
c© 2019 Enliang Li

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/210999272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

EXPLORATION OF GPU ACCELERATION FOR PAIR-HMM ALGORITHM
AND ITS APPLICATION IN THE DNA ALIGNMENT PROBLEM

BY

ENLIANG LI

SENIOR THESIS

Submitted in partial fulfillment of the requirements
for the degree of bachelor of science in Electrical Engineering

in the Grainger College of Engineering of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Adviser:

Professor Deming Chen

ABSTRACT

The hidden Markov model, known as HMM, is an important type of

statistical model with extensive application in estimating hidden parameters and

decoding observed Markov Chains.

On top of the HMM, the Pair-HMM Algorithm with HalotypeCaller is

developed as a popular solution for the DNA alignment problem. For two

aligned sequences of DNA observations, one named as reference, and the other

one named as read, there are only three possible hidden states, i.e. match (A ,

A), insertion(- , A), and deletion(A , -). However, what we could observe by

DNA sequencing in real-life is the summation of the possibilities for match,

insertion, and deletion as macrostates. In order to determine the alignment with

maximum probability, we need to score each possible pairwise alignment and

which leads to a computationally intensive problem that usually contributes to

the most latency in a variant calling with the GATK HaplotypeCaller.

In the CPU implementation of a proper Pair-HMM forward algorithm, there

are 7 multiply-accumulate operations for each (i , j) location on the

read-reference matrix. Moreover, since transitions and emission matrices are

fixed throughout a single alignment process, a CUDA implementation with

single-precision floating-point is proposed to accelerate the Pair-HMM forward

algorithm.

CUDA implementation with minibatch and states-parallelization, along with

the use of float32, gives us an around 22.6x speedup compared to the CPU

implementation. While it comes with a price, using single-precision instead of

double-precision floating-point introduces a more serious underflow problem at

the beginning of the alignment scoring process. A normalization technique is

used to help fix this problem.

Subject Keywords: Hardware Acceleration; DNA Alignment; Pair-HMM;

Forward Algorithm; CUDA implementation

ii

ACKNOWLEDGMENTS

I would like to express my special thanks to my advisor, Professor Deming

Chen, as well as my colleague, Anand Ramachandran, for their assistance and

enthusiasm.

I am also grateful for Ashutosh Dhar’s effort for providing technical support

while using the GCAD server.

This senior thesis would have been impossible without their help.

iii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Hidden Markov Model . 1
1.2 Pair-Hidden Markov Model . 2
1.3 DNA Alignment Problem . 3

CHAPTER 2 LITERATURE REVIEW 4
2.1 GPU Related Work . 4
2.2 FPGA Related Work . 5

CHAPTER 3 GPU ACCELERATION IMPLEMENTATION 6
3.1 Data Structures . 6
3.2 Basic Parallelization . 7
3.3 Use of Single-Precision Float . 9
3.4 Other GPU optimizations . 10

CHAPTER 4 RESEARCH RESULTS . 11
4.1 Compared with CPU Baseline . 11
4.2 Compared with Existing Work . 12

CHAPTER 5 CONCLUSION . 14

REFERENCES . 15

iv

CHAPTER 1

INTRODUCTION

In a typical DNA alignment problem, the Pair-HMM (Pair Hidden Markov

Model) forward algorithm is most commonly used to evaluate the overall

likelihood of any possible alignments between two DNA sequences. At the same

time, the Pair-HMM forward algorithm could easily occupy 70% of the total

execution time of the GATK HaplotypeCaller. In this thesis, we implement a

proper Pair-HMM forward algorithm on GPU with CUDA to reduce the

execution time of each forward function call to improve the performance of a

GATK flow. It could, also be adapted for other application, such as the

HOLMES alignment algorithm

1.1 Hidden Markov Model

As we’re discussing a hidden Markov model(HMM), it could be separated into

two sides: one is the observable part with sequences emitted by the other side of

the model, a hidden state machine. It is worth pointing out, the hidden state

machine needs to meet the criterion of a Markov process, namely, describing a

sequence of possible events in which the probability of each event depends only

on the state attained in the previous event.

In a traditional HMM, there are a few parameters used to describe the

system, they are Visible Alphabets, Set of States, Transition Probabilities

between States, Start Probabilities, and Emission Probability for each Visible

Alphabets per State.

1.1.1 Mathematical Definition [1]

Visible Alphabets could be represented by,∑
= {b1, b2, ..., bM}

1

Set of States in the Model could be represented by,

Q = {1, ..., K}

The Transition Probability from state i to state j could be represented by

aij,and ai1 + ...+ aiK = 1 for all states i = 1...K.

The Start Probabilities a0i for all states i = 1...K. And their sum has to be 1.

The Emission Probability for each state ei(b) = P (xi|πi = k)(for all states

i = 1...K. And their sum has to be 1.

1.1.2 Forward Algorithm

The Forward Algorithm(FA) is an efficient way to solve a HMM decode

problem by calculating the joint probability of P (xt|b1:t), where xt represents the

hidden states and b1:t represents all observations from the beginning through

position t.

And a proper FA could be written as [1],

Figure 1.1: Forward Algorithm

1.2 Pair-Hidden Markov Model

The only difference between a proper Pair-Hidden Markov Model (Pair-HMM)

and HMM should be now there are two visible sequences instead of one. In most

cases, the Pair-Hidden Markov Model could be characterized by the same way as

we do in HMM, with each state emitting two Visible Alphabet bt instead of one

each time.

2

With the information stated above, a modified Emission Probability for

Pair-HMM should be sufficient, and it could now be represented by,

ei(bt1, bt2) = P (xi|πi = k).

1.3 DNA Alignment Problem

In the DNA alignment problem, the structure of the Pair-HMM is fixed with

three states, they are match(M), insert(I) and delete(D). Given the following

two aligned sequences,

Read : A C T C G -

Ref : A C - - G T

We have the matching states to be M, M, I, I, M, D. Thus, the score P of this

specific alignment could be calculated as [2],

e(A,A)∗aMM ∗e(C,C)∗aMI ∗e(T,−)∗aII ∗e(C,−)∗aIM ∗e(G,G)∗aMD ∗e(−, T)

And this could be done efficiently by the Pair-HMM forward algorithm, which

will be the focus of this paper. Furthermore, the pseudocode of the Pair-HMM

forward algorithm could be written as [3],

Figure 1.2: Pair-HMM Forward Algorithm

3

CHAPTER 2

LITERATURE REVIEW

The hardware acceleration of the HMM and Pair-HMM algorithm has been a

popular research topic for a while, and there are considerable amount of existing

works before this paper. In this chapter, we’re going to briefly review the

optimization attempts from other works, and some of those techniques do

motivate our implementation as well.

2.1 GPU Related Work

Inter-task and Intra-task parallelization are proposed [4].

2.1.1 Proposed implementation

Inter-task parallelization has each thread with independent implementation,

and thus it allows many copies of the algorithm running in parallel. Instead of

keep track of the whole forward matrix, each thread, which corresponds to a

cell in the matrix, it only records the values of the direct top, left, and top-left

neighbors for computing the current cell.

Intra-task parallelization is less intuitive and more complicated to implement.

Because the calculation of each cell in the forward matrix only depends on its

top, left and top-left neighbors, there is a well-known wave-front pattern

propagates through the anti-diagonal of the whole forward matrix during the

scoring process. The intra-task parallelization calculates cells along the

anti-diagonal in parallel.

They also make use of the tile-based implementation, which is also a very

common optimization technique on GPU to reduce the global memory access.

However, since they implement each thread independently, the control

divergence leads to a serious waste of computation power as well as lack of

4

flexibility. If the size of the forward matrix changes dramatically, i.e. the ratio

of length of DNA read to reference varies, the performance could suffer a lot.

2.1.2 Results

The performance of the proposed implementation mentioned above has a

speed up effect of 154x on a 10s dataset comes from a Whole Genome Sequence

(WGS) dataset [5].

The corresponding running time is 70ms, given that the one on original Java

on CPU is 10800 ms.

2.2 FPGA Related Work

A processing element(PE) ring structure is proposed to accelerate the

Pair-HMM algorithm [6].

2.2.1 Proposed implementation

Thanks to the scalability of field-programmable gate array (FPGA), fixed

length PEs propagate along the anti-diagonal of the forward matrix similar to

the intra-task parallelization in GPU, but could cooperate with each other

through internal buffer.

The FPGA implementation is also benefit from its lightweight heading nature,

so in most situations, it beats GPU implementation in Throughput per watt [7].

2.2.2 Results

The performance of the proposed implementation mentioned above has a

speed up effect of 2038x on a 10s dataset comes from a Whole Genome

Sequence (WGS) dataset [5] on Stratix V platform, and 4154x if the same

algorithm is implemented on the Arria 10.

The corresponding running time is 5.3 ms (Stratix V) and 2.6 ms (Arria 10),

given the one on original Java on CPU is 10800 ms.

5

CHAPTER 3

GPU ACCELERATION IMPLEMENTATION

The optimized GPU Acceleration is implemented with CUDA developed by

Nvidia Corporation. In this section, we will first introduce a convenient way of

organizing the data and then the optimization techniques used in our

implementation. Specifically, in section 3.3, a new way of mitigating the

potential drawback from replacing 64-bit floating point with the 32-bit one will

also be discussed.

3.1 Data Structures

To better understand how to design a straightforward and GPU-friendly data

structures, we should first visualize a Pair-HMM forward work flow by mapping

the whole scoring process into a 2-dimension matrix as shown in Figure 3.1,

Figure 3.1: Forward Matrix

In Figure 3.1, the number of cells in each row and each column refer to

(xdim + 1) and (ydim + 1) of the whole system. As the evaluating process

6

proceed, the black cell is the current work, the blue cell refers to the match, the

red cell refers to the deletion, and yellow the insert.

Based on the given information above, we put the scoring results in a matrix

named forward matrix with the dimension of [xdim + 1][ydim + 1][batch][states].

In this setup, the data is organized in a GPU-friendly way that allows flexibility

for parallelization.

As we mention in section1.1 and 1.2, to characterize a Pair-HMM, we also

need the following matrices transitions, emissions and start transitions.

Following the same idea, they are structured as,

transitions[xdim + 1][batch][states− 1][states]

emissions[xdim + 1][ydim + 1][batch][states]

start transitions[batch][states− 1]

In the next section, we will introduce how to fill in the data and process them.

3.2 Basic Parallelization

In the previous section, we introduced the data structure used in this CUDA

implementation. Now we discuss the parallelization across the mini-batch and

three different states: match, insert, and deletion.

3.2.1 Minibatch Parallelization

Figure 3.2: Minibatch Parallelization

7

In a supervised learning or a GATK variant call, usually only segments of

DNA sequences will be examined and evaluated. They are discontinued with

respect to their locations in their parent sequences. The scoring work needs to

be done individually between two distinct pairs of observations versus references.

In Figure 3.2, by introducing the batch dimension parallelization, the program

could evaluate the likelihood of multiple pairs of DNA sequences simultaneously.

Even the xdim + 1 or ydim + 1 are not the same across batch, we just need to

leave the emissions to be zeros for those unused spaces in the forward matrix.

As preprocessing the input data, we will pick up the following highlighted

dimension,

transitions[xdim + 1][batch][states− 1][states]

emissions[xdim + 1][ydim + 1][batch][states]

start transitions[batch][states− 1]

forward matrix[xdim + 1][ydim + 1][batch][states]

3.2.2 Across States Parallelization

After a careful observation of the pseudocode of the Pair-HMM algorithm, we

should find that the calculations of Match, Insert and Deletion are individually

at each cell.

In Figure 3.3, by introducing the states dimension, the program could

evaluate the different states within a cell at the same time.

Figure 3.3: Across States Parallelization

As preprocessing the input data, we will pick up the following highlighted

dimension,

transitions[xdim + 1][batch][states− 1][states]

8

emissions[xdim + 1][ydim + 1][batch][states]

start transitions[batch][states− 1]

forward matrix[xdim + 1][ydim + 1][batch][states]

It is worth mentioning, as we modify the depth of the states dimension, we

give it the capability of adapting different scenarios. For example, in the case of

the HOLMES alignment algorithm, there will be 27 states instead of 3 states for

each cell in the forward matrix.

3.3 Use of Single-Precision Float

The idea of using 32-bit float instead of 64-bit double to optimize the

implementation comes from the fact that in modern computing, a significant

index of performance for a hardware is floating point operations per second

(FLOPS).

In the case of GPU, FLOPS is calculated as the number of

multiply-accumulate (i.e. y = a ∗ x+ b) operations possible per second. And for

example, on the platform of TitanXp, theoretical FP32(single-precision) FLOPS

is 12.15 TFLOPS[8], where FP64(double-precision) FLOPS is 379.7 GFLOPS[8],

around 1/32 of the FP32.

3.3.1 Normalization technique [9]

As we mention in the header of chapter3, using float instead of double will

cause more serious underflow problem at the beginning of the alignment process,

thus a new way is introduced to the Pair-HMM forward algorithm.

To reduce the underflow brought by using float, we define a pair of functions.

The normalization(value) function preprocesses the input data by,

rep = value/normalization factor

And then when we want to denormalize it, we call the function

denormalization(rep),

value = log(rep) + log(normalization factor)

9

3.4 Other GPU optimizations

In our CUDA implementation of the GPU acceleration, some trivial but

traditional optimization techniques are also applied.

For emissions and transitions matrices that may be frequently reused along

the calculation, a shared memory copy is made from the global memory to

reduce the times of relatively slower global read-writes.

Also, motivated by an existing work [4], we make use of CUDA intrinsic

instruction fmaf rn() to computes the value of a ∗ x+ b, which reduces the

execution time by preventing any possible redundant operations.

10

CHAPTER 4

RESEARCH RESULTS

In this chapter, we will present the comparison of the results with the C++

implementation on a CPU and also those existing work presented in Chapter2.

4.1 Compared with CPU Baseline

For the comparison with our CPU baseline, we have three different setups

with random input data to simulate the computation complexity of

corresponding Pair-HMM forward calculations.

The running time is measured in milliseconds, estimated by 100 consecutive

function calls as shown in Table 4.1,

Table 4.1: CPU Comparison

In Table 4.1, by comparing the first and the second column, we find the CUDA

implementation on Titan Xp could process three batches within almost the same

amount of time as only working with single batch, which is equivalent to a 3X

speed up for the number of batch to be 3 compared to sequential computation.

Since the global memory on GPU is very precious resources, and for Titan

Xp, the global memory is 12 gigabytes, which could barely hold a

11

forward matrix with the size of [159× 149], single batch. And the speed up for

this specific setup is around 1638.26/72.4838 = 22.60x for double precision and

1638.26/69.3239 = 23.63x in average.

4.2 Compared with Existing Work

To compare our work with the existing ones, we can use the 10s dataset

comes from a Whole Genome Sequence (WGS) dataset [5], and the performance

should look like Table 4.2,

Table 4.2: Performance based on 10s dataset

Where the performance of the existing works could be found in the following

Table 4.3 [6],

Table 4.3: Performance comparison across various implementation

The best speedup from our work is at around 1012x, with batch equal 4s and

from Table 4.3 we can see those better performance implementations are

achieved by FPGA implementation.

Compared to the GPU implementation on Nvidia K40 GPU [4], the speedup

is around 1012/154 = 6.57x. And the two biggest contributions should be the

12

parallelization across batch, and we’re running our code on a more powerful

GPU based on the new generation Pascal architecture.

13

CHAPTER 5

CONCLUSION

In this thesis, with the simple parallelization and use of single-precision

floating-point format (Float32), we achieve a speedup of 22.6x with a size of

forward matrix with [158× 148] compared to the C++ CPU implementation.

Although the throughput of our CUDA implementation is not as competitive

as those with FPGA, its flexibility could prove the significance. If working with

Python, to include the CUDA implementation in a GATK variant call or any

related application, we just need to use the pyCUDA package to instantiate the

Pair-HMM call, where pyCUDA is a light-weight Python wrapper for CUDA

API, supporting Numpy array as inputs.

The project is available at GitHub:

https://github.com/lienliang/Pair_HMM_forward_GPU

14

REFERENCES

[1] Victoria Popic and Serafim Batzoglou and John Louie, “CS262 Lecture6:
Hidden Markov Models Continued,” Jan 2015. [Online]. Available:
https://web.stanford.edu/class/cs262/archives/notes/lecture6.pdf

[2] Rishi Bedi and Serafim Batzoglou, “CS262 Lecture8: Pair Hidden Markov
Models,” Jan 2015. [Online]. Available:
https://web.stanford.edu/class/cs262/archives/notes/lecture8.pdf

[3] Broad Institute, David Benjamin, “Pair HMM probabilistic realignment in
HaplotypeCaller and Mutect,” Aug 2017. [Online]. Available:
https://github.com/broadinstitute/gatk/blob/master/docs/pair hmm.pdf

[4] Ren, Shanshan and Bertel, Koen and Al-Ars, Zaid, “Exploration of
alternative GPU implementations of the pair-HMMs forward algorithm,”
2016 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), 2016.

[5] “Pair-HMM test data.” [Online]. Available:
https://github.com/MauricioCarneiro/PairHMM/tree/master/test data

[6] S. Huang, G. J. Manikandan, A. Ramachandran, K. Rupnow, W.-m. W.
Hwu, and D. Chen, “Hardware acceleration of the pair-hmm algorithm for
dna variant calling,” pp. 275–284, 2017. [Online]. Available:
http://doi.acm.org/10.1145/3020078.3021749

[7] S. S. Banerjee, M. El-Hadedy, C. Y. Tan, Z. T. Kalbarczyk, S. S. Lumetta,
and R. K. Iyer, “On accelerating Pair-HMM computations in programmable
hardware,” 2017 27th International Conference on Field Programmable Logic
and Applications (FPL), pp. 1–8, 2017.

[8] techpowerup.com, “Nvidia TITAN Xp Tech Specs,” Apr 2017. [Online].
Available: https://www.techpowerup.com/gpu-specs/titan-xp.c2948

[9] A. R. University of Illinois at Urbana-Champaign and D. C. Coordinated
Science Laboratory, “Development code base with the ESCAD group.”

15

