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Abstract
In this paper we present a duality between nonmonotonic consequence relations and
well-founded convex geometries. On one side of the duality we consider nonmonotonic con-
sequence relations satisfying the axioms of an infinitary variant of System P, which is one
of the most studied axiomatic systems for nonmonotonic reasoning, conditional logic and
belief revision. On the other side of the duality we consider well-founded convex geome-
tries, which are infinite convex geometries that generalize well-founded posets. Since there
is a close correspondence between nonmonotonic consequence relations and path inde-
pendent choice functions one can view our duality as an extension of an existing duality
between path independent choice functions and convex geometries that has been developed
independently by Koshevoy and by Johnson and Dean.

Keywords Convex geometries · Antimatroids · Nonmonotonic consequence relations ·
Conditional logic · Path independent choice functions · Duality

1 Introduction

In this paper we present a duality between the category of nonmonotonic consequence
relations over complete atomic Boolean algebras and the category of well-founded convex
geometries over the set of atoms of the algebra.

Nonmonotonic consequence relations are used in artificial intelligence as a framework
for defeasible reasoning [24]. They also correspond to the nonnested fragment of a condi-
tional logic developed in philosophy and linguistics [7, 25, 39]. However, the restriction to
nonnested formulas is not essential for most properties of the logic. A third application of
similar formal systems is in the theory of belief revision [4, 6, 15]. Tableaux and sequent
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proof systems for nonmonotonic consequence relations and conditional logics have been
developed in [30, 33, 35].

The standard semantics for nonmonotonic consequence relations is given in terms of
minimal elements in posets. If one considers the class of all posets then this semantics gives
rise to an axiomatic system for nonmonotonic consequence relations that is called System P.
Completeness proofs for System P with respect to the semantics on posets [7, 24, 39] are
technical and it is not obvious whether they lead to duality results. The reason for these
difficulties is a mismatch between the semantics and the axioms of System P. It is noted
in [39, sec. II.4.1] that the addition of a rather complex axiom, called coherence condition,
greatly simplifies the completeness proof.

The comparatively high complexity of the coherence condition means that it is not
expressible in the formal languages that are commonly used in the applications mentioned
above. By increasing the expressivity of the language and assuming an analogue of the
coherence condition [42] obtains a general representation result in relational structures that
can be specialized to posets.

Our approach is to weaken the semantics instead of adding the coherence condition on
the syntactic side. We use convex geometries, also known as antimatroids, as a semantics for
nonmonotonic consequence relations satisfying the axioms of System P. This generalizes
the poset semantics because for every poset one can define a convex geometry such that the
extreme points of a set in the convex geometry are precisely the minimal elements of the set
in the poset.

Convex geometries provide a combinatorial approach to the notion of convexity; for an
overview see [3, 10, 11] or [21, ch. III]. The class of lattices arising as the lattice of convex
sets in some convex geometry has been differently characterized by various authors; for a
historical survey see [29].

Whereas the work mentioned in the previous paragraph is restricted to finite convex
geometries there has recently been increased interest in the infinite case [1, 2, 41]. This
work focuses on a specific class of infinite convex geometries which are algebraic closure
operators, meaning that if a point is in the convex closure of a set it is already in the convex
closure of one of its finite subsets. Algebraic convexities are of interest because the standard
convexity of Euclidean spaces is algebraic. An equivalent condition is also assumed in the
extensive study of convexity by [38] which however does not assume the anti-exchange
axiom that is part of the definition of convex geometries.

For the duality of this paper we consider a different class of infinite convex geometries,
which we call well-founded and which need not be algebraic. In a well-founded convex
geometry every set has sufficiently many extreme points. This generalizes the notion of
a well-founded poset, which are posets in which every set has sufficiently many minimal
elements.

The idea of interpreting nonmonotonic consequence relations with respect to the fam-
ily of convex sets in some convex geometry stands in the tradition of premise semantics,
which interprets conditionals in arbitrary families of subsets of some set [23, 40]. A sim-
ilar approach is developed in [5, 13, 27]. The contribution of this paper is to single out a
class of families of subsets, namely the convex geometries, that gives rise to a duality with
nonmonotonic consequence relations.

One can view our duality as an extension of the correspondence between path indepen-
dent choice functions that are discussed in economics [32] and finite convex geometries.
This correspondence has been developed independently by [22] and [18] and has been
extended by [28] to a duality between semilattices of choice functions and semilattices of
convex geometries. Moreover, [8] introduce the further concept of a framed dependence
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relation and prove that framed dependence relations correspond to path independent choice
function and finite convex geometries. In [9] the correspondence between framed depen-
dence relations and path independent choice functions is extended to the infinite case. It
is also proven in [9] that the path independent choice function are precisely the unions of
choice functions rationalized by well orders, which is a concept that is reminiscent of convex
geometries. Since there is a close correspondence between path independent choice func-
tions and nonmonotonic consequence relations our duality is an extension of these results.
In particular, we characterize the infinite convex geometries that stand in the duality as
the well-founded convex geometries and use morphisms that are structure preserving func-
tions between the carriers of the nonmonotonic consequence relations or convex geometries,
rather than only considering the inclusions between choice function or convex geometries
over some fixed set as in [28].

The structure of this paper is as follows: In Section 2 we review nonmonotonic conse-
quence relations in System P and derive some consequences of the axioms in System P. In
Sections 3 and 4 we discuss how nonmonotonic consequence relations relate to path inde-
pendence choice functions and to framed dependence relations. In Section 5 we review
convex geometries. In Section 6 we introduce the notion of a smooth set which allows us
to define well-founded convex geometries. We also prove a characterization of the smooth
sets in terms of their extreme points. In Section 7 we prove the duality result of this paper.

2 Nonmonotonic Consequence Relations

In this section we introduce nonmonotonic consequence relations.

Definition 1 A nonmonotonic consequence relation for a set W is a relation |∼ ⊆ PW ×
PW on the powerset PW of W such that for all A,B,C, D ∈ PW and families X ⊆ PW

the following are satisfied:

– A|∼ A (Id).
– If A|∼ C and C ⊆ D then A|∼ D (RW).
– If A|∼ X for every X ∈ X then A|∼ ⋂X (And∞).
– If A|∼ B ∩ C then A ∩ B|∼ C (WCM).
– If A|∼ C and B|∼ C then A ∪ B|∼ C (Or).

A morphism from a nonmonotonic consequence relation |∼′ for W ′ to a nonmonotonic
consequence relation |∼ for W is a function f : W → W ′ such that the inverse image map
f −1[·] : PW ′ → PW ′ preserves the nonmonotonic consequence relation. This means that
for all A, C ∈ PW ′

A|∼′ C implies f −1[A]|∼ f −1[C]. (1)

A morphism f of nonmonotonic consequence relations is strong if it reflects the non-
monotonic consequence relation. This means that the implication in Eq. 1 becomes a
bi-implication.

One can think of a nonmonotonic consequence relation for W as a relation on the
Boolean algebra PW . We are then restricting our attention to complete atomic Boolean
algebras, which are precisely those Boolean algebras that can be represented as the powerset
of their atoms [16, sec. 16]. Note that because every finite Boolean algebra is automatically
complete and atomic our setting especially covers the case of all finite Boolean algebras.
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The definition of a morphism between nonmonotonic consequence relations is motivated
by this representation of complete atomic Boolean algebras as powerset algebras. For every
function f : W → W ′ we have that f −1[·] : PW ′ → PW is a complete Boolean alge-
bra homomorphism between the powerset algebras and every complete Boolean algebra
homomorphism arises in this way.

The axioms for nonmonotonic consequence relations in Definition 1 are an infinitary
version of the rules in the well-known System P [24]. They are precisely the rules of Sys-
tem P∞from [26] and differ from the rules of System P only in that in System P the infinitary
(And∞) is replaced with its finitary variant (And), which holds for all A,C, D ∈ PW :

– If A|∼ C and A|∼ D then A|∼ C ∩ D (And).

Note that in the finite case the two axiomatizations coincide.
A minor difference between the axiomatization given here and the usual presentation of

System P is that we found it more convenient to work with the weak cautious monotonic-
ity rule (WCM) instead of the following more common cautious monotonicity rule (CM),
which holds for all A, B,C ∈ PW :

– If A|∼ B and A|∼ C then A ∩ B|∼ C (CM).

One can show that in the presence of (RW) and (And), where the latter is an obvious con-
sequence of (And∞), the two rules are equivalent. To see this first assume that (WCM)
holds. Then we can deduce (CM) because from the premises A|∼ B and A|∼ C it fol-
lows by (And) that A|∼ B ∩ C, and hence we obtain A ∩ B|∼ C with (WCM). For the
other direction assume that (CM) holds. Then we can deduce (WCM) because A|∼ B ∩ C

entails by (RW) that both A|∼ B and that A|∼ C, from which A ∩ B|∼ C follows by
(CM).

In the following we make use of two consequences from the axioms in Definition 1,
which we do not bother proving here in full detail.

The first is the following infinitary version of the (Or) rule, which holds for all C ∈ PW

and families X ⊆ PW :

– If X|∼ C for every X ∈ X then
⋃X |∼ C (Or∞).

It follows from Example 7 together with Propositions 11 and 12 in [26] that (Or∞) is a
consequence of the axioms in Definition 1.

The second is the following variant of the cautious cut rule, which holds for all A,B, C ∈
PW :

– If A|∼ B and B|∼ C then A ∪ B|∼ C (CCut’).

Let us see why this rule follows from another more common variant of the cautious cut
rule, which in turn is shown in Lemma 5.3 of [24] and in Example 13 of [26] to follow
from the axioms in Definition 1. This more common variant of the cut rule is the following
rule (CCut): If A|∼ B and A ∩ B|∼ C then A|∼ C. Thus assume (CCut) and that the
premises A|∼ B and B|∼ C of (CCut’) hold. From A|∼ B it follows with an application
of (Or) and (Id) that A ∪ B|∼ B. Because B = (A ∪ B) ∩ B we can write B|∼ C as
(A∪B)∩B|∼ C. Now we can apply (CCut) with A∪B in the place of A to obtain the needed
A ∪ B|∼ C.

Note that the derivation of (CCut) and hence of (CCut’) from the rules in System P
crucially uses classical complements in Boolean algebras. If one wishes to work with non-
monotonic consequence relations in a setting that is weaker than Boolean algebras it might
be necessary to add (CCut) as an additional axiom.
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3 Path Independent Choice Functions

In this section we discuss the correspondence between nonmonotonic consequence relations
and the path independent choice functions from [32]. This clarifies in what sense the results
of this paper are an extensions of the duality developed by [18, 22, 28]. Readers who are
only interested in the duality for nonmonotonic consequence relations can skip directely to
Section 5.

Choice functions are the same as selection functions, which have already been used in
the semantics of conditional logic [31, 36, 39]. This semantics relies upon a correspon-
dence analogous to that presented here. However in this context people have not considered
path independence but rather used axioms that are direct translations of the axioms on
nonmonotonic consequence relations from Definition 1.

Boolean algebras together with a selection function over the algebra are also the algebraic
structures studied in the the duality of [42]. The axioms considered by [42] are close to
those on selection functions mentioned in previous paragraph.

We now provide the definition of path independent choice functions.

Definition 2 A choice function for W is a function E : PW → PW satisfying that E(A) ⊆
A for all A ∈ PW .

A choice function E : PW → PW is path independent if for all A,B ∈ W it holds that

E(A ∪ B) = E(E(A) ∪ E(B)).

The correspondence between path independent choice functions and nonmonotonic
consequence relations is given by the following two definitions.

Definition 3 For every nonmonotonic consequence relation |∼ for W define the induced
function E : PW → PW such that for all A ∈ PW

E(A) =
⋂

{C ∈ PW | A|∼ C}.

Combining the previous definition with Definition 12 shows that via the duality of
Section 7 the choice function E maps a set in a convex geometry to the subset of its extreme
points as in Definition 11.

Definition 4 For every choice function E : PW → PW for W defined the induced relation
|∼ for W such that for all A, C ∈ PW

A|∼ C iff E(A) ⊆ C.

It is easy to check that the previous two definitions establish a bijective correspondence
between choice functions and relations satisfying (Id), (RW) and (And∞). In the follow-
ing two propositions we show that this correspondence restricts further to nonmonotonic
consequence relations satisfying all the axioms of System P∞and path independent choice
functions.

Proposition 1 The choice function E : PW → PW induced by some nonmonotonic
consequence relation |∼ for W is path independent.
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Proof Before we check path independence we make two observations. First note that
E(A) ∪ E(B) ⊆ A ∪ B for all A,B ∈ PW . This holds because by (Id) we have E(X) ⊆ X

for every X ∈ PW . The second observation is that for all A, B ∈ PW it holds that

A ∪ B|∼ E(A) ∪ E(B). (2)

The claim (2) follows by (Or) because we have A|∼ E(A) ∪ E(B) and B|∼ E(A) ∪ E(B),
which can be obtained with (RW) from the fact that X|∼ E(X) for all X ∈ PW . The latter
holds because of (And∞).

Unfolding Definition 3 shows that to prove path independence of E it suffices to show
that for all A,B,C ∈ PW

A ∪ B|∼ C iff E(A) ∪ E(B)|∼ C.

For the left-to-right direction assume that A ∪ B|∼ C. Since by Eq. 2 we also have that
A ∪ B|∼ E(A) ∪ E(B) it follows with (CM) that (A ∪ B) ∩ (E(A) ∪ E(B))|∼ C. Since
E(A) ∪ E(B) ⊆ A ∪ B this is equivalent to E(A) ∪ E(B)|∼ C.

For the right-to-left direction assume that E(A) ∪ E(B)|∼ C. Together with Eq. 2 we
can then apply (CCut’) to obtain A ∪ B ∪ E(A) ∪ E(B)|∼ C. Since E(A) ∪ E(B) ⊆ A ∪ B

this is equivalent to A ∪ B|∼ C.

Proposition 2 The relation |∼ induced by some path independent choice function E :
PW → PW is a nonmonotonic consequence relation.

Proof We check that the relation induced by E satisfies (WCM) and (Or).
To prove (WCM) we show that under the assumption that E(A) ⊆ B it follows that

E(A ∩ B) = E(A). This clearly entails (WCM) because if we are given E(A) ⊆ B ∩ C it
follows that E(A) ⊆ B and hence we obtain the required E(A ∩ B) ⊆ C.

Hence assume E(A) ⊆ B. Because E is a choice function we also have that E(A) ⊆ A

and hence it follows that A∩B = E(A)∪(A∩B). We then make the following computation

E(A ∩ B) = E(E(A) ∪ (A ∩ B)) = E(E(E(A)) ∪ E(A ∩ B))

= E(E(A) ∪ E(A ∩ B)) = E(A ∪ (A ∩ B)) = E(A).

Here the second and fourth equality are applications of path independence. The third equal-
ity uses E(E(A)) = E(A), which is the trivial instance of path independence where the two
sets are the same.

To prove (Or) first observe that for all A,B ∈ PW by path independence it holds that
E(A ∪ B) ⊆ E(E(A) ∪ E(B)). Because E is a choice function we have that E(E(A) ∪
E(B)) ⊆ E(A) ∪ E(B) and hence E(A ∪ B) ⊆ E(A) ∪ E(B).

Now assume that the premises of (Or) are true, which means that E(A) ⊆ C and E(B) ⊆
C for some A,B,C ∈ PW . Then also E(A)∪E(B) ⊆ C and hence by the above we obtain
the required E(A ∪ B) ⊆ C.

One can show that morphisms between nonmonotonic consequence relations are pre-
cisely functions f : W → W ′ that in terms of the corresponding choice functions satisfy
the condition that E(f −1[A]) ⊆ f −1[E′(A)] for all A ∈ PW ′. The strongness of a
morphism f : W → W ′ corresponds in terms of choice functions to the condition that
E′(A) ⊆ f [E(f −1[A])] for all A ∈ PW ′. In the context of choice or selection functions it
might be more adequate to consider morphism that additionally satisfy the other inclusion,
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E(f −1[A]) ⊆ f −1[E′(A)] for all A ∈ PW ′, of the condition on morphism. This notion of
morphism is used in the setting of [42].

4 Framed Dependence Relations

In this section we discuss the connection between nonmonotonic consequence relations and
the framed dependence relations from [8, 9]. Similar relations have been studied in the
context of conditional logic and nonmonotonic reasoning, where they are called relations of
comparative possibility or relative likelihood. Examples of the former are in Section 2.5 of
[25] or in [14] and examples of the latter are in Section 2.7 of [17] or in [37].

Definition 5 A dependence relation for a set W is a relation � ⊆ PW × PW on the
powerset PW of W such that for all A,B, C ∈ PW the following are satisfied:

– If A ⊆ B then B � A (extension).
– If A � B and B � C then A � C (transitivity).
– If A � B and A � C then A � B ∪ C (union).

A dependence relation � for W is framed if the following holds for all A ⊆ W and
families X ⊆ PW :

– If X ⊆ A and X � A for every X ∈ X then
⋂X � A.

The above definition of framed dependence relations is different, but easily seen to be
equivalent to, the definition from [8], according to which a dependence relation � for W is
framed if for all A ⊆ W there exists a least subset A′ ⊆ A such that A′ � A.

Definition 6 For every nonmonotonic consequence relation |∼ for W define the induced
dependence relation � ⊆ PW × PW such that for all A,B ∈ PW

A � B iff B ∪ A|∼ A.

Proposition 3 The relation � ⊆ PW × PW induced by a nonmonotonic consequence
relation |∼ for W according to Definition 6 is a framed dependence relation.

Proof (extension) follows immediately from (Id).
To see that � satisfies (transitivity) assume that B ∪ A|∼ A and C ∪ B|∼ B. With (RW)

it follows from the latter that C ∪ B|∼ B ∪ A. Applying (CCut) yields C ∪ B ∪ A|∼ A,
which can be equivalently written as C ∪ B ∪ A|∼ A ∩ (C ∪ A). We obtain the required
C ∪ A|∼ A with an application of (WCM).

(union) follows immediately from (Or).
That � is framed follows immediately from (And∞).

Definition 7 For every dependence relations � for W define the induced nonmonotonic
consequence relation |∼ ⊆ PW × PW such that for all A, B ∈ PW

A|∼ C iff A ∩ C � A

Proposition 4 The relation |∼ ⊆ PW × PW induced by a framed dependence relation �
for W according to Definition 7 is a nonmonotonic consequence relation.
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Proof (Id) follows immediately from (extension).
To see that |∼ satisfies (RW) assume A ∩ C � A and C ⊆ D. Hence A ∩ C ⊆ A ∩ D

and by (extension) we obtain A ∩ D � A ∩ C. With (transitivity) can then conclude that
A ∩ D � A.

(And∞) follows immediately because � is framed.
To see that | ∼ satisfies (WCM) assume A ∩ B ∩ C � A. Because A ∩ B ⊆ A

we get A � A ∩ B from (extension). Then A ∩ B ∩ C � A ∩ B follows with
(transitivity).

To see that |∼ satisfies (Or) assume that A ∩ C � A and B ∩ C � B. Using (extension)
and (transitivity) we can derive that (A ∪ B) ∩ C � A and (A ∪ B) ∩ C � B. With (union)
we then obtain (A ∪ B) ∩ C � A ∪ B.

Proposition 5 Definitions 6 and 7 establish a bijective correspondence between nonmono-
tonic consequence relations and framed dependence relations over some set W .

Proof We show that the mappings from Definitions 6 and 7 are inverses to each other.
First consider a nonmonotonic consequence relation |∼ on W , apply Definition 6 to

obtain a framed dependence relation and the apply Definition 7 to obtain a nonmonotonic
consequence relation |∼′. We need to prove that A|∼ C iff A|∼′ C for all A,C ⊆ W .
Unfolding the definition yields that A|∼′ C is equivalent to A|∼ A ∩ C. Because of (RW)
this entails A|∼ C, and because of (Id) and (And) it is entailed by A|∼ C.

Then consider a framed dependence relation � on W , apply Definition 7 to obtain a non-
monotonic consequence relation and the apply Definition 6 to obtain a framed dependence
relation �′. We need to show that A � B iff A �′ B. Unfolding the definition we see that
the latter means that A � B ∪ A. This entails A � B because we can apply (transitivity) to
the B ∪ A � B we get with (extension). And, it is entailed by A � B because we can apply
(union) to the A � A we get from (extension).

One might also define a notion of morphism between dependence relations. The most
natural choice, analogous to the definition for nonmonotonic consequence relations, is to
consider functions that preserve the dependence relation when taking preimages of sets
under the function. Using the fact that unions and intersections are preserved under tak-
ing preimages it is then not difficult to show then that these morphism between framed
dependence relations are then also precisely the morphism of nonmonotonic consequence
relations between the nonmonotonic consequence relations corresponding to the frame
dependence relations. Moreover, the morphism that reflect the framed dependence relation
are precisely the strong morphism of the correspond consequence relations.

5 Convex Geometries

In this section we recall the notion of a convex geometry. Convex geometries can be equiv-
alently defined either as some kind of closure operator, or as the lattice of closed sets of
this closure operator, or as the lattice of complements of these closed sets, or as the interior
operator of these complements.

A function cl : PW → PW is a closure operator on a set W if for all X, Y ⊆ W

it holds that X ⊆ Y implies cl(X) ⊆ cl(Y ) (monotonicity), X ⊆ cl(X) (extensivity) and
cl(X) = cl(cl(X)) (idempotence). Note that in the presence of monotonicity and extensivity
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it always holds that cl(X) ⊆ cl(cl(X)) and hence it suffices for idempotence to just proof
co(co(X)) ⊆ co(X).

Given a closure operator cl : PW → PW on W a set X ⊆ W is called closed if X =
cl(X). One can check that if L ⊆ W is a family of closed subsets of W then its intersection⋂L is closed as well. Hence the closed sets of a closure operator form a complete meet-
sublattice of PW . Conversely, given a complete meet-sublattice L ⊆ PW one obtains a
closure operator cl : PW → PW on W by letting cl(X) = ⋂{C ∈ L | X ⊆ C} for all
X ⊆ W . It is straightforward to check that these simple constructions yield a one-to-one
correspondence between closure operators on W and complete meet-sublattices of PW .

One might equivalently consider the complements of the closed sets in L, which form a
complete join-sublattice of PW . Setting int(X) = ⋃{Cc ⊆ X | C ∈ L} for all X ⊆ W ,
where by Xc = W \ X we denote the complement of X relative to W , gives rise to an
operator int : PW → PW . This operator is an interior operator, meaning that it satisfies
axioms that are dual to those on closure operators given above. Moreover, int, as defined
above, is dual to cl in the sense that (int(X))c = cl(Xc) for all X ⊆ W .

Definition 8 A convex geometry on a set W is a closure operator co : PW → PW over W

that satisfies the following anti-exchange property that for all X ⊆ W and u, v ∈ W with
u 
= v such that u /∈ co(X) and v /∈ co(X) it holds that u /∈ co(X ∪ {v}) or v /∈ co(X ∪ {u}).

The closure operator co of a convex geometry is also called convex closure. The family of
closed subsets of a convex geometry is denoted by C and its members are called convex sets,
while the family of complements of convex sets is denoted by F and its members are called
feasible sets. We write fe : PW → PW for the interior operator given by the feasible sets. It
is also called the feasible interior and satisfies that fe(X) = ⋃{F ∈ F | F ⊆ X} = co(X)c

for all X ⊆ W .
A morphism from a convex geometry co on W to a convex geometry co′ over W ′ is a

function f : W → W ′ such that for any F that is feasible according to co it holds that its
direct image f [F ] is feasible according to co′; in other words, morphisms between convex
geometries preserve direct images of feasible sets. A morphism f from co to co′ is strong
if for every feasible set G in co′ there is a feasible set F in co such that f [F ] = G; in other
words, every feasible set is as the direct image of some feasible set.

The notion of morphism defined here is the same as the notion of a convex-to-convex
function in [38, p. 15] and is closely related to the definition of a homomorphic image in
[21, ch. III, sec 6]. More precisely, if one considers the convex geometry co′ on W ′ that
is the homomorphic image of a convex geometry co on W under a function f : W →
W ′ as defined in [21, ch. III, sec 6] then the function f is a strong morphism from co
to co′ in our terminology. However, our notion of morphism is unrelated to the notion of
a convexity preserving function in [38, p. 15], which is analogous to that of continuous
functions between topological spaces.

In what follows we switch freely between the different presentations of convex geome-
tries as closure operators co, co′, . . . , families of closed sets C, C ′, . . . , families of feasible
sets F ,F ′, . . . and interior operators fe, fe′, . . . .

Note that we do not require the empty set to be convex. This allows for a more elegant
duality with nonmonotonic consequence relations.

It is possible to reformulate the anti-exchange in terms of convex and feasible sets. Let us
say that a set separates two distinct points if it contains exactly one of them. Anti-exchange
then requires that for every convex set and two distinct points outside of the set there is
a convex set that extends the original set and separates the two points. For feasible sets it
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means that every feasible set which contains two distinct points contains another feasible
set separating the points.

The notion of a convex geometry is a combinatorial abstraction of notions of convexity
occurring in different contexts. The canonical example is the family of convex sets in a
Euclidean space:

Example 1 Let En be the Euclidean space of dimension n. A subset of E
n is convex if

for any two points in the subset every point on the straight line segment connecting the
two points is in the subset. The family of convex sets so defined is closed under arbitrary
intersections and satisfies the anti-exchange property, so it is a convex geometry.

Another example are the upset convexities of posets. These are relevant for this paper
because they relate to the standard semantics for nonmonotonic consequence relations,
which is defined on posets.

Example 2 Consider a poset P = (W,≤), that is a reflexive, transitive and anti-symmetric
relation ≤ ⊆ W × W on W . The upset closure of a set X ⊆ W is its upset: ↑X = {w ∈
W | w ≥ x for some x ∈ X}. Clearly, this satisfies the axioms for a closure operator and
one can check that it also satisfies anti-exchange, so it is a convex geometry.

One can check that morphisms between the upset convexities of posets (W,≤) and
(W ′,≤′) are functions f : W → W ′ which satisfy the back condition for bounded mor-
phism for the relation given by the downwards directed order relation. This means that
whenever f (w) ≥ v′ for some w ∈ W and v′ ∈ W ′ then there is some v ∈ W such that
w ≥ v′ and f (v) = v′. Strong morphisms are additionally surjective and order preserving,
which means, that they are precisely the surjective bounded morphism.

Every finite convex geometry can be represented as the upset convexity in a poset up
to a strong morphism of convex geometries [12, 20]; for a clear exposition we refer to
[21, ch. III, sec. 6]. This elegant representation, however, does not generalize to the infinite
case. Infinite well-founded convex geometries, which are introduced later and are dual to
nonmonotonic consequence relations, can still be represented by the upset convexity of a
poset. We explain this in Section 8.

Further examples of convex geometries can be found in [21, ch. III, sec. 2].

6 Extreme Points of Smooth Sets

In this section we characterize the subsets in a convex geometry that are contained in the
convex closure of their extreme points, which we call smooth. The well-founded convex
geometries, which are part of our duality, are then defined to be those convex geometries in
which all sets are smooth.

To define the notion of smooth set we need the notion of a trace [21, p. 27] or relative
convexity [38, p. 13]. Traces are the obvious restrictions of a convex geometry on W to a
convex geometry on some subset V ⊆ W .

Definition 9 Fix a convex geometry F on W . For every set V ⊆ W define the trace of F
on V to be the convex geometry FV = {F ∩ V ⊆ V | F ∈ F} on V .
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It is it easy to see that the trace of a convex geometry F on a set V ⊆ W is a convex
geometry on V .

We could equivalently define traces in terms convex sets. A set C′ ⊆ V is convex in the
trace of C on V iff C′ = C ∩ V for some C ∈ C.

We are now ready to define the notions of a smooth set in a convex geometry and of a
well-founded convex geometry. The notion of a smooth set is an adaptation of the notion of
smooth set from Definition 3.8 in [24] to convex geometries. Our notion of a well-founded
convex geometry is related to the version of the limit assumption that is formulated in [13,
p. 215].

Definition 10 A convex geometry F on W is smooth if for every feasible set F 
= ∅ there
is a set G that is a minimal element of the set {G ∈ F | G 
= ∅,G ⊆ F } for the ordering
given by ⊆.

A set K in some convex geometry F is smooth if the trace of F on K is smooth.
A convex geometry F on a set W is well-founded if every subset K ⊆ W is smooth in F .

Note that every finite set in a convex geometry is smooth, hence every finite convex
geometry is well-founded.

Remark 1 One has to be careful in formulating the definition of a smooth set K ⊆ W

directly in terms of the convex geometry F on W .
We first define for every K ⊆ W the preorder ⊆K on PW such that X ⊆K Y iff

K ∩ X ⊆ K ∩ Y .
One can now check that a set K ⊆ W is smooth iff for every feasible set F with K ∩F 
=

∅ there is a set G that is a minimal element of the set {G ∈ F | K ∩ G 
= ∅,G ⊆K F } for
the ordering ⊆K .

In terms of convex sets a set K ⊆ W is smooth iff for every convex set C with K � C

there is a set D that is a maximal element of the set {D ∈ C | K � D, C ⊆K D} for the
ordering ⊆K .

The following example shows that it is too strong to reformulate smoothness of K ⊆ W

in a convex geometry F on W to require that there exist suitable minimal elements with
respect to the ordering ⊆ on W . This justifies the restriction to the trace of F on K and to
the preorder ⊆K .

Example 3 Take the set W = ω + {�} of natural numbers with one extra point added.
Consider the convex geometry containing the following feasible sets:

F = {F ⊆ W | � /∈ F } ∪ {↑n ∪ {�} ⊆ ω | n ∈ ω},

where ↑n = {m ∈ ω|n ≤ m}. F is closed under arbitrary unions and satisfies anti-exchange.
Moreover one can show that it is well-founded. However there exists the infinite decreasing
chain of feasible sets ↑n ∪ {�} for each n ∈ ω. Hence there is no minimal feasible set in
the order ⊆ that intersects with {�}. Nevertheless {�} is smooth because relative to {�} the
whole chain collapses to {�}.

We now introduce the notion of the extreme points of a set in a convex geometry.
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Definition 11 Given a convex geometry co on W we define for every K ⊆ W the set
ex(K) ⊆ W of extreme points of K as

ex(K) =
⋂

{X ⊆ W | K ⊆ co(K ∩ X)}.

For us it is most convenient to use the above definition of extreme points. In the literature
one more commonly finds the definition that a point w ∈ K is an extreme point of K

if w /∈ co(K \ {w}). It is not difficult to check that ex(K) as defined in Definition 11 is
precisely the set of all extreme points in this sense.

Smooth sets are precisely those sets in a convex geometry for which the notion of extreme
points as defined above is well-behaved. In particular, for a smooth set the set of its extreme
points is the smallest subset such that its closure contains the original smooth set. This
follows from the following theorem:

Theorem 1 The following are equivalent for every set K ⊆ W in a convex geometry co on
W :

1. K is smooth.
2. For every family X ⊆ PW of subsets of W it holds that whenever K ⊆ co(K ∩ X) for

all X ∈ X then also K ⊆ co(K ∩ ⋂X ).
3. For all sets X ⊆ W it holds that

ex(K) ⊆ X iff K ⊆ co(K ∩ X). (3)

4. K ⊆ co(ex(K))

Proof We start by showing that 1 implies 2. Assume then that K is smooth and take a
family X ⊆ PW such that K ⊆ co(K ∩ X) for all X ∈ X . We need to show that K ⊆
co(K ∩ ⋂X ).

First observe that we can assume without loss of generality that X is not empty, since
if X is empty then the claim follows because by extensivity we have that K ⊆ co(K) =
co(K ∩ ⋂∅).

Assume then that X is not empty. Note that K ⊆ co(K ∩ ⋂X ) is equivalent to the
claim that K ⊆ C for every convex set C with K ∩ ⋂X ⊆ C. Similarly, our assumption
that K ⊆ co(K ∩ X) for all X ∈ X is equivalent to the claim that K ⊆ C for every convex
set C for which there is an X ∈ X with K ∩ X ⊆ C.

Pick any convex set C such that K ∩ ⋂X ⊆ C. We want to show that K ⊆ C. Assume
for a contradiction that K � C. From one of the reformulation of smoothness in Remark 1
it follows that there is a convex set D with C ⊆K D that is maximal in ⊆K with the
property that D is convex, C ⊆K D and K � D. It then follows that K ∩ X � D for all
X ∈ X , because otherwise from the assumption in the previous paragraph it would follow
that K ⊆ D. This then means that for every X ∈ X there is some pX ∈ K ∩ X such that
pX /∈ D.

Since X is not empty there is some X1 ∈ X . Set p1 = pX1 so that p1 ∈ K ∩ X1 and
p1 /∈ D.

We can then also show that there exists p2 
= p1 with p2 = pX2 ∈ K ∩ X2 for some
X2 ∈ X such that p2 /∈ D. Otherwise, p1 = pX ∈ K ∩ X for all X ∈ X and hence
p1 ∈ K ∩ ⋂X . This contradicts p1 /∈ D because we assumed that K ∩ ⋂

X ⊆ C hence
p1 ∈ K ∩ C; but we also had that C ⊆K D.
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Now we can apply anti-exchange, which yields a convex set D+ with D ⊆ D+ that
separates p1 and p2. Assume without loss of generality that p1 ∈ D+ and p2 /∈ D+.
From p1 ∈ D+ it follows that it is not the case that D+ ⊆K D because p1 ∈ K but
p1 /∈ D.

From p2 /∈ D+ it follows that K � D+ because p2 ∈ K . We also have that C ⊆K D+
because C ⊆K D. But now we can obtain a contradiction with the assumption that D is
maximal with respect to ⊆K with the property that D is convex, C ⊆K D and K � D.
Indeed, clearly D+ has this property and it is strictly above D with respect to ⊆K because
D ⊆ D+ hence D ⊆K D+ and it is not the case that D+ ⊆K D.

Let us then consider the implication from 2 to 3. First note that the direction from right-
to-left in Eq. 3 is obvious from Definition 11. To show the direction from left-to-right
assume that ex(K) ⊆ X. To prove K ⊆ co(K ∩ X) it then suffices by the monotonicity of
co to show K ⊆ co(K ∩ ex(K)). This however follows from claim 2 and the observation
that ex(K) = ⋂X , where X = {X ⊆ W | K ⊆ co(K ∩ X)}.

Now consider the implication from 3 to 4. First observe that by Definition 11 we have
that ex(K) ⊆ K because by extensivity K ⊆ co(K ∩ K). To show that K ⊆ co(ex(K))

apply the left-to-right direction of Eq. 3 to ex(K) ⊆ ex(K) yielding K ⊆ co(K ∩ ex(K)).
It follows that K ⊆ co(ex(K)) since ex(K) ⊆ K .

Lastly we show the implication from 4 to 1. So assume that K ⊆ co(ex(K)). We show
that K is smooth. By the first reformulation of smoothness in Remark 1 it suffices to show
that for every feasible set F such that F ∩ K 
= ∅ there is a set G that is minimal relative to
the ordering ⊆K for the property that G is feasible, K ∩ G 
= ∅, G ⊆K F .

Let then F be such a feasible set. We first show that we can choose a p ∈ ex(K) ∩ F .
Assume towards a contradiction that ex(K) ∩ F = ∅ and hence ex(K) ⊆ Fc. From the
assumption that K ⊆ co(ex(K)) it follows that K ⊆ co(F c) since co is monotone. But
since F is feasible then Fc is convex which means that co(Fcomple) = Fcomple, hence
K ⊆ Fcomple. This contradicts the assumption that K ∩ F 
= ∅.

Define now the set G = (co(K \ {p}))c. We now show that K ∩ G = {p}. The inclu-
sion K ∩ G ⊆ {p} follows because by the extensiveness of co we have that K \ {p} ⊆
co(K \ {p}) = Gcomple. For the other inclusion we need to show that p ∈ K ∩ G.
Clearly p ∈ K , so it remains to show that p ∈ G. Assume for a contradiction that
p ∈ Gcomple = co(K \ {p}). By extensivity of co we have that K \ {p} ⊆ co(K \ {p}),
and hence K ⊆ co(K \ {p}) = co(K ∩ (K \ {p})). By Definition 11 it follows that
ex(K) ⊆ K \ {p}, which contradicts the fact that p ∈ ex(K).

Using that K ∩ G = {p} we can show that G has the minimality property stated above.
Clearly G is feasible since it is the complement of a convex set and K ∩ G 
= ∅. Moreover,
G ⊆K F because K ∩ G = {p} and p ∈ F . Finally, G is minimal with respect to ⊆K for
these properties because the only sets which are strictly below G with respect to ⊆K have
an empty intersection with K .

Example 4 The Krein-Milman Theorem states that in E
n every compact convex set is the

convex closure of its extreme points, which entails statement 4 of Theorem 1. Hence all
compact convex subsets of En are smooth in our terminology.

Example 5 Consider the case where co is the upset closure of a poset P = (W,≤). Then for
any K ⊆ W the set ex(K) of its extreme points is precisely the set of the minimal elements
of K in the poset. As in [24], smoothness of a set K means that for any element w ∈ K

there exists an element v ∈ ex(K) such that v ≤ w. Well-foundedness of the upset closure
co then amounts to well-foundedness of a poset in the usual sense.
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The standard semantics for nonmonotonic consequence relations on posets is defined
such that A|∼ C holds in some poset if and only if all minimal elements of A are in C,
where A is assumed to be well-founded. Using (3) from Theorem 1 this semantic clause
is equivalent to A ⊆ co(A ∩ C). We use this formulation of the semantic clause for the
duality result in the following section. An advantage of working with this reformulation of
the semantic clause is that co is a monotone operator on PW , whereas ex is not.

7 The Duality

In this section we prove the duality between nonmonotonic consequence relations and well-
founded convex geometries. We first show how to obtain a nonmonotonic consequence
relation from a convex geometry, following the discussion in Example 5.

Definition 12 For every well-founded convex geometry co on W we define the induced
relation |∼ ⊆ PW × PW for W by setting for all A,C ∈ PW

A|∼ C iff A ⊆ co(A ∩ C).

We show in Proposition 6 that the relation induced by a well-founded convex geometry
is a nonmonotonic consequence relation.

In the other direction we can define an operator from a nonmonotonic consequence rela-
tion. Propositions 7, 8 and 9 below show that this definition yields a well-founded convex
geometry.

Definition 13 For every nonmonotonic consequence relation | ∼ for W we define the
induced operator co : PW → PW on W such that for all C ⊆ W

co(C) =
⋃

{A ⊆ W | A|∼ C}.

This definition of the induced operator is similar to the definition of the operator C from
a choice function C in [22, p. 37].

Proposition 6 The relation | ∼ induced by a well-founded convex geometry co is a
nonmonotonic consequence relation for W .

Proof We have to check that the relation |∼ from Definition 12 satisfies all the conditions
on nonmonotonic consequence relations. This is easy to verify directly for all the conditions
but (And∞). So we do those first.

For (Id) observe that A ⊆ co(A) ⊆ co(A ∩ A) because co is extensive.
For (RW) assume that A ⊆ co(A ∩ C) and pick any D such that C ⊆ D. We need that

A ⊆ co(A ∩ D), which holds because A ∩ C ⊆ A ∩ D and co is monotone.
For (WCM) assume A ⊆ co(A ∩ B ∩ C). It then trivially follows that A ∩ B ⊆

co(A ∩ B ∩ C) because A ∩ B ⊆ A.
For (Or) assume that A ⊆ co(A ∩ C) and B ⊆ co(B ∩ C). Because A ∩ C ⊆ (A ∪

B) ∩ C it follows from the monotonicity of co that A ⊆ co((A ∪ B) ∩ C). Analogously
we obtain B ⊆ co((A ∪ B) ∩ C) from B ⊆ co(B ∩ C). Hence it follows that A ∪ B ⊆
co((A ∪ B) ∩ C).
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Lastly, consider (And∞). This follows directly from statement 2 in Theorem 1. Note
however that the application of this theorem presupposes that every subset of W is smooth
in co, which is just the well-foundedness of co. Moreover, note that the proof of Theorem 1
makes use of the exchange property.

Proposition 7 The operator co : PW → PW induced by a nonmonotonic consequence
relation |∼ for W is a closure operator.

Proof (RW) implies that co is order preserving and (Id) implies that co is extensive.
To prove that co is idempotent first note that from applying (Or∞) to the union defin-

ing co in Definition 13 we obtain co(C)|∼ C. We show that co(co(C)) ⊆ co(C). Since
co(co(C)) is defined to be the union of all A such that A|∼ co(C) it suffices to show that
A ⊆ co(C) for every such A. Take any A with A|∼ co(C). From (CCut’) it follows that
A ∪ co(C)|∼ C. Hence A ∪ co(C) ⊆ co(C), which clearly entails that A ⊆ co(C).

Proposition 8 The operator co : PW → PW induced by a nonmonotonic consequence
relation |∼ for W satisfies the anti-exchange property.

Proof We show that for all X ⊆ W and u, v ∈ W with u 
= v if u ∈ co(X ∪ {v})
and v ∈ co(X ∪ {u}) then u ∈ co(X) and v ∈ co(X). This clearly suffices to obtain the
contrapositive of anti-exchange.

From u ∈ co(X ∪ {v}) it follows that there is some A such that u ∈ A and A|∼ X ∪ {v}.
Analogously it follows from v ∈ co(X ∪ {u}) that there is some B such that v ∈ B and
B|∼ X ∪ {u}.

Consider A|∼ X ∪ {v}. Because u ∈ A this is equivalent to A ∪ {u}|∼ X ∪ {v}. Clearly
this is equivalent to A ∪ {u}|∼ (X ∪ {u} ∪ {v}) ∩ (X ∪ {v}). From (WCM) it follows that
(A∪{u})∩(X∪{u}∪{v})|∼ X∪{v}, which is equivalent to (A∩(X∪{v}))∪{u}|∼ X∪{v}.
If we then use (Or) with the instance X ∪ {v}|∼ X ∪ {v} of (Id) we obtain (A ∩ (X ∪ {v})) ∪
{u} ∪ X ∪ {v}|∼ X ∪ {v}. This simplifies to X ∪ {u} ∪ {v}|∼ X ∪ {v}.

Analogous reasoning applied to B|∼ X ∪ {u} yields X ∪ {u} ∪ {v}|∼ X ∪ {u}. But then
we can use (And) to obtain X ∪ {u} ∪ {v}|∼ X, which means that u, v ∈ co(X).

The previous propositions allow us to speak of the nonmonotonic consequence rela-
tion induced by a well-founded convex geometry and the convex geometry induced by
a nonmonotonic consequence relation when referring to the constructions in Definitions
12 and 13.

Proposition 9 The convex geometry co on W induced by a nonmonotonic consequence
relation |∼ for W is well-founded.

Proof We show that every K ⊆ W is smooth. Fix K ⊆ W . We use Theorem 1 and show
that statement 2 is satisfied by K .

Consider any family X ⊆ PW such that K ⊆ co(K ∩ X) for every X ∈ X . We need to
show K ⊆ co(K ∩ ⋂X ). We show that for every X ∈ X it holds that K|∼ K ∩ X. From
this it follows by (And∞) that K|∼ K ∩⋂X and hence we obtain K ⊆ co(K ∩ ⋂X ) from
Definition 13.

To see that K|∼ K ∩ X holds for every X ∈ X with K ⊆ co(K ∩ X) fix an arbitrary
such X. With (Id) and (RW) it follows that K|∼ co(K ∩ X). Applying (Or∞) to the union
defining co in Definition 13 yields that co(K ∩ X)|∼ K ∩ X. By (CCut’) we obtain that
K ∪ co(K ∩ X)|∼ K ∩ X. With (RW) we also get that K ∪ co(K ∩ X)|∼ K and hence it
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follows by (CM) that (K ∪ co(K ∩ X)) ∩ K|∼ K ∩ X. This is obviously equivalent to the
required K|∼ K ∩ X.

We now show that these constructions behave well with respect to morphisms.

Proposition 10 Take a morphism of convex geometries f : W → W ′ from a convex geom-
etry co on W to a convex geometry co′ on W ′. Then f is a morphism of nonmonotonic
consequence relations from the nonmonotonic consequence relation |∼′ for W ′ induced by
co′ to the nonmonotonic consequence relation |∼ for W induced by co.

Proof To prove that f is a morphism of nonmonotonic consequence relations we need to
check that for all A,C ⊆ W ′ with A|∼′ C it follows that f −1[A]|∼ f −1[C]. Take any such
A, C ⊆ W ′ with A|∼′ C. Because |∼′ is the nonmonotonic consequence relation induced
by co′ this means that A ⊆ co′(A ∩ C).

To prove f −1[A]|∼ f −1[C] we show that f −1[A] ⊆ co(f −1[A] ∩ f −1[C]). Hence
pick any w ∈ f −1[A]. We derive a contradiction from the assumption that w /∈
co(f −1[A] ∩ f −1[C]). It follows that

w ∈ (co(f −1[A] ∩ f −1[C]))c = fe((f −1[A] ∩ f −1[C])c) = fe(f −1[(A ∩ C)c]).
By the definition of fe then there is some feasible set F ⊆ f −1[(A ∩ C)c] such that w ∈ F .
It follows that

f (w) ∈ f [F ] ⊆ f [f −1[(A ∩ C)c]] ⊆ A ∩ Cc.

Because f is assumed to be a morphism of convex geometries we have that f [F ] is a
feasible set. Hence f (w) ∈ fe′((A ∩ C)c) and so f (w) /∈ co′(A ∩ C). From the assumption
that A ⊆ co′(A ∩ C) it follows that f (w) /∈ A which is a contradiction to the assumption
that w ∈ f −1[A].

Proposition 11 Take a morphism of nonmonotonic consequence relations f : W → W ′
from a nonmonotonic consequence relation |∼′ for W ′ to a nonmonotonic consequence
relation |∼ for W . Then f is a morphism of convex geometries from the convex geometry co
on W induced by |∼ to the convex geometry co′ on W ′ induced by |∼′.

Proof To show that f is a morphism of convex geometries we need to show that f [F ] is
feasible whenever F is. So pick any feasible F ⊆ W . We show that f [F ] ⊆ fe′(f [F ]).
Assume for a contradiction that we have a v ∈ f [F ] with v /∈ fe′(f [F ]). It follows that
v ∈ (fe′(f [F ]))c = co′((f [F ])c). Because co′ is induced by |∼′ this means that there is
some A ⊆ W ′ with A|∼′ (f [F ])c such that v ∈ A.

Because f is a morphism of nonmonotonic consequence relations it follows that
f −1[A]|∼ f −1[(f [F ])c]. Because v ∈ f [F ] there needs to be some w ∈ F such that
f (w) = v. It follows that w ∈ f −1[A] since we had that v ∈ A. Using the definition of
co from |∼ we obtain that w ∈ co(f −1[(f [F ])c]). Using that F ⊆ f −1[f [F ]] and the
monotonicity of co we then have

co(f −1[(f [F ])c]) = co((f −1[f [F ]])c) ⊆ co(F c) = Fc.

Hence we can use w ∈ co(f −1[(f [F ])c]) to obtain the contradiction that w /∈ F .

We can also show that the property of being a strong morphism is preserved by our
constructions.
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Proposition 12 Take a strong morphism of convex geometries f : W → W ′ from a con-
vex geometry co on W to a convex geometry co′ on W ′. Then f is a strong morphism
of nonmonotonic consequence relations from the nonmonotonic consequence relation |∼′
for W ′ induced by co′ to the nonmonotonic consequence relation |∼ for W induced by
co.

Proof In order to show that f is a strong morphism we show that the nonmonotonic
consequence relation is reversed along f −1[·]. Hence, consider A,C ⊆ W ′ such that
f −1[A]|∼ f −1[C]. This means that f −1[A] ⊆ co(f −1[A] ∩ f −1[C]). We need to show
that A|∼′ C, that is, A ⊆ co′(A ∩ C).

We prove the contrapositive that for every v /∈ co′(A ∩ C) it follows that v /∈ A. From
v /∈ co′(A ∩ C) we obtain that v ∈ fe′((A ∩ C)c) and hence there is some feasible set
G ⊆ (A ∩ C)c with v ∈ G.

Because f is a strong morphism of convex geometries there is then a feasible set F

such that f [F ] = G. This entails that F ⊆ f −1[f [F ]] = f −1[G]. Moreover we have
that f −1[G] ⊆ f −1[(A ∩ C)c] = (f −1[A ∩ C])c = (f −1[A] ∩ f −1[C])c. Hence F ⊆
(f −1[A] ∩ f −1[C])c. Because F is feasible it follows that F ⊆ fe((f −1[A] ∩ f −1[C])c) =
(co(f −1[A] ∩ f −1[B]))c. Using the assumption that f −1[A] ⊆ co(f −1[A] ∩ f −1[C]) we
get that F ⊆ (f −1[A])c = f −1[Ac].

Now consider a w ∈ F such that f (w) = v, which exists because v ∈ G = f [F ]. From
the last statement in the previous paragraph it follows that w ∈ f −1[Ac] which entails that
v ∈ Ac and we are done.

Proposition 13 Take a strong morphism of nonmonotonic consequence relations f : W →
W ′ from a nonmonotonic consequence relation | ∼′ for W ′ to a nonmonotonic conse-
quence relation |∼ for W . Then f is a strong morphism of convex geometries from the
convex geometry co on W induced by | ∼ to the convex geometry co′ on W ′ induced
by |∼′.

Proof Our assumption that f : W → W ′ is a strong morphism of nonmonotonic conse-
quence relations means that f −1[A]|∼ f −1[C] implies A|∼′ C for all A,C ⊆ W ′. We need
to show that f is a strong morphism of convex geometries. To do so we show that for every
feasible set G in F ′ it holds that G = f [fe(f −1[G])], and hence it arises as the image of a
feasible set.

The right-to-left inclusion follows immediately because f −1[G] ⊇ fe(f −1[G]) and
hence G ⊇ f [f −1[G]] ⊇ f [fe(f −1[G])].

For the left-to-right inclusion we prove the contrapositive. Pick any v ∈ W ′ with v /∈
f [fe(f −1[G])]. We want to show that then v /∈ G.

First observe that f −1[{v}] ⊆ (fe(f −1[G]))c, because otherwise there would be a w ∈
fe(f −1[G]) with f (w) = v and hence we would have that v ∈ f [fe(f −1[G])], which yields
a contradiction with our choice of v. It then follows that f −1[{v}] ⊆ co((f −1[G])c) =
co(f −1[Gc]).

Now recall that by Definition 13 co(f −1[Gc]) = ⋃{B ⊆ W | B|∼ f −1[Gc]}. Using
the infinitary or rule (Or∞) we obtain one single B ⊆ W such that f −1[{v}] ⊆ B and
B|∼ f −1[Gc]. Using (Id) and (Or) we obtain B ∪ f −1[Gc]|∼ f −1[Gc]. Since f −1[Gc] =
(f −1[{v}] ∪ f −1[Gc]) ∩ f −1[Gc] we can use (WCM) to conclude that (B ∪ f −1[Gc]) ∩
(f −1[{v}] ∪ f −1[Gc])|∼ f −1[Gc]. By distributivity we get (B ∩ f −1[{v}]) ∪ f −1[Gc]|∼
f −1[Gc] and because f −1[{v}] ⊆ B this is equivalent to f −1[{v}] ∪ f −1[Gc]|∼ f −1[Gc].
Clearly this means that f −1[{v} ∪ Gc]|∼ f −1[Gc].
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From our assumption we now obtain that {v} ∪ Gc|∼′ Gc. By Definition 13 this entails
v ∈ co′(Gc). Since G is feasible Gc is convex and hence we have co′(Gc) = Gc. Therefore
we obtain v ∈ Gc which implies v /∈ G and we are done.

We can finally show that the correspondence between nonmonotonic consequence
relations and convex geometries is bijective.

Proposition 14 Take a nonmonotonic consequence relation |∼ for W . Let co be the convex
geometry on W induced by |∼ and let |∼′ be the nonmonotonic consequence relation for W

that is induced by co. It holds that |∼′ is equal to |∼.

Proof We first show that A|∼ C implies A|∼′ C for all A,C ⊆ W . Take A,C ⊆ W with
A|∼ C. We need to show that A|∼′ C which means that A ⊆ co(A ∩ C). Using (Id) and
(And) we obtain A|∼ A ∩ C so A ⊆ ⋃{B ⊆ W | B|∼ A ∩ C} = co(A ∩ C).

To show that A|∼′ C implies A|∼ C for all A,C ⊆ W assume that A|∼′ C. We need to
show that A|∼ C. The assumption that A|∼′ C means by definition that A ⊆ co(A ∩ C).
By (Id) and (RW) we first obtain that A|∼ co(A ∩ C). From the definition co(A ∩ C) =⋃{B ⊆ W | B|∼ A ∩ C} we can deduce with (Or∞) that co(A ∩ C)|∼ A ∩ C. It follows
using (CCut’) that A∪co(A ∩ C)|∼ A∩C. With (WCM) we obtain (A∪co(A ∩ C))∩A|∼
C, which is equivalent to A|∼ C.

Proposition 15 Take a convex geometry co on W . Let |∼ be the nonmonotonic consequence
relation for W that is induced by co and let co′ be the convex geometry on W that is induced
by |∼. It holds that co′ is equal to co.

Proof We first show that co(C) ⊆ co′(C) for all C ⊆ W . By definition co(C) = ⋃{A ⊆
W | A|∼ C} and hence it suffices to show that co(C)|∼ C. By the definition of |∼ this
is equivalent to showing that co(C) ⊆ co(co(C) ∩ C). But this is obvious since by the
extensivity of co we have that co(C) ∩ C = C.

The other inclusion is that co′(C) ⊆ co(C). We can show this by picking any A ⊆ W

with A|∼ C and showing that A ⊆ co(C). Fix such an A. By definition A|∼ C entails that
A ⊆ co(A ∩ C) and hence A ⊆ co(C) because co is monotone.

We summarize the results from this section in the following theorem:

Theorem 2 The category of nonmonotonic consequence relations over complete atomic
Boolean algebras satisfying the rules of System P∞is dually equivalent to the category of
well-founded convex geometries. The duality restricts to strong morphisms on both sides.

8 Conclusion

In this paper we have shown that nonmonotonic consequence relations over complete atomic
Boolean algebras are dual to well-founded convex geometries. We hope that this result might
lead to a transfer of insights between the study of nonmonotonic consequence relations and
of convex geometries; two fields that, so far, have been developed independently of each
other.

Our duality allows us to better understand the completeness proof for System P with
respect to its order semantics [7, 24, 39], since it can be analyses as consisting of two steps.
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First we use the duality to construct a convex geometry from a nonmonotonic consequence
relation. In the second step we represent this convex geometry as the upset convexity of
a poset, up-to a strong morphism of convex geometries. In the finite case one can use the
representation of [12, 20]. We do not know of an analogous result in the literature that
works also for infinite convex geometries. However, Theorem 4 in [9] and the completeness
results for System P∞in [26] suggest that such a representation might also be obtainable for
well-founded infinite convex geometries.

A further question is whether System P is complete with respect to convexities that arise
naturally in geometry. It is shown in [19], but see also [34] for a more accessible proof,
that every finite convex geometry is isomorphic to the trace of a generalized convexity for
E

n on finitely many points. The notion of a generalized convexity on E
n is introduced

in this paper and distinct from the standard convexity on E
n. Together with our duality

this representation results immediately implies the weak completeness of System P with
respect to such generalized convexities on E

n. It is an open question whether this weak
completeness can be adapted to the standard convexity on E

n. For weak completeness it
would suffice to represent an arbitrary finite convex geometry co by means of a strong
morphism from the trace of the standard convexity on a finite subset of En to co, analogously
to the representation of convex geometries by means of posets.

In [30] a labelled sequent calculus for System P is introduced in which points and sets of
points are syntactic elements of the calculus. In light of our duality between System P and
convex geometries it would be interesting to see whether this calculus could be reinterpreted
in terms of points and convex sets. This might allow for the application of these proof
systems to reason about convexity.

A further open problem is to characterize the morphism of choice functions f : W → W ′
that satisfy f −1[E′(A)] ⊆ E(f −1[A]) for all A ∈ PW ′ in terms of convex geometries. In
the case of posets one can easily check, or adapt the results from [42], that these are the
functions f which are strictly order preserving, meaning that w < v implies f (w) < f (v)

for all w, v ∈ W . We were unable to find a characterization for general well-founded convex
geometries.

A final open question is whether the setting of this paper can be adapted to a duality
between nonmonotonic consequence relations over arbitrary infinite Boolean algebras sat-
isfying the axioms of System P and convex geometries over Stone spaces. This requires
the formulation of suitable conditions ensuring the compatibility of the convexity with the
Stone topology.
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