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I. Introduction 

 This paper brings together Thompson's naive action explanation with interventionist  
modeling of causal structure to show how they work together to produce causal models that go 
beyond current modeling capabilities. I will, in the process, show why the internal structure of 
action, where stages are unified by rationalizations into a coherent overarching action, cannot be 
causal. Actions, and action explanations, cannot be reduced or simplified to causation and mere 
causal explanation without genuine loss. Despite this, existing causal modeling techniques can be 
deployed to model action in some cases. By deploying well-justified assumptions about 
rationalization, we can strengthen existing causal modeling techniques' inferential power in cases 
where we take ourselves to be modeling causal systems that also involve actions. This capacity for 
naive action explanation to strengthen causal modeling inferences provides motivation to 
incorporate it into interventionist approaches to causation.  

 Action explanation and interventionism are, in many ways, an awkward fit. The former 
involves all the rich particularities of singular instances of action, rich with normative structure. The 
latter is built for general pre-specified variables with allowed values, lacking the rich normative 
structure that is distinctive of action. Unification might seem like a tempting motivation to 
accommodate (or more likely, offer a reduction of) action explanations within the ambit of causal 
explanation. But such a move would result in an under-description of genuine structure in the world. 
Action explanation cannot be reduced to or fully supplanted by causal explanation. And conversely, 
causal explanation can be better understood by contrasting it with the kind of structure Michael 
Thompson (2007) calls rationalization. Action explanations involve a modal strength connecting the 
relata that makes them much closer to what Lange (2012) has called distinctively mathematical 
explanations, rather than the modal strength by which causal relata are connected. Just as 
distinctively mathematical explanations cannot be reduced to any collection of causal explanations, 
no matter how exhaustive, neither can action explanations be adequately replaced by any collection 
of causal explanations. 

 Yet, we can rely on action theory to bring more inferential power to interventionist models, 
by treating rationalizations that unify stages of an action as if they were causal connections. It is 
important to emphasize that they are not in fact causal in character; the normativity of 
rationalizations cannot be adequately represented in interventionist modeling. Because 
rationalizations unify in a stronger way than mere causation, such a treatment underutilizes 
rationalization in terms of the inferences that could be justified on its basis. We can treat them as if 
they were causal, use these connections for making causal inferences, and thereby generate models 
that can make more predictions about what will happen in such systems.  
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 I argue for this by laying out some key pieces of conceptual machinery that are required for 
using the approach to causal modeling variously referred to as interventionism, causal Bayes nets, or 
causal structural equation modeling. The Causal Markov and Causal Faithfulness assumptions are 
substantive, in that they make non-negligible claims about the underlying nature of the systems 
being modeled and can be empirically checked to ensure that they are warranted. By committing to 
these assumptions, we gain powerful techniques for inferring causal structure from probabilistic 
relationships among variables, and for predicting probabilistic relationships from causal structure. 
Similarly, the rationalization that explains an action by situating it as a means to another action, 
constitutes a form of constraint on the causal options available to genuinely rational agents. This 
constraint can be formalized into an assumption, the Rationalization condition, 1 that can be made 
about a system of causal variables, in a manner analogous to the Causal Faithfulness and Causal 
Markov conditions. Thus, Thompson's characterization of the internal unity of action can be 
incorporated into causal modeling once specific conditions are met.  

 Section II lays out a brief overview of naive action explanation and the relation of 
rationalization that holds between an action performed as the means and the action the performance 
of which is the end, highlighting the features that will turn out to useful in incorporating 
rationalization into causal modeling. Section III contrasts causal explanation with distinctively 
mathematical explanation in order to draw a distinction between two ways of applying model. It is a 
key part of the overall argument trajectory to show that naive action explanation behaves like the 
modally stronger distinctively mathematical explanations, because of the way it is 'applied' as a 
model, rather than with the comparatively weaker strength of causal explanation. Section IV 
introduces the role of conditions like Causal Markov and Faithfulness. Section V introduces 
Rationalization as a new condition for causal modeling. Section VI illustrates the use of the 
Rationalization condition with the example of driving. Section VII concludes. 

 

II. Naive Action Explanation and Rationalization 

 This section lays out a brief overview of Thompson's naive action explanation, examining 
the character of rationalization as a relation that situates the action to be explained as a means 
towards or stage in another overarching or more encompassing action.  

 Thompson begins by identifying a characteristic pattern of explanation involved in actions. 
Following his lead, I will use the example of baking bread. Suppose someone walks into the kitchen, 
sees you reaching up into the cupboard, and asks why. We often explain the action of reaching up by 
situating it as a stage, means, or part of a more encompassing action, like getting down the flour. 
Getting the flour is itself a means or stage that can be explained with recourse to the more 
encompassing action of making bread. Naive action explanation thus explains by situating the 
explanandum as an action that is a smaller part of a larger structure that subsumes it and the other 
requisite action-stages as stages of the larger action. One is doing A as part of doing B; one is doing 
B, then C, then D, as part of doing X. There is a nested structure: getting down the flour is itself 
comprised of smaller actions, like reaching up, grasping, pulling, carrying. But getting down the flour 
is then a means to starting the dough, and starting the dough is itself given further naive action 
explanation as a means to the end of baking bread. 

																																																								
1	It is key to distinguish between beliefs and action: the rationality of actions, given in their 
rationalization relations as they unfurl from beginning towards completion, is the specific target 
here, not an epistemological notion of rationality that applies primarily to beliefs.  
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 Such explanation relies on the 'in order to' that connects the more concrete and limited 
action to the goal or overarching action into which it fits as a stage. In baking bread, the overall 
action is not one can do except by doing other actions. One bakes bread by getting the flour, adding 
the ingredients, kneading, letting it rise, and so on. There is no separate action of baking the bread 
that is additional to or separate from the instrumentally performed actions of kneading, rising, 
baking, and so on (a well-known point since Ryle 1949). 

 The relationship that bears the explanatory load in naive action explanation is that of 
rationalization. An action like getting down the flour has a special relation to the action of baking 
bread. It is not merely that both actions happen to be going on, nor is it that engaging in one causes 
one to engage in the other; it is rather that the first is done specifically because it is a stage in the 
second. The performance of the first action is in service to the performance of the second. It is only 
because of this relationship that explanatory illumination can be shed on the first action by situating 
it with respect to the second. This cannot be a straightforwardly causal relation: starting the dough 
by no means causes one to later knead the dough, or allow it to rise.  

 In explanation via rationalization, both relata are actions. They could not be otherwise, in 
order for it to be a relation of rationalization, rather than some other kind of relation. An 
explanation that involved an action as a relatum, either as explanans or explanandum, but involved 
merely a causal defined second relatum could not possibly be a naive action explanation. This is not 
to say such explanations cannot exist. It is to say that they would not qualify, by the very nature of 
naive action explanation, as an example of such explanations. Rationalization as an explanatory 
relation can only hold between two actions. 

 Rationalizations, on Thompson's view, can be given a non-final form: one action can be 
performed in service of another, without that further action being somehow an final end or 
overarching and self-complete end in itself. Thus, we can find that action A might serve as a stage in 
the unfurling of a larger action B, which is itself just a stage in some further action C. B can 
rationalize A, in providing a naive action explanation of it, without there by having to ground that in 
some final action. Action B may rationalize A; B may in its turn be rationalized by C (see chapter 5, 
section 2, in particular). B provides explanatory traction on A even though it may be incomplete 
considered as an explanation required to capture everything about action A. B need not be some 
final or end action, some not-itself-naively-explained action, to provide substantive explanatory work 
with respect to A. Rationalization of a means by an end action can explain without the end itself 
having to have some special quality of finality, or to be further judged in terms of its legitimacy to be 
undertaken. Even if we don't think someone should be baking bread right now, it is nevertheless the 
fact that they are baking bread that provides the explanation of their reaching for the flour. 

 This has the consequence of blocking calls for complete finality in allowable ends. The 
rationalization of kneading the dough as a means to the end of baking bread does not need to 
culminate with yet further naive explanation of how baking the bread then fits into some action of 
being healthy, or enjoying a hobby, or living a fulfilled life, and so forth. The end of having baked 
bread already rationalizes the stages, without further termination. We can simply explain one action 
by another, if it fits in the right way, and thereby have improved on our explanatory situation, even 
though the explanans action clearly itself could be a further explanandum. This feature will allow it 
to fit neatly into causal modelling, as we see in subsequent sections.  

 Naive action explanation cannot simply be a new type of causal explanation. There is 
nothing in starting bread dough that causes one to subsequently let dough rise or bake it. Yet 
knowing that someone has started bread dough does license one to infer to they will be letting it rise 
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and baking it later on. In such a case, it is not the rationalizing action of baking bread that is the 
direct subject of the inference. I might infer you are baking bread by noting that you are kneading 
dough, using naive action explanation; but it is not the same kind of relation that obtains when I 
note that you are kneading dough and infer that in an hour or two you will be baking it. Baking the 
dough is also a stage or means towards the end of baking bread, along with kneading the dough. 
This highlights how one can infer to future actions that are means of the same action: that two 
actions are rationalized by the same end action provides an inferential handle that connects them as 
means of the same end. This inferential connection between two actions that are means rationalized 
by the same action will, in section V, provide the foundation for using rationalization in causal 
modeling. 

 

III. The model versus the system as primary target of inquiry: comparing distinctively 
mathematical explanations and naive action explanation 

 With this account in hand, this section turns to contrast rationalization and naive action 
explanation with causal connection and causal explanation. By the end of this section, I aim to have 
shown that action explanation is deployed in a manner closely analogous to distinctively 
mathematical explanations rather than causal explanations, in terms of how models and systems fit 
together. This in turn means that rationalization in naive action explanation offers a modally 
stronger degree of connection than does mere causal explanation. 

 Lange (2012) defends the claim that there are certain kinds of explanations, which he calls 
distinctively mathematical explanations, that have a distinctive degree of necessity and cannot be 
assimilated to causal explanation without loss. One example is that of a mother with 23 strawberries 
and 3 children. There is no way to evenly divide the strawberries among the children without cutting 
the fruit. The mother's failure to divide the strawberries evenly among the kids is, however, not 
merely some causal fact: it is not that she lacks a knife, or is counting incorrectly, or otherwise 
causally prevented from doing so. Lange points out that it is the mathematical fact that 23 is not 
evenly divisible by 3 that does the explanatory work. Even though it is something about the physical 
world being explained, rather than a purely mathematical fact, it is a mathematical explanation and 
not a physical one involving causation. 

 Andersen (2017) responds to Lange's claims in several ways. The key response that I want to 
redeploy here is to make a distinction between between two ways in which a model can be used. 
These reflect two different kinds of modeling tasks, with different orientations towards fitting a 
model to a system (Andersen 2017). In brief, one way to use a model for a system is such that the 
system being modeled has priority in determining what is ‘wrong’ when there is failure of model-
system fit; and in the second kind of modeling tasks, the model itself has priority as an object of 
study, such that a system which fails to fit the model is rejected in search of systems that do fit the 
model. These are both legitimate modeling tasks - it is not that one should be endorsed over the 
other. Rather, it highlights how taking a different primary focus in terms of the object of study - the 
system being model or the model being used - leads to two different kinds of explanations of the 
system in question from the model in question. First I will illustrate this in a scientific case, and 
subsequently apply it to naive action explanation. 

 Consider the Lotka-Volterra toy model. The Lotka-Volterra (LV) equations give the 
population of a predator and prey population over time. The population size of either at a given 
time is a direct consequence of the birth rate and death rate at a previous time increment. For the 
prey population, the death rate is a function of the predator population at the relevant time. For the 
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predator population, the birth rate at a later time is a function of the earlier prey population. This 
model is a very useful example of a toy model: it is known as being a very simplified, idealized, and 
often numerically inaccurate model of actual predator and prey populations. Much of the failure to 
be numerically accurate stems from the fact that very few systems actually fit the model - it is hard to 
find genuinely isolated predator and prey populations that meet the conditions for these equations to 
fully apply. Nevertheless, they are extremely useful. 

 Sometimes, such well-developed toy model can be studied on their own, since many 
different scientists, with very different target systems, might use versions of it. The equations treated 
as a toy model can be used to derive the robust Volterra principle (Weisberg and Reisman 2008). 
This states that when a general biocide event (something that kills both predator and prey 
indiscriminately) occurs, then in the recovery period afterwards, the proportion of prey to predators 
goes steeply up. This turns out to be a mathematical result of the model: any simultaneous increase 
in the death rates can be shown to result in this change in proportion. It falls out as a purely 
mathematical consequence of the equations. It is useful and interesting to know of the LV equations 
that they have this feature, even if it turns out that no actual system ever follows those equations 
strictly.  

 This illustrates the distinction between two ways of applying a model: taking either the target 
system or the model itself as the primary focus of inquiry. In the first way of applying a model to a 
system, a particular system is being modeled, and if the assumptions do not fit that system, the 
model must be rejected. The system comes first, and the model must be tailored to fit that system. 
Many cases of modeling are like this. The wildlife biologists in charge of managing some specified 
conservation area will often have just this kind of focus. The ecosystem(s) are fixed, in that they are 
well specified as the target requiring a model for the purposes of, e.g., prediction of future 
population changes. If there is a general biocide of some kind and this change in proportion of prey 
to predators is not observed, one goes looking for another model other than LV. It doesn't disprove 
that the general result holds for LV; it demonstrates that the LV model does not fit the system. 

 In the second way of applying a model, the model itself is a focus for inquiry. The LV 
equations can themselves be studied, as clearly illustrated by the way in which Weisberg and 
Reisman derive the robust Volterra principle. In this kind of modeling task, one starts with the 
model and goes looking for a suitable system that it fits. It turns out that a case of chemicals 
dumped in the sea near Italy illustrates this general biocide result effectively; the ratio of prey fish to 
sharks shot up in the recovery period. If, however, the example from Italy ended up not fitting the 
model, then we could simply move on to look for some other system that better illustrates the 
effect. We would not, in this approach, reject the LV as not applying and continue modeling the 
chemical dump system. We would look for a better fit by taking the model with us and leaving that 
particular system behind.  

 What is extremely important in this contrast between model usages is that we already knew 
that the robust Volterra principle would obtain in any system of which the model held, before we 
ever even found a system of which the model held. It had to hold of any system of which the 
equations hold, because it is a straightforward mathematical consequence of the equations of that 
very model. This does not guarantee that we would ever find such a system of which the model 
holds. But it does ensure, with mathematical certainty, that if we find a system of which this model 
holds, then that system must also obey the robust Volterra principle. It holds with mathematical 
certainty, and nothing weaker, for the systems of which it does end up holding.  
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 Causal explanations are generated when a model is applied in the first way. When we focus 
on the system in question first, the LV equations help us track the causal relationships governing 
changes in one population with respect to the influence from the other population. Causal 
explanations have some degree of strength of connection; they are not merely accidentally true 
generalizations, for instance. But since they are empirically dis/confirmable like this, they do not 
hold with mathematical necessity; mathematical necessity is stronger than causal connection. 

 Distinctively mathematical explanations are generated from the model applied in the second 
way. Metaphorically, it is like we are walking around with a bag, into which we only put a certain 
kind of of stone. We know that there will only be that kind of stone inside the bag, because we 
ensured that it would be so by using it as a selection criterion. We don't need to check each stone 
already in there to make sure the contents of the bag fit the criterion; we enforced the criterion in the 
first place. It might turn out that the bag is empty, because we have not come across any such stones 
yet. But we know with certainty that if there are ever any stones in the bag, they will be of that kind, 
because we will only put that kind in. In the second approach to modeling, we enforce the criterion 
that the system must fit the model that is the focus of inquiry, such that it must be the case that all 
systems that turn up success are already known to have certain features. 

 All of this is set-up to make the following point: in action explanation, especially in naive 
action explanation, naive action explanation is treated akin to the LV model applied in the second 
way. We can usefully explore the features of action as we use like a model that is a target of inquiry, 
and we can go looking for examples that fit the 'model' of action, or LV, by rejecting those that 
don't and looking until we find examples that do fit. If we discover that a particular example turns 
out to not be an action, for whatever reason, we have two options, mirroring the two approaches to 
modeling. We can distinguish psychological explanation as taking the first kind of approach, where 
we reject action explanation as providing sufficient traction on the example, but stick with the 
example and resort to merely psychological explanation instead of action explanation. Or, we take 
the second approach by sticking with action explanation and rejecting that candidate as not an 
action, and continue the search for some better example that is an action. Naive action explanation, 
by dint of holding between two actions, must pre-select for action; it cannot, by definition, end up 
holding of non-actions. This enforced pre-selection criterion ensures that anything that can be said 
of action explanation will hold, in systems of which it holds, with a strength like mathematical 
explanation, and not like mere causal explanation. 

 Action explanation enforces the selection criteria, like enforcing the criterion of only putting 
stones of a certain kind in the bag. As a consequence of this, it must be the case that whatever ends 
up in the action bag is already know to have certain features, which can be explored by taking action 
itself - in this case, naive action explanation - as the target of inquiry. The existence of behaviors that 
are not action are neither here nor there for that purpose; it merely means that we pass by those 
examples as we engage in naive action explanation. Thus, we can know things about any case of 
genuine action that we find in the world prior to ever finding it, by dint of the fact that we can draw 
inferences from the 'model' itself, studying action. This means that rationalization, as the relation 
that unifies actions performed as means as means to an action that is also an end, will yield 
explanations that are stronger than merely causal explanation. 

 

IV. How Causal Markov and Faithfulness justify inferences in causal modeling 

 We turn now to see what makes the engine of interventionist or Causal Bayes Nets modeling 
work. These techniques are essentially a set of algorithms to make justified inferences between 
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probabilistic relationships in data and causal structure as represented in structural equations and 
directed acyclic diagrams (DAGs). The inferences work with the assistance of some background 
assumptions or conditions that provide the justificatory foundation for those inferences. In case 
these assumptions fail to hold, we would be unjustified in making inferences that require them. 
When those assumption fail, only limited versions of the algorithms can be used, resulting in weaker 
available inferences; the strongest inferences can be made when the full set of conditions hold. 
When modeling a system, we ought (in the epistemic sense of ought) use the strongest set of 
assumptions we are justified in believing obtains for the system in question. 

 One central assumption in causal modeling is the Causal Markov condition. This condition 
stipulates that causes are probabilistically independent of their non-effects, conditional on their 
parents (Spirtes, Glymour, and Scheines 2000; Pearl 2009; Woodward 2005; Hitchcock 2018). Put 
another way, after conditioning on the parents of a given variable, then the only remaining 
probabilistic dependencies are effects of that variable. This condition allows us make the inferences 
that are fundamental for causal modeling: using intervention to distinguish causal from correlational 
structure. Without conditionalizing on the parents of a target variable, then any other effect of those 
same parents will be probabilistically correlated with the target variable, even though they are not an 
effect of it. By conditionalizing on the parents of a cause, the dependencies with non-effects is 
'broken' for common case structures. In a nutshell, then, the Causal Markov condition ensures that 
existing conditional dependencies are due to causal relationship(s) and not coincidence. 

 What would it look like if the Causal Markov Condition failed? How empirically substantive 
is this condition? This has been the focus of some back and forth (Hausman and Woodward 1999, 
2004; Cartwright 1999, 2002). Part of what emerged from this disagreement is that Causal Markov is 
a genuine assumption about the world. It could fail, if we found that there were persistent 
probabilistic dependencies between variables that could not be accounted for by causal connections. 
The correlations would have to be both robust over time, and genuinely inexplicable with respect to 
causal connection. It would be pure 'spooky' correlation. Cartwright emphasized that this 
assumption is not trivial, a priori, or merely analytic in character. Hausman and Woodward 
emphasized that this is an assumption most of us are willing to commit to without much by way of 
metaphysical misgivings. An upshot is that the Causal Markov condition is empirical, in that we can 
genuinely consider what it would be like to find that it is violated somewhere, but also metaphysical, 
in that considering how it would be violated requires rejection of the principle of sufficient reason, 
for instance. 

 Another central assumption, the Causal Faithfulness condition, is also a key part of licensing 
inferences between causal structure and probabilistic relationships in data. It ensures that existing 
conditional probabilistic independencies reveal causally independent variables. Faithfulness is a 
feature that a directed acyclic diagram (DAG) may have to a set of probability relationships among 
the variables in that graph. A graph is faithful to the probability distribution when there are no 
causally connected variables in the graph that are independent in the distribution. Put another way, 
the causal faithfulness condition ensures that there are no 'hidden' causal dependencies that fail to 
show up in the probabilities in the data.  

 The Causal Faithfulness condition can be violated when there are precisely counterbalanced 
causal relationships that 'disappear' by being probabilistically independent in the data despite being 
causally connected in the true graph. Consider a cause C that has two pathways by which it is 
connected to effect E, one path that brings about C with a weight of .8, and another path where C 
causes D with weight 1 and D then suppresses C, with weight -.8. C and E are causally connected in 
the true graph, and if the weights of those pathways were anything other than precisely opposite, 
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they would be probabilistically dependent in the data. But because the two pathways have exactly 
opposing weights, so that C causes E with precisely the same strength that it suppresses E, it looks 
as if C has no influence on E.  

 If the parameter values for causal relationships in graphs were randomly distributed, then 
this violation would occur with measure 0 frequency (SGS 2000). But this is itself a substantive 
assumption about systems. Zhang and Spirtes (2008) argue that it may be violated in mechanisms 
like thermostats for maintaining a fixed room temperature. Andersen (2013) argues that it may be 
violated even more rampantly, since evolved systems use homeostatic mechanisms that are much 
more finely tuned than thermostats, and which are evolved precisely to maintain homeostasis. 
Modified versions of the condition, which would fail less often to hold of systems though also 
support somewhat weaker inferences, can be used (Zhang and Spirtes 2016; Forster et al 2017). 

 Taken together, the Causal Markov and Causal Faithfulness conditions ensure that the 
probabilistic dependencies and independences in data taken from a given system connect in reliable 
ways with the causal relationships in the true causal graph of that system. Without these, one cannot 
infer between data and causal relationships. Even though Causal Faithfulness and Causal Markov 
assumptions require substantive commitments about the systems in question, they return advantages 
in making genuine discoveries. Thus, making the strongest set of assumptions about Faithfulness 
and Markov that are warranted by the particular system being modeled allows us to use the strongest 
version of the inferential tools that are justified by those conditions.  

 

V. Introducing the Rationalization Condition 

 The outcome of this section will be the introduction of a new condition, an addition to the 
two most commonly used ones in current practice. This assumption, the Rationalization condition, 
will ordinarily be violated: for the overwhelming majority of systems, it will fail to hold, and the 
default modeling apparatus is used. But there do exist systems in which the Rationalization 
condition holds. And in modeling such systems, use of this condition will strengthen the inferences 
we can make, in particular from the causal graph to predict probabilistic relationships in data. 
Insofar as we should use the strongest available set of inferences given the conditions that we are 
justified to by the conditions that obtain in the system(s) being modeled, this Rationalization 
condition is a useful way to add power to interventionist causal modeling. 

 My proposal, put very briefly, is that we add what I will call the Rationalization condition: 
variables representing distinct actions that are each rationalized as means of the same end have that 
shared rationalization treated as a causal arrow between them, where the causal order follows the 
temporal order of those actions. The rationalizing explanation, the naive action explanans, is not 
directly represented in the system with a variable. Only the two naive action explananda are 
represented. They are connected via the Rationalization relation with an arrow in the graph if and 
only if they are rationalized by the same (missing) action.  

 By treating rationalization relations that obtain between appropriately defined variables as if 
they are causal in the context of causal modeling, we can predict additional probabilistic 
relationships in the data. Since, as we saw in the previous section, rationalization is a stronger 
explanatory connection than causation, it can be weakened to mere causation without thereby 
overextending our justificatory base. Refraining from using the Rationality condition simply reverts 
to the same causal modeling techniques we currently use.  
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 Begin with actions that can be naively explained by a further action. Distinct means to the 
same end may be used to defined variables such that those two means variables are treated as if 
causally connected. There is a two dimensional figure, that of the rationalization relation situating 
the first action as a means in an end action, and the second action as means to the same end action. 
This is projected onto a one dimensional arrow connecting the two means actions. The two means 
actions must be sufficiently distinct that one can occur without the other thereby occurring; the 
temporally earlier means action is treated as cause and the temporally later means action as effect. In 
this regard, the causal graph must simplify rationalization in a way that loses genuine structure. This 
both illustrates why causal relations could not be used to in general reduce rationalization relations, 
but also how such projection provides the requisite inferential basis to justify inferences about 
connections between those two action variables. 

 Key to using Rationalization is that two different stages of a single action can be explained 
with respect to that same action: if we ask why I am kneading dough, and ask why I am letting it rise, 
both are naively explained with respect to the same baking of the same bread. They are each distinct 
stages of that same single action, temporally differentiable means to the end of making bread.  

 In a system of variables that includes ones like Kneading Bread and Letting Dough Rise, 
these variables will be probabilistically connected: it is an empirical fact about the world that when 
we identify genuine instances of each of these two variables, using that action description, they will 
be consistently positively correlated. Yet it is also clear that they are not straightforwardly causally 
connected, in the way that dropping a glass and getting the floor wet are causally connected. Instead, 
these variables are connected via rationalization: an instance of each variable is given a naive action 
explanation rationalizing each with the same action. Kneading bread does not count as causing one to 
let it rise. Even the weaker sense of causal connection is lacking - nothing compels that connection, 
even weakly, except the aims of the agent performing them. But they go together with such 
consistency that it can be reliably used in prediction: when someone is Kneading Dough, it is quite 
likely that later they will let it rise. It is rationalization as uniting these as two means to a common 
end that provides the connection and the prediction, not causation. 

 Thus, we can add an arrow in the DAG between these two variables, just as if it were a 
regular causal relation, and makes inferences in terms of predicting probabilistic relationships in the 
data taken from such a system. We can thus predict, and explain, the systematic correlations we find 
between these two variables, by incorporating this additional arrow in the graph. Refraining from 
using the Rationalization condition in such cases won't lead to a model that makes inaccurate 
predictions. But it will lead to a model that generates weaker predictions and explanations than it 
could. We would be refraining from saying true things that we could say if we relied on the 
Rationalization condition. 

 What it takes to make this rationalization condition part of the formal apparatus is 
straightforward. The action variables should be defined so as to allow for fairly straightforward 
identification of instances of the variable. This is a generic feature of the craft aspect of modeling, 
and not particular to action. For these variables, a superscript R is added, indicating that a given 
variable is being used with respect to its rationalization relationships. It need not only be used for 
rationalization connections, but it may be so used. This superscript is then also added to the weight 
of the connection in the DAG. Thus, some variables, and some causal arrows in a DAG, will have 
an appended R superscript to remind us explicitly of the requirements for their use in the model. 

 Even when using the Rationalization condition, the independence of causal variables (e.g. 
Campbell 2010) must be ensured. If there is a single occurrence in the world, for any kind of system, 
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which ends up counting as an instance of two different variables in a system of variables, then those 
variables will appear causally connected even those they are not. To avoid double-counting, variables 
are defined to ensure that no single instance counts as an instance of both of them. This is 
implemented in systems involving Rationalization by leaving out any variable representing the shared 
end action, and only including the common means to that end as variables. Kneading Bread and 
Letting Dough Rise will be be independent variables in the appropriate way. Kneading Bread and 
Making Bread will not: some or most instances of Kneading Bread will also be instances of Making 
Bread. But for different actions that are stages or means in the same action for a naive action 
explanation, the conditions of variable independence will be met.2 

 The Rationalization condition will not be met in the vast majority of causal systems being 
modeled. When we think this condition is violated - when, for any number of reasons, we lack a 
genuine agent that could potentially offer genuine naive explanations of their actions - we simply 
don't treat the relations between stages of an action as causally linked. Humans will often fail to be 
the kinds of systems where we can assume that the Rationalization relation holds. Just as there are 
systems where Causal Faithfulness fails, this situation simply means that the additional analytical 
tools based on that assumption cannot be deployed. In modeling human behavior that fails to be 
adequately rational, our predictions made using the Rationalization condition will be less accurate 
than in systems where it holds. But this does not indicate that the Rationalization condition is 
fundamentally unusable. If one is modelling predator-prey relationships, then the Lotka-Volterra 
model might be apt. If one is not modelling such relationships, there is no reason to even consider 
the L-V model; yet surely the fact that there are modelling situations where it doesn't apply does not 
mean that the L-V model is never correct. Just as surely, that there are many cases where humans fail 
to be agents in the requisite way does not mean they are never agents in the requisite way.  

 By only relying on the Rationalization condition when we are justified in holding that 
genuine rational action is taking place within the system to be modeled, we are using a selection 
method for systems. By enforcing the appropriate selection criterion for systems to which we apply 
the rationalization condition, we know before we ever find such a system that certain features will 
obtain and can draw on this in making inferences. 

 

VI. Using the Rationalization condition: turning left 

 There are many, many instances of actions that turn out to be quite prosaic but which clearly 
demonstrate that not only could we use naive action explanation in prediction much like using 
causation, but that we already do this, so effectively that it provides a cornerstone of modern living: 
driving.  

 Consider first the general structure of driving somewhere in the context of naive action 
explanation. Imagine we are driving down a particular street, and someone asks, Why are you driving 
down this street? Our responses, in cases like this, are not of the form that a causal explanation 
would require, even a very general or abstractly described one. It would be weird and tedious to 
answer such a question by saying that we had been driving on the street back there, and turned right 
at the corner onto this street, and that was why we were driving on this one. Knowing the path that 
we took to be on this very street just does not answer the question of why we are on it; instead it 
																																																								
2	This proposal thus differs from other extensions of causal modeling such as Schaffer (2016): 
instances of grounding will violate the independence condition, and fail D separation, in way that is 
avoided by the Rationalization condition.	
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answers something more like how we got to it. More fitting answers involve situating our driving 
down this street in the larger encompassing trajectory of our drive. We are driving to that place over 
there, and this is the only connecting street between where we were and where we are going. We are 
driving to some further destination and thought this was a more scenic road than the other 
alternatives. Our map directed us here as part of the fastest journey from starting point to 
destination.  

 All of these are kinds of naive action explanations. We take our driving down the street to be 
akin to reaching for the flour on the shelf, and explain this part, driving on this very street, by 
encompassing it into a trajectory that presupposes our end in driving is to arrive at a set destination. 
We are here because we are going to there. Any particular part of the drive is explained as a stage in a 
longer drive defined by end points. We consider it to be the exceptional case when we really aren't 
going to anywhere, just driving around for no reason. It is only in such cases that there is no 
unifying action under which to subsume our current driving. Indeed, we still usually give such 
explanations a naive flavour, explaining this drive with respect to the absence of such an arrival-at-
destination plan into which it is a stage, situating it into something like an entertainment-or-
diversion end instead. 

 Consider next how turn signals, used properly, display a driver's intentions so that we 
consistently rely on them to predict how to safely navigate roads shared with other drivers. If I am at 
a stop sign, and a car on the other side is also stopped, and we both have our left turn signals on, I 
confidently pull into the intersection when there is space, on the knowledge that the other car will 
not be driving straight (and thus, into my own car) but instead turning left. I don't have to see inside 
the window to the driver, much less peer into their secret intentions, in order to predict what they 
will do next. At this particular stage of their drive, they intend to turn left, and we confidently, and 
with high success, predict that they will be turning left when the opportunity such as a break in 
oncoming traffic arises. Recall the nonfinality of actions that may serve as rationalizing ends, from 
section II. We need not know where they are really going to know that they are turning left here. 

 When facing, at a stop sign or red light, a car with a left turn signal blinking, nothing about 
having a turn signal on causes the driver to turn left. Yet having the turn signal on, and subsequently 
actually turning left, are both highly correlated. Interestingly though unsurprisingly, having no turn 
signal on is less highly correlated with going straight than having a left or right signal on is correlated 
with actually turning left or right. Driving behavior demonstrates very clearly that we already have a 
myriad of ways of thinking about genuinely intentional behavior, replete with actions and full-
fledged intentions, about which we have no qualms reasoning. 

 If one wants to model a system for car movements in a given intersection, one could include 
variables like Turn Signal [Left, Right, None], Car Movement [At rest, Continues straight, Turns 
Left, Turns Right], Stoplight [green, yellow, red], etc. There will be R superscripts on the first two 
variables, but not on the Stoplight variable. There will be a causal connection between Car 
Movement and Stoplight, which need not be treated with a superscript R. The stop light is not an R 
variable: a requirement for using the Rationalization relation are that it hold only between two R 
labeled variables. Between Turn Signal and Car Movement, there will be a new arrow added to the 
graph, with an R superscript on it. Adding the superscript R allows for a few additional variables and 
arrows to be introduced to a graph that would not otherwise be possible, and which allow for more 
predictions about behavior in the system to be made.  

 Recall from the section on naive action explanation that such rationalization relations can 
only transpire between two actions. This limits the extent to which such additional arrows will be 
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added to the DAG. They can only connect R variables, of which there will be a limited number as 
well. If each and every variable in a system is an R variable, then in a real sense one is not doing 
causal modeling, and should switch to using straightforward naive action explanation instead. It is 
only when mixing clearly causal variables with action related variables that the Rationalization 
condition will come in handy. 

 In general, we must treat other drivers as if their driving related actions are causally 
connected, in order to rely on each other to follow traffic rules and thus stay safe on the road. We 
already know, when pressed, that these are not strictly causal relations in the way that a dropped 
glass of water and a wet floor are causal. But we have to interact with other drivers at a mass scale 
that makes it easier to treat these as if they were causal. A breakdown in road rules, where we cannot 
predict what other drivers will do, leads to a worse situation for everyone; that is what happens 
when R fails. 

 What happens in modeling such cases when the Rationalization condition fails? Two 
comparisons are illuminating. First, compare this to failures of the Causal Markov and Faithfulness 
conditions. If we have inadequate justification to treat the system as containing actions subject to 
naive action explanation, then the Rationalization condition either just isn't used, or holds trivially by 
not applying to any of the variables or arrows. If there is only one R variable, then there will be no R 
relations in the graph, and no need to invoke Rationalization.  

 Second, compare the failure to the two ways of applying a model, from section III. If we 
suspect that we have a case where there are genuinely no actions susceptible to naive action 
explanation (perhaps we are looking at badly programmed driverless cars), then we have two 
available moves. We could take the first approach to using a model and reject Rationalization, 
sticking with the system at hand and developing some other set of variables to better reflect its 
causal structure. Or, we could take the second approach, and reject the system: if we want to model 
genuine driving behavior, we would reject such a system and continue on to find a better system that 
illustrates the Rationalization condition. 

 

VII. Conclusion 

 The internal connection between means and end exhibited in naive action explanation has a 
modal strength that is more like that of distinctively mathematical explanations than that of causal 
explanations. Yet, because it can be treated in DAGs, and meets criteria like D-separation, it can be 
used to strengthen inferences that can be drawn from causal models. This chapter aimed to motivate 
incorporation of the Rationalization condition into causal modeling practices, where it is apt for the 
system(s) being modeled, and to provide the basics for incorporating R variables into systems of 
variables and R arrows into DAGs. 

 The proposal developed here fits in a longer trajectory of discussion of mental action and 
causation that goes back to Davidson (1963) and Anscombe (1981). Since Kim's (1998) Causal 
Exclusion problem, the issue of causation and action, or or causation and the mental in any guise, 
has been construed in terms of causation relating higher and lower levels, rather than competing 
descriptions of the very same relata, as Davidson originally discussed. It has also led to a widespread 
sense, mostly among those working in the philosophy of science, that interventionist causal 
modeling has supplanted any genuinely causal role for something as ephemeral and internal as 
reasons or action. The ways in which many philosophers have attempted to eliminate or reduce 
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action explanation using interventionist or related causal modeling approaches involves a deep 
misunderstanding of the character of action.  

 Once we note that rationalization and causation behave differently, we could decide to 
reduce action and insist it be replaced with causal explanation. The fact that kneading dough does 
not cause one to let it rise could mean that there is nothing more to connect them than the tenuous 
possibility of some weak physical causal chain. On the hand, we could modus tollens instead of 
modus ponens, and conclude that the failure of causation to accommodate the connection between 
stages of actions like breadmaking means that causation itself is insufficient to handle such a  
connection, and look to supplement causal analysis with action analysis where it is apt. Reliance on the 
Rationalization condition where it is appropriate can be justified by its own usefulness. It also paves 
a better path forward in bringing together these distinctive forms of explanation to enhance rather 
than replace one another. 
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