques work to create 

a balanced dataset using different methods. Downsampling involves the removal of random 

instances from the majority class, whereas oversampling techniques such as SMOTE creates 

synthetic training data by interpolating synthetic samples between an instance and randomly 

chosen nearest neighbors (Chawla, Bowyer, Hall, & Kegelmeyer, 2002).  

After a more balanced dataset is obtained, the prediction models were then cross-

validated at the student level, using a 10-fold student-level batch cross-validation, as was the 

case with the interaction-based detectors.  

Model performance was measured using AUC values, which refers to ‘Area under the 

ROC curve’, and provides an aggregate measure of performance across all possible classification 

thresholds. Baseline results obtained from the supervised learning procedures using video data 

found that AUC performance was highest overall among models built using various classifiers 

on data within 12-second windows. However, for the sake of comparison, affective state 
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prediction models were developed using 20-second windows in this study. Affective state 

predictions based on the 12-second window size was instead used in Study 2 due to better 

performances of all the affective state prediction models overall..  

 

Results 

Performance of affective state models using computer log data  

 As mentioned in the above section, a selection of machine learning algorithms, or 

classifiers, were conducted on the combined dataset containing affective state observations and 

aggregated features aligned in time, namely: JRip, J48 decision trees, Naïve-Bayes, step and 

logistic regression. The JRip and J48 decision tree algorithms were performed using the Waikato 

Environment for Knowledge Analyses (WEKA), a machine learning add-on tool in the 

Rapidminer platform. The results of prediction models built using these algorithms for each of 

the five affective states, are listed below. 

 

Table 6 

Interaction-based prediction models generated using a selection of classifiers, and their 

respective AUC performance values for the five affective states  

Affective 

State 

Algorithm Imputation Type AUC value 

Boredom Weka-JRip Zero 0.509 

 Weka-J48 None 0.544 

 Step Regression Zero 0.584 

 Logistic Regression Zero 0.629 
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 Naïve Bayes Zero 0.550 

Confusion Weka-JRip Zero 0.496 

 Weka-J48 None 0.492 

 Step Regression Average 0.588 

 Logistic Regression Average 0.585 

 Naïve Bayes Average 0.527 

Delight Weka-JRip Zero 0.512 

 Weka-J48 None 0.569 

 Step Regression Zero 0.663 

 Logistic Regression None 0.679 

 Naïve Bayes Zero 0.606 

Engaged 

concentration 

Weka-JRip Zero 0.505 

Weka-J48 None 0.542 

 Step Regression Zero 0.585 

 Logistic Regression Zero 0.578 

 Naïve Bayes Zero 0.586 

Frustration Weka-JRip Zero 0.504 

 Weka-J48 Zero 0.504 

 Step Regression Zero 0.545 

 Logistic Regression Average 0.559 

 Naïve Bayes None 0.532 

 

Results from the prediction models constructed using the classifier algorithm with the 

highest performance showed that on average, the interaction-based models yielded an AUC of 

0.634, which was higher than chance and comparable to other affective state models created in 
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various intelligent tutoring systems such as ASSISTments, which have had AUC values ranging 

between from 0.63-0.74 (Pardos et al., 2014). Among the prediction models developed as shown 

in the table above, models built using different algorithms vary slightly in performance at 

predicting the various affective states. Specifically, the regression algorithms (step and logistic 

regression) appeared to perform better in predicting each of the five affective states in this 

particular learning context.  This implies that the regression algorithms may provide a better fit 

for the computer log data aligned with these affective states, which resulted in slightly better 

prediction models.  

Table 7 (below) lists the model performance based on the best-performing classifier used. 

Statistical significance may be computed for the AUC values of each affective state, to provide a 

sense of the performance of these prediction models as compared to chance (Fogarty, Baker, & 

Hudson, 2005). The probability of each AUC value as compared to chance (AUC = 0.5) may be 

computed using z-scores based on the formula below:  

 

Where A′1 refers to the AUC value of the respective prediction mode, and A′2 refers to the AUC 

value of chance (0.5), and SE(A′1) and SE(A′2) refers to the standard errors of the AUC value of 

each prediction model, and that of chance (0.0) respectively.  
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Table 7 

AUC performance values for affective states using interaction-based detectors 

Affective State 

Construct 
Classifier AUC Imputation Z-score Sig. 

Boredom 
Logistic 

regression 
0.629 Zero 3.442907 < 0.001 

Confusion Step regression 0.588 Average 1.794956 0.037 

Delight 
Logistic 

regression 
0.679 None 4.011429 < 0.001 

Engaged 

Concentration 
Naïve Bayes 0.586 Zero 5.655054 < 0.001 

Frustration 
Logistic 

regression 
0.559 Average 2.855977 0.002 

 

Selected Features from interaction-based affective state models 

From the forward selection process, a combination of features was selected in each of the 

affect and behavior detectors that provide some insight into the type of student interactions that 

predict the particular affective state or behavior. A list of these features are included in the table 

below (Table 8).  

From the selected features for the boredom state, we can infer that a bored student is one 

who spends more time between actions on average. A bored student would also expend less 

effort to guide the ball object to move in the right direction, as indicated by fewer nudges made 

on the ball object to move it, and more ball objects being lost from the screen. On the other hand, 

the confusion state may be characterized by the aggregated features of a student who spends 

more time before her first nudge to make the ball object move, and drawing fewer objects in a 
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playground level. A student who is confused may also not have known how to draw and move 

the ball object towards the balloon, thus spending a long time within a given playground level 

which leads to a lower number of levels attempted in total. From the features selected, delight 

appears to manifest when a student is able to achieve a silver trophy earlier on during gameplay, 

and completes more levels in total. We can also portray the student who experiences delight as 

someone who was able to achieve the objective without having to make multiple attempts to 

draw the relevant simple machines (such as springboards and pendulums). The features for 

engaged concentration would describe a student who is able to complete a level in fewer 

attempts, but erases the ball object more often during each attempt. These repeated draw-erase-

draw actions imply that the student was putting in more effort to refine his/her strategies within a 

single attempt at the level. A student who is experiencing engaged concentration would also 

have had achieved success during gameplay (ie. A trophy or badge) in a shorter than average 

time. 

 

Table 8 

Features selected in the final interaction-based detectors of each affective state.  

Affect/ Behavior Selected features Direction of 

relationship 

Boredom Time between actions within a level Positive 

Total number of objects that were “lost” (i.e. Moved off 

the screen) 

Positive 

Total number of nudges made on the ball object to move 

it 

Negative 

Confusion Amount of time spent before the ball object was nudged 

to move 

Positive 

Total number of levels attempted Negative 

Total number of objects drawn within the level Negative 
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Delight Number of silver trophies achieved Positive 

Consecutive number of pendulums and springboards 

created 

Positive 

Total number of levels attempted Negative 

Total number of levels completed successfully Positive 

Engaged 

Concentration 

Total number of silver trophies achieved in under the 

average time 

Positive 

Total number of level re-starts within a playground Negative 

Total number of times a ball object was erased 

consecutively 

Positive 

Frustration Total number of silver trophies achieved in under the 

average time 

Negative 

Total number of level re-starts within a playground Positive 

Total number of levels completed successfully Negative 

Total number of levels attempted Negative 

 

Lastly, a student who experiences frustration is one who has failed to achieve the objective, or 

achieved fewer silver trophies within the average time taken. A student who is frustrated would 

also have had to make more attempts at a level due to repeated failure, thus resulting in fewer 

levels attempted in total.  

 

Comparison with video-based affective state models 

Video-based models for the same affective states were constructed (Bosch et al., 2015) as 

described earlier, for the same Physics Playground data. To facilitate comparison, both types of 

models were built using the same process of 10-fold student-level batch cross-validation. In this 

process, students in the training dataset are randomly divided into ten groups of approximately 

equal size. A detector is built using data from all possible combinations of 9 out of the overall 10 

groups, and finally tested on the last group. Cross-validation at this level increases the 

confidence that the affect and behavior models will be more accurate for new students. To ensure 
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comparability between the two sets of models, the cross-validation process was carried out with 

the same randomly selected groups of students. 

Table 9 shows the performances of both the interaction-based and video-based models. 

On average, the video-based models had an average AUC of 0.695. This difference can be 

mainly attributed to the detection of delight, which was much more successful for the video-

based models. Accuracy of the two detector suites was much more comparable for the other 

constructs, though the video-based models showed some advantages for engaged concentration 

and frustration, and were higher for 5 of the 6 constructs.  

To understand how these AUC performances compare to those of the video-based 

prediction models, I computed similar z-scores of the interaction-based prediction models as 

compared to the video-based prediction models, using the same formula as above:  

 

In this case, however, A′2 would refer to the AUC value of the respective video-based prediction 

model, while SE(A′2) is the standard error of the AUC value from the video-based prediction 

model.   

 

Table 9 

Comparing the AUC performance values for affective states using interaction-based and video-

based detectors. * denotes z-score significance at p ≤ 0.05 

Interaction-Based Models Video-Based Models 
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Affect/ 

Behavior 

Construct 

Classifier AUC 
No. 

Instance 
Classifier AUC 

No. 

Instance 

Z-

score 

Boredom 
Logistic 

regression 
0.629 1732 

Classificatio

n via 

Clustering 

0.617 1305 0.014 

Confusion 
Step 

regression 
0.588 1732 Bayes Net 0.622 1293 -0.040 

Delight 
Logistic 

regression 
0.679 1732 

Updateable 

Naïve Bayes 
0.860 1003 -0.165 

Engaged 

Concentration 

Naïve 

Bayes 
0.586 1732 Bayes Net 0.658 1228 -0.082 

Frustration 
Logistic 

regression 
0.559 1732 Bayes Net 0.632 1132 -0.087 

 

The majority of the video-based models performed the best when using the Bayes Net 

classifier, except for boredom, delight and off-task behavior. In comparison, logistic and step 

regression classifiers produced the best performance for most of the interaction-based models, 

with the exception of engaged concentration. From the table above, the relative performances of 

each type of prediction model does not appear to be statistically significant. As such we can 

conclude that both interaction-based and video-based models perform comparably at predicting 

the five affective states, and are significantly more accurate than chance at predicting each 

affective state.  

 

Discussion 

Interaction-based vs. video-based models for student affective states 

 As seen in the results above, the slightly better performance of video models could be 

influenced by the uncontrolled whole-classroom setting in which video data is collected, where 

there are higher chances of video data being absent or compromised due to unpredictable student 
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movement. While there were initially 2,087 instances of affect and behavior observed and coded, 

a moderate proportion of facial data instances were dropped from the final dataset when building 

the models. For interaction-based models, the exploratory and open-ended user-interface (Shute 

et al., 2013) constitutes a unique challenge in creating accurate models for student affect and 

behavior. The open-ended interface included multiple goals and several possible solutions that 

students could come up with to successfully complete each level. During gameplay, there are 

also multiple factors that could contribute to a student’s failure to complete a level, that is not 

limited to just a lack of conceptual knowledge. Another issue was that there are fewer indicators 

of success per unit of time, as compared to other learning software that has been studied 

previously, such as the Cognitive Tutors (Baker et al., 2012). During gameplay, the system is 

able to recognize when combinations of objects the student draws forms an eligible agent. 

However, this indicator of success or failure is not apparent to the student until after he or she 

creates the ball object and applies a relevant force to trigger a simulation. Since students often 

spend at least several minutes building agents and ball objects, this results in coarser-grained 

indicators and evaluations of success and failure. The combination of open-endedness and lack 

of success indicators per unit of time consequently leads to greater difficulty translating the 

semantics of student-software interactions into accurate affective state predictions. 

When comparing between the two sets of models, models that make direct use of 

physical traits such as students’ facial features and bodily movements as captured by webcams, 

constitute embodied representations of students’ affective states. On the other hand, interaction-

based models were built based on student actions within the software, which serves as an indirect 

proxy of the students’ actual affective states. These models rely, therefore on the degree to which 

student interactions with the software are influenced (or not) by the affective states they 
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experience. Perhaps not surprisingly, video-based models perform somewhat better in predicting 

some affective states (e.g., delight, engaged concentration, and frustration). Although the video 

models are limited by missing data, interaction-based models can only detect something that 

causes students to change their behaviors within the software, which can be challenging given 

the issues arising from the open-ended game platform. Simply put, face-based affect models 

appear to provide more accurate affect estimates but in fewer situations, while interaction-based 

affect models provide less accurate estimates, but are applicable in more situations.  

Since the performance of these models using video data was found to be slightly better 

than that of models using interaction data, this dissertation project will primarily apply prediction 

models generated from video data in the following analyses of student affective state sequences 

that indicate self-regulated learning behavior. However, because affective state models generated 

from interaction data tend to be more generalizable to other learning environments, there is 

potentially greater future applicability of interaction data models.  Thus, affective state patterns 

will also be generated from these interaction-based prediction models of affective states. 

Comparisons in the patterns generated from both prediction models will then be discussed.  
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CHAPTER V. 

 STUDY 2: STUDENT AFFECTIVE STATE PATTERNS THAT ACCOMPANY SELF-

REGULATED LEARNING BEHAVIOR 

Components of Self-Regulated Learning  

 While there have been a variety of definitions and models for self-regulated learning in 

the field of education, it is commonly a construct made up of 3 or 4 main components: the task 

definition and planning or goal setting components before the task begins (such as in the 

framework proposed by Winne & Hadwin, 1999); the task performance component itself; and 

lastly, the post-task reflection component. In this dissertation study, I focus on the social-

cognitive model of self-regulated learning (Zimmerman, 2000) that includes 3 main areas where 

self-regulated learning may be manifested in various ways (see Figure 7 below).  

The unique game-based nature of Physics Playground provides a much less structured 

learning environment than many other educational platforms and intelligent tutoring systems. In 

other words, there are few structured elements in place that explicitly encourage the display of 

self-regulated learning behavior both before and after the student’s attempt of the learning task. 

During task performance, however, self-regulated learning may be exhibited in the form of self-

monitoring behavior; referred to as self-observation in the socio-cognitive framework (Barry J. 

Zimmerman, 1998), as the student is aware of how she is performing the task and keeps track of 

how well she is doing in the task. The immediate outcomes of strategic planning may also be 

observable during the task performance phase, as the student adjusts her actions based on a 

specific strategy (Zimmerman & Martinez-Pons, 1988). In particular, actions carried out during 

repeat attempts on the same playground level within the game environment could provide clearer 
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observable information on a student’s use of a consistent strategy as opposed to random trial and 

error.  

 

Figure 7. The socio-cognitive framework of self-regulated learning behavior (Zimmerman & 

Campillo, 2003) 

 

Generating feature indicators of SRL behavior in Physics Playground 

 Based on the specific design of Physics Playground, I identified several sequences of 

student actions that could constitute self-regulated learning behavior within the context of 

Physics Playground. Since this environment is in the format of an open-ended game, users can 

explore any playground level at any time with no prescribed order, and there are no structured 

sections where students are explicitly encouraged to engage in pre-task/post-task activities.  As 

such, there are limited ways in which the forethought and self-reflection components of self-
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regulated learning may be observed and measured in terms of student behavior. The performance 

component of self-regulated learning could however be measured during the student user’s 

attempt at a selected playground level, when she works to create objects and structures to achieve 

the level objective. During this time, the student’s goal is to create a simple machine to guide a 

ball towards a red balloon placed elsewhere on the screen. Students achieve a silver trophy if 

they manage to successfully guide the ball towards the balloon via the creation of a simple 

machine, whereas a gold trophy is earned only if the student player achieves the same objective 

using a minimal number of objects overall. As such, gold trophies are rewarded very rarely in the 

game environment.   

For this dissertation study, I propose that we can identify self-monitoring behavior based 

on how the student user monitors the objects she creates to move the ball towards the balloon. 

One example of such behavior would be the drawing, erasing, and redrawing of objects or simple 

machines to improve the shape or position of the objects to achieve the level objective.  

An initial analysis of student behavior within each level attempt also shows that only 

about half of the level attempts – out of nearly 61,000 level attempts in total – include the 

creation of a simple machine. There could be two possible reasons for this: 1) that the student 

user tried to draw a simple machine during the level attempt, but was not successful, or 2) that 

the student did not consciously attempt the strategy of creating a simple machine to achieve the 

level objective. Therefore, I propose that the creation of a simple machine on consecutive level 

attempts demonstrates that the student is actively trying to achieve the level objective, and is 

hence a behavioral indicator of goal setting and strategic planning. Specifically, students who 

draw simple machines across consecutive level attempts demonstrate the pre-performance 

planning component of self-regulated learning behavior.  



67 
 

To identify strategic planning self-regulated learning behavior before or in between 

playground level attempts, I isolated instances where a student attempted the same playground 

level multiple times back to back (subsequent-level dataset). Based on this subset of data, I 

created behavior features that identify when the student drew simple machines across 

consecutive level attempts (irrespective of whether the same machines or a different machines 

were drawn). The fact that the student is repeating the creation of a simple machine within 

consecutive level attempts implies that these actions are not due to random trial and error, but a 

result of a strategic decision made before each of the level attempts. Such behavior may be 

considered an indicator of strategic planning or goal setting. Another indicator of self-regulated 

learning may also be the students’ repeat of a playground level even after achieving a badge, 

which indicates some form of strategic planning as they try to achieve the gold trophy. 

Following these lines of thought, I analyzed student affective state patterns by splitting 

them into 4 separate subsets of data: The first dataset (self-observation) contains student 

affective states that co-occur with self-monitoring behavioral features within a single level 

attempt of a given playground. The 2nd dataset (no self-observation) contains students affective 

states co-occurring with student actions that do not contain self-monitoring features. The 3rd and 

4th data subsets, on the other hand, make up a subset of student actions and affective states based 

on actions in consecutive level attempts of the same playground and level.  Specifically, the 3rd 

data subset (strategic planning) consists of students’ affective states when self-regulated learning 

behavioral features are observed in subsequent level attempts, while the last data subset (no 

strategic planning) consists of the remaining student affective states that accompany student 

actions when subsequent levels do not contain self-regulated learning features.   

The full list of behavioral features generated are listed in the table below (Table 10). 
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Table 10 

List of 8 behavioral features generated that indicate self-observation behavior among students 

attempting Physics Playground, within a single level (within-level), and strategic planning 

behavior within a subsequent attempt on a given playground level (subsequent-level). 

Behavioral Feature Level attempt Description 

Draw – erase – draw Within Student draws and erases the objects in the 

platform at least twice, exhibiting self-observation 

as they draw the freeform object, to make sure 

object is appropriate to what she had in mind 

Draw – erase – 

draw(object/machine) 

Within Student draws and erases the objects in the 

platform at least once and creates either an object 

or a machine, exhibiting self-observation as they 

explore different strategies to get to the objective 

Machine – erase - 

machine 

Within Student draws and erases a machine in the 

platform at least twice, exhibiting self-observation 

as they draw the machine, to make sure the 

machine is appropriate to what she had in mind. 

Machine – erase – 

draw(object/machine) 

Within Student draws and erases the machine in the 

platform at least once and creates either an object 

or a machine, exhibiting self-observation as they 

explore different strategies to get to the objective 

Draw – erase – draw –

draw(object/machine)  

Within Student draws and erases the objects in the 

platform at least twice, exhibiting self-observation 

as they draw the freeform object, and explores 

different strategies   

Student attempts level 

after badge 

Subsequent-

level 

Student repeats an attempt on the same playground 

level after having achieved a badge within that 

playground level; an indication of strategic 

planning to achieve the gold trophy. 

Any machine  to 

other machine 

Subsequent-

level 

Student creates a machine within a level attempt, 

and repeats the same level while drawing a 

different machine; thus indicating an attempt at 

self-reflection and change in strategies 
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Any machine  

repeated same machine 

Subsequent-

level 

Student creates any machine within a level 

attempt, and repeats the same level while drawing 

the same machine; thus indicating an attempt at 

strategic planning  

 

 In sum, aggregated behavioral features were generated from the raw computer interaction 

logs, and the occurrence of these features were matched with corresponding affective state 

predictions within the same time frame. Video-based affective state predictions were made 

within 12-second time frames, whereas interaction-based affective state predictions were made 

within 20-second time frames.   

 

Affective State Predictions 

Corresponding Affective State Sequences from video-based prediction models 

Using video data, prediction models of various student affective states had been 

generated at 12-second intervals in Bosch et al’s, (2015) study (see Study 1). These particular 

prediction models were selected because of their better performance overall at predicting each of 

the different affective states in the Physics Playground environment. Because each affective state 

model was generated independent of the other affective states (affective state vs. all other), there 

may be cases where multiple affective states were predicted for a particular affective state 

window. It is also possible to have no affective state prediction at all within a particular 12-

second window. In cases where multiple affective states were predicted for a given 12-second 

window, the affective state with the highest probability of occurrence was selected. In very rare 

cases where multiple affective states were predicted with the same probability, the more common 
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affective state was selected (e.g. engaged concentration instead of boredom). In cases where no 

affective state predictions were made, the entire student level attempt was removed from 

analyses in this study altogether. In other words, student level attempts that contained instances 

with no affective state predictions were removed entirely from the dataset and not used in the 

generation of affective state sequences. These affective state predictions were matched to student 

action events that occur within the same 12-second window, resulting in a dataset with a row for 

every student affective state prediction. As such, a possible affective state sequence could look 

something like in the following table (Table 11):  

Table 11 

An example of an affective state sequence that co-occurs with a sequence of behaviors within 

Physics Playground. 

userID Affective State Time of affect 

(in 

milliseconds) 

Action Time of action 

(in 

milliseconds) 

203 
Engaged 

concentration 
491639 

Draw freeform 491639 

Draw pin 494941 

Draw freeform 497059 

203 Frustration 503639 

Erase 503639 

Draw freeform 505891 

Erase 511282 

Draw ball 513789 

203 
Engaged 

concentration 
515639 

Nudge 515639 

Nudge 516483 

Collision 516989 
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 Given the greater generalizability of affective state prediction models built from 

computer interaction log data, however, affective state patterns were also generated based on 

prediction models using interaction data, which will be described in further detail below.  

Corresponding affective state sequences from interaction-based prediction models 

 Using computer interaction log data, affective state predictions have also been generated 

at 20-second intervals in Kai et al’s study (see Study 1). Like the video-based affective state 

prediction models, each of the affective state prediction models built using interaction data was 

generated independently of other affective states (ie. Affective state vs. all other). Consequently, 

it is possible to have multiple affective state predictions for the same time-frame, or no affective 

state prediction at all. As with the video-based affective state prediction models, the affective 

state prediction with the highest probability was selected in cases with multiple predictions, and 

the more common affective state was selected in cases where there were multiple predictions 

with the same probability of occurring (eg. Engaged concentration selected over confusion). In 

cases where there were no affective state prediction made in a particular time frame, the entire 

student level attempt in which this lack of prediction data occurred was removed from the 

dataset.  

 

Sequential Pattern Mining of Affective States 

The research objectives of this dissertation project are to identify interesting transitions 

between affective states that may be unique to students exhibiting self-regulated learning 

behavior in the context of an educational game environment. To achieve this objective, 
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sequential pattern mining techniques were to identify patterns in student affective states 

occurring over time during gameplay within the Physics Playground environment. 

Sequential pattern mining has been used in the detection of behavioral patterns that are 

important for learning (Perera, Kay, Koprinska, Yacef, & Zaiane, 2009), as well as differentially 

frequent behavioral patterns of different student groups (Bouchet et al., 2012; Kinnebrew et al., 

2013; Martínez & Yannakakis, 2011; Sabourin, Shores, Mott, & Lester, 2013), through the 

differential sequence mining technique. Differential sequence mining combines frequency 

measures and techniques from sequential pattern mining, which generates the most frequent 

patterns across a set of sequences, with episode mining, which determines the most frequent 

patterns within a given sequence (Bouchet et al., 2012). Differential sequence mining techniques 

have been employed in the investigation of self-regulated learning behavior within computer-

based learning environments (Bouchet et al., 2012; Kinnebrew et al., 2013; J. L. Sabourin et al., 

2013), and have been used in conjunction with clustering methods to identify different student 

groups and quantify the differences in their behavior during learning (Martínez & Yannakakis, 

2011). Some common measures used to detect differentially frequent behavioral patterns include 

confidence measures, as well as sequence support (s-support), and instance support (i-support) 

measures. The s-support metric refers to the percentage of sequences that the pattern occurs in, 

whereas the i-support metric computes the average number of times the pattern occurs per 

sequence.  

Since the main goal of this dissertation project is to conduct an exploratory analysis on 

the types of affective state patterns that are unique to students exhibiting self-regulated learning 

behavior within the game-based Physics Playground context, sequential pattern mining 

techniques were used to identify these patterns. In particular, the generalized sequential pattern 
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mining (GSP) algorithm is used in this study (Srikant & Agrawal, 1995) using the Rapidminer 

Studio platform. GSP, or Generalized Sequential Pattern mining, is an A Priori-based algorithm 

used for sequence mining that makes multiple passes over the dataset to identify sequences of a 

defined minimum level of support. While the A Priori algorithm outputs patterns that are 

unordered in time and is mostly used in association rule mining, the GSP algorithm takes into 

account the order of patterns and identifies these patterns in the form of sequences. With the GSP 

algorithm, the first pass counts the frequencies of all 1-transaction sequences and identifies the 

most frequent single items. From this set of items, a set of candidate 2-sequences are identified 

and their frequencies counted with another pass over the dataset. The most frequent 2-sequences 

are in turn used to identify candidate 3-sequences, and another pass is made over the dataset to 

compute the frequencies of these sequences. This process is repeated until no more frequent 

sequences are found. This cutoff is determined manually, and in the case of this dissertation 

study, was set at 0.1, or 10% frequency, in order to maximize the number of affective state 

sequences identified.    

To better isolate affective state patterns that are unique to self-regulated learners in this 

dissertation study, I also conducted a pairwise t-test comparison of each identified affective state 

sequence by student, which allows us to ascertain how different each of the respective affective 

state patterns are, in terms of frequency of occurrence. This comparison is similar to the manner 

in which comparisons were made based on the i-support metric in the differential sequence 

mining algorithm in other studies (eg. Kinnebrew et al., 2013).  

It is important to note that the observations of each affective state made during data 

collection was heavily skewed, with 62% of all observations made of engaged concentration, as 

compared to only 11% of observations made of frustration, 3.2% of all observations made of 
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boredom, 2.2% of all observations made of delight and 1.8% of all observations made of 

confusion. Comparing the frequencies of affective state sequences co-occurring with self-

regulated behaviors versus non self-regulated behaviors thus reduces the possibility that various 

affective state transitions occur more frequently because of the overall prevalence of these 

affective states occurring within the dataset.   

Predictors of self-regulated learning behavior (SRL) versus persistence 

 The SRL behavior features generated in this dissertation study were based off aggregated 

computer event logs and student action and followed a simple rational modeling approach.  

Because the objective of the data collection in this educational game platform was not to 

evaluate student self-regulated learning behavior, other methods for identifying SRL were not 

implemented. Consequently, the behavior features we generated may not be specific for 

identifying SRL, and could also identify underlying processes other than SRL.  Specifically, 

some of the self-observation behavioral features were centered around students repeating a given 

action, such as Draw->Erase->Draw.  While I propose that this set of actions is the result of a 

student’s attempts at self-observation, one could also argue that repeated actions could indicate 

student persistence without self-observation. Therefore, to further investigate the overlap 

between persistence and self-regulated learning behavior, I examine persistence as an alternative 

dependent variable, by creating separate identifiers for student persistence within the game 

platform.  

Specifically, I identify instances where students showed persistence while attempting a 

specific playground level by identifying levels where students spent the longest continuous 

duration of time.  In the full interaction log dataset, students attempted a total of 6,176 

playground levels, spread over 36,121 level attempts.  The median amount of time spent on a 
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level was 1.4 minutes with an inter-quartile range of 2.8 minutes.  Further analyses of the 

distributions of the amount of time spent on each playground level showed that students spent 

longer than 9 continuous minutes on 5% of playground levels, but that these levels accounted for 

about 20% of total level attempts (see Figure 8). In comparison, SRL behaviors had been 

identified in about 20% of the level attempts. Based on these considerations, I chose 9 minutes as 

the time threshold for defining student persistence.  

To evaluate the relationship between persistence on levels and the within-level SRL 

behavior features, I examined the performance of the persistence feature at identifying level 

attempts with SRL behavior features by computing the precision and recall.  Recall, or 

sensitivity, computes the true positive rate, or the proportion of actual positives that are correctly 

identified as such. Recall may thus be computed using the following formula:  

 

where TPR and FNR refer to the true positive rate and false negative rate respectively, TP refers 

to the number of true positives, FN refers to the number of false negatives, and P refers to the 

number of real positive cases in the data.  Precision or positive predictive value (PPV) computes 

the proportion of positive results that are true positive results, and may be calculated using the 

formula where FDR is the false discovery rate:  
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Figure 8. Cumulative distribution function showing the percentage of playground levels and 

corresponding level attempts made over a cumulative log of total time spent on each playground 

level, by student. 

 

Results 

Student self-regulated learning behavior and corresponding video-based affective states 

A total of 8 behavioral features were generated that are indicative of self-regulated 

learning among students interacting with Physics Playground, listed above. 5 of these features 

were created from student action sequences within a single level attempt of the playground 

(within-level), whereas the 3 remaining features were created from student action sequences 
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within a subsequent level attempt of the playground (strategic planning), relative to their first 

attempt at a given playground level. The table below shows the total number of instances of each 

behavioral feature that occurred over the entire duration of gameplay, as well as the total number 

of playground level attempts in which these features were present in.  

Because the strategic planning features refer to student actions relative to a prior 

playground level attempt, the affective state patterns and other results were generated separately 

from features that contain student actions within any single playground level attempt.   

Within the whole dataset of student level attempts, 45,894 affective states were predicted 

altogether in 12-second intervals, across 19,886 level attempts. Of this number, 7,010 affective 

state predictions co-occurred with playground level attempts that contained within-level student 

self-regulated learning behavioral features (self-observation), and 38,884 affective states that co-

occurred with level attempts that do not contain self-regulated learning features (within-level-

noSRL). In the within-level-SRL dataset, a total of 116 students out of 137 participants were 

found to exhibit at least one form of self-regulated learning behavior, across 708 playground 

level attempts. This number of level attempts in the dataset includes both first level attempts as 

well as subsequent level attempts. The number of instances for each feature created is shown in 

the table below (see Table 12).  
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Table 12 

Behavioral features created across student action sequences to capture self-observation and 

strategic planning behavior during gameplay. 

Behavioral feature SRL Behavior Type Total number 

of affective 

state 

predictions 

Total 

number 

of level 

attempts 

Draw – erase – draw Self-observation Within-

level 

7933 490 

Draw – erase – 

draw(object/machine) 

Self-observation Within-

level 

8207 513 

Machine – erase - machine Self-observation Within-

level 

524 34 

Machine – erase – 

draw(object/machine) 

Self-observation Within-

level 

2343 217 

Draw – erase – draw – erase 

– draw(object/machine)  

Self-observation Within-

level 

938 40 

Level repeat after badge Strategic planning Subsequent-

level 

2001 372 

Any machine-repeat Strategic planning Subsequent-

level 

12804 2704 

Any machine-other Strategic planning Subsequent-

level 

4186 798 

 

From the complete dataset, 30,671 affective states were predicted across playground level 

attempts that constitute subsequent level attempts. These affective states were in turn split into 

11,215 affective states that co-occurred with level attempts containing strategic planning 

behavioral features (strategic planning), and 19,456 affective states that co-occurred with level 

attempts that do not contain strategic planning behavioral features (no strategic planning). A total 
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of 118 out of the total 137 student participants were found to exhibit self-regulated behavior in 

the form of the  behavioral features across 3,215 subsequent-level attempts. This number 

includes only students who had made at least one subsequent-level attempt of the same 

playground level. On average, the number of subsequent-level attempts made on a given 

playground level is about 27, and ranges from 1 to 119.  

Within a single playground level attempt, the number of affective state predictions 

generated varied according to the length of time a student spent within a single level attempt. 

Given the fact that an affective state prediction was made at 12-second intervals, the number of 

affective state predictions made per level attempt ranged from 1 through 178 in the whole 

dataset. Within the data subset of level attempts exhibiting self-regulated learning behavior, an 

average level attempt lasting for long enough for about 14 affective state predictions, whereas 

the average level attempt in the data subset containing no SRL behaviors lasts only for long 

enough for an average of 2.7 affective state predictions.  

Similarly, subsequent level attempts tend to be shorter on average. Among subsequent 

level attempts that contain strategic planning behavioral features, the number of affective state 

predictions made per level attempt ranged from 1 through 96, with an average attempt lasting 

about as long as it takes to make less than 5 affective state predictions. In the data subset 

containing level attempts that do not contain strategic planning behavioral features, the number 

of affective state predictions made per level attempt could reach a maximum of 62, with an 

average attempt only lasting long enough for less than 2 affective state predictions to be made.  

Student self-regulated learning behavior and interaction-based affective states 
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 Because of the fact that the interaction-based affective state predictions were based on a 

different time window of 20 seconds, the number of affective state predictions as well as student 

level attempts are different from the above dataset based on video-based affective state 

predictions. The overall dataset contained more predictions of affective states across more level 

attempts in general, perhaps because there were no instances at all where no affect prediction 

was made. As a result, more student playground level attempts in total were retained in the 

dataset.  Within the overall dataset, a total of 77,820 affective state predictions were made across 

35,301 level attempts. Of this number, 10,818 affective states across 1,263 level attempts co-

occurred with playground level attempts that contained self-observation student self-regulated 

learning behavioral features (within-level-SRL). This is in comparison to the 67,002 affective 

states across 34,038 level attempts that did not co-occur with any within-level student self-

regulated learning behavioral features (not-within-level-SRL).   

In terms of strategic planning behavioral features, there were a total of 29,425 

subsequent-level attempts made in the game environment, that contained a total of 55,188 

affective states predicted. 18,290 affective states across 5,438 level attempts were found to have 

co-occurred with instances of strategic planning behavioral features (strategic planning). On the 

other hand, 36,898 affective states across 23,987 level attempts did not co-occur with instances 

of strategic planning behavioral features (no strategic planning). 

In a similar manner to the video-based affective state predictions, the average length a 

student spends within a single playground level attempt is longer on average among students 

who exhibit self-observation behavior (self-observation), in contrast to students who do not show 

any self-observation behavior (no self-observation). Subsequent level attempts among students 

who exhibit strategic planning behavior on average last longer than students who do not exhibit 
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any strategic planning behavior as well. Since the number of interaction-based affective state 

predictions present have changed, SRL behavioral data from more level attempts have been 

included in the dataset (see Table 13). However, the total number of interaction-based affective 

state predictions made in each sub-category of data was not necessarily higher than the total 

number of video-based predictions, as the time frame for each interaction-based prediction is 

longer at 20 seconds, as compared to a video-based prediction at 12 seconds.   

Table 13 

Instances of behavioral features that capture self-observation and strategic planning behavior 

during gameplay and co-occur with an interaction-based affective state prediction.  

Behavioral feature SRL Behavior Type Total 

number of 

affective 

state 

predictions 

Total 

number of 

level 

attempts 

Draw – erase – draw Self-observation Within-level 8686 892 

Draw – erase – 

draw(object/machine) 

Self-observation Within-level 9027 939 

Machine – erase - machine Self-observation Within-level 517 56 

Machine – erase – 

draw(object/machine) 

Self-observation Within-level 2594 376 

Draw – erase – draw – erase 

- draw(object/machine)  

Self-observation Within-level 1051 69 

Level repeat after badge Strategic planning Subsequent-

level 

1874 602 

Any machine-repeat Strategic planning Subsequent-

level 

15805 4636 

Any machine-other Strategic planning Subsequent-

level 

4948 1345 
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Distribution of affective state predictions in video and interaction-based models 

As mentioned above, the distributions of student affective states observed during data 

collection was highly imbalanced. Affective state predictions based on the video-based models 

were similarly skewed, where engaged concentration made up an average of 58% of affect 

predictions. The frustration state prediction occurred the next most frequently, with an average 

of 27% of affective state predictions generated from the video-based models. This is followed by 

delight, at 8% of affect predictions generated, confusion at 4%, and lastly, boredom at 2% of all 

affective state predictions generated in the dataset (see Figure 9). As shown in Figure 9, the 

distributions of affective state predictions across the four data subsets also did not differ much, 

with a few exceptions. Engaged concentration predictions appear to occur slightly more 

frequently among the students exhibiting SRL behavior (within an individual level attempt), than 

among their counterparts who did not, at 62% and 54% respectively. On the other hand, fewer 

predictions of frustration were made for students with SRL behavior (within an individual level 

attempt) compared to those who did not show any SRL behavior within a playground level 

attempt, at 22% and 29% respectively.  
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Figure 9. Clustered graph showing the relative distributions of video-based predictions of each 

affective state across the four data subsets. 

 

In comparison, affective state predictions based on the interaction-based models differed in 

various ways. More affective state predictions of engaged concentration and boredom were 

generated, for instance, and fewer instances of frustration were predicted. On average, about 

80% of affect predictions made were of engaged concentration (compared to 58% in the video-

based models), and 8% of affect predictions made were of boredom (compared to 2% in the 

video-based models). On the other hand, much fewer predictions of frustration were made in the 

interaction-based models (5% as compared to 27% in the video-based models). Unlike the video-

based model predictions, the distributions of predictions of each affective state appear to be quite 

similar across the four data subsets, however (see Figure 10).  
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Figure 10. Clustered graph showing the relative distributions of interaction-based predictions of 

each affective state across the four data subsets. 

 

Sequential Pattern Mining (SPM) using video-based affective state predictions 

To achieve the research objectives, I made use of sequential pattern mining methods to 

identify affective state patterns across time during gameplay of the Physics Playground 

environments. This was conducted specifically using the Generalized Sequential Pattern 

algorithm (Srikant & Agrawal, 1996) in the Rapidminer Studio platform. The maximum gap set 

for this algorithm was 12 seconds, which is the length of an affective state prediction window. 

Because of the occurrences of any affective state patterns generated from the dataset, I set the 

support cutoff to 0.1, or 10%, to maximize the number of affective state patterns that were 

identified to accompany specific self-regulated learning behavior among students during 
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gameplay. Within the sequential pattern mining paradigm, the choice of support cut-off is 

arbitrary and typically is selected in terms of producing a tractable number of patterns to analyze 

further – however, comparisons of support values between contexts indicate whether a pattern 

occurs more frequently in one context than another context. The GSP algorithm has several 

parameters that adjust its operation: window size, which determines the length of time within 

which a series of behaviors may be treated as a single behavior, as well as minimum and 

maximum gap sizes. Minimum and maximum gaps determine the amount of time in between 

which behaviors may occur and still be considered part of a sequence. Using the behavioral 

indicators of self-regulated learning that were created using interactive data obtained from 

Physics Playground, and the affect detector predictions, I identified student affective state 

patterns that co-occurred within the same level as these behavioral features. To more accurately 

quantify that the prevalent affective state patterns correlate with the presence of self=regulated 

learning behavior, I also ran the GSP algorithm with the same algorithm parameters – with the 

same window sizes and minimum/maximum gap sizes – through the playground level attempts 

that did not contain any self-regulated learning behavior features (within-level-noSRL). I then 

conducted paired t-tests on each of these patterns based on the number of students who exhibited 

a particular affective state pattern.  

Self-regulated learning behavior within individual playground level attempts 

Using the GSP algorithm, a list of 16 affective state patterns were generated that had 

supports of higher than 0.1; i.e. these patterns occurred for over 10% of the student level 

attempts made. From these patterns generated, we can see that the majority involved transitions 

between frustration and engaged concentration. To a lesser extent, affective transitions from 

delight and confusion to engaged concentration also occurred with support counts of 0.124 and 
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0.116 respectively. In particular, a persistence in engaged concentration throughout a level 

attempt seemed to occur with relatively high support counts, among students exhibiting self-

observation behavior.  

Table 14 

Affective state patterns observed with support > 0.1 for level attempts with self-observation 

behavior based on self-observation behavioral indicators, compared with supports for same 

patterns generated for level attempts with no self-observation behavior. The t-statistic represents 

paired t-test results between level attempts with and without SRL behavior, with significance 

based on Benjamini-Hochberg post-hoc corrections. * shows significance at p < 0.05. 

Affective state pattern 

Support – 

Affective state 

patterns with self 

observation 

behavior 

Support – 

Affective state 

patterns with NO 

self observation 

behavior 

T-

statistic 

engaged concentration  engaged 

concentration 
0.565 0.186 0.885 

engaged concentration  engaged 

concentration  engaged 

concentration 

0.434 0.084 2.001 

frustration  engaged concentration 0.328 0.081 2.426* 

engaged concentration  engaged 

concentration  engaged 

concentration  engaged 

concentration 

0.323 0.044 2.830* 

Frustration  frustration 0.251 0.083 5.107* 

engaged concentration  engaged 

concentration  engaged 

concentration  engaged 

concentration  engaged 

concentration 

0.240 0.025 3.268* 
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frustration  engaged concentration 

 engaged concentration 
0.213 0.033 3.332* 

engaged concentration  frustration 0.184 0.056 0.613 

engaged concentration  engaged 

concentration  engaged 

concentration  engaged 

concentration  engaged 

concentration  engaged 

concentration 

0.181 0.016 3.352* 

frustration  engaged concentration 

 engaged concentration  engaged 

concentration 

0.157 0.017 3.523* 

engaged concentration  engaged 

concentration  engaged 

concentration  engaged 

concentration  engaged 

concentration  engaged 

concentration  engaged 

concentration 

0.143 0.010 3.517* 

frustration  engaged concentration 

 engaged concentration  engaged 

concentration  engaged 

concentration 

0.133 0.010 4.148* 

delight  engaged concentration 0.124 0.025 0.163 

frustration  frustration  engaged 

concentration 
0.121 0.020 2.528* 

confusion  engaged concentration 0.116 0.020 2.576* 

engaged concentration  engaged 

concentration  engaged 

concentration  engaged 

concentration  engaged 

concentration  engaged 

concentration  engaged 

concentration  engaged 

concentration 

0.106 0.007 2.866* 

delight  frustration 0.097 0.025 0.789* 
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frustration  engaged concentration 

 engaged concentration  engaged 

concentration  engaged 

concentration  engaged 

concentration 

0.097 0.005 4.014* 

 

In contrast, only one affective state pattern occurred with a support count of higher than 

0.1 among students who did not exhibit self-observation behavior, which is the engaged 

concentration  engaged concentration transition (support = 0.186). The occurrence of other 

affective state transitions between frustration and engaged concentration, and even between 

delight/confusion and engaged concentration, appeared to occur at much lower frequencies than 

the frequencies among students who exhibited self-observation behavior.  

From the support indices, several types of affective state transitions seem to occur more 

frequently among the students exhibiting self-observation as compared to students not exhibiting 

the self-observation self-regulated learning behavior.  When we consider only affective state 

patterns that occur more frequently than 10% of the time, only one of the above 16 patterns 

emerge among students not exhibiting self-monitoring behavior, and is made up of a re-

occurrence of engaged concentration across two affective state transactions.   

The affective state transition between two different states with the highest support level 

among students exhibiting self-regulated learning behavior is the frustration  engaged 

concentration transition, which has a support of 0.328 as compared to the support of 0.081 

among students not exhibiting self-regulated learning behavior.  

It is important to note that the prevalence of engaged concentration and frustration 

affective state transitions could simply be due to the higher incidence of these affective states 
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being observed during data collection. As mentioned in Study 1, the engaged concentration 

affective state is the most common affective state recorded during data collection, with over 60% 

of the instances observed, in contrast with 11.3% of the instances observed to be frustration, 

followed by less than 4% each of the boredom, delight and confusion observations. To examine 

whether the above affective state sequences were indeed associated with the presence of student 

self-regulated behavior, however, we conduct paired t-tests (assuming unequal variances) on 

each of the above affective state patterns, between the self-regulated learners and the non-self-

regulated learners.   

Paired t-tests & student-level affective state patterns 

Paired t-tests were conducted on the affective state transitions that were found to occur at 

frequencies 10% or higher among students exhibiting self-regulated learning behavior within 

individual level attempts, versus students who did not exhibit self-regulated learning behavior. 

The results of these tests were adjusted to control for multiple comparisons using Benjamini-

Hochberg (1995) corrections. The table above (Table 14) showed that the majority of these 

affective state patterns occurred significantly more often among self-regulated learners than 

among non-self-regulated learners.  

The results of the paired t-tests showed that the majority of the affective state patterns 

generated through the GSP algorithm occurred at significantly higher frequencies among 

students exhibiting self-regulated learning, as compared to students who did not exhibit self-

regulated learning behavior. The only affective state sequences that were found not to 

significantly differ in frequencies between the self-regulated and non-self-regulated learners 

were the following transitions:  
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 Engaged concentration  engaged concentration 

 Engaged concentration  engaged concentration  engaged concentration 

 Engaged concentration  frustration 

 Delight  engaged concentration 

 Delight  frustration 

In particular, it is interesting to note that the frustration  engaged concentration affective state 

pattern occurred significantly more often among self-regulated learners (p < 0.05), and that this 

difference in frequency became even more significant when the learner persisted in engaged 

concentration afterwards (where frustration  engaged concentration  engaged concentration, 

etc.). In other words, frustration that ultimately led to engaged concentration, particularly 

sustained engaged concentration, appeared to be much more common among self-regulated 

learners as compared to their counterparts that did not exhibit self-regulated learning.  

Despite the low occurrence of delight and confusion affective states in general, we can 

also see that affective transitions between delight  engaged concentration (support = 0.124), 

and confusion  engaged concentration (support = 0.116) still occurred with relatively high 

frequencies compared to the rest of the affective state transitions. This is despite the fact that 

these affective state patterns may not have been found to have occurred at significantly higher 

frequencies among self-regulated learners as compared to non-self-regulated learners. For 

instance, the delight  engaged concentration pattern was not found to be significantly different 

between the self-regulated and non-self-regulated learners, whereas the differences in 

frequencies of the confusion  engaged concentration pattern was significant (p-value < 0.05).  
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Another interesting finding from the affective state patterns generated was the persistence 

of the frustration affective state even among students who exhibited self-regulated learning 

behavior (frustration  frustration; support = 0.251, p < 0.01). However, the frustration  

frustration  engaged concentration affective state pattern also occurs with relatively high 

frequency (support = 0.121, p-value < 0.05), which suggests that some extent of frustration may 

be prevalent among self-regulated learners, but it is not sustained over a long period of time and 

culminates in a more positive affective state like engaged concentration.  

Overall, the relatively high occurrences of affective state patterns that transition from a 

negative state to engaged concentration, such as frustration  engaged concentration, confusion 

 engaged concentration, etc., imply that self-regulated learners tend to be able to keep their 

negative emotions brief and concentrate on completing the task at hand. While transitions from 

positive to negative affective states have also been found to occur with a relatively high level of 

support (eg. Delight  frustration, support = 0.097; engaged concentration  frustration, 

support = 0.184), the differences in frequencies of these patterns were not found to be significant 

between student level attempts exhibiting self-regulated behavior and level attempts that did not 

exhibit self-regulated learning behavior.   

Self-regulated learning behaviors within subsequent-level attempts 

Within the subsequent-level subset of data, considerably fewer affective state sequences 

were identified that occurred more than 10% of the time, for students who exhibited self-

regulated learning behavior. The most prominent affective state patterns discovered were similar 

to several identified in the self-observation dataset, which include transitions between frustration 

and engaged concentration, as well as the persistence of engaged concentration across multiple 
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affective state transitions. The affective state transition that occurred between two different 

affective states with the highest support count was the frustration to engaged concentration 

transition, with support = 0.161 among students who exhibited self-regulated learning behavior.   

Table 15 

Affective state patterns observed with support > 0.1 for level attempts with strategic planning 

behavior based on strategic planning behavioral indicators, compared with supports for same 

patterns generated for level attempts with no strategic planning behavior. The t-statistic 

represents paired t-test results between level attempts with and without strategic planning 

behavior, with significance based on Benjamini-Hochberg post-hoc corrections. * shows 

significance at p < 0.05 

Affective state pattern 

Support – 

Affective state 

patterns with 

strategic planning 

behavior 

Support – 

Affective state 

patterns with NO 

strategic planning 

behavior 

T-

statistic 

engaged concentration  engaged 

concentration 
0.369 0.123 5.973* 

engaged concentration  engaged 

concentration  engaged 

concentration 

0.190 0.046 4.759* 

frustration  engaged concentration 0.161 0.044 8.124* 

frustration  frustration 0.149 0.046 4.187* 

engaged concentration  frustration 0.115 0.033 4.508* 

engaged concentration  engaged 

concentration  engaged 
0.104 0.022 3.536* 
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concentration  engaged 

concentration 

 

On the flip side, there was only one affective state pattern that was generated with 

relatively high support among students who did not exhibit self-regulated learning behavior 

among this subsequent-level subset of data. The only affective state pattern that occurred more 

than 10% of the time is the engaged concentration  engaged concentration transition, with a 

support level of 0.123.  

Paired t-tests & student-level affective state patterns 

As with the self-observation datasets, paired t-tests by student showed the frequencies of 

the above affective state transitions to be significantly higher among students exhibiting self-

regulated learning behaviors than students who did not. Based on results from the paired t-tests 

conducted for these affective state patterns, I found that all of the patterns occurred at 

significantly higher frequencies among students exhibiting self-regulated learning behavior, as 

compared to students not exhibiting self-regulated learning behavior over repeated level 

attempts.   

Sequential Pattern Mining (SPM) using interaction-based affective state predictions 

 The same sequential pattern mining technique was applied to the affective state dataset 

based on affective state predictions using detectors from computer interaction log data. Affective 

state sequences with a support level of 0.1 (or 10%) or higher were generated for all of the 

subsets of data. Paired t-tests by student were then conducted to compare whether the 

frequencies of specific affective state sequences co-occurring with the self-observation and 
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strategic planning behavioral features were significantly different from one another. The sections 

below discuss the affective state sequences generated that co-occurred with the self-observation 

and strategic planning behavioral features respectively.  

Self-regulated learning within individual playground level attempts 

Using the GSP algorithm, a total of 5 affective state patterns were generated that had 

supports of higher than 0.1; i.e. these patterns occurred for over 10% of the student level 

attempts made. Unlike the patterns above based on video-based affective state predictions, the 

majority of the affective state patterns here involved only engaged concentration, or a transition 

between engaged concentration and boredom.  

As was the case with the video-based affective state predictions, paired t-tests were 

conducted on the affective state transitions that were found to occur at frequencies 10% or higher 

among students exhibiting self-regulated learning behavior within individual level attempts, 

versus students who did not exhibit self-regulated learning behavior. The results of these tests 

were adjusted to control for multiple comparisons using Benjamini-Hochberg (1995) corrections. 

Results of the paired t-tests in Table 15 showed that all of these affective state patterns occurred 

significantly more often among self-regulated learners than among non-self-regulated learners, 

even after Benjamini-Hochberg corrections. 
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Table 16 

Interaction-based affective state patterns observed with support > 0.1 for level attempts with 

self-observation behavior, compared with supports for same patterns generated for level 

attempts with no self-observation behavior. The t-statistic represents paired t-test results 

between level attempts with and without self-observation behavior, with significance based on 

Benjamini-Hochberg post-hoc corrections. * indicates significance at p < 0.05.  

Affective state pattern Support –  

Affective state 

patterns with self-

observation SRL 

behavior  

Support –  

Affective state 

patterns with NO 

self-observation 

SRL behavior 

T-

statistic 

engaged concentration  engaged 

concentration 

0.578 0.220 14.146* 

engaged concentration  engaged 

concentration  engaged 

concentration   

0.264 0.050 11.156* 

engaged concentration  boredom 0.132 0.025 7.267* 

boredom  engaged concentration 0.131 0.020 7.258* 

engaged concentration  engaged 

concentration  engaged 

concentration  engaged 

concentration 

0.111 0.010 8.457* 

 

 

Self-regulated learning within subsequent-level playground level attempts 

Within the subsequent-level subset of data, only two affective state sequences were 

identified that occurred more than 10% of the time, for students who exhibited self-regulated 
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learning behavior. These identified sequences were the same as the ones identified in the self-

observation dataset, which involve the persistence of engaged concentration across multiple 

affective state transitions. There were no affective state sequences that were identified that 

occurred between two different affective states with a support level of 10% and above.  

 

Table 17 

Interaction-based affective state patterns observed with support > 0.1 for level attempts with 

strategic planning behavior based on strategic planning behavioral indicators, compared with 

supports for same patterns generated for level attempts with no strategic planning behavior. The 

t-statistic represents paired t-test results between level attempts with and without strategic 

planning behavior, with significance based on Benjamini-Hochberg post-hoc corrections. * 

shows significance at p < 0.05 

Affective state pattern Support –  

Affective state 

patterns with 

strategic planning 

behavior  

Support –  

Affective state 

patterns with NO 

strategic planning 

behavior 

T-

statistic 

engaged concentration  engaged 

concentration 

0.532 0.174 8.376* 

engaged concentration  engaged 

concentration  engaged 

concentration 

0.145 0.033 5.548* 

engaged concentration  boredom 0.060 0.013 7.670* 
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 Paired t-tests conducted on the identified affective state sequences also found that these 

patterns were significantly different between students who exhibited self-regulated learning 

behavior and those who did not, even after Benjamini-Hochberg corrections.  

Predictors of self-regulated learning (SRL) versus persistence 

To assess the relationship between persistence on levels and SRL behavior, I defined 

persistent levels as those in which students spent more than 9 continuous minutes on a given 

playground level across multiple attempts. This time cutoff derived from initial analyses on the 

total length of time students spent on each playground level, and includes the top quintile of the 

level-attempt data, which is similar to the number of level attempts that were flagged with SRL 

behavior. 

To identify whether the predictor for student persistence also predicted student self-

regulated learning, I computed the recall and precision values of the persistence variable against 

the self-regulated learning predictors, with the self-regulated learning (SRL) behavioral features 

as the ground truth label. Precision and recall values were both found to be low, at 22% for recall 

and 18% for precision. The recall value implies that the percentage of self-regulated learning 

(SRL) behavior that is also persistent behavior is only at 22.%, while the precision value implies 

that the percentage of persistent student level attempts that is also self-regulated learning (SRL) 

behavior is only at 18%. In other words, these results suggest that student persistence does not 

necessarily predict self-regulated learning behavior, and vice versa.   

When applying the persistence predictor against the SRL predictors, an AUC value of 0.5 

was obtained, which indicates that the persistence variable only performs at chance level in 
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identifying student SRL behavior. Altogether, these values suggest that persistence on a given 

playground level does not predict student self-regulated learning behavior (see Table 18).   

 

Table 18 

Results of computations of precision, recall and AUC values of the student persistence identifier 

based on the aggregated SRL behavioral predictors as ground truth.  

Precision Recall AUC 

22% 18% 0.496 

 

Discussion 

Affective state patterns using video-based predictions  

By examining the affective states predictions generated for student level attempts that 

contain self-regulated learning behavior, I find that engaged concentration is the most common 

state predicted in both video detectors and interaction detectors. Moreover, the most common 

sequence of affective states is sustained engaged concentration, two or more consecutive 

predictions of engaged concentration.  The presence of sustained engaged concentration may not 

be surprising given the prevalence of engaged concentration affective state throughout the 

dataset. However, the frequency of sustained engaged concentration in level attempts with SRL 

behavior is significantly higher than in level attempts without SRL behavior across both self-

observation and strategic planning behaviors. This suggests that SRL behaviors tend to require 

more concentration and focus, and that students who are exhibiting SRL behaviors are less likely 

to enter into other affective states.  
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While the frustration affective state is also featured quite strongly among the affective 

state patterns generated, it is worth noting that the more common patterns involve only 

frustration that persists over periods of no longer than two affective state windows, and tend to 

transition to the engaged concentration affective state. Furthermore, confusion  engaged 

concentration transitions were identified that occurred significantly more frequently among 

instances of self-regulated learning. The presence of these transitions hence provides evidence to 

suggest that self-regulated learners may be better at regulating their negative emotions and 

resolving them during a task, towards a more positive affective state such as engaged 

concentration.  

Affective state patterns using interaction-based predictions  

 The differences in the distributions of affect predictions made between the video-based 

and interaction-based models may be attributed to the nature of the type of data used to generate 

these predictions. As mentioned in Study 1, video-based prediction models constitute a direct 

measurement of students’ affective states during gameplay, whereas interaction-based prediction 

models are reliant on student actions as a result of these emotions, thus constituting an indirect 

proxy of student emotions. Various student emotions could hence be better predicted using video 

data as opposed to interaction data, such as delight and frustration. On the other hand, more 

subtle emotions that do not manifest in the form of facial expressions, such as boredom may be 

better predicted by computer interaction data than video data.  

Also, fewer affective state sequences were generated from the interaction-based 

prediction models due to the differences in window size. Among the sequences generated by 

interaction-based models, the most common sequences involved engaged concentration across 
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multiple predictions This finding is similar to the sequences identified using video-based 

affective state predictions and is likely due to the prevalence of engaged concentration state 

predicted throughout gameplay. One affective state sequence that was identified using 

interaction-based predictors but not present among video-based predictors was the engaged 

concentration  boredom and boredom  engaged concentration sequences. Several reasons 

could explain the differences in affect sequences identified: 1) the fact that fewer affective state 

predictions were present as a result of the longer time-windows over which each prediction took 

place, 2) the relative accuracies of the prediction model of each affective state, or 3) boredom 

predictions were more common in interaction predictors, boredom was predicted ~8% of the 

time by interaction predictors, but < 3% of the time by video predictors.  

 In summary, results of sequential pattern mining showed that there is a significant 

relationship between student emotional states and specific self-regulated learning behavior. The 

generalized sequential pattern (GSP) mining algorithm conducted on student affective state 

predictions found that sustained engaged concentration occurred significantly more frequently 

among level attempts with self-observation and strategic planning behavior, than level attempts 

without. This result appears to be consistent across both self-observation and strategic planning 

level attempt groups, as well as for both sets of video-based and interaction-based affective state 

predictions. However, deeper analyses are needed to further understand the relationship between 

self-regulated learning behavior and sustained engaged concentration. Such analyses are 

especially necessary, as the results of sequential pattern mining also found sustained engaged 

concentration patterns to occur, but significantly less frequently, among level attempts that do 

not contain self-regulated learning behavior. As such, it is important to delve into the specific 

types of behavior that students exhibit when experiencing sustained engaged concentration, to 
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identify exactly what student behaviors or actions are associated with engaged concentration but 

not self-regulated learning as defined in this study.  

 While similar affective state patterns have been identified across level attempts that 

contain self-regulated learning behavior, across both sets of interaction-based and video-based 

predictions, there are also several key differences in the types of patterns identified between the 

two. For instance, more patterns involving a transition from frustration to engaged concentration 

were identified with video-based affective state predictions, whereas interaction-based 

predictions tended to turn up more transitions between boredom and engaged concentration. 

These identified transitions appear to coincide with the higher percentage of frustration and 

boredom state predictions generated by the video-based and interaction-based detector 

respectively, which implies that these transitions may occur more frequently because predictions 

of these affective states predictions were more common in the Physics Playground dataset. The 

differing distributions of the affective state predictions made across both interaction- and video-

based models also suggest that the interaction-based prediction model may be better at 

identifying certain student affective states, such as boredom, whereas the video-based prediction 

model may function better at identifying other affective states such as frustration and delight.     
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CHAPTER VI. 

GENERAL DISCUSSION 

This dissertation studies the development of detectors for predicting student affective states 

within an open-ended educational game environment and examines the relationship between 

student affective state patterns and self-regulated learning behavior.  Specifically, I made use of 

affective state predictions to identify affective state patterns that co-occurred more frequently with 

student self-regulated learning behavior. This dissertation combines the development of affective 

state models with sequential pattern mining techniques across two studies to explore the 

relationship between student affective states over time and self-regulated learning behavior 

exhibited within an open-ended educational game platform. 

Study 1 involves the development of affective state models within Physics Playground, an 

open-ended educational game environment, using two different forms of data collected during 

gameplay. Affective state models were developed for engaged concentration, boredom, confusion, 

delight and frustration. The performances of these models for each of the affective states were then 

compared against each other and the advantages and limitations of each method were examined in 

the context of online learning.  

Study 2 builds on the affective state models developed and generates predictions of each 

affective state for the entire dataset. These predictions are then mapped to level attempts that 

contain self-regulated learning features so that affective state patterns can be identified through the 

sequential pattern mining method.  

 Results from Study 1 show that we can build models that predict student affective states 

with both video and interaction data.  In general, models that make direct use of physical traits 

such as students’ facial features and bodily movements as captured by webcams, constitute 
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embodied representations of students’ affective states. On the other hand, interaction-based models 

built based on student actions within the software are an indirect proxy of the students’ actual 

affective states. These indirect models rely on the degree to which student interactions with the 

software are influenced (or not) by the affective states they experience. This could potentially 

explain the differences in performance between the video and interaction-based models, where the 

direct video-based prediction models appeared to perform slightly better at predicting student 

affective states of engaged concentration, confusion, frustration and delight. On the other hand, 

interaction-based models performed slightly better at predicting student affective states of 

boredom which is more likely to manifest in student actions. However, the differences in model 

performance between video- and interaction-based detectors were found to be not statistically 

significant based on the AUC metric. One limitation of the video affect detectors is that fewer 

instances of video data were available for development, since collection of usable video data is 

harder to achieve in an uncontrolled classroom setting.   

In sum, although the video models are limited by missing data, interaction-based models 

can only detect something that causes students to change their behaviors within the software, which 

can be challenging given the issues arising from the open-ended game platform. Simply put, video-

based affective state models appear to provide more accurate affect estimates but in fewer 

situations, whereas interaction-based affect models provide less accurate estimates, but are more 

generalizable to other learning contexts and can be re-purposed to improve student-centered 

learning. 

Results from Study 2 were based on affect predictions generated using the models 

developed in Study 1. Aggregated features from raw computer log data were generated to represent 

self-regulated learning behavior both within an individual level attempt, and across subsequent 
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level attempts. Sequential pattern mining was applied to affective state predictions mapped to level 

attempts containing these aggregated features. Results of the sequential pattern mining method 

identified multiple affective state patterns present in data subsets where SRL behavior was present 

within an individual playground level attempt that involve two patterns 1) staying in engaged 

concentration and 2) a transition from a negative emotion to engaged concentration. The first type 

of pattern is not surprising given the prevalence of engaged concentration affective states observed 

and predicted throughout the dataset. However, the presence of the transitions frustration  

engaged concentration and confusion  engaged concentration occurred significantly more often 

among self-regulated learners than non-self-regulated learners is interesting. These transitions 

suggest that self-regulated learners do not dwell on negative emotions, and have a higher tendency 

to transition from a negative emotion to a more positive one (engaged concentration).   

Among the interaction-based affective state predictions made, fewer patterns were 

identified in general, but sustained engaged concentration was still the predominant pattern 

observed.  The occurrence of boredom  engaged concentration transitions within interaction-

based but not video-based detectors could be due to the higher percentage of boredom predictions 

within interaction-based models.  However, we still find that students staying in engaged 

concentration is significantly more common in the level attempts with SRL behavior than those 

without. 

In this project, I identified affective state patterns that occurred at the same time as self-

regulated learning behavior that was occurring at the same time. From the patterns identified, 

sustained engaged concentration appears to be strongly associated with the occurrence of self-

regulated learning behavior. While this implies that engaged concentration may be associated with 
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specific self-regulated learning strategies, does not suggest that all students showing engaged 

concentration are utilizing self-regulated learning strategies.  

 

Implications 

Theoretical Implications 

 The results from this dissertation contribute to the existing SRL literature by providing a 

novel methodological approach to assessing the relationship between student affective states and 

self-regulated learning behavior, by using fine-grained measurements in the form of raw computer 

logs and video data. We find that sustained engaged concentration is more associated with SRL 

behaviors and that students are more likely to transition from confusion or frustration to engaged 

concentration when employing SRL behaviors.   

Through these techniques, we are able to assess student emotions in real-time using either 

native interaction logs or in conjunction with video capturing software.  With this real-time 

assessment, we are able to better associate specific affective states with SRL behavior and 

understand how patterns of affective states are associated with SRL behavior.  Furthermore, we 

are able to see that specific changes in affective state could be signals of SRL behavior, specifically 

transitions from confusion and frustration to engaged concentration.  Such temporal analysis is not 

possible using aggregated self-report measures that lack the time specificity. Since each form of 

assessment of student emotions and self-regulated learning has a unique set of advantages and 

limitations, being able to make use of multiple measures provides researchers with opportunities 

for a more holistic evaluation of student emotions and understand how it correlates with self-

regulated learning behavior.  
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Practical Implications 

 One of the advantages of using fine-grained measures during learning, particularly in 

online learning contexts and intelligent tutoring systems, is the automated nature in which these 

systems could identify students at risk of becoming disengaged during learning. With rapidly 

developing affordances in technology, it has become more and more common for students to 

participate in at least some form of online instruction throughout their academic careers. Whereas 

teachers and facilitators were traditionally the ones to identify disengaged students through 

behavioral cues, the use of online learning platforms and intelligent tutoring systems make this 

exercise increasingly difficult. It is therefore important for such learning systems to be able to 

identify students who may be experiencing sustained negative emotions, or not using the 

appropriate self-regulated learning strategies, to provide real-time interventions that address these 

learning issues. Being able to track a student’s behavior and her emotions as she engages in the 

learning content, and identifying her use of self-regulated learning strategies through these inputs, 

would provide learning systems with greater opportunities to customize interventions to improve 

the student’s learning experience.  

 In addition to interventions to encourage student self-regulated learning behavior, the 

temporal tracking of student affective states over time could also provide feedback for the learning 

system to provide the learning content in a method that engages the student and facilitates learning 

the most. The ability to monitor students’ affective states over time, particularly those already 

participating in self-regulated learning strategies, allows learning systems to be able to identify the 

precise moments when students are having trouble with the learning system. As such, the learning 

system would be better able to adapt to the students’ learning needs, to improve the students’ 

learning experience.  
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Limitations and Future Research 

 This dissertation project conducts an exploratory analysis of the temporal relationship 

between student emotions and self-regulated learning behavior. However, because the affective 

state patterns were identified based on predictions made in parallel, within the same level attempt 

as self-regulated learning behavior, this relationship is only correlational, and does not allow us to 

make any conclusions with respect to the causal nature of this relationship. As such, it would be 

difficult to identify whether the use of self-regulated learning strategies affect student emotions, 

or if self-regulated learning behavior was facilitated by students’ emotions, as posited in previous 

research (Mega et al., 2014). Further research is therefore needed to conduct analyses on the nature 

of the relationship between student affective states and the use of self-regulated learning strategies.  

 The Physics Playground learning environment used in this dissertation project is an 

unstructured, open-ended game environment that does not explicitly encourage the use of self-

regulated learning strategies. Consequently, it may be more difficult to identify quantifiable 

behaviors that may constitute self-regulated learning behavior, which may reflect only certain 

components of self-regulated learning behavior but not others. Further research is thus needed to 

apply this methodological approach to more structured online learning environments, to explore 

whether similar student affective state patterns can also be identified within these platforms.  

Similarly, because of the observational nature of this study, the behavioral features 

generated to represent self-observation and strategic planning behavior within this platform are a 

result of a simple rational modeling approach and have not been validated by other measures of 

self-regulated learning behavior. As such, the action/behavioral sequences identified may be a 

result of factors other than self-regulated learning strategy use, such as persistence. Replicating 

Study 2 in a more structured online learning environment in which self-regulated learning behavior 
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has already been assessed with other instruments, or adding additional measurements of student 

self-regulated learning would help to address this issue and improve the validity of these features 

of self-regulated learning behavior.  

 In order to better understand the relationship between self-regulated learning behavior and 

sustained engaged concentration, further examination is required into the specific behaviors of 

students within the game platform who are showing engaged concentration. For instance, 

clustering analyses may be conducted to identify different types of student behavior that occur 

during sustained engaged concentration patterns, with further labeling of which behaviors could 

be considered self-regulated learning behavior. This analysis could then corroborated against other 

measures such as surveys or a code-and-detect approach for identifying different types of student 

behaviors. In this manner, we would be better able to understand and determine the different 

student behaviors that occur during engaged concentration and the role that self-regulated learning 

could play in each of these behaviors.  

Moreover, this study has focused on the specific affective state patterns associated with 

self-regulated learning behaviors. These self-regulated learning behaviors were identified based 

on a specific set of features identified within student actions using a simple rational modeling 

approach. Consequently, these behavioral features could also potentially be explained by other 

underlying processes, such as student persistence, conscientiousness or academic motivation. 

More investigation is hence needed to differentiate between behavior that is unique to self-

regulated learning and behavior that could potentially result from other processes, by validating 

these features against established measures of self-observation and strategic planning behavior. 

Identifiers for potential alternative constructs may also be created in further analyses to pinpoint 

specific actions that could be a result from these alternative processes, and better differentiate 
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between these actions and those that are uniquely a result of self-observation and strategic 

planning.  

One specific student behavior that was used to identify self-regulated learning behavior 

was repetition and the use of a consistent strategy. Considered in isolation, drawing, erasing, and 

re-drawing objects could be seen as an act of boredom with the objectives of the game or frustration 

with the game’s user interface. However, sustained engaged concentration during this behavior 

would suggest that these actions were related to a student strategy. It may thus be interesting to 

examine sequences where student actions were similar, but students were showing boredom or 

frustration, to determine whether additional interaction-based features could differentiate these 

cases. Such analysis could help to isolate additional features that could better identify SRL 

behavior as this detector would be based on both student actions and affect. These measures could 

then be compared and validated against other measures of self-regulated learning behavior such as 

surveys and self-reports. 

The current work suggests a strong relationship between student affective states and the 

occurrence of self-regulated learning behaviors. However, we have not examined to what degree 

these affective states could modify the effectiveness of these behaviors on learning outcomes, or 

quantified the impact of how affective states could increase or limit the use of these behaviors. 

Further work could examine whether specific affective state patterns such as sustained frustration 

decrease the likelihood of SRL. Also, a future study could look at whether students with frequent 

periods of sustained engaged concentration are more likely to show SRL, and whether this SRL 

has a differential impact on learning outcomes than SRL in students without sustained engaged 

concentration. 
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APPENDIX I. 

List of raw computer interaction log data recorded in Physics Playground during gameplay, and 

their descriptions. 

Column 

# 
Category Column Name Description 

1 Identifiers RowID Unique ID for each row of data 

2 Observations UNIQUEID 
ID associated with matched coder observation 

events 

3 Observations OBSTIME 
Time associated with matched coder observation 

events 

4 Observations CODER ID associated with coder 

5 Observations BEHAVIOR Coder Observed Behavior 

6 Observations AFFECT Coder Observed Affect 

7 Identifiers userId ID associated with each student 

8 Identifiers time Computer System Time 

9 Identifiers utc_time Computer System Time converted to UTC 

10 Identifiers timestamp Computer Timestamp (milliseconds) 

11 Identifiers event Event occuring in Environment 

12 Identifiers pe_step ??? 

13 
Level 

Start/Restart 
level_path Type of Level 

14 
Level 

Start/Restart 
badge_string ??? 

15 
Level 

Start/Restart 
ball_id ID for ball object 

16 Summary game_time ??? 

17 Summary ball_position_x X position of Ball 

18 Summary ball_position_y Y position of Ball 

19 Summary ball_velocity_x X velocity of Ball 

20 Summary ball_velocity_y Y velocity of Ball 

21 Summary 
ball_touched_cou

nt 

Number of times ball touched other objects in 

game environment 

22 Summary mouse_distance Distance moved by mouse 

23 Summary 
mouse_draw_dist

ance 
Length of line drawn by mouse 

24 Summary fps Frames per second 

25 
Single Object 

Events 
object_id ID for object 

26 
Single Object 

Events 
start_step ??? 

27 
Single Object 

Events 
elapsed Amount of time taken to create object 

28 
Single Object 

Events 
mass Mass of object 
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29 
Single Object 

Events 
mass_center_x X position of object center of mass 

30 
Single Object 

Events 
mass_center_y Y position of object center of mass 

31 
Single Object 

Events 
pins_count Number of pins in game environment 

32 
Single Object 

Events 
position_x X position of object 

33 
Single Object 

Events 
position_y Y position of object 

34 
Single Object 

Events 
width Width of object 

35 
Single Object 

Events 
height Height of object 

36 
Single Object 

Events 
length Length of object 

37 
Single Object 

Events 
draw_data_count . 

38 
Single Object 

Events 
draw_data_length . 

39 
Single Object 

Events 
type Type of Object 

40 
Multiple Object 

Events 
objA Object A ID 

41 
Multiple Object 

Events 
positionA_x X position of Object A 

42 
Multiple Object 

Events 
positionA_y Y position of Object A 

43 
Multiple Object 

Events 
rotationA Rotation of Object A 

44 
Multiple Object 

Events 
velocityA_x X velocity of Object A 

45 
Multiple Object 

Events 
velocityA_y Y velocity of Object A 

46 
Multiple Object 

Events 

rotational_velocit

yA 
Rotational Velocity of Object A 

47 
Multiple Object 

Events 
objB Object B ID 

48 
Multiple Object 

Events 
positionB_x X position of Object B 

49 
Multiple Object 

Events 
positionB_y Y position of Object B 

50 
Multiple Object 

Events 
rotationB Rotation of Object B 

51 
Multiple Object 

Events 
velocityB_x X velocity of Object B 

52 
Multiple Object 

Events 
velocityB_y Y velocity of Object B 

53 
Multiple Object 

Events 

rotational_velocit

yB 
Rotational Velocity of Object B 
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54 
Machine 

Events 
name Name of machine drawn 

55 
Machine 

Events 
strength Strength at which ball is propelled from machine 

56 
Machine 

Events 
primary_id Machine ID 

57 
Machine 

Events 
badge Type of badge achieved and machine type 

58 
Machine 

Events 
item Playground level 

59 
Machine 

Events 

touching_movem

ent_x 
X position where ball touched machine 

60 
Machine 

Events 

touching_movem

ent_y 
Y position where ball touched machine 

61 
Machine 

Events 
direction Direction of ball movement (left or right) 

62 
Machine 

Events 
wind_up_rotation Amount of rotation made by machine to propel ball 

63 
Machine 

Events 
ball_movement_x X direction of ball movement 

64 
Machine 

Events 
ball_movement_y Y direcion of ball movement 

65 
Machine 

Events 
ball_apex Maximum height that ball reached 

66 
Machine 

Events 
apex_rot_velocity Rotational velocity of ball at apex 

67 
Machine 

Events 
pin_count Number of pins planted to build machine 

68 
Machine 

Events 
freefall_distance Distance of ball freefall 

69 
Machine 

Events 
ball_distance Distance of ball movement 
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APPENDIX II. 

List of aggregated features generated in Study 1 for the development of affective state models, 

and their descriptions. 

Aggregated Features Description 

Total Levels per Student Number of levels attempted  

LevelREStartPerStdt Total number of level restarts per student 

TotalREStartsPerLevelPerStdt Number of restarts attempted per level 

TimeBetStartN1stReStartofLevel Time between Start and 1st restart of level 

Levels in Day Number of levels attempted within a day 

TotalLostsinLevel Number of Ball objects being Lost within a level 

TotalPausesinLevel Number of pauses made in level 

TotalNudgesinLevel Total number of nudges made on ball object within a level 

TotalConsecutiveNudges Number of nudges made on ball object within a level in a 

row 

TotalClicksinLevel Total number of mouse clicks made on objects in level 

TotalNumber of Tutorials Per 

Level 

Total number of tutorials watched within a level 

Total Losts+LevelRestarts InLevel Total number of events where ball objects were lost 

followed by level restart 

LevelStartTime Time when student first starts a level 

TimeBeforeNudge Time between start and 1st nudge of ball object 

TimeBetweenNudgeandLevelEnd Time between first nudge event made by student and level 

end time  

TotalMachinesInLevel Total number of machines built in a level 

TotalFreeformsDrawn Total number of freeform objects drawn 

TotalDrawObjectsInLevel Total number of objects (pins + freeforms) drawn 

ConsecutiveRamps Number ramp machines created in a row 

ConsecutiveSpringboard Number springboard machines created in a row 
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ConsecutivePendulum Number pendulum machines created in a row 

TotalEraseObjectinLevel Number of objects erased within a level 

ConsecutiveClicks Number of clicks made on objects within a level in a row 

ConsecEraseObj Number of objects erased in a row within a level 

Time Betw Lost and Obj Drawn Time between object lost and new object drawn 

TimeBetwLevelStart+Pin Time between level start and 1st pin placed in level 

NoBadgeWon No badge achieved in a given playground level 

TotalNoBadgePerStudt Total number of playground levels attempted that did not 

result in a badge being achieved 

StudtActionEvents Total number of student action events, that include draw, 

erase, mouse click and nudge events 

TimeBetwActions Average amount of time elapsed between student actions 

within a single playground level 

TotalActionsInLevel Total number of actions taken within a single playground 

level 

NumCollisionsSinceLastAction Number of collisions made between the ball object and 

other objects in the game space since the last student action 

taken 

CumSilverBadgePerStdt Cumulative number of silver badges won by a student 

CumGoldBadgePerStdt Cumulative number of silver gold badges won by a student 

BallCollisions Total number of ball collisions made between the ball 

object and other objects in the game space in a single 

playground level 

FFCollisions Total number of ball collisions made between freeform 

objects drawn and other objects in the game space in a 

single playground level 

CumStackinginLevel Cumulative number of stacking events in a single 

playground level  

T-LvlStartRestart-NoRestartYet Amount of time before 1st restart in level 

T-LvlStartNudge-NoNudgeYet Amount of time before 1st nudge in level 

T-LostObjDrawn-NoLostYet Amount of time before 1st lost object in level 
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T-LostObjDrawn-NoObjDrawnYet Amount of time before 1st object drawn in level 

TotalPinsDrawn Total number of pins drawn in a level 

T-LvlStartPin-NoPinYet Amount of time before 1st pin drawn in level 

T-Actions-NoStdtActionYet Amount of time before 1st student action made in level 

T-ActionsClip-NoStdtActionYet Amount of time before 1st student action made in 20-sec 

clip 

AvgGoldSoFar Average number of gold badges achieved so far 

AvgSilverSoFar Average number of silver badges achieved so far 

PostSilver Number of levels attempts made after achieving a silver 

badge 

PostSilverPlay Amount of time spent in a playground level after achieving 

the silver badge so far in the current level 

PostSilverPlayTotal Total amount of time spent in the game environment after 

achieving the silver badge 

PostSilverPlayTotalDivByLevels Total amount of time spent in a single playground level 

after achieving the silver badge 

TimeFirstSilverThisLevel Time taken to achieve first silver badge within level 

AvgTimeToFirstSilver Average time taken to achieve first silver badge 

PlayerFirstSilverRelative Amount of time taken for a student to achieve her first 

silver badge relative to the total amount of time spent in a 

single playground level 

SumPlayerFirstSilverRelativeSoFar Total amount of time taken for a student to achieve her first 

silver badge in a single playground level 

AvgPlayerFirstSilverRelativeSoFar Average amount of time taken for a student to achieve her 

first silver badge in a single playground level 

SilverInUnderAverageTimeSoFar Number of silver badges achieved in under the average time  

PctSilverInUnderAverageTime Percent of silver badges achieved in under the average time 

 


