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ABSTRACT

This thesis aims to explore the effect of overconfidence on people’s decision

making. To approach this topic, a standard binary detection problem is

considered, and its associated individual decision rule and decision fusion

rule are derived. Following an axiomatic and empirical approach, a variant

of the Prelec function from cumulative prospect theory is then developed to

model the effect of overconfidence as a function of level of training. Next, the

probability of detection after decision fusion is derived, and a combinatorial

optimization is considered which aims to select a subgroup of people/agents

to maximize the overall probability of detection.

Keywords: overconfidence, detection theory, combinatorial optimization
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CHAPTER 1

INTRODUCTION

Overconfidence, a bias in which a person’s subjective confidence in his or her

judgements is greater than the objective accuracy of those judgements, can

negatively affect the performance of team decision making. Inspired by this

psychological effect [1], here we mathematically model and study the effect

of overconfidence on group decision making.

If we want to examine overconfidence’s effect in detail—both analytically

and numerically, a mathematical model to describe people’s decision-making

process needs to be established. In this thesis, we established a detection

model, which is given in Section 3.1 in detail. The model itself is a parallel

fusion network [2], which is described in Section 2.2.

However, having a well-mathematized model is often not enough. In Chap-

ter 4, we formulated an optimization problem, in which a subgroup of peo-

ple/agents is to be selected to maximize its objective. We also proposed an

algorithm for the optimization problem that reduces the running time from

exponential to linear.
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CHAPTER 2

BACKGROUND MATERIAL

2.1 Overconfidence among beginners

Overconfidence, as mentioned in Chapter 1, is a bias that occurs when one

overestimates the chance that one’s judgments are accurate or that one’s de-

cisions are correct [1]. Sanchez and Dunning conducted six studies to inves-

tigate the development of overconfidence among beginners [1]. Their results

show that although beginners started out underconfident in their judgments

(since they had zero experience), they rapidly surged to a “beginner’s bubble”

of overconfidence.

More specifically, they considered the relationship between performance

and confidence as a function of experience, which is shown in Figure 2.1.

In this thesis, we consider settings where such underconfident/overconfident

people work together to make decisions, through some designed weighted

voting rule that uses both their local decisions and their stated confidence

levels.

2.2 Parallel fusion network

Parallel fusion network, described in [2], is a parallel decision-making struc-

ture consisting of a number of detectors/agents whose decisions are made

locally and are finally transmitted to a decision fusion center for decision

combining. This thesis utilizes the parallel fusion network as the underlying

mathematical structure for group decision making. In order to analyze the

full decision-making process, the decision rule for local detector and fusion

center needs to be derived. A typical parallel fusion network architecture is

shown in Figure 3.2 on page 7.
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Figure 2.1: Confidence and accuracy trends over 60 trials for one study [1].

2.3 Probability weighting function

Empirical studies have shown that decision makers do not treat probability

linearly. While making decisions, people tend to overweight small probabil-

ities and underweight the large ones. Cumulative prospect theory seeks to

provide a psychological understanding of such human behaviors [3]. It intro-

duces the notion of probability weighting functions to explain and model the

distortions. Among these functions, the Prelec function satisfies the major-

ity of the axiomatic behavior of the cumulative prospect theory [4]. In this

thesis, we derive a similar two-parameter probability weighting function to

model the underconfidence/overconfidence effect on decision makers’ stated

confidences, as a function of experience.

2.4 Poisson binomial distribution

The Poisson binomial distribution is the discrete probability distribution of

a sum of independent Bernoulli trials that are not necessarily identically

distributed [5]. There has been research on obtaining closed-form expres-

sion for its probability density function (PDF) and cumulative distribution

function (CDF) since the original form is infeasible to compute when the

number of trials gets large [6]. The Poisson binomial distribution is essential
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to this thesis because it is the intermediate result we obtain for calculating

the probability of detection after fusion in Section 4.1.
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CHAPTER 3

MATHEMATICAL MODEL

We begin by considering a standard team decision-making scenario: a group

of people having different expertise/confidence levels governed by the over-

confidence phenomenon, simultaneously observing a phenomenon and mak-

ing their individual decisions without communicating with each other. Then,

a final decision is made by aggregating these local decisions through a

weighted voting rule.

In Section 2.2, we introduced the parallel fusion network. It will serve as

the mathematical model for interpreting the scenario above. In Section 3.1,

the problem is introduced. Then, the rules for deciding decisions are designed

in Sections 3.2 and 3.3. Overconfidence effect will be take into consideration

in Section 3.4.

3.1 Problem description

Consider a binary detection problem. A binary input H ∈ {0, 1} is observed

by N independent agents. Additive white Gaussian noise exists for each

agent’s detection with zero mean and known variance, representing reported

(not yet taking the overconfidence effect into account) confidence level of each

agent. The raw signal will be encoded to ±a and decoded back to Ĥ ∈ {0, 1}
at each individual agent. The overall information propagation is shown in

Figure 3.1, and the system is shown in Figure 3.2. In terms of notation, we

have:

• H: binary signal transmitted

• U : encoded signal as ±a

• Vi: noisy received observation by each detector/agent, i = 1, ..., N

5



Figure 3.1: Block diagram representing information propagation.

• Zi: the individual WGN with form Z ∼ N(0, σ2
i ), i = 1, ..., N

• ci: individual confidence level reported by each detector/agent, i =

1, ..., N

• ui: individual decision by each detector/agent, i = 1, ..., N

• u0: global fused decision

• Ĥ: final output

Our goal is to figure out how the final decision u0 is made based on obser-

vation V1, . . . , VN . This requires us to design the local decision rule for each

agent and the decision fusion rule for fusion center.

3.2 Local decision rule

In this section, we consider the local decision rule. All agents are considered

to be identical, and their operations are considered to be unrelated. Thus, we

can simplify the problem to binary detection performed by one single agent.

According to the notation in the previous section, hypothesis 0 (signal

absence) is mapped to a, and hypothesis 1 (signal present) is mapped to −a.

The additive white Gaussian noise, representing uncertainty in observations
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Figure 3.2: Block diagram of a parallel fusion network. Ai stands for agent
i.

(and also, for now, the confidence level), is Z ∼ N(0, σ2
i ) for agent i. The

PDF of Z is:

fZ(z) =
1√

2πσ2
i

e
− (z−0)2

2σ2
i =

1√
2πσ2

i

exp

[
−z2

2σ2
i

]
.

Since the observation V is either a+Z or−a+Z depending on the encoded hy-

pothesis U , we have V ∼ N(a, σ2
i ) conditional on U = a and V ∼ N(−a, σ2

i )

conditional on U = −a. For agent i, explicitly we have:

fV |U(vi|u = +a) =
1√

2πσ2
i

e
− (vi−(+a))2

2σ2
i =

1√
2πσ2

i

exp

[
−(vi − a)2

2σ2
i

]
,

fV |U(vi|u = −a) =
1√

2πσ2
i

e
− (vi−(−a))2

2σ2
i =

1√
2πσ2

i

exp

[
−(vi + a)2

2σ2
i

]
.

Based on the likelihood ratio test, we have:

Λ(vi) =
p(vi|u = +a)

p(vi|u = −a)

=
fV |U(vi|u = +a)

fV |U(vi|u = −a)

= exp

[
−(vi − a)2 + (vi + a)2

2σ2
i

]
= exp

[
2avi
σ2
i

]
.

(3.1)
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For simplicity, we assume the cost of making correct decision is 0 and the cost

of making incorrect decision is 1, and the prior probabilities are the same for

both hypotheses, i.e., p(u = a) = p(u = −a) = 0.5. Under such simple case,

we have:

Λ(vi) = exp

[
2avi
σ2
i

]
ui=a

≷
ui=−a

0.5

0.5
= 1.

By taking the logarithm,

log Λ(vi) =

[
2avi
σ2
i

]
ui=+a

≷
ui=−a

log(1) = 0.

Since 2a/σ2
i > 0, a more simplified result can be obtained:

[vi]
ui=+a

≷
ui=−a

0. (3.2)

Here, (3.2) explicitly state the local decision rule for the ith agent.

3.3 Decision fusion rule

In this section, we derive the decision fusion rule for obtaining the global

decision. We use similar notations as [2]. Let PFi and PMi denote the prob-

abilities of false alarm and miss for agent i respectively:

PFi = P (ui = −a|H = 0)→ PFi = P (ui = −a|u = +a),

PMi = P (ui = +a|H = 1)→ PMi = P (ui = +a|u = −a).

We need to calculate PFi and PMi first.

The Q-function (tail distribution function of the standard normal distri-

bution) is introduced:

Q(x) =
1√
2π

∫ ∞
x

exp

(
−u

2

2

)
du.

Since in our simple case the decision boundary is 0, we define probability of
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error as PEi , PFi = PMi. We use PFi for calculation purposes:

PEi = PFi

=

∫ 0

−∞
fV |U(vi|u = +a)dvi

=

∫ 0

−∞

1√
2πσ2

i

exp

[
−(vi − a)2

2σ2
i

]
dvi

=
1√

2πσ2
i

∫ −a
−∞

exp

[
−v2

i

2σ2
i

]
dvi

=
1√
2π

∫ −a/σi
−∞

exp

[
−v2

i

2

]
dvi

=
1√
2π

∫ ∞
a/σi

exp

[
−v2

i

2

]
dvi

= Q

(
a

σi

)
.

(3.3)

Thus, we obtain PEi = PFi = PMi = Q( a
σi

).

Now, we design the optimum fusion rule. According to [2], the rule is

given by the following likelihood ratio test (with assumptions that the cost

of making correct global decision is 0 and the cost of making incorrect global

decision is 1, and the prior probabilities are the same for both hypotheses):

P (u1, u2, ..., uN |u = −a)

P (u1, u2, ..., uN |u = +a)

u0=−a
≷

u0=+a
1. (3.4)

Since the decisions are independent, the left hand side can be written as:

P (u1, u2, ..., uN |u = −a)

P (u1, u2, ..., uN |u = +a)
=

N∏
i=1

P (ui|u = −a)

P (ui|u = +a)

=
∏
S−a

P (ui = −a|u = −a)

P (ui = −a|u = +a)

∏
S+a

P (ui = +a|u = −a)

P (ui = +a|u = +a)

=
∏
S−a

1− PMi

PFi

∏
S+a

PMi

1− PFi

=
∏
S−a

1−Q( a
σi

)

Q( a
σi

)

∏
S+a

Q( a
σi

)

1−Q( a
σi

)
,

(3.5)

where Sj is the set of all those local decisions that are equal to j.
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Let ûi = 0 decode ui = a and ûi = 1 decode ui = −a; finally, we can

express the formula in logarithm space [2]:

N∑
i=1

[
ûi log

1− PMi

PFi
+ (1− ûi) log

PMi

1− PFi

]

=
N∑
i=1

[
ûi log

1−Q( a
σi

)

Q( a
σi

)
+ (1− ûi) log

Q( a
σi

)

1−Q( a
σi

)

]
u0=−a
≷

u0=+a
log(1) = 0.

(3.6)

At the end, we combine the result from (3.2) with slight modification. We

have the local decision rule and decision fusion rule for the standard parallel

fusion network:

[vi]
ûi=+a

≷
ûi=−a

0,

N∑
i=1

[
ûi log

1−Q( a
σi

)

Q( a
σi

)
+ (1− ûi) log

Q( a
σi

)

1−Q( a
σi

)

]
Ĥ=1

≷
Ĥ=0

0.

(3.7)

It it important to note that vi is defined as the observation, the channel

output detected by the ith agent.

3.4 Incorporating underconfidence/overconfidence

In Sections 3.2 and 3.3, we derived the standard decision-making process

of the parallel fusion network. In this section, the overconfidence effect is

integrated into our model.

As mentioned in Section 2.3, Prelec derived the probability weighting func-

tion as a mathematical description of behavioral experiments in cumulative

prospect theory. Here we consider a variant of the same function as a model

for overconfidence as a function of experience. The two-parameter Prelec

function is:

w(p) = exp(−b((− ln(p))a)), 0 < a < 1. (3.8)

Function (3.8) has several properties of interest:

• w : (0, 1)
onto−−→ (0, 1) maps a valid probability to another valid proba-

bility

• w intersects the identity function I(x) = x; it is concave on one interval

10



and convex on the other one, depending on the values of parameters a

and b.

Our interest is to find a variant of the Prelec function that can be applied on

PEi in (3.3) to re-weight the probability of error to model the overconfidence

effect. Thus, the function needs to satisfy the properties below:

• w : (0, 0.5)
onto−−→ (0, 0.5) The domain and range of the function should

not exceed 0.5. In an extreme case of random guessing (agent acquires

zero expertise), the probability of error should be 0.5.

• w should intersect the identity function I(x) = x; it should be concave

on the first interval and convex on the second interval. As mentioned

in Section 2.1 and shown in Figure 2.1, people with expertise close to

zero tend to have underconfidence, and after a little learning they have

overconfidence. Thus, when the declared probability of error is close

to zero, the function should map the values to larger ones to model

the overconfidence behavior; when the declared probability of error is

large, the function should map the values to smaller ones to model the

underconfidence behavior.

• The saddle point of w should be closer to 0.5 than 0, since the ex-

perimental results described in Section 2.1 show that the shift from

underconfidence to overconfidence is rapid as expertise increases.

We obtain the variant of the Prelec function to model the underconfi-

dence/overconfidence effect (Figure 3.3).

w(p) = 0.5 exp(−b((− ln(2p))a)). (3.9)

Applying w(p) to probability of error, the new rules for the parallel fusion

network is:

[vi]
ûi=+a

≷
ûi=−a

0,

N∑
i=1

[
ûi log

1− w(Q( a
σi

))

w(Q( a
σi

))
+ (1− ûi) log

w(Q( a
σi

))

1− w(Q( a
σi

))

]
Ĥ=1

≷
Ĥ=0

0.

(3.10)
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Figure 3.3: Function for modeling overconfidence effect, shown with
a = 0.528; b = 0.575. Parameters are chosen based on the experimental data
in [1]. The intersection Pe = 0.366865.

3.5 Simulation

In the previous sections, we derived the local decision rule and decision fusion

rule for the proposed parallel fusion network. In this section, we describe a

simulation process and provide results.

The simulation process is divided into three stages:

1. Given size of the agent pool, obtain reported confidence level for each

agent as ci. In our simulation, we sample from the truncated normal

distribution C ∼ N(µ = 0.7, σ2 = 0.52) with lower limit of 0.5, upper

limit of 1.0.

2. Using the decision rules (standard rule, re-weighted rule and majority

vote rule), construct the information flow of the parallel fusion network,

and obtain the final decision made by all simulated agents.

3. Compare the final decision with the previously defined groundtruth.

Simulate the process a large number of times to get an average detection

12



Table 3.1: Detection accuracy for different size of agent pool. ST =
standard, STW = re-weighted, MV = majority vote.

# of agents ST STW MV
2 0.8500 0.8602 0.6965
5 0.8773 0.8757 0.8485

10 0.9931 0.9849 0.9522
15 0.9966 0.9949 0.9871
20 0.9994 0.9992 0.9954
30 0.9998 0.9997 0.9923
40 1.0000 0.9999 0.9991
80 1.0000 1.0000 1.0000

100 1.0000 1.0000 1.0000

accuracy. In our simulation, we perform 10, 000 iterations for each

agent pool.

Table 3.1 shows the detection accuracy for different number of agents using

the standard (ST) rule, re-weighted (STW) rule and majority vote (MV)

rule, respectively.

From the results we obtained, we are able to conclude that as the size

of agent pool increases, the overall detection accuracy also increases. We

can also see that the rule when the overconfidence effect is in play generally

performs worse than the optimal standard rule; the majority vote rule gives

the worst accuracy among the three. The result based on the re-weighted

rule should provide us the actual performance of the team decision making.

However, one may ask whether the majority vote rule could outperform

the setting with overconfidence effect in certain settings (when the size of the

agent pool is small enough). Thus, we simulate the system 100 times with

small agent pools, and count the occurrences when the MV rule outperforms

the STW rule.

Table 3.2 shows the results. We can see that no matter what size the agent

pool has, the STW rule usually outperforms the MV rule; when the agent

pool is large enough (> ∼7), the STW rule is definitely better. We also

observe that the STW rule gives better results when the size of the agent

pool is even, which is worthy to experiment it on a real-world setting.

13



Table 3.2: Number of times when MV rule outperforms STW rule, among
100 trials.

# of agents # of times
2 2
3 27
4 0
5 12
6 0
7 1
8 0
9 0

10 0

14



CHAPTER 4

OPTIMIZATION

After we have a clear picture about how decision is made by people under

underconfidence/overconfidence effect through a parallel fusion network, we

may ask ourselves a question: Is it possible for us to select a subgroup of

agents, such that we can get the highest detection accuracy at the end of the

network?

We show that the answer is “yes” in this chapter. That is, removing

some agents may help the global performance due to the distorting effect

from underconfidence/overconfidence, even though this reduces the number

of independent observations of the phenomenon. In Section 4.1, we derive

the analytical form of the final probability of detection. Then, we construct

an optimization problem based on the derived formula. In Section 4.3, we

show an algorithm which is able to select the optimal subgroup of agents

from the agent pool.

4.1 Probability of detection after fusion

We start by finding the analytical form of the probability of detection after

decision fusion. We define:

• PD: the probability of detection after decision fusion

• Λ(u): LR test given decisions from all agents

• PEi , PFi = PMi = w(Q( a
σi

)): probability of error for agent i, i =

1, ..., N

• PDi , 1 − PMi = 1 − w(Q( a
σi

)): probability of detection for agent i,

i = 1, ..., N

15



Here, (3.4) shows that:

Λ(u) =
P (u1, u2, ..., uN |H = H1)

P (u1, u2, ..., uN |H = H0)

u0=H1

≷
u0=H0

1. (4.1)

Thus, we would like to find:

PD = P (Λ(u) > 1|H = H1),

PD = P (log(Λ(u)) > 0|H = H1). (4.2)

Assuming the decisions of all agents are independent, we know:

Λ(u) =
N∏
i=1

P (ui|H = H1)

P (ui|H = H0)
,

log (Λ(u)) =
N∑
i=1

log
P (ui|H = H1)

P (ui|H = H0)
. (4.3)

Since the addition of independent RVs corresponds to the convolution of their

PDFs, we have:

P (log(Λ(u))|H = H1) = P (log(Λ(u1))|H = H1)∗···∗P (log(Λ(uN))|H = H1).

Now, we are interested in finding:

P (log(Λ(ui))|H = H1).

From (3.5), after slight modification, we have:

log(Λ(ui)) = ui log
PDi
PFi

+ (1− ui) log
1− PDi
1− PFi

. (4.4)

This equation is essential to our problem. It means that log(Λ(ui)) can take

two values given the incoming local agent decision. If ui = 0, it outputs

log(1−PDi
1−PFi

) with probability PMi = 1 − PDi under hypothesis H1 (missing);

if ui = 1, it outputs log(PDi
PFi

) with probability PDi under hypothesis H1

(detection).

Thus, log(Λ(ui)) is a Bernoulli random variable, with PDi as probability

of success (detection), and PMi = 1− PDi as probability of failure (missing).
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And lastly, we have:

PD = P (log(Λ(u)) > 0|H = H1)

=
∑

Λ(u)>1

P (Λ(u)|H = H1)

=
∑

Λ(u)>1

∗(P (log(Λ(ui))|H = H1)),

(4.5)

where ∗ stands for sequential convolution.

Since the convolution components are Bernoulli random variable, and the

convolution of Bernoulli distributions is Poisson binomial distribution [5], the

above expression for PD can be re-written as:

PD =
n∑

l=dn
2
e

∑
A∈Fl

∏
i∈A

PDi
∏
j∈Ac

(1− PDj). (4.6)

4.2 Approximation

However, with the combinatorial optimization (agent selection) problem we

proposed, the Poisson binomial distribution is extremely hard to optimize.

A good approximation is required. We introduce the normal approximation

of the Poisson binomial distribution based on CLT (central limit theorem).

FX(x) = P(X ≤ x) ≈ Φ

(
x+ 0.5− µ

σ

)
, (4.7)

with µ =
∑

i PDi as the mean of Poisson binomial distribution, σ =

(
∑

i(1 − PDi)PDi)
1
2 as the variance of Poisson binomial distribution, and

Φ(x) as the CDF of the standard normal distribution. Given a sufficiently

large agent pool, the normal approximation should approximate the actual

Poisson binomial distribution fairly well.

In order to simplify the problem, we limit the number of agents N to only

odd cases. Thus, if all agents are selected, using normal approximation, the

17



probability of detection at the fusion center becomes:

PD = P (X ≥ x)

= P

(
X ≥ N + 1

2

)
= 1− P

(
X ≤ N − 1

2

)
≈ 1− Φ

(
N−1

2
+ 0.5− µ
σ

)

= Q

(
N−1

2
+ 0.5− µ
σ

)
.

After simplification, we get:

PD = Q

(
N
2
−
∑

i PDi

(
∑

i(1− PDi)PDi)
1
2

)
. (4.8)

Now, we introduce the agent selection variable:

s = [s1, s2, ..., sN ]T ∈ {0, 1}N .

We want to maximize:

PD = Q

( ∑
i si
2
−
∑

i siPDi

(
∑

i si(1− PDi)PDi)
1
2

)
.

Since Q function is a monotonic decreasing function, we essentially want to

minimize over s: ∑
i si
2
−
∑

i siPDi

(
∑

i si(1− PDi)PDi)
1
2

.

In Section 3.4, we know that 0.5 < PDi < 1; the numerator is non-positive

and the denominator is non-negative, thus, the objective can be replaced by

minus its square:

min
s
−

(1
2

∑
i si −

∑
i siPDi)

2∑
i si(1− PDi)PDi

,

max
s

(1
2

∑
i si −

∑
i siPDi)

2∑
i si(1− PDi)PDi

. (4.9)
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Constraints:

s = [s1, s2, ..., sN ]T ∈ {0, 1}N ,

PD = [PD1 , PD2 , ..., PDN ]T , 0.5 < PDi < 1.

PD is given.

Here, (4.9) is the objective function that we want to optimize. In general,

one could end with keeping all agents if it is the best option.

4.3 Agent selection algorithm

In this section, we will find the optimal s selection vector using numerical

technique.

Again, the objective is:

max
s

(1
2

∑
i si −

∑
i siPDi)

2∑
i si(1− PDi)PDi

,

max
s

(
∑

i(PDi − 0.5)si)
2∑

i(1− PDi)PDisi
. (4.10)

We define:

ai = PDi − 0.5 > 0,

bi = (1− PDi)PDi > 0,

and the objective becomes:

max
s

(
∑

i aisi)
2∑

i bisi
. (4.11)

Since s = [s1, s2, ..., sN ]T ∈ {0, 1}N , we essentially want to find the same

subgroup from a and b that maximizes the objective; that is:

select i from I such that
(
∑

i∈I ai)
2∑

i∈I bi
is maximized.

This is the original problem we proposed.

Now, we observe that, since 0.5 < PDi < 1:

ai is increasing with respect to PDi,
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bi is decreasing with respect to PDi.

Thus, we have:

Lemma 4.3.1. Selecting one from two choices of PD, namely PDi and PDj,

the larger PD should always be selected to maximize the objective.

Proof. Suppose PDi > PDj, then ai > aj > 0, 0 < bi < bj, then:

a2
i

bi
>
a2
j

bj

always holds.

Lemma 4.3.2. Selecting a fixed group of size k from a group of size n, the

PDs should be selected in a descending order until reaching the maximum

capacity k to maximize the objective.

Proof. Suppose a random subset of size k is chosen from the group. Based on

Lemma 4.3.1, one should always replace the smaller PDs to larger PDs until

no replacement can occur. The result we finally obtain is clearly selecting

the PDs in a descending order until reaching the maximum capacity k; thus

reaching the optimum.

Theorem 4.3.3. Selecting a random size group from a group of size n, the

algorithm of selecting PDs running time can be reduced from O(2n) to O(n).

Proof. Without loss of generality, suppose PD is in descending order; that

is:

PD = [PD1 , PD2 , ..., PDN ]T , 0.5 < PDN ≤ PDN−1
≤ PDN−2

≤ · · · ≤ PD1 < 1.

Based on Lemma 4.3.2, if k is ranging from 1 to N , then only N times of

comparison are needed to be performed, since for each case of k, we just

directly pick the PDs in order. Thus, instead of O(2n), we have an O(n)

algorithm for agent selection; that is, selecting the largest from:

(
∑k

i=1 ai)
2∑k

i=1 bi
, k = 1, 2, ..., N. (4.12)

Now, we have a general algorithm for agent selection to maximize the

probability of detection after decision fusion.
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General Algorithm for Agent Selection:

Algorithm 1 Agent Selection

1: procedure
2: A = encoded value
3: c = [c1, c2, ..., cN ]T ∈ [0.5, 1]N ← reported confidence/expertise
4: PD = [PD1 , PD2 , ..., PDN ]T ← 1− w(1− c)
5: PD ← sortInDescendingOrder(PD)
6: a = [a1, a2, ..., aN ]T ← PD − 0.5
7: b = [b1, b2, ..., bN ]T ← (1−PD)PD

8: for k = 1 to N do
9: curr← (

∑k
i=1 ai)

2/
∑k

i=1 bi
10: keep max curr value, keep max index

11: agent = [agent1, agent2, ..., agentmaxindex]
T ⊆ PD

4.4 Simulation

In this section, we simulate the agent selection algorithm to test its correct-

ness (whether the selected group gives the best detection accuracy). We are

also interested in the effect from underconfidence/overconfidence. Thus, we

designed three agent pools for the algorithm to run on as follows:

• Agent pool of size 100 that contains all underconfident agents. Based

on Figure 3.3, underconfident agents should have confidence level 0.5 <

PDi < 0.633135.

• Agent pool of size 100 that contains all overconfident agents. That is,

all agents in this pool have confidence level 0.633135 < PDi < 1.

• Agent pool of size 200 that contains all levels of agents. Agents in

this pool have confidence level 0.5 < PDi < 1. For better comparison

purpose, we design it as the combination of the two agent pools above.

All agents are sampled from the given intervals evenly. Intuitively, if we

need to pick a subgroup of agents to obtain the best accuracy, we would pick

the agents who are close to the intersection point shown in Figure 3.3; that

is, pick the agents who are neither too underconfident nor too overconfident

(honest people). However, we surprisingly find out that the results we obtain

do not match our initial intuition. The results are provided below:
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• In total, 92 agents who have higher reported confidence level are se-

lected from the underconfident agent pool.

• In total, all (100) agents are selected from the overconfident agent pool.

• In total, 124 agents who have higher reported confidence level are se-

lected from the combined agent pool, including all overconfident agents

and first 24 underconfident agents.

This result shows that, although overconfidence may affect people in team

decision making, it does not mean that people who are overconfident are not

trustworthy. Since their actual expertise level is still relatively high, they can

still contribute a lot in team decision making.

Besides, the result of the mixed agent pool setting shows that we can

definitely lower a lot of labor costs if we have a sufficiently large agent pool,

which is normal in real-world settings.
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CHAPTER 5

CONCLUSION

Overconfidence may affect people in team decision making. By establishing

an end-to-end detection model and formulating the overconfidence effect, this

thesis provides an analytical picture regarding people’s team decision-making

process under this particular psychological bias. This thesis also provides an

efficient algorithm for selecting the optimal subgroup of people from an agent

pool to perform this particular task.

However, there are still future improvements to be made for this topic.

For example, the binary detection problem was considered in this thesis for

the sake of simplicity. However, in a real-world setting, people often perform

M -ary tasks. Thus, the detection model should be extended to more complex

cases. Also, Chapter 4 constructs an unconstrained optimization problem.

However, in a real-world setting, many constraints need to be considered,

such as a given budget limitation. In this case, a more complex constrained

optimization problem needs to be analyzed.
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