
c© 2019 Tejas Jayashankar

LAP-BASED MOTION-COMPENSATED FRAME INTERPOLATION

BY

TEJAS JAYASHANKAR

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Bachelor of Science in Electrical and Computer Engineering

in the Undergraduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Adviser:

Professor Pierre Moulin

ABSTRACT

High-quality video frame interpolation often necessitates accurate motion es-

timates between consecutive frames. Standard video encoding schemes often

estimate the motion between frames using variants of block matching algo-

rithms. For the sole purposes of video frame interpolation, more accurate

estimates can be obtained using modern optical flow methods.

In this thesis, we use the recently proposed Local All-Pass (LAP) algorithm

to compute the optical flow between two consecutive frames. The resulting

flow field is used to perform interpolation using cubic splines. We com-

pare the interpolation results against a well-known optical flow estimation

algorithm as well as against a recent convolutional neural network scheme

for video frame interpolation. Qualitative and quantitative results show that

the LAP algorithm performs fast, high-quality video frame interpolation, and

perceptually outperforms the neural network and the Lucas-Kanade method

on a variety of test sequences. We also perform a case study to compare

LAP interpolated frames against those obtained using two leading methods

on the Middlebury optical flow benchmark. Finally, we perform a user study

to gauge the correlation between the quantitative and qualitative results.

Keywords: Motion Compensation, Frame Interpolation, Optical Flow, Splines,

Convolutional Neural Network, Adaptive Separable Convolution, Lucas-Kanade

algorithm, Local All-Pass filters

ii

ACKNOWLEDGMENTS

I would like to express my deepest appreciation for my advisor and mentor,

Professor Pierre Moulin, who has provided me with guidance, support and

invaluable research experience during the course of our research project. Ever

since our first conversation in my freshman year, I knew that I would have

the ability to deepen my knowledge and become an independent researcher

by working with Professor Moulin. During the course of our research project,

I have expanded my understanding of signal processing, statistical inference

and machine learning. These skills have proven not only valuable for my

work here at UIUC, but they will also play an important role during my

future research internships and for my Ph.D.

I am also very fortunate to author a paper with Professor Moulin, Professor

Thierry Blu and Dr. Christopher Gilliam, that has been submitted to the

IEEE Conference for Image Processing (ICIP 2019). I would like to also

express my deepest appreciation for Professor Thierry Blu at the Chinese

University of Hong Kong and Dr. Christopher Gilliam at RMIT University,

Melbourne for their valuable inputs while writing the paper and for sharing

code that was used during the initial development of the LAP algorithm.

Professor Moulin was very supportive during the conference paper submis-

sion phase and gave me constructive feedback that I will forever remember

while writing a research paper.

I would also like to thank all my other professors and staff at UIUC who

have made the past four years a fun, energetic and unforgettable experience.

I would like to especially thank Professor Radhakrishnan for his invaluable

support and mentorship over the past few years. I have not only learned

from my professors, but also from my friends. I am glad to have made so

many caring and motivated friends during my time here and it is the daily

iii

interactions with them that make college so much more fun and lively.

I would also like to thank my family for all the love, care and support that

they have given me. I would like to especially thank my parents and my

sister, Bhavya, for moving half way across the world to help me achieve my

dream of studying in the US. I would like to especially thank my dad, the

most hard-working person I know, and it is his hard work and motivating

spirit that allow me to study at a top-notch university. Without my mom’s

love, hard work, support and tasty food, my experience at UIUC would be

bland. My sister constantly reminds me to have fun while working and I am

truly grateful for her love and companionship. Finally, I would like to thank

my grandparents who have encouraged me from a young age to achieve my

goals and aspirations.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF ABBREVIATIONS . x

CHAPTER 1 INTRODUCTION . 1
1.1 Background . 1

1.1.1 Motion-Compensated Frame Interpolation 1
1.2 Thesis Objectives . 2
1.3 Organization of Thesis . 2

CHAPTER 2 MOTION ESTIMATION 4
2.1 Block Matching . 4

2.1.1 Full Search . 6
2.1.2 Three-Step Search . 6
2.1.3 New Three-Step Search 7
2.1.4 Four-Step Search . 9
2.1.5 Adaptive Rood Pattern Search 10

2.2 Optical Flow . 11
2.2.1 Lucas-Kanade . 12
2.2.2 Horn-Schunck . 14
2.2.3 Black and Anandan . 15
2.2.4 MDP-Flow2 and Deepflow2 17

CHAPTER 3 FRAME INTERPOLATION 18
3.1 MCFI Problem Statement . 18
3.2 Interpolation Algorithms . 19

3.2.1 Image Averaging . 19
3.2.2 Nearest Neighbor Interpolation 19
3.2.3 Bandlimited vs. Spline Interpolation 20
3.2.4 Splines . 21

3.2.4.1 Linear Interpolation 22
3.2.4.2 Cubic Interpolation 23

3.2.5 Cubic-OMOMS . 24

v

3.3 Adaptive Separable Convolution 25
3.3.1 Problem Statement . 25
3.3.2 Network Architecture 26

CHAPTER 4 LOCAL ALL-PASS FILTERS 29
4.1 Main Principles of the LAP Framework 29

4.1.1 Shifting is All-Pass Filtering 29
4.1.2 Rational Representation of All-Pass Filter 30
4.1.3 Linear Approximation of Forward Filter 30
4.1.4 Choosing a Good Filter Basis 31
4.1.5 Displacement Vector from All-Pass Filter 32

4.2 Estimation of All-Pass Filter 33
4.3 Poly-Filter Extension . 34
4.4 Pre-Processing and Post-Processing Tools 35

CHAPTER 5 VIDEO INTERPOLATION RESULTS 37
5.1 Performance Evaluation Criteria 38
5.2 Middlebury Dataset . 38
5.3 Derf’s Media Collection . 40
5.4 EPIC Kitchens Dataset . 42
5.5 Case Study: Basketball Sequence 44
5.6 User Study . 44

CHAPTER 6 CONCLUSION . 47

REFERENCES . 48

vi

LIST OF TABLES

2.1 Operation count for Lucas-Kanade to interpolate single
frame of size 1024x640. 13

3.1 Operation count for Adaptive Separable Convolution to
interpolate single frame of size 960× 540× 3. 27

4.1 Operation count for LAP to interpolate a single frame of
size 960x540x3. Below, ma stands for multiply-adds and
the cleaning procedures involve NaN inpainting, mean and
median filtering. Flow estimation requires 3 subtractions,
2 divisions and 1 addition per pixel. 36

5.1 MSE evaluation on the Middlebury dataset (high-speed
camera samples). Bold values indicate best results. 38

5.2 Average interpolation MSE on Derf’s Media Collection.
Bold values indicate best results. 40

5.3 Average interpolation MSE on EPIC Kitchens dataset. Bold
values indicate best results. 42

5.4 Execution times and MSE of the various optical flow meth-
ods and CNN on the basketball sequence. All times are in
seconds. 43

5.5 Number of operations (multiply-adds) and execution time
(CPU) required to interpolate a frame of size 960x540x3.
Execution time is in seconds, measured on a machine with
Intel Core i7-8750H processor and 32 GB RAM. The ex-
ecution time for the CNN was extrapolated based on the
time required to interpolate 200 pixels. 44

vii

LIST OF FIGURES

2.1 Block matching a block of width 16 pixels within a search
radius of 7 pixels. 5

2.2 Illustration of Three-Step Search. 7
2.3 Illustration of New Three Step Search. If minimum occurs

at a corner pixel five additional points are added (squares)
else three additional points are added (triangles). 8

2.4 Illustration of Four Step Search. 10
2.5 Lorentzian norm and `2 norm. 16

3.1 Illustration of different interpolation techniques. 22
3.2 Linear and cubic elementary B-splines. 23
3.3 Cubic B-spline and OMOMS comparison. 24
3.4 Illustration of neural network architecture. Given input

frames I1 and I2, an encoder-decoder network extracts fea-
tures that are given to four sub-networks that each estimate
one of the four 1D kernels for each output pixel in a dense
pixel-wise manner. The estimated pixel-dependent kernels
are then convolved with the input frames to produce the
interpolated frame Iint. 26

4.1 Estimated flow using different methods. A radius of 10
was used for LK and HS. HS required 250 iterations for
convergence. LAP flow was estimated using all six basis filters. 33

5.1 Beanbags sequence: The original sequence is shown at
the top. The original second frame is shown in (a), the
LAP-interpolated second frame is shown in (b), the CNN-
interpolated second frame is shown in (c), the LK-interpolated
second frame is shown in (d). LAP was used to compute
the optical flow in (a), (b) and (c). 39

viii

5.2 Soccer sequence: The original sequence is shown at the top.
Original frame 314 is shown in (a), LAP-interpolated frame
314 is shown in (b), CNN-interpolated frame 314 is shown
in (c) and the LK interpolated 314 is shown in (d). The
optical flow between frame 314 and frame 314 is shown for
the original sequence in (a) and for the three methods in
the other columns. LAP was used to compute the optical
flow in (a), (b) and (c). 41

5.3 Basketball sequence (frames 9, 10, 11): The original se-
quence is shown at the top. The original sequence is shown
in (a). In (c) DF2 stands for Deepflow2 and in (e) MDPF2
stands for MDP-Flow2. Flow fields between frame 1 and
frame 2 is shown at the bottom. 43

5.4 Results of the user study on 10 different sequences. The
sequences reported here best illustrate the discrepancy be-
tween MSE and subjective visual quality. 45

ix

LIST OF ABBREVIATIONS

Abbreviation Expansion

4SS Four-Step Search

ARPS Adaptive Rood Pattern Search

BA Black and Anandan

CNN Convolutional Neural Network

FRUP Frame-Rate Up-Conversion

FS Full Search

HS Horn-Schunck

LAP Local All-Pass

LK Lucas-Kanade

MCFI Motion-Compensated Frame Interpolation

MC-FRUP Motion-Compensated Frame-Rate Up-Conversion

MOMS Maximal-Order Interpolation of Minimal Support

NTSS New Three-Step Search

OMOMS Optimal Maximal-Order Interpolation of Minimal Sup-
port

PF Poly-Filter

TSS Three-Step Search

x

CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Motion-Compensated Frame Interpolation

Frame-Rate Up-Conversion (FRUC) is the process by which new intermedi-

ate frames are inserted into a video sequence with the goal of improving the

temporal resolution (frame-rate) of the video sequence. These intermediate

frames are generated by only using the frames in the original video. These

intermediate frames could be a copy of one of the original frames in the se-

quence or they could be newly generated frames.

FRUC plays a pivotal role in video processing and has many applications

to various fields. In a video coding and compression setup, with a limited

bit transmission rate, the system is constrained by memory and processing

power. FRUC can not only be used to interpolate between the input frames,

but an advanced algorithm can also accurately estimate the displacement

fields, which can then be transmitted. In [1], Krishnamurthy et al. encode the

displacement field of a subsampled video using a block-matching approach

under bit constraints. The decoder performs motion-compensated FRUC

(MC-FRUC) to interpolate new frames using bidirectional predictions to

tackle occlusions. Literature that covers FRUC for compressed video can also

be found in [2, 3]. In this thesis we specifically study motion-compensated

frame interpolation (MCFI), wherein the frame-rate is increased through the

interpolation of new frames.

Frame interpolation might still be desired even if the system is equipped

with high transmission rates and large memory bandwidth. MCFI has been

1

used for interpolation in echocardiographical video sequences [4]. Instead

of interpolating a single frame, multiple frames are interpolated between a

pair of images to augment the observable ventricular functions and better

visualize cardiac dynamics. Image registration techniques are used for mo-

tion estimation and dimensionality reduction is employed to optimize for the

number of intermediate frames to produce. It should also be noted that many

MCFI algorithms are specifically designed for the underlying system that it

is deployed on [5].

1.2 Thesis Objectives

In this thesis we use the recently developed Local All-Pass (LAP) algorithm

for optical flow estimation to perform motion estimation. These motion es-

timates are then used to create an interpolated frame using cubic splines.

We compare the interpolation results against the Lucas-Kanade method, a

standard optical flow algorithm and a recently proposed convolutional neural

network (CNN) approach for video-frame interpolation based on separable

filter estimation.

The interpolated frames are evaluated quantitatively using the Mean-Squared

Error (MSE) [6] and qualitatively by observing the interpolated frames. A

detailed analysis of the interpolation quality is performed and finally a user

study is conducted to further understand the correlation between MSE and

subjective visual quality.

1.3 Organization of Thesis

This thesis is organized into six different chapters as follows:

1. Chapter 1 introduces the MCFI problem and details the organization

of the thesis.

2. Chapter 2 is concerned with motion estimation. Section 2.1 covers

state-of-the-art block matching algorithms for motion estimation. Sec-

tion 2.2 introduces five standard optical flow algorithms for motion

estimation.

2

3. Chapter 3 explains the MCFI problem statement and covers various

interpolation algorithms used for interpolating between signals. Sec-

tion 3.3 briefly explains a new convolutional neural network for frame

interpolation.

4. Chapter 4 explains the Local All-Pass (LAP) algorithm for motion

estimation. The main principles and algorithm details are explained.

5. Chapter 5 reports interpolation results on three different datasets. It

also includes results from a user study performed to understand the

correlation between MSE and visual quality.

6. Chapter 6 concludes the thesis and contains final remarks on the ex-

periments and results.

3

CHAPTER 2

MOTION ESTIMATION

Motion estimation has been a hot research topic since the 1970s. Many of

the original and currently used video coding standards use motion estimation

to encode and decode information [7, 8]. Motion estimation between images

is often computed in two different ways:

1. Block Matching: The images are broken up into blocks (also called

macro-blocks), which is essentially a cluster of pixels. Typical block

sizes are 4x4, 8x8 and 16x16. The best matches in relation to some

error metric, between corresponding blocks in both images, are used to

estimate the motion vectors.

2. Optical Flow: The motion between a pair of images is estimated for

each pixel. Optical flow motion estimates tend to be much more ac-

curate than block matching motion vectors. However, these methods

also tend to be much more complex and computationally expensive.

In the next few sections we will review literature that discusses block-matching

and optical flow methods for motion estimation.

2.1 Block Matching

Block matching algorithms implicitly assume that objects and patterns vary

in position between images but remain structurally similar. The idea is

to divide the images into blocks of size n × n where n is typically 4, 8 or

16. The illustration in 2.1 is taken from [9] and it shows a typical block

size. For each block B1 ∈ B in I1, where B is the space of all blocks, the

corresponding block B2 in image I2 can be found by minimizing some error

criterion. Typical error criteria used are the Mean Squared Error (MSE) and

4

Figure 2.1: Block matching a block of width 16 pixels within a search
radius of 7 pixels.

the Mean Absolute Error (MAE). The formula for these criteria between two

M ×N matrices is given below:

MSE(x, y) =
1

MN

M∑
i=1

N∑
j=1

(x(i, j)− y(i, j))2, (2.1)

MAE(x, y) =
1

MN

M∑
i=1

N∑
j=1

|x(i, j)− y(i, j)|. (2.2)

Most algorithms also restrict the search radius to be within p pixels from

the center of the current block under consideration as is shown in Figure 2.1.

This is done for two reasons:

1. For faster computation. Searching over the whole image can be com-

putationally intensive. Moreover, it lengthens the execution time.

2. In most situations, especially MCFI, assumptions on the velocity of

the object can be made to ensure that the highest correlation between

blocks only occurs within a fixed radius with high probability. This is

because most natural occurring scenes have generally smoothly varying

motion.

In the next few subsections we will briefly review commonly used block-

matching algorithms for motion estimation. A more in-depth treatment of

these algorithms can be found in [9, 10].

5

2.1.1 Full Search

In Full Search (FS), every block between I1 and I2 is compared within a

search window. For every block in I1, the block in I2 that results in the

lowest MSE is chosen. Let the images be broken up into blocks of size K×K
and let the search window radius be p pixels. Then, the number of blocks,

n, compared for each reference block is:

n = 4p2. (2.3)

Thus, the total number of operations performed is:

ops = n×K2 = O((pK)2). (2.4)

FS gives the best match amongst all block matching algorithms for the same

block width and search window radius. However, this comes at the cost of

increased computational complexity and longer execution time.

2.1.2 Three-Step Search

The Three-Step Search (TSS) block matching algorithm [9] is one of the first

block matching algorithms introduced and it forms the basis for many more

complex block matching algorithms. Instead of searching all blocks within

a window, TSS employs a much more strategic algorithm to find the best

match for a reference frame while also reducing the time complexity. TSS

finds a matching block in three steps.

1. Step 1: Match the central block and all blocks at a distance of 4 pixels

away from the center of the reference block, x. Choose the central pixel

of the matched block with lowest MSE. Call this position x1.

2. Step 2: Reduce the search radius from 4 pixels to 2 pixels. Now match

all blocks at a distance of 2 pixels from x1 to the reference block. Choose

the central pixel of the matched block with the lowest MSE. Call this

position x2.

3. Step 3: Reduce the search radius from 2 pixels to 1 pixel. Now match

all blocks at a distance of 1 pixel from x2 to the reference block. Choose

6

Figure 2.2: Illustration of Three-Step Search.

the central pixel of the matched block with the lowest MSE. Call this

position x3. The final motion vector is x3 − x.

An illustration of the TSS search pattern taken from [9] is shown in Figure

2.2. Nine block comparisons are performed in the first step and eight block

comparisons are performed in steps 2 and 3. Thus, the total number of block

comparisons per reference frame is:

n = 9 + 8 + 8 = 25. (2.5)

The total number of operations performed per reference frame is:

ops = n×K2 = O(K2). (2.6)

Notice that for p = 7, which is a typical search radius, this amounts to more

than a 50 factor decrease in operations per block in comparison to FS.

2.1.3 New Three-Step Search

The underlying assumption of New Three-Step Search (NTSS) is that the

block motion field of a real world sequence is smooth and varies slowly. Li et

al. [11] developed NTSS in 1994 as an extension of TSS that optimizes for

7

Figure 2.3: Illustration of New Three Step Search. If minimum occurs at a
corner pixel five additional points are added (squares) else three additional
points are added (triangles).

the center-bias of motion vectors. They incorporate a halfway-stop technique

to reduce the time complexity of TSS in certain scenarios. The procedure is

given below:

1. Step 1: In addition to matching the central block and all blocks at

a distance of 4 pixels from the center, match 8 additional blocks at a

distance of 1 pixel from the center of the reference frame. This is done

to enforce the center-biased motion vector assumption.

2. Step 2: If the best match occurs at the center of the search window,

the motion vector is (0, 0). End the procedure. Otherwise, if the best

match occurs at one of the inner 8 points, the new search pattern

depends on the position of this point.

(a) If a match occurs at a corner point, five additional points are

checked as shown in Figure 2.3.

(b) If a match occurs at one of the central points of the edges, three

additional points are checked.

If the best match occurs at one of the outer 9 points, follow Step 3.

3. Step 3: In this case the best match occurs at one of the outermost

8

points at a distance of 4 pixels from the center of the reference frame.

Carry out TSS until convergence.

An illustration of the NTSS search pattern taken from [9] is shown in Figure

2.3. In NTSS, 17 comparisons are done in step 1. Step 2 can can carry out

0, 3 or 5 additional comparisons. Step 3 carries out 16 comparisons. Thus,

n ∈ {17, 20, 22, 33}. (2.7)

According to [11], the chances of 33 comparisons occuring is small. Thus,

NTSS has a slight improvement in performance over TSS. The NTSS algo-

rithm was widely used in MPEG and H261.1 coding standards [9].

2.1.4 Four-Step Search

The Four-Step Search (4SS) was introduced by Po and Ma [12], and it is a

further extension of NTSS. It is also based on the center-biased motion vector

distribution assumption. Instead of three steps as in NTSS, four steps are

used to incorporate a finer search in the last step combined with additional

halfway-stop criteria. The procedure is given below:

1. Step 1: Find the best match from all blocks centered at a distance

of 2 pixels from the center of the reference block. If the best match

occurs at the center of the search window go to Step 4.

2. Step 2: If the best match occurs at one of the outer 8 points, the

new search pattern depends on the position of this point.

(a) If a match occurs at a corner point, five additional points are

checked as shown in Figure 2.4.

(b) If a match occurs at one of the central points of the edges, three

additional points are checked.

If the best match is found at the center of the newly created search

window go to Step 4, else follow on to Step 3.

3. Step 3: Again using a search radius of 2 pixels, follow Step 2 and

then move onto Step 4.

9

Figure 2.4: Illustration of Four Step Search.

4. Step 4: Now use a search radius of 1 pixel to refine the motion vector

estimate.

The main difference between 4SS and NTSS is the addition of Step 4. There

is also an additional halfway-stop point in Step 2. An illustration of the 4SS

search pattern taken from [9] is shown in Figure 2.4. In the first step there are

9 comparisons made. In the second step there could be 0, 3 or 5 comparisons.

In the third step an additional 3 or 5 comparisons are made. In the final step

8 comparisons are made. Thus, the total number of comparisons is

n ∈ {17, 20, 22, 23, 25, 27}. (2.8)

Thus, in the worst case, 4SS performs 5 fewer comparisons than NTSS. In

[12] it is shown that the performance of 4SS is similar to NTSS in terms

of MSE. A further extension of 4SS is Diamond Search (DS) [13], where the

search window is in the shape of a diamond instead of a square. Additionally,

the number of steps is not fixed and the procedure can carry on in the same

manner after Step 4. It performs similarly to 4SS and performance can be

improved by increasing the number of steps.

2.1.5 Adaptive Rood Pattern Search

The underlying assumption of Adaptive Rood Pattern Search (ARPS) [14]

is based on the observation that the motion estimates become more precise

10

as one moves towards the global minimum of the error criterion. Thus, the

authors make the assumption that the error surface is uni-modal. They

also incorporate some correlation between motion vectors. Specifically, they

assume that the horizontally adjacent blocks have similar motion vectors.

For a certain block under consideration, the blocks in the direction of the

motion vector of the left adjacent block are first searched before any further

refinement. The procedure for ARPS is below:

1. Step 1: Compute the error between the current block and the

corresponding block in the reference frame. If the error is less than

some threshold T (T = 150 in [14]), then set the motion vector es-

timate to (0, 0) and end the procedure. Else, if the current block

is the leftmost block in the search window set Γ = 2. Otherwise,

Γ = max{|MV (x)|, |MV (y)|} where Γ is a measure of the maximum

displacement of the left adjacent block and MV is the motion vector

of the left adjacent block.

2. Step 2: Let the center of the current block be (x, y). Match the

blocks at the positions (x ± Γ, y ± Γ) and (x + MV (x), y + MV (y)).

Find the point with the minimum error.

3. Step 3: Setup the window in the shape of the unit-size rood pattern

and find the best match. Keep on iterating this procedure until the

best match is found at the center of the search window.

2.2 Optical Flow

Optical flow methods relate changes between images by determining flow of

intensities between images. Block matching algorithms are often counted as

subsets of optical flow algorithms.Traditional optical flow algorithms often

assume local smoothness and constant displacement flow to determine the

displacement field. There are also methods which enforce global consistency

of the field. In this section we will review standard optical flow methods and

two recent methods based on deep neural networks.

11

2.2.1 Lucas-Kanade

The Lucas-Kanade (LK) method [15] is an optical flow algorithm developed

in 1981. The method assumes that the displacement of a pixel between suc-

cessive frames is small and constant within a small neighborhood around

the point. Furthermore, the method assumes that the brightness remains

unchanged between frames. These assumptions can be expressed mathemat-

ically using the optical flow equations. Let the current pixel under consid-

eration be (x, y, t) where t represent the current frame. Let the next frame

occur in time ∆t. If the pixel moves in the direction (vx, vy) then according

to the brightness consistency equation

I(x, y, t) = I(x+ vx, y + vy, t+ ∆t). (2.9)

Expanding the right-hand side of (2.9) using a first-order Taylor series ex-

pansion we have:

I(x, y, t) = I(x, y, t) +
∂I

∂x
vx +

∂I

∂y
vy +

∂I

∂t
∆t. (2.10)

From equation (2.10) we end up with the optical flow equation:

∂I

∂x
vx +

∂I

∂y
vy = −∂I

∂t
∆t. (2.11)

To cope with the aperture problem, the Lucas-Kanade method solves for v

using local least-squares matching in a neighborhood around the pixel under

consideration. Let the pixel under consideration be a and the neighborhood

of points be P = {p1, . . . , pn}. The Lucas-Kanade method solves the follow-

ing minimization problem:[
vx

vy

]
= argmin

v1,v2

∑
p∈P

(Ix(p)v1 + Iy(p)v2 + It∆t)
2 . (2.12)

A common variant of this method is to weight the pixels closer to a more

than those farther away in the window. The minimization problem (2.12) is

modified as: [
vx

vy

]
= argmin

v1,v2

∑
p∈P

wp (Ix(p)v1 + Iy(p)v2 + It∆t)
2 , (2.13)

12

where wp are the weights for each pixel. The optical flow equations can be

written in matrix form and can be solved using the normal equations.

v = (A>WA)−1A>Wb (2.14)

A =


Ix(p1) Iy(p1)

...
...

Ix(pn) Iy(pn)

 v =

[
vx

vy

]

W =


√
wp1 0 . . . 0

0
√
wp2 0 . . . 0

0
...

... . . . 0

0 0 0 . . .
√
wpn

 b =


−It(p1)
−It(p2)

...

−It(pn)


In this report we use a modern version of the Lucas-Kanade method available

in Piotr’s Computer Vision Toolbox [16]. This version uses the weighted

version of the Lucas-Kanade method and image pyramids. The algorithm

uses a seven layer image pyramid with the highest level computing the flow

on the image subsampled by 64 and refining the estimate in each level by

warping the first image closer to the second. Best results were obtained by

using a neighborhood of radius 10 pixels. The operation count on a 1024x640

image is shown in Table 2.1.

Table 2.1: Operation count for Lucas-Kanade to interpolate single frame of
size 1024x640.

Layer Description Image Size Number of Multiply-Adds

Layer 1: Smoothen 16x10 3200

Layer 1: Matrix Calculations 16x10 82240

Layer 2: Smoothen 32x20 12800

Layer 2: Matrix Calculations 32x20 32960

Layer 3: Smoothen 64x40 51200

Layer 3: Matrix Calculations 64x40 131840

Layer 4: Smoothen 128x80 204800

Layer 4: Matrix Calculations 128x80 527360

Layer 5: Smoothen 256x160 819200

13

Layer 5: Matrix Calculations 256x160 2109440

Layer 6: Smoothen 512x320 3276800

Layer 6: Matrix Calculations 512x320 8437760

Layer 7: Smoothen 1024x640 13107200

Layer 7: Matrix Calculations 1024x640 33751040

Total Operation Count 6.05× 107

Number of ops/pixel 92

2.2.2 Horn-Schunck

The Horn-Schunck (HS) method [17], introduced in 1980, is a global method

for optical flow estimation. Instead of assuming that the motion vectors

remain constant locally around a point, the method optimizes for the flow by

introducing a global smoothness parameter. The algorithm minimizes the

distortion in the flow and the smoothness can be controlled by specifying

the weight of a regularization parameter. The optical flow equation (2.11),

and smoothness requirement are ensured through the minimization of the

following energy function:

E = (Ixvx + Iyvy + It)
2 + α2(‖∇vx‖2 + ‖∇vy‖2), (2.15)

where the first term ensures brightness consistency and the second term

ensures global smoothness. The above equation can be discretized for imple-

mentation. The discretization is based on the central difference decomposi-

tion of the Laplacian [18]. Details about the discretization can be found in

[17]. Thus, the energy function can be approximated by:

E = (Ixvx + Iyvy + It)
2 + α2((vx − vx)2 + (vy − vy)2), (2.16)

where vx and vy are a weighted average of the gradient from the surrounding

pixels. Taking the derivative with respect to vx and vy, we have

∂E

∂vx
= −2α2(vx − vx) + 2(Ixvx + Iyvy + It)Ix, (2.17)

∂E

∂vy
= −2α2(vy − vy) + 2(Ixvx + Iyvy + It)Iy. (2.18)

14

Solving the above two equations we get an expression for vx and vy which

can then be used to solve for the motion vectors.

(α2 + I2x + I2y)(vx − vx) = −Ix(Ixvx + Iyvy + It), (2.19)

(α2 + I2x + I2y)(vy − vy) = −Iy(Ixvx + Iyvy + It). (2.20)

The above equation tells us that the optimal motion vector should be close to

the average of its surrounding motion vectors, i.e. the field is smooth. This

will in-turn enforce brightness consistency. In practice, the motion vectors are

solved for iteratively, by calculating the weighted average and then updating

the vectors alternately.

vn+1
x = vx

n − Ix(Ixvx
n + Iyvy

n + It)

(α2 + I2x + I2y)
, (2.21)

vn+1
y = vy

n − Iy(Ixvx
n + Iyvy

n + It)

(α2 + I2x + I2y)
. (2.22)

This algorithm is much more computationally intensive than the Lucas-

Kanade method. The execution time depends on the smoothness of the

image and the number of iterations required for convergence.

2.2.3 Black and Anandan

Black and Anandan introduced the idea of robust penalization for optical

flow estimation in their paper in 1991 [19]. Until 1991, most optical flow

algorithms, such as LK and HS, used the `2 norm (least squares) as the cost

function or penalization function. The growth rate of the `2 norm is faster

and it tends to not penalize erroneous estimates much more than accurate

estimates. Black and Anandan proposed the use of a cost function that

strongly penalizes large errors while rewarding accurate estimates. In par-

ticular, the cost function for LK and HS can be modified as shown in (2.23)

and (2.24) respectively.

ELK =
∑
p∈P

ρ (Ix(p)v1 + Iy(p)v2 + It∆t, σ) (2.23)

EHS = λDρD(Ixvx + Iyvy + It, σD) + α2(ρS(vx − vx, σS) + ρS(vy − vy, σS)).

(2.24)

15

Figure 2.5: Lorentzian norm and `2 norm.

Here ρD, ρS are the robust norms and σD, σS are control parameters. Black

and Anandan use the Lorentzian error norm for both ρD and ρS. Notice how

it penalizes large errors in Figure 2.5.

The motion vectors can be solved for by minimizing the above cost functions

using gradient descent. The derivatives of the cost function can be calculated

the same way as in the LK or HS method. A detailed derivation of the

gradient descent formulas can be found in [19]. The final equations are:

v(n+1)
x = v(n)x − ω

1

T (x, y)

∂E

∂vx
, (2.25)

v(n+1)
y = v(n)y − ω

1

T (x, y)

∂E

∂vy
. (2.26)

Here T (x, y) is a bound on the second derivative of the cost function and ω is

the step-size of the update. The Black and Anandan method heralded the use

of robust penalization cost functions for optical flow estimation. Such cost

functions are still used in many modern deep learning optical flow algorithms,

the most popular error metric being the `1 norm.

16

2.2.4 MDP-Flow2 and Deepflow2

There are many more optical flow algorithms that can be discussed. Optical

flow estimation is one of the most challenging computer vision problems to

date and a thorough discussion of all algorithms would require many more

pages. Further literature on optical flow can be found in [20, 21, 22]. It

is worth mentioning two recent approaches to optical flow based on feature

matching and neural networks.

Motion Detail Preserving Flow v2 (MDP-Flow2) [23] is currently one of the

top ranked flow algorithms on the Middlebury flow rankings and it held the

top spot for some time in 2010. The algorithm uses an image pyramid to

predict flow on different levels (i.e. different amplitudes). In each level, the

flow is computed by performing feature matching across the whole image and

patch matching using 16×16 blocks. Following this, multiple flow candidates

are generated to account for occlusions. A simple least squares optimization

provides the best candidate. The flow is then made continuous by minimizing

the Total Variation (TV) energy function. The image is then warped closer

to the true version using the flow estimates and the estimates are continued

on to the next level.

Deepflow 2 [24] performs a similar feature matching algorithm as in MDP-

Flow2. The matching algorithm is called Deepmatching. It uses a pyramid

structure with data movement interleaved between the levels, akin to the

structure of a convolutional neural network. The cost function minimized is

a robust penalizer and it is nearly the same as the BA cost function with an

additional matching energy introduced from the Deepmatching algorithm.

Deepflow2 is also ranked as one of the top optical flow methods on the Mid-

dlebury dataset.

An in-depth analysis of the algorithms can be found in the papers cited

previously. Details have been left out as the analysis of these algorithms is

not the goal of this thesis. It should be noted that the above algorithms have

been specially optimized for the Middlebury dataset and are computationally

expensive.

17

CHAPTER 3

FRAME INTERPOLATION

Frame interpolation refers to generating a new image given an observed input

sequence. In MCFI, interpolation is performed by using the displacement

field obtained by the motion estimation algorithm. In most applications,

frame interpolation is performed by using only two reference frames. Better

interpolation results can be obtained by using multiple images of the same

scene. In such cases, the images can be mapped to the same frame of reference

by using image registration techniques [25].

3.1 MCFI Problem Statement

In this thesis we will focus on frame interpolation with the only priors being

two input frames. Let the input frames be It and It+1. Let u be the dis-

placement field after performing motion compensation. The goal of MCFI is

to generate an intermediate frame It+1/2 such that

It+1/2(x) = It(x− u/2), (3.1)

It+1/2(x) = It+1(x + u/2). (3.2)

The generation of this intermediate frame using the motion vectors is the

task of frame interpolation. In the next few subsections we will review some

common interpolation techniques. Finally, we will look at a recently devel-

oped CNN approach for video frame interpolation that estimates separable

interpolation kernels.

18

3.2 Interpolation Algorithms

We will review five different image interpolation algorithms in this section.

While images are defined on a discrete grid, we will assume that the grid

is continuous to simplify the theory. Furthermore, we will assume that the

points in the input image are spaced at a distance of 1 unit apart in the

vertical and horizontal directions.

Image averaging is the only technique that requires two input images. All

other interpolation techniques discussed in this section require a single input

image.

3.2.1 Image Averaging

Image averaging is the simplest form of interpolation that one can perform

between two images. The interpolated image Iint can be expressed in terms

of the input images I1 and I2 as:

Iint(x, y) =
I1(x, y) + I2(x, y)

2
. (3.3)

This interpolation is sufficient to use when there is very minimal or no motion

between frames. This method tends to blend colors and creates artificial

looking images with many artifacts.

3.2.2 Nearest Neighbor Interpolation

Nearest neighbor assigns the interpolated point with the value of its closest

neighbor in the input image. For a 1D signal this can be carried out through

convolution with the following kernel:

ϕ(x) =


0 x < −1

2

1 −1
2
≤ x ≤ 1

2

0 x > 1
2

. (3.4)

For a 2D signal, this kernel is applied in the horizontal and vertical direction

in a separable fashion.

19

3.2.3 Bandlimited vs. Spline Interpolation

In traditional interpolation, a function f is approximated using the samples

fn = f(nT), and a set of interpolation basis functions {ϕint
(
x
T
− k
)
}k∈Z.

The basis function satisfies ϕint(n) = δn, n ∈ Z, where δn is the Kronecker

delta function. The approximated function can be constructed as follows:

fint(x) =
∑
k∈Z

fkϕint

(x
T
− k
)
. (3.5)

In the case of signals bandlimited to
[
− π
T
, π
T

]
, we can make fint = f by using

ϕint = sinc. The sampling property and infinite support of the basis func-

tions result in these functions being impractical to use in practice.

In generalized interpolation, the goal is to still approximate a function as

closely as possible. However, the interpolation basis functions are no longer

required to satisfy the sampling property. Furthermore, for computational

purposes, basis functions with finite support are chosen. One particular

example of such an interpolation basis function is a spline which is discussed

in more detail in Section 3.2.4. (3.5) is modified as shown below:

fint(x) =
∑
k∈Z

ckϕ
(x
T
− k
)
. (3.6)

Notice that the coefficients in (3.6) are no longer the sample values of the

function. Thus, we need an additional constraint. We should require that

the sample values at integer multiples of T can be reconstructed. Thus,

fn = f(nT) =
∑
k∈Z

ckϕ (n− k) = (c ∗ ϕ)n. (3.7)

In the z-domain, this relationship can be expressed as a filtering operation.

C(z) =
1∑

n∈Z ϕ(n)z−n
F (z), (3.8)

where F (z) is the z-transform of the samples of f . As long as
∑

n∈Z ϕ(n)z−n

has no roots on the unit circle, the above filtering operation can be imple-

mented as forward-backward filtering operation using the causal and anti-

causal parts of the basis function.

20

Thus, generalized interpolation can be split into two steps:

1. Determine the coefficients cn using (3.8).

2. Perform interpolation using (3.6).

Generalized interpolation is often used because we have the choice of us-

ing a larger range of interpolation basis functions based on the application

and system constraints. An important metric for assessing an interpolant’s

quality is know as the approximation order. An interpolant with degree of

approximation L satisfies the following relation:

‖f − fint‖2 ≤ C × TL. (3.9)

Here, C is called the approximation gain and T is the time step used in

sampling f .

3.2.4 Splines

Splines are smooth piecewise polynomials. A spline with degree K has con-

tinuous derivatives up to order K − 1 and it is differentiable up to order K

everywhere except at the piece boundaries. Since splines are piecewise, the

expression of the polynomials that compose the spline change at different

points. These points are called knots. We will only consider uniform splines,

where the knots are evenly spaced out.

The most commonly used spline basis functions are the elementary B-splines.

The elementary B-spline of degree 0 is given by:

β(0)(x) =

1 −1
2
≤ x < 1

2

0 otherwise
. (3.10)

There are slight differences between the elementary B-spline of degree 0 and

the nearest neighbor interpolation kernel; particularly, the spline averages

values at half-integer points while the latter kernel does not [26]. The B-

splines of higher degree can be derived from the elementary B-spline of degree

21

Figure 3.1: Illustration of different interpolation techniques.

0 by the following recursive formula:

β(n)(x) = β(n−1) ∗ β(0)(x). (3.11)

Splines of degree n have an approximation order of n+1. This means that the

function is very smooth. Splines also have the property of having the highest

approximation order for a given support. A thorough review of splines can

be found in [27]. Figure 3.1 [28] shows common interpolation techniques

employed in image processing.

3.2.4.1 Linear Interpolation

Linear interpolation is performed by using the elementary B-spline of degree

1.

β(1)(x) =


1 + x 1 ≤ x < 0

1− x 0 ≤ x < 1

0 otherwise

. (3.12)

Notice that the range of the kernel is 2 units. In an image this would utilize

up to three pixels in both the horizontal and vertical direction to compute

the interpolated pixel. Interpolation is first carried out in the horizontal di-

rection followed by interpolation in the vertical direction. This is commonly

known as bilinear interpolation.

The coefficients cn can be determined by solving (3.8). For an image we need

to first evaluate ϕ = β(1) at all integer points in the basis function’s support.

Thus, ϕn = 2δn+1 + δn + 2δn−1. The coefficients can now be found by taking

22

x

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β(3)(x)

β(1)(x)

Figure 3.2: Linear and cubic elementary B-splines.

the inverse z-transform of C(z).

C(z) =
1

1 + 2(z + 1/z)
F (z), (3.13)

The above filtering operation can be expressed as a forward-backward filter-

ing operation by observing that 1 + 2(z+ 1/z) = 1
λ2

(1−λz−1)(1−λz) where

λ = 1
4
i(
√

15 + i).

3.2.4.2 Cubic Interpolation

Cubic interpolation is performed by using the elementary B-spline of degree

3.

β(3)(x) =


2
3
− 1

2
|x|2(2− |x|) 0 ≤ |x| < 1

1
6
(2− |x|)3 1 ≤ |x| < 2

0 otherwise

. (3.14)

Notice that the range of the kernel is 4 units. In an image this would utilize

up to five pixels in both the horizontal and vertical direction to compute the

interpolated pixel. Figure 3.2 illustrates the difference between the elemen-

tary linear and cubic spline kernels. Interpolation is first carried out in the

horizontal direction followed by interpolation in the vertical direction. This

is commonly known as bicubic interpolation.

23

x

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

β(3)(x)

ϕ
(3)(x)

Figure 3.3: Cubic B-spline and OMOMS comparison.

The coefficients cn can be determined by solving (3.8). For an image we need

to first evaluate ϕ = β(3) at all integer points in the basis function’s support.

Thus, ϕn = 1
6
δn+1+ 2

3
δn+ 1

6
δn−1. The coefficients can now be found by taking

the inverse z-transform of C(z) as was detailed in Section 3.2.4.1.

3.2.5 Cubic-OMOMS

Cubic splines fall under the category of interpolating functions known as

Maximal-Order Interpolation of Minimal Support (MOMS) [29]. These are

the class of functions that have the highest degree of approximation for a

given support. The class of interpolants knows as Optimal Maximal-Order

Interpolation of Minimal Support (OMOMS) [29] are those MOMS functions

with the smallest approximation gain, C, in the `2 sense. These OMOMS

functions can be expressed in terms of the elementary B-spline functions and

its derivatives. The formula for the cubic-OMOMS interpolant is:

ϕ(3)
o (x) = β(3)(x) +

1

42

d2

dx2
β(3)(x) (3.15)

ϕ(3)
o (x) =


1
2
|x|3 − |x|2 + 1

14
|x|+ 13

21
0 ≤ |x| < 1

−1
6
|x|3 + |x|2 − 85

42
|x|+ 29

21
1 ≤ |x| < 2

0 otherwise

. (3.16)

24

The coefficient C is 4.6 times smaller for OMOMS in comparison to the

similar coefficient for cubic splines. Figure 3.3 illustrates the difference in

scaling between the elementary cubic spline and the cubic-OMOMS kernel.

OMOMS have shown to produce slightly better interpolation results than

MOMS functions [29].

3.3 Adaptive Separable Convolution

Instead of using optical flow estimates to perform frame interpolation, Niklaus

et al. [30] use a deep convolutional neural network (CNN) to estimate sep-

arable convolution kernels that can be used to determine the intensity of

each pixel in the output image. This method is known as adaptive separable

convolution.

3.3.1 Problem Statement

The goal is to interpolate a frame Iint between two input frames I1 and I2.

For each output pixel (x, y) in Iint, the CNN estimates a pair of separable

filters K1 and K2 such that

Iint(x, y) = K1(x, y) ∗ P1(x, y) +K2(x, y) ∗ P2(x, y), (3.17)

where P1 and P2 are patches of the images centered around the pixel (x, y)

in the images I1 and I2 respectively. The separable filters can be represented

as 〈K1v, K1h〉 and 〈K2v, K2h〉. Then,

Ki = Kiv ×K>ih, i = 1, 2 (3.18)

Niklaus et al. use kernels of size 51× 51. Thus, a total of 204 floating point

values need to be stored per pixel. For a 1080p image, this would require

204× 1920× 1080 = 1.58 GB memory.

25

Figure 3.4: Illustration of neural network architecture. Given input frames
I1 and I2, an encoder-decoder network extracts features that are given to
four sub-networks that each estimate one of the four 1D kernels for each
output pixel in a dense pixel-wise manner. The estimated pixel-dependent
kernels are then convolved with the input frames to produce the
interpolated frame Iint.

3.3.2 Network Architecture

The network has a contracting section followed by an expanding section as

is shown in Figure 3.4 (The figure was taken from [30]). The layers are

organized as a sequence of three convolutional layers followed by a ReLU

activation layer. Skip connections are present between the contracting and

expanding parts to facilitate the sharing of information before the downsam-

pling operation and to improve the stability of the network at the upsampling

layers. The authors use bilinear interpolation in the upsampling layers.

The authors trained the model with two loss functions. The first one is the

L1 norm.

L1 = ‖Iint − Igt‖1 (3.19)

They also trained it with a perceptual loss function (LF). Perceptual loss

is based on certain high level features that the user chooses to extract from

the images. The relu4 4 layer from the VGG19 network was used for the

aforementioned purpose.

LF = ‖φ(Iint)− φ(Igt)‖22 (3.20)

The authors trained the network for 20 hours on an NVIDIA Titan X (Pas-

cal) GPU. A detailed breakdown of the various layers and operation count is

26

given in Table 3.1. The authors trained it on patches of images taken from

common YouTube videos using AdaMax.

The operation count was separated into multiply-additions and in-place com-

putations to ease the counting process. The authors implemented the last

two layers in CUDA to perform fast computations.

Table 3.1: Operation count for Adaptive Separable Convolution to
interpolate single frame of size 960× 540× 3.

Layer Output Size Multiply-Adds Add, Div etc.

Input (1024, 640, 6) 0 0

Conv + ReLU (1024, 640, 32) 1132462080 20971520

Conv + ReLU (1024, 640, 32) 6039797760 20971520

Conv + ReLU (1024, 640, 32) 6039797760 20971520

Avg. Pool (512, 320, 32) 0 20971520

Conv + ReLU (512, 320, 64) 3019898880 10485760

Conv + ReLU (512, 320, 64) 6039797760 10485760

Conv + ReLU (512, 320, 64) 6039797760 10485760

Avg. Pool (256, 160, 64) 0 10485760

Conv + ReLU (256, 160, 128) 3019898880 5242880

Conv + ReLU (256, 160, 128) 6039797760 5242880

Conv + ReLU (256, 160, 128) 6039797760 5242880

Avg. Pool (128, 80, 128) 0 5242880

Conv + ReLU (128, 80, 256) 3019898880 2621440

Conv + ReLU (128, 80, 256) 6039797760 2621440

Conv + ReLU (128, 80, 256) 6039797760 2621440

Avg. Pool (64, 40, 256) 0 2621440

Conv + ReLU (64, 40, 512) 3019898880 1310720

Conv + ReLU (64, 40, 512) 6039797760 1310720

Conv + ReLU (64, 40, 512) 6039797760 1310720

Avg. Pool (32, 20, 512) 0 1310720

Conv + ReLU (32, 20, 512) 1509949440 327680

Conv + ReLU (32, 20, 512) 6039797760 327680

Conv + ReLU (32, 20, 512) 6039797760 327680

Upsample Bilinear (64, 40, 512) 11796480 0

Conv + ReLU (64, 40, 512) 6039797760 1310720

27

Conv + ReLU (64, 40, 256) 3019898880 655360

Conv + ReLU (64, 40, 256) 1509949440 655360

Conv + ReLU (64, 40, 256) 1509949440 655360

Upsample Bilinear (128, 80, 256) 23592960 0

Conv + ReLU (128, 80, 256) 6039797760 2621440

Conv + ReLU (128, 80, 128) 3019898880 1310720

Conv + ReLU (128, 80, 128) 1509949440 1310720

Conv + ReLU (128, 80, 128) 1509949440 1310720

Upsample Bilinear (256, 160, 128) 47186920 0

Conv + ReLU (256, 160, 128) 6039797760 5242880

Conv + ReLU (256, 160, 64) 3019898880 2621440

Conv + ReLU (256, 160, 64) 1509949440 2621440

Conv + ReLU (256, 160, 64) 1509949440 2621440

Upsample Bilinear (512, 320, 64) 94371840 0

Conv + ReLU (512, 320, 64) 6039797760 10485760

Separable Filters (1024, 640, 51) 1011 108

Output (1024, 640, 3) 2.5× 1011 0

Total Operation Count 4.89× 1011

Number of ops/pixel 314429

28

CHAPTER 4

LOCAL ALL-PASS FILTERS

Most traditional optical flow algorithms estimate the optical flow using the

optical flow equation defined in (2.11). They either enforce this constraint by

assuming a locally constant flow and thus a small displacement field (e.g. LK)

or by enforcing global consistency (e.g. HS). However, even in many cases

when the optical flow field is smooth, the displacement amplitude between

two images might not be small. Gilliam et al. solve this problem by relating

local changes through an all-pass filtering framework known as the Local

All-Pass algorithm (LAP) [31, 32, 33, 34]. In the rest of this chapter we will

summarize the LAP algorithm detailed in [34].

4.1 Main Principles of the LAP Framework

The All-Pass filter framework is built upon five guiding principles which are

detailed below.

4.1.1 Shifting is All-Pass Filtering

If the brightness consistency holds, shifting an image in the time domain in

the direction of a constant displacement u(x, y) = (u1, u2)
> can be expressed

in the frequency domain as

Î2(ω1, ω2) = Î1(ω1, ω2)e
−jω1u1−jω2u2 , (4.1)

where Î is the Fourier transform of I. The previous expression can be inter-

preted as filtering I1 with a filter h having frequency response

ĥ(ω1, ω2) = e−jω1u1−jω2u2 . (4.2)

29

This is a filter that is separable, real valued and all-pass i.e. |ĥ(ω1, ω2)| = 1.

Notice that the flow displacement information is contained within the phase

of this filter. Thus, once this filter is estimated, the optical flow can be ex-

tracted through simple differentiation operations. While the filter discussed

above is continuous, the same properties hold in the discrete domain under

ideal sampling of h with the sinc kernel.

4.1.2 Rational Representation of All-Pass Filter

Any real all-pass filter can be expressed as the ratio of two real digital filters

with the same amplitude and opposite phase. If the desired phase of the

all-pass filter ĥ(ω1, ω2) is 2arg(p̂(ω1, ω2)), then

ĥ(ω1, ω2) =
p̂(ω1, ω2)

p̂(−ω1,−ω2)
, (4.3)

where p̂(ω1, ω2) is the forward filter and p̂(−ω1,−ω2) is the backward filter.

Now (4.1) can be rewritten as

Î2(ω1, ω2) = Î1(ω1, ω2)
p̂(ω1, ω2)

p̂(−ω1,−ω2)
(4.4)

In the time domain this can be expressed as a forward-backward filtering

relation:

I2[k, l] ∗ p[−k,−l]− I1[k, l] ∗ p[k, l] = 0, (4.5)

where (k, l) are discrete pixel coordinates. Thus, estimating h boils down to

estimating p.

4.1.3 Linear Approximation of Forward Filter

Gilliam and Blu [31, 34] use a standard signal processing technique to approx-

imate the forward filter p using a set of fixed real filter pn. The approximation

can be expressed as:

papp[k] =
N−1∑
n=0

cnpn[k], (4.6)

30

where k = (k, l)>. Estimating p now only involves finding the appropriate

coefficients cn. This can be done via a simple least squares minimization

procedure which will be discussed later. The authors also note that while

the separability of the all-pass filter is lost, the filter is still real.

4.1.4 Choosing a Good Filter Basis

The filter basis was chosen keeping two important points in mind:

1. The number of filters N must be much smaller than the number of

pixels in the image.

2. The number of filters N should be independent of the priori assump-

tions of the displacement amplitude R. In other words, the filter should

be able to scale easily to estimate different displacements.

A naive choice for the filter basis would be canonical representation of finite

impulse response filters (FIR) over the range [−R,R], i.e. the square of side

2R + 1:

p̂n = e−jω1kn−jω2ln , (4.7)

where kn, ln ∈ [−R,R]. This is not a good choice since estimating a displace-

ment of R would require N = O(R2) basis filters.

After experimenting with different empirical methods, Gilliam and Blu ob-

served that the forward filters approximated from these methods were closely

related to a Guassian filter and its derivatives. The basis filters are divided

into two categories: 1) K = 1 (Gaussian filter and first derivatives) which

results in N = 3 filters or 2) K = 2 (Gaussiam filter and first, second deriva-

tives) which results in N = 6 filters. This filter basis is shown in (4.8).

K = 1 includes pi[k], i = 0, 1, 2 and K = 2 includes pi[k], i = 0, 1, 2, 3, 4, 5.

The standard deviation σ = (R + 2) /4 where R is the half-support of the

31

filter. Notice that these filters can be easily scaled for large displacements.

K = 1


p0[k] = exp

(
−k

2 + l2

2σ2

)
p1[k] = kp0[k]

p2[k] = lp0[k]

p3[k] = (k2 + l2 − 2σ2)p0[k]

p4[k] = klp0[k]

p5[k] = (k2 − l2)p0[k]


K = 2 (4.8)

The theoretical properties of these filters and the approximation order of the

filter basis are detailed in [33]. Using Padé approximations it was shown that

the approximation order of the filter basis is L = 2K. Thus, in the case of

K = 1 the approximation order is 2 and for K = 2 the approximation order

is 4. This is a promising result because most state-of-the-art optical flow

methods have an approximation order of 1.

4.1.5 Displacement Vector from All-Pass Filter

Since the all-pass filter happ is expected to be close to (4.2), the displacement

vectors can be extracted from the frequency response of the filter as:

u1,2 = j
∂ log(ĥapp(ω1, ω2))

∂ω1,2

∣∣∣∣
ω1=ω2=0

. (4.9)

Using the rational representation of the all-pass filter, the displacement vec-

tors can be found using a simple formula in terms of the impulse response of

the forward filter:

u1 = 2

∑
k kp[k]∑
k p[k]

and u2 = 2

∑
k lp[k]∑
k p[k]

, (4.10)

where the summation is over all discrete points in the region of support of

the signal.

32

(a) I1 (b) I2 (c) Ground Truth

(d) LAP (e) Lucas-Kanade (f) Horn-Schunck

Figure 4.1: Estimated flow using different methods. A radius of 10 was
used for LK and HS. HS required 250 iterations for convergence. LAP flow
was estimated using all six basis filters.

4.2 Estimation of All-Pass Filter

The estimation of the all-pass filter is performed by adapting (4.5) locally

around every pixel in a window, W , of size 2W + 1 × 2W + 1. In the

implementation of the algorithm W = R except when R < 1. Gilliam and

Blu coin a new relation known as local all-pass equation defined as follows:

papp[k] ∗ I1[k] = papp[−k] ∗ I2[k], k ∈ W , (4.11)

where papp[k] is given in (4.6).

To enforce the local all-pass equation, the difference between the left and right

side in (4.11) can be minimized in the `2 sense. Defining 〈J〉W =
∑

k∈W J [k]

and papp[k] = papp[−k], the minimization problem can be written as:

min
{cn}
〈(papp ∗ I1 − papp ∗ I2)2〉W , (4.12)

where papp[k] = p0[k] +
N−1∑
n=1

cnpn[k].

Since the minimum of (4.12) is an orthogonal projection it satisfied the fol-

33

lowing equations in cn:

0 = 〈(pn ∗ I1 − pn ∗ I2)(p0 ∗ I1 − p0 ∗ I2)〉W (4.13)

+
N−1∑
n′=1

cn′〈(pn ∗ I1 − pn ∗ I2)(pn′ ∗ I1 − pn′ ∗ I2)〉W

for n = 0, 1, . . . , N − 1.

The previous equations can be solved very efficiently using pointwise multipli-

cations and fast convolutions. Gilliam and Blu solve the system of equations

using Gaussian elimination which has a constant number of operations per

each pixel.

4.3 Poly-Filter Extension

The LAP algorithm is able to estimate large displacements, but it requires a

filter basis with large support. To estimate smoothly varying flows, iterative

refinement is performed to estimate the flow at various levels i.e., flows with

varying amplitude. Instead of using image pyramids, Gilliam and Blue use

filter pyramids. In each iteration of the algorithm, the support of the filter

is changed. Thus, the only parameter that changes is R. This extension is

termed as Poly-Filter LAP (PF-LAP). The LAP and PF-LAP algorithms

from [34] have been reproduced as Algorithm 1 and 2 respectively in this

thesis for sake of completion.

PF-LAP is implemented as follows: The user can choose the maximum sup-

port Rmax. Create the filter basis for this support and estimate the de-

formation field using the LAP algorithm. Warp I2 closer to I1 using this

deformation field. Perform post-processing on this deformation field to re-

move NaNs and to smoothen the field. In the next iteration decrease the

support width by a factor of 2 and repeat the procedure again. This process

continues until R = 1. Finally, one more iteration is performed with R = 0.5

to accurately estimate any subpixel flows. The operation count for the LAP

algorithm to interpolate a frame of size 960x540x3 is shown in Table 4.1.

34

Algorithm 1 Local All-Pass (LAP estimation of a deformation field)

Inputs: Images I1 and I2, filter size R and number of filters N

1: Initialization: Generate the filter basis in (4.8) using R and N .
2: Filter Estimation: Using the filter basis, solve the minimization problem

by using (4.13) to obtain the filter coefficients.
3: Extraction: Using the filter coefficients obtain the approximate forward

filter. Use (4.10) to solve for the displacement field.

Algorithm 2 Poly-Filter Local All-Pass algorithm

Inputs: Images I1 and I2, number of levels R and number of filters N

1: Initialization: Set u2R+1 = 0 and Ishift2 = I2.
2: for R in [2R, 2R−1, . . . , 0.5] do
3: Pre-Filtering (OPTIONAL): Construct filter p0 from (4.8) and obtain

high-pass images Ihp1 and Ihp2 .
4: Estimation: Using N and R estimate the deformation increment ∆u

between the images I1 and I2 (or high-pass images if R < 1) using the
LAP algorithm defined in Algorithm 1.

5: Post-Processing: Using inpainting procedure and median filtering to
remove erroneous estimate. Then smooth the flow using a Gaussian
filter.

6: Update: Set uR = u2R + ∆u
7: Warping: Warp I2 closer to I1 using uR to obtain Ishift2 . If R ≤ 2 use

cubic-OMOMS interpolation else use shifted-linear interpolation.
8: end for

4.4 Pre-Processing and Post-Processing Tools

In PF-LAP, image pre-processing is performed to reduce the effect of slowly

varying illumination changes at very course levels. Specifically, during sub-

pixel flow estimation the high-pass filtered images are used. This is done by

low pass filtering the images using p0 and subtracting this from the original

image:

Ihpi = Ii − p0 ∗ Ii. (4.14)

At the end of each iteration in PF-LAP, I2 is warped towards I1 using the

estimated field. High-quality interpolation is achieved using cubic splines or

cubic-OMOMS (see Sections 3.2.4.2 and 3.2.5). To ensure fast interpolation,

shifted-linear interpolation (see Section 3.2.4.1) is performed for R > 2 and

cubic-OMOMS is used for R ≤ 2. To remove erroneous estimates a round

35

of median filtering and simple convolutional image inpainting is performed

on the displacement field. Finally, the flow is smoothened using a Gaussian

filter with variance half the support.

In the remainder of the thesis we will refer to PF-LAP as LAP to refer to

the overall algorithm.

Table 4.1: Operation count for LAP to interpolate a single frame of size
960x540x3. Below, ma stands for multiply-adds and the cleaning
procedures involve NaN inpainting, mean and median filtering. Flow
estimation requires 3 subtractions, 2 divisions and 1 addition per pixel.

Function No. of Ops

Image pre-filtering with high-pass filter (3x3x3) 13996800

Level 1 Basis filtering (17x17x3) 1348358400

Level 1 Gaussian Elimination (5 ma) 7776000

Level 1 Flow estimate 3110400

Level 1 Cleaning Procedures 9331200

Level 1 Shifted Linear Interpolation (2 significant ma) 3110400

Level 2 Basis filtering (9x9x3) 377913600

Level 2 Gaussian Elimination (5 ma) 7776000

Level 2 Flow estimate 3110400

Level 2 Cleaning Procedures 9331200

Level 2 Shifted Linear Interpolation (2 significant ma) 3110400

Level 3 Basis filtering (5x5x3) 116640000

Level 3 Gaussian Elimination (5 ma) 7776000

Level 3 Flow estimate 3110400

Level 3 Cleaning Procedures 9331200

Level 3 Shifted Linear Interpolation (2 significant ma) 3110400

Level 4 Basis filtering (5x5x3) 116640000

Level 4 Gaussian Elimination (5 ma) 7776000

Level 4 Flow estimate 3110400

Level 4 Cleaning Procedures 9331200

Level 4 Cubic Interpolation (6 significant ma) 77760000

Total Operation Count 1.52× 109

Number of ops/pixel 977

36

CHAPTER 5

VIDEO INTERPOLATION RESULTS

In this chapter we quantitatively and qualitatively assess the video interpola-

tion quality obtained using three methods: LAP (Chapter 4), Lucas-Kanade

(Section 2.2.1) and Adaptive Separable Convolution (Section 3.3). To ease

notation we will refer to Lucas-Kanade as LK and Adaptive Separable as

CNN (since it is based on a CNN). Note that the K = 1 version of the LAP

algorithm is used (Section 4.3).

We perform video interpolation on Derf’s Media Collection [35] and the EPIC

Kitchen’s dataset [36]. Both these datasets contain sequences captured at

a temporal resolution of 60 frames per second which is ideal for studying

interpolation. We also perform interpolation experiments on the Middlebury

dataset [22], a standard dataset used for benchmarking a variety of image

processing algorithms. MDP-Flow2 and Deepflow2 (Section 2.2.4) interpo-

lation is also performed to assess the quality of the top performers on the

Middlebury benchmark.

Finally, we will comment on the correlation between quantitative metrics

and qualitative metrics by conducting a user study on a sample of the video

sequences.

All experiments were performed on an Intel Core i7-8750H processor with 32

GB RAM. The CNN was executed on an NVIDIA GTX 1050Ti GPU with

4GB RAM. The interpolation results can be viewed at https://bit.ly/2WqXbKR.

Sequences should be downloaded else the media player will drop the inter-

mediate frames!

37

Table 5.1: MSE evaluation on the Middlebury dataset (high-speed camera
samples). Bold values indicate best results.

Beanbags DogDance MiniCooper Walking Backyard Basketball Dumptruck Evergreen

LAP 339.0 240.1 176.7 67.9 163.5 198.9 209.3 268.6

CNN 196.9 159.4 80.5 57.2 102.6 105.8 88.3 102.8

LK 454.7 223.9 233.2 97.3 273.5 157.2 281.7 276.8

5.1 Performance Evaluation Criteria

In addition to computational speed, it is desirable to employ an objective per-

formance metric to evaluate the match between the interpolated frame and

the ground truth. The standard criterion is the ubiquitous Mean-Squared

Error (MSE) [6]. Unfortunately MSE is a particularly bad criterion for mea-

suring the quality of interpolated images, as slight misalignments can be

quite acceptable perceptually yet cause large squared errors [37]. We have

experimented with other metrics such as SSIM [38] and CW-SSIM [39] but

they suffer from similar artifacts. Therefore we rely extensively on visual

evaluation to assess performance of competing algorithms. The discrepancy

between MSE and perceptual quality is often striking.

5.2 Middlebury Dataset

MSE results for the Middlebury dataset are given in Table 5.1. Although

the CNN seems to perform the best interpolation in terms of MSE, we ob-

serve that actually the LAP consistently interpolates frames with the highest

perceptual quality. This is evident from Figure 5.1: Notice how the palms

are smudged and how the balls are distorted in the CNN interpolated frame.

Yet, since the imprints of the middle two balls are slightly closer to the actual

position of the balls, the CNN interpolated frame has a lower MSE. There is

also a greater intensity match between the pixels in the original image and

the CNN-interpolated image in comparison to the LAP-interpolated images.

The Lucas-Kanade method performed poorly on all sequences. The flow field

across the juggler’s torso is incorrect. The fingers are deformed in Figure 5.1,

and the blinds are skewed due to inexact optical flow estimates. This is evi-

dent from the patch of blue on the door in the zoomed in image of the balls.

38

First frame Second frame Third frame

(a) Original (b) LAP (c) CNN (d) LK

Figure 5.1: Beanbags sequence: The original sequence is shown at the top.
The original second frame is shown in (a), the LAP-interpolated second
frame is shown in (b), the CNN-interpolated second frame is shown in (c),
the LK-interpolated second frame is shown in (d). LAP was used to
compute the optical flow in (a), (b) and (c).

39

Table 5.2: Average interpolation MSE on Derf’s Media Collection. Bold
values indicate best results.

LAP CNN LK

city 62.1 79.8 111.7

crew 522.1 406.1 806.5

harbour 112.2 94.8 117.1

ice 129.6 57.4 109.9

soccer 848.3 141.6 399.5

stockholm 54.6 60.4 77.6

riverbed 361.7 409.6 445.8

Also notice how the left side of the juggler’s torso has been warped inwards.

The displacement field for the LAP algorithm is the closest to the flow

between the original frames. The optical flow between the original frame

and CNN-interpolated frame is not as smooth in the blue-yellow region

boundary in comparison to the flow between the original frame and LAP-

interpolated frame. This results in the juggler’s palms being blurred in the

CNN-interpolated frame.

5.3 Derf’s Media Collection

This dataset consists of video sequences which are generally used to evaluate

compression algorithms. Table 5.2 shows the interpolation results on seven

60 fps videos with 704x576 spatial resolution. We dropped every other frame

in the video sequence and interpolated between the remaining pairs.

Table 5.2 shows MSE results, and Fig. 5.2 shows frames for the soccer se-

quence. While the LAP method yields good visual quality, a visible artifact

is the position of the running player in the LAP-interpolated frame, which

is slightly to the left of his position in the original frame. The player’s leg

is also slightly lower and farther away from his body in comparison to the

original frame. Still, when viewed as a sequence, the LAP-interpolated video

looked natural and smooth.

40

Frame 313 Frame 314 Frame 315

(a) Original (b) LAP (c) CNN (d) LK

Figure 5.2: Soccer sequence: The original sequence is shown at the top.
Original frame 314 is shown in (a), LAP-interpolated frame 314 is shown in
(b), CNN-interpolated frame 314 is shown in (c) and the LK interpolated
314 is shown in (d). The optical flow between frame 314 and frame 314 is
shown for the original sequence in (a) and for the three methods in the
other columns. LAP was used to compute the optical flow in (a), (b) and
(c).

The Lucas-Kanade method did not compute a very precise flow field. Notice

how the displacement vectors are pointing south across the running player.

This results in the fence being highly deformed in the interpolated frames.

When the interpolated frames are played at 60 frames per second, this causes

flickering and strenuous visual artifacts. The neural network almost aligns

41

Table 5.3: Average interpolation MSE on EPIC Kitchens dataset. Bold
values indicate best results.

LAP CNN LK

P01 11 163.8 130.2 149.5

P01 12 151.2 199.0 204.1

P01 14 152.6 234.6 251.0

P01 15 163.2 273.4 301.9

P02 13 518.4 458.9 541.6

P03 21 193.2 433.1 491.9

P03 22 307.1 494.6 565.8

P03 23 266.9 462.1 537.9

the interpolated frame with the original frame. However, it blurs the limbs

and leaves an imprint of the previous position of the limbs. This appears as

a shadow around the limbs when viewed as a sequence.

5.4 EPIC Kitchens Dataset

Finally, we perform interpolation on eight full-HD sequences from the EPIC

Kitchens dataset. Since our GPU has insufficient memory to interpolate a

1920x1080 image, the spatial resolution of the video sequences was reduced

to 960x540. The video sequences consist of body cam footage of people nav-

igating around kitchens. The sequences consist of crisp fast motion such as

bending down to open cabinets, cutting vegetables and sudden changes in

direction. The LAP algorithm performs very well in preserving these mo-

tions. The CNN produces artifacts and jerkiness in the frames when there

is a sudden change in direction or fast motion. The Lucas-Kanade method

also produces similar artifacts which are more pronounced than the CNN

interpolated frames.

The average interpolation MSE is reported in Table 5.3. Here the lower MSE

for LAP correlates with the perceptual quality on this dataset. Since the

videos have high spatial resolution, there is much more smoothness between

consecutive frames. The LAP algorithm computes high accuracy optical flow

estimates on smooth flowing sequences and as a result outperforms both the

42

Table 5.4: Execution times and MSE of the various optical flow methods
and CNN on the basketball sequence. All times are in seconds.

LAP LK Deepflow2 MDP-Flow2 CNN

Execution Times 4.3 0.2 50 294 1

MSE 199.7 160.7 146.9 137.0 105.8

Input Frame 1 Original Middle Frame Input Frame 2

(a) Original (b) LAP (c) DF2 (d) LK (e) MDPF2 (f) CNN

(g) LAP (h) Deepflow2 (i) Lucas-Kanade (j) MDP-Flow2

Figure 5.3: Basketball sequence (frames 9, 10, 11): The original sequence is
shown at the top. The original sequence is shown in (a). In (c) DF2 stands
for Deepflow2 and in (e) MDPF2 stands for MDP-Flow2. Flow fields
between frame 1 and frame 2 is shown at the bottom.

CNN and Lucas-Kanade in interpolating between fast motion frames.

43

Table 5.5: Number of operations (multiply-adds) and execution time
(CPU) required to interpolate a frame of size 960x540x3. Execution time is
in seconds, measured on a machine with Intel Core i7-8750H processor and
32 GB RAM. The execution time for the CNN was extrapolated based on
the time required to interpolate 200 pixels.

CNN LAP LK

Operation Count 4.9× 1011 1.5× 109 6.1× 107

Execution Time 76204 4.3 0.2

5.5 Case Study: Basketball Sequence

We compare LAP against two additional optical flow methods: Deepflow2

and MDP-Flow2. These two methods are ranked high on the Middlebury

flow/interpolation rankings. The flows for LAP, Deepflow2 and MDP-Flow2

are identical across both the players’ body. The LAP returns a larger flow

field in the center of the frame, but this flow is insignificant as the majority

of the frame in this region is occupied by the wall which is shaded in a single

color.

LAP also approximates a much smoother flow for the hands of the player

on the right. The interpolated hands thus look the best and most natural

in the LAP interpolated frame. Notice how MDP-Flow2 poorly interpolates

the left side player’s arm, which is evident from the large flows in this region.

The code for Deepflow2 and MDP-Flow2 was taken from the authors’ web-

sites. It is important to note that code was run using the optimizations and

parameters that the authors used for their Middlebury evaluation submission.

LAP has no prior optimizations for any dataset.

5.6 User Study

It is clear from the results of the Middlebury dataset, Derf’s Media Collection

and the case study on the basketball sequence that MSE does not correlate

well with subjective visual quality. In order to better understand the inter-

polation results obtained, a user study was conducted. The users were asked

to study the interpolated sequences using LAP, CNN and LK, and choose

44

cit
y

so
cc

er ice cr
ew

ha
rb

or

ba
sk

et
ba

ll

be
an

ba
gs

wal
ki

ng

ba
ck

ya
rd

0

10

20

30

40

50

60

70

80

90
N

o.
of

P
ar

ti
ci

p
an

ts
(%

)

User Study Results on 10 Different Sequences

LAP CNN LK

Figure 5.4: Results of the user study on 10 different sequences. The
sequences reported here best illustrate the discrepancy between MSE and
subjective visual quality.

the most visually pleasing and natural looking sequence.

Users were asked to view the various sequences three times in a dark room

on a laptop screen. A larger screen was not chosen to prevent possible spatial

aliasing. All users chosen were 18 years and older.

The user study results on some chosen sequences are shown in Figure 5.4.

None of the viewers judged the LK interpolated crew, soccer or ice sequence

as the best. They all noticed the visual artifacts in the sequences and many

of them found it very disturbing. Most of the users felt that the LAP in-

45

terpolated crew sequence blended the flashes of light much better into the

overall sequence in comparison to the CNN interpolated sequence. On the

other hand, in the soccer sequence more users felt the players leg movement

was much crisper when viewing the sequence multiple times. Notice that

despite LAP having higher MSE than CNN for the ice and soccer sequences,

LAP had much better visual quality according to the user study, and in some

cases even better than the CNN.

The users also found the distortion in the balls in the CNN interpolated bean-

bags and basketball sequence very unnatural but not as distracting as the

large deforming warping introduced in the LK sequences. Users thought that

all three sequences were equally good for the city and backyard sequences.

After the experiment, the users were given the opportunity to share the

features or criteria they used to judge the quality of the sequences. Many

users paid close attention to small objects like balls, while others compared

the quality between the different sequences and judged based on smoothness

and artifacts. Most users said that viewing the sequence three times allowed

them to focus on different patterns and make a better decision.

46

CHAPTER 6

CONCLUSION

In this thesis we have shown that the LAP optical flow method is an excellent

candidate for video interpolation. The method has quadratic approximation

order, making it exceptionally accurate when the true displacement field is

smooth. The method is also very fast, compares very favorably with a recent

CNN method, and generally outperforms a pyramid version of Lucas-Kanade.

We also notice that the MSE does not correlate well with visual quality in

most experiments. Even slight displacements between a ground truth frame

and an interpolated frame can result in high MSE despite very pleasing visual

quality. Our hypothesis about this discrepancy is proven after performing a

user study. The results of the study further indicate that the LAP algorithms

performs natural and smooth interpolation.

The LAP method is also compared against Deepflow2 and MDP-Flow2, two

leaders on the Middlebury optical flow benchmark. A case study performed

on the basketball sequence from Derf’s Media Collection shows that the LAP

algorithm performs high quality interpolation and results in natural looking

frames in comparison to these two methods.

We also experimented with different interpolation algorithms that employ

not only the forward optical flow but also the backward flow. However,

such methods are computationally expensive and provide poor results due

to significant occlusions. Future work involves estimating occlusions using

the LAP flow vectors and incorporating these accurate occlusion masks to

perform even higher quality frame interpolation.

47

REFERENCES

[1] R. Krishnamurthy, J. W. Woods, and P. Moulin, “Frame interpolation
and bidirectional prediction of video using compactly encoded optical-
flow fields and label fields,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 9, no. 5, pp. 713–726, Aug 1999.

[2] Y. Chen, I. V. Bajic, and C. Qian, “Frame rate up-conversion of com-
pressed video using region segmentation and depth ordering,” in 2009
IEEE Pacific Rim Conference on Communications, Computers and Sig-
nal Processing, Aug 2009, pp. 431–436.

[3] S. Sekiguchi, Y. Idehara, K. Sugimoto, and K. Asai, “A low-cost video
frame-rate up conversion using compressed-domain information,” in
IEEE International Conference on Image Processing 2005, vol. 2, Sep.
2005, pp. II–974.

[4] A. Daneshi, H. Behnam, and Z. Alizadeh Sani, “Frame
rate up-conversion in echocardiography images, using manifold-
learning and image registration,” bioRxiv, 2018. [Online]. Available:
https://www.biorxiv.org/content/early/2018/09/03/407072

[5] C. Wang, L. Zhang, Y. He, and Y. Tan, “Frame rate up-conversion
using trilateral filtering,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 20, no. 6, pp. 886–893, June 2010.

[6] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it? a
new look at signal fidelity measures,” IEEE Signal Processing Magazine,
vol. 26, no. 1, pp. 98–117, Jan 2009.

[7] K. Rijkse, “H.263: video coding for low-bit-rate communication,” IEEE
Communications Magazine, vol. 34, no. 12, pp. 42–45, Dec 1996.

[8] T. Wiegand, “Final draft international standard for joint video specifica-
tion H (ITU-T Rec. H.264 —ISO/IEC 14496-10AVC, ITU-T Rec.H.264
— ISO/IEC 14496-10AVC),” Jan 2003.

[9] A. Barjatya, “Block matching algorithms for motion estimation,” IEEE
Transactions Evolution Computation, vol. 8, pp. 225–239, Jan 2004.

48

[10] W. Hassen and H. Amiri, “Block matching algorithms for motion esti-
mation,” in 2013 7th IEEE International Conference on e-Learning in
Industrial Electronics (ICELIE), Nov 2013, pp. 136–139.

[11] R. Li, B. Zeng, and M. L. Liou, “A new three-step search algorithm for
block motion estimation,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 4, no. 4, pp. 438–442, Aug 1994.

[12] L. Po and W. Ma, “A novel four-step search algorithm for fast block
motion estimation,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 6, no. 3, pp. 313–317, June 1996.

[13] S. Zhu and K. Ma, “A new diamond search algorithm for fast block-
matching motion estimation,” IEEE Transactions on Image Processing,
vol. 9, no. 2, pp. 287–290, Feb 2000.

[14] Y. Nie and K. Ma, “Adaptive rood pattern search for fast block-
matching motion estimation,” IEEE Transactions on Image Processing,
vol. 11, no. 12, pp. 1442–1449, Dec 2002.

[15] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in IJCAI, 1981.

[16] P. Dollár, “Piotr’s Computer Vision Matlab Toolbox (PMT),”
https://github.com/pdollar/toolbox.

[17] B. K. Horn and B. G. Schunck, “Determining optical flow,” MIT, Cam-
bridge, MA, USA, Tech. Rep., 1980.

[18] R. C. oReilly and J. M. Beck, “A family of large-stencil discrete laplacian
approximations in three dimensions,” 2006.

[19] M. J. Black and P. Anandan, “Robust dynamic motion estimation
over time,” in Proceedings. 1991 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, June 1991, pp. 296–302.

[20] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy
optical flow estimation based on a theory for warping,” in ECCV, 2004.

[21] T. Brox, C. Bregler, and J. Malik, “Large displacement optical flow,” in
2009 IEEE Conference on Computer Vision and Pattern Recognition,
June 2009, pp. 41–48.

[22] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and
R. Szeliski, “A database and evaluation methodology for optical flow,”
2007 IEEE 11th International Conference on Computer Vision, pp. 1–8,
2007.

49

[23] L. Xu, J. Jia, and Y. Matsushita, “Motion detail preserving optical
flow estimation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 34, no. 9, pp. 1744–1757, Sep. 2012.

[24] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid, “DeepFlow:
Large displacement optical flow with deep matching,” in IEEE
Intenational Conference on Computer Vision (ICCV), Sydney,
Australia, Dec. 2013. [Online]. Available: http://hal.inria.fr/hal-
00873592

[25] S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image re-
construction: a technical overview,” IEEE Signal Processing Magazine,
vol. 20, pp. 21–36, 2003.

[26] P. Thevenaz, T. Blu, and M. Unser, “Interpolation revisited [medical
images application],” IEEE Transactions on Medical Imaging, vol. 19,
no. 7, pp. 739–758, July 2000.

[27] M. Vetterli, J. Kovaevi, and V. K. Goyal, Foundations of Signal Pro-
cessing. Cambridge University Press, 2014.

[28] Cmglee, https://commons.wikimedia.org/w/index.php?curid=53064904.

[29] T. Blu, P. Thcvenaz, and M. Unser, “MOMS: maximal-order interpo-
lation of minimal support,” IEEE Transactions on Image Processing,
vol. 10, no. 7, pp. 1069–1080, July 2001.

[30] S. Niklaus, L. Mai, and F. Liu, “Video frame interpolation via adaptive
separable convolution,” 2017 IEEE International Conference on Com-
puter Vision (ICCV), pp. 261–270, 2017.

[31] C. Gilliam and T. Blu, “Local all-pass filters for optical flow estimation,”
in 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), April 2015, pp. 1533–1537.

[32] C. Gilliam, T. Kstner, and T. Blu, “3d motion flow estimation using
local all-pass filters,” in 2016 IEEE 13th International Symposium on
Biomedical Imaging (ISBI), April 2016, pp. 282–285.

[33] T. Blu, P. Moulin, and C. Gilliam, “Approximation order of the lap op-
tical flow algorithm,” in 2015 IEEE International Conference on Image
Processing (ICIP), Sep. 2015, pp. 48–52.

[34] C. Gilliam and T. Blu, “Local all-pass geometric deformations,” IEEE
Transactions on Image Processing, vol. 27, no. 2, pp. 1010–1025, Feb
2018.

[35] “Derf’s media collection,” https://media.xiph.org/video/derf/.

50

[36] D. Damen, H. Doughty, G. Farinella, S. Fidler, A. Furnari, E. Kazakos,
D. Moltisanti, J. Munro, T. Perrett, W. Price, and M. Wray, “Scaling
egocentric vision: The epic-kitchens dataset,” in European Conference
on Computer Vision (ECCV), 2018.

[37] H. Men, H. Lin, V. Hosu, D. Maurer, A. Bruhn, and D. Saupe, “Tech-
nical report on visual quality assessment for frame interpolation,” Jan
2019.

[38] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, April
2004.

[39] M. P. Sampat, Z. Wang, S. Gupta, A. C. Bovik, and M. K. Markey,
“Complex wavelet structural similarity: A new image similarity index,”
IEEE Transactions on Image Processing, vol. 18, no. 11, pp. 2385–2401,
Nov 2009.

51

