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ABSTRACT

Manipulating alternative RNA splicing events with small molecules is emerging as a viable
mechanism for the development of therapeutics. A salient challenge in the field is
understanding the molecular determinants defining the selectivity of splice-switching
events and their mechanisms of action. In this review, the current state-of-the-art in splice-
switching small molecules is described. Three examples of splice-switching small

molecules are presented, and the differences in their modes of action compared.

INTRODUCTION

For more than half a century, small molecule drug discovery has been very much a
protein-centric endeavor. Although great strides have been made in ‘rational design’ of
small molecule inhibitors of target protein classes [1], combined with chemical biological
[2] and —omic-based [3] approaches to enhance our understanding of target engagement
in vivo, the ability to identify new druggable targets is increasingly challenging. At present,
~15% of the proteome is considered ‘druggable’ by traditional small molecule-protein
interactions and new strategies are now needed to target biomolecules traditionally

considered intractable or ‘undruggable’[4].

Developing small molecules, which target RNA or RNA-protein interfaces, is now emerging

as a potential alternative to traditional targets exclusively involving the proteogenic
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components [5, 6]. Sitting upstream to translation in the gene expression hierarchy, the
processes of transcription and alternative splicing of specific RNA molecules is a highly
regulated process [7]. By virtue of the complexity and means of regulation, alternative RNA
splicing holds particular promise as a drug target [8]. Approximately 95% of genes are
alternatively spliced, resulting in a rich source of protein diversity from a single gene. The
timing and location of splicing reactions is critical, which is exemplified when mutations in
cis-acting (i.e., RNA sequences) and trans-acting (e.g., RNA-binding proteins involved in
the regulation of splicing) factors arise, resulting in the onset of arange of diseases [9-11].
The differential impact of mutation on alternative RNA splicing is exemplified by ~15% of
cis-acting mutations located at the site of transesterification or in regulatory regions remote
from these splice sites can influence splicing outcomes. The design of small molecules,
which interact with pre-mRNA sequences or RNA-protein complexes and correct aberrant
splicing pathways, potentially offers a new platform for therapeutic intervention. The
purpose of this review is two-fold: firstly, we will summarise the current workflows used to
identify splice-switching small molecules. Secondly, we highlight current limitations in
existing approaches and suggest future opportunities ripe for therapeutic development. For
the latest developments in the modulation of alternative RNA splicing using
oligonucleotide-based strategies [12, 13] or general spliceosomal inhibitors [14, 15], the

reader.is directed to several recent reviews.

Splice-site selection and its dysregulation in disease

Around 95% of genes in higher eukaryotes have their protein-coding sequences (exons) of
genes disrupted by long non-protein coding regions known as introns [16-18]. Pre-mRNA
splicing involves the removal of introns and ligates the remaining exonic regions by a
series of transesterification reactions catalyzed by the spliceosome (Figure 1) [19, 20]. A
sophisticated suite of non-covalent interactions between pre-mRNA sequences and
spliceosomal protein and ribonucleoprotein (RNP) components define the sites of
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transesterification (i.e., the splice sites, SS) which can be separated by up to several
thousand nucleotides [16]. The selection of a particular SS defines primary sequence of
the mature mRNA isoform and is regulated by a swarm of competing interactions
influenced by the pre-mRNA sequence (cis-acting) or RNA-protein (trans-acting) factors.
Cis-acting factors present within pre-mRNA sequences can either encourage (e.g., Exonic
Splicing Enhancer, ESE; Intronic Splicing Enhancer, ISE) or perturb (e.g., Exonic Splicing
Silencer, ESS; Intronic Splicing Silencer, ISS) the use of a particular splice site [21].
Single nucleotide changes in these enhancer/silencer sequences regulate SS usage can
have a significant impact on splicing by, for example, promoting the inclusion of exons or
utilizing cryptic sites, to produce different mature mRNA sequences in different amounts.
Therefore, mutations can result in the over or under-representation of particular mature

MRNA isoforms, which can lead to the onset of a range of diseases [9, 11, 22, 23].

Strategies for the development of splice-switching small molecules
Strategies towards the identification of small molecules which induce a switch in the ratio
of mature mRNA isoforms _conceptually differs from conventional medicinal chemistry
approaches, which are typically focused towards inhibiting a target protein with a small
molecule [8]. Examples of therapeutic modulation of alternative splicing include:
(a) Point mutations resulting in abnormal exclusion or inclusion of a particular exon
leading to the overexpression of an undesirable mature mRNA isoform (Figure 2a).
A prominent example of this type of event is spinal muscular atrophy (SMA), where
an alternative sequence in one of the SMN genes results in exon skipping.[24, 25]
(b) The overexpression of an undesirable mature mRNA isoform, which is deleterious
to homoeostatic function of a cell. Anti-apoptotic isoforms of Bcl-x and Mcl-1 are
over-expressed in breast, lung and prostate cancers and leukemia [26, 27]. Both of
these apoptotic check-point genes have splicing isoforms with antagonistic

functions (Figure 2b).



(c) A small molecule inducing a switch from the expression of an undesirable mature
MRNA isoform towards a truncated isoform, which is translated into a “frame-
shifted protein”. This leads to the introduction of a premature stop codon, which in
turn results in the degradation of the corresponding mRNA by Nonsense Mediated
Decay (NMD) (Figure 2c) [28, 29].

For each of the scenarios proposed in Figure 2, the mechanisms of action of splice-
switching small molecules could involve (i) directly binding to an RNA sequence or RNA-
RNP complex which sequesters or promotes the usage of a particular SS; or (ii) binding to
a structural protein involved in spliceosomal assembly or by inhibiting splicing factor

regulators.

Splice-switching small molecules which stimulate exon 7 inclusion in SMN2 mRNA
SMA is a deleterious neuromuscular disease, which is caused by the reduced expression
of the Survival Motor Neuron (SMN) protein. This is due to the deletion of SMNL1 in
patients leaving only SMN2 to produce SMN protein [13]. SMN2 is a paralog of SMN1
which differs by a single C to T substitution at position 6 in exon 7. The alternative splicing
of the pre-mRNA of SMN2 results in exon 7 skipping in ~90% of the corresponding mRNA,
which produces a truncated, non-functional SMN protein.[24, 30-32] Consequently, the
expression of SMN2 produces ~ 10-20% SMN protein relative to SMN1. However, since
increasing SMN copy number is known to reduce the severity of SMA,[24] developing
therapies which can increase SMN2 expression is a viable therapeutic strategy. The
development of splice-switching oligonucleotides (SSOs; e.g., Spinraza®), which induces
the inclusion of exon 7 in SMN2 [13], provided the first clinical example of splice-switching
therapeutics, which could enhance SMN2 expression.

The ability to enhance SMN2 expression has now evolved to the identification of small
molecules which induce a Exon 7 inclusion in SMN2.[33, 34] The PTC/Roche team has

established a high-throughput screening platform using a HEK293H cell line containing an
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SMNZ2 minigene construct linked to a firefly luciferase coding sequence (Figure 3).
Exclusion of exon 7 induces a frameshift in the luciferase initiation codon to produce
SMNZ2-A7, whereas Exon 7 inclusion results in the production of SMN2-FL (FL = full
length), keeping the initiation codon ‘in-frame’ and as a result, producing a
chemoluminescent readout in the presence of luciferin. A 200 000 small molecule screen
identified lead compound 4, which induced a 7-fold increase in luciferase-mediated
luminescence at 10uM (Figure 4) [35]. However, compound 4 did notinduce a measurable
increase in SMN2 production in patient-derived fibroblasts. In order to increase the
potency, the PTC/Roche team systematically modified the basic head unit, heterocyclic
core, head group (5-7, Figure 4), which resulted in an increase in SMN protein in vivo.
Further SAR-based optimization [36, 37] led to 1 (Risdiplam or RG-7916), which is
currently in Phase 2 clinical trials for adult and pediatric patients with type Il and Il forms
of SMA [37-39].

In a parallel study led by Novartis, compounds 2 and 8 were identified from a similar high-
throughput screen (~ 1.4 x 10° compound library) conducted in fibroblasts using a SMN2
luciferase minigene construct and subsequent SAR-based optimization of splice-switching
potency (Figure 5) [34]. A dose-dependent elevation of SMN protein in a C/+ SMA
mouse model was observed using compound 2, which resulted in a 62% survival rate
after 35 days using a dose of 3 mg/kg/day.

A key aspect of this work was the use of a luciferase-based high-throughput assays
developed by both teams. This target agnostic approach lead to the identification of
lead compounds 1 and 2. However, identifying the mechanisms of action of these
chemotypes such as 2 and 9 (Figure 6) has been a challenging. The utilization of a suite
of chemical biological, biophysical, structural biological and —omics-based approaches
has been essential to establish how these compounds interact with ternary complexes
of small molecule-RNA-RNP complexes. A recent study by Sivaramakrishnan et al. has
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identified the SMN-C class of molecules which putatively stabilize a quaternary RNA-
RNP complex formed within the SMN2 pre-mRNA [40]. Whilst both chemotypes bind to
the 5' SS of exon 7, the exact site of RNA binding was slightly different, with 10 binding
a few nucleotides upstream relative to compound 2 [40]. More in-depth analysis of the
binding landscape of 5 using the photocrosslinking probe (11) [41] and RNA mapping
(SHAPE) [42] revealed preferential binding to a 5-AGGAAG sequence present in the
+24 to +29 region of exon 7 [40]. Small molecule binding induces a conformation
change in this pre-mRNA sequence, which promotes the recruitment of splicing
activators such as far upstream element binding protein 1 (FUBP1) and its homolog,
KH-type splicing regulatory protein (KHSRP) to form a higher order multi-protein
complex.[41] The working hypothesis is the splicing activation effect is due to small
molecule (e.g., 5 or 9) binding to the pre-mRNA enhances recognition of FUBP1 and
KHSRP. This in turn displaces heterogeneous nuclear ribonucleoprotein G (hnRNP G),.
The collective works from both industrial teams highlights the clinical potential in
developing small molecules, which selectively modulate splicing by targeting the

interface of RNA and RNP complexes.

Splice-switching small molecules which induce apoptosis

BCL2-like 1 (or more commonly known as Bcl-x) is a key checkpoint apoptotic gene which
is alternatively spliced to produce splicing isoforms that have antagonistic functions [43].
The anti-apoptotic Bcl-x isoform, which when translated, preserves mitochondrial
membrane integrity by binding to and antagonizing the function of pro-apoptotic effector
proteins via BCL-2 homology domains [44]. Overexpression of the Bcl-x. isoform has
been linked to a suite of haematological and solid tumours [45]. The pro-apoptotic
protein isoform Bcl-xs is produced by an alternative 5'-SS in exon 2 (Figure 7), resulting in
a protein which lacks the BH3 domain. This induces mitochondrial membrane
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permeabilization by pro-apoptotic effector proteins, triggering caspase-mediated apoptosis
[46]. The antagonistic properties of the isoforms of Bcl-x at the apoptotic gateway could
provide a novel anti-cancer target for small molecule drug development.

The pre-mRNA transcript of Bcl-x is rich in G-tracts (i.e., short sequences of G doublets
and G triplets) close to both 5’ Bcl-x. and Bcl-xs splice sites, which could suggest the ability
of these sequences to fold into an RNA G-quadruplex (G4) [47]. The formation of G4s
require hydrogen bonding from a Watson-Crick base-pairing face to a Hoogsteen pairing
face of another G nucleotide to form a G tetrad (Figure 8) [48]. An essential requirement
for the formation of G4s is the N7 atom within this purine nucleobase, which enables
hydrogen-bonding via its Hoogsteen pairing face. To assess the global impact of G
nucleotide structure and to map the propensity of G4s to form in the Bcl-x pre-mRNA,
Weldon et al. developed the footprinting technique termed FOLDeR (footprinting of long 7-
deazaguanine-substituted RNAS) to probe for G4s in long RNA sequences. Two Bcl-x pre-
MRNA transcripts were prepared, one using GTP and the other where GTP was replaced
with 7-deazaGTP. The transcript containing 7-deazaG retains the capacity of Bcl-x pre-
MRNA to Watson-Crick pair but perturbs G4 formation by blocking Hoogsteen pairing [49].
Structural difference mapping of Bcl-x pre-mRNA versus pre-mRNA containing 7-deazaG
was used to the identify G tracts close to the 5-SS which have the potential to form G4.
With G4 sites putatively identified, Weldon et al. probed the effects of stabilizing these G4s
using an established suite of DNA G4 stabilizers (Figure 9) [50-53]. SAR-analysis revealed
the optimal structure to induce a switch towards the expression of Bcl-xs in vitro and in
HelLa cells was the ellipticine analogue (3, GQC-05). The working hypothesis of how
compound 3 induces this splice-switch is via differential stabilization of RNA G4s and, to
increase the availability of the Bcl-xs 5'-SS.

A completely unexpected observation was a quindoline analogue 14 induced the opposite

splice-switching effect in vitro (i.e., increased expression of Bcl-x., which suggests that
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splice-switching can be controlled in both directions by structural changes to the G4
stabilizer. Interestingly, compound 14 reduced the stimulatory effect of a SSO to induce
exon 7 inclusion in SMN2, by binding to an intermolecular G4 [54]. This holds up the
possibility that the modes of action of other types of neoplastic agents such as ellipticine
acetate (e.g., Celitpium®) could also be working via splice-switching in addition to their
previously identified mechanisms of cytotoxicity such as topoisomerise inhibition and the

formation of DNA bulky adducts [55].

Protein kinase inhibitors as modulators of angiogenesis

Based on existing data, the above examples highlight the potential of small molecules
influencing alternative splicing by interacting with RNA motifs or RNA-RNP complexes.
Small molecules can also induce a switch in alternative splicing indirectly by altering the
function of trans-acting factors such as SR proteins [8, 23].

One of the most promising family of splice-switching small molecules that have emerged in
recent years are inhibitors of the protein kinase SRPK1 [56, 57]. SRPK1 (along with
CLK1) mediates nuclear localization and spliceosomal function of SRSF1 by
phosphorylation of the RS domain [58, 59]. Once phosphorylated and imported into the
nucleus, SRSFL is a key protein in defining the usage of particular splice sites by
interacting with RNPs U1-70K and U2AF and ESE sequences [60-63]. SRSF1 plays a
crucial role in the alternative splicing of vascular endothelial growth factor (VEGF) pre-
MRNA. The VEGF-Aiesa isoform promotes angiogenesis and has been implicated as a
key driver in cancer progression [64], whereas the VEGF-A1ssb isoform is anti-angiogenic
but cytoprotective (Figure 10). Inhibiting SRSF1 phosphorylation by blocking SRPK1
activity has the potential to restore the balance of VEGF-A isoforms, which has therapeutic
potential for treatment of angiogenic-related diseases and development of anticancer

agents [65, 66].



A high-throughput screen identified compound (15, Figure 11), which exhibited an ICso of
31 nM for the inhibition of SRPK1 [67]. The potency of SRPK1 inhibition was improved
even further when the piperazine ring was extended with a pyridine (Figure 11, 16, ICso of
5.9 nM).[65, 66] X-ray crystal structural analysis of 16 in complex with SRPK1 revealed
that this compound is a competitive inhibitor of SRPK1 with selectivity arising from the
trifluoromethyl group interacting with a unique hydrophobic domain (Figure 12). Selective
inhibition of SRPK1 activity was confirmed using PC3 cells incubated with compound 16
(ECso of 360 nM). In addition, compound 16 exhibited anti-angiogenic activity in a mouse
model (C57/BI6) used for age-related macular degeneration. Compound 16 was effective
at inhibiting blood vessel growth via an increase in the expression of VEGF-Aiesb, thus

providing a promising lead for the development of anti-angiogenic therapeutics.

Challenges and opportunities in the development of splice-switching small

molecules

The exciting clinical developments that have emerged from Risdiplam (1) and Branaplam
(2) entering clinical trials for the treatment of SMA highlight the potential to develop small
molecule therapies via altering the outcome of alternative RNA splicing events.

Critical for the future development of splice-switching therapeutics is an understanding of
their complex mode(s) of action, particularly when these compounds exert their effect at
RNA-protein interfaces [6]. This opens up considerable opportunities to develop
techniques and new chemistry biological tools that will have to be integrated with
bioinformatics, biochemistry and molecular and cellular biology to define these interactions
[68]. Chemical biology will play a key role in these developments, where photo-cross-
linking probes and tagging technologies [69, 70] combined with —omics-based approaches
will provide fine annotation of interacting partners influenced by these small molecules and

the downstream changes induced by such splice-switching events [71].



The splicing field is reaching an exciting tipping point with structural biology providing
insight into the molecular determinants defining splice-site selection by the spliceosome
[72-77]. In addition, innovations in the design of RNA-selective small molecules [68] and
the continuing clinical development of SSO therapeutics [13, 78, 79] both enhance our

understanding of how to induce splice-switching for therapeutic applications.
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Figure Captions

Figure 1 — Schematic diagram of the two sequential transphosphoesterification splicing
reactions. In the first step of pre-mRNA splicing (branching), the 2" hydroxyl group of a conserved
RNA adenine in the branch point sequence (BPS) of an intron attacks a phosphate of the guanine
at the 5' end of the intron (5’ splice site, 5'-SS), to produce a free 5’ exon and a lariat intron—3' exon
intermediate. In the second step (exon ligation), the new 3'hydroxyl group at the 3'end of the 5'-
exon attacks a phosphate at the 3’ splice site (3'-SS) to ligate the exons and release the lariat
intron. Intron sequences are indicated with grey lines. Nucleophilic attacks are indicated with red

arrows.

Figure 2 — Examples of druggable splicing events. Splice switching molecules can restore a
desired splicing event by (a) inclusion or exclusion of a cassette exon, (b) disruption of alternative
splicing by switching mutually exclusive exons, and (c) disruption of the corresponding reading

frame. Semicircles represent the disrupted coding sequence.

Figure 3 — SMN2 minigene reporter splicing in HEK293H cell line. Exon 7 exclusion results in
the formation of SMN2-A7 where the exporession luciferase is out of frame. Exon 7 inclusion
results in the expression of luciferase in-frame, and the subsequent production of a fluorescent

output in the presence of luciferin.

Figure 4 — Lead optimisation of PTC/Roche splice-switching compounds. Lead compound 4
was optimised through sequential SAR of the basic head unit (grey), heterocyclic core (blue) and
the head group (red).

Figure 5 — Splicing.of SMN minigene constructs. (a) Full length (FL) construct expresses
luciferase when exon 7:is retained in the transcript. (b) A7 construct expresses luciferase when
exon 7 is excluded from the transcript. Red bars show position of C nucleotide insertions to adjust
sequence to ensure the luciferase is in-frame. Oral dosing of compounds 2 (NVS-SM1) and 8
(NVS-SM1) induced elevated levels of SMN-FL transcript in C/+ mouse model. (c) Structures of 2
(NVS-SM1) and 8 (NVS-SM1)

Figure 6 — SMN-C class splice switching molecules. (a) Structures of SMN -C3 (9), SMN-C5
(10), SMN-C2 (5) (b) Structure of SMN-C2-BD (11), an SMN-C2 derived photo crosslinker probe.

Figure 7 — Alternative splicing of Bcl-x. Splicing at the xs splice site (SS) produces the shorter
pro-apoptotic isoform, Bcl-xs. Splicing at the x. SS produces the longer anti-apoptotic isoform, Bcl-

XL.

Figure 8 — G-Quadruplex (G4) formation. (a) Representation of G-quartet formation through

Hydrogen-bonding of the Hoogsteen face and the monovalent potassium cation (K*) which
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coordinates with the Oxygen atoms. (b) Disruption of Hoogsteen Hydrogen-bonding by substitution

with 7-deazaguanine.

Figure 9 — In vitro Bcl-x-681 Splicing Assays with G4 stabilising ligands. (a) Splicing assays
were done in the presence of G4 ligands at the concentrations shown (uM) GQC-05 showed an
increased expression of Bcl-xs (pro-apoptotic form), highlighted in red. (b) Proportion of mMRNA
spliced into Bcl-xs isoform, error bars depict standard deviation. (c) Structures of GQC-05(3),
Quarfloxin (12), TmPyP4 (13) and GSA-0902 (14).

Figure 10 — Schematic diagram of a potential splicing pathway of VEGF-A. Exclusion of exons
6a-b and 8b produce the angiogenic isoform, VEGF-165a. Exclusion of exons 6a-b.and 8a produce
the anti-angiogenic isoform, VEGF-165b.

Figure 11 — SRPK1 Inhibitors. Structures of (15) and SPHINX31 (16).

Figure 12 — X-ray crystallography structure of SRPK1 with-bound SPHINX31. CFs group
interacts with the deep hydrophobic cavity formed by the inset side chains of Tyr227, lle228 and
Leu231 (PDB ID = 5MY8).
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Highlights

e Alternative RNA splicing is a source of protein diversity in higher eukaryotes.
¢ Small molecules can manipulate alternative RNA splicing for therapeutic purposes.
e Splice-switching small molecules can exert their effect by binding RNA, RNA-

protein interfaces or via inhibition of enzymes indirectly involved with spliceosomal
function.
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