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Abstract

This paper contains five observations concerning the intended mean-
ing of the intuitionistic logical constants: (1) if the explanations of this
meaning are to be based on a non-decidable concept, that concept should
not be that of ‘proof’; (2) Kreisel’s explanations using extra clauses can
be significantly simplified; (3) the impredicativity of the definition of —
can be easily and safely ameliorated; (4) the definition of — in terms of
‘proofs from premises’ results in a loss of the inductive character of the
definitions of V and 3; and (5) the same occurs with the definition of V in
terms of ‘proofs with free variables’.
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1 Introduction

The attempts to make explicit the intended meaning of the intuitionistic logical
constants have lead to a number of ‘informal explanations’. The accuracy of
these explanations is not very important for the actual practice of intuitionistic
mathematics, which relies mainly on intuitive understanding and previous usage,
but it is essential from a philosophical point of view:

“(...) it is therefore necessary, in the first place, to inquire whether
these explanations of the logical constants are coherent or not, whe-
ther they confer intelligible meanings on them; if this question (.. .)
has to be answered negatively, the whole conception, inherent in
intuitionistic mathematics, of how mathematical statements are to
be given meaning will have been shown to be defective.” (Dummett
(1977): 390.)

The idea of how such explanations should look like is perhaps best represented
by the usual definition of intuitionistic disjunction:
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Definition 1 A proof of pV q is either a proof of p or a proof of q.

This definition combines three qualities which make it particularly attractive:
(a) it is very simple; (b) it makes transparent that aspect of the intuitionistic
V which constitutes its most salient difference with its classical counterpart
(indeed, in classical mathematics we often prove p V ¢ without proving either p
or ¢); and (c) it has an ‘inductive character’, that is: the meaning of a complex
sentence is given in terms of the meanings of its constituents, sentences logically
simpler than it.

Unfortunately, when we try to reduce the other logical constants—and in
particular —, = and V—to an schema such as Definition 1, we encounter serious
difficulties. In the present paper I shall make five observations concerning these
difficulties and the attempts that have been made to overcome them.

2 The conditional

I would like to start by looking at the definition of the intuitionistic conditional.
Of the various versions which currently appear in the literature, the following
is one of the simplest, taken from a well-known textbook on constructivism:

Definition 2 A proof of p — q is a construction which permits us to transform
any proof of p into a proof of q.

(Troelstra and van Dalen (1988): 9. In this and the subsequent quotations I
always use my choice of notation.)

This definition resembles the previous one for intuitionistic disjunction, but
it is based on a peculiar appeal to any—arbitrary—proof of p, and this fact
makes it defective in two ways that the other is not. In the first place, it is
impredicative: the construction which is being defined and which proves p — ¢
must be able to transform any possible proof of p into a proof of ¢g; as no
boundary is put on the complexity of those possible proofs of p, they could
include some complicated roundabout proofs which involved reference to the
sentence p — ¢ itself, and hence to the same proof being defined. In sum: the
definition of a proof of p — ¢ appeals to a totality of proofs, with some of which
the very proof of p — ¢ could be intimately related.

In the second place, this definition of — has the effect of converting the
proof relation induced into a non-decidable relation. Indeed, it is quite possible
that a given construction c is able to transform every proof of p into a proof
of ¢, but without being obviously so; and in such a case the fact that ¢ does
transform every proof of p into a proof of ¢ will ask for a separate proof. As long
as we cannot provide this additional proof, we will be unable to decide whether,
according to Definition 2, the original construction c is a proof of p — ¢ or not.

However, it is extremely unnatural—both intuitionistically and classically—
to say that a construction might be a ‘proof’ of a given sentence, but that we
cannot decide whether that is the case or not; and that we need a further proof,



which requires true ingenuity to find, in order to establish that ¢ is indeed the
‘proof’ of the sentence in question.

I shall examine the undecidability problem first, and leave the impredicativ-
ity, less urgent one, for later.

3 A fundamental dichotomy

The fact that Definition 2 induces a non-decidable relation is only a partic-
ular case of a general dichotomy, familiar from computer programming: the
dichotomy between a concrete detailed mathematical construction which per-
forms a certain task, and that additional construction which proves that the
first one does indeed the task in question. Very often we define tentatively a
mathematical construction with the purpose of operating in a particular way,
but once the construction is completely defined, it is not at all obvious that it
will always behave in the way it was intended to. In such cases we must devise
a separate proof that our completed construction does the job required, and the
resulting proof is a different object from the original construction itself.

Sundholm has stressed the distinction between a mathematical construc-
tion as a finished object, and the act or process of constructing it (a distinc-
tion embedded in Martin-Lof’s type theory, cf. Sundholm (1983): 164-168,
(1994): 144-148, Martin-Lof (1984), (1994) and Nordstrom, Petersson and
Smith (1990)). Moreover, Sundholm maintains that:

“The proof that the construction does what it is supposed to do is not
itself a construction object, but rather the act of proof/construction
whereby the construction object is given.” (Sundholm (1994): 148,
footnote.)

“For any proposition, be it an implication, a conjunction or what
have you, it must be possible to recognise its proof-objects as such
(...). This property has to be ensured through the way in which
the relevant proof-object is given (the act of proof/construction).”
(Sundholm (1994): 148, his italics.)

However, it seems to me that this cannot be always the case. For example, let
us consider a construction, ¢, which enables us to find, for each positive integer
n, a prime number bigger than n which is of the form 4m — 1 for some m (a
special case of Dirichlet’s theorem):

take the smallest divisor of 4n! — 1 which is of the form 4m — 1 for
some integer m.

It is very easy to prove that c indeed does the job required, i.e.: that the result of
applying c to a positive integer n is always a number which is prime, bigger than
n and of the form 4m — 1 for some m. But this fact is not completely obvious,
and the mere description of ¢ does not reveal it: the proof which establishes it
is a very different construction from c itself.



Even further, sometimes an open mathematical problem remains unsolved,
not because we lack the basic construction which does or is supposed to do
the job required, but because we lack the proof that such a construction does
indeed that job. An example is Goldbach’s conjecture: the construction for
decomposing an arbitrary even number n into a sum of two primes, is a matter
of finite routine searching over the numbers smaller than n. Insofar as it has
been possible to test such a construction, it worked; but we cannot prove that
it will work in general.

Hence we have a very simple construction which appears to transform all
proofs of ‘n is even’ into proofs of ‘n is a sum of two primes’ (showing two such
primes), but we cannot decide whether it does so in general, for all natural n,
and because of that we cannot decide whether it will be, according to Definition
2, a proof of ‘if n is even then n is a sum of two primes’ for every n.

Such a situation, by the way, is quite different from those others where we
even lack the basic construction which is supposed to do the job required. For
example, in the case of the twin prime conjecture, we simply do not have any
candidate for a construction which appeared to transform any positive integer
into a pair of twin primes bigger than it, and behaved so, e.g., when tested
against relatively small numbers.

4 Kreisel’s extra clauses

In order to ensure the decidability of the proof-relation induced, Kreisel pro-
posed the introduction of an ‘extra clause’ in the definition:

Definition 3 A proof of p — q is a pair of constructions (c1,ca), where ¢y
proves that co transforms any proof of p into a proof of q.

(cf. Kreisel (1961): 107, footnote, (1962): 205, (1965): 128). Hence, if we have
a construction which appears to transform all proofs of p into proofs of ¢, but we
are unable to prove this fact, we can readily conclude that we do not, according
to this definition, have a proof of p — q.

In turn, Kreisel’s definition is not inductive: the proof of p — ¢ is defined not
only in terms of proofs of p and ¢, but also of an extra proof, ¢1, of a much wider
scope. This loss of the inductive character reduces significantly the explanatory
power of the definition.

At first, Kreisel’s extra clauses were received largely as a straight improve-
ment (cf. e.g. Troelstra (1969): 5, (1977): 977, van Dalen (1973): 24, or Dum-
mett (1977): 399); but after some debate (e.g. Prawitz (1977): 27, Sundholm
(1983): 153-161, Weinstein (1983): 263-266), a number of authors abandoned
them, reverting henceforth to simpler formulations such as Definition 2 (e.g.
van Dalen (1983): 166, (1986): 231, Troelstra and van Dalen (1988): 9):

“It must be pointed out however that the decidability of the proof-
relations has been critized and that the ‘extra clauses’ are not uni-
versally accepted.” (van Dalen (1986): 232.)



This debate was strongly influenced by the idea that the constructive mean-
ing of mathematical sentences has to be given in terms of proof conditions as
opposed to truth conditions, an idea which is deeply rooted among intuitionists
(Heyting (1956): 97, Kreisel (1962): 201, Dummett (1977): 12). However, it
seems to me that, if we want to dispense with Kreisel’s extra clauses and pre-
serve the inductive structure of the definition, then we must change the concept
of ‘proof’, at the core of that inductive structure, and replace it by a different
concept.

5 The operational interpretation

As a matter of fact, it is not difficult to find such a replacement. For example,
we could say that a construction ¢ ‘performs’ a given sentence p when the
application of ¢ carries out those constructive operations that the sentence p
claims to be possible. Thus, if p says ‘every positive integer has a bigger prime
of the form 4m — 1’, then the application of the corresponding construction c
to a positive integer n should always yield a number which is prime, bigger
than n and of the form 4m — 1 for some m. This type of interpretation is very
similar—if not identical—to Kleene’s concept of realizability, but I shall call it
here ‘the operational interpretation’.
In the case of an intuitionistic conditional, this definition would read:

Definition 4 A construction c performs p — q when it transforms every con-
struction ¢ which performs p into a construction which performs q.

This clause has exactly the same structure as Definition 2, and the relation
induced, which in this case is the ‘performing relation’, is indeed a non-decidable
relation as well. However, in the present case there is no paradox in the fact that
the performing relation turns out to be undecidable. As a matter of fact, here
we draw a clear distinction between the construction ¢ which performs p — ¢,
and a proof that could be supplied, showing that ¢ in effect performs p — g.

Whether it is intuitionistically acceptable to have a non-decidable concept at
the core of the semantic definition, is a very deep issue which I cannot attempt
to settle here. I do not even have a determinate opinion myself. My contention
is (observation number 1) that if we choose to have a non-decidable concept,
in order to preserve the inductive structure of the semantic definition—as some
authors do—, then such a concept should not be that of ‘proof’, but one more
according to its non-decidable character.

6 Kreisel’s interpretation revisited

Besides, the operational interpretation can help us to simplify Kreisel’s definition
of the conditional in a significant way: according to Kreisel’s interpretation, in
a proof (b1, b2) of a nested conditional sentence such as

(p—q) — (r—s),



the second component by is required to transform every pair (¢1, ¢2) which proves
p — ¢ into a corresponding pair (di,ds) which proves r — s. But a moment’s
reflection shows that, as a matter of fact, it is enough that bs transforms every
construction which performs p — ¢ into a construction which performs r —
s. And then, if the extra clause by proves that this is really the case, the
transformation of the other extra clauses will follow quite trivially.

Indeed, let us suppose that by transforms every construction which performs
p — ¢ into a construction which performs r — s; and let b; be a proof of this
fact. Let us also assume that p, ¢, » and s are all atomic sentences, so that
there is no need of further extra proofs: if a construction performs p, ¢, r or
s, this fact must be apparent, so it immediately qualifies as a proof of it by all
standards.

Then, if we are supplied with a ‘full’ proof (c1,c2) of p — ¢, we can use bo
to transform ¢y into a construction do = ba(c2) which performs r — s. And the
proof that ds is indeed such a construction will follow at once from ¢y, which
ensures that ¢y performs p — ¢, and our previous proof by, which ensures that
the result of applying by to a construction performing p — ¢ is a construction
performing r — s.

This suggests (observation number 2) that Kreisel’s requirement of the ex-
tra clauses is not in essence an inductive requirement, which demands to be
placed at each step of the inductive definition, but rather, a direct one, which
demands to be placed on top of a previous definition, such as the operational
interpretation, which is itself inductive.

This observation was inspired to me by a question posed on this respect,
long ago, by Kreisel himself:

“There is an additional distinction which has so far not been for-
mally necessary, but which is probably important, for example in
the explanation of implication (or universal quantification). When
we think of the pair (b1, bs)

by proves the identity: for variable ¢, if ¢ proves p, then
bs(c) proves g,

bo is a genuine function or operation, while b; recognizes that bo
satisfies the condition stated: thus by is a judgement. But similarly,
since in general both the arguments ¢ and the values by (c) of by are
such pairs, say ¢ = (¢1,¢2) and ba(c) = (d1, d2), should the function
dy depend both on ¢z and ¢; (or only on ¢3)?” (Kreisel (1970):
145-146, endnote.)

He does not give an explicit answer to his own question, nor has he developed
this point later—at least not to my knowledge.

If T am correct—in which case the answer to Kreisel’s question is definitely
‘only on cy’—, the natural way to re-formulate Kreisel’s definition of the condi-
tional would be:



Definition 5 A proof of p — q is a pair of constructions (c1,ca), where ¢y
proves that co performs p — q.

Or more in general,

Definition 6 A proof of a sentence p is a pair of constructions (c1,c2), where
¢y proves that co performs p.

7 The impredicativity of —

It is time to go back to the impredicativity problem. We noticed that the
definition of a proof of p — ¢ referred to arbitrary proofs of p, and that some of
those proofs could be roundabout proofs, in which the very proof of p — ¢ played
a role. This problems does concern Kreisel’s definition, and the operational
interpretation as well, insofar as there could be roundabout constructions which
perform p on the basis of a mid-step performance of p — q.

The problem is substantially ameliorated, however, if we consider that in
virtually all intuitionistic proofs of conditional sentences such as p — ¢, the
only property of the possible proofs of p which is employed in the derivation
of ¢ is precisely that of being a proof of p. Hence, the transformation of the
proofs of p does not depend on the internal structure of those proofs, except for
the requirements that the inductive definition places on them, according to the
logical form of p (for example, if p is a disjunction, then any proof of p must
include a proof of one of the disjuncts, and the subsequent proof of ¢ might very
well depend on which disjunct is the one included).

However, as it happens, the only notable occasion in which all possible proofs
of the antecedent were classified and transformed according to its internal struc-
ture and beyond the requirements that the inductive definition places on them,
is Brouwer’s attempted proof of the bar theorem, which as we know is incorrect
and no way has been found to correct it preserving its original form (cf. e.g.
Brouwer (1927), and for a discussion Dummett (1977): 94-104).

This suggests (observation number 3) a very simple way in which we could
safely ameliorate the impredicativity from our two previous explanations of the
intuitionistic conditional: to replace the occurrence of the word ‘transforms’ (or
‘transform’) in each of them, by e.g. ‘extends’ (‘extend’). And the fact that
the intuitionistic conditional has never been successfully used, in mathematical
practice, in other but this restricted sense, probably means that such is the best
way to characterize its intended interpretation.

In fact, Heyting’s original definitions of the intuitionistic conditional were
very much on these lines:

“p — q represents then the intention of a construction which, from
each demonstration of p, leads to a demonstration of ¢.” (Heyting
(1934): 17.)

“The implication p — q can be asserted, if and only if we pos-
sess a construction ¢, which, joined to any construction proving p



(supposing that the latter be effected), would automatically effect a
construction proving g. In other words, a proof of p, together with
¢, would form a proof of ¢.” (Heyting (1956): 98. My italics in
‘joined’.)

8 Proofs from premises

A yet further refinement on the previous proposal is to define a proof of a condi-
tional sentence p — ¢ directly as a ‘proof of p with premise—or hypothesis—q’.
This idea is in fact the oldest, as it corresponds to Kolmogorov’s interpretation
of the intuitionistic conditional in terms of mathematical problems:

“(...) p — q is the problem of ‘solving the problem ¢, supposing

that the solution to p is given’.” (Kolmogorov (1932): 59.)
The same idea is the motivation behind Gentzen’s rule of —-introduction (which
he considered a meaning definition, cf. Gentzen (1935): 78-80), and has been
treated since then as a faithful explanation of the meaning of the intuitionistic
conditional e.g. by Sundholm (1986): 490, Martin-Lof (1985): 45, (1987): 410—
412, or Bridges and Richman: “the statement p — ¢ means that ¢ holds under
the assumption that p holds” (Bridges and Richman (1987): 11).

The idiosyncrasies of this type of interpretation have been widely ignored,
but it is quite remarkable that, prima facie, under this definition the decidability
problem seems to disappear completely: indeed, there is no reason in principle
why we should not be able to recognize a ‘proof of ¢ with premise p’ when we
see one, provided that we already know the intuitionistic meanings of p and q.

However, this gain of decidability is again not without cost. To start with,
once we agree to define the proof of any conditional sentence p — ¢ as a proof of
q with premise p, we must immediately re-define all the other logical constants
in terms of a finite set of premises. For instance, in the case of a sentence such
as

p—(r—(sVt)),

the proof of the disjunction sV t should be given in terms of the two premises
p and r.

But when we try to carry out such a re-definition, we run into the most
unexpected problem. Indeed, we cannot admit the definition:

Definition 7 A proof of pV q from a set P of premises is either a proof of p
from premises P, or a proof of q from premises P,

because that would legitimate the inference
r—=(sVt) F (r—s)V(r—t),

which is not intuitionistically valid (i.e. it is not deducible in the intuitionistic
propositional calculus).
Then, the only possible alternative seems to be:



Definition 8 A proof of pVq from a set P of premises is a proof from premises
P that either a proof of p or a proof of q can be constructed.

But this definition is not inductive, as there is no decrease of logical complexity
in the definiens.

Similarly, we cannot admit a definition of the intuitionistic existential quan-
tifier such as:

Definition 9 A proof of IxA(x) from a set P of premises consists in a con-
struction c in the domain plus a proof from premises P that A(c),

because that would invalidate the intuitionistically accepted inference
Vz(A(z) —» B(z)) b JzA(z) — JxB(x);

indeed, the transformation of a proof of JxA(x) into a proof of JzB(x) will in
general depend on the particular object ¢ which the first proof provides as an
instantiation (this point is made by Dummett (1977): 14-15, arguing against
an explanation akin to Definition 9).

Then, the only possible alternative is:

Definition 10 A proof of 3xA(z) from a set P of premises is a proof from
premises P that an object ¢ in the domain can be constructed, and a proof
provided that A(c),

which as before is not an inductive definition.

As we can see (observation number 4), although the appeal to ‘proofs from
premises’ in the definition of the intuitionistic conditional appears to ensure the
decidability of the proof relation, it has also the undesired effect of collapsing
the inductive structure of the definition. This is similar to what happened with
Kreisel’s extra clauses, except for the striking fact that here the collapse takes
place exactly in the definition of disjunction and the existential quantifier.

To be sure, it is easy to see that, in particular, the definition of the universal
quantifier in terms of proofs from premises does not face the same problem; but
for showing this we first have to examine the usual definition of the intuitionistic
V.

9 The universal quantifier

Of the various definitions of the intuitionistic V that can be found in the litera-
ture, the following is one of the simplest ones, analogue to Definition 2 for the
conditional:

Definition 11 A proof of VxA(x) is a construction which transforms any con-
struction ¢ in the domain into a proof of A(c).

If the domain of interpretation is non-decidable, this definition is supplemented
accordingly:



Definition 12 A proof of VxA(x) is a construction which transforms any proof
that a given construction ¢ belongs to the domain, into a proof of A(c).

(cf. Troelstra and van Dalen (1988): 9). In either case, the definition induces a
non-decidable relation, just as Definition 2 did, and admits either the introduc-
tion of a Kreisel’s extra clause (which will make it decidable, but non-inductive),
or, alternatively, the replacement of its central concept for one akin to ‘perform-
ing’ (which will preserve inductiveness but not decidability). The way to carry
out both things is straightforward. And the simplification of Kreisel’s definition
on the basis of the operational interpretation (proposed in Section 5) can be
straightforwardly extended to this case too.

Then, if we want to adapt this definition to the case of an arbitrary set of
premises P, the two available options:

Definition 13 A proof of YxA(z) from premises P is a construction which
transforms any construction c in the domain into a proof of A(c) from premises

P
and

Definition 14 A proof of Ve A(x) from premises P is a proof from premises P
that we can transform any construction ¢ in the domain into a proof of A(c),

are clearly equivalent in meaning. In particular, from a proof from premises P
that we can transform each ¢ into a proof of A(c), it is very easy to obtain a
method which transforms each ¢ into a proof from premises P of A(c): all we
have to do is to apply the previous proof to each given c¢. And the implication
in the other direction is even more obvious.

This means that the definition of — in terms of proofs from premises results
in a decidability problem for the subsequent clauses for V and 3, but not for
that corresponding to V.

On the other hand, it is plain to see that formulations such as 13 and 14
do not, in turn, resolve the decidability problem inherent to the definition of V
itself. And the natural question is whether there is an analogous way to confront
this problem

10 Proofs with free variables

The answer is ‘yes’: there is a most peculiar way which appears to preserve the
decidability in the definition of V, apparently without inductive loss, and which
runs entirely parallel to the appeal to proofs from premises in the case of the
conditional:

Definition 15 A proof of VxA(x) is a proof of A(x) with free variable x.

This does not coincide with Kolmogorov’s original formulation (which explicitly
refers to a “general method for the solution of A(z) for each particular value
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of 7, cf. Kolmogorov (1932): 60), but it corresponds to Gentzen’s rule of V-
introduction (Gentzen (1935): 78), and can be found in other authors such as
Sundholm (1986): 491 and Martin-Lof (1985): 54, (1987): 410-412.

Dummett has critized this definition on the grounds that it does not account
for the soundness of the principle of mathematical induction: in general, a proof
of VzA(z) from A(0) and Vz(A(z) — A(x+ 1)) will not be a free-variable proof
of A(x), but a method to transform each natural number n into a proof of A(n),
the method being an iterating application of modus ponens (Dummett (1977):
14). However, this might be taken simply as evidence that induction is not a
logical rule, which can be extracted right away from the intuitionistic meaning
of the logical constants, but a genuinely mathematical principle.

In any case, the definition faces a problem completely analogous to that of
its respective attempt for the conditional in terms of proofs from premises. To
start with, it forces us to re-define all the other logical constants in terms of a
finite set of free variables, something which has not been tried in detail before.
But when we try to do it (observation number 5), we lose the inductive character
of the corresponding definitions of disjunction and the existential quantifier.

Indeed, a proof of Va(A(z) V B(x)) will not be, in general, either a free-
variable proof of A(z) or a free-variable proof of B(x), but rather, a free-variable
proof of the disjunction A(z)V B(x); and similarly, a proof of, say, Va3yA(z,y),
will not usually consist in the production of an object ¢ plus a proof of A(z,c)
with free variable x, but rather, in a free variable proof of JyA(x,y).

On the other hand, it is important to notice that the definition of — in
terms of ‘proofs with free variables’ (or in terms of ‘proofs with premises and
free variables’) does not constitute any problem: in particular, from a given
method to transform all free-variable proofs of p into free-variable proofs of ¢,
we can always obtain a ‘uniform’ free-variable proof of p — ¢, the only (trivial)
modification possibly needed being that if the free-variable proof of p uses a
particular sequence of free variables, the free-variable proof of ¢ which results
after the application of the method is rearranged so that it uses exactly the same
sequence. And the implication in the other direction is even more obvious.

11 Atomic sentences and the rest

The treatment of atomic sentences is easy, as intuitionistically we require that
the basic properties of the interpretation are such that, for any given construc-
tion ¢ in the domain (plus a proof that ¢ belongs to it, if it is non-decidable),
we already know how to recognize a proof d that c satisfies any of them. Hence
d will qualify as a proof of the corresponding sentence, and at the same time as
a construction which performs it. And similarly for relations and functions.
The intuitionistic negation is defined as a conditional sentence which has
as consequent a basic self-evident absurdity (a construction which is obviously
impossible to carry out), and as antecedent the sentence negated. Hence all
that has been said about the conditional applies to negation directly.
Conjunction is a straight ‘sum’ of the proofs (or performing constructions)
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corresponding to each conjunct: its definition does not create any problem at
all.

Next, the explanation of the intuitionistic disjunction, which has been al-
ready touched on (Definition 1), does not pose a decidability problem, nor does
it require the introduction of Kreisel’s extra clauses, unless it is broaden so as
to read, e.g.:

Definition 16 A proof of pV q is either a proof of p, or a proof of q, or an
effective procedure which enables us to find either of them,

in which case it will stand in a very similar position to the definition of the
conditional.

The definition of the intuitionistic existential quantifier has also been men-
tioned, indirectly. It resembles that of the disjunction in many aspects. It is
usually given as:

Definition 17 A proof of 3xA(x) is a pair of constructions (c1,c2), where co
is a construction in the domain and c1 proves A(ca).

Or, if the domain of interpretation is non-decidable:

Definition 18 A proof of 3xA(x) is a triple of constructions (cq, c1,c2), where
co proves that ca belongs to the domain, and c¢; proves A(ca).

In either case, it does not pose a decidability problem, unless we permit, as
before, that an effective procedure for finding a pair (¢, ¢2) or a triple (¢, 1, ¢2)
directly qualifies as a proof of JxA(x).

And finally, the way to extend the definition of disjunction to the operational
interpretation is straightforward:

Definition 19 A construction performs p V q when either it performs p or it
performs q.

And as for the existential quantifier, it is in the spirit of the operational inter-
pretation that the reference to c¢; is eliminated:

Definition 20 A construction ¢ performs 3z A(xz) when some other construc-
tion performs A(c);

and thus a proof that ¢ performs JzA(x) would require the production of a
concrete construction d which performed A(c).

We can now see that the two groups of intuitionistic logical constants:
{=,—,V} and {v,3} are really opposed to each other: —, — and V pose a
decidability problem, which V and 3 normally do not; and the attempts to re-
solve it produce a loss of inductiveness either in the definitions of —, —, and V,
or in those of V and 3.

What conclusion, if any, can be drawn from this last—unnumbered—obser-
vation, I leave to others to decide.
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