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Abstract. The Dynamic Vision Sensor (DVS) has many attributes,
such as sub-millisecond response time along with a good low light dy-
namic range, that allows it to be well suited to the task for UAV De-
tection. This paper proposes a system that exploits the features of an
event camera solely for UAV detection while combining it with a Spik-
ing Neural Network (SNN) trained using the unsupervised approach of
Spike Time-Dependent Plasticity (STDP), to create an asynchronous,
low power system with low computational overhead. Utilising the unique
features of both the sensor and the network, this result in a system that
is robust to a wide variety in lighting conditions, has a high temporal
resolution, propagates only the minimal amount of information through
the network, while training using the equivalent of 43,000 images. The
network returns a 91% detection rate when shown other objects and can
detect a UAV with less than 1% of pixels on the sensor being used for
processing.
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1 Introduction

Consumer UAVs and micro-UAVs are increasingly available at low cost, allowing
their use in commercial applications (inspection, filming and deliveries)[14] and
social use by the general public to become more frequent [19]. However, as the
number of UAVs in circulation increases, so does the concern for misuse and
accidents. A prime example in the UK recently was the closure of airports due
to UAV flying over this restricted area [1], with near misses recorded in the UK
in 2018 as 117, up 10 times from 4 years ago [5]. Nonetheless, a number of other
concerns, other than collisions, exist due to the UAVs ability to carry a small
payload: these could contain potentially harmful chemical or explosives or could
be used to smuggle illegal goods [6].
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Detection of UAVs is not trivial due to their small form factor, coupled with
the expanse of the search space. They also possess a high range of manoeu-
vrability while being difficult to discriminate against birds at distant ranges.
These features make it difficult for typical detection approaches such as visual,
infra-red, audio and radar to detect the UAV in a wide range of situations [6].

This paper presents a novel UAV Detection system, utilising the features of
both the Dynamic Vision Sensor (DVS) and Spiking Neural Network (SNN).
This end-to-end spiking Neuromorphic system possesses the following range of
features: asynchronous functionality, low power consumption, low computational
throughput, high dynamic range, high temporal resolution and dynamic relation-
ship with scene environment. The results of a pilot study show that this system
is ideal for the task of UAV detection, displaying features that are unmatched
by any other single sensor systems.

The remainder of the paper is organised as follows. Section 2 provides back-
ground on the sensor and the spiking network used and explaining the unsu-
pervised learning mechanism. Section 3 provides details about the experimental
set-up, Section 4 shows off the results of the system and Section 5 has the dis-
cussion of these results.

2 Background

Neuromorphic engineering combines research from both the neuroscience and
computational neuroscience fields that is exploited within an Engineering as-
pect. The proposed system makes use of three such Neuromorphic approaches,
the event-based camera, spiking neural network and spike time dependent plas-
ticity. The respective sensor, neuron model and learning mechanism combine
with a traditional Deep Convolutional Neural Network (DCNN) architecture, to
capitalise on the characteristic unique to each.

2.1 Dynamic Vision Sensor - Event Based Camera

The Dynamic Vision Sensor is a biologically-inspired sensor (silicon retina) cre-
ated to mimic how human eye perceives motion with their retina: as such the sen-
sor asynchronously transmits the logarithmic light intensity difference (events)
on a pixel by pixel level. This replaces the fixed frame rate traditional camera
images, with a far more compressed and sparse output, resulting in 1 to 3 orders
of magnitude increase in output rate (33 ms traditional to 15 µs Event Based)
[4]. This allows the sensor to have a much higher temporal resolution (in essence
a 66000 frames per second super slow-motion camera for up to 800 pixels, as
compared to real world frames per second closer to 1-2,000) but without the
caveat of the extra processing required for the pixels that didn’t change. An-
other feature is the DVS’s high dynamic range, rated at >120dB vs the <60dB
of traditional cameras [4, 11]. This allows the event based camera to see in a
wide variety of lighting conditions, from quickly changing brightness conditions,
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to low light ones, where traditional cameras would not be able to detect any-
thing. A comparison of images captured from a DSLR and the DVS, showing
UAVs flying in a well lit and low light scene, are illustrated in Figure 1. It can be
seen that the DVS camera is able to capture the shape of the UAV in a well lit
situation Fig.1(b) and (c) and is also able to capture the shape in the low light
situation when the outline of the UAV is indistinguishable in Fig.1(e) and (f).
The images in Fig.1 (c) and (f) show a typical post processing median filtering
of the images to give better sensor noise suppression.

(a)
(Visual Band)

(b)
(Raw DVS Events)

(c)
(Filtered DVS Events)

(d) (e) (f)

Fig. 1. Use of the High Dynamic Range within the DVS to capture stark lighting
differences. (TOP) Indoor well lit scene (BOTTOM) Low light scene.

The advantages of the DVS leads to the main attribute exploited within this
paper, that relates the dynamic relationship to the visual source. This attribute is
how the sensor can deliver a sparse yet detailed account of the scene, minimising
computation and power. An example of this is shown in Figure 2 highlights the
ability to change the integration time of the events captured to create a frame
(for visual representation and training). The top row shows a slow-moving UAV,
where a higher integration time is required to collect enough event to represent
the UAV, as not as many changes in light intensity occur. While the bottom
row illustrates the removal of motion blur, in a fast-moving UAV collision, by
decreasing the integration time. The integration times can also be overlapped
allowing a combination of both a longer integration time to capture events and
the fine temporal resolution changes in the scene. The main drawback to the
current DVS technology is the low spatial resolution. However, active research
in this area has shown cameras with a sensor size of 640x480 [16] and 384x320
[9] pixels can be produced while maintaining the useful features.

2.2 Spiking Neural Network

The network used within this paper makes use of both the benefits of convolu-
tional and spiking neural networks.
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(a)
200ms

(b)
100ms

(c)
50ms

(d)
30ms

(e)
10ms

(f) (g) (h) (i) (j)

Fig. 2. DVS filtered events captured in a range of time frames for a low speed (TOP)and
high speed scene (BOTTOM)

The CNN brings a local spatial coherence and parameter/weight sharing
method, that allows an image to be compressed, such that it can be repre-
sented by a respectively smaller number of features versus the number of pixel
in the image. Combining these features within progressive layers allows fur-
ther compression to occur. The SNN allows sparsity to occur through changing
of the neuron model, and learning mechanism. The new neuron model con-
verts the floating point values travelling through the network with 1 bit bi-
nary spikes. These spikes are far more simplistic in nature, with constant am-
plitude and duration of individual spikes. Their information is characterised
entirely by their emission time (when a neuron fired), and frequency of fir-
ing (how often a neuron fires). The neurons have a threshold to reach be-
fore passing information forward, but further information can be inferred from
the timing of frequency of the neuron firing. In other words, only passing a
small amount of important information through the network, but in a timely
manner. This can be seen as similar to that of the primate visual system,
which has been shown to have spike rates on the order of a few hertz [15].

Fig. 3. SNN Architecture 3 Layer Convolu-
tion and Pooling

The change in the neuron model leads
to a very important paradigm shift
in the network: from looking for con-
tent, to looking for context. This reit-
erates the usefulness of the sparse in-
formation transfer that can relate im-
portance into it’s time dependency. In
that, a few import pieces of context
can be used to build content, but no
amount of content can give you con-
text. This type of sparse, spike-time-
based deep network [10, 12, 17] is not
as suited for a backpropagation learning mechanism as a CNN. It then makes use
of a simplified unsupervised Spike-Time Dependent Plasticity (STDP) rule [2]
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in combination with a winner-takes-all (WTA) approach, to extract hierarchical
features in CNN-like architecture. The described network, illustrated in Figure 3,
shows the typical three convolution layers with pooling layer in-between. Unlike
CNN learning, with STDP each convolution layer has an intra and inter lateral
inhibition mechanism [18, 10]. This helps the network to reduce the information
propagated, especially redundant and repeating information, while ensuring that
the most salient information is maintained. It operates by only allowing one fea-
ture (neuron) in a feature (neuron) map to fire per frame, seen as an intra map
competition. This WTA approach then moves onto the inter map inhibition.
Only allowing one spike to occur in any given spatial region, typically the size
of the convolution kernel, throughout all the maps. When not training the con-
volution and pooling layers operate in a standard procedure, with the pooling
also following the WTA theme with a max pool operation.

3 Methodology

Two different methods of capturing data were used in this work. Actual events
captured from a DVS and simulated events generated from data captured from
a higher resolution DSLR camera. The following describes the set up for the
experimental data collection and simulated sensor data creation along with any
specifics pertaining to the network and learning mechanism.

Fig. 4. Indoor Test Set Up

3.1 Dynamic Vision Sensor Data

The data was captured within a small (basket-
ball court sized) gymnasium, as seen in Figure
4, in order to be able to control the amount
of light in a given scene. Two different sized
UAVs (DJI Phantom [without propellers - 290
x 290 x 195 mm] and DJI Tello [98 x 92.5 x 41 mm]) were used which allowed a
wider range of test scenarios to be replicated. The event data was captured using
a DVS240 Neuromorphic Vision Sensor with a spatial resolution of 240x180 and
asynchronous event output. It was mounted on top of a DSLR Camera, produc-
ing a 1920x1080 output at 60 Frames per Second (FPS), both pictured in Figure
4. This was used for ground truth data and use within the simulated data as a
means of comparison. The DVS camera is set up to give out a tuple for each
spike event, these contain the xy coordinate, the timestamp of when the event
occurred, and the polarity of the change in intensity. However, during training
and testing of the proposed system the polarity value was ignored, compress-
ing all the spike information into one channel instead of two. The time-stamp
data was embedded into each of the frames used for the dataset, this provides a
significant advantage over simulated event data [10] as the earlier events are no
longer just the highest contrast, but actually, still represent the spatio-temporal
domain they were captured in. To further improve this temporal aspect a range
of integration time for the dataset frame collection was used, ranging from 10ms
up to 200ms with overlaps in the time windows of 10%, 50% and 90%. This



6 P. Kirkland et al.

wide variety in the frames allows the sensor to capture a diverse range of speed
variability within the sensor field of view. This allows the temporal data, usually
lost in the snapshot of a frame to be instilled within event capture.

3.2 Simulated Dynamic Vision Sensor Data

There are two sources of UAV footage used for the simulated event data: Video
recorded from a DSLR camera as explained in the previous section. The other
footage is captured from some outside testing using a DSLR(1920x1080 @ 30-
60fps).

Fig. 5. Simulated UAVs

An example of the simulated
data is provided in Figure
5, which shows a simulated
events frame, along with the
pre and post the processing
stage when the resolution is down-sampled to 240x180. The outdoor footage
provides a wide range of lighting conditions per frame and a number of differ-
ent background disturbances to cause noise and clutter in the data (clouds and
ground objects). The only issue with simulating the event data is the inher-

Table 1. Table of Network Parameters.

Layer Conv. 1 Pool 1 Conv. 2 Pool 2 Conv. 3

Filter Size 5 5 10 5 5

Number of Maps 4 4 20 20 10

Stride 1 5 1 5 1

Propagation Threshold ∝ Input Spikes 1 45 1 3

Initial Weights Mean of 0.8 with STD 0.08

ent lack of temporal resolution (missing information between each frame that
needs to be interpolated). A number of simulators already exist [3, 7, 13], with
PIX2NVS [3] being the event simulator used in this paper. The event sensor sim-
ulator takes the frame rate and interpolates the events that would exist between
the frames. This is limited to the actual recorded frame rate of the footage, so to
further enhance the temporal resolution, some extra post processing is carried
out to reduce the number of spikes. Allowing a higher fidelity capture of only
the edges of the moving objects.

3.3 Proposed UAV Detection System

As mentioned in Section 3.1 the asynchronous data produced by the DVS cam-
era is converted into a frame, embedded with the temporal data (a image where
the value of a pixel is the time-stamp of the event occurrence). This frame is
then used within a layer-wise learning methodology to extract and build fea-
tures to allow the network to successfully identify a UAV. A list of the network
parameters is shown in Table 1, which also highlights a novel feature of the
proposed system, pre-emptive neuron thresholding (PENT). The PENT takes
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the typically reactive neuron thresholding concept [8], but allows it to work in
advance of the spikes reaching a neuron. This concept is to overcome the po-
tential of spikes saturating the first layer of the SNN causing a false detection
in the system. A typical reactive system would adapt the neuron thresholds if
the saturation continued over time, but with the PENT approach, the system is
able to act in a timely manner to prevent such saturation from propagating false
features through the network. The detection parameters for finding a UAV are
embedded within the network itself. As the network enforces a WTA approach
to convolution and pooling, the last convolution layer as seen in Figure 3, has
a highly sparse input and output. This allows it to act as a detection layer. In
this situation, it is able to forgo usage of a fully connected layer [18] or support
vector machine [10] as classification isn’t required. The network’s evaluation will
be based upon the number of successful detections and its robustness to a range
of highly spiking noisy inputs, replicating low light conditions. The proposed
system will use data captured from both the actual DVS and the simulated
DVS. The aim is to show how a network can be trained to deliver a higher ac-
curacy from extending training data with simulated DVS data. This data would
often be easier to obtain or would already exist, highlighting the ease at which
a traditional visual detection system could be converted to an event camera and
SNN. With this conversion resulting in a notable reduction in computational,
processing and power, promoting its use within an environment where resources
are limited.

4 Testing Results

This section shows the results of training from three UAV detection networks,
using only actual DVS event data, only simulated DVS event data, and our
proposed system which utilises both of the previous datasets together. Each
of the networks is then tested on a series of actual DVS Event frames, com-
paring the benefit of additional training data, even if it is simulated data.

Fig. 6. Synthetic Ga-
bor Features

DVS Trained Network - During initial testing the net-
work trained on real DVS event data struggled to converge
to useful feature within the second layer, due to the sparse
feature maps that were learned in the first layer. A set of
pre-trained weights representing Gabor features, shown in
Figure 6, indicative of that seen in other first layer SNNs
[10, 18], allowed all the networks to have better building
blocks to create more complex features in the second and
third layers. Throughout all of the further testing, this
method was used, using the four features presented in Fig-
ure 6 as the first layer of each network. Training the network using the events
captured from the DVS results in a low resolution feature combination for the
second layer. These feature maps resemble low fidelity UAV shapes as seen in
Figure 7. It also shows the progression of these shapes into the third layer used
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for detection. This network produced an overall accuracy of 90% when using
PENT (50-54% with static thresholding depending on the focus of true or false
positives). Results of all 3 networks are located in Table 2, showing results of
testing against 1,000 UAV images and 1,000 images of empty or noisy scenes
(background clutter or a person in the scene).

Fig. 7. Second and Third Layer of the Actual DVS Event Trained Network

Table 2. Results data in the confusion matrix for the three trained networks, each
being tested with the same 2000 images (1000 with UAV, 1000 without)

.

N = 2000 UAV Predicted

True False True False True False

True 850 150 True 610 490 True 880 120Actual UAV
False 50 950 False 40 960 False 60 940

Overall Accuracy Actual DVS = 90% Simulated DVS = 78% Proposed System = 91%

Simulated DVS Trained Network - The network trained using simulated
DVS event data was then tested for comparison. These simulated events are orig-
inating from a higher resolution image then being scaled to the same resolution
as the actual DVS. As the scene is derived from a higher resolution, a higher
fidelity feature can occur in the second layer, as seen in Figure 8. These higher
fidelity features combine with the low, to create features more representative of
a UAV in the third layer. This seemingly qualitative improvement results in a
quantitative drop in overall accuracy down to 78% with full results in Table 2.
The drop in accuracy is a result of the features of the network having to fine
a fidelity compared to the actual DVS test set. However, this network did re-
turn the best false positive results, suggesting these more complex features were
better at discriminating objects in the images without UAVs.

Fig. 8. Second and Third Layer of the Simulated DVS Event Trained Network
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Proposed System Trained Network - The proposed detection system is
the third network to be trained, utilising both datasets, real and simulated. At
first this network exhibits visually very similar features in the second and third
layers as seen in Fig. 9(d) and (h) to that of the simulation data network shown
in Figure 8. Figure 9 also demonstrates how the network learns the features seen
in these layers, started with the random weight Fig.9(a) and (e), then refining the
important features in UAV shaped component parts seen in Fig.9(b),(c),(f) and
(g). While the proposed system and previous network trained on simulated data
appear to have learned the same feature mapping, the accuracy results show
otherwise with an overall accuracy of 91% exhibiting the highest number of
correct detection, results shown in Table 2. To help visualise how these features

No Training

(a)

1/3 Trained

(b)

2/3 Trained

(c)

Fully Trained

(d)

(e) (f) (g) (h)

Fig. 9. Illustration of training in the UAV Detection Network

help to detect the UAV, an example of an event image from both the actual
and simulated DVS data is shown in Figure 10, indicating where the pooled
mapping of the features map onto the UAV. The image also highlights how an
improvement in spatial resolution of the sensor could open up the possibilities of
UAV classification system rather than just detection systems. By using the higher
fidelity features from the extra spatial resolution, it allows a better realisation
on the component part of the UAV allowing more distinct feature to exist.

Fig. 10. Feature Mapping and their activations on UAV image
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This demonstrates the main contribution of this paper that simulated DVS
events can be a useful training tool for the desired network, when used in con-
junction with actual DVS event data, improving upon the network trained only
on DVS events. Since traditional video is more regularly available, this can prove
an excellent starting point for new ideas and concepts that might not have DVS
event footage. This could be ideal in situations where new data is either difficult
to generate or obtain.

The proposed system was also able to show robustness to noise with the
second contribution of this paper being the introduction of PENT (Pre-Emptive
Neuron Thresholding). A visualisation of how noise is handled by the PENT is
shown in Figure 11, depicting events captured from a low light scene with a UAV
flying, similar to that shown in the low light scene Fig.1 (d). Demonstrating how
when PENT is active, only the features of the UAV are captured as shown in
Fig.11(b), while when PENT is off, the UAV features are masked by noise seen
in Fig.11(f). The reduced propagation of features through the network due to
saturation of the fist layer has an impact on all subsequent layers as shown in
Fig.11(c),(d),(g) and (h). Testing this feature over a range of noise levels shows
that is can maintain an accuracy over 80% for SNR levels above 1dB, as seen in
Table 3.

(First Image)

(a)

(First Layer)

(b)

(Second Layer)

(c)

(Third Layer)

(d)

(e) (f) (g) (h)

Fig. 11. Active threshold stops the saturation of layer one features propagation through
the network causing false detections.

Table 3. Table of Accuracy with Additive Noise.

SNR Level (dB) 23 15 7 0.1 -9 -15

Accuracy (%) 85 83 82 72 62 46

The results from the SNN resemble those from a CNN, thanks partially to
the convolution and pooling layers. Furthermore, the system is built upon a
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sparse spiking neuron model which only further sparsifies throughout the net-
work, while in an unsupervised fashion learns distinctive feature to identify a
UAV. This sparsity instils the ethos of only transmitting important informa-
tion, which results in a lower computational throughput, for both runtime and
training. On average less than 200 pixels are active per frame that succeeded
in detection, a mere 0.5% of the overall sensor size then moves on for process-
ing. This computation reduction then results in a significant reduction within
the SNN compared to a CNN counterpart, with over 270,000 calculation needed
for the CNN’s convolution layers and only 1,300 required for the SNN on av-
erage, over 200 times the difference. A similar reduction in calculation is also
seen within the pooling layers thus further reducing the amount of computations
needing to be done and resulting in a reduction in power used. This reduction
in information transfer allows the system to converge to useful feature quickly.
This results in using only 20,000 images each to train the second and third layer
(3000 required if you want to train layer one), so 40-43,000 in total.

5 Conclusion

Consumer UAVs and micro-UAVs have presented security and defence with a
new-age problem. This paper presents a robust detection system for UAVs, that
has many of the useful features of other sensors, while fewer of the drawbacks.
The overall accuracy of 91%, coupled with an enhanced resilience to noise due
to PENT, make the proposed system a feasible alternative for the future. From
utilising the sparse nature of the SNN, this accuracy comes with the benefit
of also providing a far lower computation load than a traditional CNNs, this
being a result of not having to pass information from every neuron in the layer,
but only those who pass the threshold. The SNN also pairs nicely with the
asynchronous event driven nature of the DVS. With its output also representing
a sparse version of the traditional frame based camera. The system to that effect
then delivers high accuracy, while being the sparse version of the traditional
system. This sparsity can deliver many benefits with reductions in computational
processing leading to a reduction in overall size, weight, power and cost, therefore
improving overall application system viability.
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