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ABSTRACT 
 

Impacts of pumping on the distribution of arsenic in Bangladesh groundwater 
 

M. Rajib Hassan Mozumder 
 
 
 

Chronic exposure to naturally occurring arsenic (As) in groundwater threatens the health of >150 

million villagers in S/SE Asia. In Bangladesh, low As aquifers offer the best hope of reducing 

the exposure of 35-40 million remain exposed to elevated levels of As in drinking water (>10 

µg/L). These low As aquifers could be affected, however, by massive pumping from shallow 

(<30 m) depths for growing rice and overexploitation of deeper aquifer for municipal water 

supply. The goal of this dissertation is to assess the impacts of groundwater pumping on the 

distribution in groundwater of dissolved As, reactive carbon, and redox-sensitive elements in 

anoxic aquifers of Bangladesh based on long-term hydrologic measurements, geochemical 

analyses, and numerical flow modeling.  

In the second chapter, changes in the well-water As concentrations within a 25 km2 area over a 

10+ year timespan are assessed on the basis of continuous time series for 18 monitoring wells, a 

set of 271 wells resampled three times, and a large dataset obtained from blanket surveys of 

several thousand wells in the region. The two larger data sets both show a 10% decline in the 

initial areal mean As of 100 µg/L. This decline can be explained by flushing of As in the shallow 

aquifer by low-As recharge water, evidently compensated to some extent by the desorption of 

sediment-bound As. The presence of a large exchangeable pool of As in the sediment therefore 

seems to buffer changes in the distribution of As in the face of large perturbation in groundwater 

flow, albeit not enough to prevent some trends indicated by the detailed time series. The third 

chapter provides a complementary perspective on groundwater-sediment interactions by 



quantifying the rates of adsorption and desorption of As with column experiments conducted in 

the field for two different types of sediments: grey reduced Holocene sands and orange oxidized 

Pleistocene sands. The data show that, contrary to widely held beliefs, retardation of As transport 

by adsorption is quite similar in Holocene and Pleistocene sediments, even if Holocene sands 

initially contain a much larger pool of easily mobilizable As. The field column experiments also 

showed significant changes in solid phase speciation that affected As retention within a timespan 

of only a few weeks. Detailed field observations and flow modeling in the fourth chapter 

examine how perturbed flow paths can draw either As or reactive carbon into a Pleistocene 

aquifer. A groundwater flow model, constrained by head measurements and isotopic tracer data 

shows that certain portions of the aquifer are becoming increasingly contaminated with As as a 

result of municipal pumping, but against a background of redox transformation in the aquifer that 

probably preceded this perturbation. 

Overall, the research conducted for this thesis shows that alteration of the hydrological system 

due to local and regional forcing is affecting the distribution of As in groundwater. These 

changes do not affect all wells yet and, if they do, the increase in As concentrations observed so 

far are gradual because of the buffering capacity of the sediment. Lowering exposure by 

targeting low As aquifer should therefore definitely continue in Bangladesh, with particular 

attention paid to regular monitoring using vulnerability criteria this research has helped to 

identify. 



	 i	

TABLE OF CONTENTS 
 

LIST OF FIGURES .................................................................................................................................... v	
LIST OF TABLES ...................................................................................................................................... x	

ACKNOWLEDGEMENTS ....................................................................................................................... xi	
DEDICATION .......................................................................................................................................... xiii 

 

CHAPTER 1: INTRODUCTION .............................................................................................................. 1	
1.1.	 SCALE OF POISONING BY ARSENIC ............................................................................................... 1	
1.2.	 GEOGENIC OCCURRENCE OF ARSENIC IN ALLUVIAL AQUIFERS ............................................... 2	

1.3.	 ANTHROPOGENIC INFLUENCE ON AS POLLUTION ...................................................................... 4	
1.3.1.	Hydrological consequences of pumping .................................................................................... 4	

1.3.2.	Geochemical consequences of pumping .................................................................................... 5	
1.4.	 PREDICTING AS TRANSPORT ........................................................................................................ 7	
1.5.	 ORGANIZATION OF THIS THESIS .................................................................................................. 7	

1.6.	 REFERENCES ............................................................................................................................... 11 

 

CHAPTER 2: FLUSHING OF ARSENIC OUT OF SHALLOW AQUIFERS BY IRRIGATION 

PUMPING IN BANGLADESH ............................................................................................................... 23	
ABSTRACT .............................................................................................................................................. 24	
2.1.	 INTRODUCTION ........................................................................................................................... 25	

2.2.	 EVOLUTION OF THE SPATIAL DISTRIBUTION OF AS IN GROUNDWATER ................................. 27	
2.3.	 IMPACTS OF IRRIGATION PUMPING ........................................................................................... 31	

2.4.	 IMPLICATIONS FOR FUTURE EXPOSURE AND MITIGATION ...................................................... 33	
2.5.	 METHOD SUMMARY .................................................................................................................... 33	
2.6.	 REFERENCES ............................................................................................................................... 36	

ACKNOWLEDGEMENTS ......................................................................................................................... 39	
2.7.	 SUPPORTING MATERIALS ........................................................................................................... 45	



	 ii	

CHAPTER 3: SIMILAR ARSENIC RETARDATION IN GRAY HOLOCENE AND ORANGE 

PLEISTOCENE SANDS IN BANGLADESH: EVIDENCE FROM COLUMN EXPERIMENTS 

CONDUCTED IN THE FIELD ............................................................................................................... 61	
ABSTRACT .............................................................................................................................................. 62	

3.1.	 INTRODUCTION ........................................................................................................................... 63	
3.2.	 MATERIALS AND METHODS ....................................................................................................... 65	

3.2.1.	Sediment coring and column preparation ................................................................................ 65	

3.2.2.	Experimental setup ................................................................................................................... 66	
3.2.3.	Sampling and onsite measurements ......................................................................................... 67	

3.2.4.	Sediment analyses .................................................................................................................... 68	
3.2.5.	Analysis of groundwater and sediment extracts ...................................................................... 70	
3.2.6.	Column transport parameterization ........................................................................................ 71	

3.2.7.	Model formulation ................................................................................................................... 71	
3.2.8.	Determination of rate constants ............................................................................................... 73	

3.3.	 RESULTS ...................................................................................................................................... 73	
3.3.1.	Sediment properties ................................................................................................................. 73	

3.3.2.	 Influent groundwater composition ........................................................................................... 75	
3.3.3.	Elution of arsenic and other redox sensitive elements ............................................................. 76	
3.3.4.	Changes in Fe and As speciation ............................................................................................. 78	

3.4.	 DISCUSSION ................................................................................................................................. 79	
3.4.1.	Modeling arsenic transport ...................................................................................................... 79	

3.4.2.	Model derived As adsorption-desorption rates ........................................................................ 80	
3.5.	 IMPLICATIONS ............................................................................................................................. 81	
ACKNOWLEDGEMENTS ......................................................................................................................... 85	

3.6.	 REFERENCES ............................................................................................................................... 86	
3.7.	 SUPPORTING MATERIALS ........................................................................................................... 97	



	 iii	

CHAPTER 4: ORIGIN OF GROUNDWATER ARSENIC IN A PLEISTOCENE AQUIFER 

DEPRESSURIZED BY MUNICIPAL PUMPING IN BANGLADESH ........................................... 112	

ABSTRACT ............................................................................................................................................ 113	
4.1.	 INTRODUCTION ......................................................................................................................... 114	

4.2.	 GEOLOGIC SETTING .................................................................................................................. 117	
4.3.	 METHODS .................................................................................................................................. 118	

4.3.1.	Monitoring nests .................................................................................................................... 118	

4.3.2.	Analysis of sediment cuttings ................................................................................................. 123	
4.3.3.	Pumping test ........................................................................................................................... 124	

4.3.4.	Groundwater modeling .......................................................................................................... 125	
4.4.	 RESULTS .................................................................................................................................... 131	

4.4.1.	Hydrostratigraphy .................................................................................................................. 131	

4.4.2.	The Holocene-Pleistocene transition ..................................................................................... 132	
4.4.3.	Groundwater chemistry ......................................................................................................... 134	

4.4.4.	Groundwater heads ................................................................................................................ 138	
4.4.5.	Groundwater flow modeling .................................................................................................. 139	

4.5.	 DISCUSSION ............................................................................................................................... 140	
4.5.1.	Source of As and carbon in the intermediate aquifer ............................................................ 140	
4.5.2.	Reduction of Fe oxides by lateral advection of reactive carbon ............................................ 141	

4.5.3.	Reduction of Fe oxides by advection and diffusion of clay derived DOC ............................. 144	
4.5.4.	Evolution of groundwater composition in the face of pumping ............................................. 145	

4.6.	 CONCLUSION ............................................................................................................................. 146	
ACKNOWLEDGEMENTS ....................................................................................................................... 147	
4.7.	 REFERENCES ............................................................................................................................. 148	

4.8.	 SUPPORTING MATERIALS ......................................................................................................... 176 

	



	 iv	

CHAPTER 5: SYNTHESIS ................................................................................................................... 196	

  



	 v	

LIST OF FIGURES 

Figure Figure Title Page 

1-1 Population at risk from arsenic poisoning in the S/SE Asian 19 

1-2 A schematic diagram showing how complete dissolution of even a small 

amount of solid phase As may result very high dissolved As levels in 

Bangladesh aquifers 

20 

1-3 Schematic diagrams showing the distribution of Holocene gray sediment and 

Pleistocene orange sediments in a basin scale 

21 

1-4 Schematic diagrams showing three possible As release pathways in the 

anoxic groundwater of Bangladesh 

22 

   

2-1 Spatial evolution in the distribution of As in shallow (<30 m) groundwater 

within a 25 km2 area 

40 

2-2 Changes in As concentrations in the individual wells 41 

2-3 Changes in As concentrations at the block level 42 

2-4 Time-series of As in the shallow aquifer of Araihazar, Bangladesh 43 

2-5 A flushing model of As for the shallow aquifer 44 

   

2-S1 Inter-calibration of laboratory and field-kit results for arsenic 45 

2-S2 Changes in the distribution of arsenic concentrations over time 46 

2-S3 Consistency of laboratory measurements for well samples analyzed by 

GFAA in 2000-01 and reanalyzed by ICPMS in 2014 

47 

2-S4 Spatial dependence of groundwater arsenic (As) concentrations in the study 48 



	 vi	

area 

2-S5 Spatial structure analysis of well-water As concentrations measured in 2000-

01 and 2012-13 

49 

2-S6 Sensitivity of analysis to block size 50 

2-S7 Statistical test validating changes in As at the block level over the last decade 51 

2-S8 Change in the number of wells at the block level (n = 87; 600 m × 600 m) 

between 2000-01 and 2012-13 

52 

2-S9 Depth dependence of As concentrations in shallow groundwater 53 

2-S10 Influence of well-depth on As concentrations 54 

2-S11 Depth of the shallow aquifer in Araihazar 55 

2-S12 Fraction of land within study area used for agriculture 56 

2-S13 Depth distribution of groundwater ages within the shallow aquifer 57 

2-S14 Changes in block-averaged As concentrations in relation to neighboring 

blocks 

58 

   

3-1 A schematic of the experimental setup 92 

3-2 Arsenic, iron, sulfur, and phosphorus in the effluents of orange Pleistocene 

sediment columns 

93 

3-3 Arsenic, iron, sulfur, and phosphorus in the effluents of gray Holocene 

sediment columns. 

94 

3-4 Change in the fraction of solid phase iron and arsenic speciation in the 

orange sediment columns following elution with high-arsenic groundwater 

95 

3-5 Time-dependent evolution of arsenic for a two phase, reversible kinetic 96 



	 vii	

model. 

   

3-S1 Coring locations of gray Holocene and Pleistocene orange sediments 97 

3-S2 The concentrations of various physicochemical parameters in the well and 

storage bag over time 

98 

3-S3 Concentrations of arsenic, iron, sulfur and phosphorus in the control sand 

column plotted as a function of pore volume 

99 

3-S4 Determination of dispersion coefficient with bromide tracer injection 100 

3-S5 Modeling arsenic transport assuming a single solid phase 101 

3-S6 Transport model sensitivity to the initial total sorbed arsenic concentration 102 

3-S7 Transport model simulations with the same rate constants across all sediment 

groups 

103 

3-S8 Transport model simulations with the same rate constants and initial solid 

phase concentrations across all sediment groups 

104 

3-S9 The evolution of solid phase arsenic concentrations predicted by a two-

phase, reversible kinetic model 

105 

3-S10 The effect of phosphate spiking in a gray sediment column 106 

3-S11 Evidence of color change in an orange sediment column 107 

3-S12 Change in the fraction of solid phase iron and arsenic speciation in the gray 

sediment columns following elution with high arsenic groundwater 

108 

   

4-1 The study area under the influence of Dhaka pumping 162 

4-2 Chemical and geological heterogeneity in the study area 163 



	 viii	

4-3 Sediment chemistry distinguishing Holocene from Pleistocene deposits 164 

4-4 Groundwater hydrogeochemistry at three clay-capped sites 165 

4-5 Groundwater hydrogeochemistry at two sandy sites 166 

4-6 Evolution of As concentrations in the intermediate aquifer 167 

4-7 Simulated hydraulic heads in the study area 168 

4-8 Tracing the source of groundwater and arsenic into the intermediate aquifer 

along a S-N transect 

169 

4-9 Arsenic transport with retardation under pumping 170 

4-10 Retardation of arsenic under prepumping 171 

4-11 Intrusion of shallow groundwater arsenic (As) through sandy, recharge 

windows 

172 

   

4-S1 An increase in the installation of intermediate depth (>40-100 m deep) wells 

in Araihazar, Bangladesh 

176 

4-S2 Limited variability in shallow groundwater head across the 3 sq. km study 

area 

177 

4-S3 Simulated deep aquifer reference head in the study area along the E-W 

transect 

178 

4-S4 Radiocarbon age of sediment cuttings demarcating the Holocene-Pleistocene 

transition in the study area 

179 

4-S5 A 3D lithostratigraphic model of the study area 180 

4-S6 Hydraulic conductivity determination from early drawdown data 181 

4-S7 Schematic of the model domain 182 



	 ix	

4-S8 Comparison of observed average head with simulated head 183 

4-S9 Schematic set up for groundwater arsenic transport simulation 184 

4-S10 Solid phase total organic carbon content (%) in clay 185 

4-S11 Total tritium (3H + 3Hetrit) concentrations in the intermediate aquifer plotted 

against apparent groundwater recharge in calendar year 

186 

4-S12 Depth profiles of iron, phosphorus, sodium, calcium, chloride, and bromide 

in groundwater and clay pore water 

187 

4-S13 Long-term trends of groundwater observed head in the study area 188 

4-S14 Correlation between thickness of clay and average observed hydraulic head 

in the intermediate aquifer 

189 

4-S15 Correlation among dissolved methane, arsenic, tritium, and diffuse spectral 

reflectance of screened depth sediment 

190 

4-S16 Sensitivity analyses of arsenic contamination and solid phase iron reduction 

near the aquifer-aquitard interface 

193 

  



	 x	

LIST OF TABLES 

Table Table Title Page 

3-S1 Column transport parameters for gray and orange sediments 109 

3-S2 Bulk chemical properties of the gray and orange sediment 110 

3-S3 Linear combination fitting results of As XANES spectra for the orange and 

gray sediment columns 

111 

   

4-1 Groundwater physicochemical parameters and stable isotopic composition in 

sand and clay formations 

173 

4-2 Groundwater 3H concentrations and apparent 3H/3He ages  174 

4-3 Methane and its stable isotopes in the groundwater of Araihazar, Bangladesh 175 

   

4-S1 Estimated aquifer hydraulic conductivity and storativity 194 

  



	 xi	

ACKNOWLEDGEMENTS 

Many have contributed in my dissertation over the past six years. First and foremost, I would like 

to thank my advisors Lex van Geen, Ben Bostick, and Peter Schlosser for their continuous 

support and perseverance in motivating me to achieve my dissertation goals. Lex and Ben 

introduced me to the wide range of field research activities on groundwater arsenic in 

Bangladesh. Lex was instrumental in providing guidance in the field, streamlining experimental 

goals, and offering constructive criticism to perfect my accomplishments. He taught me how to 

communicate the big picture with clarity and simplicity. Ben helped me to disaggregate and 

solve complex geochemical problems, sharpen my microscopic perspectives, and carry on 

patiently even when the outcomes were not in favor. Peter was a prodigious source of 

encouragement and a critical third eye for identifying gaps and rooms for improvement in my 

work. I am indebted to the National Institute of Environmental Health Sciences for sponsoring 

my research at the Columbia Superfund Research Program. 

I would like to extend my gratitude to the outside collaborators, in alphabetic order, Brian 

Mailloux for his insightful thoughts and critiques, Charles Harvey for teaching many aspects of 

geostatistics, Holly Michael for inviting me to UDEL to work on groundwater modeling, Kazi 

Matin Ahmed for filling the role of unofficial advisor, Mahfuz Khan for his technical input on 

flow modeling, and Magdi Selim for inviting us to LSU to discuss solute transport processes. I 

am grateful to Jerry McManus and Peter Jaffé for serving on my dissertation committee. I am 

also grateful to all Bangladeshi students, teachers, and colleagues who supported me in the field, 

especially, Imtiaz Choudhury, Babu bhai, Shahidullah Shahid, and Atikul Islam for fulfilling 

timely monitoring needs. 



	 xii	

I am thankful for the lab assistance offered by Tyler Ellis, Toby Koffman, Reisa San Pedro, 

Kelly Martin, Elizabeth Shoenfelt, Khue Nguyen, Athena Nghiem, Ezazul Hoque, Jacob Mey, 

and Lynnette Pitcher. I owe a lot to Ivan Mihajlov, Peter Knappett, and Jing Sun at Columbia 

arsenic group for their advice and friendship that influenced my initial research goals and helped 

me settle in the City of New York. I must thank James Gibson, Tarini Bhattnagar, and Dhiman 

Mandal for their genuine support and companionship. I would like to express my appreciation to 

many other people, too many to mention: my class instructors who taught me, my friends and 

fellow students who enlightened me and never failed to criticize me, and the staff members at 

Lamont who always looked out for me. 

None of these would have been possible without the love, patience, and encouragement of my 

wife, the endurance and sacrifice of my parents, and the support and understanding of my 

siblings. I am indebted to all our relatives who took good care of us and made our stay in New 

York safe and pleasant. 

  



	 xiii	

DEDICATION 

 

 
 

To my wife Nadia and my parents Shahjahan and Hasina 

who sacrificed the most to see me succeed ... 

 



	 1	

CHAPTER 1 

INTRODUCTION 

1.1. Scale of poisoning by arsenic 

An estimated 830 million people in the world still lack safe water access. Ensuring easy, 

equitable access to clean drinking water and sanitation is one of the United Nation’s sustainable 

development goals with an especial emphasis on testing water quality for fecal contaminants, 

arsenic (As), and fluoride (JMP/UNICEF, 2017). Elevated levels of As contaminates the 

drinking water of approximately 200 million people across the globe (Naujokas et al., 2013); half 

of the population exposed are from S/SE Asia (Fendorf et al., 2010) (Figure 1-1), drinking 

groundwater from tens of millions of wells containing As above the World Health Organization 

(WHO) guideline of 10 µg/L (WHO 1993; Fihser et al., 2017). In Bangladesh alone, about 35-40 

million are exposed chronically to geogenic As, resulting in an increase in mortality (Argos et 

al., 2010; Flanagan et al., 2012), mainly due to cardiovascular disease (Chen et al., 2011) and 

various cancers (Smith et al., 2000; BGS/DPHE, 2001). Due to microbially contaminated surface 

water (e.g. pond, river) and lack of piped, chlorinated water supply systems, rural Bangladeshis 

heavily rely on groundwater for their domestic use. A large fraction of the 80% rural population 

of Bangladesh drinking daily from hand-pumped wells is exposed to elevated levels of As 

(Ahmed, 2011). The consumption of rice as staple food, which is often grown in soil irrigated 

with high As groundwater (Panaullah et al., 2009; Dittmar et al., 2007, 2010; Huhmann et al., 

2017), could also be a significant, secondary exposure pathway (Duxbury et al., 2003). To date, 

blanket As testing campaigns that encourage safe well sharing (van Geen et al., 2002; 2014) and 

installation of deep community wells are the most popular forms of mitigation (van Geen et al., 



	 2	

2003; Ahmed et al., 2006; Ravenscroft et al., 2013, 2014 2018) because groundwater As-removal 

technologies have proved currently not be sustainable (Ravenscroft et al., 2009). Although the 

sedimentary aquifers of S/SE Asia are contaminated with naturally occurring As, the extent and 

magnitude of As poisoning could potentially be exacerbated by large-scale hydrologic 

perturbations (Micheal et al., 2008; Winkel et al., 2011; van Geen 2013; Stahl et al., 2016; 

Knappette et al., 2016; Khan et al., 2016). This thesis is composed of three studies taking 

different approaches to address the issue of potential perturbations by pumping of the 

distribution of As in the subsurface. 

1.2. Geogenic occurrence of Arsenic in alluvial aquifers 

Geogenic As is commonly associated in alluvial sediments with sulfides and iron and manganese 

oxides (Smedley & Kinniburgh, 2002; Lowers et al., 2007). Scientists have for at least two 

decades been bewildered by the presence of high As (100s-1000s µg/L) in groundwater in 

contact with the aquifer sediment in some regions and not in others. The fluvio-deltaic sediments 

of Bangladesh and elsewhere in S/SE Asia contains a wide range but not exceptionally high 

levels of sediment-bound As comparable to average crustal concentrations of 2 mg/kg (Mason, 

1966). Even without considering that sedimentary As concentrations are somewhat higher (up to 

20 mg/kg) in fine-grained materials (e.g. clay) compared to sand (1-5 mg/kg of As), sandy 

aquifers contain more than enough As to potentially pose a health risk. A simple calculation 

shows, for instance, if only a hundredth of the total sorbed As (0.01 mg/kg) is transferred to 

groundwater in an uncontaminated aquifer with 30% porosity and a bulk density of 2.65 g/cm3 

(BGS/DPHE, 2001), the aqueous As concentration would rise to 62 µg/L, which is about 6 times 

higher than the WHO prescribed guideline of 10 µg/L of As in drinking water (Figure 1-2). 

Bangladesh, the largest As contaminated delta in the world, receives its sediment supply from the 
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Himalayas drained by Ganges, Brahmaputra, and other rivers depositing thick sequences of dark 

gray, organic rich, Holocene alluvial sediment (Roy & Chatterjee, 2015). A hiatus in sediment 

supply is indicated by the weathered and oxidized Pliocene-Pleistocene Dupi-Tila orange sand 

that were subaerially exposed during the last glacial Maximum (Umitsu, 1987, 1994). The Dupi-

Tila aquifer is typically low in As (BGS/DPHE, 2001; Burgess et al., 2011) and is often overlain 

by As elevated (frequently >100 µg/L) shallow alluvial aquifers separated by a clay aquitard. 

The depth to the top of the low-As Pleistocene aquifer varies locally as well as regionally as such 

the spatial prediction of As in groundwater remains challenging (Figure 1-3). 

The general consensus is that As is released in groundwater in this part of the world through 

microbially mediated reductive dissolution of sediment bound iron-oxy-hydroxides fueled by the 

oxidation of organic carbon (Ahmed et al., 1998b; Nickson et al., 1998; Bhattacharya et al., 

1997; BGS/DPHE, 2001; McArthur et al., 2001; Berg et al., 2001; Harvey et al., 2002; Oremland 

& Stolz, 2003; Ahmed et al., 2004; van Geen et al., 2004; Swartz et al., 2004; Oremland & Stolz, 

2005). The color of sediment (reduced gray vs. less reduced orange), thus, provides the first line 

of evidence on the status of solid phase Fe reduction as a result of transformation of Fe(III) 

phases to mixed Fe(II)/Fe(III) phases and concomitant release of As into the solution (Horneman 

et al., 2004; von Brömssen et al., 2007). The reduction of As(V) to As(III), often considered less 

particle-bound and more toxic, is believed to follow the reductive dissolution of Fe(III) oxides 

(BGS/DPHE, 2001; Islam et al., 2004; Tufano & Fendorf 2008; Fendorf et al., 2010) (Figure 1-

4). The reductive dissolution also release phosphate, competing with As for sorption sites on 

iron-oxy-hydroxide mineral surfaces, as other products of weathering and carbon metabolism 

such as silica and bicarbonate, respectively. Following the initial As release, the dissolved 

concentration of As in the aquifer is primarily maintained by the adsorption (desorption) of As 
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on (from) the remaining (i.e. undissolved) iron oxides and/or newly formed secondary mineral 

phases. 

Microbial reduction of As(V) and/or Fe(III) and associated solid phase transformations require a 

supply of reactive organic carbon under anoxic condition (BGS/DPHE, 2001; McArthur et al., 

2001, 2004). These generally follow the mineralization of organic carbon in the subsurface 

driven by the microbial respiration of O2, the reduction of NO3
− to NO2

− and eventually N2, and 

the reduction Mn-oxides to dissolved Mn2+ (Olson et al. 1981; Chappelle et al., 1987; Lovley et 

al., 1990). Subsequent steps as such the reduction of Fe(III)-oxides to soluble Fe2+, SO4
2− to S2−, 

and production of CH4 by methanogens and/or acetate fermentation often appear to co-occur in 

Bengal basin aquifers. More recently, Achaea catalyzed Fe mediated anaerobic oxidation of CH4 

has been postulated as a viable mechanism for the release of trace metals and/or metalloids in 

groundwater (Ettwig et al., 2016), which could potentially facilitate direct Fe(III) reduction and 

release As in Bangladesh groundwater with low SO4 levels (Ravenscroft et al., 2009). On a 

regional scale, the shallow groundwater of Bangladesh is elevated in dissolved CH4 of biogenic 

origin (Ahmed et al. 1998a; Harvey et al., 2002). 

1.3. Anthropogenic influence on As pollution 

1.3.1. Hydrological consequences of pumping 

Massive pumping of groundwater could potentially exacerbate the magnitude and extent of As 

contamination in Asian megadeltas, although the extent to which it has is still debated (Michael 

& Voss, 2008; Mukherjee et al., 2011; Winkel et al., 2011; Burgess et al., 2012; van Geen et al., 

2013; Stahl et al., 2016; Knappette et al., 2016; Khan et al., 2016; Postma et al., 2017). The two 

major human induced hydrologic perturbations in the Bengal Basin are typically shallow 
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irrigation pumping for growing rice and deeper groundwater abstraction for municipal water 

supply. Widespread shallow irrigation for growing rice is the main consumer of groundwater in 

rural Bangladesh since 1970s (Shamsudduha et al., 2011). Groundwater irrigation for Boro rice 

requires the rice fields to be submerged and require about a meter of water during the dry season, 

causing a drop in groundwater level that is usually but not always compensated by recharge 

during the monsoon (Ahmed, 2011). The municipal supply of groundwater is primarily met from 

low-As, deep Pleistocene aquifers in Dhaka metropolitan City, but overexploitation has caused 

groundwater levels to drop at a staggering rate of about 3 m/year (IWM & DWASA, 2011; 

Ahmed, 2011; Knappette et al., 2016; Khan et al., 2016). Deep groundwater meets about 90% of 

the current municipal supply for ~10 million City dwellers (DWASA, 2008) at a rate of 1.9×106 

m3/day (DWASA 2012) mainly through DWASA installed production wells tapping the Dupi 

Tila aquifers. Last several decades of overexploitation dewatered the upper Dupi Tila aquifer 

(Ahmed et al., 1999; Hoque et al., 2007), increased vertical leakage from polluted surface water 

bodies (Hassan et al., 1999), and gradually expanded the pumping cone of depression in 

adversely As-affected regions well beyond the urban periphery (Knappette et al., 2016; Khan et 

al., 2016). The expanding cone of depression around Dhaka has also started to limit access to 

groundwater with surface-mounted hand-pumps. 

1.3.2. Geochemical consequences of pumping 

The demands from both shallow and deep aquifers must have been compensated to some extent 

by recharge from surface water bodies (e.g. rivers, ponds) and may have enhanced a flux of 

reactive carbon from these sources that could have triggered additional release of As to 

groundwater (Harvey et al., 2002; Polizotto et al., 2005; Datta et al., 2009; Neumann et al., 2010; 

Lawson et al, 2013; Mihajlov et al., 2016; Desbarats et al, 2014; 2017). For instance, irrigation 
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pumping for growing rice could be expected to flush As from the shallow aquifer over time 

(BGS/DHPE, 2001; Harvey et al., 2003; McArthur et al., 2004; Harvey et al., 2006; Stute et al., 

2007; van Geen et al., 2008; Shamsudduha et al., 2015). The magnitude of shallow aquifer 

contamination will then depend on the rate at which recharge water entrains and accumulates 

(newly) mobilized As along the flow path. The shallow recharge rate will rely on the presence or 

absence of conductive (permeable) layers (e.g. sand) at the surface (Aziz et al., 2008; Weinman 

et al., 2008). Over time, recharge low in As will continue to replace high As shallow 

groundwater (Stute et al., 2007; van Geen et al., 2008) and high As groundwater irrigated soil 

will continue to accumulate As (Meharg & Rahman, 2003). At the same time, shallow irrigation 

pumping could potentially increase the input of fresh reactive from near surface environments 

(e.g. sedimentary peat layers, ponds). This accelerated flux could drive reductive dissolution of 

Fe oxides and increase the scale of As pollution (Harvey et al., 2002; Neuman et al., 2010; 

Plizotto et al., 2005). These opposing consequences of human perturbation may have contributed 

to the complex spatiotemporal distribution of dissolved As in shallow aquifers of Bangladesh. 

In spite of these potential perturbations, the relatively stable groundwater composition of the 

deep (>150 m) aquifers with typically low As have provided a sustainable mitigation option in 

many regions of the Bengal Basin (Ravenscroft et al., 2013, 2014, 2018; Mihajlov et al., 2016). 

However, as groundwater demand in Dhaka City is likely to increase in the foreseeable future, 

the Dhaka cone would continue to grow beyond the City limits and the likelihood of shallow 

high As/DOC groundwater intrusion to the deep aquifer would rise in response to an increase in 

lateral/vertical head gradients. The most affected regions will be the rural areas of Bangladesh 

where the deeper Plio-Pleistocene low-As aquifer is overlain by As contaminated shallow 

groundwater.  
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1.4. Predicting As transport 

Basin scale groundwater flow models with simulated physical heterogeneity (Michael & Voss, 

2008) indicate that preferential transport of As could contaminate the deep low-As aquifers 

under the current Dhaka pumping scenario (Khan et al., 2016).  Similar models are utilized with 

chemical heterogeneity (differences in As sorption) to evaluate the spread of As contamination 

with respect to groundwater flow (Michael & Khan, 2016). The sustainability of deep low-As 

aquifers under enhanced flow rate, therefore, will primarily depend on the geologic (physical) 

distribution of sedimentary facies (sand and clay), sediment adsorption capacity (Radloff et al., 

2011; van Geen et al., 2013) and future groundwater abstraction practices (Michael & Voss, 

2008). For example, under the current pumping scenario, an assumed As partition coefficient 

(KD) of only 1.2 L/kg would delay the migration of shallow As for thousands of years when only 

domestic pumps draw deep groundwater whereas the same model predicts shallow water 

intrusion in <1000 year if irrigation water were also drawn from deep water resources (Michael 

& Voss, 2008; Radloff et al., 2011). 

1.5. Organization of this thesis 

The over-arching goal of my research has been to identify sources, transport pathways, and sinks 

of As to groundwater in perturbed hydrologic systems. I examined how anthropogenic activities 

such as intensive groundwater pumping for irrigation and municipal supply may affect the 

subsurface chemical environment, altering groundwater geochemistry and the magnitude of As 

contamination. The change in the distribution of As in response to a shift in water use is 

investigated over a time scale of minutes to thousands of years and spatial scale of centimeters to 

tens of kilometers on the basis of field observations and model predictions. The study area is 

located in Araihazar, the most densely populated region of Bangladesh, perturbed by shallow 
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irrigation pumping as well as deep, Dhaka pumping. The area is located in a geologically 

transitional zone, providing an unique outset for geoscientists and biomedical researchers alike to 

track how pumping induced changes influence the heterogeneous distribution of As and how this 

evolution has impacted human health. 

In Chapter 2, I exploit a unique data set of two large well testing campaigns conducted a decade 

apart in the same 25 sq. km area to determine the spatiotemporal variability of shallow (<30 m 

deep) As concentrations based on geostatistical analysis. After addressing the challenges of 

comparing the two data sets, I present several lines of evidence from the repeated surveys to 

challenge the notion that shallow groundwater As are necessarily stable over time. This is 

significant because changing levels in drinking water sources would influence As exposure. The 

spatial variability and assumed temporal stability of well-water As concentrations among 

neighboring shallow wells in the study area has a leading As avoidance by well switching and 

sharing, but this practice may not be sustainable if well concentrations are less stable than 

previously recognized. Both long-term and short-term variations in As were assessed and the 

observed changes are attributed to widespread irrigation pumping for growing rice.  

Chapter 3 of this thesis examines the extent to which adsorption of As delays transport relative 

to groundwater flow. To understand the potential differences in As retention for different 

sediments, I conducted a 3 weeklong field column experiment with both Holocene gray sand and 

Pleistocene orange sand under controlled conditions. The novelty of my experiment lies in the 

use of unaltered shallow groundwater directly from a well to elute cored sediment columns 

collected and maintained under anoxic condition in the field. Contrary to the widely held belief 

that Fe(III)-dominated Pleistocene sands sorb more As than Fe(II+III) sands, the results indicate 

that As retardation is comparable in the two types of sediment. Adsorption was kinetically 
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limited under the conditions of the experiments and could be explained by a unique set of rate 

constants derived from a 1D numerical solute transport model. Although the main purpose of the 

experiment was to compare As sorption between two major types of aquifer sands, the columns 

also underwent biogeochemical transformation in response to iron and sulfur reduction at the 

later phase that affected As partitioning. These changes were quantified using synchrotron-based 

Fe and As K-edge X-ray absorption spectral analysis. 

Chapter 4 presents a detailed hydrogeological investigation based environmental tracers and 

isotopic analyses to assess the vulnerability of low-As intermediate (40-75 m deep) Pleistocene 

aquifers under the influence of municipal (Dhaka) pumping across a 3 sq. km area. The 

sustainability of drawing low-As water from this intermediate aquifer is important because rural 

Bangladeshis exploit the aquifer widely as a low-cost alternative to deeper, more expensive wells 

that are typically installed only by the government. The study was motivated by the repeated 

failure of a community well tapping the intermediate aquifer for which As concentrations 

increased over time. This chapter explores two possible hydrologic pathways of As 

contamination of safe aquifers located just below the interface between generally contaminated 

Holocene aquifer and typically low-As Pleistocene aquifers. The first considers the role of 

recharge windows (breaks in clay aquitard) as potential conduits for the intrusion of shallow 

groundwater elevated with As/DOC/CH4 to the Pleistocene confined (clay capped) aquifer in the 

face of massive depressurization at depth due to Dhaka pumping. The second pathway considers 

the role of the clay aquitard itself as a potential source of reactive carbon that had driven the 

release of reduction of Fe oxides and release of As over geologic timescales, and a process that 

may have been accelerated more recently by Dhaka pumping. A 3D numerical groundwater flow 

model was constructed with boundary conditions derived from existing reference heads to 



	 10	

explain the past, present, and future As pollution scenarios. 

The field-driven research contained in this thesis is representative of the current status of our 

understanding of the distribution of As in groundwater and its sensitivity to hydrological 

perturbations. The approach combines fairly routine field observations conducted over a long 

time or over large areas with some of the most sophisticated spectroscopic techniques available 

today.  I hope the outcome will be of interest to geochemists, geologists, hydrogeologists, and 

water resources managers investigating the As crisis in Bangladesh and similar fluvio-deltaic 

settings in S/SE Asia where reductive dissolution of iron oxide is the dominant As release 

mechanism. Each of the three chapters is organized as a separate article and has its own abstract 

and references. 
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Figure 1-1. Population at risk from arsenic poisoning in the S/SE Asian (after Ravenscroft 

2007). 
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Figure 1-2. A schematic diagram showing how complete dissolution of even a small amount of 

solid phase As (1 mg/kg) may result very high dissolved As levels (7,950 ug/L) in Bangladesh 

aquifers (after BGS/DPHE, 2001). 
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of dissolution/precipitation and sorption reactions. Clays
may also be important.

Groundwater chemistry is particularly sensitive to any
shifts in the sediment chemistry because of the very large
solid/solution ratios found in aquifers (Figure 12.7). For
example, assuming a porosity of 25% and a crystal density
of the aquifer minerals of 2650 kg m–3 (typical of quartz)
gives a solid/solution ratio of 7.95 kg L–1; a porosity of
30% decreases this to 6.2 kg L–1 which is still very large. If
an aquifer has a porosity of 25% and the sediment contains
say 1 mg As kg–1 of labile As, the complete dissolution of
that As would lead to a groundwater As concentration of
7950 µg As L–1, far in excess of any drinking water stand-
ard. The oxalate-extractable As in Bangladesh sediments
can exceed 1 mg kg–1 (see Table 11.14, Chapter 11) and
while all, or even most, of this may not be labile, it demon-
strates the sensitivity of the groundwater to changes in
sorption. It only takes a small shift (less than 0.01 mg kg–1)
in the amount of labile As from the solid phase to the solu-
tion phase to give a significant groundwater As problem.
These shifts are too small to be reflected accurately in
‘total’ sediment As determinations or even in oxalate-
extractable determinations. Analysing sediments for total
As is not necessarily a reliable indicator of a potential
groundwater As problem.

From the calculations given above, groundwater pH
increases in the presence of Hfo could provide one route
for the formation of high As groundwaters. This is unlikely
to be the driving force in Bangladesh since groundwater
pH values are invariably near neutral. As discussed earlier,
other processes giving rise to desorption of As are also
possible (Table 12.1) and it is useful to explore some of

these in a semi-quantitative way in order to estimate the
magnitude of the changes expected and the relative sensi-
tivity of these changes. The As-rich groundwaters fre-
quently contain high phosphate concentrations and high
bicarbonate concentrations, for example. It is often diffi-
cult to separate ‘cause’ from ‘effect’ since desorption reac-
tions will result in the partial desorption (and increase in
solution concentration) of many sorbed ions and so it can
be difficult to identify the ‘driving force’ controlling the
desorption reaction amongst the many correlated varia-
bles.

In order to make the calculations relevant to the Bang-
ladesh situation, we assume the following scenario for the
formation of high-As groundwaters. Many of the details
are as yet unsubstantiated and so at present this is just a
hypothesis but it is plausible and is consistent with existing
data.

(i) Freshly-formed Hfo is formed in soils and in river
sediments by the oxidative weathering of primary minerals
such as biotite. As a result of soil erosion and the rework-
ing of older sediments, this Hfo is slowly transported
down the river. Formation of Hfo as opposed to the more
crystalline iron oxides, will tend to be favoured because of
numerous phases of precipitation and dissolution as a
result of successive redox cycles following burial and expo-
sure of the sediments. In this way, the iron oxides are con-
stantly kept ‘young’ (McGeehan et al., 1998). Hfo tends to
be most abundant in young soils and sediments and
because it is colloidal in nature, will tend to be quite readily
transported. It will therefore be concentrated in the lower
parts of the delta, along with other fine-grained material.

(ii) While in the river bed, this Hfo sorbs As from the
passing river water. We assume for the sake of the calcula-
tions that this As is present entirely as As(V) but this is
unlikely to be strictly the case. As we have shown above,
substantial amounts of As(V) can be accumulated on the
sediment by sorption, even while the As concentration in
the river water is small. This is a consequence of the high
affinity of Hfo for As(V). The concentration of As in the
river water will reflect the various As sources upstream,
including mineralised areas, and the extent of adsorption
by the upstream sediments. The river water will approach a
steady state concentration of As. The pH of the river water
will primarily depend on whether there are free calcium
and magnesium carbonates in the sediments, on the effect
of biological activity and the degree of reaeration. In Bang-
ladesh, the river pH is probably about pH 7.5–8.0 (Datta
and Subramanian, 1997) but could be lower in carbonate-
free areas. The lower the pH, the greater the sorption of
As(V) by the sediments is likely to be.

(iii) River sediment is continuously being deposited
either as overbank deposits during times of flood or at the
distal end of the delta as the delta advances. As soon as the
sediment is buried, dissolved oxygen will be depleted from
the pore water by microbial oxidation of the small
amounts of fresh organic matter present in the sediments.
When the sediment is buried beyond a certain depth, the
rate of oxygen diffusion from the surface will be insuffi-
cient to maintain dissolved oxygen in the water and the
pore water and sediments will become anaerobic. This
change occurs at the redox boundary which in many natu-
ral environments is quite sharp. Further oxidation of

As in
groundwater
7950 g L---1

As in sediment
1 mg kg---1

75% sand
(by volume)

25% water
(by volume)

dissolve/
desorb

Figure 12.7.  Schematic diagram showing how the consequences of
a high solid/solution ratio on pore water arsenic concentrations.
Complete dissolution of even small amounts of arsenic (1 mg kg–1

here) from a sandy Bangladesh aquifer sediment would give rise to
extremely high concentrations of arsenic in the groundwater.
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Figure 1-3. Schematic diagrams showing the distribution of Holocene gray sediment (pre-Last 

Glacial Maxima (LGM) about 20 ka) and Pleistocene orange sediments (post-LGM) in a basin 

scale (after McArthur et al., 2018). Also shown a cross-section of outcropping low-As aquifer in 

the capital of Bangladesh and its patchy occurrence further away from the Plio-Pleistocene 

uplifted Terrace (after Hoque et al., 2011). 

 

  

(location dependent) and brown above it. The sands are brown
because they contain Fe(III)-oxyhydroxides that resulted from
a long period of oxidative weathering during the period of
declining sea-level between 125 and 18 ka.9,18,26,27 The brown
sand is capped by a hard, brown, lateritic clay, that is recognized
as the LGMP. The top of the LGMP is at a median depth of 15
mbgl (mean depth 15.9 mbgl) and the median thickness is also
15 m (mean thickness 18.1 m). Overlying the LGMP are
floodplain silts and clays, with widespread peats between 3 and
5 m depth, and at 12 m depth.

Figure 2. Composite lithological section compiled from 109 borehole logs used for Figure 5 (data from ref 38) together with a histogram of the
number of wells sampled for this study compiled into 10 m bins using depths to midscreen.

Figure 3. Modeled depth to the water table, relative to mean sea level,
of groundwater beneath Kolkata outlining cones of depression caused
by abstraction of groundwater for public supply. Model of ref 79;
Table 2 of that reference gives measured water levels used to calibrate
the model.

Figure 4. Schematic cross-section E−W through the Bengal Basin,
showing, not to scale, the approximate distribution of pre- and post-
LGM sediments. Pollution of groundwater by As is confined almost
exclusively to post-LGM sediments. Updated from ref 29.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.7b04996
Environ. Sci. Technol. 2018, 52, 5161−5172

5163

anisotropy across a range of scales (Michael and Voss, 2009b;
Hoque, 2010). The structure and geological evolution of the BAS
determines the hydrogeological contexts of the low-As groundwa-
ter environments. The objective of this paper is to estimate the
spatial extent and depth range of the low-As groundwater environ-
ments across Bangladesh, by mapping their geomorphological and
geological associations within the BAS.

2. Basin geomorphology and geology of the Bengal Aquifer
System (BAS)

The Bengal Basin comprises most of Bangladesh and parts of
West Bengal, India (Fig. 1), incorporating the Holocene–Recent

floodplains of the Ganges, Brahmaputra and Meghna rivers and
their tributaries and distributaries. Isolated Plio-Pleistocene inliers
(Morgan and McIntire, 1959; Umitsu, 1993; Goodbred and Kuehl,
2000), with 10–30 m thickness of clay residuum at the surface,
form elevated intra-basinal tracts (the Barind Tract and the Mad-
hupur Tract) 30–50 m above mean sea level (MSL), and remnant
Plio-Pleistocene sediments also occur along the basin margins
(Fig. 1).

Regionally, the relatively high topographic gradient (0.35–
0.25 m/km) of the alluvial fans in the north of the basin grades to
a more gently-sloping (0.05–0.01 m/km) fluvial regime in the cen-
tral regions and ultimately to the almost flat (0.01–0.001 m/km) ti-
dal-delta setting in the south where ground elevation is <1 m

Fig. 1. (a) Bengal Basin: geography, major landforms, surface geology and extent of As-affected areas. (b) Aquifer hydrogeological framework – a conceptual bi-modal (sand–
clay) representation of the aquifer environments in the Bengal Basin. Note that oxic (brown) and reduced (grey) lithologies of equivalent grain size have similar hydraulic
properties (after Burgess et al., 2010). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

M.A. Hoque et al. / Applied Geochemistry 26 (2011) 614–623 615
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Figure 1-4. Schematic diagrams showing three possible As release pathways in the anoxic 

groundwater of Bangladesh through electron accepting microbial processes driven by the 

oxidation of organic carbon (after Oremland & Stolz, 2005).  

 

become more crystalline over time, they have a decreasing
sorptive affinity for either As(V) or As(III) [8]. When such
diverse and divergent possibilities are superimposed on
the complex hydrology of the alluvial aquifers of Bangla-
desh [9], it becomes quite difficult to sort out which
processes are of primary importance.

On-site hydrochemical investigations of Bangladesh
aquifers have led to the hypothesis that the mobility of
arsenic is primarily controlled by the availability of
organic matter, which drives this process forward.
Although this hypothesis has not been rigorously proven,
it certainly has guided recent thinking. It is not clear if
these organics are derived from decomposing buried peat
beds [9,10] or from hydrologic seasonal drawdown of
agricultural and other organic wastes from the surface
[11]. Regardless of the source, if abundant labile organic
matter is present to be degraded (i.e. oxidized to CO2) then
there are always prokaryotes around to do the job. But
what role do these prokaryotes play, if any, in the process
of arsenic mobilization? Here the story gets even more
complicated.

Microbe–mineral experimental models
Several laboratory-based studies have been conducted
with minerals and sub-surface materials, with or without
pure cultures of anaerobes to better understand these
dynamics. These are conceptually illustrated in Figure 2.
Because iron is very abundant in sediments, and because
Fe(III) strongly adsorbs As(V), then its biochemical
reduction to the soluble Fe(II) state by iron-respiring
bacteria should release As(V) into solution. This was
demonstrated [12] in the reductive attack of the mineral
scorodite (FeAsO4$2H2O) by the iron-reducing bacterium
Shewanella alga (Figure 2a). However, if the bacterium is
a DARP, the release of As(III) occurs rather than As(V).
Ahmann et al. [13] showed As(III) release mediated by
Sulfurospirillum arsenophilum from an initial solid phase
consisting of ferrous arsenate (Figure 2b). But what
happens when As(V) is sorbed to alumina? In this case,
the surface As(V) molecules were susceptible to bio-
reduction, and because alumina has no adsorptive affinity
for As(III), it is released into the aqueous phase
(Figure 2b). However, because the bacterium used
(Sulfurospirillum barnesii) cannot reduce Al(III), any
As(V) located in the interior of the alumina matrix is
unavailable for further bio-reduction [14]. But what if the
DARP is also an iron-reducer (most DARPs can use a
variety of electron acceptors)? In this instance, Sulfuro-
spirillum barnesii could release bothAs(III) and Fe(II) from
ferrihydrite that was initially co-precipitated with As(V)
(Figure 2c). An interesting sidelight was that most of the
As(III) formed was re-adsorbed by the un-reacted Fe(III)
and only a fraction actually went into solution. If given
enough electron donor, however, S. barnesiiwould break up
the internal ferrihydrite matrix, eventually liberating most
of the material into solution as Fe(II) and As(III).

No harm from ARMs
What happens when the bacterium is an ARM? Curiously,
much more is known about the phenomenon of As(V)
resistance than As(V) respiration because ARMs were

discovered earlier, and have therefore been studied longer
than DARPs. Although Arr is either membrane-bound
with the catalytic subunit facing the periplasmic space
[15] or free in the periplasm [16], ArsC is located in the
cytoplasm and thus can only reduce aqueous As(V) that
has entered the cell. For example, strain CN8, a
fermentative ARM, was capable of reducing aqueous
As(V) but incapable of attacking solid-phase Fe(III) or
any As(V) sorbed onto the Fe(III) [17]. Importantly,
DARPs can reduce either aqueous or solid-phase As(V).
Recently, work with Shewanella strain ANA-3, an organ-
ism that is both a DARP and an ARM [18,19], demon-
strated that only Arr was involved in reducing solid-phase
As(V) [20], because mutants deficient in arsC [the gene
encoding the cytoplasmic resistance As(V) reductase]
were still capable of bio-reduction of solid-phase As(V).
It is probable that only DARPs and Fe(III) reducers
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Abstract 

The contamination of millions of shallow wells across South and Southeast Asia with geogenic 

arsenic (As) is spatially very heterogeneous, with concentrations often vary 10-100 fold between 

neighboring wells. The most effective way of reducing As exposure, testing wells in the field and 

switching to a nearby well on the basis of these tests, takes advantage of this variability. The 

approach has been brought into question, however, by increases in As concentrations 

documented in a limited number of shallow wells. To evaluate the extent and magnitude of such 

variations, we compare here the distribution of As in aquifers <30 m deep inferred from (i) two 

blanket testing campaigns of several thousand household wells conducted a decade apart within 

the same 25 km2 area, (ii) concentrations of As for a subset of 271 household wells in the same 

area that could be unambiguously re-identified on three occasions over 15 years, and (iii) more 

detailed time series of As in 18 shallow monitoring wells over the same period. This unique 

combination of observations consistently shows a modest decline in As concentrations at the 

intermediate to higher end of the range attributed to flushing of the shallow aquifer by enhanced 

recharged induced by irrigation pumping. There is some indication also of a small rise in lower 

As concentrations, reinforcing the need for continued well testing. 
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2.1. Introduction 

Millions of people across South and Southeast Asia are chronically exposed to toxic As levels by 

drinking water from contaminated shallow wells1. The most affected country is Bangladesh, with 

an estimated population of 40 million people still exposed as of 2013 to groundwater As levels 

above the World Health Organization (WHO) guideline of 10 µg/L2,3. Well testing and the 

installation of deep community wells have initially reduced exposure by encouraging households 

to switch their consumption to these low-As wells but these efforts have stagnated4–6. The 

present study addresses the sustainability of drinking from shallow (<30 m) low-As wells to 

reduce exposure following an anticipated new well testing campaign.  These shallow aquifers are 

tapped by a majority of the 10 million household wells in Bangladesh and by most irrigation 

wells in Bangladesh.  

 

Previous testing has revealed the highly heterogeneous spatial distribution of As in groundwater 

of Bangladesh, both laterally and with depth3,7–9. This heterogeneous distribution complicates 

prediction but also often makes it practical to share a safe well within walking distance, provided 

As concentrations do not fluctuate over time. Limited monitoring over time has shown that, by 

and large, concentrations of As in groundwater are stable, even in shallow aquifers3,10–12. For 

reasons that are not fully understood, there is a small but significant increase in As 

concentrations as a function of well age1,8,13,14. More recently, McArthur et al.15 demonstrated 

with 8 years of monitoring of a limited number of wells in a neighboring portion of the Bengal 

basin in India that As concentrations in wells near geologic transitions can increase or decrease 

over time. It is presently unclear to what extent such observation challenges the notion that As 
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concentrations in a well will remain stable over time in spite of massive perturbations of 

groundwater flow patterns in the region by irrigation pumping to grow rice.   

 

Elevated As concentrations in shallow groundwater pre-date the onset of groundwater 

pumping3,16, but irrigation pumping for growing rice has without a doubt perturbed the 

hydrology of shallow aquifers throughout the Bengal basin1,17–19. Over the course of a year, 

irrigation pumping during the dry winter season is compensated by recharge at the beginning of 

each summer monsoon. This means the residence time of groundwater relative to recharge has 

been shortened by irrigation pumping from centuries to decades. It is still unclear if and how this 

perturbation impacted the complex set of biogeochemical interactions that regulate groundwater 

As concentrations in shallow aquifers. On one hand, recharge accelerated by irrigation pumping 

could gradually flush As out of shallow aquifers, at the cost of accumulating As in paddy 

soil14,20–22. Depending on the extent to which exchange occurs between groundwater and the 

much larger pool of As in aquifer sediment, several decades of irrigation pumping could already 

have considerably reduced average As concentrations in shallow aquifers17,23,24,36. At the same 

time, an inflow of reactive dissolved organic carbon induced by irrigation pumping could have 

triggered and additional release of As to groundwater and possibly an increase in 

concentrations25–27. In this study, we document the net impact of these factors on the basis of two 

surveys of thousands of wells in the same area conducted in 2000-01 and 2012-13. Because most 

of the wells originally surveyed were replaced by the time of the second survey, we complement 

these results with data from repeated sampling of a smaller subset of wells that remained in 

place. (Fig. 2-1). 
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2.2. Evolution of the spatial distribution of As in groundwater  

The first large set of well-water samples was collected for laboratory analysis in 2000-01 from 

all 4,574 shallow (<30 m) wells within a 25 km2 portion of Araihazar upazila, Bangladesh. A 

second round of blanket testing of 8,229 shallow wells using field kits was conducted in the 

same area in 2012-13. The increase in the number of shallow wells installed in the study area 

reflects the continued popularity of tubewells as a source of drinking water. The lifetime of a 

well is on the order of a decade and a majority of wells was therefore replaced during this 

interval6. Many of the metal tags attached to wells to re-identify them also fell off over time even 

if the well was not replaced. A direct comparison of As concentrations is therefore possible only 

for a subset of 271 private shallow wells that remained in use from 2000-01 through 2014, and 

again in 2015 when they were sampled a third time. We also report here more detailed changes 

in As concentrations for a set of 18 shallow wells purposely installed to monitoring the aquifer at 

the beginning of the study. We have to rely on spatial averaging of As concentrations to compare 

the larger data sets; the comparisons are based on resampling the same wells, albeit a smaller 

number of them. 

 

The field kit is very useful for distinguishing wells that meet the WHO guideline from wells with 

an As content that exceeds it by an order of magnitude or more, but the kit misclassifies a 

considerable proportion in the intermediate range relative to Bangladesh standard of 50 µg/L for 

As in drinking water6.  In spite of this limitation, the data show that the villages that were 

generally low in As in 2000-01 still were in 2012-13 and the same applies to high-As villages or 

villages with a very mixed distribution of As (Fig. 2-1a-b). After replacing the field kit data with 

laboratory measurements using a Monte Carlo approach (Supp. Mat. Fig. 2-S1), the data indicate 
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an increase from 15% in 2000-01 to 20% in 2012-13 in the proportion of wells that meet the 

WHO guideline of 10 µg/L of As. The proportion of wells in the range of 50-100 µg/L also 

increased from 20 to 25%. However, the proportion of wells containing >100 µg/L As declined 

from 40 to 30% over the same period (Fig. 2-S2a, c). The kit data, overall, therefore show a 

lowering of exposure, although far from sufficient to mitigate the serious health consequences of 

drinking water with such still high As levels on a daily basis.  

 

To compare the two large-scale surveys spatially, the study area was divided into 348 blocks 300 

m by 300 m in size (Fig. 2-1a-c). The block size was set to half of the spatial autocorrelation 

distance28 for As in the study area (Fig. 2-S4). Both smaller and larger block dimensions lead to 

similar conclusions (Fig. 2-S6). Average As concentrations for each block and the entire area 

were determined by block kriging, a statistical method for weighing spatial data29,30. Kriging 

ensures that the larger numbers of wells that were installed in low-As areas compared to high-As 

areas do not disproportionally contribute to the spatial averages (Fig. 2-S2b, d & Fig. 2-S8). The 

kriged results for the entire study area indicate a mean As concentration of 110±32 µg/L 

(±standard error of the mean) in 2000-01 and 99±21 µg/L in 2012-13. The 11% decline in mean 

As concentration over the decade is statistically significant according to a modified paired-t-test 

(see Methods). 

 

When pairwise block averages are compared, almost a third of the blocks (116 of 348) show 

significant differences between groundwater As levels over a 10-year period. The changes are 

asymmetric, with blocks showing a decrease twice as common a blocks showing an increase 

(Fig. 2-3). The prevalence of blocks showing a decrease in As concentration was confirmed by 
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examining the histograms of observed differences. To do so, histograms of the orthogonal 

distances of the block average As data from the 1:1 line (unchanged) were determined. These 

indicate that the data that fall below the line (histogram, hb) are drawn from a wider distribution 

compared to the data above the line (ha) (Fig. 2-S7). We employed a grid search method42 to 

determine the most probable distribution i.e. the expected or theoretical histogram (hT) and 

compared that with the two observed histograms constructed from orthogonal distance analyses. 

Comparison of ha, hb, and hT confirm with 99.99% confidence that ha and hb did not come from 

the same distribution; i.e. the scatter about the 1:1 line is statistically significant. Similarly, a 

weighted least-squares regression that minimizes residuals by considering errors in block 

average As concentrations in 2000-01 and 2012-13 yields a slope of 0.65 with 95% confidence 

intervals of 0.58-0.72. The intercept of this regression is only slightly positive at 17 µg/L 

(95%CI of 17-30 µg/L).  

 

We rely on the data from individual wells that were analyzed in laboratory on both occasions to 

address some of the limitation of the large data set. A subset of 271 household wells were tested 

in 2000-01 were sampled again in 2014 and 2015. The one-year interval between the last two 

sampling constrain the changes in As concentrations that can occur over relatively short time 

scales and provides a reference for the longer-term changes. Taking into account analytical errors 

in both the 2014 and the 2015 in a weighted regression, the slope of a regression of the two data 

sets is indistinguishable from one (0.93-1.00 95%CI). There are some outliers even for this short 

interval, which we attributed to actual changes in groundwater composition rather than 

measurement or sampling error. For the same set of wells, the slope of the weighted regression of 

As concentrations in 2015 as a function of 2001 is 0.89 (0.83-0.94 95%CI). The spatial average 
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of As concentration for the 271 wells determined by block kriging also declines by 10%, from 

100 µg/L in 2000-01 to 90 µg/L in 2015, which is also significant based on a paired t-test 

(Methods).  

 

The purposely-installed monitoring wells provide the most detailed perspective of changes in As 

concentrations over time, albeit for only 18 wells. In spite of short term variability in some of the 

records, the data show gradual increases in As concentrations for 7 wells, 6 of which started at 

As concentrations below the areal mean of 100 µg/L. Conversely, 5 wells show a decline in As 

concentrations, 3 of which with initial As concentrations above 100 µg/L. The remaining 6 wells 

do not show systematic changes in As concentrations over time (Fig. 2-4).  

 

In summary, the two large blanket testing campaigns and the 271 wells resampled indicate a 10% 

decline in the overall content of As in the shallow aquifer. For reasons that are presently unclear, 

the slope of the block-to-block comparison of 0.65 of 2000-01 and 2012-13 averages is 

considerably below the slope of the well-to-well comparison of 0.87. From a public health 

perspective, perhaps most significant is that out of the 8 monitoring wells that initially met the 

local standard of 50 µg/L As in drinking water, 6 wells indicate a slight decrease in concentration 

and 6 an increase in As that also led to exceeding the local standard in 3 cases. This suggests that 

the rise in block averages at the low end of the As spectrum cannot be ignored, despite the 

limitations of the field kit used for the second round of testing. 
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2.3. Impacts of irrigation pumping 

Concentrations of As generally increase with depth in shallow aquifers (Fig. 2-S9), but the 

observed changes in As cannot be explained by a systematic shift in the depth at which wells 

were re-installed (Fig. 2-S10). Accelerated recharge due to irrigation pumping is a more 

plausible explanation for the modest decline in shallow groundwater As concentrations 

documented in the study area. More than 85% of the groundwater pumped in Bangladesh is used 

for Boro rice cultivation during the winter dry season34. In Araihazar, a dense network of ~10 

irrigation wells/km2 extracts 100 times more water than is withdrawn with hand-pumps for 

domestic consumption31. Growing Boro rice under flooded conditions requires ~1 m/yr of 

groundwater1,19,32 and rice paddies cover approximately 50% of the study area (Fig. 2-S12). This 

water is derived primarily from a 30 m-thick shallow aquifer (Fig. 2-S11), that contains 7.5 m of 

water assuming 25% porosity. Irrigation pumping of 0.5 m/yr across the area is equivalent to an 

annual withdrawal of ~7% (0.5 m/yr divided by 7.5 m) of groundwater from the shallow aquifer, 

corresponding to a residence time of only 15 years. Irrigation pumping does not deplete shallow 

aquifers because of annual recharge during the summer monsoon. The estimated recharge rate is 

consistent with the average recharge rate of 0.5±0.4 m/yr measured over this period at 9 sites 

within the study area using the tritium-helium dating method20,33 (Fig. 2-S13).  

 

A simple flushing model shows that accelerated flushing of the shallow aquifer without any 

exchange of As between groundwater and aquifer sediment would result in a decline in average 

As in the shallow aquifer much larger than indicated by both the large scale surveys and the 

individual wells (Fig. 2-5). Assuming that recharged surface water contains no As, the predicted 

decline to 50% of the average concentrations observed in 2000 clearly did not occur by 2010. 
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The same model also implies that As concentrations in shallow groundwater of the area would 

have had to be considerably higher in 1990, which is around the time that most farmers started to 

pump groundwater for irrigating rice paddies during winter. A more realistic model takes into 

account that the pool of As in the aquifer sediments is considerably larger than in groundwater 

and that exchange between the two pools be considered at equilibrium and determined by an 

empirical distribution coefficient which is independently and reasonably well constrained21. This 

modified model predicts a decline in average As for the shallow aquifer that is consistent with 

the observations and, more generally, a much more gradual since irrigation pumping started in 

earnest (Fig. 2-5). 

 

Flushing of the shallow aquifer by irrigation pumping provides a plausible explanation for the 

decline in average As but not the observed increase in some block averages and some individual 

wells. One possibility is that enhanced recharged supplied more reactive carbon to stimulate the 

microbial dissolution of iron oxides where much of the sedimentary As is concentrated17-18,23,25-

27. Another possibility is enhanced lateral mixing and the resulting homogenization caused by 

asynchronous irrigation pumping18. This mixing scenario is consistent with a trend in block-

averaged As data showing that concentrations have tended to increase in blocks surrounded by 

higher-As blocks and concentrations often decrease in blocks surrounded by lower-As blocks 

between 2000-01 and 2012-13 (Fig. 2-S14). The relative importance of these two processes 

causing some well-As concentrations to rise cannot be determined on the basis of the available 

data. 
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2.4. Implications for future exposure and mitigation 

The data presented in this study provide no reason to reconsider advice given to villagers across 

Bangladesh to drink from wells that low for As, even if the test dates to a decade ago. 

Fluctuations in groundwater As concentrations induced by irrigation pumping appear to be 

buffered to a considerable extent by exchange with a pool of As residing on the sediment. One 

implication is that the As content of wells high in As is not declining as rapidly as it would have 

without exchange with the sediment. On the other hand, exchange with aquifer sands provides 

considerable protection to the subset of wells that are low in As. The main reason the rural 

population of Bangladesh continues to be exposed is not that concentration of As have increased 

over time but because the vast majority of wells have been reinstalled since the last blanket 

testing campaign that ended over a decade ago and those reinstalled wells have never been 

tested6. The recent allocation of funds by the government of Bangladesh to a new blanket testing 

campaign is therefore a very welcome development. 

 

2.5. Method Summary 

Groundwater samples from the original survey of 2000-01 were analyzed a first time for As in 

the laboratory by graphite furnace atomic absorption (GFAA) using a method with a detection 

limit of 5 µg/L and overall reproducibility of about 10%8. A subset of 608 samples containing up 

to 5 µg/L As was subsequently re-analyzed by inductively coupled plasma mass spectrometry 

(ICPMS) to reduce the detection limit to 0.1 µg/L37. The 2012-13 blanket survey was carried out 

using the Econo-Quick field kit (Industrial Test Systems, Rock Hill, South Carolina, USA, Cat. 

No. 481298) based on visual readings of a test strip at 9 discrete levels6. The kit readings were 

converted to equivalent laboratory concentrations by bootstrapping38 on the basis of 944 quality-
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control samples analyzed with the kit and in the laboratory (Fig. 2-S1). We used one of many 

equally probable Monte-Carlo realizations of the imputed (bootstrapped) 2012-13 ICP-MS data 

for our interpretation. The inter-calibrated As concentrations were block kriged29,30 after spatial 

structure analyses (Fig. 2-S5) using the ‘gstat’ package in R39. The block kriging method does 

not take into account measurement error43 because of computational complexity and 

unavailability of reliable source codes at this time (personal communication with Prof. Edzer 

Pebesma, Institute for Geoinformatics, University of Muenster). 

 

A total of 656 individual wells, 550 of which were shallow (<30 m), were selected for 

resampling a decade after the first survey on the basis of the ID recorded on a small tag attached 

to each pump in 2000-01, a deviation of <0.0001 decimal degrees (100 m) in latitude or 

longitude and a difference of <15 m in the recorded depth between the two surveys. In 2014, a 

subset of 357 of the pre-selected shallow wells were relocated and resampled after confirmation 

by the household of their installation date. These samples were analyzed for As by ICPMS, as 

were the corresponding 327 samples stored since 2000-01. After excluding 19 outliers (Fig. 2-

S3), a final set of 308 pairs of ICPMS measurements were retained. A subset of 271 of the 308 

wells were resampled again in 2015 and analyzed on ICPMS and used for evaluating changes in 

As for individual wells over the last 15 years. At 4 locations in the study area, a total of 18 

shallow wells (5-29 m deep) were monitored for the duration of 15 years (2001-2016). The As 

data for long-term tend analyses were also measured with ICPMS. 

 

The significance of changes in the mean As concentration of the entire area was assessed 

separately at the block level and for the individual wells using a paired- t-test after adjusting for 
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effective sample size40 on the basis of global autocorrelation. The global autocorrelation 

coefficient determined from Moran’s I statistic41 was ~0.6 for both 2001 and 2012 block average 

As concentrations and ~0.3 for both 2001 and 2014 well As concentrations. The effective sample 

size (N*) was determined by: N*[(1-I)/(1+I)]; where N is the total number of blocks or wells and 

I = Moran’s I coefficient for global autocorrelation; in the case of the blocks, N*
 = 348*0.25 = 87 

and for the individual wells, N* = 166. The modified paired t-test rejects the null hypothesis (i.e. 

no difference in the mean As concentration for the study area) at the block level (t-statistic = -

3.87; p < 0.001) as well as for resampled wells (t-statistic = -2.84; p < 0.01). 
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Figure 2-2. Changes in As concentrations in the individual wells. (a) Changes in groundwater 

As concentrations between 2015 and 2014 measured in the laboratory for 271 resampled wells. 

Significance of differences in As concentrations was established on the basis of the error 

calculated for each measurement at 3σ level using the formula: σsing = σmeas + 0.5 µg/L where the 

measurement error, σmeas = 5% of individual ICP-MS measurement. Deming regression45 on the 

individual well As data yields an intercept of 0.21 [95% confidence intervals: -0.40 & 0.82] and 

a slope of 0.95 [95% confidence intervals: 0.93 & 0.99], shown as continuous black line.	Deming 

regression minimizes the sum of distances in both the x and y direction. A continuous gray line 

shows the one-to-one correspondence. (b) As concentrations in 2015 as a function of 

concentrations in 2001 for the same 271 wells. The intercept and slope of the regression in this 

case is -0.095 [95% confidence intervals: -0.95 & 0.76] and 0.87 [95% confidence intervals: 

0.83, 0.92], respectively. 
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Figure 2-3. Changes in As concentrations at the block level. Concentrations of As in 2012-13 

averaged by kriging for 348 blocks as a function of average As concentrations in 2000-01 in the 

same blocks. The differences are color-coded according to the direction of the change and 

statistical significance determined by the overlap of standard error of the mean (i.e. square root 

of the block kriging variance). The diagonal gray line represents the one-to-one line. Deming 

regression45 shown with a darker solid line provides an intercept of 23.25 [95% confidence 

intervals: 16.8 & 29.7] and a slope of 0.65 [95% confidence intervals: 0.58 & 0.72]. 
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Figure 2-5. A flushing model of As for the shallow aquifer. The recharge rate with surface 

water free of As is increased by a factor of 10 (from 0.05 to 0.5 m/yr) in 1990. A porosity of 25% 

is assumed for the 30 m-thick shallow aquifer. A distribution coefficient of 4 L/kg21 was used for 

the case illustrating exchange of As between groundwater and aquifer sediment. The model is 

tuned to a concentration of 100 µg/L As in 2000. 
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2.7. Supporting Materials 

   
 

Figure 2-S1. Inter-calibration of laboratory and field-kit results for arsenic. Samples from a 

subset of 944 wells were analyzed with the ITS Econo-Quick field kit1 in 2012-13 and later by 

ICPMS in the laboratory2. Soon after the stipulated 10 min reaction time, test trips were 

compared by the village-health workers to the kit’s reference chart and classified visually as 

containing 0, 10, 25, 50, 100, 200, 300, 500, or 1000 µg/L As. The above box plots (black) 

display the ICPMS measurements corresponding to each of these bins on a log scale and indicate 

some overlap (the number of measurements for each bin is listed in parentheses below the 

nominal As concentration). Probability density of ICP-MS data for each bin (gray) is also shown 

with the box plots. The average concentrations measured by ICPMS value for the 

aforementioned 9 bins are: 2±1, 7±2, 20±3, 37±4, 68±6, 129±14, 188±20, 306±25, and 422±80 

µg/L As, respectively. These results confirm that the kit on average overestimates As 

concentrations in groundwater by about a factor of two above 50 µg/L As. To convert kit results 

to equivalent ICPMS measurements, each of the 8,229 kit readings was assigned an ICPMS 

concentration by bootstrapping, i.e. by random resampling with duplication of all the ICPMS 

within that bin3. The imputed ICPMS data were used for spatial analysis and comparison with 

the 2000-01 survey. 
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Figure 2-S2. Changes in the distribution of arsenic concentrations over time. (a) histograms 

of As concentrations on a log-scale for 4,574 well samples collected in 2000-01 and analyzed by 

GFAA (pink), 8,229 well samples collected in 2012-13 and analyzed with the field kit using 

averaged ICPMS data for each of the 9 bins (green), and the same 8,229 well samples using 

imputed concentrations drawn from ICPMS measurements for each of the 9 bins (blue). Area 

under each histogram normalized to one. (b) histograms of As concentrations on a log-scale for 

348 blocks within the same study area generated by block-kriging (Fig. 2-S6) for 2000-01 (pink) 

and 2012-13 (blue). (c) empirical cumulative distribution function corresponding to histrograms 

in (a). (d) empirical cumulative distribution function corresponding to histograms in (c).     
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Figure 2-S3. Consistency of laboratory measurements for well samples analyzed by GFAA 

in 2000-01 and reanalyzed by ICPMS in 2014. Samples collected within the study area in 

2000-01 and were analyzed a first time by graphite-furnace atomic-absorption (GFAA) 

spectrometry4. Samples containing up to 5 µg/L were then reanalyzed by ICPMS2. To check for 

consistency, the archived 2000-01 samples from the subset of 331 wells that were sampled a 

second time in 2014 were reanalyzed by ICPMS in 2014. The standard error for each 

measurement was calculated using the expression: σsing = √(θ2σcal
2+σmeas

2); where, σmeas is the 

absolute measurement error based on reproducibility (4 and 7 µg/L for GFAA and ICPMS, 

respectively), σcal the relative error in calibration (0.10 and 0.02), and θ is the As concentration 

for an individual sample2,4. Only 17 archived samples, shown above in red, did not meet a 

consistency criterion based on 3σ overlapping error bars for individual 2001 GFAA and 2014 

ICP-MS measurements.  
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Figure 2-S4. Spatial dependence of groundwater arsenic (As) concentrations in the study 

area. Correlograms of As indicate a positive spatial autocorrelation (spatial dependence) up to a 

distance of 600 m (h). The largest block size was created as 600 X 600 m2, followed by 300 X 

300 m2 and 150 X 150 m2. The legible grid size is <=h/2 after Hengl13. 
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Figure 2-S5. Spatial structure analysis of well-water As concentrations measured in 2000-

01 and 2012-13. Variography of 2000-01 lab-measured As concentrations (open magenta 

circles) and 2012-13 imputed lab concentrations (blue stars) with a lag spacing (h) of 50 m using 

the ‘gstat’ package5 of the R programming language. The experimental semivariograms were 

fitted with exponential model: γ(h) = C0 + C (1-exp(-h/a)); where, C0 is the nugget effect , a is 

range, and (C+C0) is known as the sill. 
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Figure 2-S6. Sensitivity of analysis to block size. Average As concentrations were calculated 

for blocks four times larger (a) 600 m X 600 m and (c) four times smaller (150 m X 150 m) for 

comparison with the main scenario (b). Whereas only minor regional patterns of changes in As 

concentration are sensitive to block size, the overall trends of rising concentrations at the low end 

and declining concentrations at high end remains the same about the 1:1 Line (gray)..The largest 

block configuration (600 X 600) was generated considering two criteria: (i) the spatial 

autocorrelation distance (Fig. 2-S4) of As in the study area as the length of each side of the 

square blocks and (ii) each block must contain tested wells from both surveys; each block of the 

largest configuration were disaggregated to produce the finer grids. 
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Figure 2-S7. Statistical test validating changes in As at the block level over the last decade. 

Overlapping density and histogram plots of the orthogonal distances from the 1:1 line (inset 

figure showing orthogonal distances). The histogram above the 1:1 line is ha (green) and below 

the line is hb (pink). The overlapping zone between histograms ha and hb is also indicated 

(brown). A Pearson’s chi-squared test3 can be used to test the significance of this asymmetry 

against the Null Hypothesis that the block average As data are drawn from a symmetric 

distribution; however, the form of this distribution is not known. Therefore, we have used a grid 

search method12 to search through all possible histograms arising from symmetric distributions, 

and to select the one that is the most probable (hT). Not surprisingly, it has a histogram that 

“splits the difference” between two observed histograms ha and hb. We used 5-bin histograms for 

the grid search method: ha = [111, 19, 2, 0, 0], hb = [128, 51, 20, 12, 5], and hT = [114, 36, 13, 8, 

3] to reduce the number of degrees of freedom. The Null Hypothesis can be rejected to 

99.99999% certainty based on Pearson’s χ2 test, indicating that the asymmetric scatter is 

statistically significant. The same statistical test for the 271 individual wells rejects the Null 

Hypothesis with a certainty of 99.99998%. The Matlab script associated with the χ2 test is 

provided at the end of the supporting document.  
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Figure 2-S8. Change in the number of wells at the block level (n = 87; 600 m X 600 m) 

between 2000-01 and 2012-13. The observations show (a) an approximate doubling of the 

number of wells installed in low-As blocks and (b) a lower average increase that is independent 

of the initial number of wells in high-As blocks. 
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Figure 2-S9. Depth dependence of As concentrations in shallow groundwater. Both surveys 

shows a gradual, albeit noisy, increase in As concentrations with depth within the shallow 

aquifer of the study area. The discretized distribution of well depths indicates that most owner 

recall their well’s depth in 5 ft intervals. After binning the data in 5 ft depth intervals and 

averaging, the data indicate an increase of 14±4 µg/L and 7±1 µg/L per meter in 2000-01 and 

2012-13, respectively.  
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Figure 2-S10. Influence of well-depth on As concentrations. Changes in block-averaged As 

concentrations attributable to changes in block-averaged depth would follow the slopes defined 

in Fig. 2-S8 for 2000-01 (solid line) and 2012-13 (dotted line). Increases in As concentrations for 

a few blocks corresponding to the area between the two lines in the upper right corner of the 

graph could possibly be due to an increase in well depth but most of the declines in block-level 

As concentrations are not consistent with a decrease in well depth. The error bars indicate 

standard error of average As and average depth at block level. 
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Figure 2-S11. Depth of the shallow aquifer in Araihazar. Profiles of sediment type based on 

drill cuttings collected at 2 ft intervals from a total of 51 sites within the 25 km2 study area. The 

average thickness of the upper sandy aquifer tapped by all irrigation wells in the area of 28±3 m 

is indicated by a horizontal yellow line. The sediment cuttings were retrieved by indigenous 

hand-flapper method6.   
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Figure 2-S12. Fraction of land within study area used for agriculture. The vast majority of 

hand-pumped tubewells are installed in villages rather than agricultural fields and their location 

can therefore be used to delineate settled areas. In order to calculate by difference the proportion 

of land used for agriculture, buffers with a radius of 50 m were drawn around each of the 8,229 

wells surveyed during 2012-13 and merged. Under the justified assumption that most of the non-

settled area is used to grow Boro rice during the winter season, we estimate that 1 m of 

groundwater is pumped each year to irrigate 50% of the study area. 
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Figure 2-S13. Depth distribution of groundwater ages within the shallow aquifer. Using the 

tritium-helium method, the time elapsed since surface recharge was measured for a total of 32 

depth intervals distributed across 9 sites7,8. The profile of groundwater ages was converted to 

recharge rates at each site by using the model of Vogel9, as described by Schlosser et al.10, which 

takes into account the local thickness of the shallow aquifer. The average recharge rate based on 

the 9 sites is 0.47±0.4 m/yr and is consistent with the rate inferred from requirement for growing 

Boro rice11. 
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Figure 2-S14. Changes in block-averaged As concentrations in relation to neighboring 

blocks. For each of the 348 blocks, the average of the block-average As concentration of the 

nearest neighbors (maxm of 8) was calculated. This average is displayed as a function of the 

observed changes in block-As concentrations for each central block. The general trend is 

consistent with lateral exchange of groundwater As, with increases in As concentrations 

associated with higher As concentrations in neighboring blocks and vice-versa. The error bars 

indicate standard error of the mean. The 4 quadrants indicate: (I) blocks with increased As 

concentrations surrounded by lower block average concentrations; (II) blocks with decreased As 

concentrations surrounded by lower block average concentrations; (III) blocks with increased As 

concentrations surrounded by higher block average concentrations; and (IV) blocks with 

decreased As concentrations surrounded by higher block average concentrations. 
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Matlab script associated with χ2 test explained in Figure 2-S7. The description of the chi2pdf 
function can be accessed here: https://www.mathworks.com/help/stats/chi2pdf.html 

  

11/15/18 3:54 PM /Users/Rajib/Documents/Rajib/Columbia_A.../doit.m 1 of 2

clear all;
 
%set working directory
cd('/Users/Rajib/Documents/Rajib/Columbia_ARAIHAZAR/...')
 
a = load('blocks348_above_one_line.txt');
Na = length(a);
b = load('blocks348_below_one_line.txt');
Nb = length(b);
N = Na+Nb;
No2 = floor(N/2);
 
Nbins = 5;
binmin = 0;
binmax = 125;
Dbins = (binmax-binmin)/Nbins;
bins = binmin + Dbins*[0:Nbins]';
 
ha = histc( a, bins );
ha = ha(1:end-1);
hb = histc( b, bins );
hb = hb(1:end-1);
 
figure(1);
clf;
hold on;
set(gca,'LineWidth',2);
set(gca,'FontSize',14);
axis( [binmin, binmax, 0, 200] );
for i=[1:Nbins]
    plot( [bins(i),bins(i),bins(i+1),bins(i+1)]', [0,ha(i),ha(i),0]', 'k-', 'LineWidth', 2 );
    plot( [bins(i),bins(i),bins(i+1),bins(i+1)]', [0,hb(i),hb(i),0]', 'r-', 'LineWidth', 2 );
end
 
nu = (2*Nbins)-1;
pvmin = 1.0;
h0min = [1, 1, 1, 1, 1];
step = 1;
for i1 = [0:step:No2]
for i2 = [0:step:No2]
for i3 = [0:step:No2]
for i4 = [0:step:No2]
    k=No2-(i1+i2+i3+i4);
    if( k > 0 )
        h0 = [ i1, i2, i3, i4, k ]';
        c1 = sum((( ha - h0) .^ 2) ./ h0);
        c2 = sum((( hb - h0) .^ 2) ./ h0);
        pv = 1 - chi2pdf(c1+c2,nu);
        if( pv < pvmin )
            pvmin = pv;
            h0min = h0;
        end
    end
end
end
fprintf('%d %d\n', i1, i2);
end
end
fprintf('ha: %d %d %d %d %d\n', ha(1), ha(2), ha(3), ha(4), ha(5) );
fprintf('hb: %d %d %d %d %d\n', hb(1), hb(2), hb(3), hb(4), hb(5) );
fprintf('HT: %d %d %d %d %d\n', h0min(1), h0min(2), h0min(3), h0min(4), h0min(5) );
 
fprintf('Piersons p-value %f\n', pvmin);
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Abstract  

Transport by groundwater flow has the potential to introduce arsenic (As) in previously 

uncontaminated aquifers. The extent to which As transport is retarded by adsorption is 

particularly relevant in Bangladesh where low-As wells offer the best chance of reducing chronic 

exposure to As of a large rural population dependent on groundwater. In this study, column 

experiments were conducted with intact cores in the field for up to 3 weeks to measure As 

retardation. Freshly collected cores of reduced (gray) sediment of Holocene age as well as 

oxidized (orange) sediment of Pleistocene age were eluted at pore-water velocities of 40-230 

cm/day with high-As, anoxic groundwater pumped directly from a well. Gray columns released 

As from the very beginning of the experiments but the largest increase in eluted As for both grey 

and orange sands occurred after about 50 pore volumes. The early release of As from gray sand 

and some dependence of As breakthrough on flow rate was reproduced with a reversible multi-

reaction transport model with an initial pool of weakly retained As. Over time, redox 

transformations affected Fe and As speciation in the columns and enhanced both sulfate and As 

retention. 
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3.1. Introduction 

Millions of people in South and Southeast Asia are exposed to high arsenic (As) in their drinking 

water pumped from alluvial aquifers1–3. Anoxic Holocene aquifers composed of gray sands often 

contain naturally elevated levels of As (>100 µg/L) released by the microbial reduction of 

iron(oxy)hydroxides3–7. Pleistocene aquifers in the region are also anoxic today but were in some 

areas subaerially exposed during the last glacial maxima8. These aquifers contain orange sand 

coated with Fe(III) oxides and are typically low (<10 µg/L) in As3. A sizeable pool of As (<1-5 

mg/kg) is adsorbed on both the gray and orange sediments9,10. It is therefore the partitioning of 

As between groundwater and aquifer sediment that largely determines whether an aquifer is toxic 

to human health. 

 

The partitioning of As between the solid and aqueous phase has been expressed and modeled in 

various ways. Most widely used is the sorption partition coefficient KD , the ratio of the As 

concentration in the solid phase divided by the As concentration in the dissolved phase. This 

approximation is often effective at describing transport under near-equilibrium conditions11. This 

assumption is less appropriate when groundwater flow is faster, for example where groundwater 

flow is accelerated by pumping for irrigation or the municipal supply of large cities12–16. The 

partition coefficient KD may also be sensitive to the concentration of competing ions in 

groundwater. Surface complexation models17 can include equilibrium and kinetically limited 

models of adsorption, and are also often applied to As transport, particularly to  predict the 

sensitivity of As partitioning to oxyanions such as phosphate, bicarbonate, and silica3,18–22. 

Several laboratory and field investigations have suggested that As transport is a non-equilibrium 
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or rate-limited process23–26. An equilibrium assumption may therefore significantly 

underestimate the time required to clean up a contaminated site27.  

 

The risk of contamination of low-As aquifers by nearby high-As sources will depend on the 

direction of groundwater flow and sorption characteristics of sediment in contact with high-As as 

well as low-As groundwater. It has been suggested that the As sorption capacity of gray 

Holocene sand is limited and thus As supplied to these sediments would be transported at the 

same rate as groundwater12,19. However, considerable As adsorption has been measured with 

laboratory batch experiments and field studies using gray sand aquifers3,10,12,19,21,28–30. The wide 

range of measured KD’s of 0.15 to 46 L/kg derived from these experiments corresponds to 

retardation factors of 2 to 300, assuming an aquifer material bulk density of 1.8 g/cc and a 

porosity of 30%. It is unclear to what extent this range reflects variations in experimental 

conditions, sediment properties or preservation, or other factors.  

 

The extent of adsorption of As to orange sediment also appears to  vary widely, and potentially 

differs from adsorption to gray sands20,31–34. Laboratory studies conducted in batch mode 

generally indicate higher KD values (20-70 L/kg; retardation of 120-420) compared to grey 

sands. Some laboratory experiments, however, may have been affected by prolonged storage, 

repacking of sediment, and the use of artificial groundwater that is not representative20,32,35. 

Field-based studies are not affected by storage but are subject to different uncertainties such as 

the direction and rate of groundwater flow. These indicate a lower KD of 1-10 L/kg for originally 

orange sand that, in some cases, turned grey and therefore lower retardation factors of 7-

6031,33,34.  
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If retardation of As transport through orange sediments is greater than for grey sand, this could 

provide significant protection against intrusion of high As groundwater from reducing aquifers. 

Batch adsorption experiments conducted under carefully controlled conditions suggest, however, 

that As adsorption to Holocene gray and Pleistocene orange sediment may not be that different 

after all21. In order to address this unresolved issue under closer to ambient conditions, high-As 

groundwater from a shallow well was eluted for the present study at different rates through a 

series of columns containing intact, fresh gray and orange aquifer sediment and measured in the 

field under anaerobic conditions. We hypothesized that orange sands would have greater 

retention than gray sands, and thus more effectively protect low-As aquifers from the intrusion of 

As-containing groundwater under typical field conditions. 

 

3.2. Materials and Methods 

3.2.1. Sediment coring and column preparation  

Sediment cores containing Holocene gray sand and Pleistocene orange sand were collected in 

Araihazar, Bangladesh, immediately before the experiment (Figure 3-S1). Intact cores were 

retrieved (30 cm long, 1.6 cm inner dia.) using a hammer-driven soil corer (AMS SST soil 

recovery probe 424.45) from drilling depths between 40 and 60 ft. Immediately after retrieval, 

the cores were refrigerated in nitrogen-flushed Mylar bags that were heat-sealed after adding 

oxygen absorbers (IMPAK sorbent systems). Within 24 hours, and inside a nitrogen inflated 

glove chamber (Glas-Col04408-38), a total of 15 (8 gray and 7 orange sand) undisturbed 

sediment columns, 7.5 cm in length, were prepared from the central portion of the recovered 

cores using a precision tube cutter. The inlets and outlets of the columns were enclosed with 

custom made plugs after inserting a thin (1-2 mm) layer of glass wool to prevent the transport of 
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fine particles. A column packed with pure sand (40-100 mesh, ACROS Organics 370942500) 

was also prepared in parallel as a control.  

 

3.2.2. Experimental setup 

The gray and orange sediment columns along with a control sand column containing 99.8% SiO2 

and 0.01% iron oxide (as specified by the manufacturer) were eluted with groundwater directly 

at the wellhead from a shallow well screened from 60 to 65 ft below ground surface, a depth 

where As concentrations typically peak in the study area (Figure 3-S1). The influent groundwater 

was pumped continuously into a bag (50 L capacity) shaped like a pyramid that was kept 

overflowing through a narrow opening at the top to ensure a constant supply of anoxic 

groundwater (Figure 3-1). The storage bag was placed at a higher elevation than the columns to 

ensure uninterrupted, steady flow in the event of a pump stoppage or electricity failure. The 

custom-made bag (Ready Containment LLC) facilitated escape of bubbles (probably carbon 

dioxide and/or methane) that tend to cling to the corners of a regular container. Groundwater 

from the storage bag reached a manifold that divided the flow into the columns at different rates 

using peristaltic pumps (Ismatec and Gilson Minipuls 3) and various tubing diameters. The 

columns were housed in custom-made anoxic chambers (modified from Becton-

Dickinson#260672) with pouches that consume oxygen (Becton-Dickinson#260678) and 

anaerobic indicator strips (Becton-Dickinson#271051). The columns were placed inside the 

chamber in their natural orientation, with the groundwater entering the top of each column 

(Figure 3-1). 
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These columns used a wide range of flow velocities designed to be sufficient for column 

breakthrough over an experimental period short enough to minimize biological transformations 

that can affect transport, while also being slow enough to approximate typical groundwater flow 

velocities. The Darcian velocity was calculated by dividing the average volume of samples by 

the cross-sectional area of columns (2 cm2) and average time interval and ranged from 0.5 to 3 

cm/hr. Most of the columns (n=8) were eluted either at an average pore water velocity (PWV) of 

154±10 cm/day (fast) or 75±10 cm/day (slow) (Table 3-S1). In addition, one orange sand column 

was eluted at 40 cm/day and one column of grey sand was eluted at 230 cm/day. 

 

3.2.3. Sampling and onsite measurements 

Column effluents were collected in a manually operated fraction collector in acid leached (10% 

HCl) 15 ml vials every 3 hours for the first 10 days (8 times a day) of the experiment, followed 

by every 12 hours for 2 weeks (2 times a day). The volume of each sample was documented at 

the time of collection. Every other sample was acidified in the field with TraceMetal grade HCl. 

Some of the remaining samples remained unacidified for anion analysis, while others were 

acidified later in the lab with Optima grade HCl for cation analysis. Towards the end of the 

experiment (day 20), groundwater flow into the storage bag was interrupted and the retained 

water in the bag was spiked with sodium bromide (Fisher#S255-500) and sodium phosphate 

monobasic dihydrate (Fisher#S381-500). A subset of columns was sampled more frequently on 

that day (Figure 3-S2). 

 

The influent groundwater was sampled daily at an outlet before it reached the storage bag and 

from the bottom of the storage bag (Figure 3-1). Dissolved oxygen concentration in the influent 
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water was tested daily with a visual kit (Chemetrics 0-40 ppb). The input water was also 

monitored daily for pH, ORP (oxidation-reduction potential), electrical conductivity, and 

temperature using Oakton probes (UX-35650-10 & UX-35634-30). A pH flow-through cell (UX-

05662-48) was used to measure pH in a subset of column effluents. Arsenic speciation cartridges 

(Metalsoft Center, Highland Park, NJ) were used in the field to separate As(V) from As(III) in 

the influent water as well as in a subset of column effluents immediately after collection36. 

Samples for dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) were 

collected in 22 ml clear glass vials (Sigma-Aldrich 27173 Supelco). The DOC samples were 

acidified to 0.1% HCl while DIC samples were left unacidified. 

 

3.2.4. Sediment analyses 

Sediments from control cored sections and experimental columns were analyzed from the same 

interval. Of the experiments performed, a total of 10 sediment columns (6 gray and 4 orange 

sand columns) were successfully completed, and 5 were compromised due to repeated flow 

interruption (Table 3-S1). Flow interrupted columns contained very high fraction of fine-grained 

silt and/or clay particles. Most of the successful experimental columns were composed of fine to 

medium grained sand. 

 

X-ray fluorescence (XRF) and sediment phosphate extraction 

Cuttings (10-15 mm thick) collected while drilling the sediment cores were packed in Saran wrap 

and analyzed through a single layer with a handheld XRF (InnovX Delta) in the instrument’s soil 

mode for bulk As concentration. Each sample was analyzed under 3-beam soil mode for a total 

of 3 minutes (40, 120, 20 sec for the 3 beams, respectively). The internal calibration of the 
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instrument was verified by analyzing reference NIST standards (SRM 2709, 2710, and 2711) in 

between samples. As a measure of the exchangeable As content of the sediment, 1 g of gray or 

orange sand (n= 8) immersed in 55 mL N2-flushed solution of 1 M Na2HPO4 solution was 

adjusted to a pH of 5 for 24 hours9. The extraction was conduced in an anaerobic chamber 

(Coy#120001) and the solutions filtered through 0.45 µm media.  

 

 

X-ray absorption spectroscopy (XAS) 

Iron (Fe) and arsenic (As) K-edge X-ray absorption spectra were collected in fluorescence mode 

at the Stanford Synchrotron Radiation Lightsource (SSRL) on beamlines 4-1 and 11-2. Fe 

spectra were collected using either 32 or 100-element Ge detectors windowed on the Fe Kα 

fluorescence peak, and using a 3µx Mn filter. Spectra were calibrated to using a Fe metal foil 

(7112.0 eV). Arsenic spectra were performed by windowing on the As Kα fluorescence peak, and 

using a 3µx Ge filter.  

 

Spectral analysis was performed using Matthew Newville’s Larch Data Analysis Tools for X-ray 

Spectroscopy implemented in Python as detailed in Shoenfelt et al.37. Larch code and 

documentation is available at http://xraypy.github.io/xraylarch/. Fe(II) content and mineral 

composition were determined by linear combination fitting using the best-fit 5 of 10 reference 

compounds (pyrite, siderite, goethite, hematite, magnetite, biotite, hornblende, augite, nontronite, 

ferrihydrite). For this fitting, we used the k3-weighted chi function from k=2 to k=8-12 Å-1 

depending on the quality of the sample data, optimized for the background spline function to end 

at a node. Errors in mineral composition, usually within 5% of total Fe, LCF are determined in 
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Larch based on sensitivity analysis and fitting quality. This method is effective for most iron 

minerals, but ferrihydrite in fitting also includes reactive, nanocrystalline goethite; thus, 

ferrihydrite in fits should be considered as representative of a larger spectrum of reactive 

Fe(III)oxyhydroxides38. 

 

Arsenic XANES spectra were analyzed with Sixpack using 4 reference standards, As2S3, As(III) 

adsorbed on ferrihydrite, As(V) adsorbed on ferrihydrite, and FeAsS. Of these, FeAsS was not 

needed in any fit. To fit the white line most accurately, reference spectra were collected using As 

loadings that were comparable to natural samples (10 mg As/kg). Errors in fractional As content 

are usually within 3% for most samples, and occasionally somewhat higher for samples with 

very low As concentrations (<2-3 mg As/kg). 

 

3.2.5. Analysis of groundwater and sediment extracts 

All acidified (1% HCl) samples collected from the input well, storage tank, column effluents, 

and sediment extracts were analyzed for P, S, Fe, Mn, As, Na, K, Ca, Mg, Ba, and Sr using high-

resolution inductively coupled plasma-mass spectrometry (HR ICP-MS) with a detection limit of 

0.1 µg/L accounting for all dilutions39. The results from the HR ICP-MS were replicated for a 

subset of groundwater samples with a precision of <5%. The accuracy and precision of the 

measurements were within ±10% when compared to known laboratory standards. The anions Br− 

and Cl− were analyzed using a Dionex Integrion HPIC System (Dionex, Thermo Scientific) with 

an AS-18 column, which has detection limits of 0.05 ppm and a precision of ±5% at typical 

concentrations. DOC and DIC samples were analyzed with a Shimadzu Carbon Analyzer with 

±5% precision at Lamont-Doherty Earth Observatory. 
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3.2.6. Column transport parameterization 

The transport models used measured experimental flow rates for each column.  The average bulk 

density ρ (range between 1.7 and 1.9 g/cc) of the columns was determined from oven dried 

sediment weight divided by the volume of dry sediment column (Table 3-S1). The porosity θ 

(range between 0.29 and 0.34) was then estimated as: θ = 1- ρ/2.65 assuming a particle density of 

2.65 g/cm3. The dispersion coefficient (D) was determined (1.5 and 3 cm2/hr for slow and fast 

PWV, respectively) by fitting the bromide (Br−) breakthrough curve using the analytical solution 

for one-dimensional advection-dispersion equation assuming conservative transport of Br− (i.e. a 

retardation factor of 1) in the sand columns  (Figure 3-S4). 

 

3.2.7. Model formulation 

We use a two-phase reversible non-linear kinetic model40 to simulate the observed column 

breakthrough curves, after modifying it to accommodate an initial exchangeable As 

concentration. This model is necessary because column elution data cannot be explained with a 

simple KD model. A single set of rate constants is used to describe As elution in gray or orange 

sediments. We use the one dimensional advection-dispersion equation (ADE) to formulate the 

transport of arsenic in the sediment columns41: 

 

! !"!" + !
!"
!" = !" !

!!
!!! − !

!"
!" 

 

where, θ  indicates the porosity of sand columns (dimensionless), ρ is the sediment bulk density 

(g/cm3), C represents solute concentration (mg/L), S indicates the total sorbed concentration 

(mg/kg), D is the hydrodynamic dispersion coefficient (cm2/hour), v represents the pore water 
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velocity (cm/hour), which is Darcy’s velocity divided by θ and x is the length of column (cm). 

When the retention and release of solute is strongly time-dependent, kinetic reactions are 

employed instead of local equilibrium assumption. A two-phase reversible non-linear kinetic 

model was used to simulate the observed column breakthrough curves: 

 

! !!!!" = !!!!! − !!!!! 

! !!!!" = !!!!! − !!!!! 

! =  !! +  !! 

 

where, the parameters k1 and k3 are the forward rate constant (hr-1), k2 and k4 are the reverse rate 

constants (hr-1), and ! is the reaction order which is also a measure of variability in sorption sites 

in terms of arsenic retention24,40. The sorbed phase S1 is assumed to react rapidly with the 

aqueous phase at concentration ! (hence, k1 and k2 are larger) whereas sorbed phase S2 is 

assumed to react slowly with the dissolved phase C (small k3 and k4). 

 

This two-phase, fully reversible kinetically-limited reaction model assumes: (a) any initial 

release of arsenic is due to desorption from an initial, rapidly exchanged pool of sorbed As; (b) 

the pool of sorbed arsenic (S) in the sediment is comprised of two components: the first phase 

(S1) is the fast reacting phosphate extractable arsenic and the second phase (S2) is a slow 

reacting phase, which is the difference between the bulk sediment arsenic concentration (S) and 

S1 (Table 3-S2). There are pseudo-first order kinetic rate constants, and initial adsorbed pools of 
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As in the model of As retention. The adsorbed pools of As in S1 and S2 are estimated based on 

total As and laboratory phosphate extractions.  

 

3.2.8. Determination of rate constants 

The rates of As exchange between the solid and dissolved phase in the columns were estimated 

using a numerical model at a time-step discretization of 0.05 hr and column length discretization 

of 0.1 cm using the Gaussian elimination method40,42. An input As concentration of 320 µg/L, 

porosity of 0.32, and bulk density of 1.80 g/cc was used for all columns. The only variable 

transport parameters were the measured flow velocities and corresponding dispersion coefficient. 

The Freundlich parameter (n), which is the dimensionless reaction order, was set to 0.4 for all 

sediment columns. A single and unique set of forward (k1, k3) and reverse rate (k2, k4) constants 

were used to describe the eluent concentrations for all columns in each sediment group (gray and 

orange). The best fit was derived by minimizing the sum of squared error between observed and 

predicted eluent concentrations at different PWV. 

 

3.3. Results 

3.3.1. Sediment properties  

Bulk As concentrations measured by XRF in the gray Holocene sediment ranged between 

2.0±0.6 and 4.2±0.6 mg/kg (n =7) (Table 3-S2). Iron (Fe) and calcium (Ca) concentrations 

averaged 1.5±0.4 % and 6,900±120 mg/kg, respectively. As a proxy for the redox state of 

surficial Fe oxides, the difference in diffuse spectral reflectance (ΔR = 530 nm – 520 nm) of 

column sands was recorded with a Minolta CM-600d spectrophotometer. The difference in 
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reflectance at those wavelengths ranged between 0.06±0.005 % (mean ± σ for triplicate 

measurements for an individual sample) and 0.34±0.04 % and averaged 0.22±0.08 (n=11), which 

corresponds to about 80% Fe(II) in the hot-acid leachable fraction of Fe(II+III) oxides in the 

sediment43. Bulk As concentrations in the orange sediment ranged from 1.8±0.6 to 3.0±0.5 

mg/kg (n = 7). Overall, the orange sediment contained a higher concentration of Fe (2.4±0.3%) 

and a lower concentration of Ca (4400±100 mg/kg) than gray sediment. The reflectance 

difference ΔR for the orange sands ranged between 0.73±0.05 % and 1.46±0.02 %, with an 

average of 1.1±0.3 (n=10), which indicates the lack of any detectable Fe(II) in the fraction of 

hot-acid leachable Fe oxides (Table 3-S2). 

 

The proportions of Fe(II) measured by XAS analysis in gray and orange sediment were 83±12%  

and 12±5% (n =2), respectively (Figure 3-4a, Figure 3-S12a). The most abundant Fe mineral 

classes in the gray sediment were Fe silicates (41±4% biotite and 35±4% and hornblende), with 

small proportion of goethite (10±5%) and reactive Fe oxides (10±5%). In contrast, the orange 

sediment was primarily composed of reactive Fe oxides (41±5%), goethite (30±5%), and 

hornblende (27±5%).  

 

Phosphate extractable As was used to differentiate labile and nonlabile As pools. The gray 

sediment contains an average of 3 mg/kg of total sorbed As, and about half of that is P-

extractable. In contrast, the orange sediment contains an average of 2 mg/kg of As, of which only 

about 0.3 mg/kg is P extractable. Therefore, both model parameters S1 and S2 are set to 1.5 

mg/kg for gray sediments. For orange sediment columns, S1 and S2 are 0.3 and 1.7 mg/kg, 

respectively (Table 3-S2).  
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3.3.2. Influent groundwater composition 

The source groundwater selected to elute the sediment columns was consistently high in 

dissolved As (320±11 µg/L) and Fe (7±0.4 mg/L) over the course of the experiment (Figure 3-

S2). The water contained moderately high levels of manganese (3 mg/L Mn), phosphate (1.5 

mg/L as P), sulfate (3 mg/L as S), and bicarbonate (104 mg/L as dissolved inorganic 

carbon/DIC). There was no detectable dissolved oxygen in the groundwater, the ORP readings (-

105 to -134 mV) remained negative, and the pH consistent at 7.0±0.1 throughout the 

experimental period. The composition of groundwater remained unaltered in the overflowing 

storage bag; paired t-tests for the mean of daily samples of As, Fe, Mn, S, and P in direct 

samples and the bag (n = 18 each) were equivalent and constant over the experiment (p-value > 

0.05). There was no detectable oxygen in groundwater in the storage bag (DO kit reading of 0 

ppb). Based on speciation columns, most (>90%) As was present as As(III) in groundwater 

collected from the well and storage bag (n=8 each). 

 

Three shallower wells were installed in the vicinity of the input well at 20, 45, and 55 ft depths to 

better understand local geochemical variability (Figure 3-S1). The vertical profiles indicate a 

general trend of increasing As, P, and dissolved inorganic carbon (DIC) and decreasing Fe 

concentrations with depth. However, S concentrations of 3 mg/L in the input well was 

considerably higher than in the two shallower high As wells (<1 mg/L S). The dissolved organic 

carbon (DOC) concentration in the input groundwater was 3 mg/L. 
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3.3.3. Elution of arsenic and other redox sensitive elements 

Pleistocene Orange sediment columns 

Concentration of As remained below 10 µg/L in the eluent for about 40 pore volumes in the two 

low-flow columns (82 cm/day) of orange sand but only 10-20 pore volumes in the higher flow 

column (156 cm/day) and the column eluted at the slowest PWV (40 cm/day) (Figure 3-2a-c). 

Concentrations of As in the eluent reached the input concentration of 300 µg/L after about 100 

pore volumes in the fast flow column but did not exceed 250 µg/L in the two slow flow columns. 

Eluent As concentration in the slowest flow column reached a maximum of 150 µg/L after 40 

PV. In spite of an input concentration of 7 mg/L, it is not until about 150 pore volumes that Fe 

concentrations in the eluent temporarily rose above 1 mg/L (Figure 3-2d-f). In contrast, S levels 

in the eluent started immediately about 20% above the inflow concentration of 3 mg/L and 

dropped precipitously to <0.5 mg/L after about 110 pore volume in the fast flow column, after 80 

PV in the slow flow column, and after only 20 PV in the slowest flow column (Figure 3-2g-i). 

Concentration of P in the inflow was 1.5 mg/L but the eluent rarely rose above 0.20 mg/L 

throughout the experiment with orange columns (Figure 3-2j-l).   

 

Gray sediment columns 

Concentrations of As in the first 50 pore volumes of eluent from the grey columns were 

consistently higher than for the orange columns and varied between 10 and 200 µg/L (Figure 3-

3a-c). For the 4 high flow columns (150-230 cm/day), As concentrations gradually increased to 

reach the inflow concentration of 300 µg/L at about 60-70 pore volumes and up to about 500 

µg/L at about 80 pore volumes. For the 2 slow-flow columns of grey sand (75 cm/day), eluent As 

concentrations reached 300 ug/L at about 40 pore volumes. In all 6 columns of grey sand, 
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concentrations of As subsequently became more variable and generally did not exceed the inflow 

concentration. In contrast to elution of the orange columns, concentrations of Fe in the eluent 

reached inflow concentration of 7 mg/L after 70 and 30 pore volumes in the fast and slow 

following columns of grey sand, respectively (Figure 3-3d-f). Concentration of Fe in eluent from 

the grey columns reached 15-20 mg/L about 10-20 pore volumes later and declined to become 

variable, while more rarely exceeding the inflow concentration. As in the case of the orange 

columns, concentrations of S in eluent from the grey columns started immediately at 3.5 mg/L, 

somewhat higher than the inflow, and dropped precipitously below 0.5 mg/L within about 100 

and 40 pore volumes for the fast and slow-flow columns of grey sand, respectively (Figure 3-3g-

i).  Unlike the orange columns, concentrations of P in eluent from the grey columns gradually 

rose up to levels in the inflow of 1.5 mg/L for the fast-flowing columns and about half the inflow 

concentration in the slow flowing columns after about 100 pore volumes (Figure 3-3j-l). 

 

Control sand column 

Arsenic and Fe concentrations in eluent from the pure sand column reached levels of the inflow 

within about 10 PV and then showed fluctuations around an average that is slightly below that of 

the input (Figure 3-S3a-b). Concentration of P in the eluent took about 50 pore volumes to reach 

about 2/3 of the inflow concentration and then became more variable (Figure 3-S3d). As in the 

case of orange and grey columns, concentrations of S started a little above concentration in the 

inflow and then declined steadily to <0.5 mg/L after about 100 pore volumes (Figure 3-S3c). 

Unlike the gray and orange sediment columns, the decline in S in the control sand column was 

not accompanied by a decline in As concentrations. 
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3.3.4. Changes in Fe and As speciation 

Iron (Fe) speciation was measured at the inlet and outlet of each column at the end of the 

experiment to identify changes in Fe speciation that occurred relative to controls. Results are 

somewhat variable due to small variations in the redox state of these small volume samples, but 

generally indicate that there was an increase in the Fe(II) content in columns over the course of 

the experiment (Figure 3-4a & 3-S10a). In orange sands, the fraction of Fe(II) increased by about 

10% at the column inlet, but was not significantly different from controls at the outlet (Figure 3-

4a). This modest change was accompanied by an obvious change in sediment color to dark 

brown or black at the inlet (Figure 3-S11). In contrast, the outlet of gray sands gained marginally 

more Fe(II) (a few percent) than controls or the inlets (Figure 3-S12a). These changes coincide 

with the development of darker sediments in the inlet for orange sediments, but without obvious 

color change in gray sediments. 

 

The oxidation state of As in the sediment changed over the course of the experiment. Most of the 

As present in the gray sediment was As(III), while the orange sediments contained a roughly 

equal mixture of As(III) and As(V). At the termination of the experiment, the fraction of As(V) 

had decreased considerably in most columns. Although groundwater contained primarily As(III), 

much of the As retained in the columns at the end of the experiment in orange columns was 

present as arsenic sulfide (Figure 3-4b, Table 3-S3). In gray sands, arsenic sulfides also were 

produced, and there was some evidence for oxidation because the fraction of As(V) also 

increased (Figure 3-S12b, Table 3-S3). It is unknown whether this oxidation reflects natural 

sediment processes or is caused by small amounts of oxidation prior to measurement (<0.5 µg/kg 
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As needs to explain the observed fractional change in As(V) content). However, As(V) oxidation 

has been observed in other systems undergoing reduction44–46. 

 

3.4. Discussion 

3.4.1. Modeling arsenic transport 

The eluent and solid phase data combined indicate that As transport was affected by adsorption 

and desorption and, at later stages of the experiment, by changes in Fe and S redox status that 

also resulted in changes in aqueous Fe and sulfate levels. In most of the columns, a decline in 

effluent As concentration occurred when S in the effluent reached <10% of the input level 

(Figure 3-1, 3-2). To quantify the transport and retention of As unaffected by sulfate reduction 

detectable in the eluent, we limit the fitting of the model to the initial breakthrough observed in 

many columns, i.e. within 40-100 PV depending on flow rate.  

 

Two key considerations affect the selection of a model to describe adsorption in these 

experiments. First, the initial incomplete adsorption of As early in the experiment (and prior to 

breakthrough) indicates that there is an initial pool of weakly retained As present in the solid 

phase that is susceptible to desorption. This initial desorption was primarily observed in gray 

sand columns. Second, differences in the As breakthrough as a function of PV in the fast- and 

slow-flow columns indicates that adsorption is kinetically limited. Given kinetic limitation, it is 

best to describe As transport in these columns as a function of time rather than pore volume. The 

breakthrough of As takes place earlier at fast PWV as a function of time, while slower flow 

allows for increased reaction times, increased adsorption, and delayed breakthrough (Figure 3-5). 
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This result is analogous to flow-interruption experiments where a reduction in flow velocity 

reduces the in-situ dissolved concentration by enhanced adsorption23,25,47.  

 

3.4.2. Model derived As adsorption-desorption rates 

The forward and reverse rate constants determined for the gray sediment columns associated 

with S1 are 6 h-1 (k1) and 0.17 h-1 (k2), and for S2 are 0.01 h-1 (k3) and 0.008 h-1 (k4), 

respectively. The forward and reverse rate constants determined for the orange sand columns for 

S1 are three fold smaller (k1 = 2 h-1 and k2 = 0.057 h-1). The rates k3 and k4 applied for gray 

sediment are also used for orange sediment columns. These rate constants are comparable to the 

sorption and desorption coefficients determined for As(III) in earlier studies. The sorption rate 

constants derived for As(III) for soils from West Virginia48,49 based on a modified Freundlich 

equation ranged between 0.5 and 1.7 h-1 whereas desorption rates varied between 4 ×10-6 and 

0.0077 h-1. Sorption and desorption rate constants derived from experiments with three Spanish 

soils ranged from 0.2–1.93 h-1 and from 0.0001–0.027 h-1, respectively50. 

 

The assigned initial average sorbed phase concentration and the assumption of two-phase 

partitioning are somewhat arbitrary. Breakthrough in the sediment columns were also predicted 

assuming a single phase (i.e. S = S1 when S2 = 0 mg/kg) with a single set of rate constants 

(associated with S1), but a single phase model cannot predict As concentrations beyond the 

influent level as observed in the case of all gray sediment columns, nor can it describe persistent 

partial breakthrough similar to what is observed at the onset of the experiment (Figure 3-S5). The 

same model was used to predict variation in the observed initial release of As with variable 

phosphate extractable phase (Table 3-S2). Expectedly, an increase in the initially sorbed As 
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increased the initial release of As (Figure 3-S6). A single a single set of rate constants with 

variable sorbed concentrations also was ineffective to describe transport in the gray sand 

columns. 

 

We also assessed if As breakthrough in both the gray and orange sediment columns could be 

predicted with one unique set of rate constants. We took the average of the forward and reverse 

rate constants of gray and orange sand columns derived from the main scenario while keeping all 

other model parameters (e.g. sorbed phase) consistent (Figure 3-S7). We also used a constant 

sorbed phase across all sediment groups along with a unique set of rate constants (Figure 3-S8), 

but none of these approaches matched the As breakthrough at different PWV. 

 

Although solid-phase speciation was not used to constrain modeling because it was obtained 

later in the experiment, the modeled solid-phase concentrations increase in a way similar to the 

observations. The kinetic model indicates a net increase in total sorbed As in the columns over 

time, with the fast-reacting phase increasingly loaded with As and the slow-reacting phase being 

depleted before reaching a new equilibrium (Figure 3-S9). 

 

3.5. Implications 

The field-based column experiments took some effort to set up but allowed us to study the 

reactive transport of As through sediment with fewer perturbations than most previous 

experiments (Figure 3-1). The approach should be applicable to other settings where 

groundwater is difficult to preserve and sediments are susceptible to redox transformations. 

Adsorption of As on both gray and orange sands was kinetically limited, leading to incomplete 
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adsorption and desorption that was more strongly expressed in columns with faster flow rates. 

Disequilibrium condition may have stemmed from eluting the columns at pore water velocities 

(PWV) higher than natural groundwater flow rate. Groundwater flow at the lowest PWV (40 

cm/day) in our experiments (Figure 3-2) was still almost an order magnitude faster than mean 

flow rate estimated from the residence time of groundwater based on tritium-helium dating 

technique, and adjusting model conditions to this lower value increases adsorption, and starts to 

approach equilibrium based (flow rate independent) transport, however, slower transport 

conditions also facilitate increased biogeochemical transformations, implying that these 

transformations also are probably significant in affecting As transport.  

 

The best model describing the observed partitioning has equivalent ratios of forward and reverse 

rate constants (k1/k2 = 6 h-1/0.2 h-1 for gray and 2 h-1/0.06 h-1 for orange sediment), implying that 

the equilibrium retention on both gray Holocene and orange Pleistocene sediment is similar. 

However, the rate constants for adsorption and desorption on gray sands were three-fold higher 

than for orange sands, allowing As to desorb more easily from the sediments. This has three 

implications under field conditions: (a) the conversion of orange to gray sediments will not 

appreciably change equilibrium-based As solute transport, (b) equilibrium transport conditions 

may be more widely applicable to gray sand than to orange sand aquifers, and (c) the desorption 

of a weakly bound pool of sediment As may be more important than transport in causing 

groundwater As contamination in perturbed systems. 

  

The transport of As in Bangladesh groundwater was initially retarded by a factor of 30-35 

relative to the flow of groundwater by both gray and orange sediment. This corresponds to a 
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partition coefficient, KD of 5.7 L/kg, similar to partition coefficients determined with batch 

equilibration experiments for Holocene gray sediment in Bangladesh10 and with field 

observations for Pleistocene sands that were reduced over time in West Bengal, India, and near 

Hanoi in Vietnam34,51. No complete breakthrough of As was observed in the slow-flow orange 

sediment columns (Figure 3-2b-c). This could reflect some form of irreversible adsorption or 

precipitation, or just be a result of the limited duration of these experiments – slow flow 

enhances As retention and also leads to the biogeochemical transformations that affect As 

partitioning. 

 

Although orange and gray sands retard As to a similar degree, only the grey sands contained a 

large pool of As that desorbed throughout the experiments. This desorption may have been 

triggered by the high levels of phosphate found in the input groundwater (about 1.5 mg/L P) 

combined with accelerated flow relative to ambient conditions. Four-times higher phosphate 

levels added to groundwater in the later stages of the experiment and resulted in a rapid but short 

pulse of As released into solution (Figure 3-S2d & 3-S10).  

 

The experiments were designed to minimize redox changes and the associated mineral 

transformations that result from them so that we could isolate the effect of adsorption and 

desorption on transport. Nevertheless, redox changes occurred within about 1 week in column 

experiments, affecting the speciation of retained As, and the concentration of As, Fe and S in the 

effluent (Figure 3-4 & 3-S12).  Even in the sand control experiment, inflow sulfate was lost in 

the column. The field columns all contained As sulfides by the end of the experiments and 

showed changes in Fe mineralogy. The changes observed in the later phases of the column 
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experiment are not the focus of this manuscript, but imply that these redox changes also should 

be considered to fully understand As mobility in sediments affected by groundwater flow. 

 

There are broad practical implications of this study in aquifers contaminated with As in S/SE 

Asia. Despite substantial retardation of As with respect to groundwater flow, the adsorption 

capacity of both the orange Pleistocene and gray Holocene sediment is limited. A high 

retardation factor implies that As concentrations in groundwater is likely to remain stable over 

time. However, there is a risk of contamination of low As aquifers in the face of continuous 

inflow of high As water in the long-term or accelerated groundwater flow in the short-term. The 

latter is substantiated by the fact that earlier breakthrough in our experiments were observed at 

higher PWV (Figure 3-5). The current As mitigation practices that rely on low-As groundwater 

resources in S/SE Asia may, therefore, remain effective for decades unless the aquifers are 

significantly perturbed by pumping14. 

  



	

	 85	

Acknowledgements 

This study was financially supported by U.S. National Institute of Environmental Health 

Sciences (grants ES010349 and ES009089),	NSF grant EAR 15-21356. Synchrotron based 

EXAFS analysis was conducted at the Stanford Synchrotron Radiation Lightsource (SSRL), a 

national user facility operated by Stanford University for the U.S. Department of Energy. Use of 

the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is 

supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences 

under Contract No. DE-AC02-76SF00515. We are thankful to Lamont technicians Tom Protus 

and Ryan Harris for providing mechanical support to construct custom made equipment for the 

field experiment. This is LDEO Contribution Number XXXX (to be provided upon acceptance). 

  



	

	 86	

3.6. References 

(1)  Fendorf, S.; Michael, H. A.; Geen, A. van. Spatial and Temporal Variations of 

Groundwater Arsenic in South and Southeast Asia. Science 2010, 328 (5982), 1123–1127. 

https://doi.org/10.1126/science.1172974. 

(2)  Ravenscroft, P.; Brammer, H.; Richards, K. Arsenic Pollution: A Global Synthesis; 

Wiley-Blackwell, 2009. 

(3)  DPHE; BGS. Arsenic Contamination of Groundwater in Bangladesh; Survey, B. G., 

Series Ed.; BGS: Keyworth, 2001. 

(4)  Bhattacharya, P.; Chatterjee, D.; Jacks, G. Occurrence of Arsenic-Contaminated 

Groundwater in Alluvial Aquifers from Delta Plains, Eastern India: Options for Safe Drinking 

Water Supply. Int. J. Water Resour. Dev. 1997, 13 (1), 79–92. 

https://doi.org/10.1080/07900629749944. 

(5)  Ahmed, K. M.; Imam, M. N.; Akhter, S. H.; Hasan, M. A.; Alam, M. M.; Chowdhury, S. 

Q.; Burgess, W. G.; Nickson, R.; McArthur, J. M.; Hasan, M. K.; et al. Mechanism of Arsenic 

Release to Groundwater: Geochemical and Mineralogical Evidence; Dhaka Community 

Hospital, Dhaka, Bangladesh, 1998. 

(6)  Nickson, R. T.; McArthur, J. M.; Ravenscroft, P.; Burgess, W. G.; Ahmed, K. M. 

Mechanism of Arsenic Release to Groundwater, Bangladesh and West Bengal. Appl. Geochem. 

2000, 15 (4), 403–413. 

(7)  Berg, M.; Tran, H. C.; Nguyen, T. C.; Pham, H. V.; Schertenleib, R.; Giger, W. Arsenic 

Contamination of Groundwater and Drinking Water in Vietnam:  A Human Health Threat. 

Environ. Sci. Technol. 2001, 35 (13), 2621–2626. https://doi.org/10.1021/es010027y. 

(8)  Umitsu, M. Late Quaternary Sedimentary Environments and Landforms in the Ganges 

Delta. Sediment. Geol. 1994, 83 (3–4), 177–186. https://doi.org/10.1016/0037-0738(93)90011-S. 

(9)  Zheng, Y.; van Geen, A.; Stute, M.; Dhar, R.; Mo, Z.; Cheng, Z.; Horneman, A.; 

Gavrieli, I.; Simpson, H. J.; Versteeg, R.; et al. Geochemical and Hydrogeological Contrasts 

between Shallow and Deeper Aquifers in Two Villages of Araihazar, Bangladesh: Implications 

for Deeper Aquifers as Drinking Water Sources. Geochim. Cosmochim. Acta 2005, 69 (22), 

5203–5218. https://doi.org/10.1016/j.gca.2005.06.001. 

(10)  van Geen, A.; Zheng, Y.; Goodbred, S.; Horneman, A.; Aziz, Z.; Cheng, Z.; Stute, M.; 

Mailloux, B.; Weinman, B.; Hoque, M. A.; et al. Flushing History as a Hydrogeological Control 



	

	 87	

on the Regional Distribution of Arsenic in Shallow Groundwater of the Bengal Basin. Environ. 

Sci. Technol. 2008, 42 (7), 2283–2288. https://doi.org/10.1021/es702316k. 

(11)  Baes, C. F.; Sharp, R. D. A Proposal for Estimation of Soil Leaching and Leaching 

Constants for Use in Assessment Models. J. Environ. Qual. 1983, 12 (1), 17–28. 

https://doi.org/10.2134/jeq1983.00472425001200010003x. 

(12)  Harvey, C. F.; Swartz, C. H.; Badruzzaman, A. B.; Keon-Blute, N.; Yu, W.; Ali, M. A.; 

Jay, J.; Beckie, R.; Niedan, V.; Brabander, D.; et al. Arsenic Mobility and Groundwater 

Extraction in Bangladesh. Science 2002, 298 (5598), 1602–1606. 

https://doi.org/10.1126/science.1076978. 

(13)  Hoque, M.; Hoque, M. M.; Ahmed, K. Declining Groundwater Level and Aquifer 

Dewatering in Dhaka Metropolitan Area, Bangladesh: Causes and Quantification. Hydrogeol. J. 

2007, 15 (8), 1523–1534. https://doi.org/10.1007/s10040-007-0226-5. 

(14)  Michael, H. A.; Voss, C. I. Evaluation of the Sustainability of Deep Groundwater as an 

Arsenic-Safe Resource in the Bengal Basin. Proc. Natl. Acad. Sci. 2008. 

https://doi.org/10.1073/pnas.0710477105. 

(15)  Knappett, P. S. K.; Mailloux, B. J.; Choudhury, I.; Khan, M. R.; Michael, H. A.; Barua, 

S.; Mondal, D. R.; Steckler, M. S.; Akhter, S. H.; Ahmed, K. M.; et al. Vulnerability of Low-

Arsenic Aquifers to Municipal Pumping in Bangladesh. J. Hydrol. 2016, 539, 674–686. 

https://doi.org/10.1016/j.jhydrol.2016.05.035. 

(16)  Khan, M. R.; Koneshloo, M.; Knappett, P. S. K.; Ahmed, K. M.; Bostick, B. C.; 

Mailloux, B. J.; Mozumder, R. H.; Zahid, A.; Harvey, C. F.; Geen, A. van; et al. Megacity 

Pumping and Preferential Flow Threaten Groundwater Quality. Nat. Commun. 2016, 7, 12833. 

https://doi.org/10.1038/ncomms12833. 

(17)  Dzombak, D. A.; Morel, F. M. M. Surface Complexation Modeling : Hydrous Ferric 

Oxide; Wiley: New York, c1990. 

(18)  Appelo, C. A. J.; Van Der Weiden, M. J. J.; Tournassat, C.; Charlet, L. Surface 

Complexation of Ferrous Iron and Carbonate on Ferrihydrite and the Mobilization of Arsenic. 

Environ. Sci. Technol. 2002, 36 (14), 3096–3103. https://doi.org/10.1021/es010130n. 

(19)  Swartz, C. H.; Blute, N. K.; Badruzzman, B.; Ali, A.; Brabander, D.; Jay, J.; Besancon, 

J.; Islam, S.; Hemond, H. F.; Harvey, C. F. Mobility of Arsenic in a Bangladesh Aquifer: 

Inferences from Geochemical Profiles, Leaching Data, and Mineralogical Characterization. 



	

	 88	

Geochim. Cosmochim. Acta 2004, 68 (22), 4539–4557. 

https://doi.org/10.1016/J.Gca.2004.04.020. 

(20)  Stollenwerk, K. G.; Breit, G. N.; Welch, A. H.; Yount, J. C.; Whitney, J. W.; Foster, A. 

L.; Uddin, M. N.; Majumder, R. K.; Ahmed, N. Arsenic Attenuation by Oxidized Aquifer 

Sediments in Bangladesh. Sci. Total Environ. 2007, 379 (2), 133–150. 

https://doi.org/10.1016/j.scitotenv.2006.11.029. 

(21)  Thi Hoa Mai, N.; Postma, D.; Thi Kim Trang, P.; Jessen, S.; Hung Viet, P.; Larsen, F. 

Adsorption and Desorption of Arsenic to Aquifer Sediment on the Red River Floodplain at Nam 

Du, Vietnam. Geochim. Cosmochim. Acta 2014, 142, 587–600. 

https://doi.org/10.1016/j.gca.2014.07.014. 

(22)  Rathi, B.; Neidhardt, H.; Berg, M.; Siade, A.; Prommer, H. Processes Governing Arsenic 

Retardation on Pleistocene Sediments: Adsorption Experiments and Model-Based Analysis. 

Water Resour. Res. 2017, 53 (5), 4344–4360. https://doi.org/10.1002/2017WR020551. 

(23)  Zhang, H.; Magdi Selim, H. Second-Order Modeling of Arsenite Transport in Soils. J. 

Contam. Hydrol. 2011, 126 (3), 121–129. https://doi.org/10.1016/j.jconhyd.2011.08.002. 

(24)  Zhang, H.; Selim, H. M. Kinetics of Arsenate Adsorption−Desorption in Soils. Environ. 

Sci. Technol. 2005, 39 (16), 6101–6108. https://doi.org/10.1021/es050334u. 

(25)  Zhang, H.; Selim, H. M. Reaction and Transport of Arsenic in Soils: Equilibrium and 

Kinetic Modeling. In Advances in Agronomy; Academic Press, 2008; Vol. 98, pp 45–115. 

https://doi.org/10.1016/S0065-2113(08)00202-2. 

(26)  Darland, J. E.; Inskeep, W. P. Effects of Pore Water Velocity on the Transport of 

Arsenate. Environ. Sci. Technol. 1997, 31 (3), 704–709. https://doi.org/10.1021/es960247p. 

(27)  Bethke, C. M.; Brady, P. V. How the Kd Approach Undermines Ground Water Cleanup. 

Groundwater 2000, 38 (3), 435–443. https://doi.org/10.1111/j.1745-6584.2000.tb00230.x. 

(28)  Itai, T.; Takahashi, Y.; Seddique, A. A.; Maruoka, T.; Mitamura, M. Variations in the 

Redox State of As and Fe Measured by X-Ray Absorption Spectroscopy in Aquifers of 

Bangladesh and Their Effect on As Adsorption. Appl. Geochem. 2010, 25 (1), 34–47. 

https://doi.org/10.1016/j.apgeochem.2009.09.026. 

(29)  Jung, H. B.; Bostick, B. C.; Zheng, Y. Field, Experimental, and Modeling Study of 

Arsenic Partitioning across a Redox Transition in a Bangladesh Aquifer. Environ. Sci. Technol. 

2012, 46 (3), 1388–1395. https://doi.org/10.1021/es2032967. 



	

	 89	

(30)  Radloff, K. A.; Zheng, Y.; Stute, M.; Weinman, B.; Bostick, B.; Mihajlov, I.; Bounds, 

M.; Rahman, M. M.; Huq, M. R.; Ahmed, K. M.; et al. Reversible Adsorption and Flushing of 

Arsenic in a Shallow, Holocene Aquifer of Bangladesh. Appl. Geochem. 2015. 

https://doi.org/10.1016/j.apgeochem.2015.11.003. 

(31)  McArthur, J. M.; Nath, B.; Banerjee, D. M.; Purohit, R.; Grassineau, N. Palaeosol 

Control on Groundwater Flow and Pollutant Distribution: The Example of Arsenic. Environ. Sci. 

Technol. 2011, 45 (4), 1376–1383. https://doi.org/10.1021/es1032376. 

(32)  Robinson, C.; Brömssen, M. von; Bhattacharya, P.; Häller, S.; Bivén, A.; Hossain, M.; 

Jacks, G.; Ahmed, K. M.; Hasan, M. A.; Thunvik, R. Dynamics of Arsenic Adsorption in the 

Targeted Arsenic-Safe Aquifers in Matlab, South-Eastern Bangladesh: Insight from 

Experimental Studies. Appl. Geochem. 2011, 26 (4), 624–635. 

https://doi.org/10.1016/j.apgeochem.2011.01.019. 

(33)  Radloff, K. A.; Zheng, Y.; Michael, H. A.; Stute, M.; Bostick, B. C.; Mihajlov, I.; 

Bounds, M.; Huq, M. R.; Choudhury, I.; Rahman, M. W.; et al. Arsenic Migration to Deep 

Groundwater in Bangladesh Influenced by Adsorption and Water Demand. Nat. Geosci. 2011, 4 

(11), 793–798. https://doi.org/10.1038/ngeo1283. 

(34)  van Geen, A.; Bostick, B. C.; Thi Kim Trang, P.; Lan, V. M.; Mai, N.-N.; Manh, P. D.; 

Viet, P. H.; Radloff, K.; Aziz, Z.; Mey, J. L.; et al. Retardation of Arsenic Transport through a 

Pleistocene Aquifer. Nature 2013, 501 (7466), 204–207. https://doi.org/10.1038/nature12444. 

(35)  Dhar, R. K.; Zheng, Y.; Saltikov, C. W.; Radloff, K. A.; Mailloux, B. J.; Ahmed, K. M.; 

van Geen, A. Microbes Enhance Mobility of Arsenic in Pleistocene Aquifer Sand from 

Bangladesh. Env. Sci Technol 2011, 45 (7), 2648–2654. https://doi.org/10.1021/es1022015. 

(36)  Meng, X.; Korfiatis, G. P.; Jing, C.; Christodoulatos, C. Redox Transformations of 

Arsenic and Iron in Water Treatment Sludge during Aging and TCLP Extraction. Environ. Sci. 

Technol. 2001, 35 (17), 3476–3481. https://doi.org/10.1021/es010645e. 

(37)  Shoenfelt, E. M.; Winckler, G.; Lamy, F.; Anderson, R. F.; Bostick, B. C. Highly 

Bioavailable Dust-Borne Iron Delivered to the Southern Ocean during Glacial Periods. Proc. 

Natl. Acad. Sci. 2018, 201809755. https://doi.org/10.1073/pnas.1809755115. 

(38)  Sun, J.; Mailloux, B. J.; Chillrud, S. N.; van Geen, A.; Thompson, A.; Bostick, B. C. 

Simultaneously Quantifying Ferrihydrite and Goethite in Natural Sediments Using the Method of 



	

	 90	

Standard Additions with X-Ray Absorption Spectroscopy. Chem. Geol. 2018, 476, 248–259. 

https://doi.org/10.1016/j.chemgeo.2017.11.021. 

(39)  Cheng, Z.; Zheng, Y.; Mortlock, R.; Geen, A. van. Rapid Multi-Element Analysis of 

Groundwater by High-Resolution Inductively Coupled Plasma Mass Spectrometry. Anal. 

Bioanal. Chem. 2004, 379 (3), 512–518. https://doi.org/10.1007/s00216-004-2618-x. 

(40)  Selim, H. M. Transport & Fate of Chemicals in Soils: Principles & Applications; 2014. 

(41)  Lapidus, L.; Amundson, N. R. Mathematics of Adsorption in Beds. VI. The Effect of 

Longitudinal Diffusion in Ion Exchange and Chromatographic Columns. J. Phys. Chem. 1952, 

56 (8), 984–988. https://doi.org/10.1021/j150500a014. 

(42)  Carnahan, B.; Luther, H. A.; Wilkes, J. O. Applied Numerical Methods; Wiley: New 

York, 1969. 

(43)  Horneman, A.; Van Geen, A.; Kent, D. V.; Mathe, P. E.; Zheng, Y.; Dhar, R. K.; 

O’Connell, S.; Hoque, M. A.; Aziz, Z.; Shamsudduha, M.; et al. Decoupling of As and Fe 

Release to Bangladesh Groundwater under Reducing Conditions. Part 1: Evidence from 

Sediment Profiles. Geochim. Cosmochim. Acta 2004, 68 (17), 3459–3473. 

https://doi.org/10.1016/J.Gca.2004.01.026. 

(44)  Saalfield, S. L.; Bostick, B. C. Changes in Iron, Sulfur, and Arsenic Speciation 

Associated with Bacterial Sulfate Reduction in Ferrihydrite-Rich Systems. Environ. Sci. Technol. 

2009, 43 (23), 8787–8793. https://doi.org/10.1021/es901651k. 

(45)  Sultana, M.; Mou, T. J.; Sanyal, S. K.; Diba, F.; Mahmud, Z. H.; Parvez, A. K.; Hossain, 

M. A. Investigation of Arsenotrophic Microbiome in Arsenic-Affected Bangladesh Groundwater. 

Groundwater 2017, 55 (5), 736–746. https://doi.org/10.1111/gwat.12520. 

(46)  Gu, Y.; Nostrand, J. D. V.; Wu, L.; He, Z.; Qin, Y.; Zhao, F.-J.; Zhou, J. Bacterial 

Community and Arsenic Functional Genes Diversity in Arsenic Contaminated Soils from 

Different Geographic Locations. PLOS ONE 2017, 12 (5), e0176696. 

https://doi.org/10.1371/journal.pone.0176696. 

(47)  Brusseau, M. L.; Rao, P. S. C.; Jessup, R. E.; Davidson, J. M. Flow Interruption: A 

Method for Investigating Sorption Nonequilibrium. J. Contam. Hydrol. 1989, 4 (3), 223–240. 

https://doi.org/10.1016/0169-7722(89)90010-7. 



	

	 91	

(48)  Elkhatib, E. A.; Bennett, O. L.; Wright, R. J. Arsenite Sorption and Desorption in Soils. 

Soil Sci. Soc. Am. J. 1984, 48 (5), 1025–1030. 

https://doi.org/10.2136/sssaj1984.03615995004800050015x. 

(49)  Elkhatib, E. A.; Bennett, O. L.; Wright, R. J. Kinetics of Arsenite Sorption in Soils. Soil 

Sci. Soc. Am. J. 1984, 48 (4), 758–762. 

https://doi.org/10.2136/sssaj1984.03615995004800040012x. 

(50)  Barrachina, A. C.; Carbonell, F. B.; Beneyto, J. M. Kinetics of Arsenite Sorption and 

Desorption in Spanish Soils. Commun. Soil Sci. Plant Anal. 1996, 27 (18–20), 3101–3117. 

https://doi.org/10.1080/00103629609369764. 

(51)  McArthur, J. M.; Ravenscroft, P.; Banerjee, D. M.; Milsom, J.; Hudson-Edwards, K. A.; 

Sengupta, S.; Bristow, C.; Sarkar, A.; Tonkin, S.; Purohit, R. How Paleosols Influence 

Groundwater Flow and Arsenic Pollution: A Model from the Bengal Basin and Its Worldwide 

Implication. Water Resour. Res. 2008, 44 (11), W11411. 

https://doi.org/10.1029/2007WR006552.



	

	

92	

Fi
gu

re
 3

-1
. A

 sc
he

m
at

ic
 o

f t
he

 e
xp

er
im

en
ta

l s
et

up
. H

ig
h 

ar
se

ni
c 

gr
ou

nd
w

at
er

 fr
om

 th
e 

sh
al

lo
w

 a
qu

ife
r w

as
 p

um
pe

d 
co

nt
in

uo
us

ly
 in

 
an

 o
ve

rf
lo

w
in

g 
ba

g 
an

d 
ch

an
ne

le
d 

un
de

r c
on

tro
lle

d 
flo

w
 ra

te
s t

o 
el

ut
e 

un
di

st
ur

be
d 

se
di

m
en

t c
or

es
 h

ou
se

d 
in

 c
us

to
m

 m
ad

e 
an

ox
ic

 
ch

am
be

rs
. T

he
 fi

gu
re

 is
 n

ot
 d

ra
w

n 
to

 sc
al

e.
 

 

 



	

	

93	

Fi
gu

re
 3

-2
. A

rs
en

ic
 (a

, b
, a

nd
 c

), 
ir

on
 (d

, e
, a

nd
 f)

, s
ul

fu
r 

(g
, h

, a
nd

 i)
, a

nd
 p

ho
sp

ho
ru

s (
j, 

k,
 a

nd
 l)

 in
 th

e 
ef

flu
en

ts
 o

f o
ra

ng
e 

Pl
ei

st
oc

en
e 

se
di

m
en

t c
ol

um
ns

. A
rs

en
ic

 a
nd

 o
th

er
 re

do
x-

se
ns

iti
ve

 p
ar

am
et

er
s p

lo
tte

d 
as

 a
 fu

nc
tio

n 
of

 p
or

e 
vo

lu
m

e 
at

 a
 p

or
e-

w
at

er
 

ve
lo

ci
ty

 o
f 1

56
 c

m
/d

ay
 (t

op
 p

an
el

, n
=1

), 
81

.6
 c

m
/d

ay
 (m

id
dl

e 
pa

ne
l, 

n=
 2

), 
an

d 
40

 c
m

/d
ay

 (b
ot

to
m

 p
an

el
, n

 =
 1

). 
In

pu
t g

ro
un

dw
at

er
 

co
nc

en
tra

tio
ns

 o
f e

ac
h 

an
al

yt
e 

ar
e 

in
di

ca
te

d 
by

 th
e 

da
sh

ed
 li

ne
 in

 e
ac

h 
pl

ot
. T

he
 b

lu
e 

sh
ad

in
g 

in
 th

e 
ba

ck
gr

ou
nd

 o
f A

s c
or

re
sp

on
ds

 to
 

th
e 

po
rti

on
 o

f b
re

ak
th

ro
ug

h 
cu

rv
e 

w
ith

 e
lu

en
t S

 le
ve

l w
ith

in
 1

0%
 o

f t
he

 in
pu

t c
on

ce
nt

ra
tio

n 
.T

he
 sa

m
e 

ve
rti

ca
l a

xe
s o

f F
ig

ur
e 

3-
3 

ar
e 

m
ai

nt
ai

ne
d 

fo
r t

he
 e

as
e 

of
 c

om
pa

ris
on

. 
 

	

0
50

10
0

15
0

20
0

25
0

0200400600
As (ug/L)

(a
)

0
50

10
0

15
0

20
0

25
0

0200400600
As (ug/L)

(b
)

0
50

10
0

15
0

20
0

25
0

0200400600
As (ug/L)

(c
)

0
50

10
0

15
0

20
0

25
0

05101520
Fe (mg/L)

(d
)

0
50

10
0

15
0

20
0

25
0

05101520
Fe (mg/L)

(e
)

0
50

10
0

15
0

20
0

25
0

05101520
Fe (mg/L)

(f)

0
50

10
0

15
0

20
0

25
0

0.01.02.03.0
S (mg/L)

(g
)

0
50

10
0

15
0

20
0

25
0

0.01.02.03.0
S (mg/L)

(h
)

0
50

10
0

15
0

20
0

25
0

0.01.02.03.0
S (mg/L)

(i)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0
P (mg/L)

(j)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0
P (mg/L)

(k
)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0
P (mg/L)

(l)

0
50

10
0

15
0

20
0

25
0

0200400600
As (ug/L)

(a
)

0
50

10
0

15
0

20
0

25
0

0200400600
As (ug/L)

(b
)

0
50

10
0

15
0

20
0

25
0

0200400600
As (ug/L)

(c
)

0
50

10
0

15
0

20
0

25
0

05101520
Fe (mg/L)

(d
)

0
50

10
0

15
0

20
0

25
0

05101520
Fe (mg/L)

(e
)

0
50

10
0

15
0

20
0

25
0

05101520
Fe (mg/L)

(f)

0
50

10
0

15
0

20
0

25
0

0.01.02.03.0
S (mg/L)

(g
)

0
50

10
0

15
0

20
0

25
0

0.01.02.03.0
S (mg/L)

(h
)

0
50

10
0

15
0

20
0

25
0

0.01.02.03.0
S (mg/L)

(i)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0
P (mg/L)

(j)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0
P (mg/L)

(k
)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0
P (mg/L)

(l)

Po
re

 v
ol

um
e

Po
re

 v
ol

um
e



	

	

94	

Fi
gu

re
 3

-3
. A

rs
en

ic
 (a

, b
, a

nd
 c

), 
ir

on
 (d

, e
, a

nd
 f)

, s
ul

fu
r 

(g
, h

, a
nd

 i)
, a

nd
 p

ho
sp

ho
ru

s (
j, 

k,
 a

nd
 l)

 in
 th

e 
ef

flu
en

ts
 o

f g
ra

y 
H

ol
oc

en
e 

se
di

m
en

t c
ol

um
ns

. A
rs

en
ic

 a
nd

 o
th

er
 re

do
x-

se
ns

iti
ve

 p
ar

am
et

er
s p

lo
tte

d 
as

 a
 fu

nc
tio

n 
of

 p
or

e 
vo

lu
m

e 
at

 a
 p

or
e-

w
at

er
 

ve
lo

ci
ty

 o
f 1

54
 c

m
/d

ay
 (t

op
 p

an
el

, n
 =

 3
), 

72
 c

m
/d

ay
 (m

id
dl

e 
pa

ne
l, 

n 
= 

2)
, a

nd
 2

30
 c

m
/d

ay
 (b

ot
to

m
 p

an
el

, n
 =

1)
. I

np
ut

 g
ro

un
dw

at
er

 
co

nc
en

tra
tio

ns
 o

f e
ac

h 
an

al
yt

e 
ar

e 
in

di
ca

te
d 

by
 th

e 
da

sh
ed

 li
ne

 in
 e

ac
h 

pl
ot

. T
he

 P
W

V
 o

f t
he

 to
p 

tw
o 

pa
ne

ls
 a

re
 c

om
pa

ra
bl

e 
to

 th
at

 o
f 

Fi
gu

re
 3

-2
. 

 

 
 

0
50

10
0

15
0

20
0

25
0

0200400600
As (ug/L)

(a
)

0
50

10
0

15
0

20
0

25
0

0200400600
As (ug/L)

(b
)

0
50

10
0

15
0

20
0

25
0

0200400600
As (ug/L)

(c
)

0
50

10
0

15
0

20
0

25
0

05101520
Fe (mg/L)

(d
)

0
50

10
0

15
0

20
0

25
0

05101520
Fe (mg/L)

(e
)

0
50

10
0

15
0

20
0

25
0

05101520
Fe (mg/L)

(f)

0
50

10
0

15
0

20
0

25
0

0.01.02.03.0
S (mg/L)

(g
)

0
50

10
0

15
0

20
0

25
0

0.01.02.03.0
S (mg/L)

(h
)

0
50

10
0

15
0

20
0

25
0

0.01.02.03.0
S (mg/L)

(i)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0
P (mg/L)

(j)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0
P (mg/L)

(k
)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0
P (mg/L)

(l)

0
50

10
0

15
0

20
0

25
0

0200400600
As (ug/L)

(a
)

0
50

10
0

15
0

20
0

25
0

0200400600
As (ug/L)

(b
)

0
50

10
0

15
0

20
0

25
0

0200400600
As (ug/L)

(c
)

0
50

10
0

15
0

20
0

25
0

05101520
Fe (mg/L)

(d
)

0
50

10
0

15
0

20
0

25
0

05101520
Fe (mg/L)

(e
)

0
50

10
0

15
0

20
0

25
0

05101520
Fe (mg/L)

(f)

0
50

10
0

15
0

20
0

25
0

0.01.02.03.0
S (mg/L)

(g
)

0
50

10
0

15
0

20
0

25
0

0.01.02.03.0
S (mg/L)

(h
)

0
50

10
0

15
0

20
0

25
0

0.01.02.03.0
S (mg/L)

(i)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0
P (mg/L)

(j)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0
P (mg/L)

(k
)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0
P (mg/L)

(l)

Po
re

 v
ol

um
e

Po
re

 v
ol

um
e



	

	

95	

Fi
gu

re
 3

-4
. C

ha
ng

e 
in

 th
e 

fr
ac

tio
n 

of
 s

ol
id

 p
ha

se
 ir

on
 (I

I)
 a

nd
 a

rs
en

ic
 (A

s)
 s

pe
ci

at
io

n 
in

 th
e 

or
an

ge
 s

ed
im

en
t c

ol
um

ns
 fo

llo
w

in
g 

el
ut

io
n 

w
ith

 h
ig

h-
ar

se
ni

c 
gr

ou
nd

w
at

er
. (

a)
 T

he
 p

er
ce

nt
ag

e 
of

 F
e(

II
) i

n 
th

e 
in

le
ts

 a
nd

 o
ut

le
ts

 o
f c

ol
um

ns
 w

er
e 

co
m

pa
re

d 
w

ith
 

av
er

ag
e 

Fe
(I

I)
 c

on
te

nt
 (n

 =
2)

 in
 th

e 
co

nt
ro

l s
ed

im
en

t (
bl

ue
). 

Th
e 

th
ic

k 
po

rti
on

 o
f t

he
 a

bs
ol

ut
e 

er
ro

r r
ep

re
se

nt
s 

re
la

tiv
e 

er
ro

r b
et

w
ee

n 
sa

m
pl

es
 th

at
 is

 la
rg

el
y 

du
e 

to
 v

ar
ia

tio
n 

in
 th

e 
de

te
rm

in
at

io
n 

of
 in

fle
ct

io
n 

ed
ge

 p
os

iti
on

; i
.e

. t
he

 re
la

tiv
e 

er
ro

r f
or

 c
om

pa
rin

g 
th

e 
ch

an
ge

 
in

 th
e 

pr
op

or
tio

n 
of

 F
e(

II
) b

et
w

ee
n 

sa
m

pl
es

. T
he

 a
bs

ol
ut

e 
er

ro
rs

 in
 o

xi
da

tio
n 

st
at

e 
ar

e 
la

rg
er

 a
nd

 re
su

lt 
fr

om
 in

ac
cu

ra
ci

es
 in

 e
dg

e 
po

si
tio

n 
ca

us
ed

 p
rim

ar
ily

 b
y 

ca
lib

ra
tio

n 
er

ro
rs

 b
et

w
ee

n 
sa

m
pl

es
 a

nd
 re

fe
re

nc
es

; (
b)

 X
A

N
ES

 s
pe

ct
ra

 o
f A

s 
fo

r t
he

 s
am

e 
co

lo
r-

co
de

d 
co

re
s 

re
tri

ev
ed

 b
et

w
ee

n 
42

 a
nd

 5
1 

ft 
de

pt
h 

(T
ab

le
 3

-S
1)

. T
he

 g
ra

y 
ba

ck
gr

ou
nd

 (1
18

75
-1

18
77

 e
V

) s
ho

w
s 

th
e 

pe
ak

 o
f n

or
m

al
iz

ed
 

ab
so

rb
an

ce
 in

 th
e 

co
nt

ro
l a

s 
a 

re
fe

re
nc

e 
fo

r c
om

pa
ris

on
 w

ith
 th

e 
re

st
 o

f t
he

 c
ol

um
ns

 (T
ab

le
 3

-S
3)

. T
he

 o
ut

le
ts

 o
f t

he
 c

ol
um

ns
 a

re
 

sh
ow

n 
as

 d
as

he
d 

lin
es

. T
he

 o
ut

le
t s

am
pl

e 
at

 5
1 

ft 
el

ut
ed

 a
t t

he
 s

lo
w

es
t f

lo
w

 ra
te

 is
 n

ot
 re

pr
es

en
ta

tiv
e.

 
 	

 

(a
) F

e−
XA

S

In
le

t
O

ut
le

t

0.050.100.150.200.250.30
Fe(II)

11
86

5
11

87
5

11
88

5

(b
) A

s−
XA

N
ES

En
er

gy
 (e

V)

Normalized absorbance

45
 ft

43
 ft

42
 ft

51
 ft

co
nt

 4
4 

ft
co

nt
 4

9 
ft



	

	

96	

Fi
gu

re
 3

-5
. T

im
e-

de
pe

nd
en

t e
vo

lu
tio

n 
of

 a
rs

en
ic

 (A
s)

 fo
r 

a 
tw

o 
ph

as
e,

 r
ev

er
si

bl
e 

ki
ne

tic
 m

od
el

. R
el

at
iv

e 
co

nc
en

tra
tio

n 
of

 a
rs

en
ic

 
pl

ot
te

d 
ag

ai
ns

t t
im

e 
at

 v
ar

yi
ng

 P
W

V
 fo

r o
ra

ng
e 

(a
) a

nd
 g

ra
y 

(b
) s

ed
im

en
t c

ol
um

ns
. A

ls
o 

sh
ow

n 
th

e 
pr

ed
ic

te
d 

no
ne

qu
ili

br
iu

m
 tr

an
sp

or
t 

of
 A

s (
do

tte
d 

lin
es

) i
nv

ar
ia

nt
 o

f k
in

et
ic

 ra
te

 c
on

st
an

ts
 w

ith
in

 e
ac

h 
se

di
m

en
t g

ro
up

. S
am

e 
sy

m
bo

ls
 fr

om
 F

ig
ur

e 
3-

2 
an

d 
3-

3 
ar

e 
re

ta
in

ed
 

w
ith

 a
n 

ou
tli

ne
 c

ol
or

 c
or

re
sp

on
di

ng
 to

 D
ar

ci
an

 v
el

oc
ity

 (s
ee

 le
ge

nd
). 

Si
m

ul
at

ed
 b

re
ak

th
ro

ug
h 

cu
rv

es
 fo

r t
hr

ee
 re

pr
es

en
ta

tiv
e 

flo
w

-
ve

lo
ci

tie
s a

re
 sh

ow
n 

(T
ab

le
 3

-S
1)

. E
ff

lu
en

ts
 c

ol
le

ct
ed

 a
fte

r S
O

4 l
ev

el
 st

ar
te

d 
to

 d
ec

lin
e 

be
lo

w
 th

e 
in

pu
t l

ev
el

 a
re

 o
ut

lin
ed

/d
ot

te
d 

on
ly

. 
 

 
 

 



	

	

97	

3.
7.

 S
up

po
rt

in
g 

M
at

er
ia

ls
 

 Fi
gu

re
 3

-S
1.

 C
or

in
g 

lo
ca

tio
ns

 o
f g

ra
y 

H
ol

oc
en

e 
an

d 
Pl

ei
st

oc
en

e 
or

an
ge

 se
di

m
en

ts
. S

pa
tia

l m
ap

 in
di

ca
tin

g 
th

e 
lo

ca
tio

n 
of

 d
ril

lin
g 

si
te

s i
n 

A
ra

ih
az

ar
 in

 c
en

tra
l B

an
gl

ad
es

h 
(in

se
t) 

ov
er

 b
la

nk
et

 a
rs

en
ic

 te
st

 re
su

lts
 (v

an
 G

ee
n 

et
 a

l. 
20

14
) g

ro
up

ed
 in

to
 <

=1
0 

ug
/L

 (c
ya

n)
, 

>1
0 

to
 5

0 
ug

/L
 (g

re
en

), 
an

d 
>5

0 
ug

/L
 (r

ed
). 

Th
e 

or
an

ge
 se

di
m

en
t s

ite
 is

 lo
ca

te
d 

in
 th

e 
N

W
 p

ar
t o

f t
he

 a
re

a 
(9

0.
63

52
°, 

23
.8

54
2°

) w
ith

 a
 

hi
gh

er
 p

ro
po

rti
on

 o
f l

ow
 A

s w
el

ls
 (<

10
 u

g/
L)

 in
st

al
le

d 
in

 P
le

is
to

ce
ne

 a
qu

ife
r w

he
re

as
 th

e 
gr

ay
 se

di
m

en
t c

or
in

g 
si

te
 is

 lo
ca

te
d 

in
 a

 h
ig

h 
A

s r
eg

io
n 

at
 c

en
tra

l A
ra

ih
az

ar
 (9

0.
65

77
°, 

23
.7

90
9°

); 
D

ep
th

 p
ro

fil
es

 o
f l

ith
ol

og
y 

(s
an

d 
or

 c
la

y)
 a

nd
 d

iff
us

e 
sp

ec
tra

l r
ef

le
ct

an
ce

 
(H

or
ne

m
an

 e
t a

l. 
20

04
) o

f t
he

 se
di

m
en

t s
am

pl
es

 re
tri

ev
ed

 fr
om

 P
le

is
to

ce
ne

 m
at

er
ia

l (
a)

 a
nd

 H
ol

oc
en

e 
m

at
er

ia
l (

b)
 a

re
 sh

ow
n.

 T
he

 
da

sh
ed

 li
ne

s i
nd

ic
at

e 
co

rin
g 

de
pt

h 
in

te
rv

al
 fo

r g
ra

y 
se

di
m

en
t (

44
-5

7 
ft)

 a
nd

 o
ra

ng
e 

se
di

m
en

t (
42

 - 
51

 ft
). 

A
ls

o 
sh

ow
n 

ar
e 

th
e 

de
pt

h 
pr

of
ile

s o
f (

c)
 a

rs
en

ic
, (

d)
 ir

on
, (

e)
 su

lfu
r, 

(f
) p

ho
sp

ha
te

 a
nd

 (g
) d

is
so

lv
ed

 in
or

ga
ni

c 
ca

rb
on

 (D
IC

) c
on

ce
nt

ra
tio

ns
 in

 th
e 

in
pu

t w
el

l 
sc

re
en

ed
 a

t 6
0-

65
 ft

 a
nd

 c
o-

lo
ca

te
d 

sh
al

lo
w

 w
el

ls
 sc

re
en

ed
 a

t 2
0-

25
, 4

5-
50

, a
nd

 5
5-

60
 ft

 b
el

ow
 g

ro
un

d 
su

rf
ac

e.
 

 

 



	

	

98	

Fi
gu

re
 3

-S
2.

 T
he

 c
on

ce
nt

ra
tio

ns
 o

f v
ar

io
us

 p
hy

si
co

ch
em

ic
al

 p
ar

am
et

er
s i

n 
th

e 
w

el
l (

re
d)

 a
nd

 st
or

ag
e 

ba
g 

(g
re

en
) o

ve
r 

tim
e.

 
A

rs
en

ic
 (a

), 
iro

n 
(b

), 
su

lfu
r (

c)
, p

ho
sp

ho
ru

s (
d)

, a
rs

en
ite

 (e
), 

m
an

ga
ne

se
 (f

), 
ch

lo
rid

e 
(g

), 
br

om
id

e 
(h

), 
pH

 a
nd

 o
xi

da
tio

n-
re

du
ct

io
n 

po
te

nt
ia

l (
O

R
P)

 in
 th

e 
in

flu
en

t g
ro

un
dw

at
er

. T
he

 st
or

ag
e 

ba
g 

w
as

 sp
ik

ed
 w

ith
 p

ho
sp

ho
ru

s a
nd

 b
ro

m
id

e 
on

 d
ay

 2
0 

of
 th

e 
ex

pe
rim

en
t 

(v
er

tic
al

 d
ot

te
d 

lin
e)

. 
 	

 
 

70605040302010

0
0.
5

1
1.
5

0
15
0

30
0

70605040302010

0
0.
5

1
1.
5

cl
ay

sa
nd

cl
ay

sa
nd

cl
ay

sa
nd

cl
ay

sa
nd

Depth (ft) 

R
ef

le
ct

an
ce

 (5
30

 n
m

 –
 5

20
 n

m
) 

A
s 

(u
g/

L)
 

As
	(p

pb
)	

<=
10
	

>1
0	
to
	<
=5
0	

>5
0	

Gr
ay
	se

di
m
en

t	c
or
in
g	

&
	e
xp
er
im

en
t	

O
ra
ng
e	
se
di
m
en

t	c
or
in
g	
	

(a
)	 (b
)	

B
an
gl
ad
es
h

0
50

10
0

15
0

20
0

25
0

0123456

Ti
m

e 
(h

r)

Total sorbed concentration (ppm)

1.
5 

cm
2.

5 
cm

3.
5 

cm
4.

5 
cm

5.
5 

cm
6.

5 
cm

7.
5 

cm

0
50

10
0

15
0

20
0

25
0

0123456

Ti
m

e 
(h

r)

sorbed concentration (ppm)

0
50

10
0

15
0

20
0

25
0

0123456

Ti
m

e 
(h

r)

Total sorbed concentration (ppm)

0
50

10
0

15
0

20
0

25
0

0123456

Ti
m

e 
(h

r)

sorbed concentration (ppm)

(a
)

(b
)

(c
)

(d
)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

0.00.20.40.60.81.0
fa

st
 fl

ow
 ra

te

PV

C/C0

1 
sq

. c
m

/h
r

2 
sq

. c
m

/h
r

3 
sq

. c
m

/h
r

4 
sq

. c
m

/h
r

5 
sq

. c
m

/h
r

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

0.00.20.40.60.81.0

sl
ow

 fl
ow

 ra
te

PV

C/C0

0.
5 

sq
. c

m
/h

r
1 

sq
. c

m
/h

r
1.

5 
sq

. c
m

/h
r

2 
sq

. c
m

/h
r

2.
5 

sq
. c

m
/h

r

(a
)

(b
)

0
50

10
0

15
0

20
0

25
0

0100200300400

(a
)

As (ug/L)

(a
)

0
50

10
0

15
0

20
0

25
0

0100200300400
As (ug/L)

(b
)

0
50

10
0

15
0

20
0

25
0

01234567
Fe (mg/L)

(c
)

0
50

10
0

15
0

20
0

25
0

01234567
Fe (mg/L)

(d
)

0
50

10
0

15
0

20
0

25
0

01234
S (mg/L)

(e
)

0
50

10
0

15
0

20
0

25
0

01234
S (mg/L)

(f)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.5
P (mg/L)

(g
)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.5
P (mg/L)

(h
)

0
50

10
0

15
0

20
0

25
0

0100200300400500600
As (ug/L)

(a
)

0
50

10
0

15
0

20
0

25
0

0100200300400500600
As (ug/L)

(b
)

0
50

10
0

15
0

20
0

25
0

05101520
Fe (mg/L)

(c
)

0
50

10
0

15
0

20
0

25
0

05101520
Fe (mg/L)

(d
)

0
50

10
0

15
0

20
0

25
0

01234
S (mg/L)

(e
)

0
50

10
0

15
0

20
0

25
0

01234
S (mg/L)

(f)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0
P (mg/L)

(g
)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0
P (mg/L)

(h
)

O
ra

ng
e 

se
di

m
en

t c
ol

um
ns

0
50

10
0

15
0

20
0

25
0

0.00.20.40.60.81.01.2
C/C0

(a
)

10
 c

m
/h

r
6.

5 
cm

/h
r

3 
cm

/h
r

1.
5 

cm
/h

r

G
ra

y 
se

di
m

en
t c

ol
um

ns

0
20

40
60

80
10

0
12

0

0.00.20.40.60.81.01.2
C/C0

(b
)

5
10

15
20

0100200300

Ti
m

e 
(D

ay
)

As (ug/L)

(a
)

5
10

15
20

0246

Ti
m

e 
(D

ay
)

Fe (mg/L)
(b

)

5
10

15
20

0.01.02.03.0

Ti
m

e 
(D

ay
)

S (mg/L)

(c
)

5
10

15
20

01234567

Ti
m

e 
(D

ay
)

P (mg/L)

(d
)

5
10

15
20

050100200300

Ti
m

e 
(D

ay
)

As(III) (ug/L)

(e
)

5
10

15
20

0.00.51.01.52.02.53.0

Ti
m

e 
(D

ay
)

Mn (mg/L)

(f)

5
10

15
20

020406080120

Ti
m

e 
(D

ay
)

Cl (mg/L)

(g
)

5
10

15
20

050100150

Ti
m

e 
(D

ay
)

Br (mg/L)

(h
)

5
10

15
20

234567

pH

(i)

5
10

15
20

0−20−60−100−140

ORP (mV)

(j)

W
el

l
Ba

g

0
50

10
0

15
0

20
0

25
0

0100200300400
As (ug/L)

(a
)

0
50

10
0

15
0

20
0

25
0

01234567
Fe (mg/L)

(b
)

0
50

10
0

15
0

20
0

25
0

0.01.02.03.0
S (mg/L)

(c
)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.5
P (mg/L)

(d
)

Po
re

 v
ol

um
e

Po
re

 v
ol

um
e

Po
re

 v
ol

um
e

Ti
m

e 
(h

ou
r)

Ti
m

e 
(D

ay
)

0
10

20
30

40
50

02468

a$
PV

_c
um

P (mg/L)

(a
)

0
10

20
30

40
50

0200400600

a$
PV

_c
um

As (ug/L)

(b
)

0
10

20
30

40
50

0246810

Fe (mg/L)

(c
)

Po
re

 v
ol

um
e



	

	

99	

Fi
gu

re
 3

-S
3.

 C
on

ce
nt

ra
tio

ns
 o

f a
rs

en
ic

 (a
), 

ir
on

 (b
), 

su
lfu

r 
(c

) a
nd

 p
ho

sp
ho

ru
s (

d)
 in

 th
e 

co
nt

ro
l s

an
d 

co
lu

m
n 

pl
ot

te
d 

as
 a

 
fu

nc
tio

n 
of

 p
or

e 
vo

lu
m

e 
at

 fa
st

 P
W

V
. 

 

 

0
50

10
0

15
0

20
0

25
0

0200400600
As (ug/L)

(a
)

0
50

10
0

15
0

20
0

25
0

0200400600
As (ug/L)

(b
)

0
50

10
0

15
0

20
0

25
0

0200400600
As (ug/L)

(c
)

0
50

10
0

15
0

20
0

25
0

05101520
Fe (mg/L)

(d
)

0
50

10
0

15
0

20
0

25
0

05101520
Fe (mg/L)

(e
)

0
50

10
0

15
0

20
0

25
0

05101520
Fe (mg/L)

(f)

0
50

10
0

15
0

20
0

25
0

0.01.02.03.0
S (mg/L)

(g
)

0
50

10
0

15
0

20
0

25
0

0.01.02.03.0
S (mg/L)

(h
)

0
50

10
0

15
0

20
0

25
0

0.01.02.03.0
S (mg/L)

(i)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0
P (mg/L)

(j)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0
P (mg/L)

(k
)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0
P (mg/L)

(l)

0
50

10
0

15
0

20
0

25
0

0200400600
As (ug/L)

(a
)

0
50

10
0

15
0

20
0

25
0

0200400600
As (ug/L)

(b
)

0
50

10
0

15
0

20
0

25
0

0200400600
As (ug/L)

(a
)

0
50

10
0

15
0

20
0

25
0

05101520
Fe (mg/L)

(c
)

0
50

10
0

15
0

20
0

25
0

05101520
Fe (mg/L)

(d
)

0
50

10
0

15
0

20
0

25
0

05101520
Fe (mg/L)

(b
)

0
50

10
0

15
0

20
0

25
0

0.01.02.03.0
S (mg/L)

(e
)

0
50

10
0

15
0

20
0

25
0

0.01.02.03.0
S (mg/L)

(f)

0
50

10
0

15
0

20
0

25
0

0.01.02.03.0
S (mg/L)

(c
)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0
P (mg/L)

(g
)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0
P (mg/L)

(h
)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0
P (mg/L)

(d
)

0
50

10
0

15
0

20
0

25
0

0200400600
As (ug/L)

(a
)

0
50

10
0

15
0

20
0

25
0

0200400600
As (ug/L)

(b
)

0
50

10
0

15
0

20
0

25
0

0200400600
As (ug/L)

(a
)

0
50

10
0

15
0

20
0

25
0

05101520
Fe (mg/L)

(c
)

0
50

10
0

15
0

20
0

25
0

05101520
Fe (mg/L)

(d
)

0
50

10
0

15
0

20
0

25
0

05101520
Fe (mg/L)

(b
)

0
50

10
0

15
0

20
0

25
0

0.01.02.03.0
S (mg/L)

(e
)

0
50

10
0

15
0

20
0

25
0

0.01.02.03.0
S (mg/L)

(f)

0
50

10
0

15
0

20
0

25
0

0.01.02.03.0
S (mg/L)

(c
)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0
P (mg/L)

(g
)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0
P (mg/L)

(h
)

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0
P (mg/L)

(d
)

Po
re

 v
ol

um
e

Po
re

 v
ol

um
e

Po
re

 v
ol

um
e



 

 

100 

Fi
gu

re
 3

-S
4.

 D
et

er
m

in
at

io
n 

of
 d

isp
er

sio
n 

co
ef

fic
ie

nt
, D

 w
ith

 b
ro

m
id

e (
Br

− ) t
ra

ce
r 

in
je

ct
io

n.
 T

he
 in

flu
en

t g
ro

un
dw

at
er

 o
rig

in
al

ly
 

co
nt

ai
ni

ng
 v

er
y 

lo
w

 B
r−

 c
on

ce
nt

ra
tio

n 
(0

.1
 m

g/
L)

 w
as

 a
rti

fic
ia

lly
 sp

ik
ed

 to
 ~

14
0 

m
g/

L 
(F

ig
ur

e 
3-

S2
) t

o 
ob

se
rv

e 
th

e 
br

ea
kt

hr
ou

gh
 o

f 
B

r−
 u

nd
er

 fi
el

d 
co

nd
iti

on
. T

he
 b

re
ak

th
ro

ug
h 

of
 B

r−
 w

as
 m

od
el

ed
 u

si
ng

 a
n 

an
al

yt
ic

al
 so

lu
tio

n 
fo

r 1
D

 a
dv

ec
tio

n-
di

sp
er

si
on

 e
qu

at
io

n 
(v

an
 G

en
uc

ht
en

 a
nd

 A
lv

es
, 1

98
2)

 a
ss

um
in

g 
a 

pa
rti

tio
n 

co
ef

fic
ie

nt
, K

D
 o

f 0
 (r

et
ar

da
tio

n 
fa

ct
or

 o
f 1

) f
or

 a
 ra

ng
e 

of
 D

 v
al

ue
s. 

Th
e 

be
st

 
fit

 w
as

 d
er

iv
ed

 b
y 

re
du

ci
ng

 th
e 

su
m

 o
f s

qu
ar

ed
 e

rr
or

 b
et

w
ee

n 
ob

se
rv

ed
 a

nd
 p

re
di

ct
ed

 re
la

tiv
e 

co
nc

en
tra

tio
ns

 o
f B

r−
 a

t f
as

t (
a)

 a
nd

 sl
ow

 
(b

) P
W

V
. T

he
 c

ol
or

s o
f t

he
 o

bs
er

va
tio

ns
 in

di
ca

te
 th

e 
se

di
m

en
t c

ol
or

. 
 

 
 

 

(a
)

(b
)

(c
)

(d
)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

0.00.20.40.60.81.0

fa
st

 fl
ow

 ra
te

PV

C/C0

1 
sq

. c
m

/h
r

2 
sq

. c
m

/h
r

3 
sq

. c
m

/h
r

4 
sq

. c
m

/h
r

5 
sq

. c
m

/h
r

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

0.00.20.40.60.81.0

sl
ow

 fl
ow

 ra
te

PV

C/C0

0.
5 

sq
. c

m
/h

r
1 

sq
. c

m
/h

r
1.

5 
sq

. c
m

/h
r

2 
sq

. c
m

/h
r

2.
5 

sq
. c

m
/h

r

(a
)

(b
)



 

 

101 

Fi
gu

re
 3

-S
5.

 M
od

el
in

g 
ar

se
ni

c 
(A

s)
 tr

an
sp

or
t a

ss
um

in
g 

a 
sin

gl
e 

so
lid

 p
ha

se
. R

el
at

iv
e 

co
nc

en
tra

tio
n 

of
 a

rs
en

ic
 p

lo
tte

d 
ag

ai
ns

t t
im

e 
at

 v
ar

yi
ng

 P
W

V
 fo

r o
ra

ng
e 

(a
) a

nd
 g

ra
y 

(b
) s

ed
im

en
t c

ol
um

ns
 a

lo
ng

 w
ith

 p
re

di
ct

ed
 c

on
ce

nt
ra

tio
ns

 (d
ot

te
d 

lin
es

) t
ha

t a
re

 in
va

ria
nt

 o
f 

ki
ne

tic
 ra

te
 c

on
st

an
ts

. T
he

 a
ss

ig
ne

d 
in

iti
al

 so
lid

 p
ha

se
 A

s c
on

ce
nt

ra
tio

n 
in

 th
e 

or
an

ge
 a

nd
 g

ra
y 

se
di

m
en

t c
ol

um
ns

 is
 0

.5
 a

nd
 2

 m
g/

kg
, 

re
sp

ec
tiv

el
y.

 T
he

 fo
rw

ar
d 

an
d 

re
ve

rs
e 

ra
te

 c
on

st
an

ts
 u

se
d 

fo
r t

he
 g

ra
y 

se
di

m
en

t c
ol

um
ns

 a
re

 6
 h

-1
 (k

1)
 a

nd
 0

.1
7 

h-1
 (k

2)
, r

es
pe

ct
iv

el
y 

an
d 

fo
r o

ra
ng

e 
se

di
m

en
t c

ol
um

ns
 a

re
 2

 h
-1

 (k
1)

 a
nd

 0
.0

7 
h-1

 (k
2)

, r
es

pe
ct

iv
el

y.
 T

he
 sy

m
bo

l/c
ol

or
 c

od
in

g 
is

 a
s d

es
cr

ib
ed

 in
 F

ig
ur

e 
3-

5.
 

 

 
 



	

	 102	

Figure 3-S6. Transport model sensitivity to the initial total sorbed arsenic (As) 
concentration. The single solid phase As concentration in the gray sediment columns is 
increased with increasing PWV: 1.5 mg/kg (blue), 2 mg/kg (black), and 2.5 mg/kg (red) while 
the forward and reverse rate constants are kept unchanged (6 h-1 and 0.17 h-1). The symbol/color 
coding is as described in Figure 3-5b. 
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Figure 3-S8. Transport model simulations with the same rate constants and initial solid 
phase concentrations across all sediment groups. Relative concentration of arsenic plotted 
against time at varying PWV for orange and gray sediment columns along with predicted 
concentrations (dashed lines). An initial kinetic sorbed phase of 1 mg/kg is applied for both 
phases. The forward and reverse rate constants associated with the first phase are 3 h-1 (k1) and 
0.8 h-1 (k2) and for the second phase are 0.01 h-1 and 0.008 h-1, respectively. 
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Figure 3-S9.  The evolution of solid phase arsenic (As) concentrations predicted by a two-
phase, reversible kinetic model. Simulated adsorption of As in the orange (a, b) and gray (c, d) 
sediment columns at fast (solid lines) and slow (dotted lines) pore-water velocities. The top panel 
(a, c) shows the evolution of total sorbed As and the bottom panel (b, d) indicates the increasing 
fast reacting phase, S1 and depleting slow reacting phase, S2 at ~1 cm interval along the length 
of the column. The rate of As loading is higher at fast PWV; in other words, if the rate constants 
are proportionally reduced for a given initial sorbed concentration, the rate of As loading in the 
columns will be slower and more time will be required for As breakthrough. Following elution, 
the observed total sorbed As concentrations in the columns increased by 1.4 to 9 fold, averaging 
6.7±0.3 mg/kg for the orange sediment columns (n=8) and 4.7±1.2 mg/kg in the inlets of the gray 
sediment column (n=5), consistent with the simulated net increase in sorbed As concentration. 
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Figure 3-S10. The effect of phosphate spiking in a gray sediment column. Groundwater in 
the storage bag was artificially elevated to ~ 6 mg/L of P (a) by the end of the experiment 
(Figure 3-S2) that released additional arsenic (b) and iron (c) to the influent. The vertical line 
separates groundwater samples collected a few pore-volumes before and after P spiking, 
respectively. 
 

	 	
	 	



	

	 	 107	

Figure 3-S11. Evidence of color change in an orange sediment column. The color of sediment 
is darker towards the inlet than in the outlet, which implies reduction of solid phase iron and 
sulfur during the experimental period. The color in the inset picture was normalized with the 
reference white balance. 
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Figure 3-S12. Change in the fraction of solid phase iron (II) and arsenic (As) speciation in 
the gray sediment columns following elution with high-arsenic groundwater. (a) The 
percentage of Fe(II) in the inlets and outlets of columns were compared with average Fe(II) 
content (n =2) in the control sediment (blue); (b) XANES spectra of As for the same color-coded 
cores retrieved between 44 and 56 ft depth (Table 3-S1). The gray background (11872-11875 
eV) shows the peak of normalized absorbance in the controls as a reference to compare with the 
rest of the columns (Table 3-S3).  The associated linear combination fitting results are presented 
in Table 3-S3. 
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Table	3-S2.	Bulk	chemical	properties	of	the	gray	and	orange	sediment.			
 

 

  

Coring 
depth As As +/- 

P-ext. 
As Ca Ca +/- Fe 

ft mg/kg mg/kg % mg/kg mg/kg % 
Gray sediment cuttings 

35 2.4 0.6 NA 8311 146 1.8 
40 <LOD 1.7 NA 9617 148 1.7 
45 4.2 0.6 NA 5781 124 2.1 
50 <LOD 1.6 NA 3529 88 0.8 
55 2.1 0.5 NA 8573 140 1.2 
60 2.4 0.5 NA 5336 107 1.1 
65 <LOD 1.6 NA 6472 116 1.2 
42 1.9 0.5 0.23 7492 131 1.1 
47 <LOD 1.6 0.88* 6201 124 1.6 

AC12 ?? 2.4 0.5 0.41 8896 148 1.3 
54 4.1 0.6 0.41 6106 129 2.9 

Average 3 0.6 0.5 6938 127 1.5 
Orange sediment cuttings 

42 <LOD 1.8 NA 3369 98 2.4 
42 <LOD 1.7 NA 3602 106 2.4 
43 3 0.5 NA 4526 111 2.5 
43 <LOD 1.8 NA 4975 124 3.2 
45 <LOD 1.9 NA 4355 118 3.8 
46 2.6 0.6 NA 4492 113 2.1 
51 2.1 0.6 NA 4673 114 3.0 
41 2.8 0.6 0.10 2480 86 1.9 
48 1.8 0.6 0.16 4572 110 2.0 
50 2.3 0.6 0.20 4864 116 2.8 
44 1.8 0.6 0.15 5206 116 2.6 

Average 2 0.6 0.15 4402 109 2.4 
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Table 3-S3. Linear combination fitting results of As XANES spectra for the orange and 
gray sediment columns. 
 

 

  

Orange	sediment	columns	 Grays	sediment	columns	
Depth	 speciation	 Inlet	 Outlet	 Depth	 Inlet	 Outlet	

45	ft	
As	V	sorbed	 11%	 13%	

56	ft	
3%	 16%	

As	III	sorbed	 4%	 82%	 0%	 36%	
AsS	sorbed	 85%	 4%	 97%	 48%	

Res.	Chi	sq.	 		 0.05	 0.16	 		 0.14	 0.14	

43	ft	
As	V	sorbed	 7%	 19%	

50.5	ft	
25%	 31%	

As	III	sorbed	 11%	 37%	 75%	 69%	
AsS	sorbed	 83%	 43%	 0%	 0%	

Res.	Chi	sq.	 		 0.05	 0.04	 		 0.42	 0.38	

51	ft	
As	V	sorbed	 31%	 55%	

56.5	ft	
12%	 24%	

As	III	sorbed	 26%	 0%	 21%	 4%	
AsS	sorbed	 42%	 45%	 68%	 73%	

Res.	Chi	sq.	 		 0.02	 0.02	 		 0.02	 0.03	

42	ft	
As	V	sorbed	 20%	 20%	

44	ft	
15%	 13%	

As	III	sorbed	 17%	 33%	 0%	 0%	
AsS	sorbed	 62%	 47%	 85%	 87%	

Res.	Chi	sq.	 		 0.01	 0.03	 		 0.17	 0.01	

Cont	44	ft	
As	V	sorbed	 76%	 76%	

Cont	42	ft	
0%	 0%	

As	III	sorbed	 24%	 24%	 100%	 100%	
AsS	sorbed	 0%	 0%	 0%	 0%	

Res.	Chi	sq.	 		 0.19	 0.19	 		 0.34	 0.34	

Cont	49	ft	
As	V	sorbed	 89%	 89%	

Cont	51	ft	
28%	 28%	

As	III	sorbed	 11%	 11%	 11%	 11%	
AsS	sorbed	 0%	 0%	 60%	 60%	

Res.	Chi	sq.	 		 0.02	 0.02	 		 0.03	 0.03	
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Abstract  

Across South Asia, millions of villagers have reduced their exposure to high arsenic (As) 

groundwater by switching to low As wells. Isotopic tracers and flow modeling are used in this 

study to reconstruct the evolution of a semi-confined aquifer of Pleistocene (>10 kyr) age in 

Bangladesh that is generally low in As but has been perturbed by massive pumping about 25 km 

for the municipal supply of Dhaka. A 10-15 m thick clay aquitard caps much of the intermediate 

aquifer (>40-90 m bgs) in the 3 km2 study area, with some interruptions by younger channel sand 

deposits indicative of river scouring. Water levels in the intermediate aquifer below the clay-

capped areas are 1-2 m lower than in the high-As aquifer above the clay layer. Similar water 

levels in the shallow and intermediate aquifer where the clay layer is missing suggest a pattern of 

downward flow and lateral advection into the semi-confined aquifer that is consistent with 3H-

3He ages, stable isotope data, and flow modeling. An accompanying influx of As and/or reactive 

carbon that triggers the reductive dissolution of sedimentary iron oxides could explain an 

association below capped portions of the Pleistocene aquifer of elevated As and methane 

concentrations within layers of grey sand. Alternatively, diffusion of reactive carbon from the 

clay layer itself could have reduced initially orange sands over longer time scales. Regardless of 

the mechanism, steadily rising As concentrations in three monitoring wells in the intermediate 

aquifer are most likely due to Dhaka pumping. 
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4.1. Introduction 

Groundwater contamination with As threatens the health of more than 200 million people around 

the world who are exposed to As in drinking water above the World Health Organization (WHO) 

guideline of 10 µg/L (WHO, 1993; Ravenscroft et al., 2009). Bangladesh, part of the largest river 

delta in the world (Morgan and McIntire, 1959), represents the worst case scenario with a rural 

population of about 100 million relying on naturally polluted sedimentary aquifers containing As 

levels that often exceed the WHO guideline by a factor of ten to a hundred (Smith et al., 2000, 

BGS/DPHE, 2001; Ahmed et al., 2004). Spatial heterogeneity complicates the prediction of the 

distribution of As in the shallow (<50 m deep) Holocene (<12 kyr) aquifers of Bangladesh (van 

Geen et al., 2003) but older, deeper (>100 m) Pleistocene aquifers are consistently low in As in 

many parts of the region (BGS/DPHE, 2001; Michael and Voss, 2008; Burgess et al., 2010; 

Ravenscroft et al., 2013; Mihajlov et al., 2016; Choudhury et al. 2016; Lapworth et al., 2018). 

Aquifers in the geologic transition (50-100 m) are often also low in As and are increasingly 

exploited by local drillers contracted privately by individual households (Gelman et al., 2004; 

van Geen et al., 2006; von Brömssen et al, 2007; Hossain et al, 2014). These intermediate 

aquifers could, however, be more vulnerable to contamination in response to changing 

groundwater flow patterns than deep groundwater (McArthur et al, 2008, 2011, 2016; Hoque et 

al., 2012). Studying the geochemical and hydrologic processes that regulate groundwater As 

within this intermediate zone over time is therefore particularly relevant to private initiatives to 

reduce exposure. Government policy so far has relied primarily on nationwide installation of 

deep tube-wells (Ravenscroft et al., 2009, 2013, 2014, 2018) that are too costly for most 

households. In addition, these deep (>150 m) tubewells are often poorly allocated and not truly 

accessible to the public (van Geen et al., 2015). 
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Elevated levels of As (>100 µg/L) in shallow groundwater across the Ganges-Brahmaputra Delta 

have been widely attributed to microbially-mediated reductive dissolution of sediment-bound 

iron(oxy)hydroxides (Bhattacharya et al., 1997; Ahmed et al., 1998b; Nickson et al., 1998; 

McAurthur et al., 2001; BGS/DPHE, 2001; Berg et al., 2001; Oremland & Stolz, 2003; Ahmed 

et al., 2004; van Geen et al., 2004; Swartz et al., 2004; Islam et al., 2004; Oremland & Stolz, 

2005). There is, however, still no consensus about the source of labile carbon that is necessary 

for such reduction to take place (Olson et al. 1981; Chappelle et al., 1987; Lovely et al., 1990). 

Buried peat/coal fragments elevated in total organic carbon that are deposited extensively in the 

Bengal Basin during the last marine transgression could be an important source (McArthur et al., 

2001, 2004; Rotiroti et al., 2014). A shallow marine environment during the Holocene 

transgression also favored the deposition of a thick sequence of clay that typically separates 

shallow high-As groundwater from the confined low-As aquifers. However, the clay aquitard 

itself may contain 1-3 orders of magnitude higher levels of dissolved organic carbon (DOC) than 

the sandy aquifers (Leenheer et al., 1974; Hendry & Wassenaar, 2005) which may diffuse to the 

underlying aquifer (Thorstenson et al., 1979; Hendry and Schwartz 1990; Chapelle and 

McMahon 1991, McMahon & Chapelle, 1991; McMahon, 2001; Krumholz et al., 1997) and 

modify biogeochemical composition of groundwater at the aquifer-aquitard interface (Thurman, 

1985; McMahon & Chapelle, 1991; Aravena et al., 1995; Crum et al., 1996; Aravena et al., 

2004; Hendry & Wassenaar, 2005). Advection of young reactive carbon with surface recharge 

and groundwater flow has been invoked as an alternative source of reductants fueling the 

contamination of low-As aquifers (Polizotto et al., 2005, 2008; Klump et al., 2006; Neumann et 

al., 2010; Mailloux et al., 2013; Lawson et al., 2013; Stahl et al., 2016). 
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Hydrology is likely to play an important role in redistributing As and carbon in a perturbed 

aquifer system (Michael &Voss 2008; Fendorf et al., 2010; Burgess et al., 2010; Mukherjee et 

al., 2011; Winkel et al., 2011; van Geen et al. 2013; Mihajlov et al., 2016; MacDonald et al., 

2016; Desbarats et al, 2014; 2017; Postma et al. 2017; Huang et al., 2018). The shallow aquifer 

of Bangladesh is perturbed by widespread irrigation pumping for growing rice (Harvey et al., 

2002, 2006; Shamsudduha et al., 2011, 2015; Ahmed, KM 2011) but water levels typically 

recover rapidly at the beginning of the summer monsoon. In confined deeper aquifers within a 

20-30 km radius of Dhaka, instead, water levels have been falling rapidly under the influence of 

deep pumping for the city’s municipal since the 1980s (Ahmed et al., 1999; Hoque et al., 2007; 

IWM & DWASA, 2011; Ahmed, KM 2011; Knappett et al., 2016; Khan et al., 2016). The Dhaka 

cone of depression has continued to expand beyond the city limits and it has been suggested that 

this might draw As and/or dissolved organic carbon into aquifers previously low in As (Knappett 

et al., 2016; Khan et al., 2016).  

 

Deep groundwater depletion is experienced by many other megacities around the world 

(Konikow & Kenedy, 2005; Wada et al., 2010; Werner et al., 2013; Famiglietti, 2014).  

Overpumping can affect the composition of groundwater on a large scale. A statistical analysis 

of a large number of wells in the US has shown an association between proximity of an aquitard 

and elevated levels of As in domestic wells (Erickson & Barnes, 2005). Overexploitation of 

groundwater has also been shown to mobilize significant amount of sedimentary dissolved 

organic carbon (Graham et al., 2015). Finally, dropping water levels have been invoked to 

explain groundwater contamination with As on a larger scale in the vicinity of compacted clay 

aquitards (Erban et al., 2013; Smith et al., 2018).  
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Large-scale (10s-100s of km) numerical models have previously been used to assess the risk of 

anthropogenic contamination of deep (>150 m) low-As groundwater by downward advection 

(Michael &Voss 2008; Jusseret et al., 2009; Hoque & Burgess, 2012; Sahu et al., 2013; von 

Brömssen et al, 2014; Michael & Khan, 2016; Radloff et al., 2011; Khan et al., 2016; Hoque et 

al., 2017). However, such models have not been widely applied at finer resolution to understand 

local flow patterns backed by detailed, long-term hydrogeochemical observations. We do so in 

this study by documenting the distal impact of Dhaka pumping on the local hydrology and 

distribution of As of a vulnerable intermediate aquifer (>40-100 m) within a ~3 km2 area of 

Araihazar, Bangladesh. We rely on a groundwater flow model constrained by head 

measurements and geochemical data to shed light on the processes that evidently already led to 

the contamination of some portions of the intermediate aquifer and use this model also to make 

predictions. 

 

4.2. Geologic setting 

The 3 km2 study area (between 23.7856, 90.6229 and 23.7714, 90.6430) is a part of a larger 25 

km2 area in Araihazar upazila, Bangladesh, where the on-going Health Effects of Arsenic 

Longitudinal Study was launched in 2000 (Figure 1c; Ahsan et al., 2006).  

The site is located ~25 km east of the capital Dhaka and within the eastern perimeter of the 

expanding cone of depression induced by deep pumping (Khan et al., 2016; Knappett et al., 

2016) (Figure 4-1). The occurrence of As in Araihazar and the rest of the country have been 

shown to be geogenic (BGS/DPHE, 2001; Ravenscroft et al., 2009). Low-As aquifers are largely 

associated with less reduced Pleistocene sediment that are exposed in Dhaka City (Figure 4-1a-

b); but beyond the city limits, low-As aquifers are generally overlain by more reduced Holocene, 
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high-As aquifers (Horneman et al., 2004; Hoque et al., 2011). The top of the Pleistocene aquifer 

was weathered (oxidized) during the last glacial maxima (20 ka BP) when the sediment was 

subaerially exposed and flushed by meteoric water as the sea level was at least 100 m lower than 

present day (Umitsu 1994). In the northwestern portion of Araihazar, the oxidized, orange sand 

aquifer outcrops as the Madhupur Terrace (Morgan and McIntire, 1959). The same formation is 

buried under organic rich recent floodplain sediments of the Meghna and old Brahmaputra river 

system in the east/southeast. Valley fill, channel migration, and avulsion of rivers and their 

distributaries (Morgan and McIntire, 1959; van Geen et al., 2003; Zheng et al., 2005; Weinman 

et al., 2008; Pickering et al., 2014) over the course of geologic time-scale have partially eroded 

the sediments in the study area and resulted in the patchy occurrence of orange, oxidized deposits 

at variable depths further away from the uplifted Madhupur Terrace (Figure 4-1). Due to 

increasing popularity of the low-As intermediate aquifer (40-90 m) in Araihazar, the number of 

private wells tapping the Pleistocene orange sand quadrupled between 2001 and 2018 (Figure 4-

S1).  

 

4.3. Methods 

4.3.1. Monitoring nests 

Drilling and installation 

Beyond the previously described 15 monitoring wells in the study area (Horneman et al., 2004; 

Zheng et al., 2005; Stute et al., 2007; Dhar et al., 2008), a total of 30 new locations were drilled 

and 10 nests consisting of 2-5 monitoring wells installed (Table 4-1) between June 2012 and 

January 2017 (Figure 4-2a). The new monitoring wells at site T, S, SS, N, Q, R, W, J, L, and D 

were installed between 9 and 195 m below ground level (bgl). The manual percussion (“hand 
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flapper”) drilling technique (Horneman et al., 2004) was employed to install the shallow (< 40 m 

bgl) and intermediate (>40-80 m) wells with a 1.5 m screened interval at the bottom. Both sand 

and clay drill cuttings retrieved at regular intervals of 1.5 m were preserved for sediment 

analysis. In addition to 4 existing deep wells (> 80 m; Mihajlov et al., 2016) in the study area, 3 

deep wells were installed by the rotary drilling direct circulation (“donkey”) method (Mihajlov et 

al., 2016) with a screened interval of 6 m. The depth of all installed wells was verified with a 

graduated water-level tape. Each monitoring well is constructed with a 5 cm diameter galvanized 

iron casing pipe erected above the ground surface, followed by a series of connected 5-6 m long 

PVC pipes that extend down to the maximum depth of drilling. 

 

Water level monitoring 

Hydraulic heads were monitored with a water-level meter (Solinst Model 101 P2 probe 

part#100289) from the TOC of each monitoring well at regular intervals (on the third week of 

each month) between 2012 and 2018. The nests were leveled relative to each other within ±2 cm 

based on closure using a 500-ft long transparent tube filled with water. All relative water level 

elevations were then converted to absolute water level elevations (i.e. elevation above mean sea-

level) with respect to site-B piezometers (Figure 4-2a) for which absolute elevation was 

determined in 2003 using differential Global Positioning System (GPS) survey with a precision 

of ±3 cm (Zheng et al. 2005). 

 

Pressure transducers (Model 3001, Levelogger Edge, Solinst Canada Ltd., Georgetown, Ontario, 

Canada) were deployed in 25 monitoring wells to record groundwater pressure fluctuations. The 

loggers were attached to the TOC with a thin stainless steel wire of a length adjusted to keep 
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them submerged throughout the year and within the detection range of the loggers. Barologgers 

(Barologger Edge, Solinst, Georgetown, Canada) were also deployed in a similar fashion but 

above the high water level to record atmospheric pressure in two different wells. Both 

levelloggers and barologgers were set to measure water and atmospheric pressure fluctuations at 

concurrent 20 min intervals. Pressure transducer data were converted to water level following the 

two-step process described by Knappett et al., 2016. Barologger-corrected water level data were 

compared with manual water level measurements to verify consistency over the duration of the 

deployments.  

  

Onsite chemical measurements and water sampling 

After measuring groundwater level in the undisturbed water column, at least one well volume 

was purged with a submersible pump (Typhoon P-10200) for 10-50 minutes depending on well 

depth. Groundwater samples were collected from sand formations in 2012-17 after groundwater 

pH, oxidation-reduction potential (ORP), temperature, and electrical conductivity (EC) readings 

with Oakton probes (UX-35650-10 & UX-35634-30) placed in a flow-through cell had 

stabilized. Groundwater samples were collected from clay layers by squeezing pore-water at site-

S and M in February 2016 using a press or mechanical squeezer (Manheim, 1966).  

 

Polyethylene liquid scintillation vials (20 mL Wheaton Fisher 986706) with PolySeal caps were 

used to sample groundwater for cation and anion analyses. Groundwater samples for stable water 

isotope (2H and 18O) analyses were collected in 20 mL scintillation glass vials with urea PolySeal 

caps (Wheaton Fisher 986546) in February 2016 and January 2017. Samples for tritium (3H) 

were collected in 500 ml Amber Boston round bottles (Qorpak GLA00896) with polycone lined 
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cap (Qorpak 00190) in June 2012, May 2016, and Feb 2017. A subset of 6 wells from nest T, R, 

and S was sampled in duplicate in Jan 2018 for noble-gas analyses (helium, He and neon, Ne) in 

crimped copper tubes (0.3” diameter, 30” length weighing approximately 40 cm3 of water) 

following the prescribed protocol (https://water.usgs.gov/lab/3h3he/sampling/). 

 

Samples for dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) analyses 

were collected in 22 mL clear glass vials (Sigma-Aldrich 27173 Supelco) assembled with 

PTFE/silicone septum attached screw caps (Sigma-Aldrich 27021 Supelco) in February 2016 and 

January 2017. The DOC samples were acidified to 0.1% HCl in the field immediately after 

collection. DIC vials were overfilled to avoid a headspace and were not acidified. For 

radiocarbon dating of DIC and DOC, groundwater samples were collected in 250 mL bottles 

(Qorpak™ GLA00815) with PolyCone Lined Cap. The DIC radiocarbon samples were preserved 

with 0.02% HgCl2 and the radiocarbon DOC samples with 0.1% HCl.  

 

To determine methane (CH4) concentrations in groundwater, 60 mL groundwater samples 

collected with a syringe were injected through septa into pre-evacuated, burnt serum glass bottles 

fixed with Hg2Cl and shipped upside-down for laboratory methane analyses of site-SS, M and B 

nest samples in January 2017 and site-T, R, S, N, Q, D, J, L nest samples in January 2018. 

Measurement of the stable carbon and hydrogen isotope ratios of CH4 was performed on a 

selected subset of groundwater samples. 
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Groundwater analysis 

Concentrations of major cations and redox-sensitive trace elements Na, K, Ca, Mg, P, Fe, Mn, 

Sr, and Ba were measured by high-resolution inductively coupled plasma-mass spectrometry 

(HR ICP-MS) on acidified (1% Optima grade HCl) groundwater samples (Cheng et al., 2004; 

van Geen et al., 2007). In the case of As, the precision was on the order of 5% and the detection 

limit based on the variability of the blank <0.1 µg/L. Base cations were measured with a 

precision of ±10% based on a laboratory and NIST-traceable standard. Concentrations of the 

major groundwater anions Br, F, and Cl were measured using a Dionex Integrion HPIC System 

(Dionex, Thermo Scientific) with an AS-18 column, which has a detection limit of 0.05 mg/L 

and a precision of ±5% at environmental concentrations. Elemental concentrations reported in 

Table 4-1 indicate the median when time-series data are available.   

 

Stable isotopes of 18O and 2H were analyzed with a Picarro Isotopic Water Analyzer at Lamont-

Doherty Earth Observatory with a precision of ±0.002-0.065‰ for 18O and ±0.03F-0.71‰ for 2H 

(Table 4-1). Working standards for the Picarro are stored in stainless steel casks under argon and 

measured yearly against the primary standards VSMOW2, GISP, and SLAP provided by IAEA 

in Vienna. An aliquot of an independent standard (not used for normalization) is run with each 

set of samples. Repeatability of ocean water measurements was ±0.03-0.05‰ (Walker et al., 

2016).  

 

Samples for tritium (3H) were analyzed using the 3He ingrowth technique from the decay of 3H 

(Bayer et al., 1989; Ludin et al., 1998). The analytical precision for 3H measurements was ±0.01-

0.1 TU with a detection limit of 0.05-0.10 TU, where 1 TU corresponds to one 3H atom per 1018 
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1H atoms. Two internal tritium standards have reproducibility of 1.1-1.5% (for ~8TU tap water) 

and <50% (for ~0.12 TU ocean water). Noble gas concentrations and 3He/4He ratio were 

determined by mass spectrometry (Ludin et al., 1998; Stute et al., 2007) with a precision of 

±0.05-0.10% for 4He and Ne concentrations and ±0.3-0.5% for 3He/4He ratios. Long-term 

reproducibility of air equilibrated water standards for 4He was 0.3-0.7%, for Ne was 0.3-0.8% 

and for 3He/4He was 0.3-0.5%. 

 

Both the DOC (n = 30) and DIC samples (n = 45) were analyzed in triplicate (three injections for 

each sample) on a Shimadzu Carbon Analyzer with a precision of ±5% at Lamont-Doherty Earth 

Observatory. Groundwater methane (CH4) concentrations were measured by injecting 50-1000 

µL of headspace from the bottles using a SRI 8610C gas-chromatographer with a 0.91 m by 2.1 

mm silica gel column coupled to a flame ionization detector. Measurements were made in 

triplicates (RSD ≤10%) to compare with the calibration curves. PeakSimple Chromatography 

Software 3.29 (SRI Instruments) was used for peak analyses and integrations. Analyses of δ13C 

and 2H of CH4 were performed by a GC-IRMS (Agilent 6890) at McMaster University (Whaley-

Martin, 2017).  

 

4.3.2. Analysis of sediment cuttings 

Drill cuttings (primarily sand and clay) were wrapped with transparent plastic food wrap upon 

retrieval. A Konica Minolta CM-600d spectrophotometer was used to measure the difference in 

diffuse spectral reflectance between 530 and 520 nm (Horneman et al., 2004) through the plastic 

wrap soon after the samples were retrieved. The measurements were made in triplicates by the 

spectrophotometer and recorded for three different spots on each cuttings sample. Magnetic 
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susceptibility was measured at Lamont-Doherty Earth Observatory on sediment cuttings with a 

magnetic susceptibility meter (Model MS2, Bartington instrument, Oxford, England). A 

handheld X-ray fluorescence analyzer (InnovX Delta) was used in the 3-beam soil mode to 

determine bulk As, Fe, and Ca concentrations in the sediment cuttings. Reference NIST 

standards SRM 2709, 2710, and 2711 were also analyzed by XRF at least at the beginning and 

end of each run to check calibration. Analysis of subset of powdered sand samples (n=19) from 

one of the sites by XRF confirmed that grain-size did not affect the bulk concentrations. 

 

A total of 45 pulverized, oven dried drill cuttings of clay and occasionally encountered 

peat/charcoal layers from 6 sites collected from 3-73 m depth range were prepared for total 

carbon (TC) and inorganic carbon (IC) analyses. The samples were analyzed on the solid sample 

module (SSM) of Shimadzu Carbon Analyzer (TOC-Vcsn) by dry combustion at 900°C in the 

TC furnace and at 200°C in the IC furnace after acidifying the sample. The difference between 

the TC and IC is reported as total organic carbon (TOC). A subset of 20 drill cuttings from clay, 

peat or buried wood fragments retrieved between 32 m and 74 m depth interval at 9 locations 

were sent to NOSAMS for radiocarbon dating of organic carbon (Elder et al., 1998). A subset of 

4 clay cuttings was sent to the Particle Technology Lab (Downers Grove, IL) for porosity 

determination using the mercury intrusion method (Diamond, 1970) on an AutoPore IV 9500. 

 

4.3.3. Pumping test 

Two pumping tests were performed at site-M. The first test was performed by pumping from the 

fully penetrating pumping well A (M_A) in the shallow aquifer for approximately 24 hours 

(January 17-18, 2011). The second test was performed by pumping the entire vertical extent of 
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the intermediate aquifer from the fully penetrating pumping well B (M_B) for approximately 48 

hours (January 19-21, 2011). A locally purchased irrigation pump (1.75 horsepower, 1 atm 

maximum lift) was powered by a generator to maintain a constant flow rate of ~200 L/min (58 

m3/d), measured by a flow meter (McMaster-Carr) connected in-line to a PVC tube carrying the 

pump outflow.  

 

Hydraulic heads in multi-level observation wells and pumping well C were monitored 

simultaneously by Solinst pressure loggers at 2-second intervals for the first 70 min of the tests, 

and at 1-minute intervals for the remainder of the pumping tests and a 24-hr recovery period after 

pumping ended. A barometric pressure logger recorded atmospheric pressure changes on site at 

the same time intervals. Several pressure loggers were deployed for weeks prior to and after the 

pumping tests to monitor the seasonal declining hydraulic head trend and atmospheric pressure 

changes. 

 

4.3.4. Groundwater modeling 

A small-scale (3 km2) MODFLOW (Harbaugh, 2005) groundwater flow model was constructed 

on the basis of local stratigraphy and reference heads extracted from the homogeneous case of an 

existing large-scale (11,025 km2) transient model of Khan et al. (2016) (Figure 4-1), which was 

originally developed from the basin-scale (362,700 km2) model after Michael and Voss (2008). 

The local model has a refined grid size of 50 ×	50 m and cell thickness of 1 m. The model 

comprises 202 layers, with 41 cells in the east-west direction and 29 cells in the north-south 

direction. 
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Boundary conditions 

The topmost and bottommost layers represent model top and bottom boundaries, respectively. 

Because the effect of Dhaka pumping is primarily along the East-West direction (Knappett et al., 

2016 & Khan et al., 2016), side boundary conditions at the model perimeter are imposed in the 

farthest cells in the east as well as in the west. No-flow boundaries were assigned in the north 

and south of the model domain. 

 

Recharge was specified along the top 1 m of the model with a spatially uniform rate of 0.5 m/yr 

for the pumping scenario and 0.05 m/yr for the pre-pumping scenario. A drain was also specified 

along the model top to prevent heads from exceeding the land surface elevation. The current rate 

(0.5 m/yr) of recharge is consistent with regional estimates (Stute et al., 2007; Michael & Voss, 

2009; Shamsudduha et al., 2011; Khan et al., 2016) as well as estimates on the basis of 3H/3He 

ages of shallow groundwater in Araihazar, Bangladesh (Stute et al., 2007). To assess the impact 

of top boundary condition, an alternative model with a constant head boundary was also run 

because little spatial variation in shallow groundwater head is observed in the study area (Figure 

4-S2). The simulation result remains the same whether a uniform recharge or a constant head is 

specified at the model top. A storage coefficient of 0.1 was assigned only to the top layer of cells 

to simulate specific yield under unconfined conditions while using a more computationally 

efficient confined aquifer in MODFLOW (e.g., Khan et al., 2016). For the rest of the model 

layers, a specific storage value of 1 ×	10-4 was used (Khan et al., 2016). 

 

The general head boundary (GHB) package was used to set hydraulic boundaries on the sides 

and the bottom of the model. GHB is implemented to overcome three challenges: (i) no natural 
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boundary (e.g. river) is present in close proximity to the study area; (ii) a prescribed-head with an 

infinite source of water may not be suitable when local pumping is invoked; and (iii) the 

stratigraphy is well constrained only within the study area and the heterogeneity outside the 

modeled domain is uncertain. When knowledge of the regional flow system is well defined, the 

utilization of reference heads and conductance from the regional model allow the use of GHB 

with some confidence. GHB allows groundwater flow into and out of the model domain by 

simulating the ambient regional groundwater flux across the boundary. 

 

The reference heads for the GHB were taken by interpolating the coarsely gridded (1 km × 1 km 

× 5 m) simulated heads from the 66 model layers of Khan et al. (2016). Because there is a linear 

relationship between head at the boundary and flux through the boundary in GHB package, the 

reference hydraulic heads for the pumping condition were extracted at the maximum distance 

from the edge of the model area. This is where the reference heads linearly drop in the west and 

linearly increase in the east. The distance of the reference heads from the east and west boundary 

cells of our model was 1 km. Beyond that distance, the reference heads declined nonlinearly in 

the west due to Dhaka pumping and plateaued in the east at the Meghna River (Figure 4-S3). 

Likewise, the GHB at the bottom of the model was assigned at 200 m with the reference heads 

extracted from 300 m. The conductance was calculated at the sides of the model as:  and at the 

bottom as: ; where, A is the cross-sectional area perpendicular to flow direction, which is 50 ×	1 

m2 for the side boundaries and 50 ×	50 m2 for the bottom boundary; L is the distance (sediment 

thickness) of 1000 m on the sides and 100 m at the bottom; Kh and Kv are the horizontal and 

vertical hydraulic conductivity, respectively. 
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Heterogeneity and anisotropy 

A three-dimensional (3D) lithofacies model of the study area was generated in Rockware15 

software (RockworksTM) by interpolating between 33 drilling logs at 1.5 m vertical resolution 

that were confirmed at 12 locations when additional piezometers were installed (Figure 4-S4, 4-

5). The model was conditioned against each of the drilling logs to closely mimic subsurface 

heterogeneity. The model consists of two major lithofacies: sand and clay. Boundary conditions 

were employed on the sides of this refined heterogeneous 3D field to assess how the hydraulic 

head distribution varies as a function of the thickness of a clay aquitard, typically encountered 

25-30 m below ground surface (Figure 4-S4). The applied horizontal hydraulic conductivity of 

the sand facies is 2 ×10-4 and clay facies is 9 ×10-9 m/sec, consistent with pumping test results 

(Figure 4-S6) and are within the range of typical values for these sediment types. The model is 

considered heterogeneous up to a depth of 75 m and homogeneous between 75 and 200 m depth 

range (Figure 4-S7). The depth for the heterogeneous portion of the model corresponds to the 

maximum depth local drillers could reach with hand-percussion technique. The cuttings retrieved 

by hand-percussion drilling make a reliable distinction between sand- and clay-sized particles up 

to a depth of 75 m, whereas the direct-circulation technique (donkey-drilling) usually produces 

unreliable mixed cuttings. A vertical anisotropy (Kh/Kv) of 100, representing effects of 

heterogeneity beneath the scale of representation, was calibrated from measured hydraulic heads. 

The facies values in the homogeneous portions of the model were assigned equivalent Kh and Kv 

values derived by simulating Darcy’s flow horizontally and vertically across the heterogeneous 

domain (Khan et al., 2016). The model was calibrated manually with an overall root mean 

squared error of about 0.5 m (Figure 4-S8). 
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Domestic and irrigation pumping 

The pre-pumping case does not consider deep Dhaka pumping or shallow irrigation pumping. 

The pumping case includes both. The spatial distribution of domestic hand-pumps in the study 

area was gathered from a blanket testing campaign conducted in 2012-13 (van Geen et al., 2014). 

A total of 1,274 domestic hand-pumps were identified and tested for As in the 3 km2 area (Figure 

4-2b). Only 5 deep wells whose depths exceeded the model domain’s maximum of 200 m were 

excluded. A 2 m screened depth interval was assumed for all domestic hand pumps. The rate of 

pumping was determined on the basis of previously estimated domestic water demand of 10 L 

per person per day (Zheng et al., 2005) and a 5-person household sharing each well, resulting 50 

L of withdrawal per well per day. 

 

The location of 37 irrigation wells in the study area was determined in 2014 (Figure 4-2b). Their 

maximum depths ranged from 15 to 26 m, with an average screened interval of 5 m. The 

pumping rate of the most popular low-cost 2 horsepower submersible irrigation pump (100 QRm 

3/16 #85054) was determined by matching the name of the manufacturer of the pump in the local 

market. The maximum flow rate of 70 L/min indicated by the manufacturer was used to calculate 

the rate of irrigation pumping. Since irrigation pumps are active for 4 months per year and each 

pump runs for half a day on average, based on conversations with local farmers, about 17% of 

the maximum pumping rate (11.7 L/min) was used for each pump for the steady-state model 

simulation. To avoid unusual drawdown due to pumping from clay horizons, the screened depth 

interval of each of the irrigation pump was restricted to the sand facies. For both domestic and 

irrigation withdrawals, the Well Package of MODFLOW was used to assign the negative 
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pumping rate after dividing the calculated rate by the total number of model layers that intersect 

corresponding screened depth interval. 

 

Transport of arsenic 

Advective transport of As was simulated by particle tracking using MODPATH version 6 

(Pollock D.W., 2012) to estimate the travel time required for groundwater and As to reach the 

recharge source in the absence of retardation. Particles were tracked backward from site-S 

intermediate aquifer and were allowed to travel over a prescribed time interval of 50 years for the 

pumping scenario and 500 years for the prepumping scenario. Initially, particles were placed at 

the top of 20 vertically connected cells across the entire thickness of the intermediate aquifer 

(45-65 m). MODPATH was used with a retardation factor of 1 to determine the transport of As 

at the rate of groundwater flow. A porosity of 30% was considered for the confined aquifer for 

MODPATH simulations. 

 

The MT3DMS package (Zheng and Wang, 1999) was used to simulate advective-dispersive 

transport of As in groundwater to predict As distribution and transport when accounting for 

adsorption (e.g., Michael and Khan, 2016). For simplicity, a constant (relative) concentration 

(C/C0) of 1 was applied to the model top, and zero flux along the east and west boundaries. An 

initial concentration of 1 was applied in the shallow aquifer (up to a depth of 20 m) and 0 was 

applied to the rest of the aquifer. In this case, retardation factors of 5, 10, and 30 were applied for 

all lithofacies assuming a linear isotherm to predict the volumetric spread of As pollution in the 

intermediate aquifer under different sorption scenarios (Figure 4-S9). A partition coefficient, KD 

of 1.5 L/kg translates into a retardation factor (Rf) of 10 when a porosity of 0.3 and bulk density 



	
	

	 	
	

131	

of 1.8 g/cc are assumed. A constant longitudinal dispersivity value of 10 m and transverse 

dispersivities of 0.01 and 0.001 m (Michael and Khan, 2016) were assigned. Forward 

simulations were performed with and without the effect of Dhaka pumping for 50 and 500 years, 

respectively. 

 

4.4. Results 

4.4.1. Hydrostratigraphy 

A clay aquitard of variable thickness typically separates the shallow and intermediate aquifers in 

Araihazar, as it does in many regions of Bengal basin. In our 3 km2 study area, this aquitard is up 

to 24 m thick but almost entirely absent at two drilling sites R and T (Figure 4-2b, Figure 4-S4). 

The top of this aquitard, where present, is generally encountered at 25-30 m depth (Figure 4-S4). 

The intermediate aquifer (>40-80 m) located below this aquitard is semi-confined. In most cases, 

depending on location, a second harder clay layer was encountered in the 65-80 m depth range 

and could not be penetrated with the local driller’s hand-percussion method (Figure 4-S4). This 

hard clay layer is considered the bottom of the intermediate aquifer. Pumping test results within 

this semi-confined aquifer yielded an average hydraulic conductivity value (K) of 1×10-4 m/sec 

and storativity (S) of 6.2 ×10-4 (dimensionless) (Figure 4-S6, Table S1), which is typical for 

confined aquifers composed of medium- to fine-grained sand. 

 

The shallow aquifer (< 30 m) in the study area consists of a fining-upward sequence of gray 

channel sands capped by surface clay at 29 out of 33 drill sites (Figure 4-2b & 4-S4), below 

which groundwater As levels are generally elevated (Figure 4-S1). The intermediate aquifer 

below the deeper clay layer shows inter-fingering gray and orange sand sequences (Figure 4-4 & 
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4-S4). At 24 of the 33 drill sites, the upper part of the intermediate aquifer sand is gray (reduced) 

in color. For 12 out of 33 drill sites, there is also a gray sand layer in the intermediate aquifer that 

is sandwiched between orange (oxidized) sands at a depth that varies from one drill site to the 

other. At 5 of the 33 drill sites, the bottom of the clay layer capping the intermediate aquifer is 

oxidized, reddish brown in color, and has been described elsewhere as a paleosol (McArthur et 

al., 2004; 2008; 2011) that protects the orange intermediate aquifer (Figure 4-S4). The difference 

in diffuse spectral reflectance between 530 and 520 nm recorded on a total of 461 sediment 

cuttings of gray sand and clay averages 0.2±0.1%. The difference in reflectance for drill cuttings 

retrieved from the oxidized orange/reddish sand and clay sequences averages 0.9±0.2% (n = 

111). 

 

The integrated proportion of clay relative to sand within the upper 50 m at each drill site varies 

spatially varies from 3 -73% (Figure 4-2b). At 5 of the 33 drill sites, the integrated proportion of 

clay is ≤20%. These sites, where the intermediate aquifer is clearly separated from the shallow 

aquifer, are located mostly on the periphery of the study area. 

 

4.4.2. The Holocene-Pleistocene transition 

Oxidized orange sediments are generally considered of Pleistocene age across the Bengal Basin 

(Ahmed et al., 2004; McArthur et al. 2004). We refine this assessment in our study area on the 

basis of organic radiocarbon dating of clay or peat and profiles of magnetic susceptibility and 

bulk concentration of calcium (Ca) in sediment based on the cuttings (Figure 4-3a-b, e-h). 

Radiocarbon ages of 23 clay cuttings from between 32 and 78 m depth range from 6.5 to 36.5 

kyr (Figure 4-S4b). Overall the data show the expected increase in age with depth, but also that 
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the depth of the Holocene-Pleistocene boundary can vary significantly within a distance of a few 

100 m. At scoured site T near the southern boundary of the study area, which is representative of 

5 other locations (Figure 4-2b), the confining clay layer is missing and Holocene gray sands 

extend all the way down to 53 m depth. At site S, representative of 25 similar locations with clay 

layer instead, the intermediate aquifer is capped by a Pleistocene oxidized paleosol as shallow as 

37 m depth (Figure 4-3a-b).  

 

Profiles of magnetic susceptibility and Ca help define the Holocene-Pleistocene transition at each 

site (Figure 4-3e-f). The contribution of magnetite and other magnetic minerals to Holocene 

sediments is variable but distinctly higher than for Pleistocene sediments (BGS/DPHE 2001; 

Horneman et al., 2004). The bulk Ca content of Holocene sands is also higher than for 

Pleistocene intervals (Figure 4-3g-h). This has been attributed, respectively, to the partial 

reduction of Fe oxides forming magnetite and the authigenic precipitation of carbonate in 

supersaturated Holocene sediment (McArthur et al., 2008; van Geen et al., 2013). The two 

authigenic phases evidently never formed or were not preserved during subaerial exposure of 

Pleistocene sediments during the last sea-level low stands. 

 

Unlike Ca or weathering-sensitive sediment constituents such strontium (Sr), the solid phase 

arsenic (As) content of Holocene and Pleistocene sands is comparable. The average As 

concentrations of the Holocene gray and Pleistocene orange sand is 3±1 mg/kg (n = 100) and 

2±1 mg/kg (n = 21), respectively based on measurements from 6 sites drilled in the study area. 

Arsenic concentrations in clay are typically higher (up to 7-15 mg/kg) than in sand cuttings but 

there is no noticeable difference between Holocene and Pleistocene clay. In contrast to Ca, the 
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bulk Fe concentration of Pleistocene (1.0±0.3%, n = 21) and Holocene gray sand (1.2±0.4%, n = 

100) is comparable. 

 

The gray Holocene aquifer contains wood fragments and peat- or charcoal-like fragments in the 

study area (Figure 4-S4) of a type that has been dated extensively in other parts of the country 

(Umitsu, 1993; Goodbred & Kuehl, 2000). In our study area, a total of 16 buried peat/wood 

layers were discovered during drilling in 14 out of the 33 logs within the 6-52 m depth interval. 

The concentrations of total organic carbon (TOC) measured in 7 such peat fragments from 5 

locations ranged from 12-50% by weight with an average of 30±10%, contrasting with an 

average of about 0.5±0.2% (maximum of 3.1%) measured on 38 clay cuttings retrieved from 6 

locations in the study area. The TOC (%) for gray Holocene clay is systematically higher than 

0.1% whereas the orange Pleistocene clay sequences typically contain <0.1% (Figure 4-S10). 

 

4.4.3. Groundwater chemistry 

Clay-capped intermediate aquifers 

Sites S and SS are two comparable sites 150 m apart in the center of the study area where the 

intermediate aquifer is capped by a stiff, confining clay layer (Figure 4-2, Figure 4-4a-l). At site 

S, the top half of the confining clay layer is reduced, gray and of Holocene age and the bottom 

half is oxidized and of Pleistocene age (Figure 4-3a-b). The top and bottom sands of the 

Pleistocene aquifer are orange and low in As (<5 µg/L) whereas the reduced, gray middle of the 

aquifer is elevated in As (40±5 µg/L). This reduced portion of the aquifer with elevated As at site 

S is also higher in dissolved organic carbon (DOC), dissolved methane (CH4), and bomb-

produced tritium (3H) in comparison to the oxidized portions of the aquifer above and below 
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(Figure 4-4a-c, e). Groundwater stable isotope composition in the reduced, gray sand is similar to 

that of shallow groundwater at this site (Figure 4-4d). The southward extension of the reduced 

portion of the intermediate aquifer at Site SS is less elevated in As (15±2 µg/L) with barely 

detectable (> 0.1 TU) 3H, but DOC and CH4 levels are comparable to those in the reduced 

portions of the intermediate aquifer at site S. In grey sand just below the clay layer at site SS, 

both As and CH4 concentrations are higher at 70 µg/L and 1200 µmol/L, respectively.  

 

Site M, located 450 m south of site S (Figure 4-2a), has been studied extensively in the wake of 

the repeated failure (i.e. a rise in As) of a community well installed in the intermediate aquifer 

that served the neighboring villagers (van Geen et al. 2006; Mihajlov et al. in prep.). Long-term 

monitoring of two wells at site M, where the intermediate aquifer is capped by thick clay, 

indicates elevated levels of As (80±29 & 350±21 µg/L), DOC (~4 mg/L), and CH4 

concentrations (1200±100 & 690±70 µmol/L). In contrast, the wells installed in the oxidized, 

lower portion of the aquifer (>55 m) are low in both As and CH4 (Figure 4-4m-o, q). Unlike at 

site S, 3H was not detected in the well immediately below the confining clay layer at site-M. The 

stable isotopic composition of groundwater derived from gray sand beneath the thick clay varies 

by 1.5‰ at this site.  

 

Clay pore waters at site-S and M are elevated in As (maximum of 190 µg/L) and contain an order 

of magnitude higher DOC concentrations (maximum of 49 mg/L with an average of 20±5 mg/L) 

than well w ater (Figure 4-4a-b, m-n). The stable isotopic composition of clay pore water in both 

grey and orange clay at site S is comparable to that of the shallow aquifer (Figure 4-4d, j, p). 

Groundwater just below the orange clay is more depleted by about 2‰ at this site. In contrast, 
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the stable isotope composition of grey clay water at site M is similar to that of groundwater in 

gray sand just below the clay. 

 

The age of groundwater containing detectable 3H (>0.1 TU) in the intermediate aquifer ranges 

from 11 to 49 yr at site-M (n=9) and 45-47 yr at site-S (n=2) (Table 4-2). With the exception of 

well S2 and M3.5, the 3H+3He content of these samples, which is unaffected by 3H decay, 

accounts for <70% of the predicted value based on a smoothed version of 3H input to the 

atmosphere since 1950 (Figure 4-S11). This indicates that most of these samples are mixtures of 

old groundwater recharged before bomb-3H input with younger groundwater containing bomb-

3H. 

 

Intermediate aquifers without a clay cap 

The composition of groundwater as a function of depth at the two sandy sites R and T, 700 m to 

the west and 750 m to the south of site M, is somewhat featureless compared to sites SS, S, and 

M (Figure 4-2 & 4-5). The gray sandy aquifer at sites R and T is elevated in As (> 50 µg/L) to a 

depth of 55 m (Figure 4-5a & g). At greater depth, groundwater in contact with orange 

Pleistocene sands contains <5 µg/L of As. The DOC concentration at site-T is somewhat higher 

at 4 mg/L in an intermediate well installed immediately below a peat layer, whereas all 

monitoring wells at site R are consistently low (0.5 mg/L) in DOC (Figure 4-5b, h). Methane 

concentrations in groundwater at the sandy sites are lower than in the gray sand layers where the 

intermediate aquifer is capped by clay, by a factor of 10 and 100 at sites T and R, respectively 

(Figure 4-5c & i).  

 



	
	

	 	
	

137	

The stable isotope compositions of groundwater in the shallow and intermediate aquifer at sandy 

sites R and T, including orange sands at depth, is similar to that of the shallow aquifer (Figure 4-

5d & j). Bomb-produced 3H also penetrates the intermediate aquifers to the depth of orange sand 

at all sandy sites (Figure 4-5e,k). The estimated age of groundwater in the intermediate aquifer 

based on the 3H/3He method at site-T and R ranges from 14 to 24 yr and 22-38 yr, respectively 

(Table 4-2). The distribution of 3H+3He relative to predicted bomb input show no indication of 

mixing of young and old groundwater in these samples (Figure 4-S11).  

 

Long-term changes in As concentrations in the intermediate aquifer 

Two intermediate wells at clay-capped sites M and B monitored for more than 5 years indicate a 

steady increase in As concentrations, a third well at site S shows steady As levels, while fourth 

indicates a slight decline in As (Figure 4-6a). Both wells with rising As were installed beneath 

the gray confining clay layer, coincidentally at the same depth of 41 m. Well M1-4 at the clay-

capped site-M, which is devoid of 3H and has a similar isotopic and conservative solute 

composition to that of overlying clay water (Figure 4-4p, 4-S12), shows a steady increase in As 

from 40 µg/L in Feb 2011 to 150 µg/L in Oct 2017. At a slightly lower rate, groundwater As in 

well B5 has been rising steadily from 20 µg/L in Oct 2002 to 110 µg/L in Dec 2017 (only data 

since 2011 shown). Rather than a thick clay layer, the transition between the shallow and 

intermediate aquifer at site B is characterized by multiple thinner clay layers (Zheng et al., 2005). 

At the sandy site T, As concentrations in one intermediate well screened near a peat layer rose 

have been fluctuating widely and rising since July 2015 (Figure 4-6b). Other monitoring wells in 

the intermediate aquifer in the study area show either constant concentrations or variable 

concentrations without a clear trend or connection to seasonal variations in water level. 
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4.4.4. Groundwater heads 

Hydraulic heads were monitored in the study area for 6 years in 52 piezometers. The data are 

subdivided into shallow (8-40 m, n = 17), intermediate (40-90 m, n = 30), and deep (>90-195 m, 

n = 5) aquifer in accordance with the local stratigraphy. Seasonal variations in water level of 

about 4 m in amplitude parallel each other at different depths, with the highest heads recorded 

during the monsoon (August-September) and the lowest levels in March-April (Figure 4-S13a-

b). In the shallow and intermediate aquifer, water levels average 4.1±0.2 (±1σ) and 2.5±0.8 

above mean sea level respectively. Across all locations, the average vertical head differences 

between a pair of shallow and an intermediate wells from the same nest ranges between 1.3 and 

2.8 m (n = 21) and averages 2±0.5 m (±1σ) in clay-capped sites such as S, SS, and M (Figure 4-

4). The corresponding vertical head gradient across the confining unit varies from 0.03-0.07. In 

contrast, the average vertical head differences between a shallow and an intermediate well at 

sandy sites such as T and R ranges from 0.01 to 0.6 m (n = 7) and averages 0.3±0.2 m (Figure 4-

5). These results indicate that water level in the intermediate aquifer decreases as a function of 

increasing thickness of the confining clay aquitard (Figure 4-S14). 

 

Head data for the intermediate aquifer suggest groundwater flowing from sandy areas to the 

south towards the clay-capped areas to the north. The average hydraulic head along the south-

north transect within the intermediate aquifer (52-59 m bgs) decreases from about 3.76 m at the 

sandy site well-T3 to 2.58 m at the 12 m thick clay-capped site well-M1-4a to 1.73 m at the 17 m 

clay capped site well-S2 (Figure 4-4, 4-5, Figure 4-2). Pressure transducer data indicate that the 
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groundwater level in the deep aquifer is declining at a rate of 0.5 m per year in the study area 

(Figure 4-S13c).  

 

4.4.5. Groundwater flow modeling 

The model reproduces the generalized local flow pattern under the influence of local and 

municipal pumping in Dhaka city (Figure 4-1b). Model-derived estimates indicate that Dhaka 

pumping induces a 1.2 m drop in average hydraulic head at 195 m depth in the study area, from -

0.26 m amsl in the east to -1.45 m amsl in the west over a distance of 1.9 km (Figure 4-7b). The 

drop in head in the deep aquifer across the study area is propagated upward more effectively at 

the clay-capped sites compared to the sandy sites (Figure 4-7a). The highest simulated head 

observed in the intermediate aquifer (55 m bgs) at the recharge window site-T is 3.1 m amsl and 

matches the observations. The head drops by about 0.45 m at the clay-capped site-M (2.6 m 

amsl), 300 m north of site-T and by another 0.45 m at the clay-capped site-S (2.2 m amsl), 450 m 

north of site-M. Despite a westerly flow in the deep aquifer (Knappett et al., 2016; Khan et al., 

2016), the local heterogeneity gives rise to a different local flow pattern in the intermediate 

aquifer. 

 

The pre-pumping simulation results along the T-M-S transect indicates a head drop of only 0.13 

m over a distance of 750 m, corresponding to a lateral gradient of 0.00017 between site-T and S, 

which is almost an order of magnitude lower than the simulated present day gradient of 0.0012. 

The predicted vertical head gradients across the confining unit under pre-pumping scenario are 

0.009 and 0.013 at the clay-capped site-S and M, respectively. These results suggest that Dhaka 
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pumping has significantly increased the rate of lateral and vertical transport of groundwater As in 

the study area over the last half century. 

 

4.5. Discussion 

4.5.1. Source of As and carbon in the intermediate aquifer 

Half of the 30 monitoring wells installed in the intermediate aquifer for this study were screened 

in gray sands and the other half in orange sands. With the exception of W4 (7.6 ug/L As) and B-

CW (0.4 µg/L), the intermediate wells installed in gray sand contained >10 µg/L As. With again 

two exceptions, J2 and Q2 containing 10 and 39 µg/L As, respectively, intermediate wells 

installed in orange sand layers contain ≤5 µg/L As (Table 4-1). Although 3H was detected (>0.1 

TU) in 17 out of 30 monitoring wells screened between 41 and 72 m bgs (Table 4-2), no 

systematic relationship was observed between 3H, As, and sand color across sites (Figure 4-S15). 

Therefore, recent recharge of shallow groundwater in portions of the intermediate aquifer is not 

directly associated with elevated As concentrations in the Pleistocene layers that were reduced 

and turned gray. 

 

Previous studies have shown that the radiocarbon content of labile bacterial DNA and 

phospholipid fatty acids in shallow aquifers of the study area is much closer to that of 

groundwater DOC than to that of organic carbon in the sediment (Mailloux et al., 2013; Whaley-

Martin, 2016). Despite their high TOC content (12-50%), the peat or charcoal fragments 

encountered in 42% (n = 33) of the boreholes (Figure 4-S4a) therefore do not appear to be the 

main source of reactive carbon. With the exception of one study (Dunnivant et al., 1992), most 

field observations suggest DOC is strongly adsorbed (Sengupta et al., 2008; Datta et al., 2011; 



	
	

	 	
	

141	

Mailloux et al., 2013). On the other hand, certain micro-organisms have more recently been 

shown to oxidize CH4 while reducing Fe oxides in the absence of sulfate (Amos et al., 2012; 

Ettwig et al., 2016). Methane could therefore be an alternative source of reactive carbon that is 

transported at the rate of groundwater flow (Cahill, 2017). 

 

Concentrations of As and CH4 generally track each other in the intermediate aquifer of our study 

area (Figure 4-S15, Table 4-3). In the clay-capped intermediate aquifer at site-S, SS, and M nest 

of wells, high groundwater As is generally associated with elevated levels of CH4 (Figure 4-4c, i, 

o). About 50% of the wells tapping the gray Pleistocene sediment contain elevated levels of CH4 

(>200-1,239 µmol/L) with the exception of 3 installed in sandy sites. All wells tapping the 

orange Pleistocene aquifer contain very low levels of CH4 (<60 µmol/L). The depleted δ13C-CH4 

(<-58±5‰) and δ2H-CH4 are typical of biogenic CH4 (Fuex, 1977; Whiticar & Faber, 1986 

Simpkin & Parkin, 1993). The association of As relative to 10 µg/L, CH4 relative to 100 µmol/L, 

and sand color relative to a 0.5% reflectance difference suggest microbially-mediated anaerobic 

oxidation of CH4 by Fe oxides may have contributed to the release As to the intermediate aquifer 

(Figure 4-S15). 

 

4.5.2. Reduction of Fe oxides by lateral advection of reactive carbon 

The inter-fingering of gray and orange sediment in the Pleistocene aquifer is an indication that 

layers that were once oxidized were probably reduced due to lateral advection of reactive carbon 

with groundwater. For instance, sites S, SS, and 8 other similar sites drilled in their vicinity 

indicate a high As (measured at 2 sites) gray portion of the aquifer sandwiched between two 

layers of orange sand (Figure 4-4 & 4-S4). We cannot rule out an alternation in preservation of 
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orange, gray, followed again by orange sands over time but lateral advection of high As and 

DOC water that reduced an originally orange sand layer provides a simpler explanation, as 

previously proposed for a different setting (van Geen et al., 2013).  

 

Under the current pumping scenario, the model predicts a time frame of 30 and 50 years for 

recently recharged groundwater near the sandy site-T to reach the clay-capped monitoring nests 

at sites M and S (Figure 4-8b) along the predominant south-north flow path. Detectable levels of 

3H were measured in 8 of the 11 analyzed intermediate monitoring wells at sites T, M, SS, and S 

(Figure 4-8a). There is no systematic relation between groundwater ages measured by the 3H/3He 

method and the distance from the recharge window traveled by groundwater. However, the 

estimated ages tend to be younger near sandy sites T and R (Figure 4-6a, Table 4-2). A number 

of groundwater samples with >10 µg/L As in the intermediate aquifer could not be dated because 

they did not contain 3H. Of the 4 samples with >10 µg/L As that could be dated (S1, S2, R1, T3), 

only S1 shows a clear indication of mixing with older groundwater (Figure 4-S11). This suggests 

even if the release of As in the intermediate aquifer is not linked to recharge, it was associated 

with fairly recent and rapid plug flow. In comparison, the pre-pumping scenario predicts 300-500 

years for groundwater from groundwater to travel across the same distance from Site T to Site S 

(Figure 4-8d). 

 

Numerous incubation studies have shown that, even without lateral transport of As, the reduction 

of orange sands would be sufficient to raise As concentrations to the observed level (van Geen et 

al., 2004; Dhar et al., 2011). In addition, most studies show that As is significantly retarded 

relative to groundwater flow by adsorption to aquifer sands, even reduced gray sands (DPHE and 
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BGS, 2001; Harvey et al., 2002; Swartz et al., 2004; Stollenwerk et al., 2007; van Geen et al., 

2008; McArthur et al., 2008; McArthur et al., 2010; McArthur et al., 2011; Robinson et al., 2011; 

Itai et al., 2010; Radloff et al., 2011; Jung et al., 2012;  van Geen et al., 2013; Hoa Mai et al., 

2014; Radloff et al., 2015). The model is consistent with local release of As within the 

Pleistocene aquifer instead of advection from the shallow aquifer. For a retardation factor of 10, 

the relative As concentration front (C/C0) of 0.1 within the intermediate aquifer extends a 

maximum distance of 200 m north of the recharge area in 50 years (Figure 4-9b). For a 

retardation of 30, which is more consistent with adsorption experiments conducted in the field 

(Chapter 2 of this dissertation), a shallow source of As to the intermediate aquifer is even less 

likely (Figure 4-9c). Under the pre-pumping scenario, the distribution of As observed today in 

the intermediate aquifer can be reproduced along the same transect if the model is run forward 

for 200-400 years, depending on retardation factor (Figure 4-10). 

 

The proportion of intermediate aquifer (>40-80 m bgs) that would be As contaminated 

(C/C0≥0.1) after a century of pumping is estimated to be 10% for a retardation factor of 10 

(Figure 4-11). The simulations in three-dimensional space indicate that the plume of As would 

migrate downward through sandy recharge areas and would continue to propagate laterally in the 

semi-confined intermediate aquifer. Intermediate wells near recharge windows are more 

vulnerable to the lateral intrusion of As from the shallow aquifer along the margins of the clay. 

Arsenic concentrations in wells that are further away from the recharge windows would more 

likely be controlled by a local supply of reactive carbon. 
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4.5.3. Reduction of Fe oxides by advection and diffusion of clay derived DOC 

Clay pore water contains 1 order of magnitude higher DOC level compared to the <1-4 mg/L 

DOC concentration in the intermediate aquifer (Figure 4-4b,n). The field observations therefore 

suggest vertical leakage of DOC as an alternative mechanism to lateral advection for reducing 

orange aquifer sands. The advective flux of groundwater and carbon from the shallow aquifer 

has increased by an order of magnitude due to Dhaka pumping. In the absence of Dhaka 

pumping, the downward transport of reactive DOC could potentially have occurred by molecular 

diffusion (Desaulniers et al., 1981, 1986; Hendry & Wassenaar, 2000; Hendry et al., 2003). In 

that case, the pattern of grey Pleistocene sands could be the result of slow redox transformations 

over the course of the Holocene (Figure 4-7, 4-9). Simple calculations of both transport 

processes in one dimension suggest that the impact of Dhaka pumping on the advective flux of 

reactive carbon from the clay layer is comparable to that for the diffusive flux. However, the 

estimated flux of reactive carbon for each process can only convert about 0.01 cm thick orange 

sand to gray sand each year (See Supplementary discussion). 

 

The thickness of the gray, reduced portion of the aquifer immediately underlying the gray clay 

aquitard at site-M, SS and its 22 analogs vary between 1 and 24 m in the study area, averaging 

8±6 m (Figure 4-S4a). Therefore, the average of 8 m thick intermediate aquifer in contact with 

clay is unlikely to have been reduced by a downward flux of DOC from a single depth. The 

observations could instead reflect a downward flux of DOC causing reduction of Fe oxides 

combined with lateral flow below a clay layer whose depth varies considerably from one site to 

the other (Figure 4-S4a).  
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4.5.4. Evolution of groundwater composition in the face of pumping 

A combination of mechanisms appears to be required to explain the observed evolution of 

groundwater chemistry in the intermediate aquifer of the study area. The hydrology has evolved 

since the expansion of Dhaka drawdown cone, resulting in a distinct magnification of lateral and 

vertical head gradients driven by heterogeneity in the local geology. Both lateral and vertical 

intrusion of shallow groundwater in portions of the intermediate aquifer is evident based on 

isotopic signature of 3H, δ18O, and δ2H (Figure 4-4, 4-5). While the vertical intrusion of shallow 

groundwater elevated in DOC (from clay) partially explain the reduction and rise of As in the 

upper gray portion of the Pleistocene aquifer, lateral migration of As, DOC, and/or CH4 has to be 

invoked to explain elevated As concentrations in gray sand layers that are sandwiched between 

orange sand. 

 

It is not entirely clear why the rise in groundwater As at some of the sites is more rapid at some 

sites than at others (Figure 4-6). The three fold difference in the magnitude of increases in As 

concentrations at well M1-4 (16 µg/L per year) and well-B5 (6 µg/L per year) may well be 

connected to the variation in advective/diffusive fluxes of groundwater. The thickness of clay 

and the vertical head gradient estimated across the clay at site-M is almost three times greater 

than that at site-B. The vertical (advective) flux at the bottom of the clay at site-M introduces 0.5 

L of groundwater per square meter per year, which is about three fold higher than that at site B 

(0.2 L) for a Kv of 9 × 10-11 m/sec. Finally, the model estimated lateral flux of groundwater 

estimated at the screened depth for well-M1-4 is about 3 times higher than that at well B5. These 

site-specific estimates suggest that accelerated fluxes of groundwater may enhance the supply of 

reactive carbon and increase As concentrations over time. The third well with elevated levels of 



	
	

	 	
	

146	

DOC (4 mg/L) and CH4 (90±5 µmol/L) at site-T that also showed a rapid increase in 

groundwater As over the past 3 years (Figure 4-5a-c; 4-6b) might have been impacted by its 

proximity to a peat layer. 

 

4.6. Conclusion 

This detailed study based on direct field observations and modeling in small area of Bangladesh 

provides sheds new light on the way local groundwater flow patterns can affect groundwater 

composition in response to pumping. The inferred reduction of intermediate aquifer sands from 

Fe (III)-dominated orange to Fe(II)-dominated grey that leads to the release of As to groundwater 

probably started several thousand years ago but has been accelerated by Dhaka pumping (Figure 

4-8, 4-9, 4-10). Slow, diffused flux of DOC from clay and other organic rich sediments probably 

conditioned the aquifer over longer geologic time scales. The relative contribution of the natural 

downward flow of DOC from clay layers and accelerated flow of lateral CH4 is not fully 

resolved. What is clear is that the intermediate aquifers tapped by a growing number of private 

households to reduce their exposure to As over the past decade (Figure 4-S1) is vulnerable and 

needs to be closely monitored. The risks of promoting private well installations to lower As 

exposure relative to government funding of a smaller number of public deep wells therefore need 

to be carefully weighed. 
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Figure 4-1.  The study area under the influence of Dhaka pumping. (a) Location of the study 

area with respect to Dhaka pumping center; the white rectangle shows the boundary of the large-

scale child model of Khan et al. (2016); the perimeter of the basin-scale parent model of Michael 

& Voss (2008) is drawn in yellow; red cross-hatching indicates areas elevated in arsenic (As); 

orange polygons are the known regions of low-As Pleistocene aquifers exposed near the surface. 

(b) Expansion of the 9 m water level depth (maximum suction limit for hand pumped wells) over 

time. (c) The heterogeneous distribution of As in Araihazar based on field-testing campaign 

carried out in 2017-18. The rectangle shows our focus area of investigation (see Figure 4-2). 
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Figure 4-3. Sediment chemistry distinguishing Holocene from Pleistocene deposits. Depth 
profiles of Sediment age (a-b), diffuse spectral reflectance (c-d), sediment magnetic mineral 
content (e-f), and calcium concentrations (g-h) for the clay-capped site-S (top panel) and sandy 
site-T (bottom panel) in the study area (see Figure 4-2). The dotted horizontal gray lines indicate 
variations to the depth to the Pleistocene aquifer based on sediment radiocarbon dating. 
Typically the Holocene sediment is gray whereas oxidized Pleistocene sediment is yellowish to 
orange in color. The sand facies is “dotted” and the clay facies is “hatched”. The black thin band 
at site-T indicates a peat layer. 
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Figure 4-4. Groundwater hydrogeochemistry at three clay-capped sites. Depth profiles of 

groundwater and clay pore water arsenic (a, g, m), dissolved organic carbon (b, h, n), dissolved 

methane (c, i, o), stable isotope of oxygen (d, j, p), tritium (e, k, q), and hydraulic head (f, l, r) at 

site-S, SS, and M, respectively (Figure 4-2). The blue lines indicate the extent (or thickness) of 

the major clay aquitard capping the intermediate aquifer. The dotted horizontal gray lines 

indicate the approximate Holocene to Pleistocene transitional depth (Figure 4-S4b). 
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Figure 4-5. Groundwater hydrogeochemistry at two sandy sites. Depth profiles of 

groundwater arsenic (a, g), dissolved organic carbon (b, h), dissolved methane (c, i), stable 

isotope of oxygen (d, j), tritium (e, k), and hydraulic head (f, l) at the sandy site-T and R, 

respectively (Figure 4-2). 
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Figure 4-6. Evolution of As concentrations in the intermediate aquifer. (a) Increase (B5 and 
M1-4), decrease (N2), and stable (S2) As concentrations in four wells in the confined aquifer; (b) 
Examples of cyclic rise and fall (T3) and steady decline (T1, T2, and T4) in As concentrations in 
a sandy site. 
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Figure 4-7. Simulated hydraulic heads in the study area. The modeled elevation of 

groundwater (in meters) above mean sea level (amsl) in the intermediate (a) and deep (b) aquifer 

under current pumping condition (Figure 4-1). The white circles indicate nest locations (Figure 

4-2) with existing monitoring well(s) screened between 50 and 60 m bgs and the range of 

measured 3H-3He relative ages of groundwater containing detectable 3H (Table 4-2) (a). In many 

cases, groundwater in the deeper intermediate wells turned out to be younger within the same 

nest of collocated wells as a result of mixing with old groundwater. Available deep-monitoring 

wells installed at 195 m bgs (b). The predicted heads are plotted against the observed head in 

Figure 4-S8. 
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Figure 4-9. Arsenic (As) transport with retardation under pumping. The intrusion of relative 

As relative concentration (C/C0) fronts of 0.1, 0.3, 0.5, 0.7, 0.9, and 1 through a recharge window 

along a S-N transect (Figure 4-8a) for a retardation factor of (a) 5, (b) 10, and (c) 30 after 50 

years.  
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Figure 4-10. Retardation of arsenic (As) under prepumping. The intrusion of relative As 

concentration (C/C0) front of 0.1 through a recharge window along a S-N transect (Figure 4-8a) 

for a retardation factor of (a) 5, (b) 10, and (c) 30 after 50, 100, 200, 300, 400, and 500 years of 

forward simulation.  
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Figure 4-11.  Intrusion of shallow groundwater arsenic (As) through sandy, recharge 

windows. (a) Relative concentrations (C/C0) of As at 52 m bgs after 100 years of simulation for 

a Rf of 10 under current pumping scenario; (b) the interpolated total thickness of clay from the 

surface up to a depth of 50 m bgs. Also shown are the locations of intermediate monitoring wells 

screened between 50 & 60 m bgs. 
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Table 4-1: Groundwater physicochemical parameters and stable isotopic composition in 
sand and clay formations. 
 

  
  

Well Depth Si P S Ca Fe Ba Na Mg K Mn As Sr F Cl Br DIC DOC DOC* δD δ18O Temp pH ORP EC
ID meters mg/L mg/L mg/L mg/L mg/L μg/L mg/L mg/L mg/L mg/L μg/L μg/L mg/L mg/L mg/L mg/L mg/L mg/L ‰ ‰ °C mV μS/cm

1 S0 24.4 31.9 1.5 0.0 51.3 8.7 122.5 29.0 16.9 4.3 0.7 174.7 218.4 0.8 19.3 0.0 66.0 1.5 -2.6 -13.6 26.2 7.1 -51 396
2 S1 49.7 39.3 0.2 0.1 26.9 2.1 33.6 72.7 11.5 1.2 0.7 1.0 176.7 0.5 34.8 0.2 27.7 2.0 -5.1 -34.1 25.91 7.2 -50.7 459
3 S2 58.6 34.8 1.1 0.1 41.2 11.3 67.0 21.4 19.0 2.7 0.8 40.5 240.9 0.3 7.9 0.0 70.7 2.5 -3.2 -20.0 25.85 6.9 46.2 532
4 S3 64.7 44.6 0.2 0.0 32.8 0.6 48.6 46.7 14.2 1.7 0.7 4.7 224.0 0.4 9.1 0.0 70.1 1.1 -4.2 -25.7 25.95 6.6 53.8 457
5 CW-S 195 51.2 0.2 0.9 32.7 0.8 83.2 28.4 0.0 2.2 0.0 1.9 224.5 1.2 0.0 2.6 46.1 1.1 NA NA 26.2 6.9 NA 542
6 SS0 19.8 30.5 0.8 1.0 50.3 6.0 61.4 18.6 19.2 2.7 1.1 55.9 175.9 0.7 16.7 1.7 58.6 0.8 -2.2 -12.9 26.2 7.2 -150 470
7 SS1 44.2 40.6 1.7 0.1 41.8 13.0 206.2 206.6 18.9 4.5 0.3 68.4 296.1 2.0 39.8 0.1 58.1 1.9 -4.8 -29.3 26.6 7.1 -110 569
8 SS2 50.3 36.1 0.1 0.0 36.8 0.2 37.4 62.5 14.7 1.1 1.2 0.2 222.9 2.5 34.9 0.1 65.9 0.5 -5.0 -30.6 26.7 7 30 556
9 SS3 59.4 32.8 0.2 0.0 44.3 3.6 81.5 31.3 19.6 1.8 1.0 15.3 289.4 2.0 7.8 0.0 68.0 2.2 -4.0 -23.2 26.6 7.1 -175 199
10 SS4 71.6 43.1 0.1 0.0 39.8 0.4 73.8 57.5 12.7 1.5 0.4 1.3 205.0 2.7 6.5 0.1 63.4 1.2 -4.3 -26.3 26.6 7 -165 572
11 M1-1 17.5 33.1 1.6 0.0 47.0 10.1 88.5 13.9 15.0 3.0 0.5 197.3 198.0 0.2 10.5 0.0 57.6 1.5 -2.8 -13.9 26.2 7 -49.6 418
12 M1-4 41.1 42.2 1.2 0.0 33.2 10.4 149.2 49.7 15.4 3.1 0.0 79.9 259.0 0.4 13.8 0.1 118.8 4.2 -4.4 -27.5 26.38 6.8 -22 610
13 M1-4a 50.9 31.8 1.0 0.1 66.6 11.5 196.0 19.7 20.0 3.3 0.1 352.3 436.9 0.4 24.9 0.1 85.2 3.8 -2.7 -19.8 26.36 7.4 -99.9 632
14 M1-5 61.3 38.6 0.1 0.1 63.4 0.2 126.0 13.7 24.2 1.8 0.6 0.5 423.9 0.5 15.2 0.0 96.0 1.4 -2.3 -13.3 26.36 6.7 81.6 529
15 M1-6 64.5 35.9 0.1 0.0 63.0 0.5 149.7 14.3 23.2 2.1 0.4 2.5 437.8 0.6 9.2 0.0 93.6 1.3 -2.4 -13.3 26.41 6.8 72.4 610
16 M-CW 96 54.4 0.1 0.1 32.9 0.1 96.6 26.1 0.0 2.0 0.0 0.3 267.8 1.2 6.3 NA 25.7 6.8 NA 441
17 T1 9.5 36.7 3.1 0.0 53.4 10.0 108.6 17.2 14.4 4.2 0.2 94.8 259.4 0.3 22.0 0.0 63.6 2.4 -2.7 -14.6 25.6 6.8 -60.5 513
18 T2 20.1 27.1 1.1 0.8 39.3 16.5 109.7 25.5 16.6 2.2 1.2 29.4 149.5 0.1 15.1 0.0 74.4 2.6 -2.7 -18.0 25.92 6.8 -57.1 488
19 T3 51.8 32.2 1.6 0.0 39.5 3.8 27.2 22.7 24.8 2.9 0.0 75.5 268.5 0.7 11.1 0.0 80.4 4.0 -2.8 -16.0 25.76 6.7 69 516
20 T4 62.3 30.4 0.0 0.0 38.3 0.4 13.5 16.6 25.0 2.1 1.4 1.8 239.6 0.5 17.2 0.0 64.8 1.3 -2.7 -15.4 26.01 6.8 6.9 470
21 CW-T 195 50.0 0.2 0.4 41.9 1.5 63.2 36.0 0.0 2.0 0.0 1.6 263.6 1.3 0.0 1.3 48.6 1.9 NA NA 25 6.8 NA 630
22 R0 33.5 31.2 1.5 0.0 26.5 2.2 29.0 10.1 6.1 1.9 0.6 162.6 97.8 0.9 4.9 0.0 28.6 0.5 -3.6 -20.0 26.9 7.2 -55 301
23 R1 50.7 31.8 0.5 1.5 27.2 5.6 72.4 12.9 13.0 2.9 1.2 23.5 104.8 0.2 7.7 0.0 31.9 0.5 -3.1 -18.4 26.44 7.2 -26.2 330
24 R2 65.6 30.7 0.2 0.0 26.6 0.6 36.0 12.3 20.5 3.1 0.2 1.3 228.0 0.6 4.5 0.0 35.5 0.5 -3.3 -17.9 26.51 7.2 -0.9 325
25 N0 32 36.5 2.6 0.1 65.2 10.3 112.4 27.9 27.5 4.9 0.2 109.8 305.0 1.1 36.4 0.7 NA NA NA NA 25.8 7.1 NA 822
26 N1 47.4 42.8 0.9 0.0 34.5 7.8 43.5 50.8 19.6 3.4 0.1 14.9 283.5 0.2 9.6 0.1 65.4 1.7 -4.9 -32.2 25.85 7.1 -28.9 540
27 N2 63 44.5 0.2 0.0 21.7 1.8 25.8 72.6 8.3 1.8 0.3 5.2 116.3 0.3 12.9 0.1 58.5 1.0 -3.7 -27.3 25.86 7.1 -6.1 449
28 N3 195 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 49.5 1.4 NA NA 25.9 6.8 NA 417
29 O1 56.3 24.7 0.8 0.0 41.2 9.3 142.5 19.6 21.4 2.4 0.0 54.7 346.0 0.3 16.0 0.0 53.3 1.4 -3.2 -20.1 25.76 7.2 -64.9 506
30 Q1 52.2 26.1 0.8 0.0 45.0 6.4 133.0 32.4 24.2 2.0 0.0 106.9 426.8 0.3 13.7 0.1 56.2 1.6 -5.3 -32.6 26.25 7.3 -68 575
31 Q2 58 35.3 0.6 0.2 35.3 6.6 85.3 85.9 17.2 1.8 0.6 38.8 315.2 0.3 12.3 0.1 74.2 0.8 -5.3 -32.9 26.33 7.3 -67.2 625
32 W-1 27.4 28.9 1.1 0.0 38.5 4.6 56.9 13.9 9.3 2.4 0.9 80.9 131.2 0.7 10.9 0.6 45.2 0.7 -2.9 -17.7 27.2 7.3 -76 360
33 W-2 42.7 35.9 1.8 0.0 55.8 8.0 183.6 287.4 31.5 6.0 0.1 171.5 363.7 1.5 33.0 0.0 95.6 3.0 -5.0 -30.5 27.2 7.2 -73 687
34 W-3 60 36.2 0.2 0.1 39.5 1.6 17.5 46.8 14.2 1.0 0.9 0.5 267.6 2.8 8.2 0.0 71.7 0.6 -4.9 -29.6 27.2 7.1 21 481
35 W-4 67 44.1 0.2 0.1 24.0 3.4 49.6 234.4 9.4 1.4 0.3 7.6 171.4 1.7 8.1 0.4 52.9 0.6 -4.6 -27.3 28.3 7 -7 483
36 D1 19.8 36.8 1.7 0.1 38.4 17.0 98.7 15.2 0.0 3.9 0.0 166.1 205.1 0.8 17.6 0.2 51.7 1.7 NA NA 25.8 6.9 NA 403
37 D2 59.4 31.4 0.2 0.3 32.4 2.4 40.1 332.3 0.0 2.1 0.0 5.1 214.4 NA 0.0 1.2 51.4 0.8 NA NA 26.1 6.8 NA 1393
38 J1 24.4 34.4 1.4 0.3 34.8 8.7 57.5 11.5 0.0 2.6 0.0 93.0 149.5 0.7 13.8 0.8 51.1 2.4 NA NA 25.9 6.8 NA 514
39 J2 59.1 35.3 0.1 0.3 32.7 0.5 48.4 42.6 0.0 2.0 0.0 10.1 238.4 1.1 11.4 0.7 80.4 3.1 NA NA 26 6.6 NA 662
40 L1 30.5 33.9 1.9 0.1 28.0 8.6 74.4 12.4 0.0 4.8 0.0 47.9 131.6 0.6 9.9 0.1 40.1 1.5 NA NA 26.8 7.1 NA 413
41 L2 61.6 36.0 0.4 0.5 4.5 0.3 10.2 322.3 0.0 0.8 0.0 1.5 24.4 5.6 31.7 1.7 76.5 0.1 NA NA 26.6 7.3 NA 750
42 B3 14.2 28.9 1.3 2.3 78.0 8.5 112.0 25.2 24.0 4.4 0.9 420.4 351.0 NA NA NA NA NA NA NA NA 25.62 7.3 -103 700
43 B4 27.9 26.3 1.4 0.0 87.2 10.9 177.1 28.8 27.8 4.2 0.2 218.0 402.4 NA NA NA NA NA NA NA NA 25.69 7.2 -99.7 1022
44 B5 40.1 25.9 1.3 0.0 58.5 7.7 74.9 28.5 47.8 5.4 0.0 98.6 474.1 NA NA NA NA NA NA NA NA 25.82 7.3 -89.3 954
45 B6 52.7 16.2 0.3 0.0 32.1 3.4 65.8 82.6 23.2 2.4 0.3 12.3 233.0 NA NA NA NA NA NA NA NA 25.86 7.4 -82.8 548
46 B7 8.1 37.0 1.7 30.5 127.6 12.6 306.8 246.7 0.1 7.5 0.0 16.4 506.2 NA NA NA NA NA NA NA NA 25.56 7 -63.8 988
47 B8 11.1 39.4 2.0 10.5 92.5 13.2 203.7 57.9 0.0 4.6 0.0 211.7 393.9 NA NA NA NA NA NA NA NA 25.63 7 -62.5 704
48 B9 20.3 31.7 1.2 0.0 86.5 18.3 239.3 26.5 0.0 4.3 0.0 432.9 456.0 NA NA NA NA NA NA NA NA 25.69 7.4 -115 866
49 B-CW 88 37.4 0.1 0.0 34.8 1.3 80.7 26.8 0.0 2.2 0.0 0.4 267.9 0.9 23.2 0.1 25.7 7 -99 301
50 CW-3 60 36.4 0.1 0.0 43.7 0.3 116.0 50.1 0.0 3.1 0.0 1.5 331.0 1.7 10.4 0.0 NA NA NA NA

1 site-S 3 20.0 0.5 3.8 32.6 3.5 115.1 18.2 19.5 NA 1.0 25.8 113.6 0.2 11.3 2.6 24.2 12.2 -3.2 -22.1 NA NA NA NA
2 site-S 4.6 23.4 0.1 1.2 49.7 1.1 122.2 17.0 38.1 NA 0.4 29.1 178.4 0.2 6.3 0.6 10.7 10.5 -3.9 -24.2 NA NA NA NA
3 site-S 25.9 36.5 0.0 1.5 41.5 0.1 64.2 37.9 24.1 NA 0.2 85.4 256.9 0.4 10.5 0.9 6.6 NA -2.7 -17.3 NA NA NA NA
4 site-S 30.5 37.3 0.3 1.1 17.6 0.6 42.5 57.6 27.1 NA 0.1 69.6 207.4 0.4 9.7 0.6 12.0 7.6 -3.5 -21.7 NA NA NA NA
5 site-S 33.5 9.6 0.0 1.8 11.4 0.0 74.2 77.3 5.3 NA 0.1 21.9 89.4 4.7 21.5 0.4 29.7 10.2 -3.0 -19.1 NA NA NA NA
6 site-S 35.1 8.3 0.0 1.8 17.7 0.0 97.2 89.2 6.7 NA 0.1 19.2 134.7 3.7 23.8 0.9 13.9 5.4 -2.7 -18.2 NA NA NA NA
7 site-S 38.1 23.3 0.0 1.3 21.9 0.0 53.0 89.5 8.2 NA 0.4 29.6 154.2 1.6 19.2 1.3 13.6 2.2 -2.2 -14.8 NA NA NA NA
8 site-S 39.6 26.5 0.0 1.6 15.4 0.1 42.0 99.0 8.3 NA 0.4 14.3 131.0 9.6 4.6 -3.3 -21.0 NA NA NA NA
9 site-S 41.1 28.2 0.0 2.0 15.3 0.0 39.1 86.6 6.7 NA 0.4 13.2 125.2 30.2 NA -2.8 -18.1 NA NA NA NA
10 site-M 1.5 33.6 0.6 261.0 465.8 0.0 183.7 321.4 232.0 NA 0.2 8.1 1477.1 0.1 291.7 0.0 21.2 20.4 -2.6 -14.3 NA NA NA NA
11 site-M 3 26.2 0.0 19.5 89.8 0.0 77.6 75.9 43.1 NA 0.1 0.9 267.0 0.2 38.8 16.4 9.2 3.9 -2.3 -10.8 NA NA NA NA
12 site-M 4.6 26.8 0.5 5.8 76.3 5.7 203.3 43.4 47.8 NA 1.4 28.7 240.9 0.3 20.6 4.6 10.8 NA -2.8 -15.3 NA NA NA NA
13 site-M 6.1 32.8 0.4 0.8 76.2 4.5 132.7 35.6 39.8 NA 1.9 48.6 274.9 NA NA NA 4.6 3.9 -2.5 -13.5 NA NA NA NA
14 site-M 7.6 32.9 2.0 1.9 60.9 4.5 157.4 33.9 26.5 NA 0.6 53.9 242.4 0.3 12.3 1.2 23.7 14.0 -2.3 -11.3 NA NA NA NA
15 site-M 9.1 34.7 2.7 1.0 56.9 3.6 126.9 56.5 23.2 NA 0.2 110.9 278.7 0.4 14.0 0.6 20.9 11.9 -2.3 -10.5 NA NA NA NA
16 site-M 27.4 38.0 0.5 0.8 58.3 1.9 153.9 21.5 20.9 NA 0.2 189.6 298.1 0.5 9.6 0.9 9.6 NA -3.6 -21.2 NA NA NA NA
17 site-M 29 40.3 0.8 2.4 59.9 3.5 156.8 39.3 21.2 NA 0.2 138.2 332.1 NA NA NA 43.3 NA -4.2 -24.8 NA NA NA NA
18 site-M 30.5 41.1 1.8 1.1 51.1 3.6 117.3 48.8 16.9 NA 0.2 149.4 278.3 0.3 6.3 0.6 49.0 NA -3.9 -25.5 NA NA NA NA
19 site-M 32 0.4 8.1 1.0 NA NA -4.5 -28.1 NA NA NA NA
20 site-M 36.6 25.4 19.5
21 site-M 38.1 17.3 11.8
22 site-M 39.6 28.6 9.7
DOC*	-clay	pore	water	DOC	measured	after	a	year;	the	%reactivity	is	estimated	from	the	difference	between	DOC	and	DOC*

Sand	formations

Clay	formations
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Table 4-2: Groundwater 3H concentrations and apparent 3H/3He ages estimated for a 
subset of samples.	

 
	 	

Well_ID Depth	(m) 3H/3He	age	(yr)
2011* 2012 2017 2018

S1 49.7 1.12	±	0.05 0.22	±	0.04 44.6	±	3.2
S2 58.6 3.49	±	0.12 46.8	±	0.6
SS0 19.8 2.03	±	0.06
SS2 50.3 0.09	±	0.01
SS3 59.4 0.18	±	0.02
SS4 71.6 -0.02	±	0.1
S-CW 195.0 0.06	±	0.04
M1-4 41.1 0.09	±	0.03
M1-4a 50.9 1.61	±	0.05 1.63	±	0.05
M1-5 61.3 2.04	±	0.06 39.2	±	1.9
M1-6 64.5 0.54	±	0.03 1.14	±	0.05 49.1	±	1.4
M2-5 60.1 1.22	±	0.05 27.03	±	NA
M2-6 68.6 0.13	±	0.03 40.5	±	1.8
M3-5 59.8 2.68	±	0.06 10.6	±	0
M3-6 67.4 1.21	±	0.05 24.9	±	0.1
M4-5 54.5 0.81	±	0.04 25	±	3
M4-6 63.5 0.08	±	0.03 68.6	±	1.2
T1 9.5 2.78	±	0.07
T2 20.1 3.04	±	0.08
T3 51.8 1.88	±	0.06 1.88	±	0.06 1.83	±	0.07 24.2	±	0.6
T4 62.3 1.48	±	0.06 2.1	±	0.08 14	±	0.5

T-CW 195.0 0.07	±	0.07
T-CW-	dup 195.0 0.04	±	0.06

R1 50.7 2.64	±	0.08 2.36	±	0.09 39.62	±	0.6
R2 65.6 2.72	±	0.07 2.64	±	0.09 26.85	±	0.5
N0 32.0 1.17	±	0.09
N1 47.4 -0.04	±	0.02
N2 63.0 -0.06	±	0.01
Q1 52.2 0.08	±	0.02
Q2 58.0 0.06	±	0.01
W1 27.4 2.26	±	0.06
W2 42.7 0.05	±	0.02
W4 67.7 0.04	±	0.02
J1 25.0 1.96	±	0.09
J2 59.1 0.11	±	0.07
L1 30.5 2.14	±	0.1
L2 61.6 0.25	±	0.1
D2 59.4 -0.02	±	0.07
O1 56.3 1.16	±	0.04
CW3 60 -0.03	±	0.03

*after	Mihajlov	et	al.	(in	prep.)

3H	±1σ	(TU)
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Table	4-3:	Methane	and	its	stable	isotopes	in	the	groundwater	of	Araihazar,	
Bangladesh.	
 

	
	 	

Well Depth CH4	(±1σ) δ13C δD
ID meters μmol/L ‰ ‰

1 S0 24.4 10+1 NA NA
2 S1 49.7 59+4 NA NA
3 S2 58.6 484+24 NA NA
4 S3 64.7 13+1 NA NA
5 ss0 19.8 11+0.1 -70.5 NA
6 ss1 44.2 1239+93 -67.3 NA
7 ss2 50.3 21+1 -72.4 NA
8 ss3 59.4 662+60 -79.6 NA
9 ss4 71.6 22+2 -62.6 NA
10 M1-1 17.5 252+5 NA NA
11 M1-4 41.1 1199+100 NA NA
12 M1-4a 50.9 688+70 NA NA
13 M1-5 61.3 9+1 NA NA
14 M1-6 64.5 9+1 NA NA
15 T1 9.5 63* NA NA
16 T2 20.1 1+0.1 NA NA
17 T3 51.8 90+5 NA NA
18 T4 62.3 2+0.1 NA NA
19 R0 33.5 8+0.4 NA NA
20 R1 50.7 1+0.1 NA NA
21 R2 65.6 2+0.1 NA NA
22 N1 47.4 943+47 NA NA
23 Q1 52.2 25+1 NA NA
24 J2 59.1 44+2 NA NA
25 L2 61.6 10+1 NA NA
26 CW-B 88 65+2 -80.6 -109.2
27 B3 14.2 2.5+0.01 NA NA
28 B4 27.9 208+10 -84.1 -160.8
29 B5 40.1 207+14 -85.8 -209
30 B6 52.7 331+27 -84.4 -200.5
31 B7 8.1 3+0.1 NA NA
32 B8 11.1 11+1 NA NA
33 B9 20.3 34+3 NA NA

*Field	measured	value
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4.8. Supporting Materials 

Figure 4-S1.  An increase in the installation of intermediate depth (>40-100 m deep) wells 

in Araihazar, Bangladesh. Spatial distribution and depth profile of As across the 25 sq. km area 

of Araihazar is shown 17 years apart. Arsenic concentrations are binned into <10 (cyan), 10-50 

(green), and >50 µg/L (red). The vertical extent of the intermediate aquifer is identified with a 

blue arrow beneath the regional confining clay layer (yellow shaded area). A (gray) bar plot 

accompanying the As depth profile of 2017-18 indicates a decline in the proportion (normalized 

to 1) of wells in the vicinity of the clay aquitard. The location of study area is identified with a 

blue rectangle. 
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Figure 4-S2: Limited variability in shallow groundwater head across the 3 sq. km study 

area. (a) Temporal variability in groundwater hydraulic head with depth (8-28 m) in the shallow 

aquifer at site-B; (b) spatiotemporal variability of shallow head at 4 locations with long-term 

monitoring records (See main Figure 4-2 for the location of site-M, S, R, and T). 
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Figure 4-S3: Simulated deep aquifer reference head in the study area along the E-W 

transect. The transect of hydraulic head (filled circles) runs through the center of the study area 

and extends 10 km to the east, terminating at the boundary of Meghna River and 10 km to the 

west towards the Dhaka pumping center. Linear decrease (towards Dhaka) as well as increase 

(towards Meghna R.) of the reference heads retrieved after Khan et al. (2016) is limited up to a 

distance of 1 km in both directions (blue shaded area). The red dashed line indicates a linear 

model fit to the reference heads (red filled circles) within the study area. The longitudinal extent 

of the study area is shown with blue (dashed) vertical lines. The magnitude of decline in the deep 

aquifer head within the study area is shown with gray (dashed) horizontal lines. 
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Figure 4-S4. (a) Driller’s log constructed at 33 locations based on sediment cuttings retrieved 

every 1.5 m depth interval. The color of the sediments are categorized into 3 groups: gray, 

yellowish orange, and orange based on diffuse spectral reflectance (530 – 520 nm). Clay cuttings 

are shown as hatching while sand cuttings are dotted. The tirangles on the top of logs indicate the 

depth of radiocarbon (14C) dated sediment; (b) Age of sediment with depth at 9 locations in the 

study area demarcating the approximate Holocene-Pleistocene transition. 
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Figure 4-S5. A 3D lithostratigraphic model of the study area. The distribution of sand (violet) 

and clay (green) facies in the study area generated by interpolation using Rockworks15 based on 

data from 33 drillers log (Figure 4-S4). The model is vertically exaggerated by 10x. The 

southwest corner of the model is presented. 
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Figure 4-S6. Hydraulic conductivity determination from early drawdown data. Pumping-

induced drawdown on the order of 1 to 2.5 feet (0.3 to 0.8 m) was observed in a total of 9 

intermediate monitoring wells. Drawdown data in the intermediate aquifer were corrected for 

barometric fluctuations using a barometric efficiency of 0.1 (i.e., 90% of measured barometric 

pressures was subtracted), which in turn was estimated using the methods of Gonthier (2007). 

The data were also corrected for background seasonal fluctuations. The early-time segment 

(initial 100 minutes) of the corrected drawdown curves was then used to estimate the hydraulic 

conductivity and storativity by linear fitting of the corrected drawdown measured over time or 

distance from the pumping well (see Table 4-S1). 
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Figure 4-S7.  Schematic of the model domain. The model is heterogeneous up to a depth of 75 

m and homogeneous thereafter. The top of the model is simulated with a spatially uniform 

recharge rate or a constant head resulting in the same outcome. The drain elevation at the top of 

the model is set equivalent to model top. General boundary reference heads retrieved from the 

regional model are applied to the farthest east, west and bottom cells of the small model domain.  
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Figure 4-S8.  Comparison of observed average head with simulated head. The model 

predicted groundwater heads are plotted as a function of the average of field observed head for 

52 monitoring wells in the study area. The depths of the shallow (n = 17), intermediate (n = 30), 

and deep (n= 5) wells range from 8-36 m (green ‘+’), 41-88 m (red ‘Δ’), and 100-195 m (black 

‘O’), respectively. The diagonal gray line represents the 1:1 line. The absolute difference 

between the simulated and observed heads ranged between 0.002 and 1.4 m (n = 52) with an 

overall root-mean-square-error (RMSE) of 0.59 m in comparison with the regional model RMSE 

of 3.5-10 m (Khan et al., 2016). About 60% of the predicted heads are within ±0.5 m of the 

observed heads. Without the 5 monitoring wells (9.6%) with more than a meter error, the RMSE 

is reduced to 0.47 m. 
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Figure 4-S9.  Schematic set up for groundwater As transport simulation. A constant source 

of As is applied to the model top. An initial concentration of 1 was assigned to the top 20 m of 

the model and 0 was assigned to the rest of the modeled domain. The same partition coefficient 

(KD) was applied for both sand and clay. 
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Figure 4-S10.  Solid phase total organic carbon (TOC) content (%) in clay. The average 

TOC in the gray, Holocene clay is ~0.5% with occasionally higher concentrations whereas the 

orange, Pleistocene clay is typically low (<0.1%) in TOC. The horizontal dotted line demarcates 

the Holocene to Pleistocene transition at site-S. The upper and lower boundary of the major clay 

layer is shown with horizontal (solid) blue lines. 
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Figure 4-S11. Total tritium (3H + 3Hetrit) concentrations in the intermediate aquifer plotted 

against apparent groundwater recharge in calendar year. Recharge years were estimated 

from 3H/3He ages of groundwater (see Table 4-2) and compared with the input of 3H from 

rainfall. The solid cyan and solid brown lines indicate the annual 3H in Dhaka rainfall and 3H in 

groundwater derived from a dispersion model, respectively (Stute et al., 2007). The dotted brown 

lines below the 3H groundwater curve (solid brown) indicate mixing of groundwater containing 

bomb-produced 3H (% shown) with pre-bomb (3H-dead) groundwater. 
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Figure 4-S12. Depth profiles of iron, Fe (a, g), phosphorus, P (b, h), sodium, Na (c, i), calcium, 

Ca (d, j), chloride, Cl (e, k), and bromide, Br (f, l) in groundwater and clay pore water collected 

at site-S and M, respectively. 
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Figure 4-S13.  Long-term trends of groundwater observed head in the study area. Long-

term hydraulic record of level logger data in the shallow (<30 m), intermediate (>40-90 m), and 

deep (>90 m) wells installed at a clay-capped (a) and a sandy (b) site. Also shown is the 

declining groundwater head in two monitoring wells at a maximum estimated rate of 0.5 m/yr 

(c). The high variability of groundwater at the trough (dry season) signals the local impact of 

irrigation pumping for growing rice. 
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Figure 4-S14.  Correlation between thickness of clay and average observed hydraulic head 

in the intermediate aquifer. A decrease in the average observed head with increasing overlying 

thickness of clay sequences. The same color convention of Figure 4-2b is used. 
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Figure 4-S15.  Correlation among dissolved methane (CH4), arsenic (As), tritium (3H), and 

diffuse spectral reflectance of screened depth sediment in the intermediate aquifer. 

Groundwater CH4 concentrations plotted as a function of As (a) and spectral reflectance (b). 

Also shown 3H (both detectable and non-detectable) plotted as a function of As (c). The current 

detection limit for 3H is 0.1 TU. The wells that are elevated in As and CH4 are highlighted in all 

three plots. 
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Supplementary discussion on the assumptions and calculations for the reduction of iron oxides 

with DOC from clay 

 

Reduction	of	Fe	oxides	by	advection	of	reactive	carbon	(DOC)	from	clay	

The advective flow component of groundwater from the clay can be calculated using Darcy’s 

flux written as: Q = -K!!
!"A; assuming a hydraulic gradient, !!!" of 0.2 (head difference of 2 m 

across the 10 m thick clay) and hydraulic conductivity of K = 9 × 10-9 m/sec (assuming K = Kh = 

Kv for simplicity), the vertical advective flux of groundwater per sq. m would be 1.8 × 10-9 

m3/sec or 56.8 L/yr/m2 at a Darcian velocity of 0.057 m/yr or linear average velocity of about 20 

cm/year given an effective porosity is 0.3 determined based on Hg-porosimetry method. Since 

clay pore water contains 20 mg/L of DOC, the average flux of DOC would bring about 1.14 g of 

carbon per sq. meter per year, which is equivalent to 0.095 moles of C/m2/year. Over 50 years of 

pumping, therefore, on the order of 5 moles/m2 of clay-derived carbon could be advected into 

orange sands. This flux is sufficient to reduce 19 moles of solid phase Fe3+ to 19 moles of Fe2+, 

assuming 4 moles of Fe2+ are produced by the reduction of 4 moles of Fe3+ in the expense of 1 

mole of DOC (Postma et al., 2007) that is 100% reactive. Following Fe reduction, most of the 

Fe2+ would remain in the solid phase, thus changing the color from orange to gray or yellowish 

gray. To turn orange sand gray, if we consider the reduction of 0.2% (2000 mg/kg) solid phase 

Fe3+ to Fe2+ (orange sediment contain 1% Fetot), reduction of a total of 53 moles of Fe3+ is 

required to turn a meter thick orange sand aquifer into gray sand aquifer assuming an aquifer 

particle density of 2650 kg/m3 and porosity of 0.3. Therefore, over the last 50 years, DOC 

expelled from the clay by advection could have converted a sand layer about 0.4 m thick from 

orange to gray in an isotropic aquifer system. With an anisotropy consistent with the 3D model 

(Kh/Kv = 100), only 0.004 m thick orange sand would convert to gray. 
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Reduction	of	Fe	oxides	before	the	onset	of	Dhaka	pumping	

To estimate the potential flux of DOC before Dhaka pumping, we assume that the thick clay 

aquitard overlying the intermediate aquifer always contained elevated levels of DOC (Figure 4-

4). The diffusive flux of DOC from the clay aquitard to the intermediate aquifer is estimated 

based on Fick’s first law: J = -D !"!" n; where, D is the diffusivity of DOC; !"!" is the DOC 

concentration gradient across the aquitard-aquifer interface, and n is the effective porosity of 

clay. Using a diffusivity for acetate of 0.009 m2/year (McMahon & Chappelle 1991) and a DOC 

gradient  (!"!") of 0.31 mM/m, calculated at the aquifer-aquitard interface of site-M (Figure 4-4n), 

we estimate the DOC flux, J from the aquitard to the underlying aquifer for a range of clay 

porosity values assuming conservative transport of DOC within the clay aquitard (Figure 4-S16) 

(Put et al. 1992; Hendry et al. 2003; McCarthy et al., 1996). 

 

The bottom of the thick gray aquitard in the study area was on average 8,800 years old based on 

8 radiocarbon measurements at 6 locations (Figure 4-S4b). If reducing condition was initiated 

after the deposition of shallow Holocene deposits ~6,000 years ago and today’s DOC 

concentration gradient across the aquitard-aquifer interface existed 5,000 years ago, the total flux 

of DOC (after 5,000 year) into the upper intermediate aquifer solely based on Fickian diffusion 

would be about 7 moles/m2 assuming an upper end clay porosity of 0.5. The estimated DOC flux 

on geologic time scale is enough to reduce 27 moles of solid phase Fe3+ to 27 moles of Fe2+. 

Thus, about 0.5 m of orange sand aquifer in contact with gray clay could have turn gray in 5000 

years solely based on molecular diffusion.  

  



	
	

	 	
	

193	

Figure 4-S16. Sensitivity analyses of arsenic (As) contamination and solid phase iron (Fe) 

reduction near the aquifer-aquitard interface. (a) Projected aquifer As levels in the 

intermediate aquifer associated with diffused flux of dissolved organic carbon (DOC) from clay 

aquitard as a function of clay porosity, assumed contaminated aquifer thickness, and time. These 

estimates are based on the assumptions: (i) As:Fe molar ratio of 5.5% in the solid phase (Burnol 

et al., 2007), (ii) after release As is retarded by a factor of 10, and (iii) dissolved As is 

homogenized in an aquifer with 10 m (‘o’), 20 m (‘Δ’), and/or 30 m (‘+’) thickness. The colors 

corresponds to diffusion time at 1 ka year interval (between 1 ka and 5 ka); (b) Projected time 

required for the conversion of a meter thick orange Pleistocene aquifer to gray for the estimated 

DOC flux as a function of clay porosity and variation in fraction of solid phase Fe reduction. 
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Table	4-S1.	Estimated	aquifer	hydraulic	conductivity	and	storativity	(see	Figure	4-S6).	
 

 
  

Analysis Well Kh (m/s) S
Time C 0.98E-04 3.1E-04
drawdown 1.3 1.1E-04 7.7E-04

1.4 1.1E-04 7.8E-04
1.5 0.97E-04 4.1E-04
2.3 1.4E-04 5.9E-04
2.5 1.3E-04 5.8E-04
3.5 1.2E-04 5.0E-04
4.4 1.0E-04 9.4E-04
4.5 1.5E-04 7.1E-04

Average 1.2E-04 6.2E-04
St. Dev. 0.2E-04 2.0E-04

Distance
drawdown n/a 0.82E-04 13E-04
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CHAPTER 5 

SYNTHESIS 

This study presents several key findings on the distribution of arsenic (As) in Bangladesh 

groundwater on the basis of field observations and modeling. The second chapter sheds light on 

the spatiotemporal evolution of As in the shallow (<30 m deep) aquifer of Bangladesh. Arsenic 

concentrations were compared between blanket As-testing campaigns of thousands of wells 

carried out 12 years apart across the same 25 sq. km area of Araihazar. Arsenic concentrations 

were compared in spatially paired wells (n = 271) and blocks of 300 × 300 m2 areal extent (n = 

346). The paired comparisons were complemented with 18 As time-series measurements from 4 

locations monitored over the past 15 years. The results indicate a net decrease in the mean As for 

the area by about 10%, with both statistically significant increases and decreases observed for 

individual wells and at the block level. This moderate decline in the mean As could simply be 

attributed to the redistribution of As by flushing, where the export of dissolved As from the 

aquifer due to widespread irrigation pumping continue to deplete the inventory of sediment 

bound As over time in response to the buffering between the aquifer solid and aqueous phase As 

concentrations. Geospatial heterogeneity in the pool of exchangeable As and variations in the 

rate of recharge as well as pumping may explain the wide range of decline observed in dissolved 

As (3-300 µg/L) over the last decade. The increases in As with a similar magnitude, on the other 

hand, could either relate to accelerated recharge of reactive carbon promoting additional release 

or due to lateral advection and mixing between heterogeneously distributed high- and low-As 

groundwater induced by irrigation pumping. Mixing could also explain a decline in As over 
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time; however, quantifying the relative importance of flushing over mixing is beyond the scope 

of this thesis. 

 

The third chapter provides new insights into the sorption and delay of As transport in the 

sedimentary aquifers of Bangladesh. A field column experiment was conducted with freshly 

collected intact cores (n = 11) and unaltered shallow groundwater to determine As retardation 

under controlled condition. The cored Holocene gray and Pleistocene orange sands were eluted 

with anoxic, high As groundwater (320 µg/L, 90% as As-III) pumped at pore water velocities 

(PWV) ranging between 1.5 and 9.5 cm/hour. In most of the columns, the initial breakthrough of 

As occurred after 50 PV. Despite high levels of Fe and P in the inflowing groundwater, the 

eluent from the Pleistocene orange sediment columns contained only traces of Fe and P for most 

part of the experiment. In contrast, a complete breakthrough of As in the gray sand columns was 

followed by the breakthrough of Fe and P, respectively. Sulfur concentration in the eluent 

declined rapidly after breakthrough at the onset of the experiment from about 3 mg/L to <0.5 

mg/L between the first 30 and 100 PV, depending on PWV. The reduction of As and Fe and 

formation of arsenic sulfide phases was evident particularly in the orange sediment cores. A two-

phase reversible kinetic model was applied to describe the initial breakthrough of As in the 

columns using one dimensional advection-dispersion equation. The results indicate that As 

transport in both the gray and orange sediment aquifers of Bangladesh is retarded by a factor of 

30-35 with respect to groundwater flow. 

 

The fourth chapter of this thesis focuses on the redistribution of As in the face of overpumping in 

the municipal city of Dhaka located about 25 km west to the 3 sq. km study area. A three-
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dimensional groundwater flow model was developed to trace the source of As contamination in a 

Pleistocene intermediate aquifer (>30-90 m) that is typically low in As since much of it is capped 

by a thick (10-15 m) clay aquitard preventing downward migration of shallow, high As 

groundwater. The model predicted elevated groundwater heads in unconfined, sandy portion of 

the intermediate aquifer and low heads in clay-capped, confined portion of the aquifer is 

consistent with present day head observations. Particle tracking results suggest Dhaka pumping 

had accelerated the lateral advection of shallow groundwater by about 10 times along a transect 

from a sandy recharge window that is hydraulically connected to a clay-capped site. These 

results are consistent with the penetration of 3H, groundwater 3H-3He ages, and the stable isotope 

composition of groundwater in the intermediate aquifer. No systematic correlation between As, 

3H, and sediment color suggest elevated As in the Pleistocene aquifer may not solely be linked to 

lateral intrusion of dissolved As, organic carbon, and/or methane. The transport (advection and 

diffusion) of carbon from the overlying clay aquitard could be an alternative source of reductant 

transforming the orange Pleistocene sand to gray. While the advection of clay-derived carbon 

was accelerated significantly in response to Dhaka pumping, diffusion of carbon from clay had 

been active for thousands of years. 

 

In summary, the findings in this thesis put new constraints on the fate and transport of As in 

Bangladesh groundwater under the current pumping scenario. Geostatistical comparisons in the 

second chapter indicate As concentrations in the shallow aquifers perturbed by irrigation 

pumping are more likely to decline over time, albeit slowly. This finding, however, by no means 

justify encouraging households to rely on shallow, low As resources because As levels also rose 

significantly over the past decade. Results from field column experiments in the third chapter 
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indicate an earlier breakthrough of As at a higher PWV, implying accelerated groundwater flow 

is likely to introduce As at a faster rate in the low-As aquifers that are vulnerable to pumping. 

Finally, the fourth chapter provides evidence of different modes of transport of As contaminating 

the intermediate, low-As aquifers in the face of massive depressurization. Thousands of low-

cost, private wells tapping the intermediate aquifer have already reduced human exposure to 

drinking water elevated in As. The government and NGOs of Bangladesh should, therefore, put 

more emphasis on the monitoring of the growing number of intermediate wells in parallel to the 

allocation of deep wells that are less vulnerable to pumping. 

 


