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ABSTRACT 

Reliable constitutive models are necessary for the precise design and manufacture of complicated 

components. This study is devoted to developing a modified constitutive model to capture the effects of prior 

fatigue loading on subsequent tensile deformation of 9%Cr steel. In the proposed model, a strain hardening 

rule combined with a defined fatigue damage parameter were introduced to represent prior fatigue damage. 

The defined fatigue damage parameter based on the inelastic strain range of each cycle is capable of 

describing the evolution of tensile strength, recovery of martensite laths and decline of dislocation density, 

regardless of the variation in fatigue loading conditions. To validate the predictive capacity of the proposed 

model, experimental tensile results at different strain amplitudes, lifetime fractions and hold times of prior 

fatigue loading were compared with the predicted results. Good agreement between experimental and 

predicted results indicates that the proposed model is robust in describing the tensile behaviour under prior 
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fatigue loading. Moreover, few determined material parameters are required, which makes the proposed 

model convenient for practical applications. 
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1. Introduction  

From an engineering point of view, reliable constitutive models are necessary for the determination of 

the mechanical behaviour of materials, especially for the modern computer aided design (CAD) (Livatyali et 

al., 2001). Among these models, constitutive models for tensile deformation should first be considered, since 

they enable the determination of the yield stress, which is of crucial concern for the component design and 

manufacture. However, tensile properties can be altered by in-service loadings, particularly the low cycle 

fatigue (LCF) and creep fatigue interaction (C-F) loadings (Sánchez-Santana et al., 2008; Sánchez-Santana et 

al., 2009; Moćko et al., 2014; Moćko et al., 2015; Moćko et al., 2016; Mariappan et al., 2015; Mariappan et 

al., 2016; Mariappan et al., 2017). Such complicated loading conditions may result in premature failure if the 

component design depends only on the original state. Over the past several years, intensive experimental 

investigations have been conducted to evaluate the remnant tensile resistance under prior fatigue loading 

(Sánchez-Santana et al., 2008; Moćko et al., 2016; Mariappan et al., 2017; Paul et al., 2010; Paul et al., 2011; 

Hamdoon et al., 2011). It has been revealed that the effect of prior fatigue loading on remnant tensile 

properties depends on both loading and material types, e.g., for 304LN (Paul et al., 2010; Paul et al., 2011), 

316L (Mariappan et al., 2015; Mariappan et al., 2016), AISI 1022 (Hamdoon et al., 2011) and TiAl6V4 

(Moćko et al., 2014) alloys, the prior fatigue loading slightly strengthened the remnant tensile strength, 

whereas for AISI 4140-T (Sánchez-Santana et al., 2008; Sánchez-Santana et al., 2009) and 9%Cr (Mariappan 

et al., 2015; Mariappan et al., 2017) steels, the prior fatigue loading degraded the subsequent tensile 

properties. Microstructural analysis illustrates that the evolution of remnant tensile properties of stainless 
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steel is mainly attributed to the alternation of dislocation density and subgrain size during the prior fatigue 

process (Mariappan et al., 2015; Paul et al., 2010). Moćko et al. further pointed out that prior fatigue loading 

induced voids and micro-cracks at the grain boundary of DP 500 steel, which may contribute to the 

degradation of remnant tensile resistance (Moćko et al., 2016). In addition, our previous work revealed that 

outer surface oxidation formed during hold process of C-F loading, introducing additional damage on 

remnant tensile elongation of 9%Cr steel (Zhang et al., 2019). Nevertheless, related studies on effective 

modelling approaches for the prediction of remnant tensile deformation are still limited. 

To date, a great deal of effort has been devoted to develop numerous constitutive models to predict the 

tensile deformation behaviour of as-received materials under various loading conditions, such as different 

strain rates and different temperatures (Johnson et al., 1985; Zerilli et al., 1987; Khan et al., 1992; Meyers et 

al., 1994; Nemat-Nasser et al., 1998; Preston et al., 2003). Generally, these models can be classified into two 

categories: physically based models and empirical models. Physically based constitutive models can simulate 

tensile deformation of material accurately. However, physically based constitutive models are not always 

preferred due to the difficulty of determining the model constants (Lin et al., 2011). Empirical constitutive 

models, especially the Johnson-Cook (JC) model (Johnson et al., 1985), are usually adopted due to their 

convenience. However, to the best of the authors’ knowledge, regarding the constitutive models under prior 

fatigue loading, the constitutive model developed by Moćko et al. (Moćko et al., 2016; Moćko et al., 2017) is 

the only existing model for capturing the prior fatigue loading effects. Nevertheless, in Moćko’s work, the 

prior fatigue test is conducted under stress control and Moćko’s model requires a large number of determined 

parameters. Moreover, in Moćko’s study, the prior fatigue tests were performed at room temperature, while 

the prior fatigue tests of 9%Cr steel in the present work were conducted at 923 K under strain control. 
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Therefore, the constitutive model for tensile deformation of 9%Cr steel under strain-controlled prior fatigue 

loading and high temperature still needs intensive study. 

In the current study, a modified constitutive model is developed to capture the effects of prior fatigue 

loading on subsequent tensile deformation of 9%Cr steel based on the original JC model. To account for the 

prior fatigue loading effects, a strain hardening rule combined with a defined fatigue damage parameter are 

introduced into the JC model. Experimental tensile results at different strain amplitudes, lifetime fractions 

and hold times of prior fatigue loading are used to verify the accuracy and capability of the proposed model. 

The parameter sensitivity analysis is also performed. Predicted results between the original JC model, 

Moćko’s model and the proposed model are further compared to show the advantage of the proposed model. 

2. Experimental methodology 

2.1. Experimental procedures 

The experiments conducted in the present study aim to evaluate the accuracy and the capacity of the 

proposed model. However, to avoid a repeated description of experimental methodology that has been 

elaborately depicted in our previous works (Wang et al., 2019; Zhang et al., 2019), only the main 

experimental methods and results are presented in the current study. The experimental procedures are 

schematically shown in Fig. 1, which includes fatigue lifetime determination test (Fig. 1(a)), prior fatigue test 

and subsequent tensile test (Fig. 1(c)). During the fatigue process, the strain-stress hysteresis loop (Fig. 1(b)) 

was recorded to obtain the inelastic strain range at each cycle, which will be used as the pivotal parameter to 

assess the fatigue damage. The material utilized in the experiments was P92 steel. Cylindrical specimens 

with 25 mm gauge length and 8 mm gauge diameter were machined from a pipe along the axial direction, as 

shown in Fig. 2. Specimens used for the fatigue test and the following tensile test all have the same 

geometrical dimensions. All tests were performed at 923 K by using the SINOTEST EQUIPMENT RPL100 
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test machine, which was equipped with a resistance heating furnace and the temperature was controlled 

within ±2 K. Fatigue tests were conducted in accordance with the ASTM E2714 standard (ASTM standard 

E2714, 2014). Tensile tests were conducted according to the ASTM E8 standard (ASTM Standard E8, 2004). 

Strain amplitudes of 0.25%, 0.4% and 0.6% were imposed on LCF tests. Tensile hold times ranging from 0 s 

to 600 s at 0.4% strain amplitude were imposed on C-F tests. Both the LCF and C-F tests were carried out 

under total strain control with a constant strain rate of 1×10-3 s-1. Subsequent tensile tests were performed at 

the same strain rate. Detailed test data are summarized and listed in Table 1.  

 

Fig. 1. Schematic representation of experimental procedures: (a) fatigue lifetime determination, (b) strain-stress 

hysteresis loops of LCF and C-F tests, (c) prior fatigue and subsequent tensile tests 

 

 

Fig. 2. Specimen geometry for fatigue followed by tensile test (unit: mm) 
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Table 1 Test conditions and results of prior fatigue loading and subsequent tensile testing data at 923 K 

Test 
No. 

Load 
pattern 

Strain 
amplitude 
(%) 

Hold 
time  
(s) 

Lifetime 
fraction  

Defined 
damage 

Yield 
stress 
(MPa) 

Ultimate 
tensile 
stress 
(MPa) 

Martensite 
lath width 
(µm)  

Dislocation 
density 
(m-2) 
(Barrett et 
al., 2017) 

1 As-received state 0 318 338 0.375 1.60×1014 
2 LCF 0.25 / 20% 0.58 258 278 0.580 1.13×1014 
3 LCF 0.25 / 50% 0.75 244 272 0.900 1.09×1014 
4 LCF 0.25 / 70% 0.76 233 260 1.200 1.07×1014 
5 LCF 0.4 / 20% 0.73 252 272 0.766 1.09×1014 
6 LCF 0.4 / 50% 0.82 230 251 1.100 1.04×1014 
7 LCF 0.4 / 70% 0.92 221 250 1.250 1.02×1014 
8 LCF 0.6 / 20% 0.74 240 257 / / 
9 LCF 0.6 / 50% 0.93 221 548 / / 
10 C-F 0.4 30 20% 0.73 246 267 0.755 1.19×1014 
11 C-F 0.4 180 20% 0.78 236 261 0.660 1.17×1014 
12 C-F 0.4 600 20% 0.72 234 268 0.775 1.14×1014 

2.2. Experimental results 

Experimental observations have demonstrated that the remnant tensile properties of P92 steel are 

reduced by prior fatigue loading and the reduction level is related to lifetime fraction, strain amplitude and 

hold time (Wang et al., 2019; Zhang et al., 2019), as typically presented in Fig. 3 (engineering tensile curves). 

Mechanical properties (yield stress and ultimate tensile stress) determined from the engineering tensile 

curves are summarized in Table 1. The true stress-strain curves before the occurrence of necking are also 

depicted in Fig. 4. The true stress and true strain were calculated by Eqs. (1) and (2). 

σT=σE(1+εE)                                     (1) 

εT=ln(1+εE)                                     (2) 

where σT is true stress, εT is true strain, σE is engineering stress and εE is engineering strain. The as-received 

P92 steel presents obvious strain hardening behaviour at the initial stage of tensile process. Nevertheless, the 

evident strain hardening behaviour was weakened by the prior fatigue loading, as shown in Fig. 4. The 
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decline in dislocation density during prior fatigue process was mainly responsible for the phenomenon 

(Wang et al., 2019). Due to the reduction of dislocation density after prior fatigue loading, the dislocation 

strengthening is decreased, and therefore the resistance of the material to deformation decreased. As a result, 

weakened strain hardening was observed. Moreover, higher lifetime fraction and strain amplitude of prior 

fatigue loading led to the lower flow stress, and more evident deterioration of the remnant tensile properties. 

However, the tensile curves after different hold times almost overlap with each other which indicated the 

increase in hold time hardly altered the remnant tensile properties. All these observed phenomena will be 

quantified by the defined fatigue damage parameter and will be captured by the proposed model. 

   

   

Fig. 3. Engineering tensile curves after various prior fatigue loading conditions: (a) 0.25% strain amplitude prior 

LCF loading, (b) 0.4% strain amplitude prior LCF loading, (c) 0.6% strain amplitude prior LCF loading, (d) 20% 

lifetime fraction prior C-F loading (Wang et al., 2019; Zhang et al., 2019) 
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Fig. 4. True tensile curves after various prior fatigue loading conditions: (a) 0.25% strain amplitude prior LCF 

loading, (b) 0.4% strain amplitude prior LCF loading, (c) 0.6% strain amplitude prior LCF loading, (d) 20% 

lifetime fraction prior C-F loading 

3.  Constitutive models 

3.1 Johnson–Cook constitutive model 

The JC model is capable of describing isotropic hardening, strain rate hardening and thermal softening, 

and it has been widely used because of its simplicity and the availability of model parameters (Samantaray et 

al., 2009). As a result, its extended or modified models have also been successfully developed for various 

materials (Zhang et al., 2009; Vural et al., 2009). Therefore, the JC model was selected as the fundamental 

model in the current study. The original JC model can be expressed as: 
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                       (3) 

where σ is the flow stress, A is the yield stress at reference temperature and reference strain rate, B is the 

strain-hardening coefficient, εp is the plastic strain, n is the strain hardening exponent, C is material constant 

which represents the coefficient of strain rate hardening,  is the strain rate,  is the reference strain rate, 

T is the current kelvin temperature, TR is the reference temperature, Tm is the melting temperature, and m is 

the material constant, which represents the thermal softening exponent (Samantaray et al., 2009). The items 

,  and  describe the effect of strain hardening, strain rate and temperature, 

respectively. 

3.2 Moćko’s model 

As observed, the remnant tensile deformation behaviour was altered by prior fatigue loading. 

Consequently, Moćko et al. (Moćko et al., 2016; Moćko et al., 2017) modified the original JC model to take 

into account the effects of prior fatigue loading, see Eqs. (4)-(7). Moćko’s model consists of three modified 

equations. The large number of modified equations and many fitting parameters undoubtedly provide good 

simulation results (Moćko et al., 2016; Moćko et al., 2017), however, they make the model complicated and 

inconvenient for practical application. To evaluate the capacity of Moćko’s model at high temperature and 

strain-controlled fatigue loading conditions, the predicted results by Moćko’s model were also presented for 

comparison in the current study, which will be discussed in the Section 4.2. 
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                 (7) 

where α, β, and χ are coefficients of the equation which represent cyclic hardening of the material at the 

initial stage of cyclic deformation, δ represents the development rate of fatigue damage, D is the coefficient 

of accumulative fatigue damage, σ0 is reference value of the maximum cyclic stress, and σ is the maximum 

cyclic stress (Moćko et al., 2016). 

3.3 Fatigue damage parameter 

During fatigue process of 9%Cr steel, the cyclic softening occurs, which has been validated by many 

studies (Fournier et al., 2011; Shankar et al., 2006). The microstructure evolution (recovery of martensite 

lath structure and decrease of dislocation density) contributes to the softening behaviour and results in 

alternation of inelastic strain range in the fatigue process (Wang et al., 2019). The typical strain-controlled 

strain-stress hysteresis loop and inelastic strain range of 9%Cr steel during LCF and C-F processes are 

shown in Figs. 5(a) and (b), respectively. It is noteworthy that the inelastic strain range is varied with respect 

to the fatigue cycle. Fig. 6 further depicts the evolution of the inelastic strain range at various fatigue loading 

conditions. The higher the lifetime fraction, the larger the inelastic strain range was observed. Moreover, the 

increase in strain amplitude led to an evident increase in the inelastic strain range. Nevertheless, the inelastic 

strain range at various hold times did not differ widely, which suggests that the additional inelastic 

deformation introduced by the hold period of C-F loading is quite small. This phenomenon is in agreement 

with microstructural observations (Zhang et al., 2019) and the tensile curves observed in Figs. 3 and 4. 

Consequentially, it may be reasonable to utilize the inelastic strain range to evaluate the fatigue damage. 
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Fig. 5. Typical strain-controlled strain-stress hysteresis loops of the as-received P92 steel at (a) LCF and (b) C-F 

loading conditions 

 

Fig. 6. Evolution of the inelastic strain range at various prior fatigue loading conditions 

Based on the inelastic strain range in the first cycle and failure cycle, a fatigue damage parameter was 

defined in our previous works (Wang et al., 2019; Zhang et al., 2019) and is given as: 

                                    (8) 

where DF is the defined fatigue damage parameter (0≤DF≤1) and ,  and  are the inelastic strain 

range in the first cycle, the failure cycle and the studied cycle, respectively. Fig. 7 depicts the evolution of 

the defined fatigue damage at various prior fatigue loading conditions. It is shown that the defined fatigue 

damage increases rapidly in the initial stage and tends to be stable as the lifetime fraction increases further, 

which has been demonstrated to correspond to the decline of dislocation density (Wang et al., 2019). 
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Moreover, the increase in strain amplitude leads to the increase of defined fatigue damage. Nevertheless, 

defined fatigue damage does not vary significantly with increased hold time, which is in agreement with the 

evolution of the inelastic strain range shown in Fig. 6. It demonstrates that, within 600 s, the damage 

introduced by the hold period is limited and the damage mechanism of the prior C-F loading is still 

dominated by the fatigue process rather than the hold process (creep), which has been proved by 

microstructural analysis (Zhang et al., 2019).  

 

Fig. 7 Evolution of the defined fatigue damage at various prior fatigue loading conditions 

The relationships between tensile strength, microstructure features and the defined fatigue damage were 

further compared here to validate the reliability of the defined fatigue damage parameter. Figs. 8(a) and (b) 

show the relationship between the defined fatigue damage and the 0.2% offset yield stress and the ultimate 

tensile stress, respectively. Note that both the yield stress and ultimate tensile stress show linear behaviour 

with respect to the defined fatigue damage, regardless of the variation in hold time and the strain amplitude. 

This suggests that the defined fatigue damage parameter can describe remnant tensile strength well. Since the 

degradation of remnant tensile strength is mainly attributed to microstructure evolution, namely, the decline 

in dislocation density and recovery of the martensite lath width, the capacity of the defined fatigue damage 

parameter to capture the microstructure evolution (Table 1) should also be verified. Fig. 9 presents the 

variation in the martensite lath width and the dislocation density with respect to the defined fatigue damage. 
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The martensite lath width and the dislocation density were summarized from our previous works (Wang et 

al., 2019; Zhang et al., 2019) and references (Barrett et al., 2017). The dislocation density varies linearly 

with the defined fatigue damage, as shown in Fig. 9(b). However, the relationship between the martensite 

lath width and the defined fatigue damage shows an exponential trend, as shown in Fig. 9(a). According to 

Hall-Petch effect (Morito et al., 2019; Shi et al., 2019), material strength is proportional to the d-1/2, where d 

is the width of martensite lath. Therefore, the relationship between d-1/2 and the defined fatigue damage 

parameter is presented, as shown in Fig. 9(a), inserted figure. The linear behaviour between d-1/2 and the 

defined fatigue damage parameter can be observed, irrespective of the strain amplitude and hold time. 

Consequently, it can be concluded that the defined fatigue damage parameter is robust in describing the 

damage evolution of the LCF and C-F loadings and it is therefore reasonable to use the defined fatigue 

damage parameter to modify the JC model for simulating remnant tensile deformation. 

 

   

Fig. 8. Relationship between the defined prior fatigue damage and (a) yield stress and (b) ultimate tensile stress. 
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Fig. 9. Relationship between (a) martensite lath width, (b) dislocation density and the defined prior fatigue 

damage. 

3.4 Modification of JC model for different loading conditions 

As mentioned above, the strain hardening behaviour of 9%Cr steel is weakened by the prior fatigue 

loading due to the decline of dislocation density. This effect dramatically influences subsequent tensile 

deformation. Therefore, the item , which describe the effect of strain hardening, should be 

modified to account for prior fatigue loading effects. In the present work, a modified JC model is proposed to 

describe the tensile deformation after prior fatigue loading and is expressed as: 

          (9) 

where the item  is introduced to account for the effects of prior fatigue loading on strain 

hardening, B2 and n2 are material constants, and B1 and n1 are material constants that are identical with the B 

and n in Eq. (3). Since the reference and test strain rates taken as the same value in the present work ( =

=0.001), the modified model can be therefore reduced to: 

                (10) 
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⑴ The parameters: A, TR and Tm 

In the present study, the reference temperature TR is taken as 293 K, the yield stress A at reference 

temperature and reference strain rate is then determined from tensile curves at 293 K (A=641 MPa), as 

shown in Fig. 10, which is the 0.2% offset yield stress. For 9%Cr steel, the melting temperature Tm is taken 

as 1773 K (Francis et al., 2006).  

 

Fig. 10. Determination of yield stress of P92 steel at 293 K 

⑵ The parameter: m 

When prior fatigue damage is set as ‘zero’, the item  is eliminated and εp=0, Eq. (10) 

becomes: 

                            (11) 

By fitting the true tensile curves of the as-received specimen at 923 K, as presented in Fig. 4 (black line), the 

temperature sensitivity parameter m can be obtained. 

⑶ The remaining parameters: B1, n1, B2 and n2 

As the parameters, A, TR, Tm and m have been determined, the remaining parameters, B1, n1, B2, and n2, 

can be obtained by fitting the true tensile curves after prior fatigue loading. The experimental tensile results 

after 0.4% strain amplitude prior LCF loading (Fig. 4(b)) were used here. During all fitting procedures, the 
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optimization program was implemented in MATLAB software with a gradient-based Levenberg-Marquardt 

algorithm, which aimed to seek the minimum differences between experimental and simulated results. At 

each loading condition, one set of parameters B1, n1, B2 and n2 will be obtained. The obtained parameters of 

the proposed model are listed in Table 2. 

Table 2 Parameters of the proposed model for 9%Cr steel at 923 K 

Test 
No. 

Defined 
damage 

A 
(MPa) 

B1 

(MPa) 
n1 

B2 

(MPa) 
n2 m 

TR 
(K) 

Tm 
(K) 

1 As-received 641 1817 0.3 -277 41 0.8 293 1773 
2 0.73 641 831 0.25 -298 14.6 0.8 293 1773 
3 0.82 641 697 0.35 -253 7.6 0.8 293 1773 
4 0.92 641 707 0.32 -285 6.7 0.8 293 1773 

As mentioned above, the defined fatigue damage parameter can account for the effects of various prior 

fatigue loadings and its robustness has been validated. Therefore, the defined fatigue damage parameter will 

be adopted by the proposed model to account for the effects of various prior fatigue loadings. Fig. 11 depicts 

the relationships between the defined fatigue damage and the determined model parameters. It is interesting 

to find that the parameters n1 and B2 almost stay constant with respect to the defined fatigue damage values, 

which are 0.3 MPa and -277 MPa, respectively, as shown in Figs. 11(b) and (c). Moreover, the parameters B1 

and n2 present a linear behaviour with increasing prior fatigue damage. By fixing the parameters n1 and B2 at 

0.3 MPa and -277 MPa, respectively, the value of parameters B1 and n2 can be then determined by the 

aforementioned optimization program. The determined model parameters are shown in Fig. 12 and listed in 

Table 3. Linear relationships between the defined fatigue damage and parameters B1 and n2 can also be 

observed. Finally, two linear equations obtained by least-squares linear regression were used to describe the 

evolutions, as shown in Fig. 12 and given as 

B1=αB1+βB1×DF                                   (12) 

n2=αn2+βn2×DF                                   (13) 
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where αB1=1809 MPa, βB1=-1358 MPa, αn2=42, βn2=-42. Consequently, the final parameters of the proposed 

model for 9%Cr steel at 923 K can be determined, as listed in Table 4. 

   

   

Fig. 11. Relationship between prior fatigue damage and the material constants of the proposed model (a) B1, (b) n1, 

(c) B2 and (d) n2 

Table 3 Modified parameters of the proposed model for 9%Cr steel at 923 K 

Test 
No. 

Defined 
damage 

A 
(MPa) 

B1 

(MPa) 
n1 

B2 

(MPa) 
n2 m 

TR 
(K) 

Tm 
(K) 

1 As-received 641 1817 0.3 -277 41 0.8 293 1773 
2 0.73 641 974 0.3 -277 18 0.8 293 1773 
3 0.82 641 662 0.3 -277 7.5 0.8 293 1773 
4 0.92 641 557 0.3 -277 3.9 0.8 293 1773 
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Fig. 12. Modified relationship between prior fatigue damage and the material constants of the proposed model (a) 

B1, (b) n2 

Table 4 Final parameters of the proposed model for 9%Cr steel at 923 K 

Material 
constants 

A 
(MPa) 

αB1 
(MPa) 

βB1 

(MPa) 
n1 

B2 

(MPa) 
αn2 βn2 m 

TR 
(K) 

Tm 
(K) 

Values 641 1809 -1358 0.3 -277 42 -42 0.8 293 1774 

4.  Simulation results and discussion 

4.1. Parameter sensitivity analysis 

The objective of the sensitivity analysis is to validate the reliability of the proposed model and 

determine the effect of the studied parameters on modelling. In the present study, since parameters B2 and n1 

are constants, the sensitivity analysis focuses on parameters B1 and n2. The influence of various parameters 

on the tensile curves is shown in Fig. 13. The tensile curve of 70% lifetime fraction of 0.4% strain amplitude 

prior LCF loading was selected as example. Parameters B1 and n2 are independent variables in these plots. 

These results provide primary judgement regarding the effects of these parameters on tensile deformation. 

From Fig. 13, the proposed model is shown to be more sensitive to parameter B1 than n2. Therefore, 

parameter B1 should be determined carefully according to the procedure described in Section 3.4. 
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Fig. 13. Comparison of tensile curves at various parameters (a) B1, (b) n2 

4.2. Validation of model accuracy 

In this section, model validation is conducted by comparing experimental tensile curves and simulated 

results. Experimental tensile curves under 0.4% strain amplitude prior LCF loading, which were utilized to 

determine model parameters, were used to perform the validation. Simulated results were calculated by the 

three models (original JC model, Moćko’s model and the proposed model) described in Section 3. The 

original JC and Moćko’s model parameters were determined through the referenced methods (Johnson et al., 

1985; Moćko et al., 2016; Moćko et al., 2017) using the aforementioned optimization program. The material 

parameters used in the three constitutive models for 9%Cr steel at 923 K are finally identified and listed in 

Table 5. Since the experiments in the present study were performed under strain control, the items relating to 

stress-controlled factors in Moćko’s model were not considered here (χA=χB=χn=0, σ0=1). Fig. 14 presents the 

comparison of tensile curves between experimental results and simulated data. Fig. 14(c) indicates that the 

proposed model is adequate to describe the tensile deformation after various lifetime fraction prior fatigue 

loadings. Compared to the proposed model, the original JC model fails to reproduce the tensile deformation 

under prior fatigue loading due to the absence of consideration on prior fatigue loading, as shown in Fig. 

14(a). The predicted tensile curves at various lifetime fractions by the original JC model overlap with each 
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other. It is also worth noting that Moćko’s model is relatively imprecise in comparison with the proposed 

model, as presented in Fig. 14(b). Although Moćko’s model can account for the effects of prior fatigue 

loading, evident deviation between simulated and experimental data can be observed. Yet, Moćko’s model 

performs better than the original JC model. Importantly, Moćko’s model was determined at room 

temperature, however, the experiments of the presents work were conducted at high temperature, thus the 

deviation of the simulated results from Moćko’s model may be ascribed to the thermal effect. At high 

temperature, the resistance of the material to deformation decreases because dislocation movement occurs 

more readily, and hence inelastic deformation is enhanced (Lee et al., 2006; Gambirasio et al., 2016). This 

problem may have a significant impact on the expression of the constitutive model determined at low 

temperature. Therefore, Moćko’s model does not function well at high temperature. In addition, a large 

number of material parameters in Moćko’s model (a total number of 17 material parameters, Table 5) make 

it hard to use. Regarding the proposed model, few material parameters (a total number of 8 material 

parameters, Table 5) are required and a good simulation results can be obtained, which suggests that the 

proposed model is relatively convenient and reliable to use.  

Table 5 Parameters of different constitutive models for 9%Cr steel at 923 K 

Model Parameters Shared parameters 
JC model A=641 MPa B=2017 MPa n=0.22 m=0.35 

TR=293 
Tm=1774 

Moćko’s model 

A0=641 MPa B0=2017 MPa n0=0.22 σ0=1 
αA=-97 MPa βA=73 MPa χA=0 δA=127 MPa 
αB=-0.02 MPa βB=-10 MPa χB=0 δB=-1671 MPa 
αn=-0.25 βn=79905 χn=0 δn=0.26 
m=0.35    

Proposed model 
A=641 MPa αB1=1809 βB1=-1358 MPa n1=0.3 
B2=-277 MPa αn2=42 βn2=-42 m=0.8 
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Fig. 14. Comparisons between simulated tensile curves produced by different models at 0.4% strain amplitude 

prior LCF loading (a) JC model, (b) Moćko’s model and (c) Proposed model 

To further verify the reliability of the proposed model, the average error (∆") and standard deviation (S) 

between experimental and predicted data of the three models were compared. The average error (∆") and 

standard deviation (S) are expressed respectively as: 

                               (14) 

                                 (15) 

where σExp and σP are experimental stress and predicted stress, respectively, N is the number of samples. The 

obtained average error (∆") and standard deviation (S) between experimental and predicted results of the three 

models are listed in Table 6. It can be observed that not only the average error (∆") but also the standard 
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deviation (S) of the proposed model is the lowest compared to the original JC model and Moćko’s model, 

which validates the reliability of the proposed model as well. Nevertheless, the experimental results 

simulated here were utilized for the determination of material parameters, predictive capacity of the proposed 

model should be verified further by experimental data which was not used to determine the material 

parameters. 

Table 6 Average error (∆") and standard deviation (S) between predicted and experimental data at various fatigue 

lifetime fractions of 0.4% strain amplitude prior LCF loading 

Model Average error (∆") Standard deviation (S) 
Lifetime fraction As-received 20% 50% 70% As-received 20% 50% 70% 
JC model 0.0270 0.2504 0.4101 0.4452 0.0197 0.0722 0.0965 0.0846 
Moćko’s model 0.0270 0.0374 0.0373 0.1004 0.0197 0.0129 0.0082 0.0234 
Proposed model 0.0195 0.0157 0.0145 0.0062 0.0135 0.0080 0.0064 0.0064 

4.3. Capability of the proposed model  

The objective here is to assess the predictive capability of the proposed model. As discussed above, the 

simulated ability of the proposed model under 0.4% strain amplitude prior LCF loading, which was utilized 

to determine model parameters, has been verified. The challenge now is to evaluate the proposed model’s 

capacity to predict the tensile deformation at different strain amplitudes and different hold times of prior 

fatigue loading. In this section, the same set of parameters listed in Table 4 was used.  

Fig. 15(a), (b) and (c) present the predicted results of tensile curves at 0.25% strain amplitude prior LCF 

loading, 0.6% strain amplitude prior LCF loading, and 20% lifetime fraction prior C-F loading, respectively. 

An overall observation indicates that the proposed model gives a satisfactory prediction for tensile 

deformation at other prior fatigue loading conditions. Not only the effect of low strain amplitude prior LCF 

loading (Fig. 15(a)) but also the effect of high strain amplitude prior LCF loading (Fig. 15(b)) can be well 

captured by the proposed model. Additionally, the tensile deformation after various prior C-F loadings, 
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which hold time ranges from 0 s to 600 s, can be reproduced by the proposed model as well, as shown Fig. 

15(c). This is attributed to the defined fatigue damage parameter is independent on fatigue loading conditions. 

Furthermore, the average error (∆") and standard deviation (S) results presented in Table 7 also validate that 

the proposed model can give satisfactory prediction for tensile deformation at various prior fatigue loadings. 

Hence, it can be concluded that the proposed model is robust to precisely predict the tensile deformation of 

9%Cr steel under prior fatigue loading.  

 

   

Fig. 15. Comparison of experimental tensile curves and predicted tensile curves at various prior fatigue loading 

conditions: (a) 0.25% strain amplitude prior LCF loading, (b) 0.6% strain amplitude prior LCF loading, (c) 20% 

lifetime fraction prior C-F loading 
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Table 7 Average error (∆") and standard deviation (S) between predicted and experimental data of the proposed 

model at various loading conditions 

Loading conditions 
Average error (∆") Standard deviation (S) 

As-received 20% 50% 70% As-received 20% 50% 70% 
0.25% strain amplitude 
prior LCF loading 

0.0195 0.0122 0.0202 0.0056 0.0135 0.0140 0.0066 0.0046 

0.4% strain amplitude 
prior LCF loading 

0.0195 0.0157 0.0145 0.0062 0.0135 0.0080 0.0064 0.0064 

0.6% strain amplitude 
prior LCF loading 

0.0195 0.0239 0.0069 / 0.0135 0.0118 0.0069 / 

 As-received 30 s 180 s 600 s As-received 30 s 180 s 600 s 
20% lifetime fraction 
prior C-F loading 

0.0195 0.0073 0.0067 0.0243 0.0135 0.0084 0.0055 0.0171 

5. Conclusions and remarks 

In the present study, a modified constitutive model for the tensile deformation of 9%Cr steel under prior 

fatigue loading was proposed based on the Johnson-Cook model. In the proposed model, a strain hardening 

rule combined with a defined fatigue damage parameter were introduced to account for the effects of prior 

fatigue loading. The defined fatigue damage parameter comprehensively enhances the predictive capacity of 

the proposed model at various prior fatigue loading conditions. 

Fewer material parameters are involved in the proposed model in comparison with Moćko’s model. The 

proposed model is capable of predicting the tensile deformation under different lifetime fractions, strain 

amplitudes and hold times of prior fatigue loading. However, the proposed model needs further validation 

under other prior fatigue loading conditions, such as under different temperatures and different strain rates. 

These points will be investigated in the future. 
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