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ABSTRACT

Predicting the remnant creep fracture life precisely is crucial for ensuring safety of high temperature 

components. This study presents a microstructural damage mechanics-based model for creep fracture of 

9%Cr steel under prior fatigue loading. Microstructure observation reveals that the decrease of dislocation 

density and the growth of martensite lath width occurred during prior fatigue process contribute to the 

degradation of creep strength. Particularly, coarsening of martensite lath width plays the dominated role. To 

take into account the effect of the prior fatigue loading, kinematic damage equations that represent the 

evolution of dislocation density and martensite lath are proposed in the developed model. With the proposed 

model, creep fracture life and creep failure strain at various lifetime factions, strain amplitudes and hold 

times of prior fatigue loading can be satisfactorily predicted, which manifests that the proposed model is 

robust in capturing the effects of various prior fatigue loadings. The proposed model is also shown to be able 

to accurately predict prolonged creep deformation of other similar steel after different prior fatigue loadings.
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1. Introduction 

It is well known that in the fields of power plants and aeronautics, the creep resistance of materials is 

the primary concern for long-term safety operation. The creep fracture life and ductility should be deserved 

more attention, since they are the indispensable bases for the design and manufacture of complicated high 

temperature components. However, the creep fracture life and ductility can be affected by in-service 

operating loadings, especially the low cycle fatigue (LCF) and creep-fatigue interaction (C-F) loadings [1, 2]. 

Therefore, if components design is only based on original state, premature fracture may occur. Up to now, 

for the material in as-received state, not only a lot of experimental creep fracture data but also numerous 

creep models are available for high temperature component design and safety assessment [3-8]. In contrast, 

with regard to the material in prior fatigue state, the related studies are still limited, but, more and more 

researches start to focus on the influence of prior fatigue loading on subsequent creep strength [9-13]. 

Previous experimental studies have shown that the creep strength of Fe-Cr-Mo steels generally decreased 

after prior fatigue loading, which was mainly attributed to the microstructure evolution occurred during prior 

fatigue [10, 11, 13]. Nevertheless, note that most of the present studies evaluate the effect of prior fatigue 

loading on subsequent creep fracture through experimental methodology, the effective modelling approaches 

need to be improved.

The Auzoux’s model [14] is one of the first attempts aimed at taking the prior strain effect into account 

to predict the subsequent creep behavior. However, since the creep strain is not coupled into the model, the 

Auzoux’s model is rarely adapted. Recently, Erinosho et al. [15] proposed a modified crystal plasticity 

framework to capture the effect of dislocation glide and climb experienced during prior cyclic loading on 
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creep. The modified crystal plasticity model significantly promotes the development of modelling 

approaches for creep deformation prediction under prior fatigue loading. Meanwhile, due to the lack of 

directionality in terms of the accumulation of hardening [15], the crystal plasticity model is unable to account 

for any differences prior to stabilization. In addition, in order to consider the effect of prior LCF loading, our 

previous works [16] have also tried to propose a phenomenal creep model for 9%Cr steel on the basis of the 

Perrin-Hayhurst framework. Nevertheless, the empirical creep damage model fails to capture the 

microstructure damage mechanisms. The review above indicates that there are still considerable rooms for 

modelling approaches to be improved. In recent years, new developed Oruganti’s creep model [17] did throw 

some light on this problem by introducing the kinetic equations that represent the transformation of 

microstructural features into Dyson’s model [18, 19].

The present study aims to propose a comprehensive creep damage model to capture the effect of prior 

fatigue loading. Kinematic damage equations that represent the microstructure evolution in prior fatigue 

process are introduced into Oruganti’s creep model. To further determine the influence of the investigated 

microstructure factors on modelling and to validate the observed damage mechanisms, the parameter 

sensitivity analysis on the proposed model is conducted. Experimental creep results at different strain 

amplitudes, lifetime fractions and hold times of prior fatigue loading are utilized to validate the accuracy and 

the predictive capacity of the proposed model. Long-term creep data of other similar steel is also employed 

to verify the reliability of the proposed model.

2. Experiments

2.1. Experimental procedures

Detailed experimental procedures and results have been reported in our previous works [13, 16, 20], 

therefore, to avoid a repeated description, only the main experimental procedures and results are presented in 
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the current work. The schematic representation of the experimental procedures is presented in Fig. 1, which 

consists of fatigue lifetime determination test, prior fatigue test and final creep fracture test. The material 

utilized in the experiments is P92 steel. Strain amplitudes of 0.25% and 0.4% were imposed on LCF tests. 

Tensile hold time ranging from 0 s to 600 s at 0.4% strain amplitude was imposed on C-F tests. All the LCF 

and C-F tests were performed under total strain control with a constant strain rate of 1×10-3 s-1 at 650 °C. 

Creep tests were conducted till fracture at creep load of 130 MPa and at 650 °C. During all the tests, the 

temperature was controlled within ±2 °C. Detailed test conditions and data are summarized and listed in 

Table 1. Transmission electron microscopy (TEM) observation on specimens after prior fatigue loading and 

subsequent creep loading were also conducted by using a JEOL JEM-2010 instrument. Martensite lath width 

was measured from the TEM micrographs through the linear intercept method. The final martensite lath 

width presented in the current study was averaged from at least twenty measurements as listed in Table 1. 
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Fig. 1. Schematic representation of experimental procedures
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Table 1 Test conditions and results of prior fatigue loading and subsequent creep tests at 650 °C

Test 
No.

Load 
pattern

Strain 
amplitude
(%)

Hold 
time 
(s)

Lifetime 
fraction 

Martensite 
lath width
(μm)

Experimental 
creep fracture life
(h)

Predicted creep 
fracture life
(h)

1 As-received state 0.375 1143 1146
2 LCF 0.25 / 20% 0.58 1085 1039
3 LCF 0.25 / 50% 0.9 747 695
4 LCF 0.25 / 70% 1.2 512 489
5 LCF 0.25 / 80% 1.24 509 468
6 LCF 0.4 / 10% 0.54 1094 1089
7 LCF 0.4 / 20% 0.766 864 820
8 LCF 0.4 / 50% 1.1 540 550
9 LCF 0.4 / 70% 1.25 503 463
10 C-F 0.4 180 10% 0.46 1082 1076
11 C-F 0.4 180 20% 0.66 921 940
12 C-F 0.4 180 50% 1.1 129 550
13 C-F 0.4 180 70% 1.22 186 479
14 C-F 0.4 30 20% 0.755 833 832
15 C-F 0.4 600 20% 0.775 892 810

2.2. Experimental results

Experimental results have revealed that remnant creep properties of P92 steel varied a lot with respect 

to lifetime fraction, strain amplitude and hold time of prior fatigue loading [13, 16, 20]. The higher lifetime 

fraction and strain amplitude the more catastrophic degradation of remnant creep strength was noticed. 

Nevertheless, the variation of hold time hardly alters the subsequent creep strength. The obvious recovery of 

microstructures in fatigue process has been demonstrated to be responsible for these phenomena [21], as 

typically shown in Fig. 2. During fatigue process, the decrease of dislocation density and the martensite lath 

recovery take place, as pointed by red arrow and blue arrow in Fig. 2, respectively. However, no evident 

coarsening of precipitates occurs in prior fatigue process as pointed by yellow arrow in Fig. 2, therefore, its 

effect on subsequent creep fracture will be neglected in the following proposed model. The detailed 

microstructure damage mechanisms are schematically illustrated in Fig. 3. According to these damage 
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philosophies, a microstructural damage mechanics-based model for creep fracture of 9%Cr steel under prior 

fatigue loading will be proposed.

Fig. 2. TEM micrographs of specimens at various prior fatigue loadings: (a) as-received, (b) 20% lifetime fraction 

of 0.4% prior LCF, (c) 50% lifetime fraction of 0.4% prior LCF, (d) 20% lifetime fraction of 180s prior C-F 
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Fig. 3. Schematic of microscopic damage mechanisms in the prior fatigue and subsequent creep processes
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3. Fundamental creep model

Oruganti’s creep model was developed within the continuum damage mechanics (CDM) framework 

described by Dyson [18, 19]. In Oruganti’s model, the evolution of carbonitrides and subgrain with time and 

strain was described through two kinetic equations, which make it capable of predicting creep data up to tens 

of thousands of hours. In addition, Oruganti considered the back stress to decrease with increasing the 

subgrain width due to stress redistribution between grains walls and grain interiors [22], and Oruganti also 

considered that the initial dislocation structure contributes to the significant primary strain accumulation. The 

novel creep damage model particularly provides a better method to capture the effect of prior fatigue loading. 

The fundamental equation in Oruganti’s creep model without considering temperature effect is given as [17]:
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where , KS are material constants, H* is the saturated value of hardening state variable, σo is the 0ε ′�

reference stress, K1 is the evolution rate of reference stress, K2 is the saturated value of reference stress and 

KP is ageing parameter, σB is the back stress that is supposed to arise due to aforementioned stress 

redistribution between grains walls and grain interiors. Eq. (3) indicates that reference stress σo would 

increase at a rate of K1 and reach a saturated value of K2 until the end of primary creep stage. Since 
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Oruganti’s creep model has considered the effect of initial subgrain size on creep deformation, its ability to 

capture effect of prior fatigue loading is also presented for comparison. 

4. Proposed creep damage model

4.1 Decline of dislocation density

The martensitic microstructure of 9%Cr steel generally possesses high dislocation density after the 

normalizing and tempering process [23, 24], as shown in Fig. 2(a). Presence of high dislocation density 

results in a large driving force required for recovery, which produces a stable structure as required for hjgh 

creep resistance [25, 26]. Nevertheless, the high dislocation density drops rapidly in very small strain 

intervals of primary creep stage [26, 27]. This in turn causes evident creep strain accumulation, especially at 

no prior fatigue state, as shown in Fig. 4 (black line). However, note that the creep strain accumulation in 

primary stage decreases after prior fatigue loading (Fig. 4). One possible explanation could be that the initial 

stable dislocation structure may not be in equilibrium with the applied stress [17]. As the applied stress is 

same in the present study, there is no doubt that the decline of dislocation density observed during prior 

fatigue process, as shown in Figs. 2 and 3, accounts for the phenomenon. This result is important in view of 

the object of the proposed model. In Oruganti’s model, primary creep equation (Eq. (3)) was developed to 

describe the strain accumulation. Since the prior fatigue loading only accelerates the creep damage rather 

than alters the material inherent creep properties, the unchanged steady value of K2 in Eq. (3) can be assumed. 

Consequently, reference stress rate (strain accumulation rate) dependent parameter K1 should be modified 

according to the effect of decrease of dislocation density. Base on the dislocation density at as-received and 

after prior fatigue loading, a damage parameter Dd is defined as follows:

                                      (6)d
0

=D ρ
ρ
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where ρ0 is dislocation density at as-received condition, ρ is dislocation density after prior fatigue loading, 

which is dependent on prior fatigue loading. Note that the damage parameter 0<Dd≤1 and decreases with 

the decline of dislocation density after prior fatigue loading. The effect of decrease of dislocation density 

during prior fatigue loading can then be accounted by dividing K1 in the creep equation by Dd. Consequently, 

the kinematic damage equation for the decrease of dislocation density can be obtained as:

                                  (7)o1
o

d 2

= 1-K
D K

σ
σ
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⎛ ⎞
⎜ ⎟
⎝ ⎠

� �

For 9%Cr steel, the dislocation density at as-received condition ρ0 is about 1.6×1014 m-2 [28-31]. 

Unfortunately, because of the limited access to measure the dislocation density in the current work and so far 

few conferences report dislocation data during fatigue process, therefore the equation proposed by Leen et al. 

[32] for the simulation of dislocation density of 9%Cr steel during fatigue loading is adopted here to obtain 

the value of ρ, which is listed below:

                              (8)i i w w g gρ ρ f ρ f ρ f ρ= + + +
�

where  is mobile dislocation density, fj (j=i, w, g) is volume fraction, the subscripts i, w and g denotes lath ρ�

interior, low angle boundary (LAB) and high angle grain boundary (HAGB), respectively, ρj (j=i, w, g) is 

dislocation density corresponding to various volume fractions. The evolution of dislocation density of 9%Cr 

steel at various fatigue loading conditions can be acquired through the equation with the same parameters 

listed in Ref. [32]. Fig. 5 depicts the predicted evolution of dislocation density by the Leen’s model. It can be 

seen the Leen’s model can give a good description for variation of dislocation density at both LCF and C-F 

loadings. However, it is also noteworthy that only few experimental data were used to verify the accuracy of 

the evolution of dislocation density, its reliability still needs more experimental results to validate.
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Fig. 4. Experimental primary creep curves at various prior fatigue loading conditions

  
Fig. 5. Evolution of dislocation density at (a) different lifetime fractions of LCF loading and (b) different lifetime 

fractions of C-F loading [28-35]

4.2 Martensite lath recovery

Apart from the dislocation strengthening, the lath (sub)boundary strengthening is an another main factor 

that governs the creep strength of 9%Cr steel [36]. The lath (sub)boundary acts as obstacles against 

dislocation motion during creep deformation, and the lath (sub)boundary strengthening has been reported to 

much greater than the precipitates strengthening [ 37]. However, the lath width was observed to be increased 

during creep process that lead to the degradation of creep strength [38]. Hence, the martensite lath recovery 

occurred during prior fatigue loading, as presented in Figs. 2 and 3, definitely accelerates the reduction of 
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creep strength. Barrett el al. [39, 40] reported that loss of lath (sub)boundary strengthening resulted in a 

decrease of back stress, σB. In Oruganti’s model, the evolution of back stress caused by subgrain growth had 

been considered. Since the strengthening from subgrain boundaries is same as the lath boundary 

strengthening [41], therefore the effect of the recovery of martensite lath width during prior fatigue loading 

can be evaluated through the back stress. As a consequence, the back stress in Eq. (2) can be rewritten as:

σB=σH*(1-DL)                                   (9)

where DL is damage parameter for martensite lath recovery. As similar to the damage evolution of subgrain 

growth, the following equation was utilized to represent the damage evolution of martensite lath recovery:

                               (10)( )L
L L

i

21
K

DD
L

ε= − ��

where KL is material constant, Li is the martensite lath width after prior fatigue loading. The martensite lath 

width at various lifetime fractions, strain amplitudes and hold times prior fatigue loading measured through 

the linear intercept method is shown in Fig. 6 and listed in Table 1. It is observed that the increase in lifetime 

fraction and strain amplitude induces evident coarsening of martensite lath width. Regarding the effect of 

hold time, the martensite lath width was found to be little altered even though hold period of prior C-F 

loading increases. 
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Fig. 6. Evolution of martensite lath width at various prior fatigue loading conditions: (a) 0.25% strain amplitude 

prior LCF loading, (b) 0.4% strain amplitude prior LCF loading, (c) 180 s hold time prior C-F loading, (d) 20% 

lifetime fraction prior C-F loading

4.3 Creep void evolution

The grain boundary cavitation is known widely to result in the final creep fracture in high temperature 

components [42, 43]. The nucleation and growth of cavities (void of boundaries), coalescence of neighboring 

cavities leading to the formation of microcracks, which can then link-up with the macroscopic crack 

primarily, contribute to the creep fracture [44], as illustrated in Fig. 3. Nevertheless, it has been revealed that 

the motion of slip bands which is a considerable reason for the recovery of martensite lath [45] could convey 

some defects, i.e. vacancies, to the lath boundaries, promoting the nucleation of creep cavities and 

facilitating growth of microcracks and the final fracture, as presented in Fig. 3. Therefore, the effect of creep 

void evolution and the additional effect caused by prior fatigue loading should be taken into account. Based 

on the approach developed for the inter-granular creep constrained void damage by Hayhurst et al. [46, 47], 

the following expression for the damage evolution of creep void after prior fatigue loading is defined:

                                 (11)
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where DN is damage parameter for creep void, the item  is the conventional damage equation for creep N

f

K
ε

ε
�

void, KN is the damage value at fracture, KN=1/3 is adopted here [47], εf is the uniaxial failure strain, the item 

 is the modified creep void damage, which was proposed to consider the additional effect of prior FD ε�

fatigue loading. Since the creep void initiates along lath boundaries [48], DF is therefore reasonable to be 

assessed with the martensite lath width and given as follows:

DF=f(L)                                     (12)

Considering that the more recovery of martensite lath width the more defects are generated, the damage DF is 

hereby evaluated based on the initial and current martensite lath width and given as follows:

DF=A*(Li-L0)                                  (13)

where A is material constant, L0 is the martensite lath width at as-received state.

4.4. Assumptions of the proposed model

Coarsening of precipitates is a phenomenon that results in significant loss in creep strength and it is 

strongly dependent on time. However, in the current work no evident coarsening of precipitates happened 

during prior fatigue process (Figs. 2 and 3) due to the short prior fatigue test period, which is in consistent 

with works by Gopinath et al. [49] and Xuan et al. [50]. Consequently, the coarsening of precipitates was 

being ignored here, nevertheless, this will be verified by the parameter sensitivity analysis in Section 5.2. 

4.5. Final creep damage model

The proposed final creep damage equation set for capturing prior fatigue loading effect of the 9%Cr 

steel is as follows. 
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5. Simulation results and discussion

5.1. Determination of parameters

Experimental creep results at 140 MPa, 130 MPa and 125 MPa of 650 °C were used to determine the 

model parameters of the as-received specimen. The optimization program is implemented in Matlab software 

with a gradient-based Levenberg-Marquardt algorithm, which aims to seek the minimum differences 

between experimental and simulated results. In the as-received condition, the prior fatigue damage was set as 

‘zero’, where ρ=ρ0=1.6×1014 m-2 and Li=L0=0.375 μm. The entire determination procedure is detailed as 

follows: (1) fixing the initial value of σ0 at 3 MPa arbitrarily; (2) the aforementioned optimization procedures 

were used to determine the value of , K1 and K2: the value of  was determined from the data of 0ε ′� 0ε ′�

logarithm of the minimum creep rate versus the logarithm of stress; K1 is located within the range of shear 

modulus; K2 is the saturated value of σ0; The creep curves before 100 h were used in optimization procedure 

here; (3) by fixing , K1, K2, εf (εf = 0.2 from experimental data shown in Fig. 7) and H* (H* =0.45 [17]), 0ε ′�

the values of KL and KP were determined through fitting experimental data; (4) finally, all the previous 

determined material parameters were optimized again by employing the experimental creep curves. The 
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optimum material parameters in the proposed model are finally identified and listed in Table 2. Creep test of 

120 MPa at 650 °C was carried out to verify the determined material parameters. Fig. 7 presents the 

comparison of predicted and experimental creep curves at various creep loadings. It is observed that the 

proposed model with the determined parameters gives satisfactory reproduction of creep deformation for all 

loading conditions of 140 MPa, 130 MPa, 125 MPa and 120 MPa. Moreover, the proposed model also 

presents a comparable predictive capacity at long-term creep tests up to tens of thousands of hours which 

data are available [33]. 

Table 2 Parameters of the proposed model for 9%Cr steel at 650 °C

Parameters (h-1)0ε ′� K1(MPa) K2(MPa) H*(-) KL(h-1) KP(h-1) KN(-) A(-)

Values 8×10-10 2400 6.2 0.5 1 1.5×10-

5

0.3 6.418

Fig. 7. Experimental and predicted creep curves at various creep loadings

After the determination of material parameters for as-received condition, it is necessary to determine the 

prior fatigue loading related parameters. Since the martensite lath width has been measured from our 

experimental results and the evolution of dislocation density can also be determined through Eq. (8), the 

parameter A is becoming the only parameter needed to be determined here. By fitting the creep results after 

0.4% strain amplitude prior LCF loading, as depicted in Fig. 9, it is easy to get the parameter A, as listed in 
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Table 2. It is worth noting that only the experimental results at various lifetime fractions of 0.4% strain 

amplitude prior LCF loading were used to obtain these material parameters.

5.2. Parameter sensitivity analysis

To further illustrate the influence of the investigated microstructure factors on modelling and to validate 

the damage mechanisms observed in the current study, the sensitivity analysis on the proposed model was 

performed in this section. The investigated microstructure factors include strain accumulation rate dependent 

parameter K1, initial martensite lath width related parameter KL, creep void parameter related to the 

martensite lath recovery A, and precipitate evolution related aging parameter KP. The effects of various 

values of parameters mentioned above on creep curves are presented in Fig. 8. Experimental creep curve at 

10% lifetime fraction of 0.4% strain amplitude prior LCF loading is selected as example here to conduct 

sensitivity analysis. From Fig. 8, it can be seen that the proposed model is the most sensitive to the 

martensite lath width related parameters KL and A, which indicates that the coarsening of martensite lath 

width occurred in prior fatigue process plays the dominant role in degradation of subsequent creep strength. 

In contrast, the other two remaining parameters shows lower sensitivity behaviors, especially the precipitate 

evolution related aging parameter KP. This also proves the assumptions mentioned in Section 4.4 is 

reasonable.

  



17

  

Fig. 8. Comparison of creep curves at various parameters (a) K1, (b) KL, (c) A, (d) KP

5.3. Validation of model accuracy

To validate the accuracy of the proposed model, experimental and simulated results are compared, as 

presented in Fig. 9. The simulated results calculated by Oruganti’s model are also presented for comparison. 

Experimental data, which are utilized to determine model parameter A, are used here. Fig. 9(a) indicates that 

the proposed model can satisfactorily describe the creep deformation after various prior fatigue loadings. 

However, although Oruganti’s model can give a comparable simulation at as-received condition, Oruganti’s 

model fails to simulate the creep curves after prior fatigue loadings due to the absence of consideration on 

prior fatigue loading effect. It is also worth noting that the creep primary stage is well reproduced by the 

proposed model, as shown in Fig. 9(b), which suggests that the proposed model can reasonably capture the 

effect of decline of dislocation density.
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Fig. 9. Comparison of experimental creep curves (a) and creep primary stage (b) with predicted creep curves at 

different lifetime fractions of 0.4% strain amplitude prior LCF loading

In addition to the creep deformation, the creep fracture life and creep ductility need to be further 

validated as well, because they are important bases for the safety assessment and components design [51, 52]. 

The comparison of creep fracture life and creep ductility between experimental and simulated results under 

different lifetime fractions of 0.4% strain amplitude prior LCF loading are plotted in Fig. 10(a) and (b) (blue 

circle), respectively. The predicted creep fracture life and creep failure strain were determined from the last 

point of the simulated creep curve, where creep rate reaches infinite. It is shown that the proposed creep 

damage model gives a good prediction for creep fracture life and creep failure strain under 0.4% strain 

amplitude prior LCF loading. In contrast, the predicted creep fracture life of Oruganti’s model dramatically 

diverges from the experimental creep data. Particularly, note that the experimental results simulated here 

were used for the determination of material parameters, predictive capacity of the proposed model are thus 

needed to be evaluated.
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Fig. 10. (a) Comparison of predicted and experimental creep fracture life and (b) comparison of predicted and 

experimental creep failure strain

5.4. Predictive capability of the proposed model

The objective of this section is to evaluate the predictive capability of the proposed model. On the one 

hand, the capability of the proposed model to predict the experimental results at different strain amplitudes 

and different hold times of prior fatigue loading will be assessed. These experimental data are not used 

during the determination of material parameters. On the other hand, the capability of the proposed model to 

predict other long-term tests of similar materials will be evaluated. 

Fig. 11(a), (b) and (c) display the predicted results of creep curves at different lifetime fractions of 0.25% 

strain amplitude prior LCF loading, different lifetime fractions of 180 s hold time prior C-F loading, and 20% 

lifetime fraction of different hold times prior C-F loading, respectively. These predicted results were 

obtained without any fitting procedure. The good agreement between predicted and experimental results 

demonstrates that the proposed model can be directly extended to other strain amplitudes and hold times of 

prior fatigue loading. However, it is worth noting that the proposed model underestimates the damages of 50% 

and 70% lifetime fraction of 180 s hold time prior C-F loading. This is because as the lifetime fraction of 

prior C-F loading increases further, apart from the recovery of microstructures, the evident growth of surface 
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cracks takes place [20]. The surface cracks will introduce additional damage on subsequent creep strength 

and the damage mechanism of prior C-F loading transforms to the combined effect of microstructure 

evolution and obvious surface cracks.

To further verify the accuracy of the proposed model at various strain amplitudes and various hold 

times of prior fatigue loading, creep fracture life and creep ductility were compared, as depicted in Fig. 10. 

The creep ductility of various creep stress tests (Fig. 7) is also presented for comparison. It is observed that 

except the 50% and 70% lifetime fraction of 180 s hold time prior C-F loading as mentioned above, the 

proposed model can give an accurate prediction for remnant creep fracture life, as shown in Fig. 10(a). 

Hence it validates the robustness of the proposed model to capture the effect of various prior fatigue loadings 

on creep fracture life. Regarding the creep failure strain, in comparison with experimental data, all the 

predicted creep failure strains at different prior fatigue loadings and different creep stresses locate within a 

scatter band of 1.5, as shown in Fig. 10(b). Consequently, the proposed model is proved to be capable of 

predicting the stress dependent failure strain. Further observation of Fig. 10(b) reveals that most of the 

predicted results fall into a scatter band of 1.3. The other points whose experimental data mainly come from 

reference fall out the 1.3 band. The higher scatter of those points may thus be ascribed to the different 

batches of materials [53]. Although the proposed model has been proved to predict the experimental results 

reasonably, it still needs further validation in the future by using a wide range of the experimental database, 

which could give more support to its industrial applicability.
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Fig. 11. Comparison of experimental creep curves and predicted creep curves at various prior fatigue loading 

conditions: (a) 0.25% strain amplitude prior LCF loading, (b) 180 s hold time prior C-F loading, (c) 20% lifetime 

fraction prior C-F loading

The capability of the proposed model to predict long-term creep deformation of other similar steel under 

prior fatigue loading should be validated as well. Creep data of reduced activation ferritic-martensitic 

(RAFM) steel were employed here [10]. During the validation process, the material parameters for RAFM 

steel at 550 °C were recalculated through the method discussed above and are listed in Table 3. Fig. 12 

compares the predicted results of RAFM steel with the experimental data. It can be seen that the proposed 

model can be extended to predict long-term creep fracture life accurately up to nine thousand hours at 

different temperatures. Moreover, the creep curves and creep ductility (Fig. 10(b)) of RAFM steel after prior 
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fatigue loadings can be well described as well, which indicates that the effect of various prior fatigue 

loadings at different strain rates and temperatures can be reproduced using the proposed model.

Table 3 Parameters of the proposed model for RAFM steel at 550 °C

Parameters (h-1)0ε ′� K1(MPa) K2(MPa) H*(-) KL(h-1) KP(h-1) KN(-) A(-)

Values 1×10-11 1250 9.5 0.45 1 1.5×10-

5

0.3 30

Fig. 12. Comparison of experimental creep curves and predicted creep curves of RAFM steel under prior LCF 

loadings (Prior LCF: strain amplitude of 0.6%, strain rate of 1×10 -3 s-1, temperature of 550 °C; Creep: creep load 

of 210 MPa, temperature of 550 °C) [10]

6. Summary and Conclusions

The coarsening of martensite lath width occurred during prior fatigue process plays the dominant role in 

degradation of subsequent creep strength. By incorporating the effect of decrease of dislocation density on 

strain accumulation, recovery of martensite lath on stress redistribution and its corresponding influence on 

creep void evolution, the proposed creep model gives a satisfactory prediction for creep deformation at 

various prior fatigue loadings. Not only the creep fracture life but also the creep failure strain can be well 



23

described by the proposed model. Moreover, the proposed creep damage model can also be directly extended 

to other similar steel and long-term creep test.
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