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Abstract 
 

Prostate Cancer (PCa) is a major clinical problem worldwide with considerable variability 

in clinical outcome of patients. PCa diagnostics and prognostics currently lack specific and 

sensitive clinical biomarkers and treatment is not well individualised. The PCA3 test, 

amongst others, highlights the utility of urine in PCa diagnostics and prognostics. Urine 

contains cells and extracellular vesicles (EV) that originate in the prostate. There are many 

areas of the PCa clinical process that could be aided with an expression based urine test, 

including diagnosis, prognosis and response to therapy. 

NanoString data (167 transcripts) from 485 EV RNA samples were collected from PCa 

patients and used to build models that would aid in PCa diagnosis and prognosis i.e. i) PCa 

(low- (L), intermediate-(I), and high-risk(H)) vs CB (Clinically Benign/No evidence for 

cancer), ii) high-risk PCa vs CB, and iii) trend in expression across CB>L>I>H. These 

models were validated in 235 samples, with AUCs of i) 0.851 ii) 0.897 and iii) 0.709, 

respectively. 

The potential of using urine EVs to predict patient response to treatments was also 

investigated. In a pilot data set a signature of seven transcripts was identified that could 

optimally predict progression of patients on hormone therapy (p = 2.3x10-05; 

HR = 0.04288). Models were also built using NanoString data from 92 cell RNA samples. 

Intercomparing expression data from matched cell and EV fractions of urine showed that 

transcripts significantly higher in the EV samples were associated with the prostate, PCa 

and cancer in general, supporting them as a viable source of biomarkers in the clinical 

management of PCa. 

In conclusion my analyses have demonstrated the utility of examining urine RNA for the 

diagnosis and prognosis of PCa. My studies have formed the basis of the production of a 

Prostate Urine Risk test that is currently under development at UEA. 
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        Introduction 

1.1 The Research Gap 

Prostate cancer (PCa) is the second most common male cancer worldwide and the most 

common in the UK1. The current available biomarkers for PCa lack specificity and/or 

sensitivity to detect the disease and are unable to distinguish indolent from aggressive 

disease or predict treatment response. PCa is generally slow-growing, the vast majority 

requiring no therapeutic intervention at all whilst some of these cancers progress to fatal 

disease. There is no genetic stratification for treatment unlike many other cancer types, 

PCa is instead treated with a risk-adjusted patient specific method2 that aims to improve 

the control of the cancer whilst reducing risk of complications from treatment. Biopsies 
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are commonly performed at diagnosis, but can miss the cancerous area of the prostate 

and thus lead to a misdiagnosis of “no cancer”. There are limitations to biomarkers 

capable of predicting positive subsequent biopsy results. There is an urgent clinical 

need for biomarkers to determine which patients have PCa, which patients have disease 

that will progress rapidly, and individualise treatment to optimise response. 

1.2 Biomarkers 

Biomarkers have become widely used in clinical and basic research. The National 

Institute of Health defines biomarkers as “characteristics that are objectively measured 

and evaluated as indicators of normal biological processes, pathogenic processes, or 

pharmacological responses to therapeutic intervention”3. Whilst the WHO (World 

Health Organisation) have a much broader definition that also includes measurable 

effects of exposure to chemicals or nutrients that allow for risk assessment4. Clinically 

they are used for diagnosis (identification of disease), prognosis (predicting the likely 

course/outcome of the disease), treatment response stratification and monitoring 

treatment response in patients. Examples range from blood pressure to more complex 

genetic screens of tissues, blood, urine and other samples5.  

	

1.2.1 Biomarkers in Cancer 

Within the field of cancer management, biomarkers are used for risk assessment, 

diagnostics, prognostics, treatment stratification and monitoring the effects of 

treatments. Tumour biomarkers are any measurable molecule that is either produced by 

the tumour itself or through the host’s response to the tumour that indicates the presence 

of cancerous processes. Tumour biomarkers can be proteins, glycoproteins, antigens, 

hormones, receptors, metabolites, and genetic markers; including DNA and RNAs and 

their epigenetic changes6.  

Examples of biomarkers in risk assessment include hereditary germ line mutations that 

increase a person’s risk of developing a certain type of cancer, for example, presence of 
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germ line BRCA1 or BRCA2 mutations increases the crude life time rate (number of 

incidences within a population during a specific time period, not considering subgroups 

within the population) risk of breast cancer in women from 12.5% to 65% and 45%, 

respectively. Likewise in ovarian cancer, crude rate risk increases from 0.02% to 39% 

and 11%, respectively7. BRCA mutation screens are offered to people with known 

family history of these cancers and positive results can lead to optional preventive 

measures (e.g. a mastectomy). Other risk assessment biomarkers include p53 but it’s 

mutant occurrence in such a range of cancers (50% of all cancers) makes it unusable for 

screening and diagnosis purposes. As, it could be detected but you would not know 

where the cancer was or if both alleles were mutated. Also, p53 mutation levels differ 

between cancer types also, for example, only 3-20% of PCas have a p53 mutation 

detected at diagnosis8.  

An example of a biomarker in use in cancer diagnostics is prostate specific antigen 

(PSA). Serum PSA is currently the first test for PCa diagnosis in the clinic, as elevated 

levels can suggest the presence of malignancy. PSA, however, does not have great 

specificity as discussed later: Section 1.4.1  

Tissue inhibitors of metalloproteinase (TIMPs) are examples of prognostic biomarkers 

in cancer. TIMPs are glycoproteins able to promote proliferation and block apoptosis by 

inhibiting matrix metalloproteinases (MMPs). Increased levels of TIMPs have been 

shown to correlate with poorer survival in many cancers including multiple myeloma, 

melanoma, breast, lung, colorectal, gastric and head & neck cancers9.  

Examples of biomarkers in treatment stratification include Human Epidermal Growth 

Factor Receptor 2 (HER2) and Estrogen Receptor α (ERα) in breast cancer. HER2 and 

ERα receptors may be over-expressed in the breast cancer cells and a simple molecular 

test (Immunohistochemistry (IHC)) can determine this. This allows treatments to be 

applied to target the expression profiles of different biomarkers. Herceptin is a drug that 

specifically targets HER2, whereas Tamoxifen is an ERα antagonist. 
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A biomarker for treatment stratification does not necessarily have to be the drug target. 

The monoclonal antibody therapies Cetuximab and Panitumumab, which target EGFR 

in colorectal cancers, can only be administered to a cohort of patients who have wild-

type KRAS. KRAS is a signal mediator (extracellular ligand binding and intracellular 

transduction) between EGFR and the nucleus10. KRAS mutants provide a resistance to 

these monoclonal antibody therapies. KRAS mutations can also occur in response to 

these treatments and has been shown to be (non-invasively) detectable as early as 10 

months prior to radiographic detection of disease progression, allowing administration 

of MEK inhibitors to delay or reverse the resistance11.  

For treatment resistance monitoring in lung cancer patients, a second EGFR mutation, 

Thr790Met, which can be acquired as a result of treatment or can be pre-existing, 

provides resistance to EGFR tyrosine kinase inhibitors and has been associated with a 

shorter progression-free survival. Therefore could be used to eliminate people out of the 

EGFR tyrosine kinase inhibitor treatment cohort10.  

	

1.2.2 Problems with the use of current and new biomarkers in clinical 

diagnostics  

There is a striking discrepancy between the efforts made to discover cancer biomarkers 

and the number of biomarkers that actually make it into clinical practice6. Major 

investments have been made to identify and validate novel cancer biomarkers. Using 

the search terms novel biomarker cancer and new biomarker cancer, a literature search 

yields 5,358 hits in 2016 alone. Over the past 5 years (2012-2016), 29,775 papers were 

published using the same search criteria.  

However, very few major diagnostic biomarkers have been put into clinical use in the 

last 25 years12. Clinical programs have promised to revolutionize the diagnosis of 

cancer and the management of its patients. Considerable improvements to how tumours 

are characterized at a molecular level have shifted treatments towards the use of 



CHAPTER	1:	INTRODUCTION	

29	
	

targeted therapies13. New PCa tests that have been developed recently include 

OncotypeDx14 (section 1.6.3.1), Decipher15 (section 1.6.4.1) and Prolaris16 (section 

1.6.3.2). However, there is a gap in the number of patients having these tests in clinic to 

help determine which therapies are suitable for them, and the number of patients that 

could benefit from these tests. In 2014, the NHS provided 39,298 molecular diagnostic 

tests for lung, colorectal and melanoma patients in England. Yet the demand was 

59,294, leaving 15,929 patients without testing. If this demand was met, it is estimated 

that 3,552 patients would have been eligible for targeted therapies17.  

Effective cancer biomarkers need to produce a reliable, reproducible clinically useful 

assay that is cost effective6. The process between biomarker identification to a clinical 

assay used in practice is lengthy, expensive and convoluted; many researchers working 

on identifying biomarkers are unaware of clinical practice6. Even if a useful tumour 

biomarker is discovered in the lab there still must be commercialisation incentives in 

place to develop the assays. Before widespread clinical use the biomarker must be 

tested in many large datasets and trials carried out by pharmaceutical companies in 

partnership with academics and also optimised to increase predictive power. Therefore, 

it can be complicated to determine at which point patenting for the biomarker should be 

awarded. Regulatory authorities also play a crucial role in validation and quantification 

of biomarker assays to justify the test to health care providers13. 

1.2.3 Biomarkers pave the way for stratified treatment of cancers 

The current goal of biomarker research is personalized medicine. It aims to provide 

targeted therapy for individual patients, given their specific clinical, genetic and 

environmental state. Cancer treatment success is often limited by the heterogeneity 

among patients; giving patients with genetically different cancers the same treatments 

can often lead to failure of response with toxic side effects18.  

Stratified medicine is considered the first step towards personalized medicine. It works 

by grouping patients via tumour mutations for targeted therapy, using omics 
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technologies. It has shown good results within breast cancer patients19, amongst other 

cancers. Breast cancer patients are often stratified between HER2+ and HER2-, ER+ 

and ER-, PR+ and PR- and triple-negative groups. HER2+ and ER+ breast cancers can 

receive Herceptin and Tamoxifen, respectively: Biological therapies, which are targeted 

towards those specific receptors.  

There is a subset of breast cancers known as triple negative breast cancer (TNBC), 

where the cancerous cells are HER2-, ER- and progesterone receptor negative (PR-). 

These cancers have proven to be difficult to treat in the past especially when in their 

late stages, but promising results have been seen using targeted treatments such as 

EGFR inhibitors and VEGF inhibitors that have been previously used for other cancers 

of different tissues20,21,22.  

In order for stratified medicine to be effective, biomarker assays that can be routinely 

applied are needed to accurately stratify patients into treatment cohorts. These assays 

need to be easily performed with minimal risk to the patient and include immediate or 

rapid return of the results to ensure early initiation of treatment23.  

 

1.3 Biomarkers in Prostate Cancer 

1.3.1 Prostate Cancer 

PCa is the second most common male cancer worldwide24 and the most commonly 

diagnosed cancer in the UK25. In 2010 it accounted for 25% of all cancers diagnosed in 

men, with 40,975 cases. In 2012 an estimated 307,000 men died from PCa worldwide24 

whilst in the UK 10,721 males died of PCa in 2010; PCa is the second most common 

cause of cancer death in males. Detected incidence increased by 22% in the last decade 

and is the fifth fastest increasing cancer in males. Mortality rate, however, has fallen by 

11% over the same period26; 81.4% of PCa patients survived for five or more years in 

the UK during 2005 – 2009. Both, the increased incidence rate and the decreased 
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mortality rate are associated with the use of the PSA test (section 1.4.1). Changes to 

classification of PCa deaths and improvements in treatment are also likely to have 

affected mortality rates. 90% of PCas are acinar adenocarcinomas that originate in the 

gland cells of the prostate27. In approximately 75-85% of PCas2, the cancer originates in 

the peripheral zone rather than the transitional zone (Figure 0.1). The other 10% of 

PCas fall into different types: signet ring carcinoma, ductal adenocarcinoma, 

transitional cell (urothelial cancer), squamous cell cancer, carcinoid of the prostate, 

small cell cancer and sarcoma/sarcomatoid cancer28. These will not be considered in the 

rest of this thesis. 

	

	
Figure 0.1 The different zones of the Prostate. 75-85% PCas originate in the peripheral zone, 
whereas, ~25% originate in the transitional zone. Adapted from Akin O., et al 20062. 

	

1.3.2 Factors influencing PCa risk of incidence and progression 

There are many factors influencing PCa risk including age, race and family history. PCa 

is primarily found in older men and risk of developing PCa increases with age. Between 

2009 and 2011 36% of UK diagnosed cases of PCa were in men aged above 75, whilst 
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only 1% were in those younger than 5029. Men aged over 70 also had a statistically 

significant association with higher clinical stage and Gleason score30.  

 African Americans have a 60% higher risk of developing PCa and mortality is 

approximately double that of white Americans31, and a more aggressive form of the 

disease can be seen in African Americans32. In comparison, native Asian men show a 

much lower frequency of developing PCa; African American men show a 60-fold 

higher risk than those in Shanghai, China31, although the incidence in Asian populations 

is increasing33. This extraordinary variation of occurrence across the world is boiled 

down to genetic and environmental factors, which is thought to largely include a 

Western diet. American-Japanese men have higher incidence rates of PCa than their 

counterparts in Japan, and this is independent of if they migrated early or late in life, 

suggesting that life style can accelerate progression of PCa31. Asian-American cohorts 

still hold a lower rate of incidence than white American men34. 

 Evidence of familial risk of PCa has been seen from epidemiological studies, which 

suggest a two- to three-fold risk increase when there has been a first degree relative 

diagnosed. Familial clustering patterns have been seen in segregation studies that show 

high penetrance genetic mutations (including those at the putative susceptibility loci)31. 

PCa aggregates with other familial cancer types (like breast and ovarian). The genes 

that infer increased susceptibility to these cancers have also shown to increase 

susceptibility to PCa, e.g. BRCA1, BRCA2, CHEK2 and BRIP11. Leongamornlert et al., 

discovered frequent germline mutations in DNA repair genes that were associated with 

familial PCa as well as a more aggressive phenotype; the cancers were more likely to 

have nodule involvement, metastasis and be stage 41.  

Genome wide association studies (GWAS) identified 76 susceptibility loci associated 

with PCa risk largely within the European population35. These occur commonly but 

with low penetrance and act multiplicatively to substantially increase risk. GWAS are 

where genetic variants across whole genomes of different individuals are examined to 

identify if any variants are associated with specific traits. Investigation of >10 million 
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SNPs in a more diverse ancestry population (European, African, Japanese and Latino) 

in ~43,000 PCa cases and ~43,000 controls revealed 23 novel susceptibility loci36. 

Combining these 23 novel variants with already known variants, we can now explain 

33% of the familial risk of PCa in populations of European ancestry. The per allele 

effects of the 23 variants ranged from 1.06-1.14 and were consistent with log-additive 

effects of the 23 variants, 15 were exclusive to the European ancestry population, 7 

were multi-ethnic, 17 were associated with earlier onset (<55 years compared to >55 

years) and 1 was associated with disease severity37.  

1.3.3 Current clinical practice for the diagnosis of PCa 

The current clinical process uses a risk-adjusted patient specific method2 that aims to 

improve control of the cancer whilst reducing risk of complications from treatment. The 

initial step is for a PSA blood test (section 1.4.1.2) to be performed at a GP after a 

patient has shown symptoms or has other factors increasing their risk such as family 

history and/or ethnicity. A PSA test is an antibody-based test that measures the 

concentration of the prostate specific antigen (PSA) in the peripheral blood. A digital 

rectal examination (DRE) is then performed by a clinician, during which they feel the 

prostate for any abnormalities. DRE tests have about a 59% overall accuracy32. PSA 

testing is a better predictor of PCa than DRE. In a multicentre trial (n = 6) with a total 

of 6,630 men, 1,167 underwent TRUS biopsies due to PSA>4ng/ml or suspicious DRE 

result. PSA detected 82% of tumours, whilst DRE only detected 55%, PSA was 

significantly superior at detecting PCa (p = 0.001, PPV for PSA: 32% and PPV for 

DRE: 21%)38. However, a DRE is useful because it can often detect cancers missed by 

the other tests; especially those with normal PSA levels32. It can also be used to 

investigate other abnormal prostatic conditions such as BPH.  

If the PSA test (section 1.4.1.2) result is above normal but below 100ng/ml, then a 

transrectal ultrasound-guided (TRUS) biopsy of the prostate is performed. Using an 

ultrasound probe, sound waves are reflected off of tissues and organs providing a black 



CHAPTER	1:	INTRODUCTION	

34	
	

and white image of the prostate. The probe and biopsy needle gain access to the prostate 

via the rectum. At the histopathology department, the collected material is examined for 

cancerous cells and given a Gleason score. In the case of a PSA of greater than 

100ng/ml no TRUS is performed, an advanced diagnosis of metastasis is made usually 

alongside an MRI and/or Bone scan. 

The Gleason scoring system (Figure 0.2) is a histopathology score for staging PCa 

based on how differentiated the cellular structure is in the prostate. This helps evaluate 

the patient’s prognosis, the higher the score the worse the prognosis. It is obtained by 

combining the scores of the two most common non-normal patterns of histopathology 

found in the biopsy. The patterns are scored as such: Grade 1 and grade 2 patterns 

means the tissue is mostly normal; glands are small, well formed and compactly packed, 

grade 2 has more intracellular space between. Pattern of grade 3 shows recognisable 

gland units and darker cells that have began to decrease in size and invade surrounding 

tissue, the invasion is the most defining feature. Grade 3 is the most common identified, 

followed by grade 4. A grade 4 pattern has few recognisable gland units with many 

cells invading surrounding tissue, this can be achieved in many ways resulting in this 

being the most difficult grade to identify. The fifth grade has no recognisable glands 

with many cells within the surrounding tissue, there are sheets of cells that lack any 

nuclear arrangement and a complete loss of gland architecture is observed. In common 

practice no lower than a 3+3 is seen (giving an overall Gleason grade of 6) and this 

offers a good prognosis. A Gleason score of 4+3 offers a worse prognosis than that of a 

3+439.  
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Figure 0.2 The Gleason grading standard drawing. Shows the histopathological pattern of prostate 
cancers, starting at normal looking prostate cells with normal cellular architecture to fully 
differentiated PCa cells with no formal cellular architecture. Adopted from Humphrey, P et al., 
200439. 

Following a negative TRUS biopsy result, if the PSA maintains a high value, a template 

biopsy can be performed. This differs from the TRUS biopsy as it uses a template or 

grid over the perineum, which the biopsy needle is entered through to the prostate. 

However, an ultrasound probe is still used to help guide the needle to the prostate tissue. 

Generally, more cores are obtained during a template biopsy. 

PSA testing lacks specificity and so many men undergo unnecessary TRUS biopsies. 

TRUS biopsies have risks including serious infection, bleeding, urine retention as well 

as extra medical costs40. Therefore, it is important to identify molecular biomarkers for 
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PCa detection that are specific and reliable from a non-invasive source such as blood or 

urine (section 1.5).  

1.3.4 Current process for the clinical treatment of PCa 

There are many treatment regimes open to patients with PCa. However, there is a lack 

of specific and accurate biomarker to stratify patients between the different treatments. 

For many clinical pathways in PCa there is variability in how long the treatment lasts or 

whether there is any response at all. For example, resistance to hormone therapies 

(section 1.3.4.2.1) are inevitable but patients will remain responsive for different 

lengths of time; from no initial response at all to anywhere between 6 months and 10 

years. Another example is how long a patient will last on active surveillance (section 0) 

before requiring treatment. No biomarkers currently exist that are able to detect which 

patients will have long term response and which patients response will be short lived 

and therefore, could benefit from receiving a different/ more aggressive treatment more 

rapidly. This would offer each patient a more effective treatment first time around.  

There are many factors taken into consideration when deciding which treatment is best 

for a specific PCa patient including general health, age, Gleason score, TNM stage, 

PSA and whether it is metastatic or not. However, there are not any molecular tests 

currently available. 

1.3.4.1 Localised Prostate Cancer 

 Localised PCa is stratified by their risk of metastasis using the NICE risk categories 

(Table 0.1) which incorporates PSA level, Gleason score and clinical staging in order to 

decide treatment style for each patient. Each level of risk is offered a different course of 

therapy. 
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Table 0.1: PCa risk stratification table. Proposed risk categorization from NICE 

Guidelines 17541 

Level of Risk PSA  Gleason Score  Clinical Stage 
Low risk <10 ng/ml and ≤6 and T1-T2a 
Intermediate 
risk 

10-20 ng/ml or 7 or T2b 

High Risk1 ≥20ng/ml or 8-10 or ≥T2c 
High-risk localised PCa is also included in the definition of locally advanced PCa. 
	

1.3.4.1.1  Surgery as a treatment for PCa 

 Radical Prostatectomy (removal of the whole prostate gland) is a treatment considered 

for men with T1 or T2 PCa (localised to the prostate gland without spread). Side effects 

can include urinary incontinence, impotence and loss of fertility. Transurethral resection 

of the prostate (TURP) is considered for men with benign prostate growth (BPH) and 

for advanced cancer to alleviate symptoms; the inner area of the prostate (that 

surrounding the urethra) is removed.  

	

1.3.4.1.2  Radiotherapy 

Radiation therapy is the provided course of treatment for low-grade, localised PCas 

(with similar cure rates as those who receive radical prostatectomy). It can also be 

provided alongside hormone therapy for cancers that have spread out of the gland to 

nearby tissues, for recurring tumours (post-surgery), and also to advanced patients to 

reduce tumour size (offering some relief from symptoms). Side effects can include 

urinary incontinence, impotence cystitis and radiation proctitis. 

1.3.4.1.3  Biochemical Recurrence  

Men treated with either radiotherapy or radical prostatectomy (RP) can develop 

biochemical recurrence (BCR), which is characterised by a state of elevating PSA level 

post treatment and indicates growing tumour or metastases42. Within 10 years, of those 

patients treated with radiotherapy ~30-50% and ~20-40% of patients post RP will 

develop BCR43. Increase in PSA does not necessarily mean imminent death or threat 
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and can often be treated with hormone therapy. There has been much research in 

treatment options for these patients, which includes when to administer hormone 

treatment as well as non-hormonal alternatives including targeted agents and 

immunotherapies43 due to the morbidities associated with hormone treatment.  

     UHRF1 expression in tissue samples has been identified as a potential biomarker for 

predicting BCR post RP. UHRF1 expression negatively correlates with mean months of 

BCR-free survival (p < 0.001). However, UHRF1 expression was less significant than 

pre-operation PSA levels and Gleason score44. Other studies have identified biomarkers 

that are linked to BCR; Prx6 (an oxidative stress marker) expression is associated with 

shortened biochemical recurrence free survival and overall survival in 240 post RP 

patients (p = 0.02 and p = 0.033, respectively)45. PTEN deletion has been associated 

with an increased risk of BCR (p < 0.01, HR: 3.58)46. Metallotheionein-2A (MT-2A), 

E-cadherin, and cyclin-E were investigated for BCR association by microarray 

immunostaining. Positive MT-2A and cyclin E expression along with negative E-

cadherin expression showed a decrease in biochemical recurrence-free survival (p = 

0.009 (HR = 2.15, 95% CI = 1.14 - 3.08), p = 0.037 (HR = 1.45, 95% CI = 1.02 – 1.92), 

and p = 0.047 (HR = 1.31, 95% CI = 1.03 – 2.21), respectively)47. In a multivariate 

analysis all three were deemed to independently predict BCR47. Still, the promise of 

these biomarkers have not been translated into use in the clinic.  

Other clinical features such as tumour volume and percentage tumour volume have also 

been reported to predict BCR post RP in a meta-analysis of multicentre data (p = 0.03, 

HR: 1.04 and p = 0.02, HR: 1.01, respectively)48.  

 Active Surveillance, Watchful Waiting and PSA monitoring 

To attempt to reduce the number of over-treated patients, programs like active 

surveillance, watchful waiting and PSA monitoring have been implemented. 

A high proportion of PCa are localised and non-aggressive and are unlikely to cause 

any problems in the patient at all, whereas others progress into more problematic 

cancers that require more aggressive treatments. Active surveillance is offered to 
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patients with low-risk localised PCa whom are suitable for radical prostatectomy or 

radiotherapy as treatment40. They monitor the patients looking for indications that their 

less aggressive cancers are becoming more aggressive problematic cancers. Active 

surveillance is a close monitoring of the patients and usually involves frequent tests, 

such as PSA blood tests, DREs, ultrasounds and biopsies. 

Watchful waiting is offered to asymptomatic PCa patients for whom there is no curative 

treatment options or intent. Watchful waiting however is implemented with more 

aggressive cancers, where treatment would cause problems due to the patients’ age or 

general health. These patients are monitored for disease progression (a rapidly rising 

PSA or bone pain). Compared to active surveillance, less frequent tests and more 

reliance on patient symptoms for indication of change are implemented in watchful 

waiting. 

PSA monitoring exists to identify patients who have continual raised PSA in the “grey 

zone” (PSA between 4 and 10ng/ml) rather than just an intermittently raised PSA on 

one test. Patients can receive multiple PSA tests to monitor them prior to biopsy. This 

can help to eliminate the number of unnecessary biopsies if there is a continual 

PSA>4ng/ml then it is more likely to be due to PCa and thus these patients require 

biopsies. 

 

1.3.4.2 Metastatic Prostate Cancer 

Metastatic PCa is detected in 21% of men at their time of diagnosis29. It is usually 

identified by a PSA>100ng/ml49 and/or a positive bone scan. Those with metastasis are 

primarily prescribed hormone therapy agents that block androgen signaling50.  

1.3.4.2.1  Hormone Therapy  

 Androgens are male hormones, which include testosterone and dihydrotestosterone 

(DHT), and aid in the signalling for prostate cell growth. Androgen deprivation therapy 

(ADT) lowers levels of these androgens and/or prevents them from reaching the 
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prostate cells, resulting in shrinking and slower growth of the cancer. ADT is not a cure 

but can prolong life. 

Luteinizing hormone-releasing hormone (LHRH) analogs and antagonists reduce levels 

of testosterone released from the testicles by blocking the feedback loop to the 

hypothalamus. Anti-androgens bind androgen receptors, preventing cell growth 

signalling, though these are usually added to LHRH treatments when patients begin to 

become resistant. However, it is a controversial question of when anti-androgens should 

be added to LHRH treatment to gain full androgen blockage, it is thought in some cases 

initial hormone therapy should include both LHRH treatments and anti-androgens51. 

Patients receiving ADT develop resistance leading to castration resistant PCa (CRPC), 

with a median survival of 1-2 years52. It is likely that the high level of heterogeneity 

within the prostate tumour contributes to this resistance53. CRPC develops when cells 

become hypersensitive to the residual levels of testosterone that are left during chemical 

castration. Castration does not remove all testosterone; the maintenance of intratumoral 

androgens is due (at least partly) to the intratumoral or intracrine biosynthesis of steroid 

hormones (adrenal androgens) or potentially de novo steroidogenesis, from cholesterol 

or progesterone precursors within the tumour54. Hypersensitivity to these residual levels 

of testosterone are believed to be due to androgen receptor (AR)- mutations that alter 

ligand binding, alterations in AR co-regulators or AR over-expression (considered to be 

the main driver of CRPC progression)54. AR over-expression has also shown to convert 

anti-androgen treatments (like bicalutamide, flutamide and enzalutamide) from AR 

antagonists to AR agonists55,56.  

Abiraterone was the first drug in clinical practice to target the production of androgens 

by the tumour. It irreversibly and selectively inhibits CYP17A activity. CYP17A is a 

critical enzyme; it facilitates the hydroxylase and lyase activity required in the 

production of adrenal androgens, DHEA and androstenedione (AED), from 

cholesterol54. Although, abiraterone has had impressive responses in clinical trials, not 

all men respond and resistance occurs (seen by a rising PSA), the mechanisms for 
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which are currently unknown. Abiraterones place in the treatment of PCa is so far 

undetermined and many clinical trials are in place to investigate this.  

1.3.4.2.2  Castrate Resistant Prostate Cancer (CRPC) 

Once PCa becomes castrate resistant, there are other treatment options available such 

chemotherapy and vaccine therapy. 

Chemotherapies are usually given to PCa patients who have metastasis but are not, or 

no longer responding to hormone therapies. It is generally not given to patients with 

early PCa, although studies are currently investigating its use following surgery. The 

first chemotherapy agent of choice for PCa is Docetaxel (administered alongside the 

steroid prednisone) and if this doesn’t work or stops working, Cabazitaxel is often a 

second drug choice57. Chemotherapy is used again with the focus on increasing life 

expectancy and/or quality of life for PCa patients (by slowing the growth of the cancer) 

but is considered unlikely to result in a cure to the disease.  

1.4 Known PCa Biomarkers 

Biomarkers in PCa fall into different categories: Biomarkers to predict the presence of 

PCa (screening and diagnosis), biomarkers to stratify patients (into those requiring 

active surveillance and those requiring more radical treatments), biomarkers for 

identifying those whom can be treated with biological targeted therapies and 

predisposition biomarkers for those who are more likely to develop PCa in their 

lifetime.  

1.4.1 Prostate Specific Antigen (PSA) 

PSA, a kallikrein like serine protease (coded for by the gene KLK3), is a molecular 

biomarker currently and routinely used for the diagnosis of PCa, as well as roles in 

prognosis and treatment response. In normal prostate glands, PSA is highly 

compartmentalized and found at levels 1 million times fold higher within the prostate 

compared to that in blood serum. However, in prostatic disease it is thought that this 
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compartmentalization is disrupted resulting in increased levels of escaped circulating 

PSA58. 

PSA is prostate specific but not cancer specific; elevated serum PSA can be the result of 

benign prostatic hyperplasia (BPH), chronic inflammation, and infection. Normal and 

diseased prostatic epithelial cells produce PSA, therefore, weakening its specificity as a 

cancer biomarker.  

Research into men with a PSA less than 4ng/ml has shown that there are many men 

with low PSA (0.6-1ng.ml) that have PCa (10.1%) and even high-grade (Gleason 7+) 

PCa (10%)59. Evidence suggested there was no PSA threshold for which a man can be 

assured he has no risk of PCa, but men with <0.5ng/ml PSA do have a decreased risk of 

developing PCa. Risk of PCa in men with PSA <0.5ng/ml was 6.6%, this increased to 

26.9% in men with PSA 3.1-4ng/ml59. PSA level effect on the risk of PCa was 

significant, p<0.001 (odds ratio 1.66 per unit increase in PSA, 95% CI 1.50 – 1.85)59.  

PSA levels are affected by both age and race; when deciding on a reference range for 

diagnosis and deciding which men will undergo TRUS biopsies, it is important to 

consider these factors. A study on 77,700 men showed that not only does the PSA level 

rise but also that the range increases with increased age (ages 40-49; mean PSA: 0.83, 

SD: 0.79, ages 50-59; mean PSA: 1.23, SD: 1.33, ages 60-69; mean PSA: 1.83, SD: 

1.94, and ages 70-79; mean PSA: 2.31, SD: 2.35). The differences between the age 

groups and their variances were significant, p < 0.0001 and p = 0.0001, respectively60. 

Significant differences in PSA levels were observed between different races also; 

pairwise differences were seen between white and black people, white and Latino 

people, black and Asian people, and Asian and Latino people (p <0.0001). Black people 

have the highest mean PSA values in each age cohort60.  

1.4.1.1 PSA - Screening 

Due to the lack of specificity that PSA holds, using it for screening purposes has led to 

over diagnosis and over-treatment as well as downgrading and down staging at 
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diagnosis and fewer PCa related deaths61. A cohort of men diagnosed with PCa, have a 

form of the cancer that grows so slowly that it is unlikely to pose a threat to the patient. 

Treating of these cancers is known as over-treatment. PSA’s lack of specificity for PCa 

means it is not recommended for a screening biomarker due to the over-detection and 

overtreatment costs it would lead to61.  

The National Cancer Institute estimate that screening 1,000 men between 55 and 69 

every 1-4 years would result in 100-120 men getting a false positive diagnosis (Figure 

0.3). False positive diagnoses lead to anxiety and stress for the patient and his family, as 

well as extra medical costs in further diagnostic procedures. Procedures include TRUS 

biopsies, which also add further risk to patients; serious infections are not uncommon. 

Of the 1,000 men screened, and the 110 patients to receive a true positive result, it is 

estimated that only 1 man would be saved due to screening, compared to the 4-5 men 

that would die without screening62.  

1.4.1.2 PSA – Diagnosis 

Similarly to its use in screening, PSA makes a weak diagnostic biomarker due to its 

lack of specificity to cancer. However, it is the current first diagnostic test for PCa. The 

sensitivity and predictive value of PSA as a biomarker for PCa decreases greatly for 

patients in the “grey zone”. PSA levels in the approximate range 2-10ng/ml is known as 

the “grey zone” as it is difficult to distinguish which elevations are due to cancer and 

which are associated to other factors including age and BMI, or due to conditions such 

as benign prostatic hyperplasia (BPH). Investigations into the PSA grey zone generally 

use cutoffs between 2/4 to 10ng/ml to define it. For every 5 patients, whose PSA level 

resides between 2.5-10ng/ml, 4 will have a negative biopsy result, and the predictive 

value of PSA in the grey zone drops from >90% to <25%63.  

As an individual variable, PSA is a much better PCa predictor than a digital rectal 

examination (DRE) or transrectal ultrasound61, but its modest diagnostic accuracy has 

led to other PSA forms being investigated. 
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1.4.1.3 Free PSA and Pro-PSA  

To improve abilities in distinguishing BPH from PCa in patients who fall in the “grey 

zone”, investigations into the percent free PSA (or ratio of free to complex PSA) and its 

most significant cut-off for biopsy, and different isoforms of pro-PSA were performed.  

 Antibodies were developed that could distinguish between and measure the amounts of 

tPSA and fPSA, a higher ratio of fPSA:tPSA correlates with a lower risk of PCa. This 

comparison allowed a small yet significant improvement in the ability of PSA to 

distinguish PCa from BPH (and other benign diseases that raise PSA levels)64.  

A study of 773 men with PSA levels between 4-10ng/ml with confirmed histological 

diagnosis (379 with PCa and 394 with BPH) resulted with a suggested 25% free PSA 

cut-off. The 25% free PSA cut-off was able to detect 95% of patients with PCa and was 

also able to avoid 20% of unnecessary biopsies64. 

PSA is secreted as the inactive enzyme pro-PSA, this can be cleaved at different 

locations resulting in the mature/active form of PSA. Some remain uncleaved and pro-

PSA can have many isoforms. The [-2]proPSA consistently correlates with PCa65; it is 

observed in greater abundance if the prostate is neoplastic (25-95% of free PSA 

compared to only 6-19% in men without PCa66). 

Guazzoni et al., showed that the use of %[-2]pro-PSA alone was better at discriminating 

between PCa and BPH (in patients with PSA ranges 2—10ng/ml) compared to that of 

total PSA and percentage free PSA, with AUCs of 75.7%, 53%, and 58%, 

respectively67. Using an artificial neural network, Stephan et al., showed that the 

combination of %[-2]proPSA, %free-PSA, total PSA and age (but not prostate volume) 

offered highest accuracy (AUC 0.85). It was also shown that %[-2]proPSA was better at 

discriminating between T2 and T3 tumours as well as Gleason <7 and Gleason >7 

cancers68. 
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Figure 0.3 The NCI website breaks down the results of PSA screening of 1,000 men between the ages 
of 55-69. Taken from the National Cancer Institute 201569.  

	
 

	



CHAPTER	1:	INTRODUCTION	

46	
	

1.4.1.4 PSA – Treatment  

PSA is commonly used within treatment plans available for PCa, it is a good indicator 

of progression and drug resistance. PSA levels are routinely and frequently checked in 

PCa patients; looking for progression in AS patients (section 0), resistance in HT 

patients (section 1.3.4.2.1) and BCR in radiotherapy or post-radical prostatectomy 

patients (section 1.3.4.1.3). 

PSA is one of the key factors in determining treatment options for patients. A PSA 

above 100 is indication of metastasis and so hormone therapy is usually provided. PSA 

also is involved in determining treatment of lower grade localised PCa (Table 0.1). 

Investigations into [-2]pro-PSA combined with percentage fPSA identified a correlation 

for the need of more radical treatment rather than active surveillance70. Also, other 

proPSA isoforms ([-5] and [-7]pro-PSA) correlate with a need for more radical 

treatments in active surveillance patients, when found in the tissue surrounding the 

tumour in biopsies.  

	

1.4.1.5 Concluding PSA 

PSA is not a specific PCa biomarker, yet it is the first clinical diagnostic test given to 

patients and is also a determining factor in treatment options and changes. PSA remains 

a very useful biomarker in following patients with PCa to look for resistance to 

treatment, further progression and recurrence. Though other biomarkers are unlikely to 

replace PSA, they are required to improve the sensitivity and specificity of PSA as a 

PCa biomarker.  

	

1.4.2 PCA3 

PCa gene 3 (PCA3) is a PCa specific long noncoding RNA (lincRNA), also known as 

DD3 on chromosome 9q21-22 that is over-expressed in PCa tissue71. PCA3 is not 

expressed in normal prostate tissue and expression is seen at low rates for hyperplastic 

prostate tissue, making it the most specific PCa biomarker identified so far. The non-
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coding PCA3 mRNA functions as a polyadenylated RNA transcript, which does not 

result in a cytoplasmic protein63.  

	

1.4.2.1 PCA3 – Diagnosis 

PCA3 can be found in urine, but only at sufficient levels, after a DRE is performed72, 

and that comparing the ratio of PCA3 mRNA quantities with KLK3 mRNA (which is 

the transcript for PSA) quantities (very slightly over-expressed in prostate cells in urine) 

gave high sensitivity and specificity rates, 67% and 83% respectively73. The comparison 

of PCA3 and KLK3 mRNA quantities found in prostate cells in urine is known as the 

PCA3 score. An assay was generated to simultaneously detect PCA3 mRNA as well as 

KLK3 mRNA in urine: the uPM3TM assay. The assay was tested on 158 patients with 

elevated PSA and/or an abnormal DRE, whom provided a sample with a sufficient 

amount of prostate cells in the urine. The assay identified PCa in 62 of the 158 patients 

(39%), with sensitivity and specificity rates of 82% and 76%, respectively. The positive 

and negative predictive values for the assay were 67% and 87%, respectively. 

Comparably, PSA had sensitivity and specificity rates of 98% and 5%, with positive 

and negative predictive values of 40% and 83%63. 

The performance of the uPM3TM assay at different PSA levels (<4ng/ml, 4-10ng/ml and 

>10ng/ml) was examined, with outcome sensitivity levels of 73%, 84% and 84%, 

respectively, and specificity levels of 61%, 80, and 70%, respectively63. A more stable 

re-designed assay was later designed and evaluated in a multicenter assessment: The 

assay had between 94%-100% discriminatory rates in samples after a DRE with at least 

3 strokes72. This test was then applied to 72 men with known biopsy outcomes, of 

which 17 were positive for and 55 were negative for PCa, at two centers. Taking the 

PCA3 score as a continuous variable, a ROC analysis was performed and both sites 

were able to correctly classify 49/72 (68.1%) of patients, and the AUC were not 

significantly different (p = 0.9289), this demonstrates significant accuracy between the 
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sites (p = 0.0085)72, highlighting the PCA3 assay as an accurate, reproducible test for 

the diagnosis of PCa. 

Another multicentre saw improvement of PCA3 on PSA in the “grey zone” (PSA 3-

15ng/ml); AUC increased from 0.57 to 0.66 and specificity increased from 47% to 66% 

for PSA and PCA3, respectively74. A study looking at multi-gene expression profiling 

of prostatectomy tissues yielded and AUC for PCA3 of 0.85 individually but increased 

with the addition of EZH2, prostein and TRPM8 to 0.9075.  

	

1.4.2.2 Repeat Biopsies 

The PCA3 test is effective at identifying patients who were likely to have a positive 

second biopsy result, after receiving a negative first. A multicentre clinical study of 466 

men evaluated the clinical usefulness of the PCA3 assay for the prediction of repeat 

biopsy outcome. The study resulted in a suggested PCA3 cutoff of 25, with patients 

with a PCA3 score lower than 25 were 4.56 times as likely to have a second negative 

result for their repeat biopsy76. The PCA3 test is FDA approved but generally only used 

in private healthcare in the UK.  

	

1.4.2.3 PCA3 Conclusions  

Although the PCA3 assay shows significant improvements in specificity and sensitivity 

compared to PSA, it is significantly more expensive: A PCA3 test costs between 

approximately £300 and £400, (whereas a PSA test costs approximately £7) and this 

cost will increase with the use of gene panels. In comparison a TRUS biopsy costs 

£31250, as you can see the PCA3 test can be more expensive than just doing the repeat 

biopsy. The literature and improved sensitivity show that the PCA3 test is clearly useful 

but where it fits into PCa diagnostics is unclear at this time. The PCA3 test is currently 

available privately but not on the public health care system/NHS in the UK.  
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1.4.3 AMACR  

Alpha-methylacyl-CoA racemase (AMACR) is used as an immunohistochemical 

(section 1.6.7) diagnostic biomarker for PCa. Needle biopsy specimens are stained for 

AMACR during diagnosis of PCa patients77, as AMACR expression is increased in PCa 

but may decrease with progression78. AMACR expression alone was not informative for 

the prediction of metastatic or lethal PCa; age, Gleason score and stage were also 

indicative78 and out of 64 prostate adenocarcinomas no significant correlation was seen 

between AMACR expression levels and histopathological grade79. 

AMACR is an enzyme that regulates the metabolism of branched-chain lipids and drugs 

and is often overexpressed in PCa tissues80,81. It is thought that the synthesis of fatty 

acids and increased use of branched chain fatty acids plays a role in PCa progression. It 

is essential for optimal growth of PCa cells in vitro and offers a potential treatment 

target complementary to hormone therapy. AMACR is also frequently seen in tumours 

of patients with hereditary links to PCa79.  

	

1.4.4 AR 

The Androgen receptor (AR) binds androgens leading to the development and survival 

of prostate epithelial cells. In PCa it allows survival and growth of the tumour and is a 

known contributor to its progression. Whilst PCas show great heterogeneity, it is 

obvious that AR plays an important role in the survival of the bulk of prostate tumour 

cells82. 

Hormone therapies work by blocking androgen-AR signalling, inhibiting growth and 

survival of the tumour. AR transcriptional reactivation/rearrangements are fundamental 

to the inevitable resistance of PCa to hormone therapies and androgen-independent 

activation of the AR pathway. One resistance mechanism is the production of AR 

variants that lack the canonical ligand-binding domain82, allowing the transcription of 

AR target genes without the initiating signal of androgen binding. 17 of these AR 
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variants have been identified, all containing a common core of the DNA binding 

domain and then NH2 terminal domain and lacking the ligand-binding domain. There 

are several mechanisms for the production of AR variants including: proteolytic 

cleavage, genomic alterations, and altered exon splicing. 

Levels of specific AR variants observed in clinical samples are highly variable and not 

all variants are equivalent at predicting progression and resistance. As well, clinical 

studies using AR variants are limited by the lack of clinically validated assays for the 

detection of the individual variants. However, these limitations are currently being 

addressed82, suggesting potential clinical use of AR variants as biomarkers.  

1.4.5 SPOP 

SPOP, otherwise known as E3 ubiquitin ligase adaptor speckle-type poxvirus and zinc 

finger (POZ) domain protein, interacts directly with and regulates SRC-3 (p160 steroid 

receptor coactivator-3). The p160 SRCs play fundamental roles in the cell proliferations 

and AR transcriptional activity as well as resistance to androgen deprivation therapy83. 

SPOP binds wild-type AR leading to its degradation; this is promoted by anti-androgens 

but antagonized by androgens. Whereas, SPOP mutants and AR alternative splicing 

leads to AR stabilization suggesting a key role in acquiring ADT resistance84. 

A new molecular subtype of PCa can be defined by mutations in SPOP; SPOP 

mutations are found in PCas that lack ETS family rearrangements85,86. SPOP missense 

mutations within the substrate-binding cleft were identified in 13% PCas and were the 

most common mutations in 111 prostate tumours that underwent exosome sequencing87. 

This substrate-binding cleft harbours many residues that can be mutated in PCas (Figure 

0.4B). The cleft central F133 is the most common site of mutations (Figure 0.4A). 

Exome sequencing of 50 lethal heavily pre-treated CRPCs and 11 treatment naïve high-

grade localized PCas’, showed that four CRPCs had SPOP oncogene mutations; 2 point 

mutations, 1 frame-preserving indel and 1 copy-number call increase88. SPOP mutations 

correlate with somatic deletions at chromosome 5q21 and 6q21. CHD1, FOXO3 and 
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PRDM1 are found at these chromosomal regions and are also correlated with SPOP 

mutated PCas89. As well as TMPRSS2:ERG fusions, SPOP does not appear to be 

mutated in cancers with Tp53, PTEN and PIK3CA mutations87.  

	
Figure 0.4: SPOP frequency of substitutions and substrate binding cleft87. A) the frequency of 
substitutions in SPOP across four PCa cohorts from Weill Cornell Medical College (WCMC), 
University of Michigan (UM), Uropath and University of Washington (UW). B) the substrate-binding 
cleft of SPOP with the positions of all eight residues that can be possibly mutated. Adopted from 
Barbieri, C. E. et al. 201287 

SPOP associations with AR highlight the need for examining SPOP mutation 

frequencies in men whom do not initially respond to, or very quickly acquire resistance 

to PCa; SPOP mutation detection could potentially be used to stratify patients out of 

hormone therapy as a treatment.  

1.4.6 TMPRSS2:ERG  

TMPRSS2:ERG is a fusion gene that is formed as a result of structural chromosomal 

rearrangements. TMPRSS2 is an androgen responsive, prostate specific gene and ERG is 

a transcription factor oncogene belonging to the ETS family, both located on 

chromosome 21. ETS family genes are involved in proliferation, differentiation, 

angiogenesis, inflammation and apoptosis. The fusion occurs via a translocation of 

sequences that can involve deletion of the intervening sequences between TMPRSS2 

and ERG90.  

ERG has been identified in fusion genes in other cancers; leukaemia and Ewing’s 

sarcoma. ERG knockdown inhibits cell growth and invasion and oppositely over-

expression leads to invasion and the induction of PCa like lesions on in vivo models. 

A	 B	
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ERG has also been identified to work with mutated members of the PI3K pathways 

leading to the progression of PCa in animal models.  

TMPRSS2:ERG fusions are seen in ~50% of PCas91. TMPRSS2 also fuses with other 

members of the ETS family (ETV1, ETV4 and ETV5) in PCas but at much lower 

frequency (Figure 0.5). Diversity is also observed in the splice variants of 

TMPRSS2:ERG (Figure 0.5) not only between PCas but also within an individual PCa. 

The most commonly identified TMPRSS2:ERG fusion is TMPRSS exon 1 fused with 

ERG exon 4, this is described as T1/E4, the second most commonly found is T1/E592.  

It remains controversial for if TMPRSS2:ERG fusions are implicated in a poor clinical 

outcome. A number of studies now suggest it is not the major factor of clinical 

outcome, but that in a combination of copy number gain and other genetic aberrations 

(like PTEN loss) it can offer prognostic information92. Yet many papers still suggest 

that TMPRSS2:ERG fusions are implicated in mediating advanced PCas93. However, it 

has also been shown that early cancers and HG-PIN can also harbour TMPRSS2:ERG 

fusions. 

	
Figure 0.5 ETS family partners for TMPRSS2 fusion and their splice variant diversity. Adopted from 
Clark, J et al., 200992. 
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1.4.6.1 TMPRSS2:ERG as a Therapeutic Target 

During the 1990’s, a leukaemia fusion; BCR-Abl (the Philadelphia chromosome) 

emerged as a target of treatment (Imatinib) in Philadelphia chromosome positive (Ph+) 

myeloid leukaemia94. TMPRSS2:ERG has a prevalence of approximately 50% and is 

one of the commonest of all cancer fusion genes in solid tumours, making it a good 

potential therapeutic target. However, studies have shown that TMPRRS2:ERG does not 

increase cellular proliferation or anchorage-independent growth, but instead induces a 

transcriptional program associated with invasion95. Knockdown of ERG transcriptional 

programming in ETS-positive cancers lead to an inhibition of invasion in the VCaP cell 

line. Direct over expression of ERG in both VCaP and benign prostate cells mediate 

cellular invasion through engagement with plasminogen activation pathway 

components, potentially showing a downstream target that could be used as a drug 

target96. TMPRSS2:ERG fusions have also been implicated in signalling pathways and 

ion channel genes creating further opportunities for therapeutic targeting of these fusion 

positive cancers92.  

Shao et al., have shown that targeting the most common and clinically significant 

alternatively spliced isoforms of the TMPRSS2:ERG fusion using siRNAs delivered by 

liposomal nanovectors resulted in the inhibition of tumour growth in vivo97. The mice 

with orthotopic or subcutaneous xenograft tumours (with the target fusions) also 

showed no sign of toxicity. Therefore, TMPRSS2:ERG targeting could be a potential 

future therapy for PCa.  

1.4.7 Biomarkers for pre-disposition to PCa 

Family history has been significantly associated with a higher risk of PCa (p = 0.01, 

odds ratio, 1.39; 95 percent confidence interval, 1.07 to 1.79;) in a study of 2,950 men, 

all with an initial PSA of less than 4ng/ml. Of the 2,950 men, 477 were family history 

positive and 2,473 were family history negative. After a seven-year follow up, 449 men 

were diagnosed with PCa; 94/477 (19.7%) that were family history positive and 
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355/2,473 (14.4%) that were family history negative59. Family history in a first-degree 

relative (brother, father, or son) is said to double a man’s risk of developing PCa, with 

increasing risk as the number of affected relatives rises98. 

BRCA2 mutations increase relative risk by 5-23 fold in men above 60 years of age, 

however, the frequency of BRCA2 mutations is low and can only account for a small 

number of PCa susceptibility cases99. BRCA2 mutation carriers are in higher risk of 

developing PCa than BRCA1 mutation carriers and studies into BRCA1 mutations 

suggest they have limited contribution to PCa risk100. Breast cancer linkage consortium 

studies (BCLC) found that BRCA2 carriers risk was also based largely on age and the 

mutation location100. 

Genome-wide association studies (GWAS) have led to the identification of more than 

46 single nucleotide polymorphisms that have low penetrance in PCa99. As discussed by 

Goh et al., these include SNPs at loci or close to loci known to be involved in PCa such 

as KLK3, AR, and AR transporter genes99. Low penetrance genes were investigated 

because evidence has suggested that the risk of developing PCa is likely related to a 

combination of loci conferring low to moderate risk of the disease and, not so 

commonly, alleles with higher risk such as BRCA299. 

As targeted therapies and screening for PCa becomes more widely used, the use for pre-

disposition biomarkers will become increasingly important1. 
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1.5 Urine and Exosomes 

The PCA3 test (section 1.4.2), as previously discussed, proves that urine contains PCa 

specific biomarkers. The anatomy and location of the prostate make urine a viable 

source of prostate biomarkers; urine from the bladder passes through the middle of the 

prostate, where secretions from the prostate glands can enter the urine (Figure 0.6). 

DRE manipulates a more abundant release from these glands allowing prostate and PCa 

specific markers to be detectable in urine (such as PCA3, KLK3 and TMPRSS2:ERG)72. 

Figure 0.6 Anatomy of the prostate. Adapted from Drake et al., 2015101. 

Urine holds an advantage over tissue biopsies in that it potentially allows an overview 

of all foci of cancer in one go. More than ~80% of cancerous prostates have more than 

one tumour focus102, and each cancer focus will have a number of variant tumour clones 

with divergent genetic and epigenetic changes. Biopsy sampling is incapable of 

capturing the diversity of cancer within a prostate.  
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Figure 0.7 Tumour cells send signals to distant cells through exosomes. A) Production of exosomes 
and how they can be sent to recipient cells. B) The different materials that can be found inside 
exosomes. Adopted from Bátiz, L.F., 2016103. 

Exosomes are endocytic membrane derived microvesicles 30-120nm in size. They can 

be found in many biological fluids including those that are easily attainable like blood 

and urine, which also see elevated exosome secretions during malignancy104. Exosomes 

are a key component of biological trafficking across membranes and play a key role in 

cell homeostasis. In cancers, aberrant exportation of proteins and RNAs via exosomes 

can lead to miss-expression in cells that take up the exosome. Exosomes contain 

proteins, lipids and nucleic acids that can be involved in cell-to-cell communication 

(Figure 0.7), through their release into surrounding cells. Exosomes derived from 

tumour cells have roles involved in tumourigenesis, metastasis, and response to therapy 

by transferring mRNA, miRNA and proteins between cancer cells and the tumour 

microenvironment105. Also ligand binding can trigger a signalling cascade in the target 

cell. Exosomes have the ability to cross talk/influence key tumour-related pathways 

(such as those involved in the hallmarks of cancer106) including hypoxia driven EMT, 

evading immune responses, angiogenesis and metastasis107. The content of exosomes 

(miRNA, proteins and mRNA) have been shown to cause changes in a) neighbouring 

cells, b) the tumour microenvironment and c) in distant cells. “Exosomal shuttle RNA” 

can be transferred via exosomes from the cell of origin to a recipient cell where it can 

be translated107. Exosomes originating from tumours have been shown to educate non-

transformed cells in host tissues to create a pro-metastatic phenotype pre-metastasis. 

. 
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Hoshino et al., showed that treatment of organ-specific cells with lung-tropic model 

derived exosomes can redirect metastasis of bone-tropic tumour cells108. Specific 

exosomal integrins are associated with organ-specific metastasis and so could be useful 

in predicting which organs metastasis will occur in. Costa-Silva et al., showed that 

exosomes derived from pancreatic ductal adenocarcinomas was able to create a pre-

metastatic niche in livers of naïve mice and also increased the metastatic burden within 

the liver109.  

Thus, it could be said that looking for biomarkers in exosomes is like raiding cancers’ 

letterbox. The molecular composition of exosomes vary with cell and tissue of origin107 

and can also be altered by pathophysiological changes in the cell of origin, meaning 

exosomes have great potential for cancer biomarkers.  

Some RNAs are enriched within the exosomes at several 100-fold compared to cells, 

and transcripts that may have very low copy numbers in tumour cells could be detected 

at much higher relative levels within exosomes110. Nilsson et al., were able to show that 

exosomes in urine contained genetic information that is directly from PCa cells111. Both 

PCA3 and TMPRSS2:ERG transcripts were detected in the exosomes. Dijkstra et al., 

showed that the genetic content of exosomes differs from that of the cell sediment112. 

Exosome membranes can resist ribonuclease and DNase digestion of their contents 

allowing a better-protected RNA inside in comparison to cell RNA. Exosomal RNA 

will be similar on harvest as when it left the cell, in contrast to cellular RNA which will 

be altered on loss of cell:cell contact and entry into the non-life sustaining environment 

of urine. These points make exosomes a stable, viable, and more promising source of 

PCa biomarkers than cells harvested from urine.  

	

1.6 Methods in Biomarker Discovery 

Over the past two decades extensive investigations have proven that cancer is a 

heterogeneous disease with diverse genomic aberrations113. These genomic aberrations 
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consist of gains, losses and rearrangements of chromosomal fragments, specific gene 

mutations and epigenetic alterations including methylation. These can lead to aberrant 

transcript expression and incorrect protein production at differing levels between 

disease and benign states. 

Many cytogenetic and molecular tests have been developed to detect such aberrations. 

As technologies advance, more effective, less time consuming and cheaper methods are 

available for biomarker discovery and their validation (Table 0.2).  

	
Table 0.2: Cost of different technologies available for biomarker discovery. 

Technique 
example 

Number of 
transcripts 

Batches 
of 
Samples 

Amplification 
Required 

RNA 
usage 

~Cost/Sample 

NanoString <800 12 Y 20ng £50/sample  
Microarray 30,000 1 Y 20ng £400/sample  
Sequencing All 1 N 100ng*  £1,000/sample  
qRTPCR 1+ 1 Y 20ng $35/sample 
Targeted 
Sequencing 

250 1 N 1ng* $50/sample 

*RNA	not	amplified	and	used	directly	in	technology.		

1.6.1 Nanostring 

The Nanostring nCounter gene expression system was made available in 2008 and is 

capable of capturing and counting individual mRNA transcripts. It provides direct count 

data for each of the target genes via a two-probe system: A capture probe and a reporter 

probe. Both probes are hybridised to the mRNA, the reporter probe hybridising to 

sequence adjacent to the capture probe (Figure 0.8A). The reporter probes are 

specifically labelled with a series of fluorescent ‘beads’ that are unique for each gene. 

The capture probe is biotinylated and the mRNA/probe combination is captured by 

binding to a streptavidin coated slide. The DNA on the slide is then subjected to a 

voltage which stretches out the molecules on the slide (Figure 0.8B). The slide is then 

washed to remove excess probes, and the slide is photographed. The bead codes are 

counted to give the frequency of each mRNA in the sample (Figure 0.8C)114.  
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      In comparison to microarrays (section 1.6.4), NanoString technologies allow 

quantification of small amounts of starting materials (100ng), and mRNA levels can be 

measured without the need for amplification. By allowing the customer to choose 

specific targets, use of NanoString over array can work out cheaper per sample. 

Microarrays will provide >34,000 targets and cost ~£400-500, however, if you want a 

select cohort of genes (maximum 800 per analysis), NanoString can allow a cheaper 

overall experiment. NanoString is also more specific and has a better dynamic range 

than microarrays. The reaction is performed in solution and not fixed to a solid surface 

allowing the reaction to be driven to completion and so boasts higher sensitivity. The 

Nanostring nCounter system also allows a pure digital readout of transcript counts that 

claim to have less background noise, and be less ambiguous in downstream analyses 

than those that use analog signals, like microarrays115.  

     A disadvantage is that due to the barcode system it utilises, there is a limited number 

of probes (capped at 800 for a custom codeset)116. Again, like microarrays unknown 

mutations are not identified via Nanostring, and so for the identification of these, 

sequencing is still preferred and similarly to microarrays and PCR, the quality of the 

data is dependent on the quality of the probe.  

Figure 0.8 NanoString Ncounter system. A) The set up of the two probes (capture and reporter), one 
target system. B) The elongation and fixing of probes using a current for imaging. C) Imaging of the 
uniquely labelled reporter probes. Adapted from Geiss, G et al., 2008115. 
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1.6.2 Sequencing 

In 1977 Frederick Sanger published Sanger sequencing, a method using the 

incorporation of chain-terminating dideoxynucleotides by DNA polymerase, which 

cause base-specific termination during DNA synthesis117. This was a fundamental 

breakthrough for science and allowed a monumental accomplishment: the finished 

grade human genome sequence in 2001. Since then, sequencing technologies have 

advanced and become considerably cheaper: In 2001 it cost $100 million to sequence a 

genome and since late 2014 it is ~$1,000. The biggest price drop occurred in 2008 

(Figure 0.9) and was a consequence of the introduction of commercialised next-

generation sequencing (NGS) technologies. In 2015 the production of Illumina’s HiSeq 

X Ten allowed the first $1,000 sequenced genome118. 

	

	
Figure 0.9 Sequencing cost per genome from 2001 to 2015. Sudden drops seen in ~2008 and again in 
2015. Adapted from National Human Genome Research Institute (NHI) 2016119. 

	

1.6.2.1 Next Generation Sequencing (NGS) 

Next generation sequencing began with the discovery of the pyrosequencing method 

using luminescent for measuring pyrophosphate synthesis. This was a two-enzyme 
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process whereby ATP sulfurylase converts pyrophosphate into ATP. ATP is the 

substrate for luciferase, which produces a proportional amount of light to the amount of 

pyrophosphate produced as each nucleotide is washed over template DNA that is fixed 

to a solid phase. This method is still, similarly to Sanger sequencing, a sequence by 

synthesis method. Benefits included using natural dNTPs, and being observed in real 

time without the need for electrophoreses. A disadvantage of this was that identification 

of more than 4-5 identical nucleotides proved to be difficult. Further improvements in 

methodology including using beads for DNA attachment and enzymes for degraded 

unused dNTPs (removing the lengthy wash step), led to the first commercial NGS 

technology by 454 Life Sciences. This allowed massive parallelisation of sequencing 

reactions, meaning the amount of DNA sequenced in one run was significantly 

increased120.  

Following the success of 454’s high throughput sequencing machines, a number of new 

techniques were developed, including the Solexa method of sequencing, which was 

later acquired by Illumina. The Solexa method used bridge amplification, where DNA 

molecules were run across complementary oligonucleotides bound to a flowcell. Here, 

the original flow-cell binding DNA strands arch over to prime the next round of 

polymerisation for neighbouring oligonucleotides to create clusters of clonal 

populations by solid phase PCR. This is another example of sequence by synthesis, 

although here modified dNTPs with a fluorescent ‘reversible-terminator’ occupies the 3′ 

hydroxyl position. These fluorophores needs to be cleaved prior to the next 

polymerisation step, allowing sequencing in a synchronous manner ( 
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Figure 1.10).  

Illumina created the first Paired end sequencing, improving efficiency and accuracy 

when aligning to a reference genome by providing positional information121,122 and 

decreased sequencing costs per template123. Paired-end sequencing enables improved 

biological applications, allowing genome-wide identification of gene fusions, insertions, 

deletions and translocations and spliced exons because it retains information on the 

distance and relationship between two ends of DNA fragments121,123. 

Illumina’s HiSeq series then used a further improved method to allow longer read 

length and depths. Disadvantages include substitution errors (commonly after “G” 

incorporation), under-representation of AT-rich and GC-rich regions (due to 

amplification bias) and a 2.5% false positive rate for novel single nucleotide variants 

(SNVs)124. Illumina is the most commonly used sequencing platform: The HiSeq series 

is still used commonly for genome sequencing, whilst Illumina’s other machines are 

used for other applications. MiSeq is used for experiments that require lower-

throughput and longer read lengths with a faster turn around121. NextSeq machines are 

desktop sequencing tools with fast turn around time used for transcriptome and targeted 

re-sequencing and thus is commonly used for clinical settings.  

Although there are many NGS platforms (Roche/454, Illumina, and Pacific Biosciences, 

etc.), all use spatially separated, amplified or single DNA molecules, in a flow cell that 

are massively parallel sequenced125. NGS technologies have provided us with an ability 

to produce enormous amounts of data at a relatively cheap cost. The ever-increasing 

amounts of DNA sequenced, longer reads and faster turn around times are constantly 

improving the sequencing technologies. 
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Figure 1.10 Solexa's sequencing methodology using bridge amplification. DNA strands bound by 
complimentary oligonucleotides to a flow cell arch over to prime the next round of polymerization. 
This creates clusters of clonal populations via PCR. Fluorophores that can be cleaved between steps 
show the incorporation of the next dNTP. Adapted from Voelkerdig et al., 2009126 

1.6.2.2 Third Generation Sequencing 

The Oxford Nanopore, Pacific Biosciences’ (PacBio) Single Molecule Real Time 

(SMRT) and Illumina’s Tru-seq Syntheic Long-Read are the three commercially 

available third generation sequencing technologies127. Third generation sequencers can 

be considered as those that are capable of sequencing single molecules (SMS), which 

negates the need for DNA amplification121, and can produce much longer reads 

(generally between 5,000-15,000 bp)128. Pac Bio’s SMRT was the first, released in 
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2010, and the reads generally had a raw error rate of 10-15%. However algorithmic 

techniques and a 50x long read coverage (for de novo genome assembly) can allow 

correction. The main limitation is cost compared to second generation technologies128.  

Illumina’s Tru-seq Synthetic Long-read was released in 2012. Long DNA molecules are 

clonally amplified and barcoded prior to sequencing using a short read instrument this 

results in synthetically produced long reads from the short read sequences. This 

technology boats a high accuracy without the need for correction but the standard 

illumina shortcomings are the same; high GC content and tandem repeats remain 

troublesome. For de novo genome assembly, cost can be even greater than that of 

PacBio’s SMRT because for 30x long read coverage you need 900x – 1500x short read 

coverage128. 

Oxford Nanopore’s MinION is the newest, released in 2014 and is a handheld device. It 

works by measuring the small disruptions to an electric current as DNA molecules flow 

through a nanopore. The MinION has low accuracy and throughput compared to the 

other third generation technologies. Accuracy can be improved with correction 

algorithms like those used for the PacBio SMRT. A major benefit of the MinION is its 

size, cost, and speed, allowing its use in remote areas and for breakout classification128. 

Further improvements on accuracy can make the MinION a powerful tool for the future.  

	

1.6.2.3 Exome sequencing  

It is estimated that 85% of mutations that cause disease can be found in coding and 

functional regions of the genome, and therefore, can be identified through exome 

sequencing rather than whole genome sequencing. Sequencing only the exomes 

provides a lower cost per genome/exome and whole exome sequencing provides 

coverage of more than 95% of the exons129. Therefore, exome sequencing can be used 

to identify the majority of cancer biomarkers at a much lower cost. Exome sequencing 

can also be used to target non-coding elements such as microRNA and lincRNA130. The 

exome can be captured using either solution based or array based technologies. Solution 
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based exome capture is most commonly used. Bioitinylated oligonucleotide probes to 

target regions in the genome are used to capture fragmented DNA. Streptavidin beads 

then bind the probes and untargeted DNA is washed away. PCR is used to amplify the 

captured target DNA and this is then sequenced131. Solution based capture is most 

commonly used even though array based capture was the first to be used, this is likely 

due to less input DNA requirements. However, array based capture has proven to be 

useful in low GC content regions and SNP detection131.  

1.6.2.4 RNASeq 

RNASeq, first used in 2008, is when next generation sequencing approaches are used to 

sequence total cDNA, allowing quantitative expression scores (similar to microarrays). 

However, the entire transcriptome can be observed (without prior knowledge 

requirements for probe production), including novel transcribed regions and transcript 

structures, such as alternatively spliced isoforms, can also be identified132. Due to the 

desire to determine differential splicing activity, antisense transcription and novel 

transcriptional regions in eukaryotes, RNASeq has been key milestone for biological 

experiments in these organisms. The resolution and sensitivity that can be achieved and 

the range of different changes that can be observed give RNASeq advantages over 

microarrays. However, there is a significant extra cost, bioinformatics requirements and 

data storage required for RNASeq experiments133. Due to the role of NGS in RNASeq 

experiments, the limitations of NGS technologies are still present (section 1.6.2.1). 

RNASeq experiments have allowed a better understanding of transcription initiation 

sites, improved detection of alternatively spliced variants, and fusion genes as well as a 

better identification of sense and antisense transcripts. All of these things are key to 

cancer research134. Developments in RNASeq methods to allow low-input (cDNA pre-

amplification) and the use of unique molecular identifiers (UMIs) have allowed single 

cell RNA sequencing experiments that can identify transcriptomic variation between 

genetically homogenous cells. This is very important in cancer research where cancer 
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cells are known to have subpopulations with heterogeneous mutations and 

transcriptomes135. 

	

1.6.2.5 CHiPSeq 

ChiPSeq, chromatin immuno precipitation sequencing, is the sequencing of DNA 

fragments that co-precipitate with a DNA binding protein. The most common of the 

DNA binding proteins investigated with CHiPSeq are transcription factors, chromatin 

modifying enzymes or modified histones that interact with the DNA. DNA segments 

that are associated with a specific DNA-binding protein can be identified with ChiPSeq 

in an unbiased manner, without existing knowledge of precise DNA binding sites136. 

ChiPSeq allows experiments to study gene regulation. 

	

1.6.2.6 Targeted Sequencing 

The decreasing cost and improvements to second-generation sequencing technologies 

mean sequencing of complex organisms will eventually become routine. Currently, 

sequencing large numbers of whole genomes of Eukaryotes routinely is not yet feasible 

and thus enrichment for areas of interest can reduce time and cost137. There are a 

number of methods to selectively “capture” genomic regions for sequencing, known as 

target-enrichment; each has their own advantages and drawbacks. These include PCR 

(Section 2.1.6), molecular inversion probes (MIP), on-array hybrid capture and in-

solution hybrid capture137.  

PCR has been widely used prior to sequencing in experiments. It boasts high sensitivity, 

good specificity, uniformity and robustness. However, there are issues such as cost, 

difficulty to multiplex (with the simultaneous use of multiple primers, high levels of 

nonspecific amplification are observed due to interaction between primer pairs), and an 

upper limit to the generated amplicon size. Also, in practice not all amplification 

reactions yield products, which is a key problem when working with clinical samples137.  
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MIP uses the enzyme ligase to circularize single stranded oligonucleotides formed of a 

common linker flanked by target-specific sequences. Exonucleases are then used to 

digest uncircularised species, leaving only the circularised oligonucleotides to be 

amplified via PCR, using primers targeting the linker. DNA polymerase is used to “gap 

fill” between target specific MIP sequences. Gap fill and PCR can occur in small 

volume, aqueous solution, meaning they are easy to scale to large numbers via a 96-

well plate. Another advantage is that barcodes for identifying purposes can be 

incorporated into the primers allowing pooling of multiple samples and input 

requirements can be as low as 200ng137. Issues include capture uniformity, which have 

been improved modestly but remain this technique’s biggest downfall.  

Hybrid capture is performed using immobilised specific probes that hybridise the 

shotgun fragment library and the un-targeted DNA strands are washed away whilst 

those captured are eluted. Arrays can hold 2.1 million probes per array with the ability 

to capture 34Mb137. Compared to PCR based approaches, array techniques are quicker 

and less laborious. Hybrid capture also has its drawbacks including expensive hardware, 

high starting material requirements (10-15μg) and limits to a) the number that can be 

performed in a day and b) the number of samples in a study (large numbers aren’t 

feasible).  

In solution capture is similar to array capture, with an excess of probes allowing less 

starting material. Again this technique can be used in 96-well plates meaning it is 

readily scalable without the need for specialist equipment137.  

 

1.6.3 Polymerase Chain Reaction (PCR) 

PCR is an important laboratory technique that is capable of amplifying a single DNA 

sequence to make thousands/millions of copies. The PCR procedure has multiple 

heating and cooling steps:. The reaction mix (DNA, dNTPS, DNA polymerase, buffer) 

is heated to 94-98°C to denature double stranded DNA and then cooled to enable the 
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sequence-specific hybridisation of the primers to the single stranded DNA. DNA 

polymerase then makes a complementary DNA strand extending from the 3’end of the 

hybridised primer. These heating and cooling steps can then be repeated to create more 

and more copies of the DNA.  

PCR can be used to detect presence/absence of a specific target as well as to quantify 

the amount of target present. Presence/absence can be observed via gel electrophoresis, 

using a ladder of known sizes to obtain product size. Quantification is generally 

performed using fluorescent dyes. 

There are multiple uses for PCR, for example real-time PCR can monitor the 

amplification of target nucleotide sequences in real time by either using fluorescent 

dyes that intercalate between dsDNA in a non-specific manner or by using target 

specific probes that are fluorescently labelled. The number of cycles required for the 

product to exceed a predetermined fluorescence threshold is measured (as a cycle 

threshold- or ct-value) to infer the amount of starting target material. Quantification can 

be also be performed post-PCR. Nested PCR uses using two sets of primer pairs in 

sequential reactions. It is used to reduce non-specific probe binding, and increase 

sensitivity: PCR product from a first PCR is used to seed a subsequent PCR containing 

a second set of ‘nested’ primers that hybridise to sequences 3’ to the first round primers 

in the amplified product. This improves specificity as it is unlikely that DNA other than 

the intended target sequence would hybridise to both primer pairs.  

PCR has been used to detect mutations and biomarkers, and to diagnose cancer. 

Leading up to the development and cost reduction of NGS (section 1.6.2.1), many 

scientists were using PCR-based investigations into cancer biomarker discovery: A 

reverse transcription-PCR assay of 761 transcripts was used for the discovery of colon 

cancer biomarkers138. Comparisons with targeted NGS have shown that real-time PCR 

and NGS have significant concordance (96.3 to 100%) for detecting EGFR, KRAS and 

BRAF mutations in FFPE materials. However, NGS was capable of identifying seven 

non-synonymous SNVs and an indel in EGFR that was not detected by the real-time 
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PCR method139. PCR is also commonly used for target enrichment for targeted 

sequencing of genes or specific transcript splice variants (section 1.6.2.6). 

1.6.3.1 OncotypeDx 

OncotypeDx14 is a multi-gene expression array that uses quantitative reverse 

transcription polymerase chain reaction-based assay. It is used clinically to give 

prognostic and predictive value in early stage ER+ breast cancers, to predict the benefit 

of chemotherapy with adjuvant hormone therapy14. 

1.6.3.2 Prolaris 

Prolaris is another quantitative reverse transcription polymerase chain reaction-based 

assay. It can be used (alongside patient and tumour information) to predict the 

aggressiveness of PCa. It utilises thirty-one cell cycle progression genes and fifteen 

housekeeper control genes for PCa tissue16. The expression of the thirty-one cell cycle 

progression genes are correlated with PCa proliferation to serve as a risk-stratification 

tool: a lower score means lower risk and these men may be prime candidates for AS and 

a higher score represents those needing treatment140. It can also be used to predict ten-

year PCa specific mortality and ten-year PCa BCR16. Cell cycle progression genes have 

also been used in the prognosis of other cancers16.  

	

1.6.4 Microarrays 

Prior to the affordability of sequencing as a method to identify biomarkers microarrays 

were frequently used, and are still incredibly valuable due to cost and availability of 

standard pipelines for analysis. Microarrays are significantly cheaper than sequencing 

and so are still often used today. Microarray technology allows the user to assess DNA 

copy number or RNA expression levels in cells or tissues in different disease states. 

They are relatively cheap, not considerably time consuming and the array data can be 

re-investigated for many different questions. Microarrays have been utilised in gene 
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discovery and regulation involved in physiological, developmental and pathological 

processes, in diagnosis and drug discovery141.  

Microarrays are an array of specific DNA sequence ‘probes’. Fluorescently labelled 

DNA/cDNA samples are hybridised to the probes, the excess DNA washed off, and the 

quantity of each DNA sequence is assessed by the strength of the fluorescent signal that 

remains attached to each probe. on the array, However, cross-hybridisation is an issue 

in microarray experiments, leading to false positives, and masking of eg down-regulated 

transcript signals. Analyses can use either single-channel (one sample hybridised) or 

two-channel microarrays (two differentially labelled samples hybridised at the same 

time).  

Two-channel microarrays have been used to directly compare gene expression between 

two different conditions, e.g. cancer cells with normal cells to identify genes that have 

expression changes in cancer. The two samples (one cancer and one normal) are 

labelled with two different fluorophores (often cy3 (green) and cy5 (far-red)) the two 

samples are then mixed and simultaneously applied to the microarray for hybridisation 

(Figure 0.11).  

Single-channel microarrays provide intensity data for each specific target DNA/cDNA 

that hybridises to its matching probe. It provides data on the relative abundance of each 

probe sequence in a sample and can be compared to data from multiple samples A 

downside to single-channel microarrays is that unless great care is taken in consistency 

of sample preparation, microarray hybridisation and washing conditions etc., then error 

rates can be higher than those achieved from two-channel microarrays. 

Oligonucleotide microarrays, like single channel microarrays use one fluorescent label 

for all of the samples (Figure 0.11). They use short genomic ssDNA fragments that 

allow sequence coverage of an entire genome, and therefore, can be used for extensive 

genetic profiling and mutational analysis by providing absolute yield values for each 

specific target gene. They are capable of providing a presence or absence call for each 

gene, but two separate arrays are required to allow the comparison of healthy controls to 
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cancer patient samples142. Affymetrix is the major producer of microarrays: They 

provide standard arrays for many species, for example, the human genome U133 array, 

which contains 45,000 probe sets for 39,000 transcripts from 33,000 well-substantiated 

human genes. Affymetrix also produce of custom arrays for a wide variety of different 

uses. A standard affymetrix arrary contains oligonucleotide probes, 25 bases long, 

specific to targets are fixed to a glass wafer, in set locations. Each oligo is present in 

millions of copies to allow accurate interpretation of expression levels, from measured 

intensities of fluorescence given by the tagged hybridised nucleotide sequences.  

1.6.4.1 Decipher 

Microarrays have been used in cancer biomarker platforms such as Decipher15. 

Decipher is a classifier score calculated from a gene expression microarray analysis of 

22 coding and non-coding RNA probes15, that predicts metastatic PCa progression/high 

risk of recurrence and PCa related mortality within 5 years of RP. High-risk of 

recurrence is defined by extra-prostatic extension, seminal vesicle invasion, positive 

margins or biochemical recurrence. Whilst the 22 specific probes are unknown, the 

panel represents known pathways involved in aggressive PCa, including cell 

proliferation, cell structure, immune system modulation, cell cycle progression and 

androgen signalling143.  

     The score ranges from 0-1, with every 0.1 increase representing a 10% increase in 

risk of metastatic progression. The score is then more generalised into three categories; 

low-risk 0-0.44, intermediate risk 0.45-0.59 and high risk 0.6-1.  

    Whilst Decipher was originally established as a predictor for metastatic progression 

post-RP, there have been further applications since. Decipher has been evaluated for its 

ability to ease decision making between adjuvant and salvage radiation therapy (second-

line treatments); Dalela et al., showed that any two or more risk factors from pT3b-T4, 

G8-10, lymph node invasion or >0.6 decipher score showed a 4-fold reduction in 

metastatic progression at 10 years with adjuvant therapy. A score >0.6 had up to 80% 



CHAPTER	1:	INTRODUCTION	

72	
	

reduction in metastatic progression if adjuvant radiation therapy was received144. The 

PRO_IMPACT was a multi-institutional study that showed decipher could significantly 

decrease decision conflict and patient anxiety. Decisions on adjuvant and salvage 

therapy were altered with the addition of a decipher score in 18% and 32% of cases, 

respectively145.  

     Another key finding was that decipher could also be performed on small amounts of 

genetic material like that obtained from biopsy and also including FFPE tissues. 

Decipher was tested on the biopsy material of 219 men who then went on to have RP to 

validate the findings, this gave HR = 7.3 and HR = 11 when moving from low-risk to 

high-risk on multivariate analysis145. In a second study, decipher was applied to the 

biopsy material of 57 men, who proceeded to undergo RP and also had long term follow 

up. Here decipher was capable of predicting metastatic progression as an individual 

predictor with AUC = 0.72146. This highlights its potential use in aiding decision 

making for primary treatment also, helping to identify those who are safe for active 

surveillance and those who should receive treatment more swiftly.  

     A limitation of decipher in the aid of primary treatment decision making, is that it 

relies on biopsies, and so carries the same limitations of a biopsy: PCa is often a 

multifocal disease and the lower-grade or lower decipher scoring foci could be picked 

up by biopsy, whilst the higher-scoring foci is missed. Leading to a less severe 

prediction occurring. Decipher has shown great promise as a second line treatment 

informer and clearly has a role here in PCa management.  

	 	



CHAPTER	1:	INTRODUCTION	

73	
	

Figure 0.11 A schematic for oligonucleotide and two-channel microarrays. Both show RNA isolation 
from the cells of interest, followed by reverse transcriptase labeling to create cDNA from RNA and 
then hybridisation to array. In two channel arrays, cDNA from the normal cells and the “condition” 
cells are combined prior to hybridisation. Adapted from Vermeeren et al., 2011142. 

Sequencing trumps microarrays with its ability to provide further information about 

specific unknown mutations. Mutations can be detected via microarrays; however, the 

probes must be designed to hybridise that specific mutation as the target gene, meaning 

the mutation must first be known. Cross-hybridisation problems in microarrays also 

mean that SNVs will be unable to be detected. Sequencing can also detect novel gene 

fusions. However, if you only require count data microarrays hold some advantages in 

comparison to sequencing: They are cheaper and the analysis of the data produced is 

easier. There are well-known analysis pathways to take, whereas, the best method for 

sequencing data analysis is still being investigated. Also, there is a lot of data available 

to the public from standardized platforms, which can be utilised for comparison with 

your own samples.  
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1.6.5 Mass Spectrometry  

Mass spectrometry (MS) has shown great promise in proteomics and the identification 

of protein biomarkers. Proteomics is the large scale analysis of proteins including their 

structure and function; it provides information about the complex end products of a 

gene147. MS has positioned itself as one of the key technologies for the unbiased 

identification of cancer biomarkers148. Combining MS with liquid chromatography 

allows easy profiling of bodily fluids (samples which generally are less invasively 

obtained from patients) whilst MALDI-MS (matrix-assisted laser desorption/ionization) 

is useful for identifying biomarkers in FFPE tissues149.  

MS works by bombarding molecules with electrons (ionizing) to create charged 

molecules and measuring their mass-to-charge ratio, by accelerating them and applying 

an electric or magnetic field. Ions of the same mass-to-charge ratio are deflected at 

similar amounts and can be detected via an electron multiplier. Results are available as 

a “spectra”, which can be correlated to previously known masses to identify atoms or 

molecules present in the sample.  

Proteomics has an advantage over genomics, as it will be clear if a mutation is making a 

big difference to the protein, which can never truly be proven with genomics, just 

inferred148,150. However, MS suffers from insufficient sensitivity when detecting low-

concentration biomarkers in a sample with a high-abundance of proteins, making 

depletion of abundant protein fractions and enrichment of biomarkers imperative to 

improving MS sensitivities150. MS also suffers from accuracy and reproducibility 

problems caused by software issues, meaning samples need to be run, typically, 10 

times, increasing the amount of material required. These issues need to be addressed in 

order for Mass Spectrometry to develop as an efficient tool for biomarker discovery. 

Also, unlike other biomarker detection technologies, MS is limited to providing 

information of presence/absence and levels of the proteins cannot be determined unless 

targeted MS is performed. Targeted MS means the experiment must be focused on a 
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small subset of protein targets to achieve their quantification, thus reducing the scope of 

proteins that can be quantified within the experiment151.  

1.6.6 Fluorescent In-situ Hybridisation (FISH) 

FISH, a cytogenetic technique, can be used to detect chromosomal abnormalities; 

changes in chromosomal structure and numbers (including genomic deletion and fusion 

genes) can be observed when viewing cells or chromosome preparations upon a slide. 

Chromosomal abnormalities are common in many tumours, and Some of these 

abnormalities can be used for diagnostic and prognostic purposes152. FISH was being 

used to identify specific chromosomal regions and loci (chromosomal mapping) by the 

late 1980s. It works by labelling DNA with fluorophores, which emit light detectable by 

microscopy. FISH probes are capable of hybridising to DNA and RNA of circulating 

tumour cells (CTCs) and FFPE tissue sections that are fixed. This allows FISH to be 

useful for solid tumours as well as hematological cancers. Probes are designed for 

specific target sequences, and usually consist of cloned DNA sequences in the form of 

BACs, PACs, fosmids and cosmids, but can also be PCR products. The DNA probes 

can be tagged directly with fluorophores, or with biotin or DIG that can be bound post-

hybridisation with streptavidin linked fluorophore or anti-DIG antibodies bound to 

fluorophore. Short DNA fragments are added to block repetitive DNA sequences and 

then the probes are applied to the cell preparations on a glass slide. Hybridisation 

requires approximately 12 hours followed by several wash steps in order to remove 

non-bound or partly bound probes. After which a microscope can be used to excite the 

dye and record the images for location and quantification of aberrations.  

Improvements in fluorescent dyes and advances in microscopy and imaging allowed for 

MFISH (multi-fluorochrome assays), particularly SKY (Spectral Karyotyping). This 

new method allowed for entire metaphase spreads to be investigated using 24-colours, 

which showed the chromosomal origins of structural rearrangements153.  



CHAPTER	1:	INTRODUCTION	

76	
	

FISH is a reliable, simple and specific assay for biomarker detection, and because of 

this, even though it is a low throughput method, it remains to be a cornerstone in 

genetic labs and even in clinical practice for the diagnosis, treatment stratification and 

prognosis of cancers. Whilst high-resolution molecular profiling techniques 

(microarrays and sequencing) are advanced in identifying novel chromosomal 

abnormalities, FISH remains a reliable validation method for any potential biomarkers 

identified154.  

1.6.7 Immunohistochemistry (IHC)  

IHC is still commonly used in cancer diagnosis, and can validate biomarkers identified 

from other methods. Now that molecular, quantitative, global methods exist for novel 

biomarker identification, it is used much less to identify these but more to locate where 

in the cell the biomarker is and to validate its presence/absence in cancer tissues155.  

For IHC, first tissue needs to be collected, fixed (commonly with paraformaldehyde) 

and often embedded in paraffin wax. The tissue is the sliced (4-40µm), mounted on 

slides and dehydrated with alcohol washes and cleaned with xylene before imaging via 

microscope. Blocking buffers are often used to reduce background staining. Positive 

and negative controls are required, a tissue known to express and a tissue known not to 

express the specific protein. Antibodies specific to the target antigen must be extracted 

from animals; the protein of interest is injected into the animal to elicit an 

immunological response producing the desired antibody. Therefore, this can make IHC 

time-consuming. Monoclonal or polyclonal antibodies can be used, targeting one 

epitope or multiple, respectively. Antibodies are often linked (using biotin) to reporter 

molecules. Reporter molecules can either be fluorophores or enzymes allowing 

fluorescence or chromogenic detection. There are two methods of antibody detection: 

Direct and Indirect. The direct method is where the labelled antibody directly binds the 

antigen, and the indirect uses an intermediate antibody to bind the antigen to which the 

labelled antibody binds.  
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In order to compete with the new molecular methods, IHC will need to be 

quantitative156. IHC is specifically useful for the validation of protein biomarkers, 

similar to ELISA (section 1.6.8).  

	

1.6.8 Enzyme-linked Immunosorbent Assay (ELISA) 

Similarly to IHC (section 1.6.7), ELISA is used for protein detection. ELISA works by 

using enzyme linked antibodies to capture antigens, and colour changes from the 

enzyme binding its substrate provide detectable signals, which are proportional to the 

amount of antibodies bound to the antigens present. IHC and ELISA have their own 

advantages; ELISA is fully quantifiable and easily standardised with quality assured 

measurements obtained. IHC is at best semi-quantitative but allows insight into tissue 

heterogeneity and can be performed on both frozen and paraffin-embedded tissues 

(section 1.6.7)157. 

There are three main types of ELISA: Indirect, Sandwich and Competitive, all use 96-

well microtitre plates as the immobilising surface, allowing moderately high-throughput 

investigations. ELISA is a versatile and robust tool and so ELISA is often used for 

validation of biomarkers150.  

ELISA only allows the detection of a single antigen and often requires a large amount 

of sample. This along with the narrow dynamic detection range means it not useful in 

biomarker discovery. ELISA is costly and its quality is dependent upon antibody 

quality, users skill and experience, and shows problems with accuracy and 

reproducibility. ELISA’s downfalls mean it is less useful at biomarker validation when 

there are multiple proteins, which is often the case.  

1.6.9 Methylation Assays 

Epigenetic gene regulation, such as methylation and histone modification, is an 

important factor in normal development and disease states like cancer158. These are 

modifications to our gene expression that is not encoded for by the DNA, but inherited 
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mitotically159, 160. Hyper-methylation of promoter regions is commonly seen in cancers 

to knock-down the expression tumour suppressor genes161. Methylation is the addition 

of a methyl or hydroxymethyl group to the C5 position of cytosine, which occurs at or 

around CG dinucleotide regions (known as CpG islands and shores)162. Methylation is 

known to aid in cell cycle regulation and cellular differentiation processes163,158. The 

role of DNA methylation has been well established in many cancers including PCa163, 

164, 165. Hyper-methylation of several genes, including GSTP1, is commonly observed 

during the transition between intraepithelial neoplasia to carcinoma166. Hyper-

methylation detection has shown promise as biomarkers for the diagnosis and prognosis 

of cancers. 

There are many methods for the identification of methylated sites, which method you 

chose can be based on many things, but importantly is the biological question you are 

asking: There are different methods available for whole genome methylation profiling, 

identifying regions of differential methylation status, or for determining the methylation 

status of specific genes of interest167. Other factors to include when choosing a method 

are the amount and quality of the sample, the sensitivity and specificity requirements 

for the experiment, robustness and simplicity of method, and its bioinformatics analysis, 

as well as the availability of specialist equipment and overall experiment cost167.  

1.6.10 Supervised and Unsupervised Analyses 

Due to the developments in genomic technology more and more biological data is being 

developed that needs to be analysed; to identify patterns and trends and understand what 

the data means to the biological question. The application of statistics on such data can 

be called statistical learning or machine learning, and can roughly be separated into two 

categories: supervised and unsupervised analyses168. These can be referred to as 

classification and clustering, respectively169. 

For supervised learning, or “classification” of observation x, an observation with 

multivariate p dimensions (also called features) and associated with class c. The 
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purpose is to “learn” a mathematical function that when evaluated with the input x 

provides a prediction of its class c. In general practice data is subset into training and 

test datasets. The training set is used to “set” the mathematical function to correctly 

predict the class for each observation provided. This function, with the parameters set 

from the training data is then applied to the test data to observe its ability to correctly 

classify the data without bias169. Examples of supervised machine learning are 

generalized linear models (glm) (section 2.6.1), probit regression (polr) for ordered 

multivariate models, random forest (section 2.6.3). These methods can be accompanied 

by a shrinkage method to reduce over fitting and thus improve predictability; examples 

of such methods are Lasso (section 2.6.2) and Step (section 2.6.4). 

Unsupervised analysis, or “clustering” can also be referred to as class discovery. A key 

difference between unsupervised analysis and supervised analysis is a lack of training 

set for the former and thus no cross-validation. A second important difference is that 

clustering algorithms are set using optimality criterion and there is a lack of guarantee 

that the global optimal solution is found, and therefore a heuristic approach is often 

taken. A choice of a) features to be used, b) similarity metric, and c) algorithm needs to 

be made for many methods169. Unsupervised learning can be further partitioned into 

hierarchical clustering (section 2.5.2), (which can then be subdivided into 

agglomerative and divisive) and partitioning. Hierarchical will cluster data into a tree 

like feature and then to achieve a desired number of clusters one can cut the dendogram 

at a desired height. However, partitioning generally requires the user to specify the 

number of clusters prior to clustering169. Examples of partitioning are k-means 

clustering (section 2.5.3), principal component analysis (section 2.5.1), and latent 

process decomposition (section 2.5.5). 
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1.7 Summary and Aim  

1.7.1 Summary 

Whilst the introduction of the PSA test has decreased mortality from PCa, the increased 

incidence rate that can also be attributed to it comes with problems of over-diagnosis 

and over-treatment. Highlighting the need for additional biomarkers for the diagnosis of 

PCa. A need for biomarkers for hormone therapy response prediction, BCR prediction, 

further treatment stratification, and prognosis were also highlighted. 

The heterogeneity of PCa means that there have been a lot of potential biomarkers 

discovered, but also that they are not always consistent in the tumours. Meaning a 

limited number are capable of being used for the diagnosis and prognosis of PCa. 

However, combinations of biomarkers in a panel could be of great clinical use. The 

utility of urine in PCa biomarkers is well established via the PCA3 test (section 1.4.2) 

and the role of exosomes in cancer development and metastasis (section 1.5) has 

highlighted a resource to be investigated.  

The development of NGS technologies and the continuous advancements in sequencing 

technologies are making it possible to investigate a large number of genes across a large 

number of samples, at continuously decreasing costs. Sequencing is an important 

technology for the discovery of novel biomarkers, as it is capable of identifying 

expression changes and mutations at high-throughput. The reducing costs of sequencing 

are closing the gap between data production costs and data processing costs, it is said 

that there may come a time when processing the data will become more costly. 

Bioinformatic analysis of the data is still under on-going development to identify the 

optimal pathways for analysis. Currently, cheaper methods for high-throughput 

expression analysis (microarrays and Nanostring) still hold a firm place within 

biomarker discovery. Whilst, mass Spectrometry for proteomic biomarker discovery 

holds massive potential, however there are issues still to overcome.  
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Older techniques of biomarker discovery hold great sensitivity but are at considerably 

low-throughput, making them very good for validation and clinical detection after a few 

potential biomarkers are selected from higher-throughput methods. These include: FISH 

for gains/losses, rearrangements and chromosomal instability investigations, IHC and 

ELISA for the validation of particularly proteins and to see where in the cell these 

biomarkers are gained to or are lost from and PCR-based methods for confirming 

mutations in the biomarkers.  

Knuutila et al., compared NGS, aCGH, FISH, PCR and IHC methods for specific 

biomarker analysis of FFPE tumour tissues. Their conclusions suggest that NGS has the 

potential to replace all other methods tested for the analysis of tumour biomarkers, 

especially as the reducing costs and required sample material decreases to that near of 

FISH or PCR. NGS allows the investigation of mutations, gene fusions and copy 

number changes in one single analysis170. However, NGS has not currently reached the 

position where it is commonly used in clinical practice.  

1.7.2 Aims & Objectives 

PCa diagnostics and prognostics currently lack specific and sensitive clinical 

biomarkers and treatment is not well individualised. The PCA3 test highlights the utility 

of urine in PCa diagnostics and prognostics. The aim of our work is to interrogate PCa 

patient’s urine samples, mostly the exosomal fraction to identify novel biomarkers or 

sets of biomarkers to aid in PCa management. My objectives are as follows: 

O1: To determine whether RNA expression from urine extracellular vesicles in prostate 

cancer patients are a viable target for the development of biomarkers through the use of 

Nanostring technology. 

O2: To determine an optimal combination of probes to predict cancer presence and 

aggression in prostate cancer patients. 

O3: To determine whether an optimal combination of probes can predict response to 

hormone therapy treatment. 
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O4: To evaluate the differences between urine fractions (extracellular vesicles and cell 

sediment) and determine whether cell sediment can be used to predict cancer presence 

and aggression in prostate cancer patients. 

Below are described more detailed aims for each chapter. 

3.1.1.1 Chapter 3: NanoString Data Analysis 1: The Pilot Study 

This	 chapter	 encompasses	 the	 analysis	 of	 the	 pilot	 study	 of	 samples	 sent	 to	

NanoString	 to	 investigate	 exosomal	 RNA expression level changes of 57 target 

sequences. The RNA was extracted from the EV fraction of urinary samples collected at 

the NNUH as part of the Movember study. The aims were to primarily determine if the 

transcript content of urinary exosomes contained any PCa derived transcripts and if 

transcript level could be utilised for risk stratification. Also, it was important to 

investigate if NanoString was a suitable method for obtaining expression data from 

these cDNA-amplified samples and to determine suitable methods for analysis. 	

	

3.1.1.2 Chapter 4: NanoString 2 Analysis: The Movember GAP1 Project 

A second analysis for the Movember study. RNA was extracted from the EV fraction of 

urinary samples that were collected from multiple centres (NNUH, Norwich, St James’ 

Hospital, Dublin, Royal Marsden Hospital, London, and Emory Healthcare, Atlanta). 

864 samples were sent to NanoString for the quantification of 167 transcripts. The aims 

were to primarily identify optimal models capable of predicting PCa and to risk-stratify 

PCa without the need for biopsy. Models were built to answer four important clinical 

questions: 1) determine which samples were from PCa and which were from samples 

with no evidence of Ca 2) determine which samples were from high-risk PCa only and 

which were from samples with no evidence of cancer 3) determine if there was a trend 

in expression that corresponds to a trend in risk category (CB>L>I>H) and 4) determine 

if there was a trend in expression that corresponds to a trend in patient type 

(CB>Ca>Metastatic cancer). 
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3.1.1.3 Chapter 5: Response to treatment 

Many cancers have benefitted from treatment stratification due to expression of certain 

genes, however not yet PCa. With hormone therapy (HT) it is known that patients will 

inevitably progress to castration resistant prostate cancer (CRPC). How long each 

patient will last on HT varies widely from months to years. It is our aim to use the 

NanoString data of the advanced patients in the pilot study (n = 32) to see if a 

significant predictor of early progression in patients on HT can be built and whether this 

predictor improves on current clinical information collected (e.g. PSA, Gleason score 

and bone scan). The NanoString 2 data can then be used for validation of this predictor.  

	

3.1.1.4 Chapter 6: Analysis of Cell Fraction and comparison with exosomal 

fraction 

The use of RNA extracted from EV fractions and cell sediment fractions were used to 

compare the transcriptome profiles from PCa patients and controls (taken from patients 

with no evidence of cancer (CB)). The aim was to identify if both fractions contained 

similar expression profiles of genes and if either contained higher levels of prostate or 

PCa associated transcripts. The fraction with the highest level of these transcripts is 

likely to be a better source of material for PCa diagnosis and risk stratification. Data 

from microarray of samples collected from NNUH, Norwich and Royal Marsden 

Hospital, London was used.  

Secondly, I am to use NanoString data from cell sediment fraction derived transcripts 

(collected only from NNUH, Norwich) to identify optimal models to answer the four 

important clinical questions asked of the EV derived data (Chapter 4).



CHAPTER	2:	MATERIALS	AND	METHODS	
	

	 84	

          2 

        Materials and Methods 

2.1 Sample Collection and Processing  

Overview: Urine samples were collected from patients attending hospital clinics. 

Extracellular vesicle (EV) RNA was harvested by urine microfiltration (Section 2.1.2).  EV 

and cell pellet RNA was extracted (Section 2.1.3), converted to cDNA and amplified as 

cDNA (Section 2.1.4), ready for NanoString expression analysis (Section 2.1.5).  

Not all the procedures in this section were performed by me but were included in this thesis 

as essential information relative to the study.  

2.1.1 Sample Collection 

Note: The procedures in this section were not performed by me. 
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Urine samples were collected in a 30ml Universal tube (Sterilin) from urology clinics at the 

Norfolk and Norwich University Hospital (NNUH, Norwich, UK), St. James Hospital 

(Dublin, Republic of Ireland) and from primary care and urology clinics of Emory 

Healthcare (Atlanta, USA), between 2012 and 2015. Most samples were collected as first 

void post-DRE but a few matching pre-DRE samples were collected for comparison (these 

were labelled as such). All samples were collected from treatment naïve patients. Control 

samples were collected at a micro-haematuria clinic at the NNUH, again first void post-

DRE in a 30ml Universal tube. Microvesicular RNA was harvested by ultracentrifugation 

(section 2.1.2), extracted (section 2.1.3), converted to cDNA and amplified (section 2.1.4). 

RNA from the cell pellet was also processed, using either the Qiagen Allprep DNA/RNA 

mini kit cat no: 80204 or RNeasy micro kit cat no: 74004 according to manufacturer’s 

instructions).  

The lab also had access to urine samples collected as part of the active surveillance 

prospective study at the Royal Marsden Hospital NHS Foundation Trust (RMH) between 

2009 and 2012. The active surveillance prospective study collected samples, first void post-

DRE, specifically from men with untreated, low-risk prostate cancer. Low-risk PCa defined 

as having clinical stage T1/T2a, Gleason 3+3 (or 3+4 of older than 65), PSA<15 and <50% 

positive cores. Three of these samples were collected pre-DRE from post-radical 

prostatectomy patients for comparison. Microvesicular RNA was harvested as above. 

The study was given favourable ethical opinion by the NRES Committee East of England – 

Norfolk on 21st August 2014 under the study title “Urine biomarkers for detecting prostate 

cancer”. Ethics was approved to Dr Marcelino Yazbek Hanna of NNUH with REC 

reference: 12/EE/0058 and IRAS project ID: 96199.  

2.1.2 Micro-filtration harvesting of Urine Extracellular Vesicles 

Note: The procedures in this section were generally not performed by me (I performed these 

procedures on ~20 samples). 
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Urine samples were processed within four hours of samples collection. Urine was 

centrifuged at 1200g for 5 mins, and then the supernatant was transferred to a 50ml tube and 

re-centrifuged at 2000g for 5 mins. Supernatant was decanted and then filtered through a 

0.8µM filter (Millipore), transferred to an Amicon Ultra-15 100KDa MWCO microfiltration 

unit and spun at 3400g r/t for 15 mins or until the volume was reduced to below 500µL. 

PBS (15ml) was added to the sample followed by further centrifugation until the volume 

containing the EVs was reduced to 200µL. Transmission electron microscopy (TEM) was 

performed to confirm the presence of EVs.  

2.1.3 Qiagen RNA Extraction 

Note: This section was generally not performed by me (I performed this step on ~20 

samples). 

The Qiagen Micro RNA RNeasy kit was used for RNA extraction from EVs and cell pellet 

as per the manufacture’s manual. 700µL of buffer RLT was added to the cell pellet or EV 

samples. The cell pellet/RLT mix then had an extra step, which was to disrupt the cells 

using a QIAshredder spin column for 2 mins at full speed (~12,000 rpm) in a microfuge. 

From this point onwards the cell pellet and EVs were treated the same. 70% ethanol was 

added and the mixture pipetted into a MinElute spin column and centrifuged in a microfuge 

(15 seconds, >10,000rpm). 350µL of buffer RW1 was added to the MinElute spin column 

before re-spinning (15 seconds, >10,000rpm). Then 80µL of Qiagen DNase mix I was 

directly applied to the membrane and left to stand at room temperature for 15 mins to 

complete DNA digestion. The wash step with RW1 was then repeated followed by the 

addition of 500µL of buffer RPE and re-spun (15 seconds, >10,000rpm). 500µL 80% 

ethanol was added and then spun (2 mins, >10,000rpm). To dry the membrane the column 

was spun for a further 5 mins with an open lid. The column was transferred to a fresh 

collection tube, and the RNA was eluted with 14µL of RNase free water and centrifuged (1 
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minute, 12,000 rpm) in a microfuge. Nanodrop and Bioanalyzer were used to confirm that 

RNA was of a good quality.  

 

2.1.4 Nugen Amplification of RNA as cDNA 

Note: I performed the amplification step for 286 samples.  

Amplification was performed using the Nugen Ovation picoSL WTA V2 kit as per the 

manufacture’s instructions171. The kit works via the following mechanisms: Firstly, the first 

strand of cDNA was generated using a DNA/RNA chimeric primer mix (containing a mix 

of random and oligo dT primers such that priming occurs throughout the whole transcript) 

and reverse transcriptase (RT). The RT extends the 3’ end of the DNA for each primer 

resulting in a cDNA/mRNA hybrid containing a unique RNA tag sequence known as the 

SPIA tag at the 5’ end of each cDNA strand. The SPIA tag was used for a priming site for 

the SPIA process.  

Secondly, fragmentation of this cDNA/mRNA complex was required to provide priming 

sites for RNA polymerase to synthesise a second cDNA strand. This includes DNA 

complementary to the 5’ SPIA tag and results in a double stranded cDNA with a DNA/RNA 

heteroduplex, which corresponds to the SPIA tag. Finally, strand displacement 

amplification occurs that uses a DNA/RNA chimeric primer (SPIA primer), DNA 

polymerase and RNase H in an isothermic assay. RNase H removes the RNA part of the 

heteroduplex SPIA tag allowing the SPIA primer to bind. DNA polymerase can then 

synthesise from the 3’ end of the primer displacing the existing forward strand with new 

cDNA. Priming with the chimeric SPIA primer then in turn makes a new heteroduplex 

SPIA tag, which becomes the new substrate for RNase H and can initiate the next round of 

cDNA synthesis. These last few steps were repeated in a highly processive manner allowing 

rapid accumulation of µg of amplified cDNA from ng of total RNA.  

The actual process was as follows: samples were diluted with RNase free water to ensure all 

contain 20ng of total RNA in a PCR tube. The first strand synthesis primers were added 
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(2µL) to each sample and they were heated to 65°C for 2 mins. The first strand buffer and 

enzyme were pre-mixed, 2.5µL and 0.5µL per sample, respectively. 2.9µL of this mix was 

then added to the sample tubes and samples were returned to the thermal cycler for program 

2: 4°C for 2 mins, 25°C for 30 mins, 42°C for 15 mins, 70°C for 15 mins and hold at 4°C. 

Second strand synthesis required second strand buffer and enzyme to be pre-mixed; 9.7µL 

and 0.3µL per sample, respectively. 9.5µL of this mix was added to each sample, mixed via 

pipetting (5x) and returned to the thermal cycler for program 3: 4°C for 1 minute, 25°C for 

10 mins, 50°C for 30 mins, 80°C for 20 mins and hold at 4°C. The cDNA must then be 

purified using the magnetic beads provided in the NuGEN kit; 32µL of the beads were 

added to each sample and mixed via pipetting (10x) and were incubated at room 

temperature for 10 mins.  

Following this the samples were placed into the 96 well magnet and were incubated at room 

temperature for a further 5 mins. Using long thin pipette tips, 45µL of buffer was removed 

as the beads (that were attached to the cDNA complexes) were pulled to the tube side via 

the magnet. The tubes were then washed with 70% ethanol (200µL) three times and left to 

air dry at room temperature (roughly 25 mins but until there was no liquid left in the tubes). 

The last step was then the SPIA amplification; where the SPIA buffer, the SPIA primer mix 

and the SPIA enzyme were pre-mixed in order; 20µL, 10µL and 10µL per sample, 

respectively. 38µL of the SPIA mix was added to each sample and the samples were 

returned the thermal cycler for program 4: 4°C for 1 minute, 47°C for 75 mins and 95°C for 

5 mins. At a different bench, the PCR tubes were returned to the magnet for 5 mins, and the 

liquid that contained the amplified cDNA was collected.  

TE was added to a final concentration of 0.2xTE and yields determined via Nanodrop or 

Qubit. 
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2.1.5 NanoString 

The NanoString nCounter gene expression system technology uses 2 probes; a capture and a 

reporter probe115. The probes were designed to have a complementary sequence to the 

specific transcripts we wished to study. Each transcript reporter-probe had a distinct string 

of fluorescent coloured beads attached115. Up to ~800 different bead string combinations are 

available, and so up to 800 different transcripts can be detected in one analysis. 

The	 probes	 were	 hybridised	 to	 the	 complementary	 nucleic	 acid	 sequences	 in	 each	

sample,	forming	a	tripartite	complex	of	the	2	probes	and	target	mRNA	or	cDNA.	The	

complexes	were	then	pulled	down	and	immobilised	onto	a	capture	surface,	unbound	

sequences	were	washed	away	and	an	electric	 field	was	passed	across	 the	surface	 to	

stretch	out	the	nucleotide	and	bead	complexes.	The	bead-complexes	were	then	imaged	

and	 the	number	 and	 type	of	 each	 string	of	 coloured	beads	 counted.	This	provided	a	

direct	measure	of	RNA	or	cDNA	counts	per	transcript115.	Twelve	samples	loaded	onto	

the	NanoString	machine	at	a	time	(in	each	cartridge).	

	

2.1.6 PCR (Polymerase Chain Reaction) 

Note: I performed PCR detection of TMPRSS2:ERG fusions for 113 samples. 

TMPRSS2:ERG fusions were detected by primary PCR and confirmed with a secondary 

PCR that used nested primers. A master mix was made using the following components 

(volumes provided for a single PCR): 2.5µL	 10x	 PCR	 buffer,	 1µL	 50mM	MgSO4,	 0.5µL	

10mM	dNTP	mixture,	0.5µL	Primer	1	(10µM),	0.5µL	Primer	2	(10µM),	0.1µL	Platinum	

Taq	 (Thermo	 Fisher)	 and	 19µL	 HPLC	 H2O.	 Primer	 1:	 CAGGAGGCGGAGGCGGA	

(TMPRSS2	 exon	 1	 Forward).	 Primer	 2:	 GGCGTTGTAGCTGGGGGTGAG	 (ERG	 exon	 6	

Reverse).	 The	 master	 mix	 was	 pipetted	 into	 a	 clean	 0.25ml	 tube	 and	 	 1µL	 of	 the	

template	 cDNA	 was	 added.	 PCR	 conditions	 were	 as	 follows:	 94°C	 for	 30	 seconds,	

followed	by	35	cycles	of	94°C	for	20	seconds	to	denature	and	68°C	for	60	seconds	to	

extend.	A	second	master	mix	was	created	using	the	same	reagents	but	using	0.5µL	of	
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the	 nested	 primer	 1	 and	 0.5µL	 of	 the	 nested	 primer	 2.	 Nested	 primer	 1:	

GGAGCGCCGCCTGGAG	 (TMPRSS2	 exon	 1	 nest	 Forward)	 and	 nested	 primer	 2:	

CCATATTCTTTCACCGCCCACTCC	 (ERG	 exon	 6	 nest	 Reverse).	 This	 master	 mix	 was	

aliquoted	and	0.25µL	of	the	primary	PCR	was	added.	PCR	conditions	were	as	above	but	

with	 a	 66°C	 annealing	 temperature	 instead	 of	 68°C.	 The	 resulting	 amplification	

products	 of	 the	 primary	 PCR	and	 the	 nest	 PCR	were	 run	 in	 adjacent	wells	 on	 a	2%	

agarose		gel	with	a	100bp	DNA	ladder	(New	England	Biolabs	(N3231L)) to	determine	

product	 sizes	 (Table 2.1)	 and	 thus	 infer	 which	 of	 the	 TMPRSS2:ERG	 fusions	 were	

present	in	each	sample.	

	
Table 2.1 PCR product sizes for TMPRSS2_exon1 (T1) and ERG_ex6 (E6) PCR primers (nests 

are 139bp smaller than primaries) 

 Primary  Nest 
T1/E4 596 457 
T1/E5 379 240 
T1/E6 227 88 
T2/E2 856 717 
T1/E3, - , 5, 6 465 326 
T1/E2, 3, 4, -, 6 661 522 
T2/E5 450 311 
T3/E4 891 752 
T4/E5 760 621 
T5/E4 1098 959 
	

2.2 Clinical Data Collection 

Note: I completed part of the clinical data collection.  

Clinical data was collected for NNUH samples from a number of different NHS databases 

such as ICE (the NNUH database), Somerset (the NNUH cancer database) and also from 

the patient’s forms completed for the study within the clinic. Information from the patient’s 

forms were manually typed into an Excel sheet and uploaded to a pseudo-anonymised 

online database for the Movember project. A clinical NHS colleague and I updated and 

checked over clinical information for the majority of the samples, this included information 
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such as age, initial PSA reading, Gleason score and further biopsy information, scan 

conclusions, prostate volume, family history, health altering habits, general health and 

current medications as well as subsequent information (ensuing PSA readings for example). 

Clinical data for samples from other centres were provided by them and uploaded into the 

Movember database. 

2.3 NanoString Pre-processing 

2.3.1 Normalisation  

The NanoString output data file provides the nCount data for 6 spiked non-human positive 

control probes and 8 non-human negative control probes for each of the samples being 

analysed. The six positive control probes matched to spiked-in RNAs and was used to 

calculate a normalisation factor (NF): the average nCount for each samples’ positive 

controls were calculated and this number was divided by the sum of all samples’ averages. 

Each nCount value was then multiplied by the sample-specific NF. This results in a shift of 

all samples so that the means of the positive controls was identical across samples. 

Background correction and background subtraction using the negative controls was found to 

be inappropriate for this data.  

2.1.1 Normalisation by KLK2 and KLK3  

Normalisation using KLK3 and KLK2, separately, was conducted as follows. For KLK2, a 

ratio was determined (Equation 2.1) and then applied to the data, this data was referred to as 

KLK2 ratio data. 

	

Equation 2.1 KLK2 ratio normalisation, similar to the normalisation of PCA3 by KLK3 in the PCA3 test 

!
"#$%&
(#̅)*)+)

- ∗ 1000	
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Additionally, for KLK2 and KLK3 an adjustment normalisation was conducted using the 

median and IQR (Equation 2.2). For this data, any samples observing low KLK2 or KLK3 

levels, respectively were removed from the data set prior to adjustment. The threshold for 

“low” expression was determined using a density plot and the Brent method to find the 

minima of the curve. For KLK2, and KLK3 the same nineteen samples were identified and 

removed for low expression. As well as removing low Kallikrein expression samples, six 

CB samples that had high TMRPSS2:ERG expression were also identified and removed. 

Samples with high TMPRSS2:ERG expression were again identified through density plots 

and the Brent method. 

	

Equation 2.2 Kallikrein adjustment of data using median and IQR. Where i is the sample and j is the 
transcript. 

!#$% −
234567"#%&

89:"#%&
		- ∗ 89:(<=<) +234567(<=<)	

2.3.2 Normalisation by housekeeping genes 

Five previously identified housekeeping transcripts were included in the NanoString1 pilot 

study: ALAS1, B2M, HPRT, GAPDH, and TBP. RPLP2 was added in NanoString2. Tukey 

tests (section 2.4.7) were used to identify transcripts that were not significantly different 

between any clinical category (p < 0.05). ANOVA (section 2.4.6), variance and IQR 

(section 2.4.8), and Pearson’s correlation (section 2.4.3) were also utilised, to identify novel 

transcripts to use for housekeeping purposes. In NanoString2 EV data, RPLP2 and GAPDH 

were selected to normalise the data, whereas for the NanoString2 cell data, RPLP2 and 

TWWAST1 were selected.  

For each sample, the mean of the two transcripts was calculated, as well as the mean of 

those means across samples. Each sample was then multiplied by a normalisation factor 

(ratio of the mean of means with the individual sample mean). 
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2.3.2 NanoStringNorm and NanoString QC Pro 

 The quality of the normalisation was evaluated using the R packages NanoStringNorm172 

and NanoString QC Pro173. 

	

2.3.2.1 NanoStringNorm 

NanoStringNorm174 investigates the normalisation of the data as well as identification of 

samples and transcripts that were outliers. The first test performed by NanoStringNorm was 

to plot the mean verses the standard deviation (SD) with a Loess curve of best fit. Positive 

controls and potential housekeeping probes should have high means and low SD, whilst 

negative controls should have low means and low SD. Batch effects and potential 

confounding were also tested for using sample summary features, including mean, SD, 

proportion of missing (0 counts) or positive/negative control counts. These features were 

plotted independently by NanoStringNorm, where the location of the point relative to the 

horizontal line shows how different it was from the others and the size of the (green) dot 

was proportional to the level of its significance. Orange dots were not significant. Potential 

influencing outliers were identified by looking into the normalisation factors: if the 

normalisation parameters extended beyond 100% difference from the mean, it was flagged 

as a potential outlier.  

2.3.2.2 NanoString QC Pro 

NanoStringQCPro173 (an R library) was conducted to check the quality control of the 

NanoString data, specifically looking at the control probe metrics and count probe metrics 

(similar to NanoStringNorm) but additionally looks at other metrics. The field of view 

(FOV) was a discrete area of each lane being imaged by the ncounter® digital analyser. 

Within the FOVs, bubbles and insufficient oiling can make unsuccessful imaging attempts. 

A low ratio between successful and unsuccessful attempts can be indicative of low imaging 

performance. NanoStringQCPro highlights any samples with less than 80% successful 

imaging attempts. If the binding density was too high in a sample, there can be overlapping 
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of the barcodes, which leads to errors in correctly imaging the number of probes. According 

to NanoString a binding density of less than 0.5 and higher than 2.25 can lead to these 

errors. NanoStringQCPro flags samples that have binding densities outside of the 

recommended thresholds.  

Positive controls were spiked into each NanoString experiment, they should show linearity 

with positive control A having highest values, down to positive control F with the lowest. 

Control range and Interquartile range (IQR) were also examined. The counts were also 

examined; any samples with unusually low counts were flagged using cutoffByMMAD to 

identify the threshold. This was based on the median of the data and the upper and lower 

thresholds were counted using median (x) – d * mad (x) and median (x) + d * mad (x), 

respectively (where d was a scalar).  

2.3.3 Log and Square-root Transformation 

 Sometimes, to obtain a more normal distribution of the data, it can be useful to transform 

the data. Many inferential statistical tests assume that the data was of normal distribution 

and violating these assumptions can cause an increase in both type 1 and type 2 errors. For 

regression-based models, the relationship between input and output variables should be 

approximately linear (so the input variables have a normal distribution and the output has 

constant variance, thus the variance of output variables was independent of input variables).  

Two transformations that have been used in this project were log transforming the data and 

square root transformation. Square root transformation has been shown to be appropriate for 

transforming count data175. However, square-root transformation of data has its drawbacks; 

if your data contains both values greater than 1 and values between 0 and 1, these two types 

of values will be treated differently.  

	

2.3.4 ComBat  

Batch effects occur in many high-throughput experiments, they can be caused due to 

laboratory conditions, reagent lots and personnel differences. ComBat was determined to be 
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the best performing of six methods for removing batch effects in microarray data176.  The 

ComBat function is an empirical Bayes method, where location and scale model 

adjustments are made as follows:  

	
?$%@ = 	B@ + CD@ +	E$@ +	F$@G$%@ 	

	
Where B@ is the overall gene expression, X is a design matrix for sample conditions, D@ is 

the vector of regression coefficients corresponding to X, G$%@is the error terms (which are 

assumed to follow a normal distribution) with expected value of 0 and variance H@+. The E$@ 

and F$@ represent the additive and multiplicative batch effects of batch i for gene g.  

The adjusted data is then given by:  

	

?$%@
∗ = 		

?$%@ −	BI@ − CD@J −	EK@L

FK@J
+ BI@ + CD@ 	

	
Where BI@,D@,JE$@	and F$@ are estimators for the parameters B@,D@, E$@ and F$@	based on the 

above model. The ComBat function of the sva R package was used with R version 3.2.1.  

	

2.4 Basic Statistical Tests 

Basic statistical functions used and described below were part of the R stats package and 

were used with default settings, under R version 3.2.1. 

2.4.1 Mann-Whitney U test (Wilcoxon Rank Sum test) 

The Mann-Whitney U test was a non-parametric log-rank test capable of identifying 

differential expression of genes between two different states, for example, cancer vs. non-

cancer. The test works by assigning a rank to each individual value from 1 to n (where n 

was the number of samples) and 1 was assigned to the smallest value. It then compares the 

sum of the ranks in the first group (:N) to the expected sum of the ranks given the sample 

size of group 1 and then the sum of the ranks in the second group (:+) was compared to the 

expected sum of the ranks given the sample size of group 2 (these values were considered 
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U1 and U2, respectively, see Equation 2.3). The smallest of these numbers was then used to 

calculate the significance. 

	
Equation 2.3 Mann-Whitney U test 

ON = :N −	
7N(7N + 1)

2
	

	
One advantage was that more accurate results than a t-test were obtained when used on data 

with a non-normal distribution177.  

2.4.2 Spearman’s Correlation 

Spearman’s rank correlation coefficient was a non-parametric test of statistical dependence 

between two sets of data, most commonly two variables. It measures the relationship 

between these variables providing a value between -1 and 1, where 1 or -1 means complete 

dependence, whilst 0 means that no dependence was observed. Spearman’s correlation uses 

the rank of the variables rather than exact values (as used in Pearson’s correlation). The 

covariance of these ranks was divided by the standard deviation of the ranks also (Equation 

2.4). Here, 4$ was the difference in ranks for variables x and y, QR was the notation for the 

coefficient for a sample statistic and 7 was the number of samples. Spearman’s correlation 

was preferred over Pearson’s correlation typically when one of the variables was ordinal 

and the other was continuous or if the relationship was non-linear178. 

	
Equation 2.4 Spearman's Correlation 

QR = 	1 −
∑ 4$

+T
$UN

7(7+ − 1)
	

2.4.3 Pearson’s Correlation 

Pearson’s product moment correlation coefficient was calculated in a very similar method 

to that of Spearman’s correlation in that the covariance of the two variables was divided by 

the standard deviation of those variables. The key difference was that the exact values were 

used instead of their ranks (Equation 2.5). Here the correlation coefficient was noted by Q 

and #$  and V$ were the ith individuals of x and y variables. Pearson’s correlation was 
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typically used when both variables were continuous, normally distributed (as extreme 

values can bias the strength of a relationship), and the tested relationship was linear178. 

	
Equation 2.5 Pearson's Correlation 

Q = 	
∑ (#$	– 	#)(V$ − V)
T
$UN 	

X[∑ (#$ − #̅)+
T
$UN ][∑ (V$ − V[)+

T
$UN ]

	

2.4.4 Pearson’s Chi-Squared 

This statistical procedure was typically used to identify if the frequency distribution of 

events was independent from the labels assigned to the event. It can be used to suggest if 

two groups of variables were related or not, for example in clustering, to see if the clusters 

were significantly related to the clinical category, a frequency distribution table can be 

produced. To calculate what frequencies were likely to occur from chance, the number of 

observations (\$%) was divided by the number of cells in the table, this gives what was 

known as the theoretical frequency (]$%). This can then be used to calculate the test statistic 

(Equation 2.6) and with n-1 degrees of freedom, the p-value can also be determined179. 

	
Equation 2.6 Pearson's Chi Square test 

Χ+ = 	
(\$% −	]$%)+

]$%
	

2.4.5 Welch t-test  

The Welch t-test was a parametric test to measure how the means and variance of two 

groups differ in normally distributed data, where the variances of the two populations were 

assumed to be non-equal. The mean of the data points in-group A and B, along with the 

squared sums (∑#)+	and also the sum of the squares ∑(#+)	were used to calculate a t value 

(Equation 2.7). This provides a t value, which was comparable to values designated using 

different degrees of freedom (dependent on the number of samples in your two groups of 

data). Combining the t-value with the relevant degrees of freedom (sum of the variables in 

each group minus 2) yields a p-value. 
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Equation 2.7 The Welch t-test, comparing the mean and standard deviation between two sets of data to 
conclude if they were significantly different from each other 

_ = 	
C[̀ −	C[a

bc
d	∑e+ −

(∑e)+
7`

f +	(∑g+ −
(∑g)+
7a

)	

7` + 7a − 2
h ∙ j

1
7`
+
1
7a
k

	

2.4.6 ANOVA – Analysis of Variance 

Analysis of Variance (ANOVA) was a procedure used to analyse the differences among 

group means. In this work, it has a similar function to the t-test but allows the analysis of 

more than two subgroups. Firstly, the mean sum of squares within each group, MSSw 

(Equation 2.8) and the mean sum of squares between the groups, MSSB (Equation 2.9), was 

calculated. The ratio of these then provides the test statistic, F lm =	noop
nooq

r. Combining the 

F statistic with the degrees of freedom allows a p-value of significance to be determined. 

There were two degrees of freedom to calculate in ANOVA, dfB = k-1 and dfw = n-k, where 

n was the total number of samples and k was the total number of groups.  

	
Equation 2.8 Mean sum of squares within each group of data, where n was the total number of samples, k 
was the total number of groups, g was the value and G was all of the values across all groups.  

sttu = 	
∑v ∈ x	(# −	 #̿@)+

7 − z
	

	
Equation 2.9 Mean sum of squares between each group of data, where n was the total number of samples, 
k was the total number of groups, g was the value and G was all of the values across all groups and ng was 
the number in each group.  

stta = 	
∑v ∈ x	7@(#̿@ −	 #̿{)+

z − 7	
	

2.4.7 Tukey test 

The Tukey test allows us to make multiple mean comparisons within the data with just a 

one step procedure (Equation 2.10). It was essentially a t-test that takes into consideration 

multiple testing. By assigning known groups to the data one can infer if these groups have 

significantly different means from all other groups within the data. Pairwise comparisons of 

all the possible groups’ means were made and the difference was compared to the standard 

error. 



CHAPTER	2:	MATERIALS	AND	METHODS	
	

	 99	

	
	
Equation 2.10 The Tukey test, where YA was the greater of the two means, Yb was the smaller of the two 
means and SE was the standard error of the sum of the means. 

|R = 	
?̀ −	?a
t]

	

	

2.4.8 Kruskal-Wallis 

The Kruskal-Wallis test is a one-way ANOVA on ranks, it is essentially an extension to the 

Mann Whitney U test. Similarly to Mann Whitney U, the Kruskal Wallis test uses ranks, 

and therefore, is a non-parametric test useful for non-normally distributed data. 

Additionally, similarly to ANOVA, the Kruskal-Wallis test can allow testing of >2 

categories of data.  

	
	

} = (~ − 1)
∑ 7$(Q̅$ −	
@
$UN Q̅)+

∑ ∑ (Q$% −	 Q̅)+
T�
%UN

@
$UN

	

	
where ni is the number of observations in group i, g is the number of groups, rij is the rank 

of observation j from group i, N is the total number of observations across all groups, Q̅$ is 

the average rank of all observations in group i and Q̅ is the average of all the Q$%.  

A p-value can then be approximated from H from the table of X2 distributions and the 

degrees of freedom (g-1). The function kruskal.test from the stats R package was used in R 

version 3.2.1.  

2.4.9 Variance and IQR 

Variance of a dataset can be measured as the sum of the squared distance of the data points 

from their mean. The IQR of the data was the lower quartile (the data point at 25%) 

subtracted from the upper quartile (the data point at 75%). The IQR was useful when data 

was not normally distributed.  
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2.4.10 Log rank Test  

The log rank test is used to compare the survival experience of two different experimental 

statuses. It tests for the null hypothesis that there is no difference for the populations for the 

probability of an event at any time period, unlike survival curves, where a comparison at 

arbitrary time points are given.  

    For each time the number of events in each group are calculated and compared to the 

number expected if the null hypothesis were to be true.  For each group the test statistic is 

calculated using (O-E)2/E, where O is the number of observed events and E is the number of 

expected events. The comparison is completed using a X2 test (Section 2.4.4) and from the 

X2 distribution tables, a p-value can be provided allowing acceptance or rejection of the null 

hypothesis180.  

    The log rank test has advantages such that the whole follow up period is utilised, and no 

information about the shape of the survival curve of distribution of survival times is 

required.  

  The log rank test was completed using the survdiff function of the survival R package26.  

	
2.4.11 Shapiro-Wilk 

The Shapiro-Wilk test was used to determine if a sample came from a normally distributed 

population. The null hypothesis was that the data was from a normally distributed 

population and so was rejected if the p-value was less than the chosen alpha value (typically 

0.05). Equation 2.11 was utilised to determine the W statistic, where !(#) was the ith 

smallest number in the sample (the ith order statistic) and %# were the constants derived 

from the covariance matrix of the order statistics181. The algorithm used in R also has the 

ability to calculate a p-value from W182. This was used with standard settings, under R 

version 3.2.1 for all Shapiro-Wilk testing. 

	
Equation 2.11 The Shapiro-Wilk test, where  &(') was the ith smallest number in the sample (the ith order 
statistic) and (' were the constants derived from the covariance matrix of the order statistics 
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) =	
(∑ %#!(#)-

#./ )0

∑ (!# − !̅)0-
#./

	

2.4.12 Brent 

The Brent method is an algorithm that combines three root-finding algorithms.  It is as 

quick and more reliable than most other bisection methods. It is an iterative method that 

moves inwards from two points known to be on a quadratic curve until the root that 

provides the optimal bisection is discovered. The function optim from the stats package in R 

was used, with the argument method=Brent, for the optimal bisection of density plots.  

	
2.4.13 Benjamini – Hochberg Multiple Testing Correction 

In order to limit false discovery rates when completing multiple tests, multiple testing 

correction is completed. This particularly is useful for removing false positive hits, but has 

the trade-off of creating false negatives. The Benjamini-Hochberg method is a widely used 

procedure when completing multiple statistical tests, like testing each gene or probe 

between two groups. The correction starts by assigning a rank 1 to N, where 1 is assigned to 

the smallest p-value.  Each p-value is then given a Benjamini-Hochberg critical value, using 

the formula (i/m)Q, where i is the assigned rank, m is the total number of tests and Q is the 

false discovery rate (chosen by the user). A comparison between the p-value and it’s critical 

value is then made by finding the largest p-value that is smaller than its critical value. Any 

p-value above this is then considered significant by the Benjamini-Hochberg method, and a 

new p-value is assigned.  

The function p.adjust from the R package stats was used the Benjamini-Hochberg method 

passed as an argument.  

2.4.14 Receiver Operator Characteristics (ROC) 

ROC curves were a graphical plot to show the diagnostic ability of a classifier system as its 

discrimination threshold was varied. There was a trade-off between true predicted positives 

(sensitivity) and true predicted negatives (specificity) in the outcomes as this threshold was 
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varied. ROC aims to identify the best threshold to give the best balance between the 

specificity and sensitivity. Each ROC also gives an AUC (area under the curve), which was 

a value between 0 and 1. Where 1 was a perfect model with all positives classed as positive 

and all negatives classed as negatives, and 0 shows there was no predictive value of the 

model at all. Generally, an AUC above 0.8 was valued as good. Two packages were used to 

produce ROC curves. For the HT chapter, ROC was performed using ROC, also part of the 

ROC bioconductor package183. Alternatively, to analyse the performance of the models built 

in the NanoString2 chapter the ROC function of the epi package184 was used, this calculated 

the sensitivity and specificity as well as the AUC.  

	

2.5 Clustering 

2.5.1 Principal Component Analysis (PCA) 

PCA allows the visualisation of the maximum variability of a data set in two-dimensions. 

For a simple explanation, imagine there were ten samples and five genes and a graph was 

drawn with five axes, with each of the ten samples placed at the point that represents their 

value along each axis. Then identify a line that goes through as many of the samples as 

possible with the highest variation, that imaginary line was the first principal component. 

The second principal component was the line with the second highest variation and so on. 

Therefore, the majority of the variation of the data was found in the first two principal 

components and a 2D plot of these was enough to identify the biggest differences in 

samples.  

This unsupervised mathematical procedure aiming to reduce dimensions of data works 

using a coordination transformation from the original data space to “eigenspace” using 

eigenvectors and eigenvalues of a matrix185. The first step was to calculate a covariance 

matrix of the data, with the aim to reduce redundancy and maximise variance. From the 

covariance matrix, which was used to measure how much the dimensions vary from the 



CHAPTER	2:	MATERIALS	AND	METHODS	
	

	 103	

mean, the eigenvalues and eigenvectors can be determined. The covariance of two variables 

tells was a measure of how they vary together (Equation 2.12). Once the eigenvectors and 

the eigenvalues have been determined the eigenvalues can be sorted in descending size 

order. 

	
Equation 2.12 PCA covariance equation 

345(6, 8) = 	9
(!# −	 !̅)	(:# −	:;)

<

=

#./

	

	
2.5.2 Hierarchical Clustering 

In this work, the commonly used UPGMA (“unweighted pair-group method using 

arithmetic averages”) method of hierarchical clustering was used. The highest similarity (or 

smallest distance) was used to identify the next two clusters to be merged. The distance of 

each sample to members of a cluster were computed with equal weights and the similarity 

or distance matrix was produced. This was updated and reduced at each computation, as 

samples/clusters were combined, allowing clustering to proceed by agglomeration as the 

similarity criterion was relaxed186.  

	
2.5.2.1 Pvclust  

 Pvclust187 was a bootstrapping method that calculates the p-value for each cluster in a 

hierarchical clustering dendogram object through the application for bootstrap resampling; 

clusters with significant AU p-values were shown with a red box.   

2.5.3 k-means Clustering 

k-means clustering aims to separate points into k-clusters so that the within clusters sum of 

squares was minimalized by seeking local optima so that moving of a point from one cluster 

to another will not reduce the sum of squares (Equation 2.13)188:  

	
Equation 2.13 Optimal local within cluster sum of squares.	&'

(>) was the data point and ?> was the 
centroid, where i was a data point in cluster j. k was the number of clusters and nj was the number of 
samples in cluster j. 
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@ = 	99	A!#
(B) − 3BA

0
-C

#./

D

B./

	

	
Initially, centroids were arbitrarily picked each point was assigned to the closest centroid in 

Euclidean distance. Then the centroid was adjusted to the new cluster mean, the samples 

were reassigned to the closest centroid and this was repeated until convergence was 

reached.  Convergence was when no observations can change the clusters when added and 

centroids were subsequently redefined189. The advantages of k-means clustering include 

speed and simplicity, whilst disadvantages include differing results per run due to the 

random starting centroid points and an unknown input value for k190. In this project, the 

optimal number of clusters was determined using the Bioconductor function NbClust191, 

which uses 30 metrics including the Silhouette, Dunn and Davies-Bouldin Indices (section 

2.5.4). 

2.5.4 Silhouette, Dunn and Davies-Bouldin Indices 

 Three of these main techniques used for comparing how well data was clustering were the 

Silhouette, Dunn and Davies-Bouldin Indices.  

 The silhouette index compares the mean distance of a point to the others in it’s cluster and 

then other clusters. It provides an index value between -1 and 1, where 1 was an indication 

that the point belongs to the correct cluster and -1 means it does not. 

 The Dunn index was the minimum distance of points between two different clusters 

divided by the maximum distance of points within a cluster for each cluster. Here, a larger 

value was representative of good clustering. 

 The Davies-Bouldin index takes the mean distance of the points within a cluster from their 

Barycentre and then divides this by the distance between the Barycentres and so a smaller 

value was an indication of good clustering. 
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2.5.5 Latent Process Decomposition 

Latent Process Decomposition (LPD)192 is a hierarchical Bayesian (probabilistic) model that 

was designed for the clustering of microarray data and thus can also be used with other 

forms of count data. It estimates the most probable/optimal number of clusters, and 

determines the probability of a sample belonging to each cluster, rather than membership of 

a cluster being assigned. This was important as samples were often heterogeneous made up 

of cells from different clones of cancer. Also different biological processes often work 

together to influence expression levels. 

LPD makes the assumption that a sample’s expression was determined by a series of 

processes. Each process has an associated expression profile which was determined by the 

algorithm. A sample’s expression profile was then de-convoluted in to these process 

expression profiles. For example, Gene A has expression of n genes similar to the 

expression of the genes that make up the signature of process 1, and expression of m genes 

was similar to the expression of genes that make up the signature of process 2. n genes were 

of a higher similarity to process 1 than m genes were to process 2 and so max likelihood 

was higher for process 1; Gene A has 0.78 for process 1 but still 0.22 for process 2, etc.. So 

it has some similarity through some genes to process 2 but has more similarity through 

more genes to process 1.  

The first step of LPD was to estimate the most probable number of clusters or “processes” 

using the maximum likelihood solution and a uniform prior. A uniform prior was a 

probability assumption with limited knowledge. E.g. a ball under 3 cups A, B, C has 

probability prior of p(A) = p(B) = p(C) = 1/3, where changing the order of the probabilities 

of the cups makes no change to the prediction. In the final model, a prior was defined to 

avoid over fitting by penalizing over complex. The parameter (sigma) in this prior was 

estimated next through cross-validation. 

After these parameters were defined, the final solution was obtained by iteratively updating 

various parameter values of the Dirichlet distribution (a collection of multivariate, 
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continuous probability distributions that was a more generalized version of beta 

distributions) modelling expression. Process mean values were initialized to the mean 

expression across the data set for each gene, whilst variances were set to the variance of 

their respective genes192. 

2.6 Model Optimisation 

Predictive models were a supervised learning method, which has been applied to both the 

NanoString1 and NanoSting2 data. For the NanoString2 data, it was divided into training, 

and test sets for a more robust and accurate model evaluation. A number of different models 

and modelling techniques were applied.  

2.6.1 GLM: Generalised Linear Model 

There are two important aspects of GLM193: General and Linear. Linear because the 

underlying equation was that of a straight line: Y = β0 + β1X1. In this example Y was the 

predicted or response variable, whilst X was a single predictor or explanatory variable. β0 

was the y-intercept and was constant, whilst β1 was the slope or weight of variable X1. 

General because the equation was able to handle multiple explanatory (X) variables e.g. Y = 

β0 + β1X1 + β2X2. Any control variables may be included and if so, should precede the 

explanatory variable of interest within the equation, in general practice.  

The explanatory variables may be numerical and continuous or binomial/factorial with 

levels. The GLM generalised linear regression by allowing the linear model to be related to 

the response variable via a link function allowing the modelling of binary response 

variables through logistic regression and ordinal variables through proportional odds 

models.   

GLM was performed as an initial step in identifying probes that were significant for 

predicting clinical category (CB vs. Ca, CB vs HR-Ca, CB-L-I-H trend and CB-Ca-

Advanced Ca trend) within all of the data (NanoString1) and within the training data 

(NanoString2). Significant probe lists were then shrunk and selected using techniques such 
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as Lasso, Step and Random Forest (section 2.6.2, section 2.6.4, section 2.6.3, respectively) 

and then these condensed lists were then used to build a final model. These models were 

then tested upon the test data (NanoString2). The R function glm from the stats package 

was used for logistic regression models and the polr function from the MASS package for 

proportional odds models. These were used with the R version 3.2.1. 

 

2.6.2 Lasso  

Least absolute shrinkage and selection operator (LASSO) was a regression method that was 

capable of performing selection and regularisation in order to improve both interpretability 

and prediction accuracy of statistical models, respectively. A constraint was applied to 

which the sum of the absolute value of the regression coefficients must be less than. This 

forces some of the coefficients to be set to zero, allowing these covariates to be disregarded 

from the optimal statistical model. Thus allowing both subset selection and shrinking large 

regression coefficients so as to reduce over fitting194. Over fitting of models can be 

problematic because these models tend to have poor predictability and can be over 

responsive to minor fluctuations within the test data set. Lasso can be easily applied to a 

variety of statistical models including generalised linear models and proportional hazard 

models, amongst others. 

	
2.6.3 Random Forest 

Random forest195 (RF) was an ensemble method that was a combination of tree predictors 

(weak learners) such that each tree was built using a sample set constructed by random 

selection replacement (bootstrapping). Once built the result of the model was the 

combination of the results of all trees (votes for binary outcomes and mean for continuous 

outcomes). The random forest function (from the random forest package) was used for 

classification and for regression models.  
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Each decision tree was built by taking the bootstrap data and repeatedly separating it at 

nodes. At each node a small subset of, m, variables were chosen at random, and the 

combination that optimises the split, according to some objective function, was found. At 

the next node another m variables were chosen and the same method was performed. m was 

generally set at EF or G
H
, where p was the number of variables. As the number of trees 

increases, the generalisation error of the forest converges. 

The importance of variables in the model were assessed in two ways. Internal out-of-bag 

(OOB) estimates were used to judge the quality of the model. OOB was the average error 

calculated for each variable from the trees that do not contain that specific variable in their 

respective bootstrap sample. The error was calculated using the misclassification rate of the 

subjects. These estimates were produced using a single run of a forest with 1,000 trees and 

no test set. Variables with large mean decrease in accuracy or OOB were more important 

for classification of the data. Additionally, a Gini coefficient was also used to assess 

importance. This was a measure of how each variable contributes to the homogeneity of the 

nodes and leaves in the RF. Each time a variable was used to split a node, the Gini 

Coefficient for the child nodes were calculated and compared to the original nodes 

coefficient. The coefficient can be between 0 (homogenous) and 1 (heterogeneous). These 

changes in Gini were summed and normalised for each variable. Again, variables that were 

more important have a higher mean decrease in Gini.   

Random forest was applicable to regression. Mean squares error was usually used to 

determine error rate when using random forest with regression. MSE was the mean (divided 

by n (number of data points)) of the squares of the errors196.  

Random forest (from the random forest package) was used for classification and for 

regression. 
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2.6.4 Step for feature selection 

StepAIC was a function of the MASS package in R197. It was an automated model selection 

technique that takes a model and inserts or removes each variable and assess the model 

quality using the AIC – Akaike Information Criteria (Equation 2.14). The model with a 

smallest AIC was selected as the optimal and then this model was fused in the next step, 

this was repeated until no further improvements in AIC were observed. StepAIC can be run 

forwards (where you begin with all variables and remove them), backwards (where you 

begin with a small number of variables and add them) or both (where variables were added 

or removed as required)198.  

	
Equation 2.14 shows how to calculate AIC. Where the model with the lowest AIC was deemed optimal. 
Where k was the number of parameters and L was the maximum value of the likelihood function for the 
model. 

IJK	 = 	2M	– 	2	O4P	(QR)	
	
2.7 Pathway Analysis  

2.7.1 DAVID 

DAVID was the Database for Annotation, Visualization and Integrated Discovery, it was a 

gene functional classification tool. It was a web-based tool whereby you submit a list of 

transcripts of interest and DAVID classifies the list into functional related gene groups, 

ranks the importance of the discovered gene groups (dgg) and summarises the major 

biology of the dgg199. DAVID was used to identify if there were any interesting biological 

functions of the transcripts identified as significant.  

	
2.8 Survival Analysis Tools 

Survival analysis was the analysis of data where the response variable was the time to an 

event, for example to death or as in our case time to failure. Individuals that fail after the 

end of the study at some point in the future were known to be censored. Survival analysis 
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tools were used to identify if there were transcripts capable of predicting relapse to hormone 

therapy (HT) prior to a two-year period. The non-failures were said to be censored as after 

the last follow up date you don’t know if they have failed or not200.  

	
2.8.1 Kaplan Meier (KM) Curves 

The KM survival distribution was a discrete stepped survivorship curve, which gains 

information as each event (failure) occurs. There were two variables at any time point on 

the KM (Equation 2.15); those that have failed, S(T#) and those at risk of failing, U(T#) and 

this produces a step at each failure.  

	
Equation 2.15 The KM function. 

VWXY = 	Z
U(T#) − S(T#)

U(T#)[\][

	

	
Censored points were denoted by a + on KM plots. Kaplan Meier plots were created using 

the survfit() function, specifying type=(“kaplan-meier”) from the survival package201 and 

ggsurv() of GGally package202, on R version 3.2.1. Dichotomised high/low expression 

levels were determined for each probe using k-means clustering and k=2 (section 2.5.3). 

	
2.8.2 Cox Proportional Hazard  

Cox Proportional hazard model was the most commonly used regression model for survival 

data. It assumes the hazard was of the form ^(T; `#) = 	^a(T)U#(T), where `#(T) was the set 

of explanatory variables for individual i at time t. The risk score for individual i was U#(T) =

	bcd\([), where e was a vector of parameters from the linear predictor ^a(T), which was an 

unspecified baseline hazard function that will cancel in due course. It guarantees that ^ was 

positive for any regression model. Hazard was the instantaneous risk of failure, or 

instantaneous rate of change in the log number of survivors per unit time. Coxph was part of 

the survival package201. 
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3 

    NanoString Data Analysis 1: The Pilot Study 

3.1 Summary 

The Movember GAP1 global PCa biomarker initiative has multiple collaborators 

working on the identification of urinary biomarkers for the risk-stratification of PCa. 

Our laboratory is specifically interested in the RNA expression changes in PCa that are 

detectable within urinary cell sediments and extracellular vesicles (EVs). The EV RNA 

expression pilot study described here had the following aims: 

1. Identify if PCa specific transcripts can be detected in urinary EVs  

2. Assess whether transcript levels within urinary EVs were able to i) identify PCa per 

se, ii) distinguish aggressive from indolent PCa 
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3. Identify if the NanoString system could be applied to Nugen Ovation amplified 

cDNA (Nanostring probes are strand specific and designed to be applied to mRNA). 

4. Identify suitable methods for the analysis of the NanoString data 

	
In the pilot study, expression levels of 57 transcripts were measured in 194 samples 

using NanoString technology (section 1.6.1). The NanoString technology was able to 

detect PCa specific markers (section 1.4.6), such as TMPRSS2:ERG which was detected 

in 58% of all PCa samples and in 19% of samples from men with no clinical evidence 

of PCa (CB). This result, confirmed by RTPCR demonstrated that i) NanoString 

technology was capable of capturing cDNA amplified by the Nugen Ovation kit; ii) EV 

mRNA contains PCa-specific transcripts, and iii) the methodology was sensitive enough 

to identify PCa in men with undiagnosed cancer or HGPIN. 

Latent Process Decomposition unsupervised analysis (section 2.5.5), clustered the EV 

expression data into four groups: LPD groups 1 and 4 were saturated with high-risk and 

advanced cancers, whilst LPD groups 2 and 3 showed clinical diversity. The majority of 

the intermediate-risk samples resided within LPD group 2 and most of the CB were in 

LPD group 3 (section 3.5.5).  

Supervised statistical approaches (Mann Whitney U test) determined nine probes 

significantly differently expressed between PCa (advanced, high-, intermediate- and 

low-risk) and non-PCa samples (Table 3.19), eleven probes significantly different 

between high-risk PCa and non-PCa samples (Table 3.20) and six probes between 

advanced PCa and non-PCa samples (Table 3.21).  

Supervised modelling of the data (using generalised linear models (glm) and Lasso for 

shrinkage (section 2.6.2)) identified three models that distinguished; i) PCa vs. non-PCa 

with an AUC of 0.937, ii) aggressive PCa vs. non-aggressive PCa with an AUC of 

0.852 and iii) advanced PCa vs. benign with an AUC of 0.983. 

Twenty-three transcripts were significantly differentially expressed between PCa and 

non-PCa (Table 3.42), however, only seven were consistently differentially expressed 
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between the various data-analytic methods used (DLX1, ERG3’, TMPRSS2:ERG, 

HOXC4, ERG5’, PCA3 and HPN). Four transcripts were consistently differentially 

expressed between aggressive PCa and non-aggressive PCa in various tests (Table 3.43) 

and two transcripts between advanced and non-PCa (Table 3.44). 

These findings highlight that the transcript data collected from urinary EVs in PCa 

patients comes, at least in part, from the prostate and holds clinically relevant structure. 

	
3.2  Introduction  

3.2.1 The Research Gap 

Risk stratification is currently based on PSA, Gleason score and T stage. MRI is being 

phased in, but has been shown to have only 41% specificity in a recent study of low risk 

patients203. Patient clinical pathways would benefit from additional information on their 

PCa diagnostic and prognostic status. We propose that urine EV mRNA data could 

provide useful clinical information that could help tailor patients to treatment pathways 

based on their genetic composition and potentially improve uncertainty over which 

treatment pathway each patient should be assigned to. The PCA3 test has shown to 

provide minor improvements to risk stratification but importantly shows the utility of 

urine in PCa diagnostics and prognostics.  

3.2.2 The Pilot Study Aims  

The pilot study used NanoString technology to investigate the RNA expression level 

changes of 57 target transcript sequences within EVs extracted from urinary samples 

collected at the NNUH as part of the Movember study. The aims of this pilot study 

were: 

a) To identify if the transcript content of urinary EVs contained PCa derived material 

b) To identify if transcript levels within urinary EVs are linked to PCa risk stratification 
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c) To identify if NanoString is a suitable method for obtaining transcript level data from 

our cDNA samples 

d) To identify appropriate methods for analysing NanoString data. 

3.2.3 The Probe Targets 

The 57 target transcript sequences were selected for the following reasons: i) prostate 

specific transcripts, ii) transcripts overexpressed in advanced PCa tissue (literature 

search), iii) suspected housekeeping genes, iv) tissue-specific controls for kidney, 

bladder and blood.  

3.2.4 Risk classification of prostate cancer patients 

Patients were placed into clinical risk categories based on D’Amico and NICE criteria: 

Prostate Cancer Diagnosis and Treatment 2014 guidelines40. In addition the 

intermediate risk patients were subdivided on Gleason (G3+4 Vs. G4+3), as progression 

rates between these two groups are very different (Table 3.1). The median age and PSA 

at diagnosis for each clinical category have been recorded (Table 3.2). For some 

computational analyses, specific risk groups were combined (Table 3.3). 

	
Table 3.1 Classification and Frequency of the sample types based on NICE criteria40. The 

quantity of samples for each clinical group can be seen as well as the clinical description of 

the group in terms of Gleason score, PSA level and T stage.  

Classification: NICE Groupings 
Sample Class Description Number of 

Samples 
Advanced (A) Metastatic , PSA>100, and G>8 17 
High-risk (H) G7 PSA>20  50  
Upper 
Intermediate-risk 
(UI) 

G4+3 PSA<20 19 

Intermediate-risk 
(I) 

 G3+4 PSA<20 and IL= G6 PSA>10 53 

Low-risk (L) Low G6 PSA<10 10 
Abnormal (S) High PSA no Bx 4 
CB<1* No evidence of Ca and PSA<1 18 
CBn* No evidence of Ca and PSA normal to age 22 
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M_19_5 Removed for technical failure 1 
Total  194 
 *CBN and CB<1 were combined to CB (as there was no significant difference between 
their expression levels p > 0.05: Two sample t-test) and UI and I were combined to I (as 
there was no significant difference between their expression levels p > 0.05: Two 
sample t-test). 
	
	
Table 3.2 Median age and PSA at diagnosis for each clinical category, of samples that are used in 
subsequent analysis.  

Sample	Class	 Number	of	
Samples	

Median	Age	 Median	PSA	at	Dx	

Advanced	(A)	 17	 78	 110	
High-risk	(H)	 50	 	 73	 27	
Upper	
Intermediate-risk	
(UI)	

19	 74	 9.55	

Intermediate-risk	
(I)	

53	 67.5	 8.35	

Low-risk	(L)	 10	 68	 5.95	
CBN	and	CB<1	 40	 68	 1.1	
	
Table 3.3 Sample numbers used in  i) ‘Cancer’, ii) ‘Aggression’ and iii) ‘Extreme’ 

computational analyses.  

Group Number of Samples 

Cancerous (A, H, I and L) and No Evidence of 
Cancer (CB) 

Cancerous =149 / CB =40 

Aggressive (A, H) and Non-Aggressive (I, L) Aggressive = 67/ Non-Aggressive = 82 
Extremes (A Vs. CB) A=17 / CB= 40 
	
3.3 Data Pre-processing and Technical Variation 

3.3.1  Normalisation and Background correction  

The NanoString analyses provided data for 57 test probes, and 14 non-human system 

control probes (6 positive-control probes and 8 negative-control probes) in 194 Nugen 

Ovation amplified cDNA samples. The 6 positive control probes detected spiked-in 

control sequences that were used to assess the overall NanoString assay transcript 

detection efficiency for each sample, and generated a normalisation factor (NF) in the 

following way:  The average nCount for each samples’ positive controls was calculated 

and this number was divided by the sum of all samples averages. Each nCount value 
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was then multiplied by the sample-specific NF. Background correction was not applied 

and background subtraction was found not to be appropriate for this data (data not 

shown).   

3.3.2  NanoStringNorm – Quality of Data and its Normalisation 

The quality of the normalisation was evaluated using the NanoStringNorm R package 

(section 2.3.2.1). Other than a few flagged samples (M_14_7, M_19_5, M_36_7, (Table 

3.4)), and a few flagged probes (KLK4, GAPDH and FOLH1, (Table 3.5)), the data was 

of overall good quality. The three probes were flagged due to high mean and/or 

standard deviation or for FOLH1 not following the Loess curve of best fit. For GAPDH, 

we predicted similar housekeeping properties as in cell RNA, however that is not what 

has been observed (section 3.3.5). For KLK4, it suggests high expression in the samples 

with a wide range of signals (considering we have samples across different clinical 

categories this is expected). For FOLH1, the Loess curve of best fit is a non-parametric 

regression derived curve that is similar to a line of best fit through all of the data. To not 

follow it simply suggests that this probe is expressed rather differently to the other 

probes in these samples (again could be due to the range of clinical categories used).  

Some cartridges (each cartridge is loaded with twelve samples and then run on the 

NanoString machine) showed significantly different means and standard deviations in 

comparison to others in the raw data. The flagged outliers were considered with caution 

and reviewed further in subsequent analyses 

.	
Table 3.4 Three samples were flagged by NanoStringNorm. 

Samples Issues 
M_14_7 Low sample mean  
M_19_5 Low sample mean  
M_36_7 Low sample mean  

Normalisation factor flagged as influential outlier  
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Table 3.5 Three probes were flagged by NanoStringNorm. 

Probes Issues 
KLK4 High mean and SD  
GAPDH  High mean and SD  
FOLH1 Doesn’t follow Loess curve of best fit  
	
3.3.3 Experimental and Technical Investigation 

3.3.3.1 NanoString Scanners and Cartridges 

NanoStringNorm showed significant differences between the mean and standard 

deviation of the normalised data between cartridges; indicating there might be batch 

effects on the scanner and cartridge-dependent variables. Scanner and cartridge-

dependent variations were therefore examined using Principal component analyses 

(PCA) (section 2.5.1). PCA did not detect any clustering based on technical artefacts 

(Figure 3.1A), and there was no significant association between mean expression per 

sample and either cartridge (Kruskal-Wallis rank sum test: p = 0.17, χ = 21.21), or 

Scanner (Kruskal-Wallis rank sum test: p = 0.71, χ =0.14). 

 

3.3.3.2 RNA Extraction and Amplification 

At the beginning of the urine-collection study, protocol optimisation for RNA yield 

from RNA extractions was conducted (by Marcel Yazbek-Hanna and Rachel Hurst, 

section 2.1.3), which led to samples from multiple variant protocols being included in 

the pilot study set. PCA (section 2.5.1) was applied and no clustering was observed due 

to RNA extraction protocol (Figure 3.1B). There was no significant association between 

the median expression for each sample and the RNA extraction protocol used (Kruskal-

Wallis rank sum test: p = 0.16, χ2 = 6.5). 
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Figure 3.1 To ensure there were no batch issues PCA plots were produced of NanoString loading 
batches and RNA extraction protocol. A) PCA did not identify any clustering associated with 
NanoString cartridge or scanner used. Along with the Kruskal-Wallis rank sum results also 
(Cartridge: p = 0.17, Scanner p = 0.71), it was deemed there was no batch effect produced by 
NanoString loading. B) PCA does not identify any clustering associated with RNA extraction 
protocol used and the Kruskal-Wallis rank sum test was also insignificant (p = 0.16). Thus it was 
deemed that using no filter, a 45μm filter, and a 45μm filter with a 30-minute wait along side the 
Qiagen micro RNA RNeasy kit using manufactures’ protocols made no difference.  

Due to the limited amounts of EV RNA harvestable from urine, 15-20ng RNA from 

each sample was amplified using a Nugen Ovation WTA2 cDNA amplification kit.  

The amount of cDNA obtained after amplification (in µg) was investigated for 

clustering affects using PCA (section 2.5.1) and correlation (section 2.4.3). cDNA 

yields were split into groups; group 1 = 1-2µg, group 2 = 2-3µg, group 3 = 3-4µg, group 

4 = 4-5µg, and group 5: >5µg.  Mild clustering affects were observed; samples with 

lower Ovation output had a lot more spread than higher amounts of output (Figure 

3.2A) but no significant correlation was found between cDNA yield and median log2 

expression per sample (p = 0.09, r = 0.12, Pearson’s correlation, Figure 3.2B). The 

distribution of clinical categories within each Amplification yield group was not 

statistically significant; (χ = 26.2, p > 0.05, χ2 test (section 2.4.4), Figure 3.2C).  

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

● ●

●

●

●

●
●0

5

0 10 20 30 40
PC1 − 36%

PC
2 
− 

7%

Cartridge
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Scanner ID
● 1102B0005

KB0006

PCA plot by NanoString Cartridge and Scanner ID

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

5

0 10 20 30 40
PC1 − 36%

P
C

2 
−

 7
%

Protocol
●

●

●

●

●

EarlierSamples
FullMoSOP
MoExoBut0.45umfiltered
MoExoBut30minAnd0.45umfiltered
MoSopForExosomes

PCA plot by NanoString Protocol
A	
	

B	
	



CHAPTER	3:	NANOSTRING	DATA	ANALYSIS	1:	THE	PILOT	STUDY	
	
	

119	
	
	

	
Figur
e 3.2 A) Amplification cDNA yield shows mild clustering (cDNA yields were grouped: group 1 = 1-
2µg, group 2 = 2-3µg, group 3 = 3-4µg, group 4 = 4-5µg, and >5µg in group 5). B)  Amplification 
cDNA yield shows no influence on sample mean expression C) Amplification cDNA yield shows 
dependence on clinical category. 

	
3.3.4 Transforming data to a normal distribution and the Shapiro-Wilk 

test 

log2 and square root transformation (section 2.3.3) was applied to attempt to get the 

dataset closer to a normal distribution (Figure 3.3). Neither the log2-transformed, nor 

the square root transformed, nor the non-transformed data are normally distribution 

according to the Shapiro-Wilk test (section 2.4.11, Table 3.7, Table 3.8). However, for 

the majority of the samples (the first 70 and last 70), the W statistic is higher for the 

log2-transformed data, indicating that the data is closer to a normal distribution than for 

the other transformations (Table 3.6). 
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Figure 3.3 Density plots showing the distribution of a) the non-transformed data. B) the log2 
transformed data. C) the square root transformed data. 

	
The Shapiro-Wilk test was also applied to ten randomly selected probes in each of the 

datasets (un-transformed, log2 transformed and square root transformed) to see how the 

distribution of some individual probes varied; the majority were not normally 

distributed. The NanoStringNorm flagged probes (KLK4, GAPDH and FOLH1) had 

similar results to the other probes. These results led to the use of non-parametric tests 

wherever possible during analysis. A log2 transformation was applied so that probe data 

was closer to a normal distribution, as is standard practice for NanoString data204. 
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Table 3.6 Shapiro-Wilk test results on the first 70 and last 70 samples (all probes) for the non-transformed, log2 transformed and square root 

transformed datasets. 

 Un-transformed Log2  transformation Square root transformation 
 W p-value Normally 

Distributed 
W p-value Normally 

Distributed 
W p-value Normally 

Distributed 
The first 70 samples (1-70) 0.5143 2.2x10-16 No 0.9479 2.2x10-16 No 0.7937 2.2x10-16 No 
The last 70 samples (124-
194)  

0.525 2.2x10-16 No 0.9496 2.2x10-16 No 0.8105 2.2x10-16 No 

	
Table 3.7 Shapiro-Wilk test results for 10 randomly selected probes for the non-transformed, log2 transformed and square root transformed datasets. 

 Un-transformed Log2  transformation Square root transformation 
 W p-value Normally 

Distributed 
W p-value Normally 

Distributed 
W p-value Normally 

Distributed 
Probe 24 0.7704 3.886x10-16 No 0.6369 2.2x10-16 No 0.9421  4.929x10-07 No 
Probe 2  0.8414 2.847x10-13 No 0.5119 2.2x10-16 No 0.942  4.883x10-07 No 
Probe 22 0.7613 2.2x10-16 No 0.8579 1.762x10-12 No 0.9548  7.663x10-06 No 
Probe 17 0.9394 2.906x10-07 No 0.7784 7.562x10-16 No 0.9952  0.7955 Yes  
Probe 47 0.9888 0.1301 Yes 0.6097 2.2x10-16 No 0.9694  0.000306 No 
Probe 34  0.8222 4.011x10-14 No 0.7533 2.2x10-16 No 0.9652  9.965x10-05 No 
Probe 13 0.6355  2.2x10-16 No 0.9869 0.0708 Yes 0.8741  1.227x10-11 No 
Probe 43 0.1609 2.2x10-16 No 0.885 4.967x10-11 No 0.4477 2.2x10-16 No 
Probe 29 0.9918 0.3421 Yes 0.5435 2.2x10-16 No 0.9626  5.107x10-05 No 
Probe 26 0.9817 0.01245 No 0.5934 2.2x10-16 No 0.9573  1.362x10-05 No 
Table 3.8 Shapiro-Wilk test results for the three probes identified by NanoStringNorm as having potential quality issues in the three datasets: non-

transformed, log2 transformed and square root transformed. 

 Un-transformed Log2 transformation Square root transformation 
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 W p-value Normally 
Distributed 

W p-value Normally 
Distributed 

W p-value Normally 
Distributed 

KLK4 0.9918 0.3421 Yes 0.5435 2.2x10-16 No 0.9626  5.107x10-05 No 
GAPDH  0.9713 0.0005136 No 0.4575 2.2x10-16 No 0.9635  6.352x10-05 No 
FOLH1 0.9394 2.906x10-07 No 0.7784 7.562x10-16 No 0.9952 0.7955 Yes 
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3.3.5 Housekeeping Probes 

Five probes (ALAS1, B2M, GAPDH, HPRT and TBP) were added to the NanoString 

project to identify housekeeping transcripts (transcripts that remain relatively consistent 

between samples of different clinical category). Housekeeping transcripts are added so 

that comparisons between the samples within an expression analysis may be performed 

accurately. The five transcripts are known housekeeping transcripts in cell mRNA, but 

there is very little known about EV RNA housekeeping transcripts at present.  

There is very little correlation between the six clinical categories (Adv, H, I, L, S, CB) 

within each housekeeper expression profile (Tukey-ANOVA test, Table 3.1, Figure 

3.4); the S clinical group (those with a high PSA but no Bx, n = 4) has the most 

significant differences compared to the other clinical categories; for ALAS1 

comparisons with all other clinical groups and the S group were significant. For HPRT 

two comparisons were significant, one between CB and S and the other between CB 

and Adv. For TBP only one comparison was significant, (between the S group and 

advanced group). However, there were only four samples in the S group and so the 

results of the significance test for this group were treated cautiously. Ignoring 

significant comparisons that included the S group, left only one significant comparison 

(for the HPRT probe between CB and Adv).  
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Figure 3.4 Tukey test comparisons of clinical category for housekeeping probes. When the bar does 
not cross the mid-point of the x-axis then the comparison is significant. The Tukey test takes each of 
the five probes (ALAS1, B2M, GAPDH, HPRT, and TBP) and detects significant expression 
differences between the six clinical categories. The significant comparisons with S (high PSA/negative 
Bx samples) is treated cautiously as there were only n = 4 samples within this group. This leaves only 
one group comparison (CB with Advanced samples in HPRT) that showed any significant difference. 
A good housekeeping probe would be expected to not differ between clinical categories.  
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Figure 3.5 Correlation plots between the housekeeper transcripts: ALAS1, B2M, GAPDH, HPRT, 
and TBP.  

Pearson’s correlation coefficients (R) between housekeeping probes was below 0.5 in 

9/10 comparisons (0.53 being the highest correlation), which suggests they are not well 

correlated (Table 3.9, Figure 3.5). This makes the choice of which housekeeping probes 

to normalise the data with difficult. So, for this reason it was decided to go ahead 

without using housekeeper style normalisation for these data.  
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Table 3.9 Housekeeper probe Pearson's correlation results, looking for correlating 

housekeeping probes. 

R ALAS1 B2M GAPDH HPRT TBP 
ALAS1 - 0.19 

(p = 0.008) 
0.43 
(p = 7.8x10-10) 

0.44  
(p = 1.8x10-10) 

0.53 
(p = 1.6x10-15) 

B2M  - 0.44 
(p = 2.5x10-10) 

0.29 
(p = 5.2x10-05) 

0.28 
(p = 7.7x10-05) 

GAPDH   - 0.4  
(p = 1.1x10-08) 

0.49 
(p = 7.8x10-13) 

HPRT    - 0.32 
(p = 4.8x10-06) 

TBP     - 
 

	
An alternative to using housekeeping transcripts could be to use a similar method to the 

PCA3 test, which uses KLK3 (PSA) to enhance the expression of other probes in the 

data. KLK3 adjusted data was produced but the resulted data showed much weaker, 

plateaued, signal strength and therefore, was not used for any subsequent analysis (data 

not shown).  

3.3.6 Removal of Outliers 

M_19_5 was identified via PCA (Figure 3.6) and NanoStringNorm (Table 3.4) as being 

an outlier that may hinder further analyses. Further investigation into this sample 

highlighted that 44 out of 57 probes for sample M_19_5 failed; in the (positive control 

normalised, log2 transformed) data all 44 probes had a value of “-0.07400058”, 

indicating that they were undetectable. The other samples of this cartridge and scanner 

appear to have worked. Therefore, this sample alone will be removed for all subsequent 

analyses.  



CHAPTER	3:	NANOSTRING	DATA	ANALYSIS	1:	THE	PILOT	STUDY	
	
	

127	
	
	

	
Figure 3.6 PCA plot of all log2 normalised data identifies an outlier samples M_19_5. 

	

3.3.7 Correlating Gene Probes 

Pearson’s correlation (section 2.4.3) between data from all of the probes identifies four 

clusters of probes that showed strong inter-correlation (Figure 3.7, Table 3.10). Cluster 

1: probes for ERG 3’ and TMPRSS2:ERG; Cluster 2: the two probes for the bacteria 

U.urealYticum; Cluster 3: two M.genitalium probes, HOXC6 and ERG 5’ and Cluster 4: 

SLC12A1, SPINK1 and UPK2. 

The data for probes in Clusters 1 and 2 were biologically expected to correlate, as were 

Cluster 3’s two bacterial probes (M.genitalium RplA and RplB: Pearson’s correlation: p 

= 1.23x10-05, R = 0.31). However, Cluster 3’s other correlations were not expected and 

were even more pronounced i) M.genialium RplB and HOXC6 (Pearson’s correlation: p 

< 2.26x10-16, R = 0.88) ii) M.genitalium RplB and ERG 5’ (Pearson’s correlation: p < 

2.26x10-16, R = 0.83) and iii) between HOXC6 and ERG 5’ (Pearson’s correlation: 

p < 2.26x10-16, R = 0.73) (Figure 3.8). Also in Cluster 3, the two M.genitalium probes 

would be expected to have similar signal strength, which is not the case (Figure 3.8). 
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M.genitalium RplA had signal range ~-1 to 4, whilst RplB had a signal range of 0-12 

with most samples above 6. M.genitalium RplB signal strength was actually more 

similar to HOXC6 (~5-16) and ERG3’ (~2-12). 
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Figure 3.7 Heatmap showing correlation between all NanoString probe data. The colours reflect the 

R value of the correlation, where 1 is perfect correlation (represented by yellow) and 0 is 
uncorrelated (represented by red), with orange in between.  
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Table 3.10 Four Clusters of probes that correlate with each other (Pearson's correlation). 

 Correlating probes r values 
 ERG 3’    
TMPRSS2:ERG p < 2.2x10=16, R = 0.74 

 
   

 U.urealYticum dnaK    
U.urealYticum 
RplB 

p < 2.2x10=16, R = 0.56 
 

   

 M.genitalium 
RplB 

HOXC6 ERG 5’  

M.genitalium 
RplA 

p = 1.23x10-05,  
R = 0.31 
 

p = 4.08x10-07,  
R = 0.36 
 

p = 3.65x10-08, 
R = 0.38 

 

M.genitalium 
RplB 

 p < 2.26x10-16, 
R = 0.88 

p < 2.26x10-16, 
R = 0.83 

 

HOXC6   p < 2.26x10-16, 
R = 0.73 

 

 SLC12A1 UPK2   
SPINK1 p < 2.26x10-16, 

R = 0.64 
p < 2.26x10-16,  
R = 0.78 
 

  

SLC12A1  p < 2.26x10-16,  
R = 0.62 

  

	
Needleman-Wunsch alignment of the capture and reporter probes for HOXC6, ERG 5’, 

M.genitalium RplA and M.genitalium RplB gave low percentage alignments and scores 

with each other. These scores were similar to alignments with three randomly selected 

NanoString probes (which were selected for a control comparison) that showed no 

expression correlation; ALAS1, KLK2 and KLK3. BLAT analysis detected some 

homology between M.genitalium RplA reporter probe sequence and non-coding 

sequences on human ChrX, whilst M.genitalium RplB capture probe hits non-coding 

sequence on Chr10. Both HOXC6 and ERG 5’ capture and reporter probes only had 

sequence homologies with their own encoding gene sequences and nowhere else in the 

genome. These analyses suggest that cross-hybridisation is not likely to be the cause of 

their correlation. 
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Figure 3.8 Correlation plots between  data for probes: M.genitalium RplA, M.genitalium RplB, 
HOXC6 and ERG 5'. 

In Cluster 4, one transcript (Spink1) is known to be associated with PCa while the other 

two are tissue specific controls; UPK2 is a bladder specific marker and SLC12A1 is a 

kidney specific marker. It is understandable to see some correlation between the non-

prostate tissue specific markers, as the proportion of these would result from the 

proportion of cells that are not from the prostate. The correlation between UPK2 and 

SLC12A1 data, whilst significant is not strong enough to suggest that they are cross 

hybridising (p < 2.26x10-16, R = 0.62) (Figure 3.9). UPK2 and SPINK1 correlate 

strongly (p < 2.26x10-16, R = 0.78), whereas SLC12A1 correlation with SPINK1 is 

weaker (p < 2.26x10-16, R = 0.64) (Figure 3.9). All three probes have similar signal 

strength also, ranging ~0 to ~15 (Figure 3.9). Needleman-Wunsch	alignment	of	 the	

capture	and	reporter	probes	for	SPINK1,	SLC12A1	and	UPK2	gave	low	percentage	

alignments	and	scores	with	each	other.	These	scores	were	similar	to	those	of	three	

randomly	 selected	 NanoString	 control	 probes	 that	 showed	 no	 expression	

correlation;	ALAS1,	KLK2	and	KLK3.	Furthermore,	BLAT	analysis	detected	no	other	

sites	of	homology	in	the	human	genome	for	SPINK1	probe	sequences,	whilst	both	

UPK2	and	SLC12A1	reporter	probes	had	one	partial	match	each:	CTNNA3	(Chr	10)	

and	FLRT2	(Chr	14),	respectively.	The	capture	probes	for	UPK2	and	SLC12A1	also	

had	no	alternative	sites	of	homology	in	the	human	genome.	This	suggests	that	the	

probes	are	not	cross-hybridising	to	each	others	target	probes.		
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It is possible that some of these probes in the two clusters are cross-hybridising (and 

then it is of course possible that at least one is a true representation for that probe) or 

that there is a clinical reasoning for their correlation. For this reason, I have included all 

of these probes in the subsequent analyses but any identification of their significance in 

clinical comparisons or clustering should be taken with caution. 

	

	
Figure 3.9 Correlation plots for a second group of probes that correlate: SPINK1, SLC12A1 and 
UPK2. All correlate with p < 2.26x10-16 and R < 0.6. 

3.4 Identification of Prostate and Cancer Specific Transcripts and 

DRE relevance 

3.4.1 Kallikrein identification 

NanoString median signals for the KLK2, KLK3 exons 1-2, KLK3 exons 2-3 and KLK4 

probes were at significantly higher levels than those for the control tissue probes for 

blood, kidney and bladder (PTPRC, SLC12A1 and UPK2 respectively) (Mann Whitney 

U test: p < 2.2x10-16 in each case, Table 3.11, Figure 3.10). 
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Table 3.11 Median expression values for kallikreins (prostate specific transcripts) and 

other tissue markers. 

Probe Tissue Log2 Median expression  
KLK2 Prostate 13.49 
KLK3 exons 1-2 Prostate 14.35 
KLK3 exons 2-3 Prostate 14.02 
KLK4 Prostate 15.59 
PTPRC Blood 4.08 
SLC12A1 Kidney 7.24 
UPK2 Bladder 8.15 
	
The kallikreins are prostate specific transcripts205; identification of KLK2, KLK3 and 

KLK4 at higher levels in the blood, kidney and bladder specific markers along with the 

RNA yield of post radical prostatectomy samples (section 3.4.4) suggest that a good 

proportion of the material captured is in fact from the prostate. Additionally, both the 

KLK3 probes (exons 1-2 and exons 2-3) have a strong correlation (p<2.2x10-16, 

R = 0.89, Figure 3.10B).  

	

	
	
	
	
 

Figure 3.10 A) Kallikreins are observed at higher expression levels than the blood, kidney and 
bladder specific markers in the NanoString data. B) Correlation between the two KLK3 probes is 
strong. 

	

3.4.2 TMPRSS2:ERG Identification 

TMPRSS2:ERG fusions, and alleviated ERG 3’ and ERG 5’ expression are found in 

PCa, and this is observed in the Nanostring data where a significant difference is 
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observed between cancer vs CB (Mann Whitney U; TMPRSS2:ERG: p < 2.2x10-16 ; W = 

6179, ERG 3’: p < 2.2x10-16 ; W = 6105, and ERG 5’: p < 2.2x10-16; W = 6253; Error! R

eference source not found.). The density plots for TMPRSS2:ERG	and	ERG3’	have two 

peaks which would be compatible with an on/off pattern of a gene fusion (Error! R

eference source not found.). Approximately 50% of the samples from men with cancer 

have detectable TMPRSS2:ERG fusions which is in agreement with the literature 

(section 1.4.6). The ERG5’ probe, which is not part of the TMPRSS2:ERG fusion 

transcript, does not follow this pattern. The ERG 5’ probe was also identified as having 

potential cross hybridisation (section 3.3.7).  

When dicotomised (using the optimal threshold 4.93 identified by the Brent method), 

TMPRSS2:ERG expression had a significant association with clinical category (chi-

square test, χ2 = 37.82, p = 4.1x10-07). 
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Figure 3.11 A) Density plot for TMPRSS2:ERG expression coloured by clinical category. Generally, 
two peaks are seen suggesting an on/off pattern of expression. B) Density plot for ERG 3' expression 
coloured by clinical category. Again, two bumps are generally seen suggesting an on/off pattern. C) 
Density plot for ERG 5' expression coloured by clinical category. No observable on/off pattern can be 
seen. D) Box plot showing spread of TMPRSS2:ERG expression across clinical categories. Higher 
expression is observed in cancer than benign. E and F] Box plots showing expression of ERG 3’ and 
ERG5’ respectively across clinical categories. Median expression is Higher in cancer than benign.  
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TMPRSS2:ERG fusions were identified by NanoString and nested RT-PCR (section 

2.1.5 and section 2.1.6) (Figure 3.12). PCR was capable of identifying not only T1/E4 

fusion transcripts but also fusions involving other TMPRSS2 and ERG exons (section 

1.4.6), including T1/E5, T1/E6 and T2/E2 amongst others. TMPRSS2:ERG PCR data 

were divided into four groups: i) T1/E4 fusions (“T1/E4”), ii) those with T1/E4 plus 

other fusion types (“T1/E4 plus”), iii) those with only non-T1/E4 products (“other”) and 

iv) those where no fusions were identified (“negative”). 

The minimum curve threshold was calculated from NanoString expression density 

plots. A cut off of 6.78 for the TMPRSS2:ERG probe, showed 97% correlation for the 

PCR negatives (95/98 are classed as negative in both), 79% accuracy for T1/E4 only 

fusions (41/52 are classed as positive), 88% accuracy for T1/E4 plus other fusions 

(21/24 are classed as positive), and 42% accuracy for other fusions (8/19 are classed as 

positive). The NanoString TMPRSS2:ERG probe had been designed to specifically pick 

up the T1/E4 fusion, and so the poor accuracy for detecting other fusions was expected. 

Using the optimal threshold identified by the Brent method for the TMPRSS2:ERG 

probe (4.93), the on/off pattern compared with the PCR results, showed an improved 

and significant association (chi-square test χ2 = 131.6, p < 2.2x10-16).  

The ERG3’ NanoString signal correlates well to the TMPRSS2:ERG PCR positive 

samples for both T1/E4 fusion and non-T1/E4 PCR products.  However there are a 

proportion of the PCR negative samples that also have high ERG3’ NanoString signals; 

this would appear to indicate that ERG3’ has been overexpressed via an alternate 

mechanism (section 1.4.6).  
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Figure 3.12 Detection of TMPRSS2:ERG by NanoString probes for TMPRSS2:ERG (upper) and 
ERG3’ (lower) versus PCR detection of TMPRSS2:ERG transcripts. T1/E4 indicates a TMPRSS2 
ex1/ERGex4 fusion transcript, ‘Other’ indicates a different fusion transcript, ‘Plus’ indicates a 
mixture of T1/E4 and other transcripts. The dotted lines are the optimal thresholds (4.93 for 
TMPRSS2:ERG and 7.28 for ERG3’) calculated using the Brent method, similarly the solid line is the 
min curve of a density plot (6.78 and 4.58 for TMPRSS2:ERG and ERG3’ respectively) containing all 
of the TMPRSS2:ERG and ERG data. 

	
	  

●

●

●

●
●

●
●

●

●
●

●

●
●

● ●

●

● ●

●
●

●
●●

●

●

●●

●
●

●
●

●●

●

●
● ●

●

●

●

● ●

●

●

●

●

●
●
●

●

●

●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●
●●

●●

●●

●
●

●

●

●

●

●

●

●

●
●● ●

●

●

●●

●

●

●

●

●

●
●

●0

5

10

15

Negative Other T1/E4 T1/E4 plus
PCR

N
an

os
tr

in
g

Lo
g2

(T
M

PR
SS

2:
ER

G
)

PCR
● Negative

Other
T1/E4
T1/E4 plus

TMPRSS2:ERG probe

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●0

5

10

15

Negative Other T1/E4 T1/E4 plus
PCR

N
an

os
tr

in
g

Lo
g2

(E
R

G
 3

')

PCR
● Negative

Other
T1/E4
T1/E4 plus

ERG 3 Prime probe



CHAPTER	3:	NANOSTRING	DATA	ANALYSIS	1:	THE	PILOT	STUDY	
	
	

138	
	
	

These results suggest that a) NanoString is a sensitive and flexible method for detecting 

transcripts and b) that a proportion of the genetic material identified is coming from 

prostate cancer or HG-PIN.  

3.4.3 PCA3 Test 

The PCA3 test (section 1.4.2) is the ratio of PCA3 expression with KLK3 expression in 

whole urine, and is approved clinically to predict whether a second biopsy will be 

cancer positive after an initial negative biopsy. The PCA3 score calculated from the 

NanoString data shows a significantly increased expression in PCa compared with non-

PCa samples  (Mann-Whitney U test: p < 2.2x10-16, Figure 3.13), but was no evidence 

for a significantly difference between different clinical categories of PCa (p < 0.05; 

Kruskal-Wallis rank sum). 

	

	
	

Figure 3.13 Nanostring PCA3 score calculation (PCA3 divided by KLK3 multiplied by 1000 as per the 
usual PCA3 score (section 1.4.2). The PCA3 score is significantly increased in PCa samples compared 
to those with no clinical evidence of PCa (CB). However, there is no significant difference between 
the intra-clinical categories of PCa. The uPM3TM assay has shown to be able to detect PCa from non-
PCa samples. The NanoString probes have shown to follow this same pattern.  

3.4.4 RNA yield, clinical group and DRE 

Digital rectal examination (DRE, section 1.3.3) has proven to increase the efficacy of 

the PCA3 test (section 1.4.2). It is hypothesised that digital compression on the prostate 

encourages secreted biomarkers in the gland to flow towards the urethra.  Four patient 
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pairs for pre- and post-DRE urine samples were added to NanoString to see how the 

transcript levels varied within patients (Figure 3.15).  First-void urine post-DRE had 

higher median RNA yields than non-DRE samples (Figure 3.14). RNA yield is 

significantly higher in post-DRE collection of localised PCa samples compared to pre-

DRE samples (p = 0.04, Mann Whitney U test) and prostatectomy samples (p = 0.01, 

Mann Whitney U test). As seen previously there were also increased numbers of 

prostate derived transcripts (section 3.4.1) and PCa derived transcripts (section 3.4.2) on 

post-DRE samples. Overall, the post-DRE samples had 0.178 log2 fold increased 

expression of all transcripts compared to the pre-DRE collected samples (p = 1.854x10-

10, paired Man Whitney U test). The median of the sample pairs individually varied with 

the pre- or post-DRE, however, the post-DRE sample always showed a lower IQR 

(Figure 3.15).  

The urine taken from three patients who had previously undergone radical 

prostatectomy (post-RP) had very low amounts of RNA collected (0.8-2ng) from their 

urine samples. This suggests that the majority of the EV RNA is likely to have 

originated in the prostate (Figure 3.14). 

The median RNA yields for advanced PCa patients are not significantly lower than for 

localised-PCa patients (p < 0.05, Mann Whitney U test, Figure 3.14). The RNA yields 

for benign samples are observably (Figure 3.14) and significantly lower compared to 

localised PCa patient samples (p = 0.02, Mann Whitney U test). 
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Figure 3.14 Most of the transcripts detected are from the prostate; DRE boosts transcript level 
detection and post radical prostatectomy patients offer very low signals in their samples. Samples 
n = 389. The advanced (A), high-risk (H), intermediate risk (I), low-risk (L) and no evidence of 
clinical PCa (CB) samples were taken post-DRE. Pre-DRE and post-RP urine samples have been 
taken without DRE.  

	
	
	
	
	
	

	
Figure 3.15 The NanoString probe expression distribution of four patient paired samples (pre- and 
post-DRE). 
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3.5 Clustering 

3.5.1 Principal Component Analysis (PCA) and k-means Clustering  

PCA (section 2.5.1) can be utilised to visualise groups in the data; colouring data by 

clinical category can allow clusters of biological interest to be identified (Figure 

3.16A). PCA analysis identified two outlying clusters, A and B, (Figure 3.16). Cluster 

A had 17 samples consisting mostly of advanced and higher risk samples (6 advanced, 9 

high-risk, 1 intermediate risk and 1 abnormal sample). In contrast Cluster B consisted of 

6 samples of varying clinical groups (1 advanced, 1 high risk, 2 intermediate risk, 1 

abnormal and 1 CB).  

	
Figure 3.16 PCA plots coloured by A) clinical category and B) k-means to identify cluster cut-offs. 

Cluster A shown by red circle. Cluster B shown by orange circle. 

	

3.5.2 Hierarchical Clustering 

Hierarchical clustering was performed with an agglomerative approach (section 2.5.2). 

This showed that samples in Clusters A and B belonged to separate trees to the majority 

of other samples (Figure 3.17A). Fifteen of the samples belonging to Cluster A form a 

separate tree, whilst 5 of the 6 samples belonging to Cluster B also form a separate tree 

with 2 other samples. There was one significant cluster identified by Pvclust (section 
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2.5.2.1), which contains the bulk of the samples, but does not include the majority of 

Cluster A or Cluster B samples (Figure 3.17B).  
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3.5.3 Cluster A 

Cluster A (identified by PCA and k-means clustering (Section 3.5.1) and supported by 

hierarchical clustering (Section 3.5.2) is predominantly made up by advanced and high-

risk samples (6/17 and 9/17, respectively). It has significant over-representation of 

advanced and high-risk samples (Table 3.12) and there are twenty-three significant 

differentially expressed transcripts between cluster A and all other samples (Table 

3.13). Analysis of the differential expressed transcript list with DAVID (section 2.7.1) 

identified PCa as an over represented KEGG pathway. This was due to the significantly 

lowered expression of AR and KLK3 in Cluster A, however the over-representation was 

not significant at a 95% confidence level (p = 8.5x10-02). Ten Gene Ontology (GO) 

biological processes were associated with the Cluster A defining transcripts (Table 

3.14).  As expected due to probe selection for involvement in PCa these biological 

processes were associated with cancer. However, different GO biological processes 

were identified using all of the transcripts applied to NanoString (Table 3.15). Thus 

suggesting there is a difference in biological processes involved specifically within 

cluster A.  

RNA amount (ng) extracted is significantly lower in Cluster A compared to all other 

samples (not including Cluster B), (Table 3.12). Cluster A also has a significantly lower 

amplification yield, as well as a lower median probe value (Table 3.12). The cartridge 

number is also significant between members of Cluster A (Table 3.12). However, 

Scanner ID is not significant (Table 3.12).  

Further investigation into the cartridges involved, showed there was no significant 

differences between the median probe values of these cartridges compared to others, or 

between the Cluster A samples and non-Cluster A samples on these cartridges (Table 

3.12). This suggests that the cartridge is not a factor to why Cluster A may be 

presenting itself. However, RNA extraction amount, amplification yield and median 

probe value all seem important in the clustering. Especially as 21/23 significant 
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differentially expressed transcripts between Cluster A and all other samples (Table 

3.13) have lower expression in Cluster A.  

Lower RNA yields are observed in a fraction of advanced patients’ samples, This is 

hypothesised to be due to a reduction in tumour microvesicles being harvested in the 

urine due to: a) efficiency of DRE:  the surface of a normal prostate can be depressed by 

1cm, however prostates containing advanced/higher grade tumours are commonly firm 

and not depressible. Samples from patients with advanced tumours are therefore more 

akin to non-DRE samples. b) Advanced tumours can also have fused glands, poorly 

formed lumen, and blind-ended lumen that no longer drain into the urethra206, 207. The 

position of the advanced tumour within the prostate may also block access of tumour 

biomarkers from less advanced PCa foci from entering the urine. Thus, the percentage 

of the tumour that is advanced and its positioning within the prostate can affect the 

amount of RNA extracted, and the amounts of PCa associated transcripts identified.  
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Table 3.12 Testing for Cluster A association to clinical and technical variables. 

Variable Test and metric p - value 
Clinical Category Chi square: χ	=	20.29 p = 6.67x10-06 
Amount RNA extracted (ng) Mann-Whitney U test: R = 

2443 
p = 4.9x10-07 

Amplification yield (μg) Mann-Whitney U test: R = 
2410 

p = 3.1x10-06 

Median probe value Mann-Whitney U test: 
R = 1904 

p = 0.02 

Cartridge Chi-square test: χ2 = 31.9  p = 0.01 
Scanner ID Chi-square test: χ2 = 0.03  p = 0.9 
Median probe value of 
Cluster A samples on 
cartridge 13 (n = 4) 
compared to other samples 
on cartridge 13 (n = 8) 

Mann-Whitney U test: 
R = 16 

p = 1 

Median probe value of 
samples on cartridge 13 (n 
= 12) compared to samples 
on all other cartridges (n = 
168) 

Mann-Whitney U test: 
R = 1237 

p = 0.3 

Median probe value of 
Cluster A samples on 
cartridge 15 (n = 3) 
compared to other samples 
on cartridge 15 (n = 9) 

Mann-Whitney U test: 
R = 4 

p = 0.1 

Median probe value of 
samples on cartridge 15 (n 
= 12) compared to samples 
on all other cartridges (n = 
168) 

Mann-Whitney U test: 
R = 1074 

p = 0.8 

	
It should also be remembered that the vast majority of the NanoString probes were 

selected due to overexpression in tumour tissue. Thus, it is significant that the 

expression patterns for Cluster A are more than a general loss of tumour biomarkers as 

my analyses mark them as a group distinct from the other prostate samples. The only 

two probes not showing a significant up-regulation in the Cluster A samples are the 

kidney and bladder controls (Table 3.13).  

It is hypothesised that the factors identified as technical issues (RNA amount extracted, 

amplification yield and median probe value) associated with Cluster A are due to these 

biological reasons and thus it is important to keep Cluster A’s samples within future 

analyses.  
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Table 3.13 Transcripts significantly associated (p < 0.05) with Cluster A via Mann-Whitney 

U test after using Hochberg multiple testing correction. 

Transcript p-value Adjusted p-value Log2 Fold Change 
DLX1 6.6x10-04 2.3x10-02 -1.504 
Timp4 1.2x10-04 4.7x10-03 -1.292 
AR exon 9 2.3x10-06 3.2x10-04 -1.263 
MMP26 7.4x10-06 3.2x10-04 -1,126 
CLU 6.4x10-05 2.6x10-03 -1.017 
UPK2 5.1x10-10 2.8x10-08 0.798 
SLC12A1 2.5x10-09 1.4x10-07 0.736 
PSGR 2.6x10-08 1.3x10-06 -0.555 
CDC20 3x10-04 1.1x10-02 -0.543 
SPINK1 1.5x10-10 8.3x10-09 -0.497 
GOLM1 1.4x10-05 6x10-04 -0.485 
PCA3 1.8x10-04 6.9x10-03 -0.456 
SERPINB5 3x10-04 1.1x10-02 -0.287 
KLK3 exons 2-3 4.2x10-10 2.4x10-08 -0.251 
KLK3 exons 1-2 4.9x10-08 2.4x10-06 -0.235 
FOLH1 6x10-08 2.9x10-06 -0.214 
B2M 1.1x10-04 4.2x0-03 -0.207 
AR exons 4-8 7.9x10-07 3.6x10-05 -0.186 
STEAP2 1.2x10-08 6.2x10-07 -0.183 
KLK2 1.2x10-08 6.2x10-07 -0.174 
KLK4 6.1x10-09 3.2x10-07 -0.132 
STEAP4 8.5x10-06 3.6x10-04 -0.129 
PPAP2A 3.5x10-07 1.7x10-05 -0.128 
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Table 3.14 Gene Ontology (GO) over-represented biological processes in Cluster A’s 

significantly associated transcript list via DAVID. 

Term Count 
(%)  

Transcripts  p - value Adjusted p - 
value 

Proteolysis 7 (3.9) FOLH1, KLK2, KLK3, 
KLK4, CLU, MMP26, 
CDC20 

8.9x10-04 2.5x10-01 

Iron ion transport 2 (1.1) STEAP4, STEAP2 3.4x10-02 1 
Androgen receptor 
signalling pathway 

2 (1.1) AR, PPAP2A 4.2x10-02 9.9x10-01 

Response to 
organic substance 

4 (2.2) AR, TIMP4, STEAP2, B2M 5.0x10-02 9.8x10-01 

Steroid hormone 
receptor signalling 
pathway 

2 (1.1) AR, PPAP2A 6.6x10-02 9.9x10-01 

Response to 
hormone stimulus 

3 (1.7) AR, TIMP4, STEAP2 6.9x10-02 9.8x10-01 

Transition metal 
ion transport 

2 (1.1) STEAP4, STEAP2 8.1x10-02 9.8x10-01 

Response to 
endogenous 
stimulus 

3 (1.7) AR, TIMP4, STEAP2 
 

8.1x10-02 9.7x10-01 

Intracellular 
receptor-mediated 
signalling pathway 

2 (1.1) AR, PPAP2A 
 

8.5x10-02 9.6x10-01 

Response to 
molecule of 
bacterial origin 

2 (1.1) TIMP4, B2M 9.7x10-02 9.6x10-01 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Table 3.15 Gene Ontology (GO) over-represented biological processes in all of the transcripts used on 
NanoString via DAVID. 

Term Count 
(%)  

Transcripts  p - value Adjusted p - 
value 
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Proteolysis 7 (0.1) ANPEP, HPN, KLK2, 
KLK3, KLK4, MMP26, 
TMPRSS2 

9.6x10-04 3.5x10-01 

Iron ion transport 3 (0) STEAP2, STEAP4, B2M 2.2x10-03 3.9x10-01 
Negative 
regulation of 
neuron 
apoptotic 
process 

4 (0.1) BRAF, DLX1, MDK, TERT 3.5x10-03 4.1x10-01 

Ferric iron 
import into cell 

2 (0) STEAP2, STEAP4 1.2x10-02 7.3x10-01 

Cell cycle 4 (0.1) AURKA, CDC20, CDKN3, 
FOXM1 

1.4x10-02 7.1x10-01 

Copper ion 
import 

2 (0) STEAP2, STEAP4 1.6x10-02 7x10-01 

Positive 
regulation of 
gene expression 

4 (0.1) BRAF, AR, AGR2, HPN 2.3x10-02 7.7x10-01 

Positive 
regulation of 
stem cell 
proliferation  

2 (0) PTPRC, TERT 
 

2.8x10-02 7.9x10-01 

Positive 
regulation of 
transcription, 
DNA-templated 

5 (0.1) TBP, AR, CAMKK2, 
FOXM1, MDK 

3.1x10-02 7.9x10-01 

Response to 
cadmium ion  

2 (0) B2M, TERT 5.7x10-02 9.2x10-01 

Negative 
regulation of 
endothelial cell 
apoptotic 
process 

2 (0) BRAF, TERT 6.3x10-02 9.3x10-01 

Embryonic 
skeletal system 
development  

2 (0) DLX1, HOXC6 6.7x10-02 9.2x10-01 

Protein 
phosphorylation 

4 (0.1) BRAF, ERG, AURKA, 
CAMKK2 

8.9x10-02 9.6x10-01 

Cell 
differentiation  

4 (0.1) ERG, ANPEP, AGR2, MDK 9.1x10-02 9.5x10-01 

Response to 
peptide 
hormone 

2 (0) BRAF, Timp4 9.7x10-02 9.5x10-01 
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Figure 3.17 Hierarchical clustering provides further evidence for Cluster A and B identification. A) Samples belonging to Cluster A and B are shown in red and yellow 
boxes, respectively. B) Clusters with significant AU p-values are encapsulated within a red box. Both Cluster A and B are not included within this main. 
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3.5.4 Cluster B 

Cluster B (identified by PCA and k-means clustering section 3.5.1 and supported by 

hierarchical clustering section 3.5.2) contains six samples and are not associated with 

clinical factors (Chi square: χ2 = 9.7, p = 0.08), suggesting that Cluster B could be 

associated with technical artefacts: The amount of RNA extracted was lower in Cluster 

B (Mann-Whitney U test: R = 811, p = 0.008); the total amount of cDNA from 

amplification was also lower (Mann-Whitney U test: R = 808, p = 0.01) and thus was 

the median probe value (Mann-Whitney U test: R  = 14196, p < 2.2x10-16). Cartridge 

and Scanner ID were both not significantly associated with Cluster B (Chi square: χ2 = 

0.67, p = 0.88, and χ2 = 2.67, p = 0.1, respectively). It is therefore, unlikely that there is 

biological reasoning to this cluster. 

	
3.5.5 Latent Process Decomposition (LPD) 

LPD (section 2.5.5) was performed on 187 of the samples (with M_19_5, LNCAP, and 

the five samples in cluster B removed) and 51 of the transcripts (with FOXM1 and the 

six bacterial genes removed) to identify the optimal number of groups and an assign a 

probability of membership for each group for each sample.  

The modelling and estimation stage suggested that there were four clusters, with a 

sigma parameter of -1. LPD analysis was performed 100 times with these parameters 

and samples were associated with a probability to each group (Table 3.16, Figure 

3.18A, Figure 3.18B). LPD 1 consisted mainly of high-risk samples (χ = 16.5, p = 

0.01), whilst LPD 4 consisted mostly of advanced and high-risk samples (χ = 29.44, p = 

5x10-05). Both LPD 2 and 3 contain a mixed representation of clinical category. LPD 

group 2 consists mostly of the intermediate risk samples (χ = 29.44, p = 5x10-05), it 

holds 66% of the intermediate and low-risk samples. LPD group 3 holds 57% of the 
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benign samples though they are not significantly represented within the group (χ = 

11.82, p = 0.07).  

Clinical category is significantly associated with LPD process, (χ = 65.47, p = 

2.83x10-08, Table 3.16). PSA level is significantly associated with LPD process, with 

higher values in LPD groups 1 and 4 (ANOVA, p = 7.53x10-06, Figure 3.18C), as well 

as Gleason score (χ = 85.38 and p = 9.98 x10-10); a higher Gleason score appears to be 

associated with LPD process 4, whilst processes 2 and 3 have much lower (Figure 

3.18D). Age is also significantly associated with LPD process (ANOVA, p = 0.002), 

with a higher age present in LPD process 4 (Figure 3.18E).  

Alternative analysis was performed using NbClust (section 2.5.3), which identified 

three clusters as the optimal number of clusters in the data, and k-means with PCA 

(section 2.5.3) was used to identify which samples belonged to which cluster (Figure 

3.18E). These clusters showed high overlap with the four clusters identified by LPD 

(Figure 3.18F), providing further evidence that this clustering is reliable. 

 

Table 3.16 Composition of sample type in each LPD cluster (Cluster B samples and 

bacterial probes removed). Chi-square test: p = 2.8x10-08, X = 65.47. 

 Total Number of 
Samples 

Number of 
aggressive 
samples (A 
and H risk) 

Number of 
lower-risk 
cancer 
samples (L 
and I risk) 

Number of 
Abnormal 
samples (S) 

Number of 
CB samples  

LPD1 8 6 1 0 1 
LPD2 79 20 53 0 6 
LPD3 55 14 18 2 21 
LPD4 17 13 1 1 2  
LPD NA 26 12 7 0 7 
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Figure 3.18 A) LPD group bar charts B,C,D,E) Clinical distribution, PSA, Gleason score and age 
without LPD group, respectively. F,G) PCA plots for k-means and LPD clustering comparison. 
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Table 3.17 Transcripts significantly different between each LPD group members and those that are not. These are the transcripts that define each LPD 

cluster. 

LPD Process 1  LPD Process 2  LPD Process 3  LPD Process 4 
Gene p-

value 
Fold 
Change 

 Gene p-value Fold 
Change 

 Gene p-value Fold 
Change 

 Gene p-value Fold 
Change 

HOXC6 0.000
3 

0.29  KLK3_PSA_exons
2_3_ 

9.71E-
14 

0.08  TMPRSS2_
ERG 

4.40E-
07 

-1.19  KLK2 4.60E-
09 

-0.31 

AMACR 0.001 0.27  KLK3_PSA_exons
1_2_ 

5.49E-
11 

0.11  TDRD 9.02E-
07 

-0.83  KLK3_PSA_exon
s2_3_ 

4.65E-
09 

-0.25 

ERG_5pri
me 

0.002 0.44  STEAP2 7.09E-
11 

0.06  ERG_5pri
me 

9.30E-
07 

-0.28  KLK4 8.32E-
09 

-0.14 

NAALADL
2 

0.005 0.12  CAMKK2 6.02E-
09 

0.15  HOXC6 2.37E-
05 

-0.15  STEAP2 1.13E-
08 

-0.19 

TDRD 0.012 0.86  MMP26 4.07E-
08 

0.69  AMACR 2.59E-
05 

-0.14  PPAP2A 4.37E-
08 

-0.15 

PECI 0.012 0.12  KLK4 2.28E-
07 

0.05  ERG_3pri
me 

8.38E-
05 

-1.28  FOLH1_PSMA 9.65E-
07 

-0.21 

FOLH1_P
SMA 

0.016 0.14  GAPDH 2.94E-
07 

0.03  HOXC4 7.48E-
04 

-0.70  ARexons4_8 1.55E-
06 

-0.19 

IMPDH2 0.018 0.10  FOLH1_PSMA 3.17E-
07 

0.09  CAMKK2 2.28E-
03 

-0.09  STEAP4 2.82E-
06 

-0.20 

DLX1 0.020 0.91  OR52A2_PSGR 2.03E-
06 

0.13  DLX1 5.33E-
03 

-1.21  OR52A2_PSGR 2.97E-
06 

-0.48 

    ARexons4_8 3.70E-
06 

0.07  GAPDH 5.33E-
03 

-0.03  KLK3_PSA_exon
s1_2_ 

4.03E-
06 

-0.24 

    KLK2 6.96E-
06 

0.07  CDKN3 0.007 -0.42  MMP26 3.23E-
05 

-1.22 

    CDC20 1.05E-
05 

0.50  PECI 0.009 -0.04  PCA3 4.85E-
05 

-0.57 

    TBP 3.98E-
05 

0.08  MMP26 0.010 -0.46  AR_truncation_e
xon 

5.61E-
05 

-1.38 

    CLU 5.89E- 0.42  TERT 0.010 -0.17  UPK2 1.62E- 0.75 
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05 04 
    SERPINB5_Maspi

n 
7.52E-
05 

0.18  HPN 0.042 -0.08  SLC12A1 2.10E-
04 

0.67 

    GOLM1 8.48E-
05 

0.16  BRAF 0.048 -0.03  SPINK1 3.20E-
04 

0.44 

    DLX1 1.89E-
04 

1.24      HPRT 3.25E-
04 

-0.16 

    BRAF 1.96E-
04 

0.06      GOLM1 4.14E-
04 

-0.65 

    TERT 2.09E-
04 

0.25      Timp4 5.49E-
04 

-1.56 

    TDRD 2.57E-
04 

0.61      CLU 6.21E-
04 

-1.07 

    TMPRSS2_ERG 4.27E-
04 

1.11      CDC20 1.20E-
03 

-0.85 

    ERG_3prime 6.23E-
04 

0.83      DLX1 6.39E-
03 

-1.58 

    PCA3 6.23E-
04 

0.16      B2M 0.009 -0.09 

    AR_truncation_ex
on 

1.71E-
03 

0.71      IMPDH2 0.010 -0.10 

    MDK 0.003 0.05      AGR2 0.021 -0.48 
    MKi67 0.003 0.72      MDK 0.048 -0.21 
    B2M 0.003 0.08      NAALADL2 0.048 -0.10 
    PPAP2A 0.006 0.04         
    Timp4 0.006 0.21         
    UPK2 0.011 -0.23         
    OGT 0.011 0.04         
    CDKN3 0.012 0.35         
    SPINK1 0.012 -0.11         
    ERG_5prime 0.016 0.17         
    AURKA 0.036 0.15         
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3.6 Significantly varying genes 

Expression distribution of each transcript was fairly even between clinical categories for most 

probes (Figure 3.19), with only 16 of the 57 probes found to be significantly different between the 

clinical categories (Kruskal-Wallis rank sum test, adjusted p < 0.05, Table 3.18).  

Mann Whitney U tests (section 2.4.1) were applied to three separate data comparisons; i) cancer 

vs. non-cancer, ii) aggressive cancer (Advanced and high risk) vs. Non-aggressive cancer (I, L) 

and iii) the two extremes (Advanced vs. CB), (Table 3.3, page115). Nine probes were significantly 

differentially expressed (p < 0.05, Mann-Whitney U test) between cancer and non-cancer samples 

after multiple testing correction via the Hochberg method (Table 3.19). All of these transcripts 

were up-regulated in the cancer (Figure 3.20) and included many well established PCa-associated 

transcripts such as ERG, TMPRSS2:ERG and PCA3. 

 

Table 3.18 Kruskal-Wallis identified 16 probes that significantly differ across clinical category. 

Probe p-value Adjusted p-value χ  
SPINK1 3.9x10-09 2.2x10-07 47.79 
SLC12A1 2.5x10-08 1.4 x10-06 43.78 
KLK3 exons 2-3 1.8x10-06 9.9x10-05 34.60 
KLK3 exons 1-2 2.3x10-06 1.3x10-04 34.04 
TMPRSS2:ERG 1.7x10-05 8.8 x10-04 29.69 
UPK2 1.7x10-05 8.8 x10-04 29.70 
ERG 3’ 2.2x10-05 0.001 29.09 
STEAP2 2.9x10-05 0.001 28.52 
DLX1 3.1x10-05 0.002 28.35 
KLK4 3.6x10-05 0.002 28.00 
HPN 8.5x10-05 0.004 26.12 
ERG 5’ 1x10-04 0.005 25.73 
PSGR 1.3x10-04 0.01 25.08 
PCA3 3.6x10-04 0.02 22.84 
KLK2 4.1x10-04 0.02 22.56 
CAMKK2 6.5x10-04 0.03 21.49 
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Table 3.19 Transcripts differentially expressed between cancer (A, H, I, L) and non-cancer samples 

(Mann Whitney U test). 

Transcript p - value Adjusted p - value Log2 Fold Change 
DLX1 3.2 x10-06 0.0002 1.33 
ERG 3’ 4.25 x10-05 0.002 1.25 
TMPRSS2:ERG 1.19 x10-04 0.006 0.93 
HOXC4 2.6 x10-04 0.013 0.635 
ERG 5’ 1.73 x10-05 0.001 0.281 
HOXC6 4.97 x10-05 0.002 0.242 
PCA3 2.02 x10-04 0.01 0.225 
M.genitalium RplB 4.48x10-04 0.022 0.144 
HPN 9.02x10-06 0.0005 0.127 
	
Eleven transcripts were significantly differentially expressed between aggressive and non-

aggressive cancers (p < 0.05, Mann-Whitney U test, Table 3.20). Three of these transcripts were 

up regulated in the aggressive cancer; SLC12A1, UPK2 and SPINK1 (Figure 3.21). SLC12A1 and 

UPK2 are tissue specific controls for kidney and bladder, respectively.  Advanced tumours often 

become more solidified and firm which might cause the release of cells and EVs from these 

prostates to be inhibited. This would cause a relative increase in detection of transcripts from other 

sources such as the kidney and bladder. Note that SLC12A1, UPK2 and SPINK1 were heavily 

correlated across all of the samples (section 3.3.7) and so this result should be taken with some 

caution. Eight transcripts were down-regulated in the aggressive cancers, again I hypothesise that 

this is due to a decreased level of cells and EVs emerging from the prostate and it’s cancer via 

DRE, as these transcripts are mostly either prostate or cancer specific. 
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Figure 3.19 Violin plots showing distribution of each probe across clinical category. 

AGR2 ALAS1 AMACR ANPEP AR_truncation_exon ARexons4_8

AURKA B2M BRAF CAMKK2 CDC20 CDKN3

CLU DLX1 ERG_3prime ERG_5prime FOLH1 FOXM1

GAPDH GOLM1 HOXC4 HOXC6 HPN HPRT

IMPDH2 KLK2 KLK3exons1_2 KLK3exons2_3 KLK4 M.genitalium_rplA

M.genitalium_rplB M.hYorhinis_rplA M.hYorhinis_rpoB MDK MKi67 MMP26

NAALADL2 OGT OR52A2_PSGR PCA3 PECI PPAP2A

PTPRC SERPINB5 SLC12A1 SPINK1 STEAP2 STEAP4

SULT1A1 TBP TDRD TERT TMPRSS2_ERG Timp4

U.urealYticum_dnaK U.urealYticum_rplB UPK2

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

A H I L CB A H I L CB A H I L CB
category_at_initial_urine_collection

va
lu

e

Clinical category
A

H

I

L

CB



	 CHAPTER	3	–	NANOSTRING	DATA	ANALYSIS	1:		The	Pilot	Study	 	

158	
	
	

	
Figure 3.20 Boxplots showing the expression levels in significantly differentially expressed genes between cancer 
and non-cancer samples found by Mann Whitney U test. 

	
Six transcripts were significantly differentially expressed between Advanced and CB (p < 0.05, 

Mann-Whitney U test, after multiple testing correction, Table 3.21). SLC12A1 and SPINK1 are up-

regulated as has been previously discussed. The other four transcripts were down-regulated in the 

advanced samples, and again these include prostate specific transcripts such as KLK4 and cancer 

related transcripts such as PPAP2A and STEAP2 (Figure 3.22). 
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Table 3.20 Transcripts differentially expressed between aggressive cancer and non-aggressive samples 

(Mann Whitney U test). 

Transcript p - value Adjusted p - value Log2 Fold Change 
SLC12A1 2.86x10-08 1.6x10-06 0.59 
UPK2 2.29x10-07 1.26x10-05 0.52 
SPINK1 3.94x10-10 2.25x10-08 0.29 
SERPINB5 2.78x10-04 1.36X10-02 -0.13 
CAMKK2 4.44x10-04 2.13x10-02 -0.13 
PSGR 9.55x10-05 4.77x10-03 -0.11 
KLK3 exons 1-2 6.18x10-07 3.34x10-05 -0.1 
KLK3 exons 2-3 9.15x10-07 4.85x10-05 -0.07 
KLK2 4.77x10-04 2.24x10-02 -0.05 
STEAP2 3.38x10-05 1.76x10-03 -0.05 
KLK4 8.02x10-05 4.09x10-03 -0.04 
	
		

Figure 3.21 Boxplots showing differential expression between aggressive cancer and not aggressive PCa samples 
for those deemed significant by Mann Whitney U test. 
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Table 3.21 differentially expressed transcripts when comparing advanced samples with benign (no 

evidence of cancer) samples (Mann Whitney U test). 

Transcript p - value Adjusted p - value Log2 Fold Change 
SLC12A1 6.24x10-06 3.49x10-04 0.68 
SPINK1 1.08x10-06 6.14x10-05 0.35 
HPRT 1.29x10-04 7.1x10-03 -0.17 
KLK4 1.53x10-04 8.29x10-03 -0.12 
STEAP2 6.52x10-04 3.39x10-02 -0.09 
PPAP2A 5.6x10-04 2.97x10-02 -0.07 
	

	
Figure 3.22 Boxplots showing differential expression between advanced cancer and non-cancer samples for those 
deemed significant via Mann Whitney U testing. 

	
3.7 Low-risk, intermediate-risk and high-risk trend 

Five probes showed significant increasing or decreasing expression trend with increasing 

D’Amico risk category (Spearman’s correlation, p < 0.05 after multiple testing correction, Table 

3.22). Three of these probes were identified to be highly correlated in general (SPINK1, UPK2 and 
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in KLK3 with increasing cancer risk has been reported in previous prostate tissue studies (section 

1.4.1) and urine. 

	
Table 3.22 Spearman's correlation results comparing expression with ordered clinical categories: 

Low-, Intermediate- and High-risk. 

Transcript p – value  Adjusted p - value R 
SPINK1 1.27x10-06 7.24x10-05 0.41 
UPK2 2.74x10-05 1.53x10-03 0.36 
SLC12A1 1.08x10-04 5.96x10-03 0.33 
KLK3 exons 2-3 1.12x10-04 6.04x10-03 -0.33 
KLK3 exons 1-2 1.14x10-04 6.04x10-03 -0.33 

	
3.8 Clinical Prediction models 

To test the ability of NanoString data derived from urine EVs to predict the presence of cancer 

and/or it’s aggressiveness various models were produced to distinguish between a) PCa and benign 

samples, b) aggressive PCa and non-aggressive PCa and c) advanced and benign samples (Table 

3.3). All samples were used in the training set due to the pilot nature of this work. The modelling 

techniques applied here are logistic regression models using step wise variable selection (section 

2.6.4), Lasso logistic regression models for shrinkage and variable selection (section 2.6.2), and 

random forest (section 2.6.3). 

	
3.8.1 Logistic regression models using step wise variable selection 

The optimal output cancer vs. non-cancer model contained 33 transcripts and had an AIC score of 68 

(Table 3.23), the optimal aggressive cancer vs. non-aggressive cancer model contained 37 transcripts 

and had an AIC score of 76 ( 

 

Table 3.25), and the optimal model for distinguishing Advanced cancer from CB contained 9 

transcripts and had an AIC score of 18 (Table 3.27). In each model the sample category was 

predicted with 100% sensitivity, 100% specificity, and 100% PPV (Table 3.24, Table 3.26, Table 

3.28). This may mean the models are over-fitting the data and caution should be taken.  
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Table 3.23 Transcripts in the Step derived model for comparing cancer to non-cancer. 

Transcript p - value Coefficient 
CDKN3 0.97 374.2 
FOLH1 0.97 -838.3 
FOXM1 0.97 138.8 
HPN 0.97 743.9 
IMPDH2 0.97 691.2 
KLK3 exons 2-3 0.97 1844 
M.genitalium RplB 0.97 -491.5 
NAALADL2 0.97 -549.9 
AURKA 0.98 -236.7 
BRAF 0.98 562.1 
KLK2 0.98 -1534.6 
M.hyorhinis RplA 0.98 -1415.5 
PSGR 0.98 364.4 
SULT1A1 0.98 686 
TMPRSS2:ERG 0.98 283.5 
ANPEP 0.99 876.6 
AR truncation exon 0.99 -232.3 
AR exons 4-8 0.99 -462.4 
B2M 0.99 1219.1 
CAMKK2 0.99 -432.1 
DLX1 0.99 220.4 
ERG 3' 0.99 240.6 
ERG 5' 0.99 985.7 
KLK4 0.99 -1187.3 
MDK 0.99 -1265.6 
MMP26 0.99 -730 
OGT 0.99 -1185.7 
PCA3 0.99 399.8 
SERPINB5 0.99 -234.1 
TBP 0.99 497 
U.urealyticum dnaK 0.99 -919.6 
U.urealyticum RplB 0.99 837.9 
UPK2 0.99 -132.5 

	
Table 3.24 Category predictions using the cancer vs. non-cancer step model. 

Test Actual Category 
 Disease Present No evidence of disease 
Positive 148 0 
Negative 0 40 
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Table 3.25 Transcripts in the Step derived model for comparing aggressive cancers (A, H) to non-

aggressive cancers (I, L). 

Transcript p - value Coefficient 
AGR2 0.98 -233.03 
AMACR 0.98 -1066.97 
AURKA 0.98 -395.93 
BRAF 0.98 -1106.78 
ERG 5' 0.98 164.37 
FOXM1 0.98 149.23 
HPRT 0.98 317.38 
IMPDH2 0.98 913.69 
KLK3 exons 1-2 0.98 -607.92 
M.genitalium RplA 0.98 -369.55 
M.hyorinis RplA 0.98 1236.48 
MKi67 0.98 -200.18 
NAALADL2 0.98 204.06 
PSGR 0.98 -826.31 
PCA3 0.98 190.98 
PPAP2A 0.98 546.96 
SERPINB5 0.98 -357.41 
SPINK1 0.98 708.99 
STEAP4 0.98 585.87 
SULT1A1 0.98 144.98 
TMPRSS2:ERG 0.98 -109.31 
Timp4 0.98 -304.36 
U.urealyticum dnaK 0.98 390.71 
U.urealyticum RplB 0.98 -456.65 
AR exons 4-8 0.99 148.66 
CDC20 0.99 -180.92 
DLX1 0.99 47.8 
FOLH1 0.99 492.55 
GAPDH 0.99 -366.81 
GOLM1 0.99 499.32 
M.hyorinis rpoB 0.99 218.58 
PTPRC 0.99 -126.41 
TBP 0.99 -224.34 
TDRD 0.99 -160.03 
TERT 0.99 156.96 
UPK2 0.99 74.34 
AGR2 0.98 -233.03 
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Table 3.26 Category Predictions when using the aggressive cancer model derived from Step. 

Test Actual Category 

 Aggressive Disease Present Aggressive  undetectable 

Positive 68 0 

Negative 0 80 

 

 Table 3.27 Transcripts in the extreme model (A Vs. CB) derived from Step. 

Transcript p - value Coefficient 
ALAS1 0.995 -600.84 
KLK4 0.995 -465.6 
KLK3 exons 2-3 0.995 330.63 
BRAF 0.995 422.54 
M.genitalium RplB 0.995 302.06 
HPN 0.995 236.54 
Timp4 0.995 -158.99 
AR truncation exon 0.995 31.34 
ALAS1 0.995 -600.84 

	
Table 3.28 Category predictions using the extreme model derived from Step. 

Test Actual Category 
 Advanced Cancer Present CB 
Positive 17 0 
Negative 0 40 

	
3.8.2 Lasso logistic regression models 

The cancer vs. non-cancer model had 16 transcripts (Table 3.29), an AUC of 0.937 and 99.32% 

sensitivity, 52.5% specificity and 88.55% PPV (Table 3.30). The aggressive cancer (A) vs. non-

aggressive cancer model had four transcripts (Table 3.29), an AUC of 0.852, and 61.76% 

sensitivity, 86.25% specificity and 79.25% PPV (Table 3.31). The extreme Lasso model (A Vs. 

CB samples) had 12 transcripts (Table 3.29), an AUC of 0.983 and 82.35% sensitivity, 100% 

specificity and 100% PPV (Table 3.32).  
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Table 3.29 Lasso coefficients for three models A) cancer Vs. Non-cancer B) Aggressive cancer Vs. 

Non-aggressive cancer C) extreme model (A Vs. CB) 

Cancer Model Aggressive Model Extreme Model 
Gene name Coefficient Gene name Coefficient Gene name Coefficient 
ALAS1 -0.042 KLK3 exons 1-2 -0.268 AURKA 0.035 
AR exons4-8 -0.278 SERPINB5 -0.087 DLX1  0.043 
CLU  0.037 SLC12A1 0.069 ERG 5’ 0.235 
DLX1 0.164 SPINK1  0.278 HOXC4 0.003 
ERG 3’ 0.082   HPN  0.188 
ERG 5’ 0.169   HPRT  -0.554 
HOXC4 0.111   PPAP2A  -0.223 
HPN 0.283   SLC12A1  0.104 
IMPDH2 -0.131   SPINK1  0.321 
KLK2 -0.046   STEAP2  -0.297 
KLK3 exons 1-2  0.05   STEAP4 -0.113 
M.hyorhinis rpoB 0.399   SULT1A1  0.118 
MMP26  -0.085    
NAALADL2 -0.003   
PCA3 0.101   
PPAP2A  -0.62  
SULT1A1 0.057 
TMPRSS2:ERG 0.037 
Timp4 -0.033 

	
	
Table 3.30 Category predictions using the Lasso cancer Vs. non-cancer model 

Test Actual Category 
 Disease Present Disease Absent 
Positive 147 19 
Negative 1 21 

	
Table 3.31 Category predictions using the Lasso aggressive cancer Vs. non-aggressive cancer model 

Test Actual Category 
 Aggressive Disease Present Aggressive Disease Absent 
Positive 42 11 
Negative 26 69 
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Table 3.32 Category prediction for the Lasso extreme model (A Vs. CB) 

Test Actual Category 
 Advanced Cancer Present CB 
Positive 14 0 
Negative 3 40 

	
3.8.3 Random Forest 

The cancer vs. non-cancer model had an OOB error estimate of 18.52%, with 87.25% sensitivity, 60% 

specificity and 89.04% PPV (Table 3.33, the ranked transcript importance provided in Table 3.34). 

The aggressive vs. non-aggressive cancer model had an OOB error estimate of 22.82%, with 71.64% 

sensitivity, 81.71% specificity and 76.19% PPV (Table 3.35, Table 3.36). The extremes model had an 

OOB error estimate of 15.79%, with 70.59% sensitivity, 90% specificity and 75% PPV ( 

 

Table 3.37, Table 3.38). 

	
Table 3.33 Confusion matrix for random forest modelling samples on cancer vs. non-cancer. OOB 

error estimate of 18.52%. 

 Cancer 
not 
predicted 

Cancer 
predicted 

Class 
error 

Sum 

CB 24 16 0.4 40 
Cancer 19 130 0.13 149 
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Table 3.34 Gini values for the random forest model to categorise the samples into cancer and non-

cancer. 

Transcript 
 

Gin
i 

Rank Transcript Gin
i 

Rank Transcript Gin
i 

Rank 

DLX1 2.2
7 

1 CLU 
0.61 

20 UPK2 0.4
6 

3
9 

ERG 3’ 2.0
8 

2 SPINK1 
0.61 

21 GAPDH 0.4
5 

4
0 

TMPRSS2:ERG 2.0
6 

3 B2M 
0.60 

22 Timp4 0.4
4 

4
1 

HOXC6 1.8
6 

4 FOXM1 
0.58 

23 KLK3 exons 2-3 0.4
4 

4
2 

HPN 1.8
3 

5 AR exons 4-8 
0.58 

24 SERPINB5 0.4
4 

4
3 

PCA3 1.2
1 

6 CAMKK2 
0.56 

25 CDC20 0.4
2 

4
4 

PPAP2A 1.1
6 

7 SULT1A1 
0.56 

26 PECI 0.4
2 

4
5 

ERG 5’ 1.1
4 

8 M.genitalium 
RplA 0.54 

27 AR truncation 
exon 

0.4
1 

4
6 

HOXC4 1.1
2 

9 STEAP2 
0.54 

28 U.urealYticum 
RplB 

0.4
1 

4
7 

M.hYorhini rpoB 1.0
4 

10 MKi67 
0.54 

29 GOLM1 0.4
1 

4
8 

ALAS1 0.8
5 

11 MMP26 
0.53 

30 AURKA 0.4
0 

4
9 

PTPRC 0.7
7 

12 KLK2 
0.52 

31 ANPEP 0.4
0 

5
0 

M.genitalium 
RplB 

0.7
7 

13 AGR2 
0.50 

32 MDK 0.3
9 

5
1 

SLC12A1 0.7
5 

14 AMACR 
0.49 

33 U.urealYticum 
dnaK 

0.3
8 

5
2 

HPRT 0.7
5 

15 FOLH1 
0.49 

34 CDKN3 0.3
7 

5
3 

KLK3 exons 1-2 0.7
1 

16 TBP 
0.48 

35 BRAF 0.3
6 

5
4 

NAALADL2 0.6
7 

17 TERT 
0.48 

36 KLK4 0.3
6 

5
5 

TDRD 0.6
3 

18 IMPDH2 
0.47 

37 PSGR 0.3
3 

5
6 

STEAP4 0.6
1 

19 M.hYorhinis 
RplA 0.46 

38 OGT 0.3
0 

5
7 

	
Table 3.35 Confusion matrix for random forest modelling samples on aggressive cancer vs. non-

aggressive cancer. OOB error estimation of 22.82%. 

 Aggressive Cancer 
not predicted 

Aggressive 
Cancer predicted 

Class error Sum 

Non-aggressive 
cancer 

67 15 0.18 82 
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Aggressive Cancer 19 48 0.28 67 
	
	
Table 3.36 Gini values for the random forest model to categorise the samples into aggressive cancer 

and non-aggressive cancer. 

Transcript 
 

Gini 
score 

Rank Transcript Gini 
score 

Rank Transcript Gini 
score 

Rank 

SPINK1	
5.2
1	

1 
ERG 3’	 1.00	

20 
HOXC6	

0.7
2	

3
9 

KLK3 exons 1-2	
4.0
7	

2 
MDK	 0.99	

21 
TERT	

0.7
2	

4
0 

KLK3 exons 2-3	
3.6
3	

3 
CAMKK2	 0.97	

22 
NAALADL2	

0.7
1	

4
1 

UPK2	
3.5
5	

4 
CLU	 0.95	

23 
ERG 5’	

0.6
9	

4
2 

SLC12A1	
3.4
8	

5 
GAPDH	 0.93	

24 
AR exons 4-8	

0.6
8	

4
3 

SERPINB5	
1.8
9	

6 
AGR2	 0.87	

25 M.genitalium 
RplA	

0.6
6	

4
4 

SULT1A1	
1.8
8	

7 TMPRSS2:ER
G	 0.86	

26 
PCA3	

0.6
3	

4
5 

KLK4	
1.8
6	

8 
CDKN3	 0.86	

27 
DLX1	

0.6
2	

4
6 

BRAF	
1.5
7	

9 
B2M	 0.85	

28 
TBP	

0.6
2	

4
7 

PSGR	
1.4
9	

10 
TDRD	 0.83	

29 
PECI	

0.6
2	

4
8 

HPN	
1.3
9	

11 
ALAS1	 0.82	

30 
MMP26	

0.5
9	

4
9 

U.urealYticum 
dnaK	

1.2
8	

12 AR truncation 
exon	 0.82	

31 M.hYorhinis 
rpoB	

0.5
9	

5
0 

Timp4	
1.2
5	

13 
IMPDH2	 0.81	

32 
OGT	

0.5
9	

5
1 

STEAP2	
1.2
4	

14 
GOLM1	 0.79	

33 
HOXC4	

0.5
8	

5
2 

U.urealYticum 
RplB	

1.0
9	

15 
FOLH1	 0.79	

34 
AMACR	

0.5
7	

5
3 

M.hYorhinis RplA	
1.0
8	

16 
FOXM1	 0.79	

35 
ANPEP	

0.5
6	

5
4 

KLK2	
1.0
8	

17 
MKi67	 0.77	

36 
HPRT	

0.5
4	

5
5 

PPAP2A	
1.0
7	

18 M.genitalium 
RplB	 0.73	

37 
PTPRC	

0.5
2	

5
6 

CDC20	
1.0
1	

19 
AURKA	 0.73	

38 
STEAP4	

0.5
0	

5
7 
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Table 3.37 Confusion matrix for random forest modelling the samples belonging to the extreme 

clinical categories (A vs. CB). OOB error estimate of 15.79%. 

 CB 
predicted 

Advanced 
predicted 

Class 
error 

Sum 

CB 36 4 0.1 40 
Advanced 5 12 0.29 17 
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Table 3.38 Gini values for the random forest model to categorise the extreme samples (A vs. CB). 

Transcript 
 

Gini 
score 

Rank Transcript Gini 
score 

Rank Transcript Gini 
score 

Rank 

SPINK1 
5.2
1	 1 ERG 3’	 1.00	 20 HOXC6	

0.7
2	

3
9 

KLK3 exons 1-2	
4.0
7	 2 MDK	 0.99	 21 TERT	

0.7
2	

4
0 

KLK3 exons 2-3	
3.6
3	 3 CAMKK2	 0.97	 22 NAALADL2	

0.7
1	

4
1 

UPK2	
3.5
5	 4 CLU	 0.95	 23 ERG 5‘	

0.6
9	

4
2 

SLC12A1	
3.4
8	 5 GAPDH	 0.93	 24 AR exons 4-8	

0.6
8	

4
3 

SERPINB5	
1.8
9	 6 AGR2	 0.87	 25 M.genitalium 

RplA	
0.6
6	

4
4 

SULT1A1	
1.8
8	 7 TMPRSS2:ER

G	 0.86	 26 PCA3	
0.6
3	

4
5 

KLK4	
1.8
6	 8 CDKN3	 0.86	 27 DLX1	

0.6
2	

4
6 

BRAF	
1.5
7	 9 B2M	 0.85	 28 TBP	

0.6
2	

4
7 

PSGR	
1.4
9	 10 TDRD	 0.83	 29 PECI	

0.6
2	

4
8 

HPN	
1.3
9	 11 ALAS1	 0.82	 30 MMP26	

0.5
9	

4
9 

U.urealYticum 
dnaK	

1.2
8	 12 AR truncation 
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3.8.4 Random Forest applied to all clinical categories 

A random forest model was also constructed to classify the samples into their five main types of 

category (advanced, high-, intermediate-, low-risk and clinically benign), but the results were poor 

(OOB error estimate of 45.5%, Table 3.39, Table 3.40). The OOB was only modestly improved 

when the data was adjusted to have equal numbers of samples per category in each tree (53.44%, 
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Table 3.41). This poor performance could be down to the low number of samples per category 

using the current methods. 
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Table 3.39 Confusion matrix for random forest on all 5 clinical categories. OOB error estimate of 

45.5%. 

 A H I L CB Class 
error 

Sum 

A 1 12 4 0 0 0.94 17 
H 1 20 21 0 8 0.6 50 
I 1 8 58 0 5 0.19 72 
L 0 0 6 0 4 1 10 
CB 1 6 9 0 24 0.4 40 

	
Table 3.40 Sensitivity, Specificity and PPV for each category after categorising samples into five 

clinical categories using random forest. 

Advanced (A) 
 True A True Not A Sensitivity: 25% 
Outcome A 1 16 Specificity: 91.35% 
Outcome Not A 3 169 PPV: 5.88% 

	
High Risk (H) 
 True H True Not H Sensitivity: 40% 
Outcome H 20 26 Specificity: 81.29% 
Outcome Not H 30 113 PPV: 43.48% 

	
Intermediate Risk (I)  
 True I True Not I Sensitivity: 80.56% 
Outcome I 58 40 Specificity: 65.81% 
Outcome Not I 14 77 PPV: 59.18% 

	
Low Risk (L) 
 True L True Not L Sensitivity: 0% 
Outcome L 0 0 Specificity: 100% 
Outcome Not L 10 179 PPV: *% 

	
Clinically Benign (CB) 
 True CBN True Not CBN Sensitivity: 60% 
Outcome CBN 24 17 Specificity: 88.59% 
Outcome Not CBN 16 132 PPV: 58.54% 

 

Table 3.41 Confusion matrix for random forest on all 5 categories with random sampling to equalise 

categorical sample sizes. OOB error estimate of 53.44%. 

 A H I L CB Class 
error 

Sum 

A 10 4 2 0 1 0.41 17 
H 14 7 15 5 9 0.86 50 
I 3 8 46 4 11 0.36 72 
L 1 0 4 1 4 0.9 10 
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CB 2 5 3 6 24 0.4 40 
	
3.8.5 Comparing the Models 

The OOB error was found to be lowest for modelling the extremes (CB v Aggressive PCa), this 

was expected as they are the samples that should be least alike in their expression and so should be 

the easiest categories to separate. The model does give good sensitivity and specificity; however, 

this error is still fairly high at 15.79%, meaning there could still be improvements. Similarly, the 

Lasso model (high AUC) and Step model for the extremes comparison both had high sensitivity 

and specificity, though the step models are likely to be over fitted. From the top fifteen most 

important transcripts via random forest, five were in common (four uniquely) with the Lasso 

selected transcripts and five were in common (four uniquely) with the Step selected transcripts. 

The only transcript common to all three models was HPN, which interestingly only appeared to 

have mid level importance in each model.  

The OOB error for comparing cancer vs. non-cancer was also fairly high, even though it was the 

second lowest (18.52%). This model showed high sensitivity but was not so specific to identifying 

cancer in the samples. The Lasso model had a good AUC (0.937) and also showed high sensitivity 

but not so good specificity to detecting cancer, unlike the Step model, which showed high 

sensitivity and specificity. However, Step is the least robust of the methods for modelling data. 

From the top fifteen most important transcripts via random forest, ten were common in the Lasso 

selected transcripts and seven were common with the Step selected transcripts. There were six 

transcripts common to all three models: DLX1, ERG 3’, TMPRSS2:ERG, HPN, PCA3 and ERG 5’, 

all of which are transcripts known to be involved or associated to PCa.  

The OOB error for comparing aggressive cancers to non-aggressive cancers was higher at 22.82%, 

though this model had good sensitivity and specificity ratios for the random forest model, 72% and 

82%, respectively. From the top fifteen most important transcripts selected via random forest, all 

four Lasso identified transcripts were in common and ten Step selected transcripts were common. 

Three of the fours Lasso identified transcripts were common to all models: SPINK1, KLK3 exons 

1-2 and SERPINB5. 
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This highlights that there is structure in the data that could likely be further improved with data 

from more samples and more probes.  

	
3.9 Transcripts that show high-importance 

Seven transcripts were identified by three different methods (Table 3.19, Table 3.29, Table 3.34) 

to be differentially expressed between cancer and non-cancer samples: DLX1, ERG 3’, 

TMPRSS2:ERG, HOXC4, ERG 5’, PCA3 and HPN (Table 3.40). These transcripts all have 

published associations with PCa. Interestingly, ERG 5’, HOXC6 and M.genitalium RplB were 

significant in the Mann Whitney U test and had been ranked highly by random forest, but were not 

present in the Lasso model. This is likely due to the inter-correlation of their NanoString signals, 

as Lasso penalises correlating variables and keeps those it deems to hold the most information 

(section 3.3.7).  

Table 3.42 Transcripts identified to distinguish between PCa and non-cancer using Mann Whitney U 

and Lasso. Random Forest rank is also shown.  

Transcript Mann Whitney U Lasso Random Forest rank 
DLX1 Y Y 1 
ERG 3’ Y Y 2 
TMPRSS2:ERG Y Y 3 
HOXC4 Y Y 9 
ERG 5’ Y Y 8 
HOXC6 Y N 4 
PCA3 Y Y 6 
M.genitalium RplB Y N 13 
HPN Y Y 5 
PPAP2A N Y 7 
M.hYorhini rpoB N Y 10 
ALAS1 N Y 11 
KLK3 exons 1-2 N Y 16 
NAALADL2 N Y 17 
CLU N Y 20 
SULTA1 N Y 26 
MMP26 N Y 30 
KLK2 N Y 31 
IMPDH2 N Y 37 
Timp4 N Y 41 
PTPRC N N 12 
SLC12A1 N N 14 
HPRT N N 15 
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Four transcripts identified by three different methods (Table 3.20, Table 3.31, Table 3.39) were 

differentially expressed between aggressive cancer and non-aggressive cancer samples: SLC12A1, 

SPINK1, SERPINB5 and KLK3 exons 1-2. 

Table 3.43 Transcripts repeatedly shown to be differentially expressed between aggressive PCa and 

non-aggressive PCa. 

Transcript Mann Whitney U Lasso Random Forest rank 
SLC12A1 Y Y 5 
UPK2 Y N 4 
SPINK1 Y Y 1 
SERPINB5 Y Y 6 
CAMKK2 Y N 22 
PSGR Y N 10 
KLK3 exons 1-2 Y Y 2 
KLK3 exons 2-3 Y N 3 
KLK2 Y N 17 
STEAP2 Y N 14 
KLK4 Y N 8 
SULT1A1 N N 7 
BRAF N N 9 

	
Two of these transcripts were also identified by three different methods (Table 3.21, Table 3.32, 

Table 3.38) to be differentially expressed between advanced cancer and clinically benign cancer 

samples: SLC12A1 and SPINK1. It is perplexing that less transcripts are selected for this extreme 

comparison, but this may be due to a lack of material coming from the solid advanced cancers. 

	
Table 3.44 Transcripts commonly found to be differentially expressed by the Mann Whitney U test, 

GLM and Lasso and Random Forest between advanced and benign samples. 

Transcript Mann Whitney U Lasso Random Forest rank 
SLC12A1 Y Y 5 
SPINK1 Y Y 1 
HPRT Y Y 55 
KLK4 Y N 8 
STEAP2 Y N 14 
PPAP2A Y N 18 
DLX1 N Y 46 
ERG 5’ N Y 42 
HOXC4 N Y 52 
HPN N Y 11 
STEAP4 N Y 57 
SULT1A1 N Y 7 
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3.10 Conclusions 

Detection of prostate-specific (KLK2 and KLK3) and PCa-specific (TMPRSS2:ERG) transcripts 

demonstrates that these are present in urine EVs harvested and analysed by our methods. RNA 

yields post-radical prostatectomy suggests that the vast majority of the urinary RNA originates in 

the prostate. The identification of differential transcripts between non-aggressive and aggressive 

cancers demonstrates NanoString’s potential ability to distinguish these clinical categories using 

transcripts from urinary EVs.  

It is vital to emphasise that the clinical categories in this study are based on current, and not 

perfect clinical tests. Hence the current need for novel biomarkers to distinguish accurately 

between them. Particularly true of CB samples, where it is expected that ~20% of the men that 

show no clinical evidence of cancer will in fact have PCa. Therefore, it is notable that 12% of CB 

samples were found to have a TMPRSS2:ERG fusion in this study. As TMPRSS2:ERG is expected 

to be in ~50% of PCa, this would suggest clinically undetected PCa in 24% of our CB samples. In 

LPD, 21 of the 37 CB samples are clustered together, leaving 16 spread amongst the other groups, 

five (14%) of which are associated to a group where overall TMPRSS2:ERG is significantly up-

regulated. Seven of the CB samples are left un-grouped, showing no distinct underlying signature.  

The detection of TMPRSS2:ERG by NanoString and confirmation of this find by RTPCR 

demonstrated the sensitivity of our methods for detection of PCa. 

Some Nanostring probes performed much better than others in models throughout the analyses 

(section 3.9). However, transcripts were identified that were differentially expressed in samples 

from different clinical categories (PCa present, increasing PCa aggressiveness etc). Due to the 

nature of the probe set, most of these were known PCa markers, but some were not. The latter 

demonstrating that it can be difficult to predict what type of transcripts should be targeted in our 

analyses. As a result of probe selection for advanced PCa associated transcripts, it was expected 

that we observe unusual distribution and medians for our data.  
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Housekeeping probes were selected, as they are known to be useful when investigating PCa tissue; 

their use in urine and urinary EVs has not been studied in detail. Therefore, it may be of interest to 

investigate further options for urinary microvesicle house keeping transcripts, as the probes 

selected did not show great correlation.  

The analyses have revealed that there is structure in the data, as demonstrated for example, by the 

detection of differentially expressed transcripts, LPD groups and linear model analysis. Lasso 

logistic regression predictive models were able to categorise cancer from non-cancer samples and 

aggressive from non-aggressive cancer samples fairly robustly (AUCs of 0.94 and 0.85, 

respectively). However, sensitivity and specificity, even on the training set could be improved. For 

this it could be suggested that we are not using the optimal starting probes and thus more probes 

should be included to identify the clearest signature available. Another complication is the 

complexity of cancer within individual prostates, with multifocal tumours being detectable in the 

majority of cancerous prostates, each with the potential to have a different path and rate of 

progression. The Mann Whitney U test and random forest results were similar to each other and 

that of the Lasso models, suggesting that these results are accurate, but also highlighting that the 

methods were suitable for analysing the NanoString data. The LPD showed some clinical 

separation of the samples, though again a better selection of probes could provide further 

discrimination between the lower and intermediate samples with the benign samples.  The 

inclusion of known PCa transcripts in our differential expression and predictive model for cancer 

results and the inclusion of known prognostic PCa transcripts in our differential expression and 

predictive model for aggressive cancer results provide evidence of accuracy. 

These analyses form the ground work for expansion of the urine biomarker study to include a 

larger number of probes, and samples which should provide much improved power to dissect the 

complexities of this disease within individual prostates.  The probes that provided no information 

were determined. These probes were reviewed to unveil if they should be replaced or removed in 

the larger study (for example the PCA3 probe didn’t work very well and was redesigned for the 
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large study). FOXM1 showed no clinical association and was not identified in any clustering or 

prediction models and so was removed from subsequent studies. 
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4 

      Response to Hormone Therapy 

4.1 Summary 

Stratification of treatment by gene expression levels has shown benefits in many 

cancers, such as breast cancer208 and lung cancer209,210, but it is yet to be utilised 

successfully in prostate cancer (PCa) treatment. Areas where stratification could benefit 

PCa patients include: deciding between treatment vs. active surveillance, identifying 

which radical prostatectomy (RP) and radiotherapy patients will succumb to 

biochemical recurrence (BCR), and which hormone therapy (HT) patients would 

benefit from additional treatment (i.e. those patients that are predicted to progress early 

to castration resistant prostate cancer (CRPC)). In this chapter we focus on men in our 
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cohort treated by hormone therapy and examine whether expression profiles of urinary 

microvesicles can be used to predict time to CRPC. Unfortunately, the cohort does not 

have a long enough follow up at this time to examine time to BCR after RP or 

radiotherapy. 

In the normalised NanoString 1 dataset, a signature of seven transcripts was identified 

that could optimally predict progression of patients on hormone therapy (section 

1.3.4.2.1) (cox-regression model; p = 2.3x10-05; HR = 0.04288). The transcripts in the 

predictor are AGR2, DLX1, KLK2, NAALADL2, AR exons 4-8, PPAP2A and AMACR. 

This model was an independent predictor of progression when established clinical 

variables initial PSA, age, Gleason score and initial bone scan result were taken into 

account (cox-regression model; p = 0.003; HR = 0.03).  

When the data was adjusted to KLK2 levels, similar to KLK3 adjustment used in the 

PCA3 test, an optimal model of three transcripts (CAMKK2, PSGR and UPK) was 

identified (cox-regression model; p = 0.007, HR = 1.0028). This model was not a 

significant predictor independent of established clinical factors (cox-regression model; 

p = 0.14; HR = 1.009).  

Both of these models were applied to the second NanoString dataset but were not 

validated.  

4.2 Introduction 

4.2.1 The Research Gap 

Hormone Therapy (HT) is the primary treatment of men with advanced prostate cancer, 

that is those diagnosed with a PSA > 100 or with evidence of metastatic spread 

(generally via bone scan). Response to the treatment is highly variable with some men 

failing to respond at all, whereas others take years to progress. All men will eventually 

progress to CRPC (section 1.3.4.2.2). Identification of men that are likely to relapse 

early could lead to more aggressive first line treatment being used, such as full 
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androgen blockage (section 1.3.4.2.1), combination with chemotherapy, or novel 

strategies such as combination with Aberiterone. Currently, there is no clinically 

available test to stratify advanced patients into those who will do well on HT and those 

that will quickly require further or alternative treatments.  

4.2.2 Aim 

I am to use the NanoString 1 data set (Chapter 3) from advanced patients (n = 32), to 

see if a significant predictor of early progression in patients on HT can be built and 

whether this predictor improves on current clinical information collected (e.g. PSA, 

Gleason score and bone scan). I will also attempt to validate these signatures in a 

second independent cohort (using the second NanoString data).  

4.2.3 Summary of the HT patient cohort 

The breakdown of the clinical data for the 32 patients on HT can be seen in Table 4.1. 

Many of the advanced patients are diagnosed as being advanced by a PSA > 100 and no 

biopsy is performed in these circumstances. Other patients with lower PSAs are 

determined to be advanced, by either a biopsy or a positive bone scan.  

Table 4.1 Clinical summary of the hormone therapy cohort (n=32). 

Clinical Variable Number of patients 
Gleason Score 
     10 
     9 
     8 
     7 (4+3) 
No Biopsy: Advanced 

 
0 
8 
4 
4 
16 

Bone Scan 
     Positive 
     Negative 
     Unknown 

 
18 
13 
1 

PSA Median 98.7 (range: 9.6 – 2508) 
Age Median 78 (range: 55 - 98) 
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4.3 Hormone Therapy Predictor constructed using Nanostring 1 data 

4.3.1 Differentially expressed genes based on initial response, 12 month 

relapse and 24 month relapse 

Five transcripts were significantly up regulated in those that had an initial response to 

HT (n = 28) compared to those that did not (n = 4) (p < 0.05; not adjusted for multiple 

testing; Mann-Whitney U test; Table 4.2). Three of these five transcripts, were capable 

of distinguishing patients that relapsed within 12 months (n = 6) (Table 4.2; p < 0.05; 

not adjusted for multiple testing): STEAP4, AMACR, BRAF. By 24 months, 14 patients 

were still responding to HT and 18 had progressed. Four different transcripts were 

significantly up regulated in patients still responding to treatment (Table 4.2; p < 0.05; 

not adjusted for multiple testing).  These results need to be treated with caution due to 

the low numbers and the lack of significance after multiple testing correction. 

Table 4.2 Mann-Whitney U test results for comparing samples that respond to HT and 

those that don't at different time points. 

Initial Response  
Transcript p - value Adjusted p - value Log2 Fold change 
AGR2 0.047 1 -0.57 
STEAP4 0.024 1 -0.26 
HPRT 0.029 1 -0.21 
AMACR 0.034 1 -0.14 
BRAF 0.04 1 -0.13 
	

12 Month Response  
Transcript p - value Adjusted p - value Log2 Fold change 
STEAP4 0.019 0.98 -0.18 
AMACR 0.01 0.57 -0.14 
BRAF 0.033 0.98 -0.08 
	

24 Month Response  
Transcript p - value Adjusted p - value Log2 Fold change 
DLX1 0.045 1 -1.28 
AR (truncation) exon 9 0.025 1 -1.16 
AR exons 4-8 0.018 1 -0.09 
TBP 0.034 1 -0.08 
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4.3.2 Survival analyses of time to progression after HT 

Using the Mann-Whitney U test as described above lacks statistical power as time to 

progression is not taken into account, therefore I applied Cox's proportional hazards 

model and other survival analysis tools (section 2.8). Twelve probes were significant 

predictors of progression individually (Table 4.3; Cox regression model; p < 0.05; 

multiple testing correction not applied). There were no significant probes after multiple 

testing correction. 

Expression for each gene was divided into two groups, low expression and high 

expression, using k-means to determine the threshold (section 2.5.3). Using these 

grouped data, ten transcripts were identified as having significant different times to 

progression (p < 0.05; log-rank test; Table 4.4), of which only one was significant after 

multiple testing correction: NAALADL2. 

 Table 4.3 Cox results for relapse to hormone therapy 

Transcript p - value Adjusted p - value Hazard ratio 
KLK2 0.011 0.62 0.74 
AMACR 0.011 0.62 0.68 
DLX1 0.011 0.62 0.87 
PPAP2A 0.014 0.76 0.51 
STEAP4 0.017 0.88 0.63 
PCA3 0.034 1.00 0.87 
CDC20 0.037 1.00 0.81 
KLK4 0.039 1.00 0.63 
TDRD 0.042 1.00 0.86 
STEAP2 0.043 1.00 0.66 
NAALADL2 0.045 1.00 0.79 
Timp4 0.049 1.00 0.86 
	
Table 4.4 Significant probes using log rank test applied to data separated by k-means. 

Transcript p - value Adjusted p - value Coefficient 
NAALADL2 0.0004 0.03 12.36 
PPAP2A 0.005 0.27 7.97 
KLK2 0.006 0.31 7.66 
STEAP4 0.007 0.4 7.19 
DLX1 0.01 0.56 6.55 
AGR2 0.01 0.64 6.28 
PCA3 0.02 0.93 5.57 
IMPDH2 0.03 0.98 4.68 
STEAP2 0.03 0.98 4.63 
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FOLH1 0.04 0.98 4.09 
	
Twenty transcripts have been identified as candidate predictors of progression after HT 

(Table 4.3 and Table 4.4). For the majority of probes a clear difference in time to 

progression is seen (Figure 4.1). 
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Figure 4.1 Kaplan Meier plots for each of the candidate probes (section 4.3.1). Expression for each 
probe is grouped into high and low expression using K-means clustering. 
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4.3.3 Determining the optimal predictor of progression after HT 

The optimal model to detect time to progression after HT is likely to be formed from a 

combination of the expression from multiple probes. There are various methods for 

identifying the best combination of probes (variable selection) and here I will 

investigate three i.e. LASSO (section 2.6.2), stepwise regression (section 2.6.4) and 

random forest (section 2.6.3). Different starting sets of probes will be used based on 

results from the previous section. 

4.3.3.1 Model built using differentially expressed transcripts based on initial 

response, 12 month relapse and 24 month relapse  

Gene selection and three proposed optimal models were produced based on the nine 

transcripts identified as differentially expressed at initial response, 12 month relapse or 

24 month relapse (Table 4.2): a Cox general linear model with shrinkage and variable 

selection using LASSO (section 2.6.2) (Table 4.5), Stepwise regression on a Cox model 

(Table 4.6), and a Random Forest model (section 2.6.3) (Table 4.7). The five transcripts 

selected by LASSO and step are identical, showing reliability in these results. Four out 

of these five transcripts most important in the random forest model are also similar 

(DLX1, AR exons 4-8, AMACR and AGR2 have high importance), though STEAP4 

appears to have increased importance and BRAF has lost importance in the Random 

Forest model.  

	
Table 4.5 The probes included the in the glm after LASSO shrinkage and variable 

selection, (of the Mann-Whitney U selected probes) with the corresponding beta 

coefficients 

Transcript Beta Coefficient 
BRAF 0.27 
DLX1 -0.14 
AGR2 -0.19 
AR exons 4-8 -0.26 
AMACR -0.38 
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Table 4.6 The probes included in the cox model after step variable selection (of the Mann-

Whitney U selected probes) with the hazard values and p-values. The overall performance 

of the model to predict progression on HT is p = 0.00024. 

Transcript HR p-value 
DLX1 0.83 0.008 
AMACR 0.56 0.013 
AGR2 0.76 0.038 
AR exons 4-8 0.72 0.047 
BRAF 1.67 0.054 
	
Table 4.7 The importance of each probe in the random forest predictor for HT relapse (of 

the Mann-Whitney U selected probes). 

Transcript Importance Relative Importance 
DLX1 0.042 1 
AR exons 4-8 0.015 0.35 
STEAP4 0.013 0.32 
AMACR 0.011 0.27 
AGR2 0.009 0.21 
HPRT 0.003 0.08 
BRAF -0.001 -0.01 
TBP -0.003 -0.08 
AR exon 9 -0.006 -0.13 
	
Using the selected gene sets determined above, a single score was derived for each gene 

set and a Cox regression model was constructed (Table 4.8). The top four important 

transcripts of the random forest model performed best (HR=0.0573; p = 3.29x10-05) but 

all of the models were highly significant (p < 1.0x10-03) in discriminating samples from 

patient’s that progressed on HT and those that did not. 
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Table 4.8 Overall performance of the models (created from the probes originally identified 

by Mann-Whitney U) tested by cox. 

Model p-value HR (95% 
confidence 
intervals) 

LASSO genes – (DLX1, AGR2, BRAF, AR exon 9 /AMACR) 7.5x10-04 0.106 (0.01761 - 
0.6394)  

Step genes – (DLX1, AGR2, BRAF, AR exons 4-8 /AMACR) 5.31x10-05 0.0786 (0.01299 
- 0.4752) 

LASSO and Step genes (DLX1, AGR2, BRAF, AR exons 4-8, 
AR exon 9 /AMACR) 

6.79x10-04 0.0983 (0.01738 
- 0.5567) 

Random Forest top 5 genes (DLX1, AGR2, AR exon 4-8, 
STEAP4 /AMACR) 

3.29x10-05 0.0573 
(0.008039 - 
0.4079)  

	
4.3.3.2 Model built using Cox selected transcripts 

Using the twelve transcripts identified using the Cox regression model on individual 

probes (Table 4.3), variable selection was performed. LASSO identified seven 

transcripts (Table 4.9), stepwise regression identified six transcripts (Table 4.10), and 

Random Forest identified the relative importance (Table 4.11). The transcripts selected 

by LASSO and stepwise regression have three common transcripts (KLK2, CDC20 and 

STEAP2) but the importance of these probes was not high in the random forest model.  

	
Table 4.9 The probes included the in the glm after LASSO shrinkage and variable 

selection, (of the cox selected probes) with the corresponding beta coefficients 

Transcript Beta Coefficient 
KLK2 -0.009 
CDC20 -0.012 
PPAP2A -0.025 
STEAP4 -0.032 
DLX1 -0.059 
NAALADL2 -0.072 
STEAP2 -0.076 
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Table 4.10 The probes included in the cox model after step variable selection (of the cox 

selected probes) with the hazard values and p-values. The overall performance of the 

model to predict progression on HT is p = 0.00323. 

Transcript HR p-value 
AMACR 0.493 0.003 
KLK2 0.496 0.008 
STEAP2 0.446 0.057 
PCA3 1.395 0.065 
KLK4 1.863 0.094 
CDC20 0.799 0.097 
	
	
Table 4.11 The importance of each probe in the random forest predictor for HT relapse (of 

the cox selected probes). 

Transcript Importance Relative Importance 
NAALADL2 0.0215 1 
AMACR 0.0199 0.928 
DLX1 0.0178 0.829 
STEAP4 0.0067 0.313 
PPAP2A 0.0051 0.239 
STEAP2 0.001 0.046 
TDRD 0.001 0.046 
Timp4 0.0008 0.039 
PCA3 0.0002 0.008 
CDC20 -0.0013 -0062 
KLK2 -0.0033 -0.154 
KLK4 -0.0049 -0.226 
	
The combined score Cox regressions (Table 4.12) showed that the top four important 

transcripts selected by the random forest model performed best (HR = 0.103; 

p = 7.97x10-05) but all were statistically significant in predicting patient’s that progressed 

on HT. 
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Table 4.12 Overall performance of the models (created from the probes originally 

identified by cox) tested by cox. 

Model p-value HR (95% confidence 
intervals) 

LASSO genes – (KLK2, DLX1, NAALADL2, 
PPAP2A, STEAP2, STEAP4, CDC20) 

7.8x10-04 0.00038  
(1.168x10-06 - 
0.1239) 

Step genes – (KLK2, STEAP2, PCA3, STEAP4, 
CDC20 /AMACR) 

0.01 0.048 (0.004 - 
0.641) 

LASSO and Step genes (DLX1, NAALADL2, 
STEAP4, KLK2, STEAP2, PPAP2A, CDC20, 
PCA3, KLK4 /AMACR) 

1.22x10-

03 
0.001  
(5.4x10-06 - 0.192) 

Common to LASSO and Step genes (KLK2, CDC20, 
STEAP2) 

8.22x10-

03 
0.026 (0.001 - 
0.536) 

Random Forest top 4 genes (NAALADL2, DLX1, 
STEAP4 /AMACR) 

7.97x10-

05 
0.103 (0.021 - 
0.504) 

	
4.3.3.3 Model built from Log-rank selected transcripts 

Variable selection was performed using the ten significant probes identified by the Log 

rank test (expression divided into two groups using k-means) (Table 4.4). LASSO identified 

seven transcripts (Table 4.13), stepwise regression identified five transcripts ( 

Table 4.14), and Random forest identified the relative importance of each of the ten 

transcripts (Table 4.15). The transcripts selected by LASSO and step have four in 

common (KLK2, AGR2, DLX1 and STEAP4). These four transcripts are also the most 

important in the random forest model. 

	
Table 4.13 The probes included the in the glm after LASSO shrinkage and variable 

selection, (of the log-rank selected probes) with the corresponding beta coefficients 

Transcript Beta Coefficient 
KLK2 -0.003 
AGR2 -0.02 
PPAP2A -0.03 
STEAP4 -0.03 
DLX1 -0.06 
NAALADL2 -0.07 
STEAP2 -0.08 
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Table 4.14 The probes included in the cox model after step variable selection (of the log-

rank selected probes) with the hazard values and p-values. The overall performance of the 

model to predict progression on HT is p = 0.0012. 

Transcript HR p-value 
DLX1 0.78 0.001 
NAALADL2 0.66 0.01 
FOLH1 1.44 0.03 
AGR2 0.75 0.04 
STEAP4 0.69 0.08 
	
Table 4.15 The importance of each probe in the random forest predictor for HT relapse (of 

the log-rank selected probes). 

Transcript Importance Relative Importance 
NAALADL2 0.0258 1 
DLX1 0.0181 0.701 
AGR2 0.0151 0.583 
STEAP4 0.0138 0.536 
PPAP2A 0.0088 0.34 
KLK2 0.0064 0.246 
STEAP2 0.0031 0.119 
FOLH1 -0.0039 -0.153 
PCA3 0.0052 -0.202 
IMPDH2 -0.096 -0.373 
	
In the combined score Cox regressions (Table 4.12) showed that the LASSO selected 

transcripts performed marginally better (HR = 0.01; p = 4.7x10-04) but all were 

statistically significant in predicting patient’s that progressed on HT. 
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Table 4.16 Overall performance of the models (created from the probes originally 

identified by log rank) tested by cox. 

Model p-value HR (95% 
confidence 
intervals) 

LASSO – (KLK, DLX1, NAALADL2, PPAP2A, 
STEAP2, STEAP4, AGR2) 

4.7x10-04 0.01  
(0.0004 - 0.2654) 

Step – (DLX1, NAALADL2, STEAP4, AGR2, 
FOLH1) 

7x10-04 0.0212  
(0.0013 - 0.3362) 

LASSO and Step (KLK2, DLX1, NAALADL2, 
PPAP2A, STEAP2, STEAP4, AGR2, FOLH1) 

6x10-04 0.0072  
(0.0002- 0.2865) 

Common to LASSO, Step and Random Forest (KLK2, 
AGR2, DLX1, STEAP4) 

7x10-04 0.0275  
(0.0023 - 0.326) 

	
4.3.3.4 Model built using combining probe selection lists to produce final 

model 

Combining the candidate probe lists identified using the different gene selection model 

may produce a better predictor of HT progression. Using each combination of candidate 

probe lists (Table 4.2, Table 4.3, & Table 4.4), LASSO was applied for variable 

selection (as it is clear and is designed to avoid over-fitting) and a linear combination 

score with Cox regression model was produced (Table 4.17). Initiating the variable 

selection with a combination of the candidate probes identified as differentially 

expressed at initial response, 12 month relapse or 24 month relapse (Mann Whitney U) 

and by the log rank test produced the best model (p =1.3x10-04; HR = 0.0091). This 

model includes AGR2, AR exons 4-8, DLX1, KLK2, NAALADL2, PPAP2A and 

AMACR. It has an AUC of 0.783 (Figure 4.1). This is the best performing model 

constructed using the Nanostring 1 data. The Kaplan Meier plot for the seven-

transcripts combined was also produced (Figure 4.2). 

	 	



CHAPTER	4:	RESPONSE	TO	HORMONE	THERAPY	
	

	 193	

Table 4.17 Comparing the Cox regression models of various linear combination scores 

producing from combining gene selection lists. Mann-Whitney U = candidate probes 

identified as differentially expressed at initial response, 12 month relapse or 24 month 

relapse; cox = candidate probes identified by step applied to cox regression models; Log 

rank = candidate probes identified by the log rank test on expression dichotomised into low 

and high expression. 

Combination Method for 
variable 
selection 

Resulting probes 
in model 

(cox) p-
value 

(cox) HR 

Mann-Whitney U 
and cox 

LASSO AGR2, 
AR exons 4-8, 
DLX1, KLK2,  
NAALADL2, 
TDRD/AMACR 

1.3x10-04 0.0091 
(0.0004 - 
0.214) 

Mann-Whitney U 
and Log rank 

LASSO AGR2, 
AR exons 4-8, 
DLX1, KLK2, 
NAALADL2,  
PPAP2A/AMACR 

2.3x10-05 0.04288 
(0.005 - 
0.345) 

Cox and Log 
rank 

LASSO DLX1 0.01 0.871 (0.781 
– 0.972) 

		
	

	
Figure 4.2 Kaplan Meier showing the seven-transcript signature (AR exons 4-8 * AGR2 * DLX1 * 
KLK2 * NAALADL2 * PPAP2A / AMACR) separated into low and high expression using k-means. 
The significance was measured using the cox model (Table 4.17), p = 2.3x10-05. 
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The seven-transcript signature was a better predictor of HT relapse than other clinical 

variables (including bone scan outcome, Gleason score, initial PSA value and age) 

when treated individually (Table 4.18). LPD group (identified from chapter 3, section 

3.5.5) was also tested. The seven-transcript score was a statistically significant 

independent predictor of HT progression when combined with covariate clinical 

variables (p = 0.003; HR = 0.03; Table 4.19). 

	
Table 4.18 Univariate cox models showing the significance of clinical variables, LPD group 

and the seven-transcript signature on predicting HT relapse. 

UNIVARIATE MODELS 
Model p-value HR (95% CI) 
Age 0.84 1.006 (0.949 - 1.067) 
PSA 0.05 1.001 (1 - 1.002) 
Gleason Scores 
   Gleason 7 
   Gleason 8 
   Gleason 9 

0.27 
 
0.26 
0.91 

 
 
0.252 (0.022 - 2.844) 
1.101 (0.22 - 5.54) 

Gleason Category 
   Gleason 7+8 
   Gleason 9+NA 

 
 
0.15 

 
 
2.291(0.666-7.883) 

Bone Scan 
   Negative 
   Positive 

0.19 
 
0.2 

 
 
1.854 (0.719 - 4.785) 

LPD group 
   LPD1 
   LPD2 
   LPD3 
   LPD4 
   LPD NA 

0.09 
 
0.78 
0.24 
0.07 
0.12 

 
 
1.413 (0.128 - 15.59) 
3.716 (0.414 - 33.36) 
7.043 (0.844 - 58.77) 
5.589 (0.637 - 49.04) 

DLX1 * AGR2 * KLK2 * NAALADL2 * 
AR exons 4-8 * PPAP2A / AMACR 

2.3x10-05 0.04288 (0.005 - 0.345) 
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Table 4.19 Multivariate cox model for predicting early relapse on HT. 

MULTIVARIATE MODEL with the seven transcript signature,  
p-value = 7.7x10-04 

Variable p-value HR (95% CI) 
DLX1 * AGR2 * KLK2 * NAALADL2 * 
AR exons 4-8 * PPAP2A / AMACR 

0.003 0.03 (0.003 – 0.313) 

Age 0.996 1 (0.949 - 1.054) 
PSA 0.176 1 (0.997 – 1.001) 
Gleason Category 
Gleason 7 + 8 
Gleason 9 + NA 

 
 
0.167 

 
 
2.61 (0.67 – 10.143) 

Bone Scan 
Negative 
Positive 

 
 
0.276 

 
 
1.85 (0.612 – 5.59) 

	
4.3.4 Validation of the seven-transcript signature using NanoString 2 data 

The second set of NanoString data had 43 patients on HT (chapter 5), of which 27 

samples were unique to NanoString 2 (Table 4.20).  

Table 4.20 Clinical breakdown of the 27 HT patients unique to NanoString 2. 

Clinical Variable Number of patients 
Gleason Score 
     10 
     9 
     8 
     7 (4+3) 
No Biopsy: Advanced 

 
1 
13 
3 
0 
10 

Bone Scan 
     Positive 
     Negative 
     Unknown 

 
10 
14 
3 

PSA Median 63 (7.6 - 9604) 
Age Median 77 (61 - 93) 

	
The seven-transcript signature was not detected as a significant predictor of progression 

in Nanostring 2 (Cox-regression model; p = 0.612, HR = 0.640 (95% CI: 0.1118 - 

3.669). This is confirmed by looking at Kaplan Meier plots of the combined signature 

(Figure 4.3) and the individual probes (Figure 4.4). 
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Figure 4.3 Kaplan Meier plot showing the seven transcript signature on NanoString 2 data. The 
signature was separated using k-means. 

	
Figure 4.4 Individual Kaplan Meier plots for the seven transcripts involved in the signature 

To remove any potenital batch effect, ComBat was used to normalise the second 

NanoString data to the pilot study data. Similar results were obtained (p = 0.62, HR = 

0.68 (95% CI: 0.15 – 3.18)). Overall Nanostring 1 and 2 are similar. 
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4.4 Identifying novel progression related transcripts in the 

NanoString 2 data 

NanoString 2 data contained expression levels from 110 more probes than NanoString 1 

data. Therefore, I identified novel progression related transcripts in the NanoString 2 

data.  Expression of eleven transcripts were identified as significant predictors of 

progression using Cox regression models (p < 0.05), but none were significant after 

multiple testing correction (Table 4.21). Grouping expression into high and low using 

using k-means (section 2.5.3), found MSMB to be significant even after multiple testing 

correction (p = 0.22x10-09, adjusted p = 1.54x10-06). Ten other transcripts were 

significant using this method prior to multiple testing correction (p < 0.05; Table 4.22). 

Log rank test was also performed using the median as a separation cut off for high and 

low-expression, ten transcripts were observed to be significant prior to multiple testing 

correction (p < 0.05; Table 4.23).  

	
Table 4.21 Cox regression modelling identified ten probes that were predictors of 

progression after HT. None were significant after multiple testing correction. 

Probe p-value Adjusted p-value Coefficient 
MSMB 0.0037 0.59 0.7 
MIR4435_1HG 0.009 0.98 1.28 
BTG 0.017 0.98 1.34 
PCSK6 0.021 0.98 0.48 
MCTP1 0.028 0.98 1.18 
IGFBP3 0.032 0.98 1.2 
PCA3 0.036 0.98 0.82 
SEC61A1 0.039 0.98 1.19 
CLIC2 0.04 0.98 1.65 
STOM 0.048 0.98 1.15 
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Table 4.22 Log-rank test identified probes that could significantly predict progression on 

HT. K-means was used to separate into high- and low-expression of each probe. 

Probe p-value Adjusted p-value Χ2 
MSMB 9.22x10-09 1.54x10-06 33 
BTG 0.001 0.2 10.4 
CLIC2 0.003 0.5 8.6 
MKi67 0.006 0.9 7.7 
IGFBP3 0.02 0.99 5.8 
PCSK6 0.02 0.99 5.7 
APOC1 0.02 0.99 5.5 
COL10A1 0.02 0.99 5.4 
KLK4 0.02 0.99 5.2 
MIC1 0.03 0.99 4.6 
SSPO 0.04 0.99 4 
	
Table 4.23 Log-rank test identified probes that could significantly predict progression on 

HT. Median was used to separate into high- and low-expression of each probe. 

Probe p-value Adjusted p-value Χ2 
CLIC2 0.005 0.87 7.8 
PCA3 0.008 0.99 7.1 
PPAP2A 0.008 0.99 7 
SEC61A1 0.012 0.99 6.3 
IGFBP3 0.015 0.99 5.9 
HIST1H2BG 0.016 0.99 5.8 
TBP 0.02 0.99 5.4 
PCSK6 0.022 0.99 5.3 
BTG2 0.031 0.99 4.6 
STOM 0.033 0.99 4.6 
	
There were common transcripts identified in all three different methods: BTG2, CLIC2, 

IGFBP3, and PCSK6. Variable selection using LASSO and stepwise regression 

identified an optimal model of BTG2, CLIC2 and PCSK6 (Table 4.24). These three 

transcripts were also identified as having the greatest importance in a Random Forest 

model (Table 4.24). 
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Table 4.24 Optimising models using the four probes common to log-rank and cox tests. The 

cox model had an overall p-value: p = 0.0013. 

 Lasso Beta 
value 

Cox p-value Cox HR Random Forest – Relative 
importance 

BTG2 0.1 0.2 1.17 1 
CLIC2 0.43 0.02 1.88 0.49 
PCSK6 -0.7 0.003 0.35 0.21 
IGFBP3 - - - -0.24 
	
4.5 Hormone Therapy Predictor using KLK2 ratio data on Nanostring 

1 

For NanoString 2 data I found that refactoring the data using KLK2 ratio improved the 

ability to distinguish clinical subtypes (section 5.7.5). Therefore, here I will develop an 

optimal predictor of progression after HT in the Nanostring 1 data after refactoring 

using KLK2. Differential expression was assessed using the Mann-Whitney U test at 

three time points: initial non-responders, relapse within 6 months, within 12 months and 

within 24 months (Table 4.25). Cox regression models (section 2.8.2) identified nine 

transcripts who’s expression were significantly predictors of progression (Table 4.26; 

p < 0.05; multiple testing correction not applied). Log-rank test on expression levels 

classified as high or low (threshold determined using k-means, found AURKA to be a 

significant predictor of progression prior to multiple testing correction only (p = 0.034, 

Benjamin-Hochberg adjusted p = 0.99). Log-rank test when using median for separation 

into high and low expression, found four transcripts to be differentially expressed 

between those that relapsed and those that continue to respond to HT (Table 4.27; p < 

0.05; no multiple testing correction applied; Figure 4.7). 
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Table 4.25 Mann-Whitney U test identifies probes differentially expressed between those 

that have relapsed and those that are still responding to HT at different time periods 

(initial response relapse, within 6 month relapse, with 12 month relapse and within 24 

month relapse.  

Initial	Response	and	After	6	months:	
Probe p-value Adjusted p-value Log2(fold change) 
KLK3 exons 2-3 0.016 0.92 -0.05 
PSGR 0.029 1 -0.09 
B2M 0.034 1 -0.06 
AURKA 0.047 1 -0.11 
	
After	12	months:	
Probe p-value Adjusted p-value Log2(fold change) 
PSGR 0.008 0.47 0.08 
FOLH1 0.022 0.98 0.04 
KLK3 exons 2-3 0.028 0.98 0.04 
B2M 0.038 0.98 0.06 
	
After	24	months:	
Probe p-value Adjusted p-value Log2(fold change) 
PECI 0.01 0.56 0.03 
PSGR 0.016 0.88 0.06 
DLX1 0.018 0.97 -0.05 
ALAS1 0.045 1 0.05 
	
Table 4.26 Cox identified probes that are differentially expressed in NanoString 1 data 

normalised by KLK2 ratio. 

Probe p-value Adjusted p-value Coefficient 
CAMKK2 0.015 0.86 2.22 
UPK2 0.027 0.98 1.49 
KLK3 exons 2-3 0.031 0.98 3.15 
PECI 0.031 0.98 2.27 
HPN 0.031 0.98 2.48 
KLK4 0.034 0.98 3.6 
GAPDH 0.036 0.98 2.4 
ALAS1 0.038 0.98 2.15 
KLK3 exons 1-2 0.048 0.98 2.39 
	
Table 4.27 Log rank (using median for separating high and low expression) identified 

probes that differ between response to HT. 

Probe p-value Adjusted p-value Χ2 
STEAP4 0.007 0.32 7.7 
PECI 0.009 0.49 6.8 
SERPINB5 0.013 0.72 6.1 
TBP 0.037 0.99 4.4 
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PECI was identified in all comparisons; Mann-Whitney U, Cox and Log-rank (using 

median for separation). Variable selection on all fourteen transcripts that were identified 

as candidate predictors (Table 4.25, Table 4.26, Table 4.27) were performed. Lasso 

identified three transcripts: CAMKK2, DLX1 and UPK2 (Table 4.28); stepwise 

regression identified six transcripts of which only UPK2 was common to Lasso (Table 

4.29); and using Random Forest three of the top five important genes were found in 

either the Lasso or Stepwise regression results (Table 4.30). 

Table 4.28 Lasso selects three transcripts for HT progression prediction in KLK2 adjusted 

data. 

Transcript Beta coefficient 
CAMKK2 0.232 
DLX1 -0.028 
UPK2 0.099 
Cox model: p – value = 0.2, HR = 0.999, 95% CI = 0.998 - 1 
		
Table 4.29 Stepwise regression selects six probes for early HT relapse prediction in KLK2 

adjusted data. 

Transcript p-value HR 
B2M 0.096 2.713 
FOLH1 0.042 0.246 
GAPDH 0.122 0.102 
HPN 0.083 5.504 
PSGR 0.027 2.773 
UPK2 0.039 1.955 
Cox model: p – value = 0.039, HR = 86.54, 95% CI = 2.435 - 3076 
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Table 4.30 Random forest shows the importance of each transcript in distinguishing early 

HT relapse in KLK2 adjusted data. 

Transcript Importance Relative Importance 
PSGR 0.035 1.00 
PECI 0.035 0.99 
HPN 0.007 0.20 
KLK3 exons 1-2 0.006 0.18 
CAMKK2 0.006 0.16 
ALAS1 0.006 0.16 
FOLH1 0.005 0.13 
DLX1 0.003 0.09 
AURKA 0.0002 0.01 
KLK3 exons 2-3 -0.0002 -0.01 
UPK2 -0.0007 -0.02 
GAPDH -0.001 -0.03 
B2M -0.006 -0.02 
KLK4 -0.007 -0.19 
	
Kaplan Meier plots (section 2.8.1) were produced using a k-means determined threshold 

between high and low expression (Figure 4.5). Applying variable selection on this 

dichotomised data, Lasso identifies CAMKK2, PSGR and UPK2 (Table 4.31); stepwise 

regression selects AURKA, CAMKK2, KLK3 exons 1-2 and UPK2 (Table 4.32); whilst 

random forest suggests that PSGR is of most importance, followed by UPK2 and 

CAMKK2 (the same three transcripts selected via Lasso) (Table 4.33). CAMKK2, PSGR 

and UPK2, which were selected by Lasso and also the three most important transcripts 

according to Random forest, produce a significant cox model (p = 0.007, HR = 1.0028, 

95% CI = 1.001 - 1.005). 
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Figure 4.5 Kaplan Meier plots (expression separated via k-means) for the fourteen transcripts 
identified via Mann Whitney U, Cox and log-rank tests for early HT relapse. 
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Figure 4.6 Kaplan Meier plots (expression separated via median) for the fourteen transcripts 
identified via Mann Whitney U, Cox and log-rank tests for early HT relapse. 
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Table 4.31 Lasso (with glm) selects three transcripts from the five shown to be differential 

from Kaplan Meier plots using k-means for separation. An overall Cox model using these 

three probes proves to be significant (p = 0.007). 

Transcript Beta coefficient 
CAMKK2 0.31 
PSGR 0.06 
UPK2 0.18 
Cox model: p – value = 0.007, HR = 1.0028, 95% CI = 1.001 - 1.005 
	
Table 4.32 Step (with Cox) selects four transcripts from the five shown to be differential 

from Kaplan Meier plots using k-means for separation. An overall Cox model using these 

four probes is not significant (p = 0.07). 

Transcript p-value HR 
AURKA 0.13 1.25 
CAMKK2 0.04 3.51 
KLK3 exons 1-2 0.14 0.13 
UPK2 0.06 2.10 
Cox model: p – value = 0.07, HR = 1, 95% CI = 1-1 
	
Table 4.33 Random forest shows the importance of each of the five transcripts identified 

via Kaplan Meier plots using k-means for separation. The top three important transcripts 

are identical to the Lasso output.  

Transcript Importance Relative Importance 
PSGR 0.098 1 
UPK2 0.018 0.179 
CAMKK2 0.014 0.137 
AURKA 0.003 0.031 
KLK3 exons 1-2 -0.002 -0.017 
	
Lasso has consistently selected CAMKK2 and UPK2 along with one other transcript 

(DLX1 when all that showed significance were used, PSGR when only those that 

appeared to be significant in k-means separated Kaplan Meier plots). This consistency 

of selecting CAMKK2 and UPK2 when the input variables are altered shows 

reproducibility. Though the model including DLX1 was not significant, the model 

including PSGR was the most significant model identified (p = 0.0023, HR = 1.0028, 

95% CI = 1.001 - 1.005).  CAMKK2 was always identified as important by Random 

forest.  Step (with Cox) and Random Forest was not very consistent in creating models 
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with similar variables. Therefore, the most consistent and significant cox regression 

model identified contained CAMKK2, PSGR and UPK2 (p = 0.007, HR = 1.0028, 95% 

CI = 1.001 - 1.005).  

	

4.5.1 Validation of the final model on KLK2 ratio NanoString 2 data 

The second set of NanoString data also refactorised using the KLK2 ratio method was 

used to test the CAMKK2, PSGR and UPK2 Cox regression mode identified in 

NanoString 1 data. The model did not reach statistical significance as a predictor of 

progression (p = 0.4, HR = 1.000774 (95% CI: 0.999 – 1.003). Looking at the Kaplan 

Meier plots of the transcripts individually (Figure 4.7), CAMKK2, PSGR and UPK2 

showed better survival with low expression in the pilot study, yet in the second set of 

data, both CAMKK2 and PSGR now show better survival with higher expression. 

	

 

Figure 4.7 Kaplan Meier plots for the three transcripts in the model for KLK2 adjusted hormone 
therapy data: CAMKK2, PSGR and UPK2. 

4.6 Conclusion 

Stratified medicine enables the optimal treatment for cancer patients to be selected and 

improve overall survival. There have been successes in breast208 and lung cancer209,210, 

for example. However, no such robust testing and stratification exists for men with PCa 

and the route of treatment is not always clear. In particular, it is hard to predict the 
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response to treatments such as radiotherapy, hormone therapy and prostatectomy and 

determine whether active surveillance is a better option than treatment. These issues are 

key research areas for the clinical management of PCa patients.  

In this chapter, I investigated if expression profiles of urinary microvesicles could be 

used to estimate how long a patient responded to HT. I successfully built a number of 

different models based on the normalisation method and dataset used. To produce a 

non-invasive test for the identification of those who will relapse early on HT, and thus 

could benefit from additional treatment, would be ground breaking for PCa patients. 

Depending on how the NanoString data was normalised, we saw correlation between 

two signatures and HT relapse.  

Under the Nanostring 1 dataset with standard normalisation (via NanoString’s positive 

probes, section 2.3.1), the optimal predictor of progression in HT patients included the 

expression of probes AGR2, DLX1, KLK2, NAALADL2, AR exons 4-8, PPAP2A and 

AMACR (Cox-regression model, p = 2.3x10-05, HR = 0.043). This seven-probe signature 

was also a significant independent predictor of progression improving on other clinical 

factors, initial PSA, Gleason score, initial bone scan results and age (Table 4.18, Table 

4.19). 

After KLK2 adjustment of the NanoString 1 data (section 2.1.1), we selected model 

including CAMKK2, PSGR and UPK2 that could significantly separate those that 

progressed to CPRC and those that continued to respond to HT. This model was 

significant alone (p = 0.0023, HR = 1.0028, 95% CI = 1.001 - 1.005), which was again 

more significant than other clinical factors including initial PSA, Gleason score, initial 

bone scan results and age (Table 4.18).  

Unfortunately, both of these models were not validated in the NanoString 2 dataset. 

There are many possible reasons why the models were not validated but one factor is 

that there are a relatively small number of patients in this cohort and with a relatively 

short feedback. This means that the models are very sensitive to outliers in the data. 

There are also differences between the Nanostring datasets: different centres ran the 
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experiment, there were different probesets, newer samples could have been collected 

slightly differently, and the cohorts could be somewhat different. It appears the data is 

very sensitive with no candidate probes being common before and after factorisation. 

This is common to many expression-based biomarker studies. There is a lack of 

robustness with proposed tests very rarely being validated in different cohorts211. It 

should also be remembered that this is a targeted based assay, the optimal probes to 

distinguish treatment outcome may not be included. 

In probes that were unique to the second NanoString data set, the optimal model for 

determining time to progress for HT patients contained BTG2, CLIC2 and PCSK6. 

In this chapter I have shown the utility of urine derived microvesicle expression profiles 

for the prediction of outcome after treatment. This is a proof of concept that would 

require a much larger series with longer feedback to find the best combination of 

transcripts and become a usable test. 
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5 

        NanoString Data 
Analysis 2 

5.1 Summary 

The Movember GAP1 Urine Biomarker Consortium had multiple collaborators working 

on the identification of urinary biomarkers for the risk-stratification of PCa. Our 

laboratory is specifically interested in the RNA expression changes in PCa that are 

detectable within urinary cell sediments and extracellular vesicles (EVs) from samples 

collected at multiple centres. The aims of my study were to see if I could identify robust 

models of expression profiles using data obtained from NanoString that could answer 

important clinical questions in PCa management: can I detect PCa from non-PCa 

samples and can I risk stratify PCa, both without the need for biopsy. I therefore, 
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investigated different methods for normalisation of this urinary EV derived data with 

the aim to build optimal models from the expression of 167 markers for risk 

stratification and detection of cancer. 

I identified robust models for the detection of PCa from non-PCa samples 

(AUC = 0.851) and of high-risk PCa from non-PCa samples (AUC = 0.897). Models to 

predict risk stratification between samples with no evidence of cancer (CB) and cancer 

in order of severity (CB->L->I->H) were also produced (AUC = 0.709). My models 

used many of the already published transcripts used in whole urine assays but also 

included novel transcripts that may be present in EV fractions. 

	

5.2 Introduction 

NanoString expression analysis of 167 gene-probes was applied to cell and extracellular 

vesicle (EV) fractions of urine from prostate cancer patients to form the NanoString 2 

data set. In this chapter, quality control and technical trouble shooting (section 2.3) is 

applied to the whole data set, before performing exploratory analysis using just the EV 

samples. Investigation of the cell fraction samples can be found in chapter 6. 

5.2.1 The Research Gap 

Risk stratification is currently based on PSA, Gleason score and T stage but has the 

potential to be improved by using a novel biomarker panel. This could help tailor 

patients to treatment pathways and determine, at diagnosis, the aggressiveness of 

disease. The PCA3 test is an established biomarker that is capable of predicting PCa on 

a second biopsy. Therefore, showing the utility of the use of urine in PCa diagnostics 

and prognostics, and has shown some minor improvements to risk stratification. In 

chapter 3, I performed a pilot project exploring the use of NanoString applied to genetic 

material obtained from urinary EVs and showed that it was capable of capturing 

clinically relevant expression profiles.  
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5.2.2  Aims 

In this chapter I used NanoString technology to investigate the RNA expression level 

changes of 167 target sequences within EVs extracted from urinary samples collected at 

multiple centres world-wide as part of the Movember study. The aims of this study are: 

1. To	identify	better	processing	techniques	for	the	EV	NanoString	data	

2. To	determine	whether	EV	expression	profiles	are	robust	across	

variable	sample	cohorts	collected	from	different	centres.	

3. To	identify	optimal	models	built	from	the	expression	of	167	markers	

for	risk	stratification	and	detection	of	cancer.	

5.2.3 The Probe Targets 

A panel of experts selected the 167 sequence targets used as probes. The probes were 

primarily selected from publications that highlighting genes overexpressed in prostate 

tumour tissue. 28 gene probes were selected from Next Generation Sequencing data of 

20 urine EV RNA samples from the NNUH. Additionally, some prostate tissue specific 

controls and controls for kidney, bladder and blood were also included. See 

Supplementary Table 1 for further details.  

5.2.4 Classification of prostate cancer patient samples 

NanoString data from 864 samples was obtained, 95 samples were from the cell 

fraction. 756 samples remained after quality control (Section 5.3.2). Samples were 

divided in to a training set and a test set based on a 2:1 ratio while maintaining the 

proportions of each PCa risk category (Table 5.1) and sample collection centre (Table 

5.2). The median age and PSA at diagnosis have been recorded for each clinical 

category within the training and tests, respectively (Table 5.2.3).  
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Table 5.1 Classification and Frequency of the sample types based on NICE criteria40. The 

quantity of samples for each clinical group are provided as well as the clinical description 

of the group in terms of Gleason score, PSA level and T stage. 

Classification: NICE Groupings   
Sample Class Description Number 

of 
Samples 

Number of 
Training 
Samples 

Number of 
Test 
Samples 

Advanced  Advanced and Hhh 
(G8-10 PSA>100) and 
Hh (G8-10 PSA<100) 

31 21 10 

High-risk  HL= G7 PSA>20  107 72 35 
Intermediate-risk I= G3+4 PSA<20 and 

IL= G6 PSA>10 
214 142 72 

Low-risk L= Low G6 PSA<10 156 104 52 
Abnormal 
 

High PSA no Bx, 
Prostatitis, Raised PSA 
negative Bx, HGPIN 

137 
 

92 
 

45 
 

CB CB – no evidence of 
cancer 

111 73 38 

Total  756 504 252 
	
Table 5.2 Sample collection-site breakdown of the EV samples from NanoString2. 

Location Training Set Test Set Number of Samples 
Dublin 16 8 27 
ICR 84 41 130 
UEA 323 163 496 
USA 62 23 103 
Total   756 
	
Table 5.3 Median age and PSA of each clinical category within the training and test datasets. 

	 Training	Set	 Test	Set	
	 Median	age	 Median	PSA	 Median	age	 Median	PSA	
Advanced	 78	 273.5	 82	 285.75	
High-risk	 69	 22.35	 73.5	 23.7	
Intermediate-
risk	

69	 9.2	 67	 8.45	

Low-risk	 64.5	 6.1	 64	 5.5	
Abnormal	 67	 8.19	 66	 7.7	
CB	 63	 1.4	 64.5	 1.235	
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5.3 Data Preprocessing and Technical Variation 

5.3.1 Normalisation and Background correction 

There were six positive-control non-human ERCC probes included in the NanoString 

series and these were used to normalise the data for all samples as per the NanoString 

manual. As for the pilot data set, a large proportion (33%) of data points were less than 

zero after negative control correction. Therefore negative control correction was not 

used in this analysis. As shown in NanoString 1 (section 3.3.4) Log2 transformation 

(section 2.3.3) was used to obtain a more normal distribution in the data (Figure 5.1). 

The Log2 data did not follow a normal distribution using the Shapiro-Wilk test (Table 

5.4), this suggests we should use non-parametric methods for analysis.  

	  



CHAPTER	5:	NANOSTRING	DATA	ANALYSIS	2	
	

	 214	

 

 

 

Figure 5.1 A) Positive control normalised data. B) Positive control normalised and Log2 transformed 
data. The data shows a more normal distribution after Log2 transformation.  
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Table 5.4 Shapiro-Wilk tests show that Log2 data is not normally distributed. 

 Log2 transformed 
 W p-value Normally 

Distribute
d 

The first set of randomly selected 29 samples, all probes 0.96 < 2.2x10-

16 
No 

The second set of randomly selected 29 samples, all 
probes 

0.97 < 2.2x10-

16 
No 

The third set of randomly selected 29 samples, all probes 0.98 < 2.2x10-

16 
No 

The fourth set of randomly selected 29 samples, all 
probes 

0.97 < 2.2x10-

16 
No 

The fifth set of randomly selected 29 samples, all probes 0.98 < 2.2x10-

16 
No 

The sixth set of randomly selected 29 samples, all probes 0.97 < 2.2x10-

16 
No 

    
The first set of randomly selected probes, all samples 0.99 < 2.2x10-

16 
No 

The second set of randomly selected probes, all samples 0.99 2.205x10-

15 
No 

The third set of randomly selected probes, all samples 0.94 < 2.2x10-

16 
No 

The fourth set of randomly selected probes, all samples 0.96 < 2.2x10-

16 
No 

The fifth set of randomly selected probes, all samples 0.94 < 2.2x10-

16 
No 

The sixth set of randomly selected probes, all samples 0.94 < 2.2x10-

16 
No 

	

5.3.2 Quality of Normalisation  

The quality of the data, and its normalisation and transformation, was assessed using 

NanoStringNorm (section 2.3.2.1) and NanoStringQCPro (section 2.3.2.2). Overall the 

quality was good but a few samples and a few probes need to be treated with caution. 

The samples identified by the IQR/median plot were removed (A210, A216, A517, 

C147_1, M_97_5, M_138_7, M_149_7) along with some CBN samples, which were 

identified through NGS analysis (not shown as this was not performed by me).  

	

5.3.2.1 NanoStringNorm 

The negative controls had both low means and standard deviations and the positive 

controls showed low standard deviation, as expected. The majority of the probes 
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clustered around the loess curve of best fit (96 %) but a few probes were highlighted 

due to high means and standard deviation: KLK4, RPS10, RPLP2, M5MB, and RPS11. 

Whilst AR exons 4-8 and ITPR1 were highlighted due to low mean and standard 

deviation.  

If a sample has many missing values this could be caused by a technical failure or as a 

result of too little input material. There were a few samples that seemed to have missing 

values in the normalised data (A216, A210, A196, M_138_7, M_140_6, M_147_3, 

M_92_5, M_97_5 and C147_1). These were watched carefully throughout further 

analyses. 

Each NanoString cartridge holds twelve samples. NanoStringNorm uses a t-test to 

identify cartridges that have a significantly different means, standard deviation and 

levels of positive controls in comparison to the other cartridges. Cartridges 22, 23, 58, 

59, 60, 61, 62, 63 and 64 had higher means and standard deviation, whilst cartridges 15, 

29, 36, 37, 43 and 65 through 72 had lower detection levels of positive controls.  

Looking into the normalisation factors using NanoStringNorm, a number of samples 

had normalisation parameters that extended beyond 100% difference from the mean and 

could be influential outliers: (Supplementary Table 2). 

5.3.2.2 NanoStringQCPro 

NanoStringQCPro provided information on the binding density, field of view (FOV) 

and the positive controls used for initial normalisation. NanoString is only capable of 

reading un-overlapped barcodes when digitally scanning the image produced. Twenty-

eight samples were identified as having overlapping barcodes typically caused by 

excess RNA input (Supplementary Table 2). No samples were identified as having less 

than 80% FOV, meaning there were no technical issues due to loading of cartridges 

(e.g. bubbles, or insufficient oiling).  

The slope in the positive control data shows how well an increase in input is reflected 

by an increase in counts, measured using a linear model (log(counts) ~ log(input)). 
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Three samples were highlighted as outliers from the model: M_122_2, M_127_6 and 

M_131_4. Two of these samples also showed high IQR of positive controls: M_127_6 

and M_131_4. NanoString recommends a positive scaling factor between 0.3 and 3. A 

scaling factor above this range indicates low performance of that lane during the 

NanoString counting protocol. Six samples’ lanes were flagged as such (M_95_1, 

M_97_6, M_140_6, M_144_1, M_75_3 and M_147_3) and thus were considered with 

caution.  

5.3.3 Experimental and Technical Investigations 

5.3.3.1 Sample and Centre Investigations 

Comparing the median with the IQR can unveil samples with low medians and/or IQRs 

(both of which can be problematic). Some samples were identified as such: A210, 

A216, A517, C147_1, M_97_5, M_138_7, M_149_7 (Figure 5.2), These samples were 

removed from the analysis. PCA identified a clear clustering of the cell sediment 

derived samples compared to EV derived samples from multiple centres (Figure 5.3), 

further highlighting their need to be analysed separately (Chapter 6). PCA on EV 

derived samples showed some clustering based on location of origin (Figure 5.4). There 

is evidence of significant differences in overall expression between some origin centres 

(Mann Whitney U tests; p < 0.05; Table 5.5). However, the average Log2 expression 

appears to be fairly uniform across the centres (Figure 5.5). 
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Figure 5.2 Median Vs. IQR of samples on the second NanoString study. Six samples were identified 
with low medians and/or IQRs, which could be problematic to further analyses.  

5.3.3.2 NanoString Cartridges 

NanoStringNorm showed significant differences between the mean and standard 

deviation of the normalised data between some cartridges; indicating there might be 

batch effects. Cartridge dependent variations were therefore examined using boxplots 

(Figure 5.6) and there was significant association between mean expression per sample 

and cartridge (Kruskal-Wallis rank sum test: p < 2.2x10-16, χ = 329.25). As samples 

from the same collection centres were loaded consecutively, there was no surprise that 

there was a significant association between centre and cartridge also (Chi-square test; p-

value < 2.2x10-16, χ = 2036.5). As location was also significantly associated with 

median expression of samples, it was not a leap to believe this issue with cartridge 

discrepancies was due to location. 
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Figure 5.3 DNA extracted from EVs was collected from four different centres (Dublin, ICR, UEA, 
and the USA). DNA extracted from the cell pellet was only collected at UEA (UEA_Cell). PCA plot 
clearly identifies cell sediment derived samples as a separate cluster from EV derived samples.  

 

Figure 5.4 PCA plot of only EV derived DNA shows evidence of collection-centre of origin based 
clustering. 

	
Table 5.5 Expression values from different collection-centres of origin compared by Mann 

Whitney U tests show that all centres are significantly different. 

 USA ICR DUBLIN 
UEA < 2.2x10-16 < 2.2x10-16 2.311x10-07 
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ICR - - 1.704x10-11 
	

	
Figure 5.5 Average Log2 expression across centres shows similar expression levels.  

 

Figure 5.6 Boxplots showing average expression across cartridge and position on cartridge are 
similar and are showing no batch effects.  
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Figure 5.7 PCA plot of EV derived samples, showing a lack of clustering by cDNA yield. 

5.3.3.3 RNA Amplification to cDNA 

As 100 ng of RNA or cDNA is required for NanoString analysis, and the amounts of 

EV RNA harvestable from urine were limiting in a large proportion of samples, 15-

20ng RNA from each sample was amplified using a Nugen Ovation WTA2 cDNA 

amplification kit. The amount of cDNA obtained after amplification (in µg) was 

investigated for clustering affects using PCA (Figure 5.7). cDNA yields were split into 

groups; <1 µg, 1-1.9µg, 2-2.9µg, 3-3.9µg, 4-4.9µg, 5-5.9µg, 6-6.9µg, 7-7.9µg and >8µg. 

Mild clustering affects were observed, and a significant correlation was found between 

cDNA yield and median log2 expression per sample (p < 2.2x10-16, r = 0.44, Pearson’s 

correlation). The distribution of clinical categories within each amplification yield 

group was not statistically significant; (χ = 125.3, p > 0.05, χ2 test (section 2.4.4)).  

5.3.4 ComBat – Removing collection-centre based significance  

Batch effects caused by location of sample origin (centre) were accounted for by using 

the ComBat function of the sva package. PCA was then used to visualise clustering in 

the post-ComBat data (Figure 5.9). There was no significant difference between median 

Log2 expression across location (Kruskal-Wallis rank sum test: p = 0.6488, χ = 1.647). 
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Figure 5.8 Boxplots show the log2 expression across each sample, coloured by location before and 
after the application of ComBat. 

 

Figure 5.9 PCA plots of post-ComBat data, shows no clustering by location of origin. 

5.3.5 Correlating Gene Probes 

Pearson’s correlation was used to identify correlating probes (Figure 5.10). There were 

a number of probes that correlated with R > 0.8. The correlations were: CACNA1D with 

GABARAPL2 (R = 0.965). ERG3’ exons 4-5 with TMPRSS2:ERG (R = 0.843). 

GABARAPL2 with CACNA1D, MED4 and RPS11 (R = 0.965, R = 0.805, and R = 
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0.804, respectively). RPLP2 with RPS11 and TWIST1 (R = 0.859 and R = 0.814, 

respectively). RPS10 with RPS11 (R = 0.857). RPS11 with GABARAPL2, RPLP2 and 

RPS10 (R = 0.804, R = 0.859, and R = 0.857, respectively). TWIST1 with RPLP2 

(R = 0.814). Whilst KLK3 exons 1-2 and KLK3 exons 2-3 correlated with each other 

(R = 0.839 and R = 0.839, respectively).  

These data correlations were encouraging as many of them fitted with published 

expression data, for example, expression of  TMPRSS2:ERG and ERG3’, and the two 

KLK3 probes. RPL11 is known to be co-expressed with RPL10.  

	

	
Figure 5.10 Heatmap showing correlation between NanoString Probes in post-ComBat data. R-values 
between 0 (darker) and 1 (lighter). Correlations with R > 0.8 have been highlighted. 
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5.3.6 Comparison of NanoString2 with NanoString1 

Comparing	the	forty-nine	common	probes	across	the	one	hundred	and	
thirty	one	common	samples	between	NanoString1	and	NanoString2	yielded	
three	probes	with	a	Pearson’s	correlation	R<0.6:	Timp4	(R	=	0.14),	
TMPRSS2:ERG	(R	=	0.18),	and	TERT	(R	=	0.38).	Twenty-one	of	the	probes	
showed	high	correlation,	with	R>0.9	(	
Table 5.6). 

	
Table 5.6 Pearson's Correlation between the 49 common probes and 131 common samples 

between NanoString1 and NanoString2. 

Probe R Probe R Probe R 
HOXC6 0.98 CLU 0.92 HPN 0.83 

ERG3’exons 6-7 0.97 
KLK3 exons 2-
3 0.92 GAPDH 0.83 

SPINK1 0.97 
KLK3 exons 1-
2 0.92 HOXC4 0.82 

SULT1A1 0.97 CAMKK2 0.91 AURKA 0.82 
KLK2 0.96 STEAP4 0.90 BRAF 0.81 
AR exons 4-8 0.96 ANPEP 0.90 PCA3 0.80 
KLK4 0.95 AGR2 0.90 PPAP2A 0.78 
AR exon 9 0.95 B2M 0.89 IMPDH2 0.78 
UPK2 0.95 PECI 0.89 OGT 0.77 
FOLH1 0.95 PTPRC 0.89 CDC20 0.71 
ALAS1 0.94 DLX1 0.89 MKi67 0.67 
AMACR 0.94 MDK 0.89 ERG5’ 0.63 
TDRD 0.93 MMP26 0.87 TERT 0.37 
SLC12A1 0.93 NAALADL2 0.87 TMPRSS2:ERG 0.18 
SERPINB5 0.93 TBP 0.86 Timp4 0.14 
GOLM1 0.93 CDKN3 0.85   
STEAP2 0.93 HPRT 0.83   

5.4 Identification of Prostate and Cancer Specific Transcripts and 

DRE relevance 

5.4.1 Kallikrein identification 

NanoString median signals for the KLK2, KLK3 exons 1-2, KLK3 exons 2-3 and KLK4 

probes were again at significantly higher levels than those for the control tissue probes 

for blood, kidney and bladder (PTPRC, SLC12A1 and UPK2 respectively) (Mann 

Whitney U test: p < 2.2x10-16 in each case, Figure 5.11). This was seen previously in 

NanoString1 (section 3.4.1) and shows that some of the material collected did originate 
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from the prostate. Once again, similar expression levels and a correlation, is observed 

between the two KLK3 probes (Pearson’s correlation: R = 0.84, p < 2.2x10-16).  

 

Figure 5.11 KLK2, KLK3 and KLK4 expression is higher than the tissue specific controls for blood, 
kidney and bladder. The two KLK3 probes are highly correlated (Pearson’s correlation: R = 0.84, p 
<2.2x1016). 

5.4.2 TMPRSS2:ERG Identification 

Similar results can be seen in regards to the TMPRSS2:ERG fusion gene, the ERG3’ 

probes and ERG5’, as in NanoString1 (section 3.4.2). TMPRSS2:ERG fusions, ERG 3’ 

and ERG 5’ expression are linked to PCa, and are therefore expected to be seen more 

prevalently in samples obtained from men with known PCa compared to those with no 

clinical evidence of PCa (CBN samples) (Mann Whitney U test between respective 

probe’s expression values and local cancer (low-, intermediate- and high-risk 

cancer)/CBN groupings. (TMPRSS2:ERG: p < 2.2x10-16, ERG 3’ exons 4-5: p < 2.2x10-

16 ; ERG 3’ exons 6-7: p < 2.2x10-16 ; and ERG 5’: p = 1.572x10-08). The density plots 

for TMPRSS2:ERG	and	the	ERG3’	probes	(Figure 5.12) have two peaks which would be 

compatible with an on/off pattern for that probe suggesting that approximately 50% of 

the samples from men with cancer have detectable TMPRSS2:ERG fusions (which is in 

agreement with the literature available (section 1.4.6) and the results from NanoString1, 

(section 3.4.2)).  
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A larger proportion of the CBN and raised PSA negative Bx (S) samples do not have 

high expression of TMPRSS2:ERG, compared to the cancer samples. The cancer 

samples across all clinical categories and abnormal (including HG:PIN, prostatitis and 

atypia samples) have fewer samples with lower TMPRSS2:ERG expression. The CBN 

samples also show lower numbers with high TMPRSS2:ERG expression, however there 

are a few (as expected).  

The ERG5’ probe, which is not part of the TMPRSS2:ERG fusion transcript, is not 

significantly different between clinical risk categories. This is also seen in NanoString1 

(section 3.4.2). These results suggest that the second set of NanoString data is detecting 

transcripts accurately and that a proportion of the genetic material identified is coming 

from PCa or HG-PIN, again.  
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Figure 5.12 Density plots and Boxplots showing the expression changes of TMPRSS2:ERG, two ERG 
3' probes, and ERG 5' across clinical categories. 

5.4.3 PCA3 Test 

As in the NanoString1 (section 3.4.3) data, the PCA3 test was significantly different 

between PCa (Advanced, high-risk, intermediate-risk and low-risk) samples and CBN 
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samples (Kruskal-Wallis rank sum test: p = 6.2x10-09, χ2 = 33.76 and Mann Whitney U 

test: p < 2.2x10-16, Figure 5.13). There are some significant differences across clinical 

categories also (p < 0.05; Mann-Whitney U test; Table 5.7).  

 

Figure 5.13 PCA3 Test on post-ComBat NanoString2 data (PCA3 transcript expression/average 
KLK3 transcript expression * 1000) 
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Table 5.7 Mann Whitney U test of PCA3 Test scores between the different clinical 

categories. 

p-value Advanc
ed 

High-
risk 

Intermedia
te-Risk 

Low-
Risk 

High 
PSA 
negative 
Bx 

Abnorma
l 

CBN 

Advanced  0.657 0.756 0.255 0.003 
(Up in 
A) 

0.095 0.021 
(Up 
in A) 

High-Risk 0.657  0.126 0.004 
(Up 
in H) 

3.14x10-

10  
(Up in 
H) 

5.5x10-04 

(Up in 
H) 

1.3x1
0-07 

(Up 
in H) 

Intermediat
e-Risk 

0.756 0.126  0.024 
(Up 
in I) 

2.7x10-12 

(Up in I) 
0.001 
(Up in I) 

1.2x1
0-08 

(Up 
in I) 

Low-Risk 0.255 0.004 
(Up in 
H) 

0.024  
(Up in I) 

 3.4x10-07 
(Up in L) 

0.101 1.0x1
0-04 

(Up 
in L) 

High PSA 
negative 
Bx 

0.003  
(Up in 
A) 

3.14x1
0-10 

(Up in 
H) 

2.7x10-12  

(Up in I) 
3.4x1
0-07 

(Up 
in L) 

 0.029 
(Up in 
Abnorm
al) 

0.408 

Abnormal 0.095 
(Up in 
A) 

5.5x10-

04 (Up 
in H) 

0.001  
(Up in I) 

0.101 0.029 
(Up in 
Abnorm
al) 

 0.189 

CBN 0.021 
(Up in 
A) 

1.3x10-

07 (Up 
in H) 

1.2x10-08  

(Up in I) 
1.0x1
0-04 

0.408 0.189  
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5.5 Clustering 

5.5.1 Principal Component Analysis 

PCA (section 2.5.1) shows no significant clustering by clinical category (Kruskal-

Wallis rank sum test: p = 0.2064, χ = 8.5).  

	

 

Figure 5.14 PCA plot of post-ComBat data, shows no clustering by clinical category. 

5.5.2 Latent Process Decomposition (LPD) 

LPD (section 2.5.5) was applied to the dataset for three hundred and forty-six of the 

training samples. There were predicted to be five clusters in the data, with a sigma 

parameter of -1. LPD analysis was then performed 100 times using these parameters. A 

significant association was found between LPD group and clinical risk group (Chi-

square: p = 7.46x10-14, χ	=	115, Figure 5.15) but not the sample origin (Chi-square: p = 

0.095, χ	=	18.7, Figure 5.17, Table 5.8, Figure 5.18).	This	suggests	that	this	data	set	is	

picking	 up	 on	 underlying	processes	 in	 the	NanoString2	 data	 that	 effects	 clinical	

risk.	Figure 5.16	shows the clinical breakdown of each LPD group. There appeared to 
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be an over-representation of CBN samples in LPD 1 but this was not significant (Chi-

square test CBN vs. low-, intermediate- and high-risk cancer: p-value = 0.09, X2 = 2.8). 

LPD2 had an over representation of localised cancer (low-risk and intermediate-risk) 

Chi-square test: p-value = 0.037, X2 = 4.3. Whilst LPD3 showed a significant over-

representation of more progressed cancer (high-risk/advanced cancer) Chi-square test: 

p-value = 1.671x10-07, X2 = 31.2. There was no significant over-representation of cancer 

(advanced, high-, intermediate- and low-risk) or CBN samples in either LPD4 or LPD5. 

All cancer vs. CBN, more progressed cancer vs. localised cancer vs. CBN were both 

tested. 	
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Figure 5.15 LPD of post-ComBat data separated into five processes and coloured by clinical 
category. 
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Figure 5.16 Clinical breakdown of each LPD group. Chi-square test: p-value = 7.46x10-14, X2 = 115 
(ignoring samples from unknown LPD group).  
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Figure 5.17 LPD of post-ComBat data separated into five processes and coloured by location of 
origin. 
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Table 5.8 Location of origin breakdown of LPD groups.  

 LPD1 LPD2 LPD3 LPD4 LPD5 
DUBLIN 0 0 1 3 3 
ICR 3 2 2 25 41 
UEA 21 20 35 123 114 
USA 0 1 7 18 17 
Total 24 23 45 169 175 
	
There were 167, 166, 131, 61, & 153 transcripts that were significantly differentially 

expressed in LPD processes 1-5 respectively vs. the rest (p < 0.05 after multiple testing 

correction, Mann-Whitney U test: section 2.4.1). Looking at the top 10 most significant 

associated transcripts shows a decrease in expression in LPD groups 1, 3 and 4 and an 

increase in expression in LPD groups 2 and 5 (Table 5.9). 

	

 

Figure 5.18 Location of origin breakdown of each LPD group. Chi-square test: p-value = 0.095, X2 = 
18.7 (ignoring unknown LPD group samples). 

	

0.00

0.25

0.50

0.75

1.00

LPD1 LPD2 LPD3 LPD4 LPD5 Unknown
LPD Group

Pe
rc

en
ta

ge

Location
DUBLIN

ICR

UEA

USA

Locational composition of each LPD group



CHAPTER	5:	NANOSTRING	DATA	ANALYSIS	2	
	

	 236	

Table 5.9 Top ten significantly associated transcripts involved in the separation of samples into LPD groups. The p-value shown is adjusted using 

Benjamin Hochberg multiple testing correction.  

LPD Group LPD1  p-value Log2(FC) LPD2 p-value Log2(FC) LPD3 p-value Log2(FC) 
# Sig Genes 167   166   131   
Top 10: CAMKK2 4.80X10-14 -1.17 IFT57 9.50X10-14 0.18 KLK2 1.97X10-12 -0.20  

CACNA1D 1.10X10-13 -0.49 OGT 1.26X10-13 0.27 DPP4 2.20X10-12 -0.23  
GABARAPL
2 

1.10X10-13 -0.32 GABARAPL
2 

1.31X10-13 0.17 CASKIN1 1.29X10-10 -0.21 
 

RPS11 3.13X10-13 -0.13 DPP4 1.56X10-13 0.19 MSMB 1.34X10-10 -0.08  
RPL23AP53 3.74X10-13 -1.35 IMPDH2 1.65X10-13 0.26 CACNA1D 1.55X10-10 -0.20  
PPAP2A 3.94X10-13 -0.33 HPRT 1.68X10-13 0.30 GABARAPL

2 
1.71X10-10 -0.14 

 
CTA.211A9.
5/MIATNB 

4.44X10-13 -2.43 EIF2D 1.69X10-13 0.25 TERT 2.02X10-10 -0.24 
 

STEAP2 5.07X10-13 -0.60 MXI1 2.05X10-13 0.22 ZNF577 2.69X10-10 -0.26  
IFT57 8.73X10-13 -0.33 PECI 2.09X10-13 0.25 SSPO 3.12X10-10 -0.20  
MIC1 8.77X10-13 -1.20 RP11.97O12

.7 
2.10X10-13 0.28 CAMK2N2 3.32X10-10 -0.52 

LPD 
Group 

LPD4 p-value Log2(FC) LPD5 p-value Log2(FC) 

# Sig 
Genes 

61   153   

Top 10: VPS13A 3.38X10-

06 
-0.11 GABARA

PL2 
2.26X10-

22 
0.07 

 TERF2IP 3.79X10-

06 
-0.05 CACNA1

D 
2.71X10-

21 
0.09 

 ABCB9 1.47X10-

05 
-0.21 STEAP2 3.26X10-

17 
0.09 

 MARCH
5 

1.64X10-

05	
-0.08	 KLK2 4.09X10-

17	
0.07	
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 MMP25 1.89X10-

05	
-0.25	 MED4 2.31X10-

16	
0.09	

 TMEM45
B 

1.92X10-

05	
-0.14	 CASKIN

1 
1.66X10-

15	
0.13	

 RPLP2 1.93X10-

05	
-0.03	 DPP4 7.40X10-

15	
0.07	

 PECI 2.41X10-

05	
-0.06	 IFT57 8.66X10-

15	
0.07	

 CASKIN
1 

2.64X10-

05	
-0.10	 RPS11 8.75X10-

14	
0.03	

 MEMO1 3.23X10-

05	
-0.08	 MARCH

5 
9.67X10-

14	
0.09	
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5.6 Further processing techniques 

After positive control normalisation and log2 transformation, four further processing 

techniques were used. These included adjusting the data to focus on the prostate derived 

proportion by: using KLK3 as per the PCA3 test (section 2.1.1), using KLK2 in a similar 

way, and using a KLK2 ratio (section 2.1.1). In addition, RPLP2 and GAPDH were 

identified as novel housekeeper genes and used to normalise to the amount of material. 

RPLP2 and GAPDH did not have any significant association with clinical category (p < 

0.05; Tukey test (section 2.4.7)) and had a strong correlation (r = 2.2x10-16, Pearson’s 

correlation, section 2.4.3). Each of these methods were used to create a data set and 

subsequently to build clinical prediction models (Table 5.10). The KLK2 and KLK3 

adjusted data also included the removal of CBN with high TMPRSS2:ERG. As CBN 

samples were from patients with no clinical evidence of cancer rather than strictly 

benign, it was expected that there would be some cancer present in some of the 

samples. Removal of high TMPRSS2:ERG CBN samples, was a step towards correcting 

for this.  

Samples with low KLK2 and KLK3 values were also removed. These are prostate-

expression specific control transcripts. Eliminating these data, removed samples where 

the majority of the RNA was not originating from the prostate. 

	
Table 5.10 The different normalisations of the data that the predictive models were built 

using (separately). 

Data Description 
KLK2 ratio The ratio of KLK2 was used to normalise the data 
KLK2 adjusted Low KLK2 removed and high TMPRSS2:ERG 

removed.  
Median and IQR used to adjust data 

KLK3 adjusted Low KLK3 removed and high TMPRSS2:ERG 
removed.  
Median and IQR used to adjust data 

Housekeeper normalised –
GAPDH and RPLP2 

KLK2 ratio data, further normalised via GAPDH and 
RPLP2 
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5.7 Clinical Prediction models 

The data were stratified into test and training sets in the ratio 1:2 (Table 5.1) weighted 

according to sample origin and clinical risk category. Models were built to predict four 

different response variables i.e. clinical questions (Table 5.11) using each of the four 

different processed datasets (Section 5.6) using the training samples. 

For models predicting a binary variable, logistic regression (section 2.6.1) and Mann 

Whitney U (section 2.4.1) tests were used to identify transcripts that individually could 

predict the two groups (p < 0.05). For models predicting an ordinal variable, univariate 

proportional	 odds	 models (polr) were used to identify significant transcripts (p < 

0.05). Multiple testing correction using Benjamin Hochberg was applied.  

For each clinical question, final models were built using LASSO using three input 

criteria: 

1. All 167 probes 

2. Probes that were identified as significant in univariate analyses (p < 0.05; no multiple 

testing correction) 

3. Probes that were identified as significant in univariate analyses when multiple testing 

correction was applied (Benjamin Hochberg corrected p < 0.05) 

Models were then applied to the test datasets, where the specificity, sensitivity and PPV 

of each model was determined (Table 5.13, Table 5.15, Table 5.17, Table 5.21).  
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Table 5.11 Clinical predictive models built using the training set and tested using the test 

set. 

Model Samples Model type 
CB vs. Cancer Clinically benign 

samples Vs low-, 
intermediate-, and high-
risk cancer samples 
grouped together 

Binary 

CB vs. High risk cancer Clinically benign Vs. 
high-risk cancer 
(extreme ends of no 
evidence of cancer and 
and those with higher 
grade) 

Binary 

CB, low-, intermediate-, and 
high-risk trend 

Each sample category is 
a separate group and 
ordered 

Ordinal 

CB, cancer, metastatic 
cancer trend 

Clinically benign 
samples, with low-, 
intermediate-, and high-
risk cancer samples 
grouped together, and 
metastatic cancer 
samples in groups 
ordered by severity 

Ordinal 

 

5.7.1 Models predicting presence of cancer CB and cancer (L, I, H) 

samples  

Expression of 80, 63, 49, 55 probes had a significant association with whether a sample 

had no evidence for cancer (CB) or not (L, I, H) in the four processed datasets (KLK2 

ratio, KLK2 adjusted, KLK3 adjusted, HK normalised, respectively) (Supplementary 

Table 4). The top probe was ERG3’ exons 4-5 (p = 1.54x10-09, log2FC = 1.58), PCA3 (p 

= 4.5x10-07, log2FC= 0.19), PCA3 (p = 1.61x10-06, log2FC = 0.14), and ERG3’ exons 4-

5 (p = 4.5x10-09, log2FC = 0.699), respectively. 

Multivariate models were built to predict whether a patient had cancer (L, I, H samples) 

or had no evidence for cancer (CB) (Table 5.12, Table 5.13). The ROC curves and 

probes involved in each model can be found in the supplementary figures 

(Supplementary Figure 2, Supplementary Figure 3, Supplementary Figure 4, 
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Supplementary Table 5, Supplementary Table 6, Supplementary Table 7 and 

Supplementary Table 8, respectively). 

In this comparison there were large differences in the number of samples in each of the 

two categories, with CB having approximately only a quarter of the sample size of 

cancer. Therefore, random sampling was used to select a similar number of cancer 

samples to CB samples, and the model predictive process was run iteratively 1,000 

times. The model with the mean AUC was selected to be applied to the test dataset. 

Again, the AUC, Sensitivity, Specificity and PPV and the selected probes were 

recorded for each model on the training set (Table 5.14) and the test set (Table 5.15) 

and the curves and probes involved in each model can be observed in the supplementary 

figures (Supplementary Figure 5, Supplementary Figure 6, Supplementary Figure 7, 

Supplementary Figure 8, Supplementary Table  9, Supplementary Table  10, 

Supplementary Table  11, and Supplementary Table  12, respectively).  

The models were generally good predictors of whether cancer was present or not 

(median AUC = 0.8045, IQR = 0.06). In general, AUC in the test data was better in the 

KLK2 ratio and the GAPDH and RPLP2 normalised data (all had AUC > 0.8) compared 

to the KLK2 and KLK3 adjusted data (mostly AUC > 0.7). There was not much 

difference observed between those with the randomly selected cancer samples (median 

AUC =0.847, IQR =0.11), and those with all of the cancer samples (median AUC = 

0.846, IQR = 0.098).  

The accuracy measures remained very high in the test sets (median AUC = 0.915, IQR 

= 0.05, but were slightly lower than the training data set (median AUC = 0.8045, IQR = 

0.06), showing the models in general were robust and useful. 

The model with the best AUC in the training data, was when using all of the probes 

from the RPLP2 and GAPDH normalised data (Training AUC = 0.925, Test AUC = 

0.851) in detail as an example. 18 transcripts were selected by Lasso and went into 

these models; TMPRSS2:ERG, ERG3’ exons 4-5, APOC1, ISX, SLC12A1, HOXC6, 

MCTP1, TDRD, PDLIM5, CD10, GABARAPL2, PTN, AR exon 9, PPP1R12B, CP, 
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MXI1, and KLK4. The training model had 85% sensitivity, 73% specificity and 94% 

PPV (Figure 5.19). 
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Table 5.12 Training model outcomes comparing CB with Cancer samples for the four different normalisations of data. Three input probe sets were used: 

all probes, those significant via GLM testing and those significant post - multiple testing correction. 

 KLK2 ratio KLK2 Adjusted KLK3 Adjusted GAPDH and RPLP2 
normalised 

 All 
probes 

Significa
nt 
probes 

Adjusted 
Significa
nt 
Probes 

All 
probes 

Significa
nt 
probes 

Adjusted 
Significa
nt 
Probes 

All 
probes 

Significa
nt 
probes 

Adjusted 
Significa
nt 
Probes 

All 
probes 

Significa
nt 
probes 

Adjusted 
Significa
nt 
Probes 

AUC 0.949 0.886 0.891 0.91 0.929 0.849 0.966 0.935 0.824 0.925 0.902 0.859 
Sensitivi
ty 

89% 77% 71% 95% 93% 72% 95% 89% 68% 88% 81% 75% 

Specific
ity 

89% 87% 92% 71% 81% 87% 89% 89% 86% 85% 87% 90% 

PPV 97% 96% 97% 92% 94% 95% 97% 96% 94% 97% 97% 98% 
Thresho
ld 

0.68998
04 

0.771395
7 

0.813742
6 

0.64891
55 

0.654594
3 

0.778892
7 

0.67517
93 

0.723022 0.768347
6 

0.77351
14 

0.823558
7 

0.831731
4 

Number 
of 
Probes  

21 4 8 26 31 6 50 29 4 18 10 6 
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Table 5.13 Test model outcomes comparing CB with Cancer samples for the four different normalisations of data. Three input probe sets were used: all 

probes, those significant via GLM testing and those significant post - multiple testing correction. 

 KLK2 ratio KLK2 Adjusted KLK3 Adjusted GAPDH and RPLP2 
normalised 

 All 
probes 

Significa
nt 
probes 

Adjusted 
Significa
nt 
Probes 

All 
probes 

Significa
nt 
probes 

Adjusted 
Significa
nt 
Probes 

All 
probes 

Significa
nt 
probes 

Adjusted 
Significa
nt 
Probes 

All 
probes 

Significa
nt 
probes 

Adjusted 
Significa
nt 
Probes 

AUC 0.846 0.819 0.816 0.772 0.776 0.775 0.745 0.762 0.718 0.851 0.838 0.816 
Sensitivi
ty 

89% 89% 68% 59% 69% 62% 72% 74% 68% 85% 83% 60% 

Specific
ity 

67% 63% 83% 91% 82% 82% 77% 77% 68% 73% 73% 93% 

PPV 91% 90% 92% 96% 93% 92% 91% 90% 87% 94% 93% 97% 
Thresho
ld 

0.63388
98 

0.632465
5 

0.832557
8 

0.79834
29 

0.787580
3 

0.817720
5 

0.76251
93 

0.712675
5 

0.768974
4 

0.74827
62 

0.759985
1 

0.878513
9 

Number 
of 
Probes  

21 4 8 26 31 6 50 29 4 18 10 6 
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Table 5.14 Training model outcomes comparing CB with randomly selected Cancer samples for the four different normalisations of data. Three input 

probe sets were used: all probes, those significant via GLM testing and those significant post - multiple testing correction. 

 KLK2 ratio KLK2 Adjusted KLK3 Adjusted GAPDH and RPLP2 normalised 
 All 

probes 
Significa
nt 
probes 

Adjusted 
Significa
nt 
Probes 

All 
probes 

Significa
nt 
probes 

Adjusted 
Significa
nt 
Probes 

All 
probes 

Significa
nt 
probes 

Adjusted 
Significa
nt 
Probes 

All 
probes 

Significa
nt 
probes 

Adjusted 
Significa
nt 
Probes 

AUC 0.957 0.916 0.876 0.991 0.924 0.893 0.915 0.943 0.851 0.936 0.915 0.87 
Sensitivi
ty 

87% 94% 73% 98% 94% 83% 86% 94% 81% 87% 85% 75% 

Specifici
ty 

94% 71% 87% 94% 79% 90% 87% 83% 79% 90% 85% 86% 

PPV 92% 92% 84% 92% 82% 88% 86% 84% 94% 88% 89% 85% 
Thresho
ld 

0.4473
12 

0.362903
8 

0.487065
7 

0.40367
53 

0.404678
8 

0.462369
8 

0.44877
93 

0.379279
4 

0.403381 0.43971
59 

0.469126
3 

0.517129
9 

Number 
of 
Probes  

17 9 5 35 19 6 16 20 4 8 7 5 
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Table 5.15 Test model outcomes comparing CB with randomly selected Cancer samples for the four different normalisations of data. Three input probe 

sets were used: all probes, those significant via GLM testing and those significant post - multiple testing correction. 

 KLK2 ratio KLK2 Adjusted KLK3 Adjusted GAPDH and RPLP2 
normalised 

 All 
probes 

Significa
nt 
probes 

Adjusted 
Significa
nt 
Probes 

All 
probes 

Significa
nt 
probes 

Adjusted 
Significa
nt 
Probes 

All 
probes 

Significa
nt 
probes 

Adjusted 
Significa
nt 
Probes 

All 
probes 

Significa
nt 
probes 

Adjusted 
Significa
nt 
Probes 

AUC 0.843 0.803 0.813 0.806 0.751 0.768 0.72 0.713 0.695 0.821 0.828 0.808 
Sensitivi
ty 

78.00% 71% 69% 67% 57% 64% 85% 67% 74% 65% 82% 63% 

Specifici
ty 

80.00% 80% 83% 91% 88% 88% 56% 71% 59% 90% 70% 87% 

PPV 92.00% 92% 93% 96% 92% 93% 85% 87% 85% 96% 93% 96 
Thresho
ld 

0.41796
43 

0.459550
9 

0.523588
2 

0.47894
35 

0.591645
5 

0.585591
2 

0.39739
65 

0.490522
4 

0.372621
4 

0.5083
84 

0.401851
3 

0.594466
3 

Number 
of 
Probes  

17 9 5 35 19 6 16 20 4 8 7 5 
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Figure 5.19 ROC curve of top performing model for the prediction of CB vs. Cancer (Low-, 
Intermediate- and High-risk).  

5.7.2 Models to distinguish the extreme categories i.e. CB and high-risk 

cancer samples  

Expression of 98, 43, 39, 39 probes had a significant association with whether a sample 

was high-risk (H) or there was no evidence for cancer (CBN) in the four processed 

datasets (KLK2 ratio, KLK2 adjusted, KLK3 adjusted, HK normalised, respectively) 

(Supplementary Table 13). The top probe was ERG3’ exons 4-5 (p = 6.995x10-07, logFC 

= 1.87), HPN (p = 3.767x10-06, logFC = 0.24), HPN (p = 1.317x10-05, logFC = 0.19), 

and ERG3’ exons 4-5 (p = 1.42x10-06, logFC = 0.79), respectively. 

Binomial models were built to predict whether a patient was at high risk of cancer (H) 

or had no evidence for cancer (CB) (Table 5.16, Table 5.17, see Supplementary Table 

14, Supplementary Table 15, Supplementary Table 16 and Supplementary Table 17). 

The models were decent predictors (test model median AUC = 0.957, IQR = 0.036, 

training model median AUC = 0.831, IQR = 0.07). In general, the metrics of the models 

didn’t seem to differ much between the different normalisations (slightly lower AUCs 

in the KLK3 adjusted data), or the input probe subset. Models with AUC of up to 0.9 

were seen in the training sets, and models with AUC of up to 0.8 were seen when 

applying the models to the test data. Sensitivities in the 90%s and PPVs in the 80%s 
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were observed on the test data, suggesting these models were capable to distinguishing 

well between the CB and high-risk cancer samples. 

The model built using the adjusted significant probe lists from the GAPDH and RPLP2 

normalised data gave a high AUC of 0.897 in the training data (AUC = 0.924 in the test 

data). This model had high sensitivity (91%), 80% specificity and 83% PPV (ROC - 

Figure 5.20). The transcripts used to build this model were PCA3, APOC1, HPN, 

ERG3’ exons 4-5 and TMPRSS2:ERG. 

 

Figure 5.20 ROC curve of the training set for the GAPDH and RPLP2 normalised model built using 
the 5 significant probes post multiple testing correction. 
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Table 5.16 Training model outcomes comparing CB with high-risk Cancer samples for the four different normalisations of data. Three input probe sets 

were used: all probes, those significant via GLM testing and those significant post - multiple testing correction. 

 KLK2 ratio KLK2 Adjusted KLK3 Adjusted GAPDH and RPLP2 
normalised 

 All 
probes 

Significa
nt 
probes 

Adjusted 
Significa
nt 
Probes 

All 
probes 

Significa
nt 
probes 

Adjusted 
Significa
nt 
Probes 

All 
probes 

Significa
nt 
probes 

Adjusted 
Significa
nt 
Probes 

All 
probes 

Significa
nt 
probes 

Adjusted 
Significa
nt 
Probes 

AUC 0.991 0.97 0.94 0.952 0.955 0.866 0.962 0.959 0.85 0.976 0.992 0.924 
Sensitivi
ty 

100% 84% 86% 86% 86% 71% 91% 84% 74% 94% 97% 96% 

Specific
ity 

92% 98% 90% 94% 94% 91% 90% 97% 90% 92% 96% 77% 

PPV 93% 97% 92% 92% 94% 89% 91% 95% 90% 94% 97% 84% 
Thresho
ld 

0.40659
25 

0.578702
3 

0.541775
8 

0.50800
49 

0.503871 0.554859 0.44880
01 

0.538367 0.532871
6 

0.47027
14 

0.509973
2 

0.403401
4 

Number 
of 
Probes  

26 16 9 19 17 5 21 19 3 13 21 5 
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Table 5.17 Test model outcomes comparing CB with high –risk Cancer samples for the four different normalisations of data. Three input probe sets were 

used: all probes, those significant via GLM testing and those significant post - multiple testing correction. 

 KLK2 ratio KLK2 Adjusted KLK3 Adjusted GAPDH and RPLP2 
normalised 

 All 
probes 

Significa
nt 
probes 

Adjusted 
Significa
nt 
Probes 

All 
probes 

Significa
nt 
probes 

Adjusted 
Significa
nt 
Probes 

All 
probes 

Significa
nt 
probes 

Adjusted 
Significa
nt 
Probes 

All 
probes 

Significa
nt 
probes 

Adjusted 
Significa
nt 
Probes 

AUC 0.851 0.859 0.832 0.822 0.829 0.738 0.789 0.796 0.738 0.897 0.883 0.897 
Sensitivi
ty 

88% 97% 94% 91% 91% 91% 97% 97% 91% 88% 84% 91% 

Specific
ity 

77% 63% 60% 65% 77% 59% 65% 65% 59% 83% 83% 80% 

PPV 80% 73% 70% 71% 76% 71% 70% 72% 67% 82% 84% 83% 
Thresho
ld 

0.38343
88 

0.264001
1 

0.229727
1 

0.35623
61 

0.458083
8 

0.402334
6 

0.33008
49 

0.286475
5 

0.402334
6 

0.52862
75 

0.435489
3 

0.488914
3 

Number 
of 
Probes  

26 16 9 19 17 5 21 19 3 13 21 5 
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5.7.3 Models to predict risk categories using trends in expression  

Expression of 114, 45, 50, 53 probes had a significant association with increasing risk 

category (CB->L->I->H) in the four processed datasets (KLK2 ratio, KLK2 adjusted, 

KLK3 adjusted, HK normalised, respectively) (Supplementary Table 18). The top probe 

was ERG3’ exons 4-5 (p = 1.86x10-13), PCA3 (p = 1.45x10-08), PCA3 (p = 1.52x10-07), 

and ERG3’ exons 4-5 (p = 1.44x10-08) respectively (Figure 5.21). 

Figure 5.21 Top Significant Probe for CB, low-risk, intermediate-risk and high-risk cancer trend in 
all four data normalisations. 

Multivariate proportional	 odds	models were built to predict CB samples, the low-, 

intermediate- and high-risk cancer samples (section 2.6.1) (Table 5.18, Table 5.19). The 

probes involved in each model can be observed (Supplementary Table 19, 

Supplementary Table 20, Supplementary Table 21, and Supplementary Table 22). 

The metrics of the models for the KLK2 ratio and KLK2 adjusted data were very similar 

(median = 0.67015, IQR = 0.06 and median AUC 0.6689, IQR = 0.08). Slightly lower 

AUCs were observed in the KLK3 adjusted data (median AUC = 0.669, IQR = 0.1), and 

slightly higher AUCs were observed in the GAPDH and RPLP2 normalised data 

(median AUC = 0.73385, IQR = 0.05). The average model metrics for the test data were 

poorer than with previous clinical questions (median AUC = 0.65005, IQR = 0.05). The 
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sensitivity of all of the models were fairly low (median= 29%, IQR=0.45), whilst 

specificity fairly high (median= 91% IQR=0.23). This suggested that separating 

between the different risk categories of cancer can be difficult. 

The model built using the GAPDH and RPLP2 normalised data and only the probes still 

significant post multiple testing correction has the highest AUC = 0.7088. The probes 

used to build this model were APOC1, DPP4, ERG 3’ exons 4-5, ERG 3’ exons 6-7, 

GABARAPL2, HOXC6, HPN, ITGBL1, KLK4, MYOF, PCA3, TDRD, and 

TMPRSS2:ERG (Figure 5.22). The Sensitivities of this model ranged from 9%-79% and 

the specificities ranged from 46%-95%.  

	

 

Figure 5.22 Boxplot showing the expression level of each transcript featured in the CB-L-I-H model 
built using the multiple tested correction significant probes from the GAPDH and RPLP2 normalised 
data. This model showed the best test data AUC (0.7008). 
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Table 5.18 Training model outcomes comparing CB, low-, intermediate- and high- risk cancer samples for the four different normalisations of data. 

Three input probe sets were used: all probes, those significant via GLM testing and those significant post - multiple testing correction 

 KLK2 ratio KLK2 Adjusted KLK3 Adjusted GAPDH and RPLP2 normalised 
 All 

probes 
Significant 
probes 

Adjusted 
Significant 
Probes 

All 
probes 

Significant 
probes 

Adjusted 
Significant 
Probes 

All 
probes 

Significant 
probes 

Adjusted 
Significant 
Probes 

All 
probes 

Significant 
probes 

Adjusted 
Significant 
Probes 

Accuracy 0.5112 0.4581 0.4413 0.5412 0.522 0.4643 0.6749 0.576 0.5124 0.5 0.4944 0.5112 
AUC 0.7663 0.6757 0.6196 0.7802 0.7469 0.6856 0.8146 0.7606 0.6929 0.7587 0.7728 0.7608 
Sensitivity: 
CB 
L 
I 
H 

 
52% 
19% 
84% 
25% 

 
38% 
8% 
88% 
10% 

 
27% 
4% 
94% 
7% 

 
45% 
26% 
84% 
37% 

 
48% 
24% 
81% 
32% 

 
36% 
12% 
83% 
25% 

 
84% 
0% 
89% 
59% 

 
74% 
0% 
80% 
41% 

 
60% 
0% 
75% 
36% 

 
50% 
15% 
84% 
25% 

 
56% 
19% 
74% 
34% 

 
54% 
25% 
76% 
31% 

Specificity: 
CB 
L 
I 
H 

 
97% 
87% 
42% 
98% 

 
96% 
91% 
26% 
98% 

 
96% 
96% 
18% 
100% 

 
97% 
87% 
47% 
97% 

 
96% 
89% 
45% 
97% 

 
94% 
92% 
36% 
96% 

 
95% 
100% 
59% 
96% 

 
91% 
100% 
53% 
92% 

 
85% 
100% 
48% 
93% 

 
97% 
86% 
40% 
98% 

 
95% 
84% 
47% 
97% 

 
96% 
83% 
50% 
97% 

PPV: 
CB 
L 
I 
H 

 
73% 
32% 
49% 
78% 

 
65% 
23% 
44% 
58% 

 
54% 
25% 
44% 
83% 

 
74% 
44% 
51% 
72% 

 
68% 
42% 
49% 
72% 

 
54% 
32% 
46% 
58% 

 
81% 
NA 
58% 
82% 

 
69% 
NA 
52% 
63% 

 
53% 
NA 
48% 
63% 

 
74% 
27% 
49% 
78% 

 
67% 
28% 
48% 
73% 

 
68% 
34% 
51% 
69% 

Number of 
Probes  

36 13 5 12 37 14 78 39 12 37 34 13 
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Table 5.19 Test model outcomes comparing CB, low-, intermediate- and high- risk cancer samples for the four different normalisations of data. Three 

input probe sets were used: all probes, those significant via GLM testing and those significant post - multiple testing correction.  

 KLK2 ratio KLK2 Adjusted KLK3 Adjusted GAPDH and RPLP2 normalised 
 All 

probes 
Significant 
probes 

Adjusted 
Significant 
Probes 

All 
probes 

Significant 
probes 

Adjusted 
Significant 
Probes 

All 
probes 

Significant 
probes 

Adjusted 
Significant 
Probes 

All 
probes 

Significant 
probes 

Adjusted 
Significant 
Probes 

Accuracy 0.4611 0.45 0.4278 0.4444 0.4222 0.3944 0.3944 0.222 0.4056 0.4716 0.4659 0.4773 
AUC 0.6894 0.6646 0.6115 0.6479 0.6522 0.6273 0.6372 0.4993 0.6468 0.6791 0.709 0.7088 
Sensitivity: 
CB 
L 
I 
H 

 
37% 
28% 
79% 
6% 

 
37% 
15% 
85% 
6% 

 
33% 
9% 
88% 
0% 

 
30% 
28% 
75% 
13% 

 
43% 
15% 
76% 
31% 

 
27% 
7% 
78% 
13% 

 
47% 
0% 
68% 
25% 

 
90% 
0% 
18% 
0% 

 
53% 
0% 
72% 
16% 

 
35% 
28% 
82% 
6% 

 
35% 
35% 
76% 
6% 

 
42% 
28% 
79% 
9% 

Specificity: 
CB 
L 
I 
H 

 
97% 
84% 
42% 
95% 

 
94% 
90% 
33% 
97% 

 
95% 
93% 
23% 
97% 

 
97% 
86% 
39% 
93% 

 
91% 
90% 
39% 
93% 

 
89% 
92% 
31% 
95% 

 
85% 
100% 
42% 
84% 

 
15% 
100% 
90% 
99% 

 
81% 
100% 
40% 
91% 

 
96% 
85% 
39% 
97% 

 
94% 
83% 
46% 
95% 

 
93% 
86% 
46% 
95% 

PPV: 
CB 
L 
I 
H 

 
69% 
37% 
48% 
22% 

 
55% 
35% 
46% 
29% 

 
59% 
31% 
43% 
0% 

 
64% 
41% 
45% 
29% 

 
50% 
33% 
45% 
8% 

 
33% 
21% 
43% 
33% 

 
38% 
NA 
44% 
26% 

 
18% 
NA 
54% 
0% 

 
36% 
NA 
44% 
28% 

 
60% 
41% 
48% 
29% 

 
50% 
42% 
50% 
22% 

 
50% 
42% 
50% 
30% 

Number of 
Probes  

36 13 5 12 37 14 78 39 12 37 34 13 
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5.7.4 Models to predict patient type using trends in expression  

Expression of 152, 57, 56, 45 probes had a significant association with increasing 

severity of disease type i.e. no evidence for cancer (CB), organ confined cancer (L, I, & 

H) and metastatic disease (A) in the four processed datasets (KLK2 ratio, KLK2 

adjusted, KLK3 adjusted, HK normalised respectively) (Supplementary Table 23). The 

top probe was HOXC6 (p = 5.19x10-10), UPK2 (p = 2.91x10-08), UPK2 (p = 2.4x10-08), 

and HOXC6 (p = 3.39x10-06) respectively.  

	
Figure 5.23 Top Significant Probe for CB, Cancer, Metastatic trend in all four data normalisations. 

Multivariate proportional	 odds	 models were built to predict clinical categories 

(section 2.6.1), no evidence for cancer (CB), organ confined cancer (L, I, & H) and 

metastatic disease (Table 5.20, Table 5.21). The probes involved in each model can be 

observed (Supplementary Table 24, Supplementary Table 25, Supplementary Table 26 

and Supplementary Table 27).  

Low AUCs were observed across all inputs and data sets (median AUC = 0.57365, IQR 

= 0.08). The GAPDH and RPLP2 normalised data showed slightly higher AUCs 

(median AUC = 0.6388, IQR = 0.997). The sensitivity of the sample categories in all of 

the models were fairly low (median = 18%, IQR = 87%). Whilst the specificity is fairly 
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high but not uniformly across the models (median = 98%, IQR = 75%). Inclusion of the 

advanced samples could be a reason for this poor model quality. Advanced tumours 

tend to be firm to the touch and it is thought that upon compression tend to release 

fewer cells into the urine (section 1.3.4.2). This is further supported by the lower levels 

of prostate specific transcripts observed in advanced samples (section 3.4) and UPK2 

(the bladder specific marker) is one of the most significant differential probes 

comparing these samples.  

Again, the model with the best AUC (0.6469) is from the GAPDH and RPLP2 (HK) 

normalised data. The model was built using the significant probes (MARCH5, AMACR, 

APOC1, CACNA1D, CP, DLX1, ERG 3’ exons 4-5, ERG 3’ exons 6-7, GABARAPL2, 

GCNT1, GJB1, HOXC6, IFT57, ITGBL1, KLK2, KLK4, MCTP1, Met, MIR4435_1HG, 

MSMB, PALM3, PCA3, PTN, SLC12A1, SSTR1, STOM, SULF2, TDRD, TMCC1, 

TMEM45B, ZNF577). The model’s sensitivity ranged from 17% - 93% and it’s 

specificity ranged from 26%- 98%. 
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Figure 5.24 Boxplot showing the expression level of each transcript featured in the CB-Cancer-Metastatic cancer model built using the significant probes from the 
GAPDH and RPLP2 normalised data. This model showed the best test data AUC (0.6469). 
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Table 5.20 Training model outcomes comparing CB, Cancer (low-, intermediate- and high- risk) and metastatic (A) cancer samples for the four different 

normalisations of data. Three input probe sets were used: all probes, those significant via GLM testing and those significant post - multiple testing 

correction 

 KLK2 ratio KLK2 Adjusted KLK3 Adjusted GAPDH and RPLP2 normalised 
 All 

probes 
Significant 
probes 

Adjusted 
Significant 
Probes 

All 
probes 

Significant 
probes 

Adjusted 
Significant 
Probes 

All 
probes 

Significant 
probes 

Adjusted 
Significant 
Probes 

All 
probes 

Significant 
probes 

Adjusted 
Significant 
Probes 

Accuracy 0.8136 0.811 0.811 0.8114 0.8372 0.7855 0.781 0.8072 0.7353 0.8819 0.8504 0.8005 
AUC 0.5554 0.5495 0.5495 0.5878 0.6566 0.5201 0.6267 0.7126 0.5913 0.7375 0.6685 0.541 
Sensitivity: 
CB 
Cancer 
Metastatic 

 
4% 
100% 
13% 

 
2% 
100% 
13% 

 
2% 
100% 
13% 

 
5% 
100% 
22% 

 
24% 
99% 
26% 

 
2% 
99% 
4% 

 
23% 
100% 
17% 

 
35% 
98% 
35% 

 
6% 
98% 
22% 

 
44% 
100% 
35% 

 
37% 
98% 
17% 

 
4% 
98% 
9% 

Specificity: 
CB 
Cancer 
Metastatic 

 
100% 
7% 
100% 

 
100% 
5% 
100% 

 
100% 
5% 
100% 

 
100% 
10% 
100% 

 
100% 
25% 
100% 

 
100% 
2% 
99% 

 
100% 
21% 
100% 

 
99% 
35% 
99% 

 
100% 
11% 
99% 

 
100% 
41% 
100% 

 
99% 
31% 
99% 

 
99% 
5% 
100% 

PPV: 
CB 
Cancer 
Metastatic 

 
100% 
81% 
75% 

 
100% 
81% 
75% 

 
100% 
81% 
75% 

 
100% 
81% 
100% 

 
93% 
83% 
86% 

 
100% 
79% 
20% 

 
100% 
77% 
100% 

 
92% 
80% 
80% 

 
80% 
74% 
56% 

 
96% 
87% 
100% 

 
86% 
85% 
67% 

 
33% 
81% 
67% 

Number of 
Probes  

11 7 8 39 39 11 35 39 9 69 31 9 
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Table 5.21 Test model outcomes comparing CB, Cancer (low-, intermediate- and high- risk) and metastatic (A) cancer samples for the four different 

normalisations of data. Three input probe sets were used: all probes, those significant via GLM testing and those significant post - multiple testing 

correction 

 KLK2 ratio KLK2 Adjusted KLK3 Adjusted GAPDH and RPLP2 normalised 
 All 

probes 
Significant 
probes 

Adjusted 
Significant 
Probes 

All 
probes 

Significant 
probes 

Adjusted 
Significant 
Probes 

All 
probes 

Significant 
probes 

Adjusted 
Significant 
Probes 

All 
probes 

Significant 
probes 

Adjusted 
Significant 
Probes 

Accuracy 0.7865 0.7812 0.7812  0.7917 0.776 0.776 0.8021 0.3542 0.7656 0.7819 0.7926 0.7819 
AUC 0.5111 0.5 0.5333 0.5595 0.5799 0.5657 0.5911 0.5778 0.5695 0.6307 0.6469 0.5 
Sensitivity: 
CB 
Cancer 
Metastatic 

 
3% 
100% 
0% 

 
0% 
100% 
0% 

 
0% 
100% 
0% 

 
10% 
99% 
8% 

 
17% 
95% 
8% 

 
0% 
99% 
17% 

 
20% 
98% 
8% 

 
90% 
28% 
19% 

 
13% 
95% 
8% 

 
27% 
91% 
25% 

 
31% 
93% 
17% 

 
0% 
98% 
0% 

Specificity: 
CB 
Cancer 
Metastatic 

 
100% 
24% 
100% 

 
100% 
0% 
100% 

 
100% 
0% 
100% 

 
100% 
10% 
99% 

 
99% 
14% 
97% 

 
100% 
2% 
99% 

 
99% 
17% 
99% 

 
28% 
83% 
100% 

 
96% 
12% 
99% 

 
93% 
29% 
98% 

 
96% 
26% 
98% 

 
98% 
0% 
100% 

PPV: 
CB 
Cancer 
Metastatic 

 
100% 
79% 
NA 

 
100% 
78% 
NA 

 
100% 
78% 
NA 

 
100% 
80% 
33% 

 
71% 
80% 
17% 

 
NA 
78% 
3% 

 
86% 
81% 
33% 

 
19% 
85% 
NA 

 
40% 
79% 
33% 

 
39% 
84% 
50% 

 
53% 
83% 
33% 

 
0% 
79% 
NA 

Number of 
Probes  

11 7 8 39 39 11 35 39 9 69 31 9 
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5.7.5 Conclusions 

Use of the housekeeping probes GAPDH and RPLP2 provided normalised data that 

produced good prediction models (this data provided the best AUC for prediction 

models for all four clinical questions (Table 5.11)). Data was otherwise treated similarly 

to NanoString1 (chapter 3). Identification of GAPDH and RPLP2 as housekeepers to 

normalise urinary EV RNA derived NanoString data increased the robustness of my 

prediction models.  

All models were built using a training set that included samples from all four centres, 

and particularly the binomial tests were robust (high AUCs). The models therefore, can 

predict cancer from samples with no evidence of cancer (CB) regardless of sample 

origin.  

Optimal models built from the expression of 167 markers for risk stratification and 

detection of cancer were found using the GAPDH and RPLP2 normalised data, 

however, input lists varied from all probes, significant probes (identified by polr) and 

adjusted significant probes (Benjamin Hochberg multiple testing correction).  

The Prostate Cancer Prevention Trial risk calculator (PCPTrc) and the Prostate Cancer 

Prevention Trial high-grade risk calculator (PCPThg) are logistic regression models, 

which incorporate PSA level, PSA velocity, DRE result, previous biopsy results, age at 

biopsy, race and family history of PCa212. These models have been combined with 

urinary (whole cell) TMPRSS2:ERG and urine PCA3 levels to improve model AUC: 

PCPTrc alone had an AUC of 0.639, whilst inclusion of urinary TMPRSS2:ERG and 

PCA3 improved the AUC to 0.762. Urinary TMPRSS2:ERG and PCA3 also improved 

the predictive power of serum PSA (AUC = 0.651 increased to AUC = 0.772)213. 

Similarly, PCA3, which is used in the PCA3 test,  which was the first commercialy 

available urinary test for PCa, is capable of predicting cancer from non-cancer samples 

(AUC = 0.98)214. The models achieved similar AUCs, when predicting cancer (L, I and 

H) from samples with no evidence of cancer (CB): AUC = 0.851 for the best model and 



CHAPTER	5:	NANOSTRING	DATA	ANALYSIS	2	
	

	 261	

median AUC = 0.8045. I found that in EV harvested material the ERG3’ exons 4-5 and 

PCA3 data were the most highly differentiating between cancer and samples with no 

evidence of cancer. The probes used in the top model were TMPRSS2:ERG, ERG3’ 

exons 4-5, APOC1, ISX, SLC12A1, HOXC6, MCTP1, TDRD, PDLIM5, CD10, 

GABARAPL2, PTN, AR exon 9, PPP1R12B, CP, MXI1, and KLK4.  

The high-grade predictor also benefitted from the addition of urinary TMPRSS2:ERG 

and PCA3 data (AUC = 0.707 increased to AUC = 0.779)213. A second high-grade 

predictor was produced by Van Neste et al., which used whole urine mRNA levels of 

HOXC4, HOXC6, TDRD1, DLX1 and PCA3 (with KLK3 as a reference) alongside 

clinical factors (including PSA density, previous biopsies, PSA, age and family 

history215. This model reached an overall AUC of 0.9 in their validation set. The high-

risk (H) Vs. no evidence of cancer (CB) models also achieved high AUCs (top AUC = 

0.897, median AUC = 0.831). The model also used PCA3 and TMPRSS2:ERG levels, 

along with APOC1, HPN and ERG3’ exons 4-5 (from EV harvested RNA). The top 

most significant probes when comparing high-risk cancer with samples with no 

evidence of cancer was HPN and ERG 3’ exons 4-5.  

The ExoDx Prostate IntelliScore urine exosome assay uses ERG and PCA3 data 

normalised using SPDEF  combined with clinical factors (including PSA level, age, 

race and family history) to predict between Gleason 6 and Gleason 7 PCa with AUC = 

0.73216. The models to predict between different risk categories (CB->L->I->H) had 

similar AUCs (median = 0.67015, highest AUC = 0.709). The model was built using 

APOC1, DPP4, ERG 3’ exons 4-5, ERG 3’ exons 6-7, GABARAPL2, HOXC6, HPN, 

ITGBL1, KLK4, MYOF, PCA3, TDRD, and TMPRSS2:ERG. It is not surprising that 

PCA3 and ERG3’ exons 4-5 were also the most highly significant in all four data 

normalisations.  

I have shown that EV derived material from multiple centres can be quantified by 

NanoString to produce models that can predict cancer presence and aggression without 

biopsy. However, much greater numbers and model refinements (such as RF etc.) 
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would be needed to strengthen the models into a test that could be used in the clinic. A 

multivariate regression with the combination of RNA signatures and clinical factors 

should also be investigated.  
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6 
 Expression Profile of the Cell Sediment Urine 

Fraction 

6.1 Summary 

In this chapter, I compared the transcriptome profiles of two urine fractions from 

prostate cancer patients and controls, and examined whether the transcriptomes from 

cell sediment were better than EV transcriptomes for PCa diagnosis. I found that the 

cell sediments have a very different transcriptome profile to the EV fractions, which is 

similar to what was found in renal cancer217. Transcripts found by microarray analysis 

to be significantly more abundant in the EV fraction compared to the cell sediment were 

more commonly expressed in prostatic tissue and also had more known associations 

with prostate cancer. This suggested that the majority of RNA within the extracellular 

vesicle fraction comes from prostatic tissue, both normal and cancerous. These analyses 

support the hypothesis that EVs are a better fraction to study for biomarkers in prostate 

cancer. 
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 Analysis of cell sediment NanoString data to identify transcripts that could be used 

diagnostically to identify D’Amico clinically categories show common transcripts being 

selected by both Lasso and Random forest analyses when i) different input subsets of 

transcripts were used, and ii) when data was normalised with different control genes. 

Different probes for ERG 3’ sequences were identified in cell (ERG probe targeting 

exons 6-7) and EV models (ERG probe targeting exons 4-5). HOXC6 and TDRD were 

found in both cell and EV models. Interestingly, PCA3 and TMPRSS2:ERG were found 

in EV models and not cell models. This supports other work that the majority of PCa 

RNA content in whole urine is originating  from EVs and not whole cells.  

6.2 Introduction 

NanoString technology was applied to cell and extracellular vesicle (EV) fractions of 

urine from prostate cancer patients to form the NanoString 2 data set. Urine samples 

were divided into two fractions by centrifugation: i) cell sediment and ii) supernatant 

containing extracellular vesicles (section 2.1.2). In this chapter, analysis of the cell 

fraction will be completed. The investigation of the EV fraction can be found in 

Chapter 5.  

	
6.2.1 The Research Gap 

Since the production of the PCA3 test214, urine has been investigated for PCa 

biomarkers. Whole urine and cell sediment are commonly used and many models have 

been developed or built upon to include urinary expression of transcripts as 

biomarkers213,215. However, little work has been done on the EV fraction. The EV 

fraction has been identified to be a useful source of biomarkers in renal cancer217 and 

PCa associated transcripts have been quantified from PCa urine EVs218. No 

comparisons between transcript expression levels in EV fractions and cell fractions 
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have been published. It is therefore, unknown which may be the better source of PCa 

biomarkers. 

 
6.2.2 The Aims 

In the first part of this chapter, I will examine the NanoString data for differences in the 

expression profiles of the cell sediment between different clinical categories and try to 

construct models to predict clinical categories: These comparisons include comparing i) 

CB (no evidence of cancer) samples with D’Amico cancer risk groups: Low, 

Intermediate and High, and ii) CB vs high-risk cancer samples. Two trends will be 

investigated, CB, Low-, Intermediate-, High-risk cancers, ordered as such and CB, 

cancer and metastatic samples; ordered as such. In each comparison I have used two 

methods of analysis (logistic regression analysis and Mann Whitney U test), and will 

compare and contrast the selected gene transcripts from each. These investigations have 

already been presented for the extracellular vesicle fraction (chapter 5). 

In the second part of this chapter, I will compare and contrast the matched EV and cell 

sediment fraction data from microarray and NanoString analyses. Other studies have 

observed that the transcriptomes of urinary extracellular vesicles and whole urine are 

different in renal cancer217. I will identify transcripts that are significantly differentially 

expressed between the cell sediment and EVs in both NanoString data and microarray 

data.  

	
6.2.3 The Data 

The cell and EV fractions were analysed in 95 samples from a range of clinical 

categories (Table 6.1) based on the D’Amico classification using 167 NanoString 

probes. Three of these samples were taken pre-DRE, and as shown previously, these 

samples are not fully comparable with those obtained post-DRE and were not used in 

this chapter. These data were normalised with the spiked in positive controls as per the 
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NanoString manual (section 2.3.1) and log2 transformed (section 2.3.3) to produce the 

baseline normalised data. Investigations into use of  housekeeper transcripts were 

completed and data was normalised (section 2.3.2) using RPLP2 and TWIST1. These 

probes showed no association to clinical categories (p > 0.05 ANOVA-Tukey test) and 

were heavily correlated (p < 2.2x10
−16

, r = 0.83). Then similarly to the EV fraction 

KLK2 ratio normalisation (section 2.1.1) was also performed. PCA plots (not shown) 

were used to visualise the RPLP2 and TWIST1 normalised (“HK normalised data”) and 

the KLK2 ratio data. There were two outlier samples; M_86_1 (an Intermediate – risk 

sample) and M_147_1 (a CB sample), which were removed from the HK normalised 

data. M_147_1 was also removed from the KLK2 ratio normalised data, as forty-six of 

the one hundred and sixty-seven values for M_147_1 were zero. The values for 

M_88_5 looked normal in the KLK2 ratio data. Four clinical questions (Table 6.2) were 

investigated in the data and prediction models were produced accordingly. Due to 

limited numbers of samples, the data was not divided into test and training data. 

Table 6.1 Clinical breakdown of cell sediment fraction samples subjected to NanoString 
(within the second NanoString set). Twelve samples were CB (no evidence of cancer). 
Thirty raised PSA samples were negative for PCa on biopsy, but other abnormalities were 
found such as, HGPIN, prostatitis and atypia. Forty-six had localised cancer on TRUS 
biopsy of which four were D’Amico graded as Low risk, twenty-eight Intermediate risk 
and fourteen High-risk. Four samples had shown signs of metastasis. 
 CB  Abnormal  L I H A Total 
Number of 
Samples 

12 30 4 28 14 4 92 

Percentage 13% 33% 4% 30% 15% 4% 100% 
Median 
Age 

65 66 63.5 71 67.5 82 68 

Median 
PSA 

0.9 7.9 6.4 7.8 16.8 377 8.1 

	
Table 6.2 Clinical predictive models built using the cell dataset. 
Model Samples Model type 
CB vs. Cancer Clinically benign 

samples Vs low-, 
intermediate-, and high-
risk cancer samples 
grouped together 

Binary 

CB vs. High risk cancer Clinically benign Vs. 
high-risk cancer 
(extreme ends of no 
evidence of cancer and 

Binary 
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those with higher grade) 
CB, low-, intermediate-, and 
high-risk trend 

Each sample category is 
a separate group and 
ordered 

Ordinal 

CB, cancer, metastatic 
cancer trend 

Clinically benign 
samples, with low-, 
intermediate-, and high-
risk cancer samples 
grouped together, and 
metastatic cancer 
samples in groups 
ordered by severity 

Ordinal 

	
6.3 Models predicting presence of cancer CB and cancer (L, I, H) 

samples using cell sediment data 

6.3.1.1 Differentially expressed transcripts  

Expression of 85, 28, and 24 transcripts had a significant association (via logistic 

regression section 2.6.1) with whether a sample had no evidence for cancer (CB) or not 

(L, I, H) in the three processed datasets (the baseline data, KLK2 ratio, and HK 

normalised, respectively) (Supplementary Table 31). Only MCTP1 remained significant 

post multiple testing correction (adjusted p = 0.04) in the baseline data and none 

remained significant in the KLK2 ratio and HK normalised data. The top significant 

probe in these datasets was ERG 3’ exons 6-7 (p = 0.001) and NAALADL2 (p = 

3.33x10-05), respectively. 

Expression of 94, 33, and 56 transcripts had a significant association (via Mann 

Whitney U (MWU) testing, section 2.4.1) with whether a sample had no evidence for 

cancer (CB) or not (L, I, H) in the three processed datasets (the baseline data, KLK2 

ratio, and HK normalised, respectively) (Supplementary Table 32). The top significant 

probes identified by MWU were SULF2 (p = 9.18x10-06), PCA3 (p = 3.72x10-05) and 

SPINK1 (p = 3.72x10-05), respectively. 

Between the two tests 79, 20 and 26 transcripts were common between the two methods 

suggesting a good level of robustness. The top ten transcripts with the biggest log2 fold 
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change for the baseline data, KLK2 ratio, and HK normalised data are shown (Table 6.3, 

Table 6.4, Table 6.5, respectively). 
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Table 6.3 Top ten transcripts with biggest log2 fold change in the baseline normalised data. 
 MWU glm  
Transcript p-value Adjusted p-

value 
p-value Adjusted p-

value 
Log2(FC) 

HOXC6 0.0002 0.024 0.0014 0.2049 1.64 
ERG3’ exons 6-
7 2.84x10-07 4.74x10-05 0.0008 0.128 1.38 

TMPRSS2:ERG 4.52x10-05 0.0069 0.0013 0.1979 1.31 
SLC43A1 0.0003 0.0406 0.0019 0.2745 1.17 
CLIC2 2.66x10-05 0.0042 0.001 0.1645 1.05 
B4GALNT4 3.38x10-05 0.0053 0.0012 0.1807 1.04 
CADPS 1.37x10-05 0.0022 0.0004 0.0682 1.04 
CKAP2L 0.0116 1 0.0033 0.4318 1.01 
HPN 7.04x10-05 0.0103 0.0006 0.1041 0.97 
LASS1 0.0002 0.022 0.0011 0.1703 0.97 
 
Table 6.4 Top ten transcripts with biggest log2 fold change in the KLK2 ratio data. 
 MWU glm  
Transcript p-value Adjusted p-

value 
p-value Adjusted p-

value 
Log2(FC) 

HOXC6 6.80x10-05 0.01 0.004 0.63 0.21 
ERG3’ exons 6-
7 7.80x10-05 0.01 0.001 0.24 0.18 

TDRD 0.0004 0.06 0.004 0.72 0.18 
SLC43A1 0.002 0.32   0.17 
CADPS 0.004 0.67 0.01 1 0.16 
ERG5’ 0.01 0.99   0.15 
B4GALNT4 0.01 0.87   0.14 
SLC12A1 0.003 0.54 0.03 1 0.13 
TMCC2 0.05 0.99 0.05 1 0.13 
TMPRSS2:ERG 0.001 0.17 0.01 1 0.13 
 
Table 6.5 Top ten transcripts with biggest log2 fold change in the HK normalised data. 
 MWU glm  
Transcript p-value Adjusted p-

value 
p-value Adjusted p-

value 
Log2(FC) 

HOXC6 0.0002 0.0374 0.0019 0.3087 1.5 
ERG3’ exons 6-7 0.0006 0.1045 0.0228 0.9861 1.1 
TMPRSS2:ERG 0.0036 0.5527 0.0069 0.9861 1.1 
CP 0.0146 0.9924 0.0109 0.9861 -1 
TDRD 0.001 0.153 0.0105 0.9861 0.9 
NAALADL2 3.33x10-05 0.0056 0.0012 0.2012 -0.8 
SLC43A1 0.0005 0.0895 0.0168 0.9861 0.8 
ST6GALNAC1 0.0008 0.1311 0.0238 0.9861 -0.8 
SPINK1 7.80x10-05 0.0129     -0.7 
UPK2 0.0007 0.1128 0.0026 0.4313 -0.7 
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6.3.1.2 Models and gene selection 

A number of different transcript subsets were input to Lasso for probe shrinkage and 

selection, these included i) all of the transcripts (n = 167). Transcripts identified as 

having significantly different expression between cancer and CB using ii) Mann 

Whitney U (n = 94, n = 33 and n = 56) and iii) logistic regression (n = 85, n = 28 and n 

= 24), separately, and iv) transcripts common to both those identified by Mann Whitney 

U and logistic regression (n = 79, n = 20 and n = 26) for each of the three 

normalisations (the baseline data, KLK2 ratio, and HK normalised), respectively. The 

AUC, sensitivity and specificity of each model on the same data was collected (Table 

6.6) and transcript lists (Table 6.7, Table 6.8, Table 6.9) and boxplots of the Lasso 

selected probes were produced (Supplementary Figure 13, Supplementary Figure 14 

and Supplementary Figure 15). 
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Table 6.6 AUC, Sensitivity and Specificity of models to predict CB vs. Cancer (L, I, H) in different data normalisations of cell NanoString data. 
 HK normalised KLK2 ratio Baseline 
 All 

Transcripts 
MWU  glm  Both  All 

Transcripts 
MWU  glm  Both All 

Transcripts 
MWU  glm Both 

AUC 0.989 0.998 0.998 0.998 0.996 0.998 0.993 0.995 0.998 1 1 1 
Sensitivity 100% 98% 98% 98% 98% 98% 94% 96% 98% 100% 100% 100% 
Specificity 92% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
Number of 
Probes 

8* 8* 8* 8* 9 7 7** 7** 13 17 14*** 14*** 

*,	**	and	***	selected	probes	are	identical	in	model.	
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Table 6.7 Beta values of individual transcripts within models suggested by Lasso using 
different input transcripts for the baseline normalised data. 

Transcript Beta – All 
Transcripts  

Beta - MWU Beta - glm Beta - both 

ACTR5  0.572 0.206 0.226 
APOC1 0.045 0.022 0.054 0.052 
ARHGEF25  -0.176 0.396  
CADPS 0.273 0.481  0.399 
CAMKK2 0.055    
ERG 3’ exons 
6-7 

0.082 0.203 0.135 0.137 

EN2  0.32 0.146 0.164 
HIST1H2BG 0.006  0.015 0.013 
HOXC6 0.096 0.138 0.114 0.116 
IGFBP3  -0.148   
LASS1 0.115 0.314 0.26 0.263 
MCTP1 0.159    
MMP25 0.042 0.3470 0.219 0.224 
MMP26 -0.124 -0.137   
NAALADL2  -0.515 -0.356 -0.371 
PCA3 0.019 0.084 0.076 0.078 
RIOK3 0.095 0.0290 0.012 0.003 
SPINK1 -0.05  -0.0220 -0.056 -0.058 
SLC12A1  0.1020   
TDRD  0.1260 0.041 0.044 

	
Table 6.8 Beta values of individual transcripts within models suggested by Lasso using 
different input transcripts for the KLK2 ratio data. 

Transcript 
 

Beta – All 
transcripts 

Beta - MWU Beta - glm Beta - Both 

CADPS 0.075 0.1795 0.1052 0.1691 
CKAP2L 0.1992 0.2766 0.1894 0.2467 
EN2 0.0828    
ERG 3’ exons 
6-7 

0.7197 0.7699 0.7411 0.8396 

HOXC6 0.3855 0.6533 0.3772 0.5718 
MFSD2A 0.0104    
NAALADL2 -1.456 -2.084 -1.3254 -1.994 
SFRP4 0.1328 0.228   
SIM2 long   0.0251 0.2771 
TDRD 0.157 0.3875 0.1587 0.258 
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Table 6.9 Beta values of individual transcripts within models suggested by Lasso using 
different input transcripts for the HK normalised data.  

Transcript Beta – All 
transcripts 

Beta - MWU Beta - glm Beta - Both 

CADPS 0.1096 0.1433 0.1971 0.2285 
CLIC2 0.1062 0.1143 0.1241 0.128 
ERG 3’ exons 
6-7 

0.0716 0.0819 0.0967 0.1051 

HOXC6 0.1962 0.2044 0.2182 0.2272 
NAALADL2 -0.287 -0.315 -0.353 -0.3719 
SIM2 long 0.0411 0.0536 0.0602 0.0575 
TDRD 0.0502 0.064 0.088 0.1031 
UPK2 -0.081 -0.073 -0.061 -0.055 

	
Random forest was also applied to i) all transcripts, ii) significant transcripts identified 

by MWU and iii) significant transcripts identified by glm for the three different 

normalisations (the baseline data, KLK2 ratio, and HK normalised), respectively 

(Supplementary Table 34, Supplementary Table 35 and Supplementary Table 36). The 

random forest model with the least error (Table 6.11) was built using the glm identified 

significant probes from the KLK2 ratio data (the mean square of residuals = 0.088). 

ERG 3’ exon 6-7 was in the top 5 transcripts in 8/9 random forests, whilst APOC1 was 

in the top 5 transcripts in 6/9 random forests. HOXC6, CADPS, RIOK3, 

TMPRSS2:ERG, SLC12A1 and SPINK1 occur in 3/9 random forests (Table 6.10).  

	
Table 6.10 Frequency of transcripts in top 5 for random forests. 

Transcript Frequency in top 5 
random forest important 
transcripts 

Data 

APOC1 6 Baseline, KLK2 and HK 
CADPS 3 HK 
CCDC88B 2 HK 
ERG 3' exons 6-7  8 Baseline, KLK2 and HK 
NEAT1 2 Baseline 
RIOK3 3 Baseline 
TMPRSS2:ERG 3 Baseline 
SLC12A1 3 KLK2 
SPINK1 3 Baseline + HK 
HOXC6 4 KLK2 + HK 
PCA3 2 KLK2 
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Table 6.11 Mean square of residuals for random forest models for predicting CB vs. cancer 
(L, I and H) samples using different input probes across three different normalisations.  

HK 
  
  

KLK2 
  
  

Baseline 
  
  

Input: All glm MWU All glm MWU All glm MWU 
Mean 
square 
of 
residual
s 

0.11
4 

0.11
8 

0.138 0.115 0.08
8 

0.104 0.106 0.099 0.103 

	
6.3.2 CB vs High risk cancer patients 

6.3.2.1 Differentially expressed transcripts  

The 12 samples with no evidence of cancer (CB) were compared to the 14 high-risk 

cancer samples (H) using glm and MWU tests. 51, 12, and 20 transcripts had a 

significant association (via logistic regression, section 2.6.1) with whether a sample had 

no evidence for cancer (CB) or was high-risk cancer (H) in the three processed datasets 

(the baseline data, KLK2 ratio, and HK normalised, respectively, Table 6.12, Table 

6.13, Table 6.14, Supplementary Table 37). None remained significant post multiple 

testing correction in the baseline, KLK2 ratio or the HK normalised data. The top 

significant probe in these datasets was NEAT1 (p = 0.004), ERG 3’ exons 6-7 

(p = 0.008), and HOXC6 (p = 0.005), respectively. 

Expression of 65, 25, and 35 transcripts had a significant association (via Mann 

Whitney U (MWU) testing, section 2.4.1) with whether a sample had no evidence for 

cancer (CB) or if the samples were high-risk cancer (H) in the three processed datasets 

(the baseline data, KLK2 ratio, and HK normalised, respectively, Table 6.12, Table 

6.13, Table 6.14, Supplementary Table 38). Post multiple testing correction, the 

expression of 10 (ERG 3’ exons 6-7, B4GALNT4, RIOK3, CADPS, MCTP1, HOXC6, 

NEAT1, CLIC2, APOC1 and SIM2 long), 1 (HOXC6) and 0, remained significant. The 

top significant probes identified by MWU were ERG 3’ exons 6-7 (p = 6.21x10-06), 

HOXC6 (p = 4.28x10-05 and adjusted p = 0.007) and HOXC6 (p = 0.0005), respectively.  
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Table 6.12 Top 10 transcripts with biggest log2 fold change between CB and HR-cancer in 
the baseline data. 
 glm MWU  
Transcript p - value adjusted p 

- value 
p - value adjusted p 

- value 
Log2(FC) 

HOXC6 0.0002 0.0299 0.004 0.6711 2 
ERG3’ exons 6-7 6.21x10-06 0.001 0.0371 0.9942 1.6 
TDRD 0.0011 0.1558 0.0333 0.9942 1.5 
TMPRSS2:ERG  0.0004 0.0668 0.0386 0.9942 1.3 
B4GALNT4 2.88x10-05 0.0048 0.0409 0.9942 1.2 
SLC43A1 0.002 0.2897 0.0117 0.9942 1.2 
CADPS 6.70x10-05 0.011 0.02 0.9942 1.1 
CLIC2 0.0002 0.0386 0.0087 0.9942 1 
HPN 0.0008 0.1258 0.0092 0.9942 0.9 
LASS1 0.0011 0.1558 0.0103 0.9942 0.9 
 
Table 6.13 Top 10 transcripts with biggest log2 fold change between CB and HR-cancer in 
the KLK2 ratio data. 
 glm MWU  
Transcript p - value adjusted p 

- value 
p - value adjusted p 

- value 
Log2(FC) 

TMPRSS2:ERG 0.004 0.68 0.028 1.000 0.25 
ERG 3’ exons 6-7 0.000 0.07 0.008 1.000 0.25 
HOXC6 4.28E-05 0.01   0.25 
TDRD 0.001 0.09 0.017 1.000 0.24 
SLC43A1 0.002 0.27 0.022 1.000 0.21 
CADPS 0.007 1   0.18 
B4GALNT4 0.002 0.33 0.035 1.000 0.17 
ERG 5’ 0.027 1   0.16 
SLC12A1 0.013 1   0.15 
ERG 3’ exons 4-5 0.046 1 0.050 1.000 0.14 
 
Table 6.14 Top 10 transcripts with biggest log2 fold change between CB and HR-cancer in 
the HK normalised data. 
 glm MWU  
Transcript p - value adjusted p 

- value 
p - value adjusted p 

- value 
Log2(FC) 

HOXC6 0.0005 0.0882 0.0059 0.9765 1.6 
ERG3’ exons 6-7 0.0013 0.2186 0.0266 0.9765 1.4 
TDRD 0.0031 0.4948 0.0272 0.9765 1.1 
TMPRSS2:ERG 0.0094 1 0.033 0.9765 1.1 
ST6GALNAC1 0.0037 0.5969 0.0168 0.9765 -1 
SLC43A1 0.0013 0.2186 0.0197 0.9765 0.9 
B4GALNT4 0.0202 1     0.8 
HPN 0.0077 1 0.0314 0.9765 0.8 
CADPS 0.0145 1 0.0326 0.9765 0.7 
CCDC88B 0.031 1 0.0482 0.9765 0.7 
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6.3.2.2 Models and gene selection 

A number of different transcript subsets were input to Lasso for probe shrinkage and 

selection, these included i) all of the transcripts (n = 167). Transcripts identified as 

having significantly different expression between cancer and CB using ii) Mann 

Whitney U (n = 65, n = 25 and n = 35) and iii) logistic regression (n = 51, n = 12, and n 

= 20), separately, and iv) transcripts common to both those identified by Mann Whitney 

U and logistic regression (n = 49, n = 12 and n = 20) for each of the three 

normalisations (the baseline data, KLK2 ratio, and HK normalised), respectively. The 

AUC, sensitivity and specificity of each model on the same training data was collected 

(Table 6.15) and transcript lists (Table 6.16, Table 6.17, Table 6.18) and boxplots of the 

Lasso selected probes were produced (section 2.6.1, Supplementary Figure 16, 

Supplementary Figure 17 and Supplementary Figure 18). 
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Table 6.15 AUC, Sensitivity and Specificity of models to predict CB vs. high-risk cancer (H) in different data normalisations of cell NanoString data. 
 HK normalised KLK2 ratio Baseline 
 All 

Transcripts 
MWU  glm  Both  All 

Transcripts 
MWU  glm  Both All 

Transcripts 
MWU  glm Both 

AUC 1 1 1 1 0.952 0.905 0.958 0.905 1 1 1 1 
Sensitivity 100% 100% 100% 100% 93% 86% 93% 86% 100% 100% 100% 100% 
Specificity 100% 100% 100% 100% 92% 83% 92% 83% 100% 100% 100% 100% 
Number of 
Probes 6* 6* 7 6* 2** 2*** 2** 2*** 9 9 10 4 
*, ** and *** have identical probes selected for the model. 
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Table 6.16 Beta values of individual transcripts within HR cancer and CB models 
suggested by Lasso using different input transcripts for the baseline normalised data. 

Transcript Beta – All 
Transcripts  

Beta - MWU Beta - glm Beta - both 

AATF 0.094 0.696 0.982  
CADPS 0.773 1.255 1.798 0.337 
CAMKK2  0.055   
CCDC88B  0.037   
CDKN3   -0.101  
CKAP2L 0.042  0.358  
ERG 3’ exons 
6-7 0.135 0.219 0.193 0.096 
HOXC6 0.197 0.218 0.168 0.115 
IGFBP3 -0.051 -0.288   
LASS1 0.187 0.186 0.623  
MCTP1 0.003   0.029 
MMP25  0.092 0.197  
NAALADL2 -0.121    
SIM2 long   0.337  
TDRD  0.084   

 
Table 6.17 Beta values of individual transcripts within HR cancer and CB models 
suggested by Lasso using different input transcripts for the KLK2 ratio data. 

Transcript Beta – All 
Transcripts  

Beta - MWU Beta - glm Beta - both 

ERG 3’ exons 
6-7 

0.3394 0.5927 0.391 0.391 

HOXC6 0.0287 0.1029   
SIM2 long   0.0349 0.0349 

	
	
Table 6.18 Beta values of individual transcripts within HR cancer and CB models 
suggested by Lasso using different input transcripts for the HK normalised data. 

Transcript Beta – All 
transcripts 

Beta - MWU Beta – glm  Beta - both 

CADPS 0.3134 0.8661 0.4861 1.2907 
ERG 3’ exons 
6-7 

0.0636 0.0684 0.0784 0.0329 

GJB1 -0.0503 -0.009 -0.0518  
HOXC6 0.1835 0.2967 0.2332 0.3504 
NAALADL2 -0.1273 -0.3281 -0.1872 -0.4819 
SIM2 long  0.1225  0.3251 
SPINK1 -0.0754 -0.0949 -0.0812 -0.1063 

	
Random forest was also applied to i) all transcripts, ii) significant transcripts identified 

by MWU and iii) significant transcripts identified by glm for the three different 

normalisations (the baseline data, KLK2 ratio, and HK normalised), respectively 

(Supplementary Table 40, Supplementary Table 41 and Supplementary Table 42). 
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Using the glm identified significant probes in the HK normalised data gives the models 

with the smallest error (mean square of residuals: 0.117), although all models are very 

similar (Table 6.20).   

HOXC6 was in the top 5 transcripts in 8/9 random forests, whilst CADPS was in the top 

5 transcripts in 7/9 random forests. ERG3’ exons 6-7 and SPINK1 occur in 4/9, and 

ST6GALNAC1 and TDRD occur in 3/9 random forests (Table 6.19). 

	
Table 6.19 Frequency of transcripts in top 5 for random forests (CB vs high-risk cancer 
models).  

Transcript Frequency in top 5 
random forest important 
transcripts 

Data 

CADPS 7 Baseline + KLK2 + HK 
CCDC88B 2 Baseline 
ERG3’ exons 6-7 4 Baseline + KLK2 + HK 
HOXC6 8 Baseline + KLK2 + HK 
SIM2 long 2 KLK2 
SLC43A1 2 KLK2 
SPINK1 4 Baseline + HK 
ST6GALNAC1 3 HK 
TDRD 3 KLK2 
VAX2 2 HK 

	
Table 6.20 Mean Square of residuals error for each random forest model produced using 
different input probes in three different normalisations.  

HK 
  
  

KLK2 
  
  

Baseline 
  
  

Input: All glm MWU All glm MWU All glm MWU 
Mean 
square 
of 
residua
ls 

0.18 0.117 0.138 0.149 0.18 0.14 0.146 0.138 0.145 

	
6.3.3 Trend CBN-L-I-H 

6.3.3.1 Significant transcripts 

Trend (increase or decrease) in expression across the 12 CB samples, 4 low-risk, 28 

intermediate risk and 14 high-risk samples was investigated. Two methods of ordered 

multinomial regression were used: i) proportional odds logistic regression (polr) and ii) 
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logistic regression setting clinical group to an ordered integer. Using polr there were 70, 

20 and 15 transcripts that significantly modelled the trend in the three processed 

datasets (the baseline data, KLK2 ratio, and HK normalised, respectively), (p < 0.05, 

Supplementary Table 43). Of these only 7 (B4GALNT4, HOXC6, ERG3’ exons 6-7, 

APOC1, TMPRSS2:ERG, NEAT1, and MCTP1), 2 (HOXC6 and ERG 3’ exons 6-7) and 

1 (HOXC6) remained significant post multiple testing correction. The top significant 

probes identified by polr were APOC1, HOXC6 and ERG 3’ exons 6-7 jointly (p = 

0.0001), HOXC6 (p = 1.36x10-05) and HOXC6 (p = 4.54 x10-6), respectively. 

Using logistic regression there were 87, 36 and 19 transcripts that modelled trend with 

statistical significance in the three processed datasets (the baseline data, KLK2 ratio, 

and HK normalised, respectively), (p < 0.05, Supplementary Table 44). Of these 19, 4 

(HOXC6, ERG3’ exons 6-7, TMPRSS2:ERG and TDRD), and 1 (HOXC6) remained 

significant post multiple testing correction, respectively. The top significant probes 

identified by polr were APOC1 (p = 2.90x10-06, adjusted p-value = 0.0005), ERG 3’ 

exons 6-7 and HOXC6 jointly  (p = 0.0002) and HOXC6 (p = 6.37x10-05), respectively 

(Table 6.21, Table 6.22, Table 6.23). 

Polr identifies fewer transcripts than glm but all but one transcript identified by polr 

were also identified by logistic regression in each case, showing robustness in their 

identification. Similar probes were identified as most significant by the two methods 

also. 
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Table 6.21 Top 15 significant transcripts identified by polr to have trend across CB - L - I -
H clinical categories in the baseline normalised cell data. 

Transcript glm p -value glm adjusted p-
value 

polr p-value polr adjusted p-
value  APOC1 2.90x10-06 0.0005 0.0001 0.0246 

ERG3’ exons 6-7 5.87x10-06 0.001 0.0001 0.0191 
HOXC6 1.85x10-05 0.003 0.0001 0.0191 
TMPRSS2:ERG 6.00x10-05 0.0095 0.0002 0.0385 
MCTP1 4.10x10-06 0.0007 0.0003 0.0481 
NEAT1 0.0002 0.0265 0.0003 0.047 
RIOK3 6.64x10-06 0.0011 0.0003 0.0515 
ISX 3.91x10-05 0.0063 0.0004 0.066 
HPN 6.51x10-05 0.0102 0.0007 0.1079 
GCNT1 0.0002 0.025 0.0008 0.1318 
SULF2 2.23x10-05 0.0036 0.0008 0.1288 
CAMKK2 5.44x10-05 0.0087 0.0012 0.1813 
MMP25 0.0002 0.0277 0.0014 0.2178 
CADPS 0.0001 0.019 0.0017 0.261 
LASS1 0.0002 0.0331 0.0019 0.2854 

 
Table 6.22 Top 15 significant transcripts identified by polr to have trend across CB - L - I -
H clinical categories in the KLK2 ratio cell data. 

Transcript glm p -value glm adjusted p-
value 

polr p-value polr adjusted p-
value  ERG3’	exons	6-7 2.18	x10-05 0.0036 0.0002 0.0283 

HOXC6 1.36x10-05 0.0023 0.0002 0.0406 
TMPRSS2:ERG 6.86	x10-05 0.0112 0.0007 0.1136 
TDRD 0.0002 0.0263 0.0011 0.1757 
SIM2	long 0.0031 0.5021 0.0056 0.9028 
HPN 0.0027 0.4419 0.0081 0.994 
GCNT1 0.0066 0.998 0.0104 0.994 
CADPS 0.0052 0.8154 0.0112 0.994 
TMEM86A 0.0079 0.998 0.0184 0.994 
CKAP2L 0.0046 0.731 0.0187 0.994 
LASS1 0.005 0.7872 0.0209 0.994 
ERG3’	exons	4-5 0.0275 0.998 0.0243 0.994 
FOLH1 0.0124 0.998 0.0348 0.994 
ISX 0.0022 0.3607 0.0367 0.994 
ANKRD34B 0.0112 0.998 0.0374 0.994 
	
Table 6.23 Top 15 significant transcripts identified by polr to have trend across CB - L - I -
H clinical categories in the HK normalised cell data. 

Transcript glm p -value glm adjusted p-
value 

polr p-value polr adjusted p-
value  HOXC6 4.54	x10-6 0.0008 6.37x10-05 0.0106 

TDRD 0.0012 0.2024 0.0034 0.564 
SIM2	long 0.0032 0.5147 0.0043 0.7056 
SLC43A1 0.0011 0.1895 0.006 0.978 
UPK2 0.0028 0.4609 0.0077 0.9994 
ERG	3’	exons	6-7 0.0043 0.6877 0.0098 0.9994 
NAALADL2 0.0018 0.2913 0.0098 0.9994 
TMPRSS2:ERG	fusion 0.004 0.6414 0.0127 0.9994 
ST6GALNAC1 0.0049 0.7755 0.0179 0.9994 
FOLH1 0.0174 0.9941 0.0191 0.9994 
MEX3A 0.0243 0.9941 0.0337 0.9994 
TMEM86A 0.0107 0.9941 0.0337 0.9994 
SERPINB5 0.0162 0.9941 0.0425 0.9994 
PALM3 0.027 0.9941 0.0461 0.9994 
EN2  	 0.0463 0.9994 
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6.3.3.2 Models and gene selection 

A number of different transcript subsets were input to Lasso for probe shrinkage and 

selection, these included i) all of the transcripts (n = 167). Transcripts identified as 

having significant decrease or increase in expression across CB->L->I->H clinical 

categories using ii) polr (n = 70, n = 20 and n = 15), and iii) logistic regression (n = 87, 

n = 36, and n = 19), separately, for each of the three normalisations (the baseline data, 

KLK2 ratio, and HK normalised), respectively (Supplementary Table 45). In addition, 

the transcripts common to both those identified by polr and glm for the HK normalised 

data only was also submitted to Lasso (n = 14), these were the only significant 

transcript lists where polr did not contain all of the glm identified probes. APOC1 was 

the only probe selected by Lasso in all three transcript inputs for the baseline 

normalised data. HOXC6 was the only probe selected by Lasso in the KLK2 ratio data. 

HOXC6, NAALADL2 and UPK2 were common probes selected by Lasso in the HK 

normalised data.  

The AUC, sensitivity and specificity of each model on the same training data was 

collected (Table 6.27) and transcript lists (Table 6.24, Table 6.25, Table 6.26) and 

boxplots of the Lasso selected probes were produced (Supplementary Figure 19, 

Supplementary Figure 20 and Supplementary Figure 21).  
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Table 6.24 Optimal multinomial models for predicting clinical category (CB, low-risk, 
intermediate-risk, and high-risk cancer) with different subsets of input transcripts (from 
preliminary ordered glm and polr tests) in the baseline normalised cell data. 

	
Table 6.25 Optimal multinomial models for predicting clinical category (CB, low-risk, 
intermediate-risk, and high-risk cancer) with different subsets of input transcripts (from 
preliminary ordered glm and polr tests) in KLK2 ratio cell data 

Transcript All transcripts 
(n = 94) - Beta 

glm (n = 36) - 
Beta 

polr (n = 20) - 
Beta 
 
 
 

CADPS 0.027 0.075 0.026 
CKAP2L  0.074  
ERG3’ exons 4-5  -0.121  
ERG3’ exons 6-7 0.809 0.784 0.591 
HOXC4 -0.134   
HOXC6 0.264 0.475 0.34 
ITGBL1 -0.118   
NAALADL2 -0.479   
PALM3 -0.017   
RIOK3  -0.487  
TDRD  0.031  
TMPRSS2:ERG 0.008 0.12 0.131 
Cp1 0.998 1.094 0.837 
Cp2 1.938 2.065 1.937 
Cp3 -0.401 -0.427 -0.400 

Transcript All transcripts 
(n = 167) - Beta 

glm (n = 87) - 
Beta 

polr (n = 70) - 
Beta 

AATF 0.1 0.115 0.109 
APOC1  0.056  
B4GALNT4 0.004 0.121  
CADPS  0.068  0.105 
CAMKK2  0.062  
CCDC88B  0.036  
EN2   0.024 
ERG 3’ exons 6-7 0.154 0.139 0.144 
HOXC6 0.16  0.121 
KLK3 exons 2-3 -0.022   
LASS1 0.034  0.017 
MCTP1 0.037  0.095 
MMP25 0.007  0.088 
NAALADL2 -0.104 -0.034  
RIOK3 0.016  0.095 
SPINK1   -0.1 
SULF2 0.088  0.046 
VAX1 -0.131   
Cp1 1.198 0.702 1.283 
Cp2 2.018 1.786 2.132 
Cp3 -0.414 -0.368 -0.436 
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Table 6.26 Optimal multinomial models for predicting clinical category (CB, low-risk, 
intermediate-risk, and high-risk cancer) with different subsets of input transcripts (from 
preliminary ordered glm and polr tests) in HK normalised cell data.  

Transcript All transcripts 
(n = 167) - 
Beta 

glm (n = 19) - 
Beta 

polr (n = 15) - 
Beta 

glm and polr 
(n = 14) - Beta 

CADPS  0.035   
CLIC2  0.043   
ERG 3’ exons 
6-7 

0.088 0.19 0.179 0.211 

GJB1 -0.057 -0.233   
HOXC6 0.151 0.266 0.205 0.234 
NAALADL2 -0.094 -0.183 -0.235 -0.285 
PALM3  -0.028 -0.045 -0.074 
SLC43A1  0.015 0.033 0.058 
TDRD  0.045   
TMEM86A    0.023 
UPK2 -0.014  -0.003  
Cp1 0.65 1.622 1.276 1.563 
Cp2 1.76 2.321 2.089 2.26 
Cp3 -0.361 -0.466 -0.425 -0.456 
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Table 6.27 AUC, Sensitivity and Specificity of models to predict trend across clinical categories: CB > L- > I- > H-risk cancer in different data normalisations of cell 
NanoString data.  

Data type: Baseline 
  
  

KLK2 
  
  

HK 
  
  

Model Input: All 
transcripts 

Glm Polr All 
transcripts 

Glm Polr All 
transcripts 

Glm Polr glm + 
polr  

Accuracy 0.7069 0.6552 0.6897 0.7069 0.6379 0.6207 0.6552 0.6897 0.6897 0.6897 
AUC 0.7604 0.7242 0.7669 0.7504 0.7252 0.702 0.6944 0.7609 0.7609 0.7609 
Sensitivity: 
CB 

83% 67% 92% 75% 67% 58% 67% 83% 83% 83% 

L 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
I 96% 93% 93% 96% 89% 89% 100% 93% 93% 93% 
H 29% 26% 21% 36% 29% 29% 14% 29% 29% 29% 
Specificity: 
CB 

100% 100% 100% 98% 100% 98% 100% 100% 100% 100% 

L 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
I 47% 40% 47% 47% 40% 37% 33% 47% 47% 47% 
H 98% 95% 95% 100% 93% 95% 100% 95% 95% 95% 
PPV: CB 100% 100% 100% 90% 100% 88% 100% 100% 100% 100% 
L NA NA NA NA NA NA NA NA NA NA 
I 63% 59% 62% 63% 58% 57% 58% 62% 62% 62% 
H 80% 67% 60% 100% 57% 67% 100% 67% 67% 67% 
Number of 
Probes  

13 7 11 8 8 4 5 9 6 6 
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Random forest was also applied to i) all transcripts, ii) significant transcripts identified 

by polr and iii) significant transcripts identified by glm for the three different 

normalisations (the baseline data, KLK2 ratio, and HK normalised), respectively 

(Supplementary Table 46, Supplementary Table 47 and Supplementary Table 48). 

Using all probes in the baseline normalised data gives the models with the smallest 

error (OOB error: 27.6%, Table 6.28). ERG3’ exons 6-7 was present in 8/9 random 

forest models, whilst TMPRSS2:ERG and HOXC6 were present in 6/9 RF models 

(Table 6.29).  

 
Table 6.28 OOB error rates for random forest models built to predict trend over clinical 
categories: CB > L > I >H  

Baseline 
  

KLK2 
  
  

HK 
  
  

Input: All glm polr All glm polr All glm polr Glm 
+ 
polr 

OOB 
error 

27.6
% 50% 50% 46.6

% 
48.3
% 

51.7
% 

44.8
% 

43.1
% 

41.4
% 

44.8
% 

	
Table 6.29 Frequency of transcripts in top 5 for random forests (CB > L > I >H trend 
models). 

Transcript Frequency in top 5 
random forest important 
transcripts 

Data 

ERG3’ exons 6-7 8 Baseline, KLK2 and HK 
TMPRSS2:ERG 6 Baseline, KLK2 and HK 
HOXC6 6 KLK2 and HK 
PCA3 3 KLK2 and HK 
PALM3 3 HK 
RIOK3 2 Baseline 
NEAT1 2 Baseline 
CADPS 2 Baseline 
APOC1 2 Baseline 
FOLH1 2 KLK2 
NAALADL2 2 HK 
UPK2 2 HK 
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6.4 Summary of Predictive Models 

In the KLK2 ratio data half of the models had better AUCs on the training set from the 

cell data and half from the EV data (Table 6.30). However, in the HK data, the AUCs 

were higher in the cell data. I am limited in the number of samples for the cell fraction 

and so the models have not been applied to a test data set, this means that the models 

could be over fitting the data. 

	
Table 6.30 Comparison of AUCs from models using cell and EV data. 

 Cell EV 
KLK2 ratio data   
CB vs Cancer (L, I, H) 
All transcripts 

0.996 0.949 

CB vs Cancer (L, I, H) 
Significant transcripts 

0.998 0.886 

CB vs HR Cancer (H) 
All transcripts 

0.952 0.991 

CB vs HR Cancer (H) 
Significant transcripts 

0.958 0.97 

CB > L > I > H 
All transcripts 

0.7504 0.7663 

CB > L > I > H 
Significant transcripts 

0.702 0.6757 

   
HK normalised data   
CB vs Cancer (L, I, H) 
All transcripts 

0.989 0.925 

CB vs Cancer (L, I, H) 
Significant transcripts 

0.998 0.902 

CB vs HR Cancer (H) 
All transcripts 

1 0.976 

CB vs HR Cancer (H) 
Significant transcripts 

1 0.992 

CB > L > I > H 
All transcripts 

0.7609 0.7587 

CB > L > I > H 
Significant transcripts 

0.7609 0.7728 
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Table 6.31 Transcripts identified by all selection models for the different clinical category 
tests across the different normalisations on the cell NanoString data. 
Normalisation Clinically Benign vs. 

Cancer 
Clinically Benign vs. 
High risk cancer 

Trend Clinically Benign, 
low-risk, intermediate-
risk and high-risk 

Baseline ACTR5 
APOC1 
ARHGEF25 
CADPS 
CAMKK2 
ERG3’ exon 6-7 
EN2 
HIST1H2BG 
HOXC6 
IGFBP3 
LASS1 
MCTP1 
MMP25 
MMP26 
NAALADL2 
PCA3 
RIOK3 
SPINK1 
SLC12A1 
TDRD 

AATF 
CADPS 
CAMKK2 
CCDC88B 
CDKN3 
CKAP2L 
ERG3’ exon 6-7 
HOXC6 
ITGFBP3 
LASS1 
MCTP1 
MMP25 
NAALADL2 
SIM2 long 
TDRD 

AATF 
APOC1 
B4GALNT4 
CADPS 
CAMKK2 
CCDC88B 
EN2 
ERG3’ exon 6-7 
HOXC6 
KLK3 exons 2-3 
LASS1 
MCTP1 
MMP25 
NAALADL2 
RIOK3 
SPINK1 
SULF2 
VAX1 

KLK2 ratio CADPS 
CKAP2L 
EN2 
ERG3’ exons 6-7 
HOXC6 
MFSD2A 
NAALADL2 
SFRP4 
SIM2 long 
TDRD 

ERG3’ exons 6-7 
HOXC6 
SIM2 long 

CADPS 
CKAP2L 
ERG3’ exons 4-5 
ERG3’ exons 6-7 
HOXC4 
HOXC6 
ITGBL1 
NAALADL2 
PALM3 
RIOK3 
TDRD 
TMPRSS2:ERG 

RPLP2 and 
TWIST1 
normalised 

CADPS 
CLIC2 
ERG3’ exons 6-7 
HOXC6 
NAALADL2 
SIM2 long 
TDRD 
UPK2 

CADPS 
ERG3’ exon 6-7 
GJB1 
HOXC6 
NAALADL2 
SIM2 long 
SPINK1 

CADPS 
CLIC2 
ERG3’ exons 6-7 
GJB1 
HOXC6 
NAALADL2 
PALM3 
SLC43A1 
TDRD 
TMEM86A 
UPK2 
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Table 6.32 Transcripts selected for models in EV data. 
Normalisation Clinically 

Benign vs. 
Cancer 

Clinically 
Benign vs. High 
risk cancer 

Trend Clinically Benign, low-risk, 
intermediate-risk and high-risk 

KLK2 ratio AMACR 
APOC1 
AR exon 9  
CP 
DLX1 
ERG3’ exon 4-5 
GJB1 
HOXC6 
IGFBP3 
ISX 
KLK4 
MXI1 
NEAT1 
PCA3 
PPP1R12B 
RNF157 
ST6GALNAC 
SULT1A1 
TDRD 
TMEM47 
TMPRSS2:ERG 

ACTR5 
ALAS1 
AMACR 
ANKRD34B 
APOC1 
AR exon  9  
AR exons 4-8 
AURKA 
BTG2 
CD10 
CKAP2L 
CP 
DLX1 
DPP4 
ERG 3’ exons 
4-5 
HOXC6 
HPN 
IGFBP3 
ISX 
KLK4 
MAK 
MED4 
MMP25 
NEAT1 
PCA3 
PDLIM5 
PPFIA2 
PSTPIP1 
PTPRC 
RPL18A 
SRSF3 
STEAP4 
TMEM47 
TMPRSS2:ERG 

AMACR 
ANKRD34B 
APOC1 
AR exon  9  
AR exons 4-8 
BTG2 
CD10 
CP 
DLX1 
DPP4 
ERG 3’ exons 4-5 
ERG 3’ exons 6-7 
GABARAPL2 
HIST1H1E 
HOXC6 
HPN 
IGFBP3 
ISX 
ITGBL1 
KLK4 
MED4 
MEMO1 
MXI1 
MYOF 
NEAT1 
PCA3 
PPP1R12B 
PSGR 
PSTPIP1 
SLC12A1 
SRSF3 
SULT1A1 
TDRD 
Timp4 
TMEM47 
TMPRSS2:ERG 
ZNF577 

RPLP2 and 
GAPDH 
normalised 

APOC1 
AR exon 9  
CD10 
CP  
ERG3’ exons 4-
5 
GABARAPL2 
HOXC6 
HPN 
ISX 
KLK4 
MCTP1 

AMACR 
ANKRD34B 
APOC1 
AR exon 9  
AR exon 4-8  
CD10 
DLX1 
DPP4 
ERG3’ exons 4-
5 
GABARAPL2 
HOXC6 

ACT5R 
AMH 
ANKRD34B 
APOC1 
AR exon 9  
AR exon 4-8  
CD10 
CP  
DPP4 
ERG3’ exons 4-5 
ERG3’ exons 6-7 
FDPS 
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PCA3 
PDLIM5 
PPP1R12B 
PTN 
SLC12A1 
SULT1A1 
TDRD 
TMPRSS2:ERG 

HPN 
KLK4 
MYOF 
NEAT1 
PCA3 
PDLIM5 
SLC12A1 
SRSF3 
STOM 
SULT1A1 
TMPRSS2:ERG 

GABARAPL2 
GCNT1 
GJB1 
HIST1H1E 
HIST1H2BF 
HOXC6 
HPN 
IGFBP3 
ISX 
ITGBL1 
KLK4 
MED4 
MEMO1 
MIATNB 
MSMB 
MXI1 
MYOF 
NEAT1 
PCA3 
PPP1R12B 
RPS10 
SLC12A1 
SPINK1 
SRSF3 
SULT1A1 
TDRD 
Timp4 
TMPRSS2:ERG 
TRPM4 
UPK2 
ZNF577 
 

	
Comparing the transcripts selected for models in the cell KLK2 ratio data (Table 6.31) 

and the EV KLK2 ratio data (Table 6.32), only 5 transcripts were selected for both sets 

of models (CKAP2L, HOXC6, TDRD, ITGBL1 and TMPRSS2:ERG). The same 

comparison for the HK normalised data yielded a different 5 transcripts in common 

(ERG 3’ exons 6-7, HOXC6, TDRD, GJB1 and UPK2). This shows that different probes 

are selected as important for predictive models between the different fractions of urine 

(cell vs EV).  
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6.5 Comparison of the urine expression profiles of Extracellular 

vesicle and Cell fractions in Prostate Cancer 

6.5.1 Microarray comparison of the global expression profile of 

Extracellular vesicle and Cell fractions. 

I examined Affymetrix microarray expression data from the cell sediment and EV 

fraction of urine collected from prostate cancer patients from either the NNUH or the 

Royal Marsden Hospital NHS foundation trust (n = 3). Genes that were significantly 

differentially expressed between the two fractions were determined by Dr. Daniel 

Brewer using the Limma package and the method proposed by Mootha et al., 2003, to 

give a value for variance of expression and if it significantly differs between 

fractions219. 98 genes were found to be up-regulated in the extracellular vesicles and 

116 up-regulated in the cell sediment fraction. 
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Table 6.33 A list of the top 20 microarray detected transcripts out of 98 that were found to be significantly more abundant in extracellular vesicles 
compared with sediment from the same urine.  
Rank Gene Log2(FC) p-value  Tissue Expression  Known Cancer Associations 
1 TMSB15A 5.19 0.048 Prostate Prostate220, Other221,222,223 

2 PRKG2 5.02 0.035 Prostate, Other N 
3 TCEA3 4.87 0.048 Other N 
4 PRAC 4.85 0.035 Prostate, Other Prostate224, Other225 
5 KLK4 4.82 0.041 Prostate Prostate226,227 

6 FOLH1, 
FOLH1B 

4.59 0.048 Prostate, Other Prostate228 

7 EPHX2 4.58 0.041 Expressed in all Prostate229, Other230,231,232 

8 GMPR 4.57 0.042 Expressed in all (higher expression in Prostate, 
Other) 

Prostate233 

9 RANBP3L 4.5 0.046 Prostate, Kidney, Other Multiple234,235 

10 MPPED2 4.39 0.047 Prostate, Other Other236 

11 CKB 4.17 0.035 Expressed in all (highest expression in Prostate) Prostate237, Other238 

12 MLPH 4.09 0.045 Prostate, Other Prostate239  
13 NFIA 4.06 0.048 Expressed in all Prostate240, Other241 

14 GLYATL1 
 

4.00 0.049 
 

Prostate, Kidney, Other Other242 

15 NFIB 3.98 0.048 Mixed Prostate243, Other244 

16 CCDC88C 
 

3.98 0.043 Expressed in all Other245 

17 HOXB13 3.97 0.042 Prostate Prostate246, Other246 
18 PART1 3.95 0.035 Prostate* Prostate247 
19 AZGP1 3.85 0.043 Prostate, Other Prostate248, Other249,250  
20 TCEAL2 3.73 0.048 Tissue Enhanced (glands, reproductive including 

prostate and cerebral cortex) 
Other251 
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I researched the top twenty up-regulated transcripts in the two fractions to examine the link 

between the genes, prostate tissue and cancer (Table 6.33, Table 6.34). Information about 

normal tissue expression was usually acquired from ‘protein atlas’252 but when this was not 

available, data was instead acquired from ‘Genecards’253. Known cancer associations were 

determined using a literature search using the gene ID and the words ‘cancer’ or ‘prostate 

cancer’. 80% of the top 20 genes up-regulated in extracellular vesicles were associated with 

prostate tissue, compared with 25% from the cell fraction. 65% of the top 20 genes up-

regulated in extracellular vesicles were linked with prostate cancer and 65% cancer 

generally. The equivalent figures for the cell fraction were 30% and 65%. This is a strong 

indication that the extracellular vesicles contain RNA from prostate cancer cells and it is a 

better source of biomarkers than the cell fraction. 
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Table 6.34 A list of the top 20 microarray detected gene-transcripts out of 116 that were found to be 
significantly more abundant in the cell sediment compared with extracellular vesicles from the same 
urine.  

Rank Gene Log2(FC) p-value Tissue Expression Known 
Cancer 
Associations 

1 SCARNA9 7.86 0.035  None 
2 SNORD58A, 

SNORD58B 
7.77 0.043  None 

3 ALOX5AP 7.16 0.042 Other Prostate254, 
Other255 

4 LYZ 7.12 0.035 Other Other256 

5 FCER1G 7.00 0.035 Prostate, Other Other257 

6 FCGR2A 6.76 0.048 Prostate, Other None 
7 CYBB 6.72 0.045 Other Prostate258, 

Other259 

8 TNFRSF1B 6.71 0.045 Other Other260 

9 SCARNA9 6.45 0.044  None 
10 SRGN 6.43 0.045 Other  Other261 

11 IL8 6.12 0.035 Other Prostate262 

12 EVI2B 6.03 0.043 Other Other263 

13 TREM1 5.97 0.044 Other Other264 

14 MIR21 5.67 0.049 Not found Prostate265,  
Other266, 267 

15 SCARNA7 5.66 0.043 Not found None 
16 HNRNPK 5.62 0.050 Prostate, Other  Prostate268, 

Other269 

17 GNS 5.58 0.035 Prostate, Other None 
18 CBX3 5.32 0.045 Prostate, Other Other270, 271 

19 CTSS 5.32 0.045 Other Prostate272,  
Other273, 274 

20 ERO1L 5.23 0.041 Other Other275 

	

6.5.2 NanoString comparison of the global expression profile of Extracellular 

vesicle and Cell fractions. 

6.5.2.1 Visualisation of expression differences between fractions 

NanoString data (167 probes) from both extracellular vesicle and cell fractions were 

available for 92 patients. In this section NanoString internal positive control normalised 

data was used. A PCA plot (section 2.5.1) was produced to visualise the variance of the cell 

sediment expression against extracellular vesicles expression (Figure 6.1). The expression 

profiles for the fractions cluster together, indicating that fraction has a bigger influence on 

the expression profile than the patient.  
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Figure 6.1 PCA plot of the expression levels for samples taken from the cell sediment and the 
extracellular vesicle fraction of urine. 

6.5.2.2  Differentially expressed transcripts  

Expression of 142/167 transcripts were significantly different between extracellular vesicle 

and cell fractions (adjusted p < 0.05, paired Mann Whitney U test). 100 were up-regulated 

in the extracellular vesicle fractions and 42 in the cell sediment fractions (Table 6.35, Table 

6.36). HOXC6 is a known PCa biomarker that can be identified in patient urine276, it is 

therefore very interesting that it is found in abundance in EVs over whole urine. PTPRC is a 

positive regulator of T-cell coactivation and is found in immune cells277.  
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Table 6.35 NanoString top twenty transcripts that were up-regulated in extracellular vesicle fractions 
compared to cell sediment fractions. 

Transcript	 p-value	 Adjusted	p-value	 Log	Fold	change	
HOXC6	 1.12x10-10	 1.07x10-08	 0.81	
SERPINB5	 9.78x10-14	 1.23x10-11	 0.79	
OR52A2	 3.57x10-13	 4.22x10-11	 0.77	
PTN	 1.17x10-15	 1.73x10-13	 0.76	
SChLAP1	 8.67x10-10	 7.89x10-08	 0.67	
P712P	 6.29x10-15	 8.69x10-13	 0.67	
PPFIA2	 2.07x10-12	 2.32x10-10	 0.65	
SIM2	long	 1.68x10-11	 1.74x10-09	 0.65	
ERG3’	exons	4-5	 2.31x10-05	 0.0013	 0.64	
SMIM1	 1.69x10-13	 2.09x10-11	 0.62	
TMEM47	 0.001	 0.0434	 0.61	
CLU	 2.99x10-06	 0.0002	 0.61	
Timp4	 6.74x10-11	 6.67x10-09	 0.61	
ARHGEF25	 6.56x10-10	 6.10x10-08	 0.58	
RNF157	 3.58x10-07	 2.47x10-05	 0.58	
PCA3	 7.66x10-14	 9.73x10-12	 0.58	
NKAIN1	 1.07x10-13	 1.34x10-11	 0.57	
DNAH5	 5.02x10-09	 4.22x10-07	 0.57	
KLK2	 8.19x10-16	 1.24x10-13	 0.55	
SYNM	 4.87x10-08	 3.55x10-06	 0.54	
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Table 6.36 NanoString top twenty transcripts that were up-regulated in cell sediment fractions compared 
to extracellular vesicle fractions. 

Transcript	 p-value	 Adjusted	p-value	 Log	Fold	change	
PTPRC	 1.77x10-16	 2.94x10-14	 -1.97	
STOM	 2.93x10-16	 4.66x10-14	 -1.73	
SULF2	 2.48x10-16	 4.07x10-14	 -1.69	
MFSD2A	 3.24x10-16	 5.12x10-14	 -1.66	
NLRP3	 6.72x10-16	 1.03x10-13	 -1.64	
PSTPIP1	 3.96x10-16	 6.17x10-14	 -1.44	
MMP25	 2.17x10-16	 3.58x10-14	 -1.43	
CLIC2	 1.52x10-15	 2.20x10-13	 -1.35	
CCDC88B	 2.93x10-16	 4.66x10-14	 -1.27	
TMEM86A	 9.51x10-15	 1.27x10-12	 -1.19	
MKi67	 3.85x10-09	 3.27x10-07	 -1.18	
MAK	 1.39x10-14	 1.85x10-12	 -1.15	
MCTP1	 2.83x10-16	 4.59x10-14	 -1.09	
APOC1	 6.72x10-16	 1.03x10-13	 -1.07	
CP	 4.49x10-11	 4.54x10-09	 -0.99	
MIR146A	 1.74x10-15	 2.47x10-13	 -0.96	
NEAT1	 1.77x10-16	 2.94x10-14	 -0.88	
Met	 9.62x10-12	 1.01x10-09	 -0.88	
MIC1	 4.15x10-13	 4.85	x10-11	 -0.67	
COL10A1	 2.09x10-11	 2.15x10-09	 -0.59	

	
	
	

6.6 Discussion 

I found that the AUCs of the cell sediment models were marginally higher in the baseline 

normalised data for CB vs cancer models, CB vs high-risk cancer models and CB > L > I > 

H trend models (Table 6.30).  However, these AUCs need to be taken with caution as the 

models have not been tested in a validation dataset and so overfitting may be occurring. 

There was a low number of samples used to build the cell predictive models and they all 

came from the same centre, so it is possible that the cell models are not as robust as one 

would desire. Comparing the transcripts identified via glm and those identified by Mann 

Whitney U, there were a large percentage of transcripts in common, suggesting a level of 

robustness when using these methods. 

For the cell sediment, the transcripts identified as significantly different between the “No 

Evidence for Cancer” samples and the cancer samples differed depending on the 

normalisation (Supplementary Table 49). However, CADPS and ERG3’ exons 6-7, HOXC6, 

NAALADL2 and TDRD are present in all analyses. This shows a robustness of these 
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transcripts and indicates a level of importance when using cell sediment from urine 

samples. All are up-regulated in the cancer samples, with the exception of NAALADL2. 

ERG3’ exons 6-7, HOXC6 and SIM2 long were the only probes that consistently 

distinguished high-risk cancer from CB samples. All three probes were up-regulated in the 

high-risk cancer samples. Looking at the trend across clinically benign, low-risk, 

intermediate-risk and high-risk cancer, CADPS, ERG3’ exons 6-7, HOXC6 and NAALADL2 

probes were again the common transcripts across all of the different normalisations. CADPS 

increases as risk increases, with lowest expression in CB and highest in high-risk cancer. 

ERG 3’ exons 6-7 and HOXC6 increase in low risk cancer but then have a decreased 

expression in intermediate and high-risk cancer with lowest expression found in CB. 

NAALADL2 expression decreases in trend with advancement of cancer.	

CADPS is a cytosolic and peripheral membrane protein required for vesicle docking and 

priming steps that precede vesicle exocytosis278. Down-regulation of CADPS has been 

associated with poor outcome in pancreatic ductal adenocarcinoma279 and a genome wide 

molecular characterisation of central nervous system primitive neuroectodermal tumour and 

pineoblastoma found that the CADPS locus (3p14.2) was lost in 27.6% of cases and was 

also associated with poor prognosis280. Searching for “CADPS prostate cancer” yields no 

results during a literature search. ERG 3’ is a proto-oncogene known to be associated with 

PCa, it is also involved in the TMPRSS2:ERG fusion but has been shown to be increased in 

PCa via alternate mechanisms to the fusion also281. The TMPRSS2:ERG fusion is identified 

in ~50% of PCa samples but has not been identified as a key biomarker for PCa prediction 

in cell data in this study. HOXC6 is known to be associated with PCa, there is a urine based 

test that utilises the identification of HOXC6 mRNA called the SelectMDx276. Therefore, 

our findings support other work showing its association with prostate cancer and its 

identification in PCa patient urine. NAALADL2 is known to be overexpressed in PCa tissue 

compared to benign tissue using IHC. Expression of NAALADL2 has been shown to impact 

on a number of pro-oncogenic pathways such as cell migration, invasion and colony-

forming potential. Leading to the belief that NAALADL2 is a useful biomarker for diagnosis 
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and prognosis282. In PCa cell urine, a lower expression has been associated with PCa, here. 

TDRD is a cancer/testis (CT) antigen that has previously been associated with liver 

cancer283 and breast cancer284 but not PCa. SIM2 long has been found to be over-expressed 

in PCa tissue when compared with CB tissue285 and it’s up regulation has also been 

associated with biochemical recurrence post-radical prostatectomy286. However, it has not 

previously been identified as a PCa urine biomarker.  

    In the EV models, ERG 3’ exon 4-5 was more highly selected as a biomarker over ERG 

3’ 6-7 like in the cell models. HOXC6, TDRD also appear in all of the EV models. 

However, TMPRSS2:ERG, PCA3 also appear in EV models and not cell models. It has 

previously been observed that most of the RNA content in whole urine is actually coming 

from EVs and not from cells – this is shown by a comparison of the RNA yields from cells 

and EVs from the same urine samples (data not shown). Further to this, NanoString analysis 

was only performed on 95 cell RNA fractions out of the 756 Samples because amounts of 

cell RNA were on the whole so limiting that expression analysis was not deemed viable. 

Consistently higher EV RNA yields explains how TMPRSS2:ERG and PCA3 are highly 

detectable in whole urine and EV fractions of urine. CADPS is not selected in EV models, 

which makes sense as CADPS is an EV making gene. However, many more transcripts are 

commonly selected such as APOC1, KLK4 and HPN. Showing EVs are a good source of 

urinary biomarkers for PCa.  

Comparing the expression of transcripts in the cell fraction to the EV fraction via 

microarray has shown that a high proportion of prostate, and PCa associated transcripts are 

more abundant in the EV fraction. It also showed that PTPRC, which is a blood immune 

associated transcript is more abundant in the cell fraction. This us to believe that many of 

the cells in the cell fraction of the PCa patient urine are actually immune cells and not 

prostate/PCa cells, which is in support of other literature281.  

      Our findings support previous research that the genetic content of cell sediment and that 

of extracellular vesicles differs. Expression levels of many transcripts that were both 

expressed in the prostate tissue and known to be prostate cancer associated were found in 
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increased levels in the extracellular vesicle compared to the cell sediment. This highlights 

that the extracellular vesicle fraction is indeed of great interest to investigate further for PCa 

biomarkers.  
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7	
   Discussion 

6.7 Summary  

Prostate Cancer (PCa) is a major clinical problem worldwide with considerable variability 

in clinical outcome of patients. PCa diagnostics and prognostics currently lack specific and 

sensitive clinical biomarkers and treatment is not well individualised. The PCA3 test, 

amongst others, highlights the utility of urine in PCa diagnostics and prognostics214. The 

extracellular vesicle (EV) fraction contains exosomes and is obtainable from urine. 

Exosome levels are known to be increased during malignancy and those produced by 

tumours contain nucleic material from malignant cells104. EVs from tumour cells have roles 

involved in tumourigenesis, metastasis, and response to therapy by triggering signalling 

cascades and transferring mRNA, miRNA and proteins between cancer cells and the tumour 

microenvironment105. Our aim was to interrogate PCa patient’s urine samples, mostly the 

EV fraction to identify novel biomarkers or sets of biomarkers to aid in PCa management. 

This study was completed as part of the Movember GAP1 global PCa biomarker initiative, 

which involved multiple collaborators and samples collected from four different centres 

worldwide, for the identification of urinary biomarkers for the risk-stratification of PCa. 

	

7.1.1. Chapter 3: NanoString Data Analysis 1: The Pilot Study 
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In a pilot study, NanoString technology was able to detect PCa specific markers in 196 

samples, such as TMPRSS2:ERG, which was detected in 58% of all PCa samples and in 

19% of samples from men with no clinical evidence of PCa (CB). Latent Process 

Decomposition unsupervised analysis clustered the EV expression data into four groups, 

which was associated with clinical risk categories (p < 0.05). Transcripts were identified 

that were differentially expressed and models were built that could distinguish between PCa 

and samples that showed no evidence of PCa (CB) with an AUC of 0.937, high-risk PCa 

and samples showing no evidence of PCa (CB) with an AUC of 0.852 and metastatic PCa 

(A) and samples showing no evidence of PCa (CB) with an AUC of 0.983. These findings 

highlight that the transcript data collected from urinary EVs in PCa patients comes, at least 

in part, from the prostate and holds clinically relevant structure. 

	

6.8 Chapter 4: NanoString2 Analysis: The Movember GAP1 Project 

Following on from the pilot study, further samples (n = 756) obtained from four centres 

worldwide were sent to NanoString for the quantification of 167 transcripts. The aims were 

to primarily identify optimal models capable of predicting PCa and to risk-stratify PCa 

without the need for biopsy. Models were built to answer four important clinical questions:  

1) Determine which samples were from PCa and which were from samples with no 

evidence of Ca (AUC = 0.851). 

 2) Determine which samples were from high-risk PCa only and which were from 

samples with no evidence of cancer, (AUC = 0.897). 

3) Determine if there was a trend in expression that corresponds to a trend in risk 

category (CB>L>I>H), (AUC = 0.709). 

4) Determine if there was a trend in expression that corresponds to a trend in patient 

type (CB>Ca>Metastatic cancer), (AUC = 0.6469). 
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The data was stratified into training and test sets in the ratio 2:1, models were built with the 

training set and validated using the test set. I used four different normalisations of the data, 

which included using KLK2 ratio, KLK2 adjusting, KLK3 adjusting, and GAPDH & RPLP2 

normalisation. Models built using the GAPDH & RPLP2 normalised data generally had 

higher AUCs. These models are improvements on existing tests and have the potentially to 

be developed in to clinical tests. 

	

6.8.1 Chapter 5: Response to treatment 

Many cancers have benefitted from treatment stratification due to expression of certain 

genes, however with the exception of the DESNT poor prognosis expression group, this has 

not yet been done for PCa. With hormone therapy (HT) it is known that patients will 

inevitably progress to castration resistant prostate cancer (CRPC). How long each patient 

will last on HT varies widely from months to years. Samples from the advanced patients in 

the NanoString pilot study (n = 32) were used to identify a significant predictor of early 

progression in patients on HT: A signature of seven transcripts was identified that could 

optimally predict progression of patients on hormone therapy (cox-regression model; p = 

2.3x10-05; HR = 0.04288). The transcripts in the predictor were AGR2, DLX1, KLK2, 

NAALADL2, AR exons 4-8, PPAP2A and AMACR. This model was an independent 

predictor of progression when established clinical variables initial PSA, age, Gleason score 

and initial bone scan result were taken into account (cox-regression model; p = 0.003; HR = 

0.03). When the data was adjusted to KLK2 levels, similar to KLK3 adjustment used in the 

PCA3 test, an optimal model of three transcripts (CAMKK2, PSGR and UPK) was identified 

(cox-regression model; p = 0.007, HR = 1.0028). This model does not remain significant 

predictor when adding clinical factors (cox-regression model; p = 0.14; HR= 1.009). 

However when both of these models were applied to the second NanoString dataset but they 

were not validated. Despite this, I have shown the potential of using urine extracellular 

vesicles from prostate cancer patients with NanoString measurements of expression to 
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predict patient response to treatments. A larger cohort with longer follow up would be 

required to further develop these models in to something usable in the clinic. 

	

6.8.2 Chapter 6: Analysis of Cell Fraction and comparison with EV fraction 

The transcriptome profiles of cell sediment and EV fractions were compared from PCa 

patients and controls (taken from patients with no evidence of cancer (CB)). Data from 

microarray of samples collected from NNUH, Norwich and Royal Marsden Hospital, 

London was used for this comparison. 98 genes were found to be significantly (p < 0.05) 

up-regulated in the extracellular vesicles and 116 up-regulated in the cell sediment fraction. 

92 samples from the NanoString 2 experiment were also EV and cell sediment matched and 

were also used to compare transcriptome profiles. 100 genes were found to be significantly 

(p < 0.05) up-regulated in the extracellular vesicles and 42 genes were up-regulated in the 

cell sediment fractions. The top twenty of each set of these genes were investigated for 

known prostate expression and PCa association. The EV fraction contained higher levels of 

prostate expressed and PCa associated transcripts. This is a strong indication that the EVs 

contain RNA from prostate cancer cells and it is a better source of biomarkers than the cell 

fraction.  

					The	NanoString	data	from	cell	sediment	was	used	to	produce	models	able	to	

predict	PCa	(low,	intermediate	and	high-risk)	from	CB	samples,	high-risk	PCa	

from	CB	samples	and	trend	in	expression	across	clinical	category.	These	

models	had	similar	AUCs	in	the	training	set	to	the	EV	fractions	but	we	were	

unable	to	validate	them	at	this	stage.	The	power	of	these	cell	fraction	models	is	

also	reduced	due	to	a	much	lower	sample	size.		
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6.9 Discussion 

There is an urgent clinical need for biomarkers to determine which patients have 

PCa, which patients have disease that will progress rapidly, and to individualise 

treatment to optimise response. Lung cancer and breast cancer are already 

benefitting from individualised treatment based on expression levels10,14. For PCa, 

stratification models have been produced that include a number of clinical factors, 

these include D’Amico, and nomograms or points systems such as CAPRA287, the 

Prostate Health Index288, the European Randomised Study of Screening for Prostate Cancer 

(ERSPC) Risk Calculator289, the Prostate Cancer Prevention Trial Risk Calculator (PCPT-

RC)212. However, apart from D’Amico, none of these risk calculators are in general 

use in the clinic, and effectiveness varies with the cohort290. The production of the 

PCA3 test214 has led to an increase in studies investigating urine as a source of PCa 

biomarkers for clinical tests that may prevent unnecessary biopsies. Further research 

has merged clnical data with urine expressin information such as MiPS213, which 

built on the  PCA3 urine test to include other urine expression data 

(TMPRSS2:ERG) and PSA. There is also a model for predicting high-grade PCa 

using HOXC6 and DLX1 urinary expression levels along with clinical factors such 

as prostate volume215, the ExoDx Prostate (IntelliScore "EPI")216 which can be used 

in conjunction with clinical data, and the PCRT-RC which is designed to 

incorporate future biomarker information as it becomes available. TMPRSS2:ERG 

fusions are only found in ~50% of PCa tumours and PCA3 is not expressed in all 

PCa tumours also. A panel of more transcripts may improve the diagnostic and 

prognostic abilities of these tests.  

EVs	have	been	investigated	as	a	source	of	urinary	biomarkers	in	renal	cancer	

studies	and	it	was	found	that	the	RNA	profile	was	better	preserved	in	urinary	
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microvesicles	compared	with	whole	cells217.	It	has	been	suggested	that	this	is	

because	the	EV	membrane	may	protect	RNA	from	degradation	in	urine217.	

Identification	of	PCa	biomarkers	in	EVs	was	subsequently	observed218	.	

Biomarker discovery in urine of prostate cancer patients has so far focused on just a 

few gene targets. In this study we have taken a more holistic, but not transcriptome 

wide approach increasing the number of probes significantly. I have shown that 

NanoString is a viable technology to measure 100s of probes in urine efficiently and 

a viable solution for biomarker discovery and potential implementation in the clinic. 

I have produced potentially important combinations of biomarkers to predict 

prostate cancer, aggressive prostate cancer, and response to hormone therapy 

treatment. These gave AUCs up to 0.897, which is an improvement on published 

tests in the literature. The translational appeal of NanoString analysis can be seen in 

the ProSigna PAM50 test for aggressive breast cancer291, which uses NanoString 

technology and is commercially available. 

 In our study I have shown that the transcriptome profile of whole cells and EVs differs and 

that EVs are a potential better source of PCa biomarkers as they contain more prostate 

derived transcripts as well as more PCa associated and cancer associated transcripts. This 

indicates that using EVs in biomarker discovery in urine will improve results, but it is likely 

that whole urine could be used in a final test. Biologically it is likely that EVs can find their 

way into the urine more easily than the bulky cell counterparts. We also observed that the 

whole urine includes many white blood cells. Recent research has shown that WBC can be 

utilised as prognostic markers in BCa showing capability for predicting distant metastasis 

preoperatively over a 65-month timeline. Increased platelet indices and decreased 

neutrophil numbers were associated with a poorer prognosis292.  

 I have identified urinary EV models from NanoString data capable of predicting PCa, and 

PCa risk categories with AUCs similar to previously published urine models. Which include 
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both known PCa associated transcripts from whole urine and novel transcripts that may be 

EV specific. The AUCs of cell models and EV models are very similar and thus it may be 

that a combinatory model could be better to predict PCa and its prognosis.  

 

The need for cancer specific biomarkers for assessing response to hormonal treatments in 

metastatic PCa has been acknowledged293, yet very little work appears to have been 

completed in this area. I identified two signatures capable of distinguishing early relapse to 

HT in two different data normalisations. However these signatures were not validated in a 

second dataset.  

A urine test would aid clinicians and patients for the management of PCa in a few areas. 

Firstly, there is a decision of whether a biopsy needs to be undertaken. Usually, this is based 

on serum PSA level and DRE findings. A urine test could help limit the amount of 

unnecessary biopsies conducted. Secondly, it is known that biopsies generally under grade 

the PCa, and higher Gleason scores are identified on whole prostates from radical 

prostatectomies. Therefore, a urine test may help to identify which patients can safely go on 

to active surveillance.  

A third area where a urine test could aid in the clinic is alongside MRIs. MRIs have shown 

great potential in the diagnosis of PCa but does suffer from a high false positive rate 

(~50%)294. Introduction of a urine test alongside MRI could help to reduce the false positive 

rate especially for PIRADS ≤4295 (Figure 0.1).  
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6.10 Future Work 

Further work needs to be performed on the models produced for determining between PCa 

and CB samples, high-risk PCa and CB samples as well as risk category (CB>L>I>H) and 

patient type (CB> cancer > metastatic cancer) trends. In particular, an immediate next step 

should be that they are incorporated with clinical factors to identify if they outperform 

clinical factors alone, as well as if they have a better prediction when including the clinical 

factors (including but not limited to prostate volume, age, family history, previous biopsy 

results and serum PSA). The next major step would be to validate these models in an 

independent large-scale trial such as PROMIS or PROTECT. If this was successful, then the 

Patient	appears	at	GP	with	symptoms	and	PSA	test	is	
completed.		

A	raised	PSA	leads	to	
MRI	and	a	PIRAD	score	
is	given.		

A	normal	PSA:	repeat	
PSA	in	a	few	months	if	
symptoms	persist.		

PSA	>	100	ng/ml:	
metastatic	PCa	is	
diagnosed	and	patient	
goes	straight	to	HT

PI-RAD	score	of	3	or	4,	
where	severity	of	
disease	is	unclear:	
urine	test	to	aid	
further	in	treatment	
decisions	(e.g.	active	
surveillance	vs.	RT	or	
RP).	

PI-RAD	score	of	1	and	
2:	Active	Surveillance.	

PI-RAD	score	of	5:		
Treatment	(RP	or	RT)	
is	required.		

Figure 0.1 A flow diagram showing where the urine test would be best utilised in current diagnostic procedures. 



CHAPTER	7:	DISCUSSION	
	

	 309	

models would be evaluated in a large multi-centre prospective study. This is necessary to 

obtain FDA approval and translation in to a test used in the clinic. 

Additional	work	to	optimise	the	methodology	used	to	collect	urine,	to	

standardise	it,	(simplify	and	make	it	more	robust).	Currently,	samples	have	to	

be	processed	within	2	hours	of	collection,	the	introduction	of	urine	

preservatives	could	also	streamline	procedures.	The	models	would	need	to	be	

tested	to	see	if	they	worked	in	whole	urine	and	without	DRE,	which	would	

make	the	collection	and	processing	methodology	a	lot	simpler.	Comparing	

alternative	methods	for	the	quantification	of	transcripts	from	urinary	EVs	may	

also	help	to	improve	the	reliability	and	clinical	use	of	the	models.		

Further work needs to be completed to identify a robust and validated signature for 

the prediction of early relapse to CRPC. This is a vital area that needs improvement 

for the clinical management of PCa. A larger cohort with longer follow up is 

required. I would also like to look at the data from patients on active surveillance in 

the NanoString 2 data set. There is considerable potential to develop a predictor of 

time to treatment in these patients. Another response to treatment that should be 

investigated is biochemical recurrence (BCR) after radical prostatectomy or 

radiation therapy. Unfortunately, our follow up was not long enough to have 

sufficient numbers of patients that suffered from BCR to be able to perform any of 

these experiments at this time. I would also like to examine whether models that 

were developed for the prediction of aggressiveness could be applied to predict 

response to treatment. For example, could the optimal model for predicting risk 

category also be used to predict time to treatment for patients on active surveillance. 

In this whole project I have been reliant on the 167 gene probes used in the 

NanoString assay. It is not clear whether these are the optimal probes to use, 
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although it is apparent that they are at least sufficient for some clinical questions. I 

would like to perform a similar scale project but using a global transcriptome 

approach using microarrays, or for an exon splice variant analysis then RNAseq 

would be ideal, though highly analysis intensive. This would allow us to identify the 

very best probes to use in a clinical test to answer the important clinical questions in 

prostate cancer. 

Due to my work in this thesis re-funding has been awarded for the development of a 

clinically implementable Prostate Urine Risk test. This has resulted in two further 

PhD posts one for lab work and one for bioinformatics.  

	

6.11 Conclusions 

O1: To determine whether RNA expression from urine extracellular vesicles in prostate 

cancer patients are a viable target for the development of biomarkers through the use of 

NanoString technology. 

I have shown that urine extracellular vesicles from prostate cancer patients contain 

information from tumours and are a viable area to investigate for non-invasive biomarkers. I 

have shown that NanoString technology is sensitive and specific enough to use as a semi-

high throughput approach for discovery and potentially for clinical use. 

	
O2: To determine an optimal combination of probes to predict cancer presence and 

aggression in prostate cancer patients. 

I have determined a number of models that work extremely well in predicting both cancer 

presence and the aggressiveness of disease. These have the potential, with further work, to 

have an impact in the clinic. Models to accurately stratify patients’ disease into D’Amico 

risk groupings were less satisfactory and may require alternative probes or other techniques. 
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O3: To determine whether an optimal combination of probes can predict response to 

hormone therapy treatment. 

I have shown that there may be some information in urine extracellular vesicles to predict 

patient response to treatments. I have developed some potential tests, but for confidence in 

these a much bigger data set with longer follow up would be required. 

	

O4: To evaluate the differences between urine fractions (extracellular vesicles and cell 

sediment) and determine whether cell sediment can be used to predict cancer presence and 

aggression in prostate cancer patients. 

I have shown that there are considerable differences between the extracellular vesicles 

fraction and the cell sediment fraction of urine collected from prostate cancer patients. 

There is a strong indication that the EVs contain more RNA from prostate cancer cells and 

it is a better source of biomarkers than the cell fraction. Despite this, I was able to produce 

some models that were reasonable good at detecting the presence and aggressiveness of 

prostate cancer. 

	

In this thesis, I have shown that by interrogating the EV faction of PCa patient’s urine 

samples using NanoString technology that novel biomarkers or sets of biomarkers can be 

identified to aid in PCa management in a non-invasive test. 
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Supplementary Table 1 Probe list for NanoString2 (n = 167). 

Transcript Accession Capture Probe Reporter Probe Biomarker Type Source 
AATF NM_012138.3:1175 TCATCATCTTCACTAGAAATCTCCTCA

CTTCCCGCATTGGGCTTTGTCCC 
CTCTTTGCAGGGACCCTTCTTCGTTGCT
GCTTCTTCTCTTCTACCAGC 

test Cooper  
NGS 

ABCB9 NM_001243013.1:48
8 

GGGCCCCAGCGCACTGTTCTTGGCCAC
ACCAATGGTGG 

ACGAAGAGGCACACGAGGGTGATGACC
AGCCACGAGGCCCGCAGCCGCCG 

test Cooper  
NGS 

ACTR5 NM_024855.3:1840 CAAGGCATGGCGTGCAGGGCAGTCTC
TCTGGAGGG 

GGCAGGTACATCTAGCACAATCACAGT
CCTGTCACACTGCCAACGTGGCC 

test Cooper  
NGS 

AGR2 NM_006408.2:1365 TGCCTCATCAACACGTCACCACCCTTT
GCTCTTCTTCCAATTAGTCACAT 

TGCCACAGCCTTTCACGTTTCCTAAACC
CTAGTAACCTCTGATCTCCATC 

test Mills 

ALAS1 NM_000688.4:1615 AGTGTTCCAGAAATGATGTCCATTTTT
GGCATGACTCCATCCCGATCCCC 

GAGAACTCGTGCTGGCGATGTACCCTC
CAACACAACCAAAGGCTTTGCCA 

housekeeper Cooper 

AMACR NM_014324.4:2145 TGGAATCTACCCCTTCCTCACATGCCT
TTAGGAAGTTGAGTCCAGGGAAG 

CAACATCCATTCTCTACTCCCTCTACTC
TGATGGCACCCGGATTAGATTG 

PCa positive control Cooper 

AMH NM_000479.3:1626 TTGGCCTGGTAGGTCTCGGGGATGAG
TACGGAGCG 

CGGACTGAGGCCAGCCGCACACGCCCT
GGCAATTG 

test Sanda 

ANKRD34
B 

NM_001004441.2:14
60 

TTTATAGGATAGTTCTTCCTCTGGTGT
AATATCCTGGAGCTCCTCTTGCA 

ATGCTTTGGTGCCTAGTGATGAACCGC
TTGGAAAGTGCCAGCCCATTGGT 

test Sanda 

ANPEP NM_001150.1:2670 GTAATGCTGATGATGGTAGAGGTGGC
GTCCTGCTTCCGGATTAAGTC 

AGTTGCTCTGGACAAAGTCCCAGACCA
GACCTTGCCCAATGACGTTGTTG 

test Mills 

APOC1 NM_001645.3:32 CGGAGGGGCACTCTGAATCCTTGCTG
GAGGGCTTGGTTGGGAGGTC 

CAGAACCACCACCAGGACCGGGAGCGA
CAGGAAGAGCCTCATGGCGAGGC 

test Sanda 

ARexon9 NM_000044.2:3401 GACTTGTGCATGCGGTACTCATTGAAA
ACCAGATCAGGGGCGAAGTAGAG 

CAAACTCTTGAGAGAGGTGCCTCATTC
GGACACACTGGCTGTACATCCGG 

test Cooper 

ARexons4-
8 

ENST00000514029.1
:3171 

TTTGAAGAGAGGGGTTGGCTGGCTTCT
TCTCCTGGAGAAGCAGAAATCTG 

CAGTAAGGCTAGATGTAAGAGGGAAAG
TCGGACTGTAGTCTCTCAGTGTG 

test Cooper 

ARHGEF2
5 

NM_001111270.2:11
02 

CAGCGCTTGGGCACAAAGCACATGAC
CTCCACAGCTTG 

CTCAAATCCCCGCAATCTCCCCAGCGT
CATCATATCGTTG 

test Cooper 

AURKA NM_003600.2:405 AAGGAAATTGCTGAGTCACGAGAACAC
GTTTTGGACCTCCAACTGGAGCT 

ACACAAGACCCGCTGAGCCTGGCCACT
ATTTACAGGTAATGGATTCTGAC 

test Cooper 

B2M NM_004048.2:25 CACGGAGCGAGACATCTCGGCCCGAA
TGCTGTCAGCTT 

CAGGCCAGAAAGAGAGAGTAGCGCGA
GCACAGCTAAGGC 

housekeeper Cooper 

B4GALNT NM_178537.4:492 TCCCTCGCCGGGTGGATGAAACCAAAA CAGAACTCCGAGTTGTCGTCTGAGGCC test Sanda 
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4 ATACGGAGTCCATAGTTCTTCCA ACAGAAAACTGGACGTCTCCG 
BRAF NM_004333.3:565 AGTGCTTTCTTTAGACTGTCTCGGACT

GTAACTCCACACCTTGCAGGTAC 
CCTGAATTCTGTAAACAGCACAGCACT
CTGGGATTAGACCTCTCATCATC 

test Cooper 

BTG2 NM_006763.2:1700 CAAGGAATACATGCAAGGCTGACTAGC
CAGCCATCATCCCAAGGAGAG 

ACAAGAATACCAAGTAGTCTTGCAGAA
CATGGGGCACTCTCCCATTCAGC 

test Sanda 

CACNA1D NM_000720.3:6044 GTACTTCTGGGCTTTACTTGAATCTAG
GCCGGCAACTGCCATGATCTGTT 

GTTGCTGGAGGGGTGGCCCACGACCG
GGTCGAGTGACTCGGTGA 

test Sanda 

CADPS NM_183394.2:1870 TTGAGGCTTATCCATTCGGACAGCAAG
TTTGATTTTGAGATCTTGGTCGG 

TTCCAGACATTCTTACCGATGGCCCATA
AATACCCAGAATGCTTCATGTT 

test Sanda 

CAMK2N2 NM_033259.2:908 AAATACAAATGTGCTGAGGAAGTCCCT
TAGAAAGAGGCTGAGGCTGGGGT 

GGGAGGGCAGGAACCATGAGCAGAGC
CAGTAAACAAAGAGTCGGATATAA 

test Sanda 

CAMKK2 NM_006549.3:1710 GGTGGATGATCTTCTGGTAGTGTAAGT
ACTCGATGCCTTTGATCAGATCC 

CTTGATGTGCCCATCTTCTCCGACCAG
GAGGTTGGAAGGTTTGATGTCAC 

test Cooper 

CASKIN1 NM_020764.3:1664 ACCTTGTAGTACTGGGCCAGGCCGATC
ATGGACAG 

AGGTGATGTCGGTGATGAAATCAATGT
TCTCGTAGCCATTGTCCACCAAC 

test Sanda 

CCDC88B NM_032251.5:400 TCCACCGCTTCTTCTGAGAGAGGGTCA
AATCCCAATGTCTG 

TGACGCTCCCAACAGTAGCCGAAGAAC
GCCTTCCAGCTGC 

test Cooper 
- NGS 

CDC10 
NM_000902.2:5059 

TAGGGCTGGAACAAGGACTCTTTTCTC
TGGACAGCTTGCACCTACAATCC 

CCAAAGGAATATTGCAAATACCCAAGG
TCACCCTGTCAGGAGTGGCAGAA 

test Whitak
er 

CDC20 NM_001255.2:430 CCTCTACATCAAAACCGTTCAGGTTCA
AAGCCCAGGCTTTCTGATGTTCC 

ACCCTCTGGCGCATTTTGTGGTTTTCCA
CTGAGCCGAAGGATCTTGGCTT 

test Mills 

CDC37L1 NM_017913.2:1146 TCATCTTCTTTATGTACCACCGAGTTTA
AGCTGCAGAGAGCTGTACTGAT 

GGCCTCAGCAGTCTTAACCAAATTATA
CAGTGTCCATCATTTTGGGTTCA 

test Sanda 

CDKN3 NM_005192.3:510 AGACAAGATCTCCCAAGTCCTCCATAG
CAGTGTATTAAGGTTTTTCGGTA 

CTCTGGTGATATTGTGTCAGACAGGTA
TAGTAGGAGACAAGCAGCTACA 

test Mills 

CKAP2L NM_152515.3:1120 TGAGGTATACAAACTTGGCTGGACTTC
TGATCTTGCTTGATGTTTGGATG 

AATTAGGCCTCTGGCTTATGGCTTTTGA
CTTTTGCAGTACACATGATGTC 

test Cooper 

CLIC2 NM_001289.4:50 CCAGTCTCTTCTCTCAAGAGGTGTGAC
GCAGAAAATTCTAGATGCTTAAG 

TGCTTTAAGAAGACCGTCTAGCTTGTA
GTGGACTGAGTCAGACCTGGAG 

test Cooper 

CLU NM_203339.1:2460 GCCTGTGGTCCAGGGAAAGGTATGAA
GATCATATAAACCGGCGGTGGACA 

AGCGTAGGGTACTGCAGCCCAGCTATG
GTTCAGACTAAAAGCCGAGAAAC 

test Cooper 

COL10A1 NM_000493.3:135 CCTGTGGGCATTTGGTATCGTTCAGCG
TAAAACACTCCATGAACCAAGTT 

TGTAGGGAATGAAGAACTGTGTCTTGG
TGTTGGGTAGTGGGCCTTTTATG 

test Sanda 

COL9A2 NM_001852.3:795 CGATAGCGCCCACCATGCCTTTATATC CCTAGGACCTTCCTCACCCGGTGGCCC test Sanda 
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CATGAGGGCCCGTCTCTCCCTTG AGTGGCAC 
CP NM_000096.3:1110 CTTGCCCGTGAAAGAAAGCTGCGTGCA

CATCAACTTCATTACCCATACCA 
AGCAGGAAAGAGGTTGATTGTGTCAAT
ACGGTAGTTCTTGTTAGTCAGTG 

test Cooper 
– NGS 

CTA-
211A9.5/M
IATNB 

CTA_211A95.1:407 CTGGAGGTATCCAAGAGTCTGCCGAG
GGACTTCAAGTATTCAGGAAGGGG 

GAAGAGCCCAAACCTGCCTGGCTTCAA
AACAGGTGGTGAGCTCCCCATTG 

test Cooper 
– NGS 

DLX1 NM_001038493.1:13
35 

CAGCCTCAGGCGAAGTCCATTTCTCAA
TAAATAAAACCCCCTCCCTCCAA 

CGTTTGAACAGTGCGTTCCTTGCGCCC
AGCAGAACCCTGAATTGGCAAA 

test Schalke
n 

DNAH5 NM_001369.2:12374 GGCGGAACGCATCATGTACAAGCTCA
GTTTCTATGATTATGTCCATCAGC 

CTGAAGGAGTGTAATGGGAAACTGCTT
ATGAGCCTCGGTGGTCATCCAGA 

test Sanda 

DPP4 NM_001935.3:2700 AAATCCACTCCAACATCGACCAGGGCT
TTGGAGATCTGAGCTGACTGCTG 

CTGCTAGCTATTCCATGGTCTTCATCAG
TATACCACATTGCCTGG 

test  

EIF2D NM_006893.2:1600 GCTCTTGTCCGGGAAGGGTCACTTGAT
AGGCAGGCTGTAATTTTTCCAAA 

TTGTGCTAGGGTGATGTCAATTGGACA
GATTCTCCCTTTCTTCACAATGG 

test Sanda 

EN2 NM_001427.3:2576 AAGGTAGCCACATGTTTCAGAACTGTG
GACTCAAACACGCCTGGTGTGTG 

CTTTCTTCCTTCTTCTAGATCCTGGAGG
ATTCTGAGTTCTTTTGAAAGAC 

test Pandha 

ERG 3' ex 
4-5 

NM_001243428.1:17
7 

CCATCTTTTTTCTCTGTGAGTCATTTGT
CTTGCTTTTGGTCAACACGGCT 

CCATCTACCAGCTGTTCAGAACCTGAC
GGCTTTAGTTGCCCTTGGTTCTG 

test Cooper 

ERG3' ex 
6-7 

NM_004449.4:477 TGAGCCATTCACCTGGCTAGGGTTACA
TTCCATTTTGATGGTGACCCTGG 

CCACCATCTTCCCGCCTTTGGCCACACT
GCATTCATCAGGAGAGTTCCT 

test Cooper 

ERG5' NM_182918.3:697 ACATCATCTGAAGTCAAATGTGGAAGA
GGAGTCTCTCTGAGGTAGTGGAG 

CTGTGTTTCTAGCATGCATTAACCGTG
GAGAGTTTTGTAAGGCTTTATCA 

PCa positive control Cooper 

FDPS NM_001135822.1:40
4 

CATCCTGTTTCCTTGGCTCCACCAGCT
CCCGGAATGCTACTAC 

CCAGCCCACAGTCCAGGCCCGCTGGAG
ACTATCAG 

test Sanda 

FOLH1 NM_004476.1:695 TGAAAGGTGGTACAATATCCGAAACAT
TTTCATATCCTGGAGGAGGTGGT 

GTTAACATACACTAGATCGCCCTCTGG
CATTCCTTGAGGAGAGAAAGCAC 

test Mills 

GABARAP
L2  

NM_007285.6:340 GGGACTGTCTTATCCACAAACAGGAAG
ATCGCCTTTTCAGAAGGAAGCTG 

CTTCATCTTTTTCCTTCTCGTAAAGCTG
TCCCATAGTTAGGCTGGACTGT 

test Clark 

GAPDH NM_002046.3:972 AAGTGGTCGTTGAGGGCAATGCCAGC
CCCAGCGTCAAAG 

CCCTGTTGCTGTAGCCAAATTCGTTGTC
ATACCAGGAAATGAGCTTGACA 

housekeeper Cooper 

GCNT1 NM_001097633.1:39
4 

TTTCAAACAATAATCAGGGATTTCCTT
TGTGAAGGGCAGTCTTCTATGCT 

GTATTTGGTGGGATAAGAAAAAAGTCT
CCTTCGCAGCAACGTCCTCAGCA 

Test Sanda 

GJB1 NM_000166.5:190 TGAAGATGAAGATGACCGAGAGCCAT
ACTCGGCCAATGGCAGTAGAATGC 

TTTCTCATCACCCCACACACTCTCTGCA
GCCACCACCAGCACCATGATTC 

test Sanda 
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GOLM1 NM_016548.3:508 GGATGAGCCTCTCACCTGTGGTGATGT
TATTCACCAAAACCGC 

TAATTCCTCTGCAGGGTCTTTAACTGGT
CTTGCAGCACTC 

test Cooper 

HIST1H1C NM_005319.3:401 CTTGGCTGCCCCAACTGGCTTCTTAGG
TTTGGTTCCGCCCGCCTTTTTAA 

TTCGGAGTTGCGCCGCCAGCCGCCTTC
TTGGGCTT 

test Sanda 

HIST1H1E NM_005321.2:172 GCGCTCCTTGGAGGCGGCAACAGCTTT
AGTAATGAGCTCGG 

CTGCCAGCGCTTTCTTGAGAGCGGCCA
AAGATACGCCGCT 

test Sanda 

HIST1H2B
F 

NM_003522.3:313 CTTGGTGACGGCCTTGGTGCCCTCTGA
CACGGCGTG 

AGCCTTTGGGATTGGGTATGAAGACGT
TAGAATTACTTAGAGCTGGTGTA 

test Cooper 
– NGS 

HIST1H2B
G 

NM_003518.3:318 TATACTTGGTGACAGCCTTGGTACCTT
CGGACACTGCGTGCTTGG 

AAGAGCCTTTGAGTTTTAAAGCACCTA
AGCACACATTTACTTGGAGCTTG 

test Sanda 

HIST3H2A  NM_033445.2:114 CGGAGCAACCGGTGCACGCGGCCCAC
GGGGAACTG 

CGCCGGCGCCCACGCGCTCCGAATAGT
TGCCCTTG 

test Sanda 

HMBS  NM_000190.3:1020 GCTGGGCAGGGACATGGATGGTAGCC
TGCATGGTC 

AGTGATGCCTACCAACTGTGGGTCATC
CTCAGGGCCATCTTCAT 

test Clark 

HOXC4 NM_014620.4:1058 TGAATTTTTTTCATCCATGGGTAGACT
ATGGGTTGCTTGCTGGCGGCG 

CGCTTGGGTTCCCCTCCGTTATAATTG
GGGTTCACCGTGCTAACG 

test Schalke
n 

HOXC6 NM_153693.3:570 GGTCGAGAAATGCCTCACTGGATCATA
GGCGGTGGAATTGAGGGCGACGT 

GAATAAAAGGGAGTCGAGTAGATCCGG
TTCTGGGCAACGGCCGCTCCATA 

test Schalke
n 

HPN NM_182983.1:1870 CCGAGAGATGCTGTCCTCACACACAAA
GGGACCACCGCTG 

CCAACTCACAATGCCACACAGCCGCCA
ACGTGGCGT 

test Cooper 

HPRT NM_000194.1:240 TGAGCACACAGAGGGCTACAATGTGAT
GGCCTCCCATCTCCTTCATCACA 

CAGTGCTTTGATGTAATCCAGCAGGTC
AGCAAAGAATTTATAGCCCCCCT 

housekeeper Cooper 

IFT57 NM_018010.2:790 AATCGTGACTTTCAGTTGCGGTAGTAC
ACGTTCCACTTCTAGGCTCCATT 

TGCTGGTGCATTTGGTCAACATGGATT
CTCCAATCCTTATTGTCAGTCCT 

test Sanda 

IGFBP3 NM_000598.4:1255 CGGGCGCATGAAGTCTGGGTGCTGTG
CTCGAGTCTCTGAATATTTTGATA 

TGGTCGGCCGCTTCGACCAACATGTGG
TGAGCATTCCA 

test Sanda 

IMPDH2 NM_000884.2:545 TCTTTGAGAAAATCAATGTCCCTGGAG
GAGATGATGCCCACCAAGCGGCT 

TCCCTCTTTGTCATTATCTCTTCCAAGA
AACAGTCATGTTCCTCC 

test Mills 

ISX NM_001008494.1:31
40 

ATCTGGCATTTTTAAGATGGCAAAGCA
CTTTTGCATCCTGTGGGCTGTTG 

TGCTAGAGACCTGGTGTTGATATCCAC
ATTCATAGGCTCTGAGTG 

test Sanda 

ITGBL1 NM_004791.2:1317 AGACCACACCATCGAGGTCTTCACAGC
GGCGATCATCACACTCACAAGTC 

TCCTCTCTCACAAACACAGCGACCACA
GGAACATGTGCCGTGGCCTCCAC 

test Sanda 

ITPR1 NM_001099952.1:67
75 

GACAATCTCTATCTGCGCCGTGTGCTT
GGCATAAAACTCCAGGGC 

CATATGCTGGGCACGGGAAAGACTATC
TGTTCCATTGTTCGGTCTAATCT 

test Sanda 
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KLK2 NM_005551.3:1820 CTTGGACACTAAGGATCAGGTGAGCTT
CCTCAGTTGGAATTACTTTGTAC 

GTCAATTATTCAAGTACTCCATACTCGT
CCTACAGACCCCCAGTAAAAAC 

test Cooper 

KLK3/PSA
(exons1-2 

NM_001030048.1:16 TGAGGAAGACAACCGGGACCCACATG
GTGACACAGCTCTCCGGGTG 

AATCCGAGACAGGATGAGGGGTGCAGC
ACCAATCCACGTCACGGACAGGG 

Prostate control Doll 

KLK3/PSA
(exons2-3 

NM_001648.2:209 ATCACGCTTTTGTTCCTGATGCAGTGG
GCAGCTGTG 

CCTGTGTCTTCAGGATGAAACAGGCTG
TGCCGACCCAGCAAG 

Prostate control Cooper 

KLK4 NM_004917.3:410 CCCAGCCAGAAACGAGGCAAGAGTTC
CCCGCGGTAG 

CAGCACGGTAGGCATTCTGCCGTTCGC
CAGCAGAC 

test Cooper 

LASS1 
NM_198207.2:1918 

GCATCTCGCACCTCCCGTTCCAAAAAA
CGTCACGGAGCTCTGAG 

CTGCCTGGCTACAGCCCCGGATGTGTT
AAATGTCT 

test Sanda 

LBH NM_030915.3:2340 GAGAGTATGGATGAACCACTCTCTGCA
GCCAAAACAGAACGAAGCGGGGA 

ACAGGAATTGAAAAGGCAAGACCCCCG
TCCACAAGGGGAGGCGAGGGAAT 

test Sanda 

MAK NM_005906.3:1395 TATCTCCAGACTTGAAGATAGTCTGAC
CCCAACGCCTCCTACCACTTTTA 

CTTCTTGGAATGGGAGGCTCCGAAATC
ATAGTCCTCCAACTCTTCCCAGC 

test Sanda 

MAPK8IP
2 

NM_012324.2:1885 CTCTCGCTCCTCGCCGTTGACCAGACA
GGAGAAAAGGCCAAAGGACTCG 

CCGCGGGATGAACCTGAACACAGCCCG
GTGAGTCTG 

test Sanda 

MARCH5 NM_017824.4:2136 TGTGCTGAAACTAGACTGTCAACTCTG
TAAGAGCTTGGACCAAGTCTGTC 

AAACAAAGAGCTCAAGGCCTCACCTTG
GTTTATTCACTGCTGGTTTTCTA 

test Sanda 

MCM7 NM_182776.1:1325 TGTGTTCTCTCCTTCTACCAGCACCGT
GATACTACGAGGGATATT 

CAAGAAAATACCAGTGACGCTGACGTG
GTCTCCAGGCTGGGCAATCCT 

test Perry 

MCTP1 NM_024717.4:1005 AACTCCAATTGTGTCAGATCCAGAAAG
GCTGAGCCCATAAAGTCATCCTG 

GATAATGAGGATCTTTCAGAGTAAGGG
TCACATCTGTGGGCCTGTTT 

test Cooper 
– NGS 

MDK NM_001012334.1:71
1 

CGAGCAGACAGAAGGCACTGGTGGGT
CACATCTCGGGC 

GGGGCTGGGGAGTGAGAGGGACAAGG
CAGGGCATGATTGATTAAAGCTAA 

test Cooper 

MED4 NM_001270629.1:32
4 

TCTTGCTTTTTCTATTGACTTGAGTTTC
TCCTTCGCTTGGTAAACAGCTG 

CTGATCCTATGTGCATACTTAATTATTT
CTTCAGAGGAGATAGCACCTTT 

test Sanda 

MEMO1 NM_001137602.1:11
92 

GAATGTGCAGGTGGCATCCCTGAGGA
TTCAGAGCT 

TATCGTGGTAAAGGCTAGGCTGGGACC
CCGGACAGAGTATGA 

test Sanda 

Met NM_001127500.1:19
25 

AAATTTATTATTCCTCCGAAATCCAAA
GTCCCAGCCACATATGGTCAGCC 

GTCAAGGTGCAGCTCTCATTTCCAAGG
AGAACTCTAGTTTTCTTTAAATC 

test Cooper 

MEX3A NM_001093725.1:20
90 

GATCTATGCAACTTCTGATAGGACTCC
AACTCCCTTACACTGCTGGAAAC 

CCTTTCAGCCACAGAAACGATTGACAT
GCTTCTCTCCCCAACCCCTAGAA 

test Sanda 

MFSD2A NM_032793.4:592 AAGAGGCAATAGAAAAGCAGGTACCA
ATAGGTCTGGCCGTGTGGGAAGTC 

ACATGGTGAGAGCCGAGTAGGGAACAT
GGAAACACGTGACCATTGTTTCA 

test Cooper 
– NGS 
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MGAT5B NM_144677.2:3392 GGTTGGAACAAGCAGGAGAGAGAAAC
AATTCAACCAGGGTCTGGGTGGTC 

CAGGTCATGCCAGGATGGGTTTTGGGA
GAAGCCCAGAGTGAAAAG 

test Sanda 

MIC1 
NM_004864.2:180 

CCTGGTTAGCAGGTCCTCGTAGCGTTT
CCGCAACTC 

GTGTTCGAATCTTCCCAGCTCTGGTTG
GCCCGCAG 

test Whitak
er 

MIR146A/
DQ658414 

ENST00000517927.1
:1642 

CGGTTGAGATTTCACCAAGGTTCTGGT
TCTGGAATGAGTCACTGGCTAAG 

TTCTGGATTTTCTCCATCAGTCTAGGAC
TGAAGACACCGATCTCTGGTGT 

test Cooper 
– NGS 

MIR4435-
1HG/lOC5
41471 

ENST00000409569b.
1:45 

AAAGCAGCGACCATCCAGTCATTTATT
TCCCTCCATTCCCAATGATGTAC 

CAGGCACGGGCTCAGGCACCGCTTGTC
TGGAATGTCAATTTGAAACTTAA 

test Cooper 
– NGS 

MKi67 NM_002417.2:4020 CTGATGGCATTAGATTCCTGCACGCTA
AGAGTTCTCCCTCTACATCTG 

GTCTTTCTCTTCACCTACTGATGGTTTA
GGCGTGTGCATGGCTTTGCCTG 

test Cooper 

MMP11 NM_005940.3:702 TCAGTGGGTAGCGAAAGGTGTAGAAG
GCGGACATCAGGGCCTTGG 

ATATAGGTGTTGAACGCCCCTGCAGTC
ATCTGGGCTGAGAC 

test Sanda 

MMP25 NM_022468.4:2955 CATTTAGATCCTAAAACTGTGGGGAGT
GGGGACAGGGTGAACGAGGTGCC 

CCCAGTGATTCTGATGTGGGATAGTCT
AGAAGAATAGTTCCAGAGGCAAT 

test Cooper 
– NGS 

MMP26 NM_021801.3:515 CAGGATTTCCAGAATTTGGTAAAAAGG
CATGGCCTAAGATACCACCTGGC 

TCCAGTGTCTGAAGCTGACCAGTGTTC
ATTCTTGTCAAAATGGACAACTC 

test Cooper 

MNX1 NM_005515.3:1680 TTTCTTGAAGAGCAGGTGAGGCGCCCT
TGCTTAAAAGGGAAGCGCCCAGG 

TTAAAAGAACCAGAGTTCAAGTTTCAG
CCCCCTGGGTCTCCCTCTCGCTG 

test Sanda 

MSMB NM_002443.2:295 TTTTTGGGTCCTTCTTCTCCACCACGA
TATACTTGCAGTCCTCCTTCTTG 

GTGCCTACTAGAAGCACATTAGATTAT
CCATTCACTGACAGAACAGGTCT 

test Whitak
er 

MXI1 NM_001008541.1:61
5 

GAAGTGAATGAAAGTTTGACACTGGCA
CTGGAGTAACCCTCGTCACTCCC 

TGGCCCAGTGAATATTTTGCCCTGCAC
TGTTATGTCATGCTGGGTTCTAT 

test Sanda 

MYOF NM_013451.3:5805 ATGATCGTGTGACGCAAGTCAAGTTCT
AGGAAACCCAAGTAGTCATCCAG 

TGAGGTCCGGAATCATGTCCAATCTGC
ATTTCTCTGGTGATTTTGCAGGA 

test Cooper 
– NGS 

NAALADL
2 

NM_207015.2:250 ATTCTCAGCACCGTCTAGCTGGAATTG
GTCAAAACCAGACTCCTCTAGTT 

TGAATGGAATCAAGATTGAGGTCTATA
GTCTCTGAATGCCCTAGGTTCTG 

test Mills 

NEAT1 NR_028272.1:1850 TTTCTCACACACAGATTTAGGAATGAC
CAACTTGTACCCTCCCAGCGTTT 

TTCTCCTAGTAATCTGCAATGCAATCAC
AATGCCCAAACTAGACCTGCCA 

test Sanda 

NKAIN1 NM_024522.2:1620 CACTGTGTTCAAGGCCCACTTCCACCA
AAAATCTAGCTGTGTGGCCTCAA 

GAACTCAGAGAGCAGACACTGGGTTTT
ACAGTCAGAAACTGCAGAAAGTA 

test Sanda 

NLRP3 NM_001079821.2:41
5 

CTGGCATATCACAGTGGGATTCGAAAC
ACGTGCATTATCTGAACCCCACT 

CTCGAAAGGTACTCCAGTAAACCCATC
CACTCCTCTTCAATGCTGTCTTC 

test Cooper 
– NGS 

OGT NM_181672.1:1080 CTTTGAGAGCATTGGCTAGGTTGCAGT ACGGAGAGCTGTATTATAACAATCTTCT test Cooper 
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AAGCATCAGGGAAATGTGGTTGT GCTTCAGCAACACTGCCCTTCT 
PSGR NM_030774.2:360 GAGCGTGCAGGCTGCGTTCCGTCCTTA

CGATGAAGACCACGATGCAGTTT 
GGATAAGGCCAGGTCAATGGCTGCAAG
CATGCAGAGAAAGAGGTACATCG 

test Doll 

PALM3 NM_001145028.1:23
4 

AGCTGGGACTGGAGTGTGAACAAACT
GTCTTCCAGGTTCCG 

GCTGGGCACCTGTGGAAGCACTTTGCA
ACAGTTGC 

test Cooper 
– NGS 

PCA3 NR_015342.1:362 TAAGGAACACATCAATTCATTTTCTAA
TGTCCTTCCCTCACAAGCGGGAC 

TCCCGTTCAAATAAATATCCACAACAG
GATCTGTTTTCCTGCCCATCCTT 

test Cooper 

PCSK6 NM_138320.1:1112 ACATCGCCGTCCAGCATGCGGATGCCT
CCTATTTTGGCATTGTACGCTAT 

CGATGTAGTTGGGTCTGATGCCCAGCG
ACTTTGCCTCGACCACATCTGTG 

test Sanda 

PDLIM5 NR_046186.1:120 CTCAAAGTCCAATGACAGAAAATGAAA
TATGCTCGGGTCCGGCGCGGCGC 

GGCCAACCAGTGACACACTGTAGTTGC
TCATGGTTCTAATGG 

test Sanda 

PECI 
NM_006117.2:940 

GAAAACTTCAGTAACAAGTCCTTGAGC
ACATGCCTCTCCCGCTGTTAACT 

CAAATGCCTTCAGCCTGGTCCAGACTT
CTTTCTGAAAAGTGCTATCAGG 

test Mills 

PPAP2A 
NM_176895.1:1215 

GTGATTGCTCGGATAGTGATTCCCAGT
TGTTGGTGTTTCATGCAGAGTTG 

TTAGAAAACAGGCCAGCTTCACCTGGG
CACCCTGCTGCCTTTCAAGGCTG 

test Mills 

PPFIA2 NM_003625.2:3670 CACTTTCATCCAGTCGCCTTTCAGTTC
CCAGGGCCAAGAGGTTATTGTAT 

AGGAGGAAACTGCCTTCTCCAGGTTGA
TCCACGTCTGAAGTTCTTGTCAT 

test Sanda 

PPP1R12
B 

NM_001167857.1:13
05 

TGCTCTGTGATACTACTCTTGCTTTCA
GAGTTGGAATGATTGACAAAGGC 

CTAGCAGAAGAGGCAGAGAAGGTATTT
TGAGCTGGTGCTGGTATC 

test Cooper 
– NGS 

PSTPIP1 XM_006720737.1:35
2 

TCAAAGGAGGCCCTCAGGGAGTTGAT
CTCCGTCTG 

AGCTGCCCACATTCTCCATTTGCTGCTT
CAAGGAG 

test Cooper 
– NGS 

PTN NM_002825.5:418 TTTCTTCCCTGCTTCAGCAGTATCCAC
AGCTGCCAGTATGAAAATGAATG 

CCATTCTCCACAGTCAGACTTCTTCACT
TTTTTTTCTGGTTTCTC 

test Sanda 

PTPRC NM_080923.2:154 CAAGAGTTTAAGCCACAAATACATGGT
CATATCTGGAAGTCAGCCGTGTC 

CTTTGCCCTGTCACAAATACTTCTGTGT
CCAGAAAGGCAAAGCCAAATGC 

Blood control Cooper 

PVT1 NR_003367.2:0 AAAATACTTGAACGAAGCTCCATGCAG
CTGACAGGCACAGCCATCTTGAG 

AGCGTTATTCCCCAGACCACTGAAGAT
CACTGTAAATCCATCAGGCTCAG 

test Sanda 

RAB17 NR_033308.1:1310 ACAGCACTTTCCTGGGAGCCATGTGAC
GCCAGATCTTCCTCTGGCAGTTC 

GGAACAGGCACAGGCATCGGGGAATCA
GATGGTATCAGTGGGGATAGGGC 

test Sanda 

RIOK3  NM_003831.3:1920 CTGGAAAAACTGCGAGACATTCCTGCA
GTCCCGGAACAAGAACTCCAGGC 

ACAGCATTGAAGAGTTCTCGTTCACTA
AGGGCTTCCTTGACTCCTCCTTT 

test Clark 

RNF157 NM_052916.2:618 ACTAGAGGGTAAACTTCTCGGTCTAAA
TCAAAGCCAAGCTCCTCTTCGGC 

CATGGCAATGGCCAAAATACTCGTCTC
CTTCATCCACCACGGCATGTACC 

test Sanda 

RP11- ENST00000561140.1 TTGCCAGTCGCTGGTTTTCATCCAGAG CAGCAATATATCCTGTTCATCTTCTTCA test Cooper 
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97O12.7 :110 CACGAAGCTCGTGGTCTGAATAC TCATGAAGGTCAGCTTTCTTCT – NGS 
RPL18A NM_000980.3:177 GAGATACAAAGTACCAGAAGCGGGAC

TTGGCGACGACATGATTAGGCGCA 
CTGCCCACAGTAGACAATCTCCCCTGA
AGACTTCTTCATCTTCTTTAACT 

test Cooper 
– NGS 

RPL23AP5
3 

NR_003572.2:3226 AAATCCGAAAGGATCTCATCCCATTAG
GACCCTTGTCTCCTTTTCTGTTG 

CATTTATGGCTGTCAACCCGCCAGTTCT
CAGGAGTTTGTATAAAAGCCT 

test Sanda 

RPLP2 NM_001004.3:186 CTGATAACCTTGTTGAGCCGGTCGTCG
TCCGCCTCGATAC 

TGCCAATACCCTGGGCAATGACGTCTT
CAATGTTTTTTCCATTCAGCTCA 

housekeeper Whitak
er 

RPS10 NM_001014.3:219 GAAATGTCTCCAGGCAAACTGTTCCTT
CACGTAGCCTCGGGACTTGAGAG 

TGAAGGTAATCACGGAGATACTGGATA
CCCTCATTGGTAAGGTACCAGTA 

test Cooper 
– NGS 

RPS11 NM_001015.3:105 CAGCAGGACCCTCTTCTTGTTTTGAAA
GATGGTCGGCTGCTTTTGGTAGG 

AGACCGATGTTCTTGTAGTACCGCGGG
AGCTTCTCCTTGCCAGTTTCTCC 

test Cooper 
– NGS 

SACM1L NM_014016.3:685 AGAAAGTTCTCTTAGAAGATGACCATT
CCATACAAACCGCTGATCTGCCC 

ATAAAGCCATGTAACACTGGAAGGGCA
AACCGATGAACCTCTGGCTGTGC 

test Sanda 

SChLAP1 NR_104320.1:359 CCAGGTACATGGTGAAAGTGCCTTATA
CAGGTTGAATAAAAATCACTGCC 

ACCTTGTGTCCCCAGCATCTAGATTGCT
GAAAAAGATGTAGATGTTGCTT 

test Sanda 

SEC61A1 
NM_013336.3:2245 

CTCTAAGCCCAACCAGAAGAGTCAGCT
AGAAGAGCCAATAGGTGCACAGA 

GAGCTGATGACCCAAGTGGACTAAACA
CGGAGCTAGCAGAAACAGGCAGA 

test ? 

SERPINB5 NM_002639.4:90 CGGGCCTGGAGTCACAGTTATCCTGGA
AAATGCGTGGAAAAGGAACAGGC 

GAACAGATCAACGGCAAAAGCCGAATT
TGCTAGTTGCAGGGCATCCATTG 

test Cooper 

SFRP4 NM_003014.2:1060 CAGCCTCTCTTCCCACTGTATGGATCT
TTTACTAAGCTGATCTCTCCATT 

CCCGGCTGTTTTCTTCTTGTCCTGAACT
GTTCTCCGCTGTTCCTG 

test Sanda 

SIM2.long NM_005069.3:2099 TTAATGTAGGTCGTGCGCATTTGCCGG
GCTCGGTGGCGCCGCAGCC 

ATCCGCAAGTCGGCGGCGGGGTCCAAT
TCAAACAGCTGTCTCTGCATAAA 

test Sanda 

SIM2.short NM_009586.3:2220 CTGCCACCCACCGCCATGGCTGCTTCG
GCTCCCGG 

GAAGCAGAAAGAGGGCAAGTTTGCCCA
AAGCGTGAGGGTTCTGTCTCCAT 

test Sanda 

SIRT1 NM_012238.4:1595 GGTGTGGGTGGCAACTCTGACAAATAA
GCCAATTCTTTTTGTGTTCGTGG 

CTGGTGGTGAAGTTCTTTCTGGTGAAC
TTGAGTCTTCTGAAACATGAAGA 

test Sanda 

SLC12A1 NM_000338.2:3380 CCATATACAACAAATCCGATATGGATC
CCTTTCTTGCCACGGGAAGGCTC 

TCTAACTAGTAAGACAGGTGGGAGGTT
CTTTGTGAGGATTTCCAACCAAG 

Kidney control Cooper, 
Mills 

SLC43A1 NM_003627.5:925 TTGACTTCCTCAGGGGCAGGAAAGGCT
TCGATGGGCCAGTTGAGGGTGCA 

CTTGTGGTCCAGGGCCAGCCCACTCAG
CTTGATCTTCTTCGTGTAA 

test Sanda 

SLC4A1 S NM_000342.3:2770 CATCATCAGCATCCAGACACTGAAGCT
CCACGTTCCTGAAGATGAGCGG 

CACTTCGTCGTATTCATCCCGACCTTCC
TCCTCATCAAAGGTTGCCTTGG 

test Clark 

SMAP1, ex NM_021940.3:1075 GAGTACTTTGCTGTTGAATGGTTCCTG TGGTGCTTGTGAGGTAAATGGTATATT test Cooper 
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7-8 TGCCATACAGAGATAAGATGGAG TGTGGGTCCCATAAATACACCAG 
SMIM1 ENST00000444870.1

:353 
TTCATGGCGATGCCCAGCTTGCCCGTG
CACAGCCTCTGGGAGAT 

GGTAGCCCAGGATGAAGATGATCCAGA
AGAGGGCCACGCCGCCCAGCACC 

test Cooper 
– NGS 

SNCA  NM_007308.2:568 ACTGGGAGCAAAGATATTTCTTAGGCT
TCAGGTTCGTAGTCTTGATACCC 

GGAACTGAGCACTTGTACAGGATGGAA
CATCTGTCAGCAGATCTCAAGAA 

test Clark 

SNORA20 NR_002960.1:2 CGTATAACTGCTCGTATCACTGTGAGA
CTACAAGCAGCAAATAAATGGGA 

ATGGTTACTTCATCTCAATTTACAGTGG
CCCAATGTTATTTTATCCCATG 

test Sanda 

SPINK1 NM_003122.2:65 AAGTTCTGCGTCCAGAGGTCAGTTGAA
AACTGCACCGCACTTACCACGTC 

CAACAGGGCCAAGGCACTGAGAAGAAA
GATGCCTGTTACCTTCATGGCTG 

test Cooper  

SPON2 NM_012445.1:1680 CATTTATTCACTTCTCAAGTGGCCCCC
GCTTGGATGCGCCCTCG 

AACGCAGAGAGATCCATAACATGGAAA
CACTGACGCTTCCGAAACCGCCC 

test Whitak
er 

SRSF3 NM_003017.4:2640 TAAAGTAACTGCCAACTGGGACTGTAT
GTCACCTAAGTCAGGATAACTCC 

CCATGTTCTAAAGTTTCTAAGAGTCTTG
AGGTTATGCTAGGGCTCCTGGT 

test Sanda 

SSPO NM_198455.2:7270 CCACAAGGCAGGGAGAGAAGGGAGCC
ACATAAGTAGATTCCTGGCG 

ATGGTAGGCATCATGAAGGGCACAGTG
CTCGCTGC 

test Sanda 

SSTR1 NM_001049.2:2575 TCCGACCCCGCAATCTTATAAAAACTC
CTCATTCGGCTTGTTCTCAGCTC 

GGTCTTTGAAAACGCGCAGTAGGAGGG
TGATTCCTATTACGCGCCCACAC 

test Sanda 

ST6GALN
AC1 

ENST00000592042.1
:1036 

TTTTTCCTCAAAATCCCACCGAGGCTC
AGATTTGAAGTTGGCGGCCTTCA 

TTCACAGAGTCAGGGCAAGTCGTCTGA
AGGCCTCCTATTTCGAAGCTGTA 

test Cooper 
– NGS 

STEAP2 NM_152999.2:845 ATATATAAACCTGCCGGCTGGCATCCT
TAGGTCCTAACTGAAGTGCCCAA 

CTGGCGGGCAAGTTCAATAACCTGTTG
TCGCGCTTGAATATTGTTGCTGC 

test Mills 

STEAP4 NM_024636.2:3555 ATCAAAGATAAGTTGAAGGAGCGTGTG
TTCTGTGTACCTTTGCAACCAGT 

CCATGACTCTACTCAATGTCGTCCAACT
TTTTGTATCCTTGCTTGGGTTT 

test Mills 

STOM NM_004099.5:120 GAGTCGGGGAGCCGCTGGGCTTCGGA
GTCCCGTGT 

CCAAAATCCATCCGCAAGGTCCAAGGC
CCTTACTGGGGCTGTCCTTGAAG 

test Clark 

SULF2 NM_001161841.1:12
06 

ATGAGGTCTGTGAGGTAATCCTTGGAG
TAGTCGGAGC 

GTACATCTTCTTGGACGTGCGGAAGAA
GCTCACGCTGTCATTGGTG 

test Cooper 
– NGS 

SULT1A1 NM_177534.2:1393 CCCTCAATTCATATTTTATTCTTGAGCC
GCTTGGTCAGGTTTGATTCGCA 

TCAGCCTCCAAATTGCTGGGATTACAG
ACATGACCTACCGTCCCGGG 

test Mills 

SYNM NM_015286.4:2460 AATGTGACATCGCTTTCTCCATAACCT
TCCTCCTCCTTAACCAACCCCCA 

TCGTGTTCTCCTGAGGCTGCTTGGTCC
TTCGATGCTGATTAACTGAG 

test Sanda 

TBP NM_001172085.1:58
7 

GCACGAAGTGCAATGGTCTTTAGGTCA
AGTTTACAACCAAGATTCACTGT 

TCCTCATGATTACCGCAGCAAACCGCT
TGGGATTATATTCGGCGTTTCGG 

housekeeper Cooper 

TDRD NM_198795.1:2615 TGTTTCTAGACTGTATATCTGCTAACT CCCAGCAACACACATCTGGAATCTTGT test Schalke
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GGCACCGTATTCCCTGAAAGGGA TATGGCTTCTTCAGACCAATGTT n 
TERF2IP NM_018975.3:1100 GCCTGTGTAACTGTTGATAGATCCAAG

TTAAACTTCTCCATTAACTGCCG 
ACGCTAAGAAGGCGGAAGTAGCCTCCA
GCTCACCACTATTTTTTAGGAAG 

test Clark 

TERT NM_198253.1:2570 CGCAAGACCCCAAAGAGTTTGCGACG
CATGTTCCTCCCAGCCTTGAAGCC 

TCTGGAGGCTGTTCACCTGCAAATCCA
GAAACAGGCTGTGACACTTCAGC 

test Cooper 

TFDP1  NM_007111.4:551 TTCCTCTGCACCTTCTCGCAGACCTTC
ATGGAGAAATGCCGTAGGCCCTT 

TGAACTCCGCAACCAGCTCGTCTGCCA
CTTCGTTGTAGGAAGTGGTCCCT 

test Clark 

Timp4 NM_003256.2:1000 TCTGCAGGGAAGGAGAACTGGCTTGA
TCTTCAGGACTCTTGAAGGGATGT 

GGCACTTCTTATTAGCTGGCAGCAAGA
GGTCAGGTGGTAATGGCCAAAGC 

test Cooper 

TMCC2  NM_014858.3:1312 ACGTTGCTGCCGTCGGCCAGCAGCAG
AGCAGTGTCGGTG 

CCCCGATGCCTTCGGCCTCCTCAGCCA
GGAGGTAC 

test Clark 

TMEM45B NM_138788.3:469 GCATACAGCAGGAGTGAGTGGATGTG
CTGGTCCAGCGGAGGCCGG 

GGTCCCGGAAGATCACCTCTAGGGAGA
TACTAACACACCCTCCGAACAGA 

test Sanda 

TMEM47 NM_031442.3:1215 AGCAAATAACCAACAGCCAATGTAGTC
ATTGGGTAGGATAAGCAGGCGGT 

CCCATTAGATGCTGAAGGGCAGTTCAT
TTTTCAAGGGCTCACTCA 

test Cooper 
– NGS 

TMEM86A NM_153347.1:2320 AATGAATCAGCCAATCTAATCCCATTG
CTCCCAGCTGTTCAACTAAGCCC 

GCTCCTGGAGCAGAGTGATGTATTATT
CTGCCAGGGCTTTACAACTAATG 

test Cooper 
– NGS 

TMPRSS2:
ERG 
fusion 

Fusion_0120.1:0 CTGCCGCGCTCCAGGCGGCGCTCCCC
GCCCCTCGC 

TAGGCACACTCAAACAACGACTGGTCC
TCACTCACAACTGATAAGGCTTC 

PCa positive control Schalke
n, 
Cooper 

TRPM4 NM_001195227.1:28
00 

CTTCCAGTAGAGATCGCTGTTGCCCTG
TACTTTGCCGAATGTGTAACTGA 

GCCAGCGCGGGCCGAGAGTGGAATTCC
CGGATGAGGCGGTAACGCTGCGC 

test Sanda 

TWIST1 NM_000474.3:393 CTCGGCGGCTGCTGCCGGTCTGGCTCT
TCCTCGCTG 

TGCTGCTGCGCCGCTTGCGTCCCCCGC
GCTTGCCG 

test Sanda 

UPK2 NM_006760.3:332 ACGAGGTTTGTCACCTGGTATGCACTG
AGCCGAGTGACTG 

TCCCCTTCTTCACTAGGTAGGAAATGTA
GAATTTGGTTCCTGGC 

Bladder control Cooper 

VAX2 NM_012476.2:871 TCACAGGGTGGGAGTCTTAAGTGTTAG
CTTTCTTGCAG 

ACAGGAGACTGGGAAGGTGCTGTGCTC
GGGACTCAGTG 

test Sanda 

VPS13A NM_033305.2:8260 TAAAGGGCTTTGGTGCTGAATCCATGG
TGACCGACTTTGGAGGTTTAACA 

ACGTGATATCTGGGAATGTCCTGCAGA
TCTCATGACAATACTGACATCTG 

Test ? 

ZNF577 
NM_032679.2:268 

TCTCTCTTCTGTCTATTCTGGGCCTTCC
CAGAAGTGGTGGTCAG 

GCCTTGCCCATTTCGTTCAACTCTTAGG
GGCTAGCAACTCTAGTATGTTC 

Test Sanda 
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Supplementary Table 2 Samples flagged by quality checks on Nanostring2 data set 

 Samples flagged by Quality Checks 
Samples detected by 
NanoStringNorm where 
normalization parameters 
extended beyond 100% from 
the mean 

M_83_7 
M_84_2 
M_84_5  
M_84_6  
M_85_1  
M_85_2 
M_86_1 
M_86_2 
M_86_3 
M_133_7 
M_142_7 
M_120_5 
M_122_2 
M_127_6 
M_129_3 
M_131_4 
M_75_3 
M_42_7 
M_80_3 
M_73_7 
M_129_5 
M_131_8 
M_132_2 
M_132_5 

M_26_6 
M_27_1 
M_31_1 
M_31_3 
M_73_1 
M_76_6 
M_77_1 
M_77_2 
M_78_3 
M_78_5 
M_78_6 
M_78_7 
M_78_9 
M_79_2 
M_79_4 
M_81_1 
M_81_2 
M_81_4 
M_81_5 
M_68_8 
M_92_5 
M_54_7 
M_58_5 
M_67_5 

pc145 
pc1008_0 
pc017 
a293 
a316 
a303 
a1316 
a1319 
a1329 
a138a 
C113_1 
C118_4 
C110_1 
C112_4 
C107_2 
C111_1 
C109_4 
C107_1 
C118_3 
C106_8 
C116_5 
C116_2 
 

Samples detected by 
NanoStringQCPro which 
were found to have 
overlapping barcodes 

M_91-6 
M_97-3 
M_97-4 
M_142-7 
M_120-5 
M_122-2 
M_127-6 
M_129-3 
M_131-4 
pc105-5 
pc130-2 
pc140-20 
pc140-5 
pc140-2 

 

pc135 
pc137 
pc139 
pc145 
pc146 
pc1008 
pc1013 
pc1029 
pc1043 
pc118 
pc119 
pc121 
a1316 
a1331 
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Supplementary Table 3 Differentially expressed probes for each LPD group determined in the Nanostring2 data set. A) LPD groups 1-3. B) LPD groups 

4-5. 

A 

LPD Group 1 LPD Group 2 LPD Group 3 
 Adjusted p-value Log2(FC)  Adjusted p-value Log2(FC)  Adjusted p-value Log2(FC) 
CAMKK2 4.80X10-14 -1.17 IFT57 9.50X10-14 0.18 KLK2 1.97X10-12 -0.20 
CACNA1D 1.10X10-13 -0.49 OGT 1.26X10-13 0.27 DPP4 2.20X10-12 -0.23 
GABARAPL2 1.10X10-13 -0.32 GABARAPL2 1.31X10-13 0.17 CASKIN1 1.29X10-10 -0.21 
RPS11 3.13X10-13 -0.13 DPP4 1.56X10-13 0.19 MSMB 1.34X10-10 -0.08 
RPL23AP53 3.74X10-13 -1.35 IMPDH2 1.65X10-13 0.26 CACNA1D 1.55X10-10 -0.20 
PPAP2A 3.94X10-13 -0.33 HPRT 1.68X10-13 0.30 GABARAPL2 1.71X10-10 -0.14 
CTA.211A9.5.MIATN

B 

4.44X10-13 -2.43 EIF2D 1.69X10-13 0.25 TERT 2.02X10-10 -0.24 

STEAP2 5.07X10-13 -0.60 MXI1 2.05X10-13 0.22 ZNF577 2.69X10-10 -0.26 
IFT57 8.73X10-13 -0.33 PECI 2.09X10-13 0.25 SSPO 3.12X10-10 -0.20 
MIC1 8.77X10-13 -1.20 RP11.97O12.7 2.10X10-13 0.28 CAMK2N2 3.32X10-10 -0.52 
CASKIN1 1.05X10-12 -0.41 CACNA1D 2.14X10-13 0.22 IFT57 5.68X10-10 -0.15 
HMBS 1.25X10-12 -0.84 FDPS 3.25X10-13 0.19 FOLH1 5.86X10-10 -0.32 
MED4 1.25X10-12 -0.83 MYOF 4.00X10-13 0.26 MNX1 6.38X10-10 -0.22 
RPLP2 1.32X10-12 -0.16 BRAF 4.31X10-13 0.30 MXI1 1.56X10-09 -0.16 
HIST1H1C 1.72X10-12 -0.31 ALAS1 4.49X10-13 0.21 RP11.244H18.1.P71

2P 

3.02X10-09 -0.28 

PCSK6 1.97X10-12 -0.47 MARCH5 4.73X10-13 0.24 STEAP2 4.33X10-09 -0.24 
MMP11 1.98X10-12 -0.66 KLK2 4.87X10-13 0.20 TWIST1 4.66X10-09 -0.21 
Timp4 2.11X10-12 -1.43 RIOK3 6.19X10-13 0.35 RPLP2 8.02X10-09 -0.08 
SIM2.short 2.17X10-12 -0.76 ZNF577 6.44X10-13 0.27 HPRT 8.93X10-09 -0.19 
SLC43A1 2.17X10-12 -2.98 HIST1H1C 6.62X10-13 0.17 MED4 9.74X10-09 -0.21 
SSTR1 2.28X10-12 -0.45 MED4 6.69X10-13 0.29 RPS11 2.70X10-08 -0.05 
SYNM 2.48X10-12 -1.69 TWIST1 6.69X10-13 0.32 PCSK6 3.33X10-08 -0.27 
RPS10 2.52X10-12 -0.18 TFDP1 8.58X10-13 0.28 MMP26 4.93X10-08 -0.90 
MEX3A 2.59X10-12 -1.06 STEAP2 9.68X10-13 0.27 PSGR 7.51X10-08 -0.33 
HIST1H2BG 2.78X10-12 -1.35 GAPDH 1.04X10-12 0.18 NKAIN1 1.44X10-07 -0.31 
VAX2 3.63X10-12 -0.55 LBH 1.23X10-12 0.46 ARexons4.8 1.46X10-07 -0.19 
HOXC4 3.91X10-12 -1.20 SSPO 1.33X10-12 0.38 SSTR1 1.75X10-07 -0.18 
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RPL18A 4.06X10-12 -0.33 TERF2IP 1.33X10-12 0.18 EN2 1.76X10-07 -0.31 
PALM3 4.82X10-12 -0.82 HIST1H2BF 1.50X10-12 0.22 PPAP2A 1.97X10-07 -0.17 
FDPS 5.40X10-12 -0.35 MEMO1 1.67X10-12 0.28 CDC20 2.70X10-07 -0.34 
TWIST1 5.54X10-12 -0.51 NAALADL2 1.67X10-12 0.30 MGAT5B 3.52X10-07 -0.25 
EN2 7.01X10-12 -0.56 RPL18A 1.67X10-12 0.15 TFDP1 3.65X10-07 -0.19 
MXI1 1.01X10-11 -0.36 CASKIN1 1.86X10-12 0.33 SLC4A1.S 7.77X10-07 -0.63 
STEAP4 1.11X10-11 -0.64 ITPR1 1.86X10-12 0.28 KLK3 exons 2-3 7.99X10-07 -0.25 
ISX 1.17X10-11 -1.67 RPLP2 2.27X10-12 0.10 EIF2D 8.19X10-07 -0.19 
KLK3 exons 2-3 1.26X10-11 -0.69 HMBS 2.34X10-12 0.34 KLK4 1.21X10-06 -0.14 
TMEM86A 1.36X10-11 -1.51 PPAP2A 2.34X10-12 0.18 ARHGEF25 1.36X10-06 -0.60 
KLK4 1.49X10-11 -0.36 SLC4A1.S 2.46X10-12 0.79 COL9A2 1.47X10-06 -0.79 
MNX1 1.54X10-11 -0.43 MMP11 2.71X10-12 0.44 HIST1H2BF 2.43X10-06 -0.21 
AMH 1.82X10-11 -0.59 SIM2.short 2.81X10-12 0.45 SNCA 4.94X10-06 -0.28 
AR exons 4-8 2.58X10-11 -0.67 Ar exons 4-8 2.85X10-12 0.27 MIR146A.DQ65841

4 

5.41X10-06 -0.26 

SMIM1 2.64X10-11 -1.17 RP11.244H18.1.P7

12P 

3.07X10-12 0.25 COL10A1 5.98X10-06 -0.30 

RIOK3 3.77X10-11 -0.83 MNX1 3.52X10-12 0.42 CADPS 6.01X10-06 -0.59 
BRAF 3.82X10-11 -0.46 HIST1H2BG 3.66X10-12 0.25 VAX2 6.99X10-06 -0.21 
SChLAP1 4.04X10-11 -1.22 STEAP4 3.67X10-12 0.33 HIST1H1C 7.08X10-06 -0.11 
DLX1 4.75X10-11 -1.94 AMH 4.12X10-12 0.41 PTN 7.92X10-06 -0.39 
PVT1 4.81X10-11 -0.68 SMAP1 exons 7-8 4.43X10-12 0.36 PSTPIP1 8.67X10-06 -0.57 
IMPDH2 4.92X10-11 -0.59 FOLH1 5.02X10-12 0.27 MARCH5 9.65X10-06 -0.13 
MGAT5B 5.09X10-11 -0.68 RPS10 5.90X10-12 0.13 SIM2.short 9.74X10-06 -0.26 
CD10 5.79X10-11 -0.54 GCNT1 7.08X10-12 0.39 AMH 1.07X10-05 -0.21 
HPRT 6.13X10-11 -0.66 BTG2 7.11X10-12 0.31 MMP11 1.57X10-05 -0.20 
ITGBL1 6.13X10-11 -0.86 CCDC88B 7.11X10-12 0.78 RPS10 1.62X10-05 -0.07 
EIF2D 7.83X10-11 -0.46 CDC37L1 8.55X10-12 0.39 STEAP4 1.62X10-05 -0.13 
DPP4 8.53X10-11 -0.44 TMCC2 8.55X10-12 0.65 IMPDH2 1.67X10-05 -0.16 
TFDP1 9.69X10-11 -0.88 DNAH5 9.37X10-12 0.67 SPINK1 2.08X10-05 0.29 
TERF2IP 1.01X10-10 -0.31 NLRP3 9.81X10-12 0.80 ISX 3.99X10-05 -0.55 
ZNF577 1.22X10-10 -0.84 RPS11 1.05X10-11 0.08 ACTR5 4.01X10-05 -0.45 
ARHGEF25 1.39X10-10 -1.39 PDLIM5 1.13X10-11 0.24 MMP25 5.23X10-05 -0.58 
SIM2.long 1.42X10-10 -1.29 SSTR1 1.72X10-11 0.42 CAMKK2 5.77X10-05 -0.39 
RP11.97O12.7 1.48X10-10 -0.97 SRSF3 2.05X10-11 0.51 MYOF 6.98X10-05 -0.15 
SRSF3 1.51X10-10 -1.16 ABCB9 2.15X10-11 0.77 NAALADL2 7.35X10-05 -0.22 
SFRP4 1.55X10-10 -0.89 PPP1R12B 2.45X10-11 0.33 TERF2IP 8.59X10-05 -0.09 
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PTN 1.58X10-10 -0.71 B2M 2.51X10-11 0.27 CD10 8.75X10-05 -0.15 
COL10A1 1.95X10-10 -0.59 MDK 3.09X10-11 0.27 SChLAP1 9.41X10-05 -0.49 
GOLM1 1.95X10-10 -2.39 MGAT5B 3.56X10-11 0.33 MEMO1 0.000124295 -0.15 
PECI 2.39X10-10 -0.38 CD10 4.43X10-11 0.25 GCNT1 0.000127837 -0.35 
SSPO 2.47X10-10 -0.38 KLK4 4.53X10-11 0.16 KLK3 exons 1-2 0.000138743 -0.22 
MSMB 2.62X10-10 -0.15 VPS13A 6.07X10-11 0.37 MAPK8IP2 0.00014341 -0.57 
SNCA 2.88X10-10 -0.88 HIST1H1E 6.14X10-11 0.32 DNAH5 0.00014901 -0.39 
TBP 2.91X10-10 -2.06 SEC61A1 6.14X10-11 0.61 ST6GALNAC1 0.000152737 -1.26 
PPP1R12B 3.16X10-10 -0.95 TERT 6.15X10-11 0.31 CTA.211A9.5.MIAT

NB 

0.000157375 -0.65 

ANKRD34B 4.26X10-10 -1.57 PSGR 8.66X10-11 0.29 SLC43A1 0.00017283 -0.98 
TMPRSS2:ERG 4.88X10-10 -1.95 SMIM1 9.84X10-11 0.26 NLRP3 0.000178965 -0.46 
SACM1L 5.03X10-10 -0.62 COL9A2 1.20X10-10 0.91 SRSF3 0.000264469 -0.36 
CADPS 5.12X10-10 -1.63 AMACR 1.23X10-10 0.32 ANKRD34B 0.000277869 -0.61 
KLK2 5.12X10-10 -0.46 CKAP2L 1.41X10-10 0.82 FDPS 0.00030588 -0.11 
COL9A2 5.17X10-10 -1.60 PSTPIP1 1.52X10-10 0.78 SIM2.long 0.000332184 -0.43 
TMEM47 5.25X10-10 -2.48 PTN 1.52X10-10 0.36 UPK2 0.000344195 0.53 
MARCH5 5.48X10-10 -0.58 VAX2 1.52X10-10 0.43 PDLIM5 0.000389202 -0.12 
PPFIA2 5.70X10-10 -1.30 MMP25 1.67X10-10 0.78 ERG5 0.000408807 -0.47 
LASS1 6.33X10-10 -0.69 SACM1L 1.91X10-10 0.35 OGT 0.000408807 -0.13 
PDLIM5 8.66X10-10 -0.44 CLIC2 1.93X10-10 0.83 PVT1 0.000436352 -0.33 
FOLH1 8.98X10-10 -0.62 GOLM1 1.99X10-10 0.43 TMEM47 0.000458492 -1.08 
SNORA20 8.98X10-10 -2.62 PCSK6 2.05X10-10 0.38 RPL18A 0.000499086 -0.07 
GCNT1 9.05X10-10 -1.97 CDC20 2.19X10-10 0.73 PCA3 0.00052407 -0.19 
CLIC2 9.17X10-10 -1.42 KLK3 exons 2-3 2.19X10-10 0.19 SNORA20 0.000536406 -1.10 
GAPDH 9.19X10-10 -0.23 ACTR5 3.15X10-10 0.38 LBH 0.000583164 -0.34 
HOXC6 1.14X10-09 -1.38 SNCA 3.25X10-10 0.23 HIST1H2BG 0.000703794 -0.15 
RP11.244H18.1.P712

P 

1.14X10-09 -0.52 HPN 3.31X10-10 0.38 MEX3A 0.000862201 -0.30 

SMAP1 exons 7-8 1.44X10-09 -1.35 MEX3A 3.33X10-10 0.68 PECI 0.000862201 -0.12 
TMEM45B 1.51X10-09 -0.53 RPL23AP53 4.01X10-10 0.53 Timp4 0.000976934 -0.68 
MDK 1.56X10-09 -1.02 TMEM45B 4.21X10-10 0.44 TMEM86A 0.001450492 -0.56 
TERT 2.17X10-09 -0.36 CAMKK2 4.60X10-10 0.33 CKAP2L 0.001943582 -0.42 
CDC20 2.41X10-09 -0.75 SYNM 4.93X10-10 0.54 RNF157 0.002251894 -0.52 
MMP26 2.47X10-09 -1.45 SIRT1 5.07X10-10 0.54 RIOK3 0.002581105 -0.15 
AGR2 2.87X10-09 -1.52 MFSD2A 5.26X10-10 0.78 AGR2 0.002794445 -0.32 
OR52A2.PSGR 2.97X10-09 -1.37 COL10A1 6.30X10-10 0.44 CCDC88B 0.003237426 -0.54 
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MYOF 3.29X10-09 -0.36 MCM7 6.67X10-10 0.47 GAPDH 0.003237426 -0.07 
SLC4A1.S 3.42X10-09 -2.05 SIM2.long 6.92X10-10 0.50 SMAP1 exons 7-8 0.003237426 -0.26 
KLK3 exons 1-2 3.66X10-09 -0.93 NKAIN1 7.55X10-10 0.25 SACM1L 0.003611413 -0.15 
AATF 3.68X10-09 -1.94 MIR146A.DQ6584

14 

8.31X10-10 0.44 LASS1 0.003758809 -0.32 

NLRP3 3.68X10-09 -1.21 KLK3 exons 1-2 9.53X10-10 0.21 MCM7 0.003892978 -0.36 
SPON2 3.93X10-09 -0.79 EN2 1.00X10-09 0.34 GOLM1 0.004104272 -0.29 
ACTR5 4.55X10-09 -0.87 GJB1 1.00X10-09 0.26 MIC1 0.004950076 -0.36 
HPN 5.48X10-09 -0.99 TMEM86A 1.11X10-09 1.06 SFRP4 0.005187855 -0.43 
MAK 5.71X10-09 -2.15 ANKRD34B 1.13X10-09 0.91 SMIM1 0.005244137 -0.16 
B4GALNT4 5.82X10-09 -1.13 TBP 1.34X10-09 0.42 MAK 0.005275769 -0.75 
CDKN3 5.82X10-09 -0.94 AGR2 1.39X10-09 0.45 IGFBP3 0.005353681 0.36 
GJB1 5.82X10-09 -1.53 MMP26 1.39X10-09 1.02 SYNM 0.005479266 -0.45 
TRPM4 5.82X10-09 -1.59 PVT1 1.83X10-09 0.45 TMCC2 0.006177628 -0.31 
ITPR1 5.88X10-09 -0.64 ANPEP 1.91X10-09 0.38 DLX1 0.006513656 -0.51 
CKAP2L 6.54X10-09 -0.97 Timp4 2.60X10-09 0.40 SERPINB5 0.007855423 -0.32 
NAALADL2 9.10X10-09 -0.81 RAB17 2.66X10-09 0.45 TRPM4 0.009529009 -0.41 
AMACR 9.36X10-09 -1.31 AATF 2.69X10-09 0.46 RP11.97O12.7 0.010060703 -0.14 
HIST3H2A 1.00X10-08 -1.05 CTA.211A9.5.MIAT

NB 

2.91X10-09 0.36 CLU 0.010087038 -0.45 

MIR146A.DQ658414 1.04X10-08 -0.74 SERPINB5 3.68X10-09 0.47 SLC12A1 0.010326711 0.41 
SEC61A1 1.15X10-08 -1.99 NEAT1 3.68X10-09 0.41 MDK 0.010838865 -0.16 
ERG3 exons 4-5 1.50X10-08 -1.34 B4GALNT4 4.93X10-09 0.87 CDKN3 0.011131753 -0.39 
MCM7 1.50X10-08 -1.48 CADPS 7.75X10-09 1.22 BRAF 0.011920795 -0.11 
HIST1H2BF 1.69X10-08 -0.53 SChLAP1 8.52X10-09 0.63 HMBS 0.011920795 -0.22 
SIRT1 1.85X10-08 -1.41 MIC1 8.65X10-09 0.58 MIR4435.1HG.lOC5

41471 

0.013229338 0.15 

ERG3 exons 6-7 1.93X10-08 -1.96 PALM3 8.65X10-09 0.46 RPL23AP53 0.013779284 -0.23 
CDC37L1 2.09X10-08 -0.71 HIST3H2A 9.40X10-09 0.28 AATF 0.023593676 -0.23 
ARexon9 2.38X10-08 -1.50 ARHGEF25 1.09X10-08 0.73 B4GALNT4 0.023593676 -0.28 
HIST1H1E 2.50X10-08 -0.58 MSMB 1.31X10-08 0.06 HIST3H2A 0.023593676 -0.22 
STOM 2.86X10-08 -2.23 ISX 2.15X10-08 0.95 MKi67 0.023593676 -0.61 
SERPINB5 3.66X10-08 -1.39 TRPM4 2.75X10-08 0.54 B2M 0.024443101 -0.10 
LBH 3.98X10-08 -1.22 CLU 2.93X10-08 0.84 AR exon 9 0.027370444 -0.57 
TMCC2 4.17X10-08 -1.84 HOXC6 2.93X10-08 0.32 CLIC2 0.029401344 -0.28 
MMP25 4.69X10-08 -1.22 RNF157 2.93X10-08 0.51 SPON2 0.029401344 -0.10 
ERG5 5.45X10-08 -1.67 ST6GALNAC1 2.93X10-08 0.65 ABCB9 0.047180253 -0.18 
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CAMK2N2 7.63X10-08 -0.79 AR exon 9 3.18X10-08 1.02    
VPS13A 8.47X10-08 -0.88 HOXC4 4.42X10-08 0.63    
MFSD2A 8.52X10-08 -1.44 ERG5 5.96X10-08 0.79    
ST6GALNAC1 9.99X10-08 -2.46 SLC43A1 7.19X10-08 0.70    
AURKA 1.35X10-07 -2.28 MAPK8IP2 9.88X10-08 0.93    
CLU 2.46X10-07 -0.87 PCA3 9.92X10-08 0.25    
MEMO1 3.02X10-07 -0.58 CAMK2N2 1.00X10-07 0.43    
PCA3 3.02X10-07 -0.31 MKi67 1.33X10-07 1.01    
ALAS1 3.42X10-07 -0.26 CP 2.10X10-07 0.75    
CCDC88B 3.75X10-07 -1.09 ITGBL1 2.10X10-07 0.45    
OGT 3.75X10-07 -0.38 SNORA20 2.84X10-07 0.56    
SULF2 3.75X10-07 -1.39 PPFIA2 2.90X10-07 0.60    
Met 3.77X10-07 NA TDRD 3.25X10-07 1.05    
TDRD 4.18X10-07 -1.95 STOM 3.73X10-07 0.94    
B2M 9.21X10-07 -0.38 CDKN3 4.26X10-07 0.68    
RNF157 9.31X10-07 -1.40 SULF2 6.30X10-07 0.66    
RAB17 9.77X10-07 -0.67 AURKA 6.74X10-07 0.49    
SULT1A1 2.23X10-06 -1.48 SFRP4 6.74X10-07 0.73    
MAPK8IP2 3.59X10-06 -0.96 MIR4435.1HG.lOC

541471 

2.25X10-06 0.26    

DNAH5 3.84X10-06 -1.08 LASS1 2.34X10-06 0.64    
MCTP1 4.54X10-06 -1.97 SLC12A1 1.18X10-05 0.56    
MKi67 5.94X10-06 -3.13 SPON2 1.18X10-05 0.18    
BTG2 6.71X10-06 -1.07 TMEM47 1.26X10-05 0.75    
NKAIN1 6.71X10-06 -1.27 ERG3 exons 4-5 2.02X10-05 0.73    
CP 6.85X10-06 -1.89 ERG3 exons 6-7 2.02X10-05 0.92    
ANPEP 7.42X10-06 -1.24 MAK 2.57X10-05 1.04    
PSTPIP1 7.42X10-06 -0.98 DLX1 2.70X10-05 1.20    
NEAT1 2.28X10-05 -1.31 SULT1A1 6.39X10-05 0.23    
ABCB9 0.000117259 -0.68 MCTP1 6.98X10-05 0.48    
APOC1 0.000171548 -1.63 Met 9.24X10-05 0.91    
SLC12A1 0.000171548 -1.10 PTPRC 9.24X10-05 0.90    
MIR4435.1HG.lOC54

1471 

0.000399737 -1.01 TMPRSS2:ERG 9.24X10-05 1.19    

UPK2 0.001159053 -1.38 APOC1 0.001191952 0.41    
PTPRC 0.001376488 -1.44 SPINK1 0.004238366 0.17    
IGFBP3 0.009734383 -1.56 IGFBP3 0.005829551 0.41    
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SPINK1 0.039101303 -0.22       
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B	
LPD Group 4 LPD Group 5 
 Adjusted p-

value 
Log2(FC)  Adjusted p-value Log2(F

C) 
VPS13A 3.38X10-06 -0.11 GABARAPL2 2.26X10-22 0.07 
TERF2IP 3.79X10-06 -0.05 CACNA1D 2.71X10-21 0.09 
ABCB9 1.47X10-05 -0.21 STEAP2 3.26X10-17 0.09 
X05.Mar 1.64X10-05 -0.08 KLK2 4.09X10-17 0.07 
MMP25 1.89X10-05 -0.25 MED4 2.31X10-16 0.09 
TMEM45B 1.92X10-05 -0.14 CASKIN1 1.66X10-15 0.13 
RPLP2 1.93X10-05 -0.03 DPP4 7.40X10-15 0.07 
PECI 2.41X10-05 -0.06 IFT57 8.66X10-15 0.07 
CASKIN1 2.64X10-05 -0.10 RPS11 8.75X10-14 0.03 
MEMO1 3.23X10-05 -0.08 MARCH5 9.67X10-14 0.09 
AMACR 4.96X10-05 -0.10 MMP25 1.56X10-13 0.33 
SLC4A1.S 5.73X10-05 -0.24 STEAP4 2.42X10-13 0.09 
GABARAPL2 6.12X10-05 -0.04 TWIST1 2.71X10-13 0.12 
TWIST1 6.76X10-05 -0.08 MMP26 4.57X10-13 0.47 
FDPS 8.19X10-05 -0.04 SYNM 5.46X10-13 0.31 
CACNA1D 0.00010192 -0.06 TERF2IP 6.23X10-13 0.05 
CP 0.000320555 -0.30 FDPS 6.52X10-13 0.05 
RPS11 0.000453771 -0.02 PCSK6 8.32X10-13 0.13 
TMEM86A 0.000537454 -0.27 SSTR1 1.15X10-12 0.12 
PPP1R12B 0.00056124 -0.08 MNX1 1.79X10-12 0.15 
TDRD 0.000623636 -0.71 HPRT 2.47X10-12 0.10 
TMCC2 0.001057497 -0.18 FOLH1 2.60X10-12 0.11 
BTG2 0.001079391 -0.07 CDC20 2.84X10-12 0.21 
BRAF 0.001466681 -0.07 SLC4A1.S 3.09X10-12 0.32 
ITPR1 0.00149178 -0.07 COL10A1 9.32X10-12 0.20 
MFSD2A 0.001912749 -0.24 TDRD 1.16X10-11 0.89 
EN2 0.001944902 -0.10 TERT 1.77X10-11 0.14 
SLC12A1 0.001954045 -0.20 EN2 3.39X10-11 0.14 
CDC37L1 0.002355197 -0.09 ZNF577 4.49X10-11 0.08 
PSTPIP1 0.002736615 -0.18 SSPO 4.81X10-11 0.12 
COL10A1 0.002804912 -0.14 VAX2 5.56X10-11 0.16 
ITGBL1 0.00290803 -0.16 MGAT5B 8.97X10-11 0.13 
ALAS1 0.003470784 -0.04 RPL23AP53 1.42X10-10 0.29 
DPP4 0.003974 -0.04 CAMK2N2 1.56X10-10 0.26 
CCDC88B 0.004126726 -0.22 ERG5 2.20X10-10 0.36 
SPINK1 0.004287134 -0.15 MXI1 2.44X10-10 0.06 
HOXC4 0.004817751 -0.20 HIST1H2BG 3.78X10-10 0.11 
IGFBP3 0.006132992 -0.25 PPAP2A 4.44X10-10 0.06 
UPK2 0.006309542 -0.30 TMEM86A 6.42X10-10 0.36 
RP11.97O12.7 0.00684069 -0.05 MEMO1 9.10X10-10 0.09 
GJB1 0.007619494 -0.09 RP11.244H18.1.

P712P 
9.28X10-10 0.09 

SSTR1 0.007727274 -0.08 ARHGEF25 1.20X10-09 0.39 
EIF2D 0.008645702 -0.06 RPLP2 1.25X10-09 0.03 
MED4 0.009155071 -0.05 SFRP4 1.34X10-09 0.34 
OGT 0.010622928 -0.06 HIST1H1C 1.50X10-09 0.05 
MIR4435.1HG.lO
C541471 

0.011952383 -0.13 COL9A2 1.82X10-09 0.38 

AMH 0.012837851 -0.08 PECI 1.82X10-09 0.06 
MGAT5B 0.012837851 -0.09 BRAF 2.21X10-09 0.09 
RIOK3 0.013178355 -0.07 CAMKK2 3.30X10-09 0.16 
MXI1 0.01326158 -0.05 SIM2.short 3.59X10-09 0.15 
PPAP2A 0.01326158 -0.04 SChLAP1 3.59X10-09 0.36 
STEAP4 0.01326158 -0.06 RIOK3 3.88X10-09 0.11 
PTPRC 0.017081934 -0.45 AMH 4.07X10-09 0.13 
VAX2 0.017081934 -0.09 LBH 4.60X10-09 0.20 
SSPO 0.021717641 -0.06 SACM1L 4.74X10-09 0.11 
SACM1L 0.022028919 -0.08 PDLIM5 8.54X10-09 0.08 
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SULF2 0.02375717 -0.22 ERG3 exons 4-5 9.30X10-09 0.51 
TMPRSS2:ERG 0.023967171 -0.54 LASS1 9.35X10-09 0.30 
CKAP2L 0.029163389 -0.14 GCNT1 1.20X10-08 0.15 
KLK2 0.035832883 -0.04 MIR146A.DQ65

8414 
1.48X10-08 0.16 

HIST1H2BG 0.041078353 -0.07 MMP11 1.90X10-08 0.12 
   MEX3A 1.90X10-08 0.19 
   ANKRD34B 2.35X10-08 0.27 
   EIF2D 2.38X10-08 0.07 
   OGT 2.54X10-08 0.07 
   PSTPIP1 2.79X10-08 0.27 
   TFDP1 3.91X10-08 0.07 
   DLX1 4.64X10-08 0.65 
   B4GALNT4 5.18X10-08 0.31 
   TMPRSS2:ERG 5.95X10-08 0.93 
   MSMB 7.42X10-08 0.03 
   CADPS 1.01X10-07 0.37 
   CKAP2L 1.23X10-07 0.24 
   SNORA20 1.42X10-07 0.35 
   MAK 1.67X10-07 0.72 
   ERG3 exons 6-7 1.95X10-07 0.66 
   ITPR1 3.32X10-07 0.09 
   RP11.97O12.7 4.08X10-07 0.06 
   AMACR 5.11X10-07 0.12 
   ISX 5.11X10-07 0.36 
   PVT1 5.11X10-07 0.16 
   HOXC4 6.68X10-07 0.23 
   AR exons 4-8 6.96X10-07 0.07 
   MKi67 7.96X10-07 0.44 
   TMEM47 7.96X10-07 0.42 
   HMBS 8.12X10-07 0.14 
   IMPDH2 8.35X10-07 0.05 
   NAALADL2 8.35X10-07 0.07 
   AR exon 9 9.27X10-07 0.58 
   TMCC2 9.91X10-07 0.22 
   HIST1H2BF 1.56X10-06 0.07 
   SMAP1 exons 7-

8 
1.62X10-06 0.12 

   CLIC2 1.66X10-06 0.34 
   TMEM45B 2.10X10-06 0.12 
   KLK4 2.14X10-06 0.06 
   ABCB9 2.50X10-06 0.25 
   GJB1 2.50X10-06 0.10 
   MYOF 2.52X10-06 0.06 
   DNAH5 2.53X10-06 0.28 
   CDC37L1 3.63X10-06 0.09 
   PTN 6.39X10-06 0.11 
   PPP1R12B 6.95X10-06 0.08 
   NKAIN1 8.02X10-06 0.10 
   PPFIA2 1.11X10-05 0.28 
   SRSF3 1.31X10-05 0.14 
   CP 1.41X10-05 0.29 
   TBP 1.64X10-05 0.10 
   RNF157 1.79X10-05 0.22 
   CCDC88B 1.99X10-05 0.29 
   NLRP3 2.01X10-05 0.21 
   ACTR5 2.28X10-05 0.13 
   GOLM1 2.46X10-05 0.14 
   VPS13A 2.47X10-05 0.08 
   CD10 2.99X10-05 0.06 
   MAPK8IP2 2.99X10-05 0.29 
   PCA3 2.99X10-05 0.11 
   CTA.211A9.5.MI 4.66X10-05 0.17 
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ATNB 
   SLC43A1 4.66X10-05 0.27 
   RPL18A 5.11X10-05 0.04 
   SNCA 5.11X10-05 0.08 
   MIC1 8.46X10-05 0.19 
   Timp4 9.62X10-05 0.15 
   MFSD2A 0.000117774 0.28 
   RPS10 0.000141176 0.04 
   CLU 0.000315682 0.32 
   MCM7 0.000317762 0.16 
   SMIM1 0.000387115 0.09 
   SEC61A1 0.000429125 0.20 
   CDKN3 0.000442848 0.19 
   PALM3 0.000442848 0.13 
   SIRT1 0.000556554 0.13 
   TRPM4 0.000941039 0.18 
   AATF 0.00110258 0.09 
   ALAS1 0.001662622 0.03 
   ST6GALNAC1 0.002493816 0.35 
   ITGBL1 0.003929639 0.12 
   KLK3 exons 2-3 0.004011089 0.04 
   AGR2 0.00404698 0.11 
   SERPINB5 0.00406767 0.13 
   MDK 0.004201206 0.05 
   SULF2 0.005040354 0.13 
   GAPDH 0.010197511 0.02 
   KLK3 exons 1-2 0.010197511 0.05 
   MCTP1 0.010197511 0.21 
   PSGR 0.010197511 0.07 
   HOXC6 0.015699677 0.06 
   STOM 0.015699677 0.24 
   AURKA 0.016070673 0.14 
   PTPRC 0.019655708 0.35 
   SIM2.long 0.021194067 0.17 
   NEAT1 0.030247935 0.09 
   HIST3H2A 0.030856327 0.07 
   SPON2 0.043657569 0.04 
   B2M 0.050443121 0.04 
   RAB17 0.050443121 0.10 
   BTG2 0.05175315 0.03 
   SPINK1 0.08344823 -0.09 
   ANPEP 0.131696047 0.07 
   HIST1H1E 0.221627267 0.03 
   HPN 0.261795514 0.05 
   SULT1A1 0.298725188 0.03 
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6.12 Binomial Testing between CB and Ca 

Supplementary Table 4 Glm binomial tests – significant probes between CB and Ca (L I H) 

KLK2 Ratio data KLK2 adjusted data 
Transcript p-value Log2(FC) Adjusted p-value Transcript p-value Log2(FC) Adjusted p-

value 
ERG3’ exons 4-5 1.54x10-09 1.582 2.55x10-07 PCA3 4.49 x10-07 0.192 7.46 x10-05 
TMPRSS2:ERG 8.73x10-09 NA 1.44x10-06 HPN 4.82 x10-06 0.180 0.001 
PCA3 1.10x10-08 0.321 1.81x10-06 SIM2.short 6.21 x10-05 0.124 0.010 
ERG3’ exons 6-7 2.44x10-08 2.808 3.97x10-06 AMACR 6.40 x10-05 0.124 0.010 

HOXC6 8.04x10-07 0.295 0.0001 
ERG3’ exons 4-
5 0.0001 0.103 0.018 

TDRD 2.14x10-06 3.683 0.0003 SMIM1 0.0003 0.142 0.048 

DLX1 2.76x10-05 4.219 0.004 
ERG3’ exons 6-
7 0.0003 0.101 0.056 

ERG5 0.0002 NA 0.025 HOXC6 0.0004 0.130 0.058 
ISX 0.0002 2.227 0.028 GJB1 0.0004 0.129 0.061 
HOXC4 0.0002 0.900 0.031 TMPRSS2:ERG 0.0004 0.098 0.061 
TRPM4 0.0002 0.652 0.032 CAMKK2 0.001 0.098 0.079 
PPFIA2 0.0002 0.613 0.032 GAPDH 0.001 0.119 0.116 
HPN 0.0003 0.270 0.046 MMP11 0.001 0.083 0.132 
GJB1 0.0003 0.234 0.050 TRPM4 0.001 0.103 0.143 
APOC1 0.001 1.001 0.093 AMH 0.001 0.112 0.164 
AMACR 0.001 0.261 0.099 SIM2.long 0.001 0.121 0.216 
DNAH5 0.001 0.485 0.105 RAB17 0.002 0.164 0.286 
MCTP1 0.001 1.025 0.116 IMPDH2 0.002 0.101 0.291 
SIM2.long 0.001 0.132 0.121 DNAH5 0.002 0.086 0.330 
ANKRD34B 0.001 5.060 0.219 TDRD 0.003 0.061 0.390 
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SLC12A1 0.002 0.759 0.280 RIOK3 0.003 0.065 0.445 
MEX3A 0.002 0.782 0.286 RP11.97O12.7 0.004 0.104 0.578 
PVT1 0.002 0.361 0.328 ISX 0.004 0.075 0.596 
CDKN3 0.002 0.275 0.331 TWIST1 0.005 0.055 0.656 
RP11.97O12.7 0.002 0.045 0.345 CLU 0.005 0.042 0.690 
SSTR1 0.003 0.249 0.411 DLX1 0.007 0.067 0.974 
NAALADL2 0.003 0.077 0.417 ANKRD34B 0.007 0.082 0.994 
CAMKK2 0.003 0.141 0.429 RNF157 0.007 0.067 0.994 
SMIM1 0.003 0.143 0.434 KLK4 0.008 -0.058 0.994 
RAB17 0.004 0.207 0.542 ERG5 0.009 0.089 0.994 
NEAT1 0.004 0.116 0.554 MYOF 0.009 -0.091 0.994 
RIOK3 0.004 0.081 0.576 EN2 0.010 0.069 0.994 
SIM2.short 0.005 0.375 0.625 SULT1A1 0.012 0.090 0.994 
ST6GALNAC1 0.005 0.389 0.648 CASKIN1 0.013 0.056 0.994 
GOLM1 0.005 0.193 0.662 PVT1 0.013 0.121 0.994 
RPL23AP53 0.005 0.348 0.696 APOC1 0.016 0.095 0.994 
SULT1A1 0.005 0.123 0.700 RPS11 0.016 -0.026 0.994 
MIC1 0.006 0.395 0.781 MNX1 0.016 0.051 0.994 
IMPDH2 0.006 0.074 0.831 GABARAPL2 0.016 -0.078 0.994 
RNF157 0.007 0.439 0.885 SLC12A1 0.018 0.080 0.994 
SYNM 0.008 0.250 0.946 PSGR 0.018 0.067 0.994 
COL9A2 0.008 -2.292 0.967 ITGBL1 0.022 0.068 0.994 
AMH 0.008 0.246 0.981 SSPO 0.022 0.077 0.994 
CLU 0.008 0.406 0.981 MIC1 0.024 0.094 0.994 
MMP11 0.009 0.295 0.992 HMBS 0.024 0.067 0.994 
MKi67 0.010 -1.896 0.992 IGFBP3 0.024 -0.016 0.994 
MMP26 0.010 0.438 0.992 RPLP2 0.025 -0.069 0.994 
SULF2 0.010 1.538 0.992 MFSD2A 0.026 0.078 0.994 
MCM7 0.010 0.290 0.992 SYNM 0.026 0.066 0.994 
MIR146A.DQ65 0.010 0.324 0.992 NEAT1 0.027 0.061 0.994 
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8414 
EN2 0.011 0.239 0.992 CD10 0.027 -0.046 0.994 
TMCC2 0.011 4.237 0.992 CDKN3 0.028 0.045 0.994 
ITGBL1 0.011 0.388 0.992 SSTR1 0.029 0.061 0.994 
PECI 0.014 0.018 0.992 TMCC2 0.031 0.020 0.994 

MMP25 0.015 0.889 0.992 
MIR146A.DQ65
8414 0.031 0.076 0.994 

LASS1 0.015 0.199 0.992 ST6GALNAC1 0.032 0.030 0.994 
CASKIN1 0.016 0.107 0.992 MMP26 0.033 0.047 0.994 
PALM3 0.016 0.123 0.992 HIST1H1E 0.034 0.071 0.994 
HPRT 0.017 0.060 0.992 TBP 0.036 0.063 0.994 
TMEM45B 0.018 0.272 0.992 MKi67 0.038 0.070 0.994 
TMEM86A 0.018 0.898 0.992 STOM 0.041 0.054 0.994 
MIR4435.1HG.l
OC541471 0.019 0.102 0.992 CADPS 0.048 0.032 0.994 
SChLAP1 0.019 0.452 0.992 PTN 0.049 -0.048 0.994 
STOM 0.021 NA 0.992     
SFRP4 0.022 0.456 0.992     
FOLH1 0.024 0.077 0.992     
MNX1 0.025 0.127 0.992     
TWIST1 0.026 0.103 0.992     
CLIC2 0.027 NA 0.992     
VAX2 0.034 0.170 0.992     
PCSK6 0.036 0.210 0.992     
ACTR5 0.036 0.153 0.992     
CAMK2N2 0.042 0.163 0.992     
ABCB9 0.042 NA 0.992     
EIF2D 0.042 0.054 0.992     
HMBS 0.043 0.107 0.992     
B4GALNT4 0.046 NA 0.992     
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Met 0.046 1.819 0.992     
HIST3H2A 0.047 0.065 0.992     
COL10A1 0.048 0.191 0.992     
	
KLK3 Adjusted data HK normalised data 
Transcript p-value Log2(FC) Adjusted p-

value 
Transcript p-value Log2(FC) Adjusted p-

value 
PCA3 1.61x10-06 0.14 0.0003 ERG3’ exons 4-5 4.58x10-09 0.699 7.64x10-07 
HPN 3.27x10-05 0.13 0.01 PCA3 1.40x10-08 0.191 2.32x10-06 
SIM2.short 0.0002 0.091 0.029 TMPRSS2:ERG 4.02x10-08 1.006 6.63x10-06 
ERG3’ exons 4-5 0.0002 0.080 0.031 ERG3’ exons 6-7 4.79x10-07 1.130 7.86x10-05 
HOXC6 0.001 0.113 0.084 HOXC6 3.71x10-06 0.178 0.001 
ERG3’ exons 6-7 0.001 0.062 0.117 TDRD 2.70x10-05 0.848 0.004 
AMACR 0.001 0.086 0.118 HPN 0.0002 0.123 0.028 
TMPRSS2:ERG 0.001 0.062 0.119 HOXC4 0.0003 0.200 0.046 
SMIM1 0.001 0.124 0.217 DLX1 0.0004 0.424 0.057 
KLK4 0.001 -0.099 0.219 APOC1 0.0004 0.390 0.057 
GJB1 0.002 0.103 0.324 ERG5’ 0.001 0.175 0.157 
TRPM4 0.004 0.079 0.572 GJB1 0.001 0.129 0.182 
IMPDH2 0.004 0.102 0.627 MCTP1 0.001 0.333 0.183 
MYOF 0.005 -0.098 0.732 ISX 0.002 0.190 0.247 
RAB17 0.005 0.106 0.738 SSTR1 0.002 0.035 0.252 
SIM2.long 0.005 0.105 0.754 PPFIA2 0.002 0.312 0.255 
AMH 0.005 0.075 0.787 TRPM4 0.002 0.294 0.326 
PTN 0.007 -0.071 0.998 RAB17 0.002 0.111 0.366 
CAMKK2 0.008 0.052 0.998 SIM2.long 0.003 0.079 0.432 
ISX 0.008 0.062 0.998 SLC12A1 0.004 0.233 0.560 
DLX1 0.009 0.042 0.998 SIM2.short 0.004 0.064 0.566 
MMP11 0.009 0.070 0.998 AMACR 0.004 0.139 0.591 
TDRD 0.010 0.042 0.998 MMP11 0.005 0.066 0.665 
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ERG5 0.012 0.055 0.998 ANKRD34B 0.005 0.099 0.724 
GAPDH 0.012 0.078 0.998 DNAH5 0.006 0.266 0.795 
SULT1A1 0.013 0.063 0.998 AMH 0.007 0.046 0.994 
IGFBP3 0.014 -0.033 0.998 RP11_97O12.7 0.008 0.050 0.994 
RIOK3 0.015 0.063 0.998 MEX3A 0.009 0.184 0.994 
TWIST1 0.016 0.032 0.998 PVT1 0.011 0.079 0.994 
RP11.97O12.7 0.016 0.066 0.998 SMIM1 0.011 0.082 0.994 
ANKRD34B 0.016 0.069 0.998 EN2 0.011 0.059 0.994 
DNAH5 0.017 0.052 0.998 CASKIN1 0.013 0.035 0.994 
CD10 0.017 -0.040 0.998 KLK4 0.014 -0.031 0.994 
MARCH5 0.018 -0.077 0.998 ITGBL1 0.015 0.092 0.994 
GABARAPL2 0.019 -0.073 0.998 NEAT1 0.015 0.112 0.994 
APOC1 0.019 0.051 0.998 SULT1A1 0.017 0.068 0.994 
SLC12A1 0.022 0.049 0.998 CDKN3 0.019 0.080 0.994 
SSTR1 0.022 0.025 0.998 RIOK3 0.022 0.023 0.994 
CLU 0.025 0.033 0.998 MIR146A 0.023 0.079 0.994 
ITGBL1 0.025 0.063 0.998 TMEM45B 0.023 0.038 0.994 
EN2 0.026 0.049 0.998 NAALADL2 0.025 0.061 0.994 
RPS11 0.026 -0.083 0.998 TWIST1 0.029 0.003 0.994 
RNF157 0.026 0.043 0.998 RPL23AP53 0.030 0.181 0.994 
MNX1 0.026 0.018 0.998 PALM3 0.033 0.061 0.994 
PVT1 0.035 0.054 0.998 SULF2 0.035 0.055 0.994 
MIC1 0.043 0.057 0.998 COL9A2 0.035 0.140 0.994 
CASKIN1 0.044 0.038 0.998 RNF157 0.035 0.180 0.994 
MIR146A.DQ658414 0.044 0.072 0.998 CLU 0.037 0.078 0.994 
STOM 0.046 0.019 0.998 MIR4435_1HG 0.039 0.086 0.994 
    MMP25 0.040 0.030 0.994 
    MIC1 0.040 0.102 0.994 
    RPS11 0.040 -0.007 0.994 
    IMPDH2 0.041 0.055 0.994 
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    MKi67 0.042 0.371 0.994 
    TMCC2 0.043 0.029 0.994 
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Supplementary Figure 1 KLK2 Ratio Data ROC curves for test data using models detecting between 
CB and Ca (L I H) for models using the following inputs A) all probes, B) significant probes, C) 
adjusted significant probes. 

	
Supplementary Table 5 Lasso output for models detecting between CB and Ca (L I H) 

using KLK2 ratio data. 

All Transcripts Significant Transcripts Multiple testing corrected 

A	

B	

C	



9:	APPENDICES	

	 357	

Transcripts 
Transcript Beta Transcript Beta Transcript Beta 
ERG3’ exons 4-
5 0.28 

ERG3’ exons 4-
5 0.21 ERG3’ exons 4-5 0.25 

TMPRSS2:ERG 0.22 TMPRSS2:ERG 0.20 TMPRSS2:ERG 0.24 
PCA3 0.20 PCA3 0.17 PCA3 0.20 
HOXC6 0.08 HOXC6 0.07 HOXC6 0.08 
ISX 0.08   ISX 0.03 
APOC1 0.06   GJB1 0.02 
GJB1 0.06   DLX1 0.01 
AMACR 0.05   TDRD 0.01 
NEAT1 0.03     
DLX1 0.02     
TDRD 0.02     
TMEM47 0.01     
SULT1A1 0.01     
RNF157 0.01     
ST6GALNAC1 0.00     
IGFBP3 -0.01     
ARexon9 -0.06     
PPP1R12B -0.08     
CP -0.11     
MXI1 -0.16     
KLK4 -0.24     
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Supplementary Figure 2 KLK2 Adjusted Data ROC curves for test data using models detecting 
between CB and Ca (L I H) for models using the following inputs A) all probes, B) significant probes, 
C) adjusted significant probes. 

	

A 

B 

C 
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Supplementary Table 6 Lasso output for models detecting between CB and Ca (L I H) 

using KLK2 adjusted data. 

All Transcript Significant Transcripts Multiple Testing 
correction Transcripts 

Transcript Beta Transcript Beta Transcript Beta 
PCA3 2.89 PCA3 2.85 PCA3 4.59 
AMACR 1.73 AMACR 2.68 SIM2.short 2.88 

SIM2.short 1.07 
ERG3’ exons 
4-5 1.77 

ERG3’ 
exons 4-5 2.50 

SMIM1 0.89 SMIM1 1.43 AMACR 2.44 
AMH 0.89 RP11.97O12.7 1.38 HPN 2.02 
ERG3’ exons 
4-5 0.70 SIM2.short 1.25 SMIM1 1.89 
CLU 0.49 CAMKK2 1.03   
HPN 0.46 AMH 0.93   
CAMKK2 0.39 CLU 0.90   
GAPDH 0.29 RNF157 0.68   
RP11.97O12.7 0.24 DNAH5 0.63   
DNAH5 0.20 RIOK3 0.52   
RNF157 0.18 NEAT1 0.43   
APOC1 0.17 APOC1 0.42   
ERG3’ exons 
6-7 0.17 DLX1 0.38 

  

RIOK3 0.05 TBP 0.33   
MMP25 0.02 MMP11 0.23   
CP -0.01 SYNM 0.23   
CD10 -0.03 CADPS 0.18   
AR exon 9 -0.08 SLC12A1 0.15   
PTN -0.42 MIC1 0.11   
IGFBP3 -0.45 HPN 0.10   
MYOF -0.68 STOM 0.08   
GABARAPL2 -0.75 MKi67 0.05   
KLK4 -1.09 RPS11 -0.13   
MARCH5 -1.11 CD10 -0.98   
  IGFBP3 -1.17   
  PTN -1.25   
  MYOF -1.66   
  KLK4 -1.87   
  GABARAPL2 -2.90   
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Supplementary Figure 3 KLK3 Adjusted Data ROC curves for test data using models detecting 
between CB and Ca (L I H) for models using the following inputs A) all probes, B) significant probes, 
C) adjusted significant probes.	

A 

B 

C 
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Supplementary Table 7 Lasso output for models detecting between CB and Ca (L I H) 

using KLK3 adjusted data 

All Transcript Significant Transcripts Multiple Testing 
correction Transcripts 

Transcript Beta Transcript Beta Transcript Beta 
PCA3 2.94 PCA3 2.88 PCA3 4.40 
ERG3’ exons 4-5 1.74 AMACR 2.30 SIM2.short 2.87 

AMACR 1.57 
ERG3’ exons 
4-5 2.01 HPN 2.15 

SIM2.short 1.55 SMIM1 1.25 
ERG3’ exons 
4-5 1.97 

SMIM1 1.24 SIM2.short 1.19   
AMH 1.23 AMH 0.82   
APOC1 0.63 CLU 0.71   
NEAT1 0.60 RIOK3 0.70   
MMP25 0.59 CAMKK2 0.69   
TBP 0.55 APOC1 0.64   
SERPINB5 0.52 HPN 0.62   
HPN 0.47 RNF157 0.52   
CLU 0.34 DLX1 0.36   
DLX1 0.31 MMP11 0.30   
RNF157 0.30 SLC12A1 0.22   
CAMKK2 0.29 SULT1A1 0.22   
PPAP2A 0.26 ISX 0.09   
MMP11 0.25 DNAH5 0.09   
SLC12A1 0.19 EN2 0.07   
STOM 0.17 STOM 0.06   
CADPS 0.15 ANKRD34B 0.02   
RIOK3 0.15 CD10 -0.47   
EN2 0.13 RPS11 -0.53   
ISX 0.13 IGFBP3 -1.08   
COL10A1 0.12 KLK4 -1.17   
ST6GALNAC1 0.12 MYOF -1.46   
MNX1 0.11 PTN -1.57   
DNAH5 0.11 GABARAPL2 -2.02   
SULT1A1 0.08 MARCH5 -2.04   
HOXC6 0.07     
GJB1 0.04     
ERG5 0.03     
RP11.244H18.1.P712P -0.14     
SPON2 -0.16     
CLIC2 -0.20     
PPP1R12B -0.21     
CD10 -0.23     
CP -0.27     
AR exon 9 -0.30     
MXI1 -0.32     
CDC20 -0.39     
CKAP2L -0.43     
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Timp4 -0.45     
RPS11 -0.61     
IGFBP3 -0.90     
MYOF -1.18     
PTN -1.29     
KLK4 -1.36     
MARCH5 -1.51     
GABARAPL2 -1.54     
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Supplementary Figure 4 HK normalised data ROC curves for test data using models detecting 
between CB and Ca (L I H) for models using the following inputs A) all probes, B) significant probes, 
C) adjusted significant probes. 

C	

B	

A	



9:	APPENDICES	

	 364	

Supplementary Table 8 Lasso output for models detecting between CB and Ca (L I H) 

using HK normalised data. 

All Transcript Significant Transcripts Multiple Testing correction 
Transcripts 

Transcript Beta Transcript Beta Transcript Beta 
PCA3 0.29 PCA3 0.35 PCA3 0.29 
TMPRSS2:ERG 0.18 ERG3’ exons 4-

5 0.19 
TMPRSS2:ERG 

0.23 
ERG3’ exons 4-5 0.17 

TMPRSS2:ERG 0.18 
ERG3’ exons 4-
5 0.19 

APOC1 0.11 APOC1 0.13 HPN 0.04 
ISX 0.04 SLC12A1 0.05 HOXC6 0.03 
SLC12A1 0.04 ISX 0.04   
HOXC6 0.04 MCTP1 0.03   
MCTP1 0.03 HOXC6 0.02   
TDRD 0.00 SULT1A1 0.00   
PDLIM5 -0.01 KLK4 -0.41   
CD10 -0.02     
GABARAPL2 -0.02     
PTN -0.02     
AR exon 9 -0.04     
PPP1R12B -0.04     
CP -0.08     
MXI1 -0.15     
KLK4 -0.20     
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6.13 Binomial Testing between CB and Ca (Random Sampling) 

 

Supplementary Figure 5 KLK2 ratio data ROC curves for test data using models (random sampling) 
detecting between CB and Ca (L I H) for models using the following inputs A) all probes, B) 
significant probes, C) adjusted significant probes. 

A 

B 

C 
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Supplementary Table 9 Lasso output for models (random sampling detecting between CB 

and Ca (L I H) using KLK2 ratio data. 

All Transcripts Significant Transcripts Multiple testing corrected 
Transcripts 

Transcript Beta Transcript Beta Transcript Beta 
ERG3’ exons 4-5 0.51 PCA3 0.21 ERG3’ exons 4-5 0.25 
PCA3 0.14 ERG3’ exons 4-5 0.20 PCA3 0.24 
TMPRSS2:ERG 0.14 TMPRSS2:ERG 0.15 TMPRSS2:ERG 0.17 
SLC12A1 0.06 AMACR 0.08 HOXC6 0.02 
ERG5 0.05 GJB1 0.06 GJB1 0.01 
GJB1 0.04 NEAT1 0.03   
HOXC6 0.04 TDRD 0.03   
TDRD 0.01 DLX1 0.02   
LASS1 0.00 TRPM4 0.01   
HIST1H2BF -0.01     
CP -0.02     
CKAP2L -0.03     
DPP4 -0.04     
PTN -0.07     
ZNF577 -0.08     
MYOF -0.10     
GABARAPL2 -0.31     
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Supplementary Figure 6 KLK2 Adjusted Data ROC curves for test data using models (random 
sampling) detecting between CB and Ca (L I H) for models using the following inputs A) all probes, 
B) significant probes, C) adjusted significant probes. 

	

A	

B	
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Supplementary Table 10 Lasso output for models (random sampling) detecting between 

CB and Ca (L I H) using KLK2 adjusted data. 

All Transcript Significant Transcripts Multiple Testing 
correction 
Transcripts 

Transcript Beta Transcript Beta Transcript Beta 
SIM2.short 4.95 AMACR 2.32 SMIM1 6.89 
SMIM1 2.78 SMIM1 2.20 PCA3 6.59 
ERG3’ exons 6-7 1.95 MMP11 1.69 SIM2.short 3.42 
AMH 1.76 SIM2.short 1.54 AMACR 2.95 
HPN 1.26 TMPRSS2:ERG 1.33 HPN 1.88 

PCA3 1.20 HPN 1.31 
ERG3’ 
exons 4-5 1.18 

NEAT1 1.06 ISX 0.93   
PCSK6 1.02 CLU 0.89   
DNAH5 0.68 DLX1 0.46   
TMPRSS2:ERG 0.66 APOC1 0.36   
SEC61A1 0.53 GJB1 0.30   
HIST1H2BF 0.47 CASKIN1 0.22   
CADPS 0.46 MIR146A.DQ658414 0.15   
APOC1 0.45 HOXC6 0.08   
TBP 0.37 PTN -0.38   
ERG5 0.34 IGFBP3 -0.44   
CAMKK2 0.32 GABARAPL2 -0.69   
CAMK2N2 0.22 MYOF -1.43   
TMCC2 0.19 KLK4 -1.86   
SERPINB5 0.12     
EN2 0.12     
ERG3’ exons 4-5 0.03     
SChLAP1 0.00     
PTN -0.01     
PPP1R12B -0.15     
SIRT1 -0.30     
PTPRC -0.36     
IGFBP3 -0.46     
CD10 -0.61     
SNCA -0.68     
MEMO1 -0.75     
RPLP2 -1.46     
MYOF -1.88     
SACM1L -2.85     
KLK4 -4.13     
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Supplementary Figure 7 KLK3 Adjusted Data ROC curves for test data using models (random 
sampling) detecting between CB and Ca (L I H) for models using the following inputs A) all probes, 
B) significant probes, C) adjusted significant probes. 

 

A 
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Supplementary Table 11 Lasso output for models (random sampling) detecting between 

CB and Ca (L I H) using KLK3 adjusted data. 

All Transcripts Significant Transcripts Multiple testing corrected 
Transcripts 

Transcript Beta Transcript Beta Transcript Beta 
PCA3 1.57 SMIM1 2.26 HPN 3.49 
SMIM1 1.27 SIM2.short 1.84 SIM2.short 3.49 
SIM2.short 1.21 SULT1A1 1.48 PCA3 3.33 
HPN 0.76 ERG3’ exons 4-5 1.42 ERG3’ exons 4-5 2.55 
ERG3’ exons 4-5 0.57 GAPDH 1.37   
GAPDH 0.43 PCA3 1.34   
AMH 0.41 AMACR 0.85   
HOXC6 0.29 HPN 0.69   
CLU 0.16 MMP25 0.64   
ISX 0.15 ERG3’ exons 6-7 0.52   
MMP25 0.09 CLU 0.48   
APOC1 0.05 GJB1 0.45   
TMPRSS2:ERG 0.04 ANKRD34B 0.27   
MYOF -0.08 STOM 0.20   
GABARAPL2 -0.36 RAB17 0.06   
KLK4 -0.45 IGFBP3 -0.33   
  RPS11 -0.48   
  PTN -0.78   
  MYOF -1.08   
  GABARAPL2 -2.60   
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Supplementary Figure 8 GAPDH and RPLP2 Normalised Data ROC curves for test data using 
models (random sampling) detecting between CB and Ca (L I H) for models using the following 
inputs A) all probes, B) significant probes, C) adjusted significant probes. 

A 

B 

C 
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Supplementary Table 12 Lasso output for models (random sampling) detecting between 

CB and Ca (L I H) using HK normalised data. 

All Transcripts Significant Transcripts Multiple testing corrected 
Transcripts 

Transcript Beta Transcript Beta Transcript Beta 
PCA3 0.33 PCA3 0.63 PCA3 0.39 
ERG3’ exons 4-5 0.30 TMPRSS2:ERG 0.27 ERG3’ exons 4-5 0.22 
TMPRSS2:ERG 0.24 SMIM1 0.18 TMPRSS2:ERG 0.17 
TDRD 0.04 TDRD 0.02 HOXC6 0.12 
CLU 0.01 HOXC6 0.02 TDRD 0.06 
MMP25 0.00 ERG5’ 0.01   
ALAS1 -0.01 KLK4 -0.21   
PDLIM5 -0.09     
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6.14 Binomial Testing between CB and High-risk Ca 

Supplementary Table 13 Glm test significant probes between CB and High-risk Ca 

KLK2	ratio	data	 KLK2	adjusted	data	
Transcript	 p-value	 Log2(FC)	 Adjusted	p-

value	
Transcript	 p-value	 Log2(FC)	 Adjusted	p-

value	
ERG3’ exons 4-5	 7.00E-07	 1.868	 0.0001	 HPN	 3.77x10-06	 0.241	 0.001	
ERG3’ exons 6-7	 7.15E-07	 2.966	 0.0001	 PCA3	 4.78x10-06	 0.222	 0.001	
PCA3	 9.17E-07	 0.376	 0.0002	 GJB1	 0.0001	 0.159	 0.018	
APOC1	 7.71E-06	 1.472	 0.001	 AMACR	 0.0001	 0.130	 0.021	
HPN	 8.27E-06	 0.352	 0.001	 KLK4	 0.0003	 -0.127	 0.044	
TMPRSS2:ERG	 9.85E-06	 NA	 0.002	 ERG3’ exons 4-5	 0.0004	 0.109	 0.063	
HOXC6	 2.14E-05	 0.301	 0.003	 ERG3’ exons 6-7	 0.001	 0.112	 0.098	
TDRD	 2.54E-05	 3.689	 0.004	 TMPRSS2:ERG	 0.001	 0.114	 0.208	
DLX1	 4.09E-05	 4.487	 0.006	 HOXC6	 0.001	 0.129	 0.221	
AMACR	 7.47E-05	 0.341	 0.012	 RAB17	 0.002	 0.227	 0.272	
GJB1	 9.73E-05	 0.320	 0.015	 APOC1	 0.002	 0.209	 0.372	
ANKRD34B	 0.0002	 5.892	 0.025	 DLX1	 0.002	 0.074	 0.372	
TRPM4	 0.0002	 0.730	 0.029	 SPINK1	 0.003	 0.163	 0.445	
MCTP1	 0.0003	 1.149	 0.041	 MYOF	 0.003	 -0.155	 0.463	
PPFIA2	 0.0003	 0.807	 0.041	 SULT1A1	 0.003	 0.126	 0.509	
ITGBL1	 0.0003	 0.799	 0.042	 DPP4	 0.004	 -0.105	 0.552	
HOXC4	 0.0004	 0.938	 0.063	 ITGBL1	 0.004	 0.087	 0.611	
SLC12A1	 0.0004	 1.022	 0.064	 AR  exons 4-8	 0.004	 -0.121	 0.637	
ISX	 0.001	 2.371	 0.077	 TRPM4	 0.004	 0.080	 0.640	
RAB17	 0.001	 0.303	 0.097	 CD10	 0.005	 -0.092	 0.771	
VPS13A	 0.001	 0.110	 0.118	 GABARAPL2	 0.006	 -0.137	 0.863	
NEAT1	 0.001	 0.186	 0.131	 RP11.244H18.1.P712P	 0.006	 -0.100	 0.890	
STOM	 0.001	 NA	 0.134	 TDRD	 0.007	 0.064	 0.983	
PVT1	 0.001	 0.383	 0.208	 UPK2	 0.007	 0.108	 0.996	
SSTR1	 0.001	 0.369	 0.209	 SLC12A1	 0.007	 0.148	 0.999	
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Met	 0.002	 2.490	 0.266	 MIR4435.1HG.lOC541471	 0.008	 0.087	 0.999	
SIM2.short	 0.002	 0.507	 0.274	 GAPDH	 0.011	 0.111	 0.999	
CDKN3	 0.002	 0.380	 0.275	 RP11.97O12.7	 0.011	 0.116	 0.999	
ERG5	 0.002	 NA	 0.276	 STOM	 0.011	 0.116	 0.999	
SPINK1	 0.002	 0.265	 0.294	 SMIM1	 0.012	 0.111	 0.999	
SULT1A1	 0.002	 0.225	 0.323	 ANKRD34B	 0.012	 0.134	 0.999	
TMEM45B	 0.002	 0.410	 0.325	 NEAT1	 0.012	 0.094	 0.999	
UPK2	 0.002	 0.676	 0.334	 SIM2.short	 0.019	 0.077	 0.999	
AMH	 0.003	 0.404	 0.348	 MCTP1	 0.024	 0.094	 0.999	
MIR146A.DQ658414	 0.003	 0.549	 0.352	 MED4	 0.029	 -0.054	 0.999	
SULF2	 0.003	 2.000	 0.352	 DNAH5	 0.029	 0.048	 0.999	
RP11.97O12.7	 0.003	 0.086	 0.355	 ISX	 0.029	 0.081	 0.999	
MMP11	 0.003	 0.451	 0.382	 PPFIA2	 0.031	 0.072	 0.999	
TMCC2	 0.003	 4.761	 0.436	 Met	 0.035	 0.098	 0.999	
PALM3	 0.004	 0.269	 0.474	 SNCA	 0.038	 -0.053	 0.999	
MIR4435.1HG.lOC541471	 0.005	 0.199	 0.605	 VPS13A	 0.041	 0.040	 0.999	
MIC1	 0.005	 0.445	 0.642	 PTN	 0.044	 -0.082	 0.999	
LASS1	 0.005	 0.473	 0.665	 PVT1	 0.049	 0.113	 0.999	
RIOK3	 0.005	 0.104	 0.676	 	 	 	 	
MEX3A	 0.006	 0.801	 0.694	 	 	 	 	
RPL23AP53	 0.006	 0.417	 0.758	 	 	 	 	
CASKIN1	 0.007	 0.178	 0.872	 	 	 	 	
TWIST1	 0.008	 0.192	 0.893	 	 	 	 	
IMPDH2	 0.008	 0.099	 0.894	 	 	 	 	
SIM2.long	 0.009	 0.133	 0.966	 	 	 	 	
PECI	 0.009	 0.063	 0.966	 	 	 	 	
GAPDH	 0.009	 0.067	 0.966	 	 	 	 	
DNAH5	 0.009	 0.409	 0.966	 	 	 	 	
EN2	 0.009	 0.358	 0.966	 	 	 	 	
MKi67	 0.010	 -1.667	 0.966	 	 	 	 	
NAALADL2	 0.010	 0.081	 0.966	 	 	 	 	
SMIM1	 0.010	 0.137	 0.966	 	 	 	 	
MMP26	 0.011	 0.411	 0.966	 	 	 	 	
MNX1	 0.011	 0.241	 0.966	 	 	 	 	
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MMP25	 0.012	 0.932	 0.966	 	 	 	 	
HIST1H1C	 0.012	 0.055	 0.966	 	 	 	 	
SChLAP1	 0.013	 0.525	 0.966	 	 	 	 	
MGAT5B	 0.013	 0.258	 0.966	 	 	 	 	
PCSK6	 0.014	 0.219	 0.966	 	 	 	 	
CLIC2	 0.014	 NA	 0.966	 	 	 	 	
MCM7	 0.015	 0.273	 0.966	 	 	 	 	
MFSD2A	 0.016	 -2.398	 0.966	 	 	 	 	
TERT	 0.017	 0.153	 0.966	 	 	 	 	
HPRT	 0.017	 0.073	 0.966	 	 	 	 	
SSPO	 0.017	 0.221	 0.966	 	 	 	 	
HIST3H2A	 0.020	 0.091	 0.966	 	 	 	 	
ITPR1	 0.022	 0.069	 0.966	 	 	 	 	
B4GALNT4	 0.022	 NA	 0.966	 	 	 	 	
SLC4A1.S	 0.022	 NA	 0.966	 	 	 	 	
RPLP2	 0.023	 0.053	 0.966	 	 	 	 	
SACM1L	 0.025	 0.058	 0.966	 	 	 	 	
SYNM	 0.025	 0.214	 0.966	 	 	 	 	
VAX2	 0.026	 0.270	 0.966	 	 	 	 	
TMEM86A	 0.026	 0.795	 0.966	 	 	 	 	
RPS11	 0.027	 0.035	 0.966	 	 	 	 	
ABCB9	 0.028	 NA	 0.966	 	 	 	 	
CLU	 0.030	 0.248	 0.966	 	 	 	 	
CCDC88B	 0.030	 -5.601	 0.966	 	 	 	 	
HIST1H2BG	 0.032	 0.124	 0.966	 	 	 	 	
FOLH1	 0.032	 0.063	 0.966	 	 	 	 	
COL9A2	 0.034	 -2.208	 0.966	 	 	 	 	
BRAF	 0.035	 0.072	 0.966	 	 	 	 	
RPL18A	 0.035	 0.045	 0.966	 	 	 	 	
CAMKK2	 0.036	 0.085	 0.966	 	 	 	 	
AURKA	 0.036	 0.428	 0.966	 	 	 	 	
ARHGEF25	 0.036	 0.278	 0.966	 	 	 	 	
ALAS1	 0.037	 0.021	 0.966	 	 	 	 	
SFRP4	 0.039	 0.502	 0.966	 	 	 	 	
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TERF2IP	 0.041	 0.031	 0.966	 	 	 	 	
PTPRC	 0.046	 NA	 0.966	 	 	 	 	
COL10A1	 0.047	 0.274	 0.966	 	 	 	 	
ACTR5	 0.049	 0.194	 0.966	 	 	 	 	
PSTPIP1	 0.050	 NA	 0.966	 	 	 	 	
	
KLK3	adjusted	data	 GAPDH	and	RPLP2	Normalised	data	
Transcript	 p-value	 Log2(FC)	 Adjusted	p-

value	
Transcript	 p-value	 Log2(FC)	 Adjusted	p-

value	
HPN	 1.32E-05	 0.190	 0.002	 ERG3’ exons 4-5	 1.43E-06	 0.793	 0.000	
PCA3	 1.45E-05	 0.184	 0.002	 PCA3	 6.29E-06	 0.196	 0.001	
KLK4	 0.0002	 -0.159	 0.034	 TMPRSS2:ERG	 1.05E-05	 0.953	 0.002	
ERG3’ exons 4-5	 0.0004	 0.125	 0.066	 ERG3’ exons 6-7	 1.40E-05	 1.265	 0.002	
GJB1	 0.0005	 0.142	 0.075	 APOC1	 2.12E-05	 0.505	 0.003	
AMACR	 0.001	 0.121	 0.105	 HPN	 8.13E-05	 0.149	 0.013	
ERG3’ exons 6-7	 0.001	 0.088	 0.106	 KLK4	 0.0005	 -0.069	 0.074	
MYOF	 0.001	 -0.128	 0.126	 HOXC6	 0.001	 0.170	 0.125	
TMPRSS2:ERG	 0.001	 0.084	 0.156	 TDRD	 0.002	 0.800	 0.245	
ARexons4.8	 0.001	 -0.072	 0.163	 SLC12A1	 0.002	 0.371	 0.273	
HOXC6	 0.002	 0.120	 0.273	 DLX1	 0.002	 0.391	 0.279	
RP11.244H18.1.P712P	 0.002	 -0.096	 0.300	 ITGBL1	 0.002	 0.144	 0.383	
DPP4	 0.002	 -0.107	 0.329	 MYOF	 0.005	 -0.055	 0.758	
APOC1	 0.002	 0.162	 0.347	 DPP4	 0.005	 -0.039	 0.762	
DLX1	 0.003	 0.057	 0.525	 SPINK1	 0.005	 0.126	 0.808	
SULT1A1	 0.004	 0.110	 0.532	 GABARAPL2	 0.005	 -0.050	 0.821	
SPINK1	 0.004	 0.131	 0.565	 RAB17	 0.005	 0.125	 0.826	
ITGBL1	 0.005	 0.108	 0.676	 CD10	 0.006	 -0.074	 0.967	
RAB17	 0.005	 0.142	 0.676	 HOXC4	 0.008	 0.160	 0.995	
CD10	 0.006	 -0.095	 0.856	 AR exons 4-8	 0.008	 -0.059	 0.995	
KLK2	 0.007	 -0.080	 0.952	 NEAT1	 0.010	 0.126	 0.995	
GABARAPL2	 0.007	 -0.143	 0.974	 UPK2	 0.010	 0.306	 0.995	
SLC12A1	 0.007	 0.092	 0.985	 PPFIA2	 0.011	 0.325	 0.995	
UPK2	 0.008	 0.098	 0.998	 GJB1	 0.012	 0.127	 0.995	
STOM	 0.012	 0.089	 0.998	 SRSF3	 0.014	 -0.178	 0.995	
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PTN	 0.014	 -0.104	 0.998	 MCTP1	 0.014	 0.370	 0.995	
MIR4435.1HG.lOC541471	 0.014	 0.122	 0.998	 Met	 0.016	 0.924	 0.995	
MED4	 0.015	 -0.061	 0.998	 KLK2	 0.016	 -0.043	 0.995	
TDRD	 0.016	 0.040	 0.998	 AMACR	 0.016	 0.140	 0.995	
SNCA	 0.020	 -0.058	 0.998	 ANKRD34B	 0.018	 0.083	 0.995	
TRPM4	 0.022	 0.053	 0.998	 STOM	 0.023	 0.180	 0.995	
NEAT1	 0.027	 0.059	 0.998	 AR.ex9	 0.024	 -0.448	 0.995	
MARCH5	 0.030	 -0.077	 0.998	 MXI1	 0.025	 -0.043	 0.995	
ANKRD34B	 0.032	 0.082	 0.998	 P712P	 0.026	 -0.054	 0.995	
MEMO1	 0.032	 -0.085	 0.998	 STEAP2	 0.028	 -0.032	 0.995	
SMIM1	 0.035	 0.103	 0.998	 SULT1A1	 0.029	 0.078	 0.995	
SIM2.short	 0.039	 0.028	 0.998	 PDLIM5	 0.030	 -0.042	 0.995	
RP11.97O12.7	 0.040	 0.063	 0.998	 PTN	 0.031	 -0.101	 0.995	
SRSF3	 0.040	 -0.094	 0.998	 TRPM4	 0.032	 0.219	 0.995	
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Supplementary Figure 9 KLK2 Ratio Data ROC curves for test data using models detecting between 
CB and high risk Ca for models using the following inputs A) all probes, B) significant probes, C) 
adjusted significant probes. 
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Supplementary Table 14 Lasso output for models detecting between CB and high risk Ca 

using KLK2 ratio data. 

All Transcripts Significant Transcripts Multiple testing corrected 
Transcripts 

Transcript Beta Transcript Beta Transcript Beta 
ERG3’ exons 4-5 0.55 ERG3’ exons 4-5 0.49 ERG3’ exons 4-5 0.44 
PCA3 0.22 APOC1 0.23 PCA3 0.20 
ANKRD34B 0.17 PCA3 0.19 APOC1 0.19 
APOC1 0.16 AMACR 0.15 AMACR 0.16 
AMACR 0.14 HOXC6 0.10 TMPRSS2:ERG 0.14 
HOXC6 0.09 TMPRSS2:ERG 0.10 HOXC6 0.12 
TMPRSS2:ERG 0.08 ANKRD34B 0.07 ANKRD34B 0.05 
TMEM47 0.07 HPN 0.06 DLX1 0.03 
MMP25 0.05 NEAT1 0.04 PPFIA2 -0.01 
DLX1 0.03 DLX1 0.03   
NEAT1 0.03 AURKA -0.02   
ISX 0.01 PTPRC -0.03   
MAK 0.00 ALAS1 -0.05   
MED4 -0.02 PSTPIP1 -0.06   
CP -0.02 ACTR5 -0.14   
CKAP2L -0.02 RPL18A -0.22   
IGFBP3 -0.02     
AR exon 9 -0.03     
SRSF3 -0.04     
PDLIM5 -0.07     
BTG2 -0.07     
STEAP4 -0.08     
CD10 -0.14     
AR exons 4-8 -0.17     
KLK4 -0.27     
DPP4 -0.29     
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Supplementary Figure 10 KLK2 Adjusted Data ROC curves for test data using models detecting 
between CB and high risk Ca for models using the following inputs A) all probes, B) significant 
probes, C) adjusted significant probes. 

 

A 

B 

C 



9:	APPENDICES	

	 381	

	
Supplementary Table 15 Lasso output for models detecting between CB and high risk Ca 

using KLK2 adjusted data. 

All Transcripts Significant Transcripts Multiple testing 
corrected Transcripts 

Transcript Beta Transcript Beta Transcript Beta 
PCA3 3.08 PCA3 3.34 PCA3 5.34 
HPN 2.79 HPN 2.40 HPN 5.02 
AMACR 1.09 AMACR 1.93 GJB1 2.32 
ERG3’ exons 6-7 0.83 SIM2.short 1.45 AMACR 1.85 
SIM2.short 0.72 DNAH5 1.03 KLK4 -2.59 
RAB17 0.37 ERG3’ exons 6-7 0.94   
APOC1 0.34 RAB17 0.50   
MMP25 0.34 ANKRD34B 0.45   
ANKRD34B 0.27 APOC1 0.44   
DLX1 0.25 DLX1 0.43   
CLU 0.23 SLC12A1 0.38   
DNAH5 0.16 STOM 0.16   
SLC12A1 0.14 ERG3’ exons 4-5 0.09   
ERG3’ exons 4-5 0.03 KLK4 -0.46   
STOM 0.03 MYOF -0.71   
MYOF -0.29 DPP4 -1.37   
KLK4 -0.40 CD10 -2.13   
DPP4 -0.98     
CD10 -1.43     
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Supplementary Figure 11 KLK3 Adjusted Data ROC curves for test data using models detecting 
between CB and high risk Ca for models using the following inputs A) all probes, B) significant 
probes, C) adjusted significant probes. 
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Supplementary Table 16 Lasso output for models detecting between CB and high risk Ca 

using KLK3 adjusted data. 

All Transcripts Significant Transcripts Multiple testing 
corrected 
Transcripts 

Transcript Beta Transcript Beta Transcript Beta 
PCA3 2.56 PCA3 2.96 HPN 5.06 
HPN 2.37 HPN 2.13 PCA3 4.95 
ERG3’ exons 4-5 0.77 SIM2.short 1.46 KLK4 -3.20 
SIM2.short 0.64 ERG3’ exons 4-5 1.17   
APOC1 0.44 AMACR 1.10   
MMP25 0.41 APOC1 0.64   
AMACR 0.30 ANKRD34B 0.57   
ANKRD34B 0.29 SLC12A1 0.43   
SLC12A1 0.18 SULT1A1 0.41   
ERG3’ exons 6-7 0.17 DLX1 0.30   
DLX1 0.13 RAB17 0.27   
RAB17 0.11 STOM 0.17   
SULT1A1 0.07 ERG3’ exons 6-7 0.16   
STOM 0.06 PTN -0.14   
PTN -0.01 RP11.244H18.1.P712P -0.37   
KLK4 -0.18 MARCH5 -0.72   
MARCH5 -0.23 MYOF -1.00   
RP11.244H18.1.P712P -0.39 DPP4 -1.25   
MYOF -0.65 CD10 -1.68   
DPP4 -0.82     
CD10 -1.17     
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Supplementary Figure 12 HK Normalised Data ROC curves for test data using models detecting 
between CB and high risk Ca for models using the following inputs A) all probes, B) significant 
probes, C) adjusted significant probes.	
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Supplementary Table 17 Lasso output for models detecting between CB and high risk Ca 

using HK normalised data. 

All Transcripts Significant Transcripts Multiple testing corrected 
Transcripts 

Transcript Beta Transcript Beta Transcript Beta 
ERG3’ exons 4-5 0.35 ERG3’ exons 4-5 0.67 PCA3 0.50 
PCA3 0.27 ANKRD34B 0.34 APOC1 0.39 
APOC1 0.18 PCA3 0.33 HPN 0.37 
HPN 0.13 APOC1 0.24 ERG3’ exons 4-5 0.23 
SLC12A1 0.03 AMACR 0.19 TMPRSS2:ERG 0.20 
TMPRSS2:ERG 0.02 HPN 0.12   
ANKRD34B 0.02 SULT1A1 0.08   
HOXC6 0.01 NEAT1 0.08   
AR exons 4-8 -0.05 TMPRSS2:ERG 0.07   
GABARAPL2 -0.06 DLX1 0.04   
CD10 -0.14 HOXC6 0.03   
KLK4 -0.15 STOM 0.02   
DPP4 -0.18 SLC12A1 0.01   
  AR exon 9 -0.03   
  MYOF -0.06   
  SRSF3 -0.07   
  AR exons 4-8 -0.20   
  CD10 -0.26   
  GABARAPL2 -0.28   
  DPP4 -0.36   
  PDLIM5 -0.56   
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6.15 Multinomial CBLIH Trend 

Supplementary Table 18 Glm test significant probes for CB, L, I, H trend 

KLK2	ratio	data	 KLK2	adjusted	data	
Transcript	 p-value	 Adjusted	p-value	 Transcript	 p-value	 Adjusted	p-value	
ERG3’ exons 4-5	 1.86x10-13	 3.09x10-11	 PCA3	 1.45x10-08	 2.41x10-06	
PCA3	 8.90x10-13	 1.47x10-10	 ERG3’ exons 4-5	 1.18x10-07	 1.94x10-05	
TMPRSS2:ERG	 1.88x10-11	 3.09x10-09	 ERG3’ exons 6-7	 3.73x10-07	 6.11x10-05	
ERG3’ exons 6-7	 6.66x10-10	 1.09x10-07	 SPINK1	 1.03x10-06	 0.0002	
HOXC6	 7.88x10-09	 1.28x10-06	 HOXC6	 3.85x10-06	 0.0006	
HPN	 4.19x10-08	 6.75x10-06	 HPN	 7.34x10-06	 0.0012	
APOC1	 6.38x10-08	 1.02x10-05	 TMPRSS2:ERG	 7.35x10-06	 0.0012	
TDRD	 1.63x10-07	 2.59x10-05	 KLK4	 3.65x10-05	 0.0058	
ANKRD34B	 1.47x10-06	 0.0002	 SLC12A1	 4.71x10-05	 0.0074	
ITGBL1	 3.19x10-06	 0.001	 UPK2	 8.47x10-05	 0.0133	
SLC12A1	 5.82x10-06	 0.001	 TDRD	 0.0002	 0.0242	
DLX1	 7.26x10-06	 0.001	 ITGBL1	 0.0002	 0.0281	
RAB17	 9.26x10-06	 0.001	 RP11.244H18.1.P712P	 0.0002	 0.0320	
HOXC4	 1.07x10-05	 0.002	 GABARAPL2	 0.0002	 0.0363	
GJB1	 1.49x10-05	 0.002	 GJB1	 0.0002	 0.0366	
PPFIA2	 1.84x10-05	 0.003	 AMACR	 0.0005	 0.0695	
SPINK1	 2.62x10-05	 0.004	 MYOF	 0.0005	 0.0775	
AMACR	 3.58x10-05	 0.005	 APOC1	 0.0005	 0.0816	
AMH	 4.60x10-05	 0.007	 MED4	 0.0010	 0.1423	
TRPM4	 5.74x10-05	 0.008	 SULT1A1	 0.0011	 0.1624	
NEAT1	 6.14x10-05	 0.009	 RAB17	 0.0020	 0.2865	
SIM2.short	 6.84x10-05	 0.010	 ANKRD34B	 0.0025	 0.3583	
SSTR1	 7.31x10-05	 0.011	 SNCA	 0.0035	 0.4989	
UPK2	 7.83x10-05	 0.011	 MMP26	 0.0047	 0.6782	
SULT1A1	 8.22x10-05	 0.012	 PTN	 0.0055	 0.7804	
MEX3A	 9.10x10-05	 0.013	 DLX1	 0.0055	 0.7804	



9:	APPENDICES	

	 387	

MIR146A.DQ658414	 0.0001	 0.015	 IFT57	 0.0058	 0.8138	
TMEM45B	 0.0001	 0.015	 SIM2.short	 0.0061	 0.8487	
ISX	 0.0001	 0.017	 DPP4	 0.0073	 0.9916	
MIC1	 0.0001	 0.019	 STOM	 0.0080	 0.9916	
TWIST1	 0.0002	 0.021	 GAPDH	 0.0105	 0.9916	
Met	 0.0002	 0.021	 VPS13A	 0.0135	 0.9916	
MMP11	 0.0002	 0.023	 MIR146A.DQ658414	 0.0168	 0.9916	
CDKN3	 0.0002	 0.023	 PPAP2A	 0.0182	 0.9916	
RP11.97O12.7	 0.0002	 0.023	 ZNF577	 0.0185	 0.9916	
STOM	 0.0003	 0.035	 SMIM1	 0.0233	 0.9916	
PALM3	 0.0003	 0.043	 PPFIA2	 0.0249	 0.9916	
LASS1	 0.0003	 0.043	 Met	 0.0251	 0.9916	
SSPO	 0.0003	 0.044	 MIC1	 0.0268	 0.9916	
MMP26	 0.000	 0.049	 EIF2D	 0.0316	 0.9916	
VPS13A	 0.000	 0.049	 CD10	 0.0336	 0.9916	
PECI	 0.000	 0.050	 STEAP2	 0.0432	 0.9916	
PCSK6	 0.000	 0.054	 MIR4435.1HG.lOC541471	 0.0437	 0.9916	
GAPDH	 0.000	 0.056	 ITPR1	 0.0445	 0.9916	
PVT1	 0.000	 0.056	 MXI1	 0.0487	 0.9916	
TERT	 0.000	 0.060	 	 	 	
CASKIN1	 0.001	 0.061	 	 	 	
TMCC2	 0.001	 0.064	 	 	 	
RPLP2	 0.001	 0.080	 	 	 	
MNX1	 0.001	 0.102	 	 	 	
SIM2.long	 0.001	 0.106	 	 	 	
RPS11	 0.001	 0.106	 	 	 	
SULF2	 0.001	 0.130	 	 	 	
HIST1H1C	 0.001	 0.133	 	 	 	
EN2	 0.001	 0.133	 	 	 	
DNAH5	 0.001	 0.166	 	 	 	
MMP25	 0.002	 0.198	 	 	 	
MFSD2A	 0.002	 0.212	 	 	 	
MIR4435.1HG.lOC541471	 0.002	 0.226	 	 	 	
SMIM1	 0.002	 0.239	 	 	 	
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MGAT5B	 0.003	 0.266	 	 	 	
RIOK3	 0.003	 0.267	 	 	 	
MCTP1	 0.003	 0.315	 	 	 	
RPS10	 0.003	 0.329	 	 	 	
VAX2	 0.003	 0.337	 	 	 	
TMEM86A	 0.003	 0.340	 	 	 	
ERG5	 0.004	 0.358	 	 	 	
IMPDH2	 0.004	 0.368	 	 	 	
COL10A1	 0.004	 0.400	 	 	 	
ABCB9	 0.004	 0.424	 	 	 	
B4GALNT4	 0.005	 0.471	 	 	 	
MKi67	 0.005	 0.472	 	 	 	
CLIC2	 0.006	 0.526	 	 	 	
SChLAP1	 0.007	 0.671	 	 	 	
CCDC88B	 0.009	 0.807	 	 	 	
PTPRC	 0.009	 0.809	 	 	 	
CAMKK2	 0.009	 0.838	 	 	 	
NAALADL2	 0.009	 0.844	 	 	 	
HIST3H2A	 0.010	 0.873	 	 	 	
HPRT	 0.010	 0.897	 	 	 	
TERF2IP	 0.011	 0.949	 	 	 	
ITPR1	 0.014	 0.994	 	 	 	
SLC4A1.S	 0.014	 0.994	 	 	 	
COL9A2	 0.014	 0.994	 	 	 	
MCM7	 0.015	 0.994	 	 	 	
CKAP2L	 0.017	 0.994	 	 	 	
RPL18A	 0.017	 0.994	 	 	 	
BRAF	 0.017	 0.994	 	 	 	
MAPK8IP2	 0.017	 0.994	 	 	 	
SFRP4	 0.018	 0.994	 	 	 	
FDPS	 0.018	 0.994	 	 	 	
SACM1L	 0.019	 0.994	 	 	 	
MSMB	 0.020	 0.994	 	 	 	
HMBS	 0.020	 0.994	 	 	 	
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SPON2	 0.021	 0.994	 	 	 	
ANPEP	 0.021	 0.994	 	 	 	
CACNA1D	 0.022	 0.994	 	 	 	
SYNM	 0.023	 0.994	 	 	 	
ALAS1	 0.026	 0.994	 	 	 	
RNF157	 0.027	 0.994	 	 	 	
HIST1H1E	 0.027	 0.994	 	 	 	
ARHGEF25	 0.028	 0.994	 	 	 	
RPL23AP53	 0.028	 0.994	 	 	 	
AURKA	 0.031	 0.994	 	 	 	
PSTPIP1	 0.032	 0.994	 	 	 	
FOLH1	 0.032	 0.994	 	 	 	
GOLM1	 0.033	 0.994	 	 	 	
EIF2D	 0.035	 0.994	 	 	 	
IFT57	 0.039	 0.994	 	 	 	
SLC43A1	 0.039	 0.994	 	 	 	
CDC20	 0.039	 0.994	 	 	 	
CAMK2N2	 0.047	 0.994	 	 	 	
GABARAPL2	 0.049	 0.994	 	 	 	
CDC37L1	 0.050	 0.994	 	 	 	
	
KLK3	adjusted	data	 GAPDH	and	RPLP2	normalised	data	
Transcript	 p-value	 Adjusted	p-value	 Transcript	 p-value	 Adjusted	p-value	
PCA3	 1.52x10-07	 2.52x10-05	 ERG3’ exons 4-5	 1.44x10-08	 2.41x10-06	
SPINK1	 5.80x10-06	 0.001	 TMPRSS2:ERG	 1.18x10-07	 1.96x10-05	
ERG3’ exons 4-5	 6.32x10-06	 0.001	 PCA3	 2.06x10-07	 3.39x10-05	
ERG3’ exons 6-7	 7.48x10-06	 0.001	 ERG3’ exons 6-7	 2.28x10-06	 0.0004	
KLK4	 8.86x10-06	 0.001	 APOC1	 9.64x10-06	 0.002	
SLC12A1	 4.36x10-05	 0.007	 HOXC6	 1.34x10-05	 0.002	
HOXC6	 4.72x10-05	 0.008	 HPN	 2.01x10-05	 0.003	
UPK2	 5.48x10-05	 0.009	 DPP4	 9.43x10-05	 0.015	
HPN	 7.32x10-05	 0.012	 GABARAPL2	 0.0001	 0.017	
TMPRSS2:ERG	 0.0001	 0.017	 ITGBL1	 0.0001	 0.017	
SULT1A1	 0.0002	 0.036	 MYOF	 0.0001	 0.018	
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APOC1	 0.0004	 0.056	 KLK2	 0.0004	 0.065	
GJB1	 0.0004	 0.064	 SLC12A1	 0.0004	 0.069	
MYOF	 0.0005	 0.074	 TDRD	 0.0004	 0.069	
CD10	 0.001	 0.081	 SRSF3	 0.001	 0.088	
ITGBL1	 0.001	 0.138	 SPINK1	 0.001	 0.097	
RP11.244H18.1.P712P	 0.001	 0.138	 P712P	 0.001	 0.098	
DLX1	 0.001	 0.174	 KLK4	 0.001	 0.110	
RAB17	 0.001	 0.179	 RAB17	 0.001	 0.156	
GABARAPL2	 0.001	 0.189	 AR exons 4-8	 0.001	 0.191	
STOM	 0.001	 0.215	 IFT57	 0.001	 0.191	
TDRD	 0.002	 0.266	 CD10	 0.002	 0.276	
PTN	 0.002	 0.293	 PTN	 0.003	 0.375	
AMACR	 0.002	 0.327	 DLX1	 0.003	 0.418	
MED4	 0.003	 0.378	 ANKRD34B	 0.003	 0.419	
SNCA	 0.004	 0.622	 ZNF577	 0.003	 0.434	
NEAT1	 0.005	 0.743	 UPK2	 0.003	 0.443	
ANKRD34B	 0.005	 0.743	 MXI1	 0.004	 0.606	
MIR4435.1HG.lOC541471	 0.006	 0.783	 HOXC4	 0.006	 0.767	
KLK2	 0.007	 0.928	 SNCA	 0.006	 0.769	
Met	 0.012	 0.980	 STEAP2	 0.006	 0.800	
AURKA	 0.014	 0.980	 MEMO1	 0.006	 0.834	
SIM2.short	 0.014	 0.980	 CACNA1D	 0.006	 0.834	
MIC1	 0.019	 0.980	 STEAP4	 0.007	 0.954	
PPFIA2	 0.020	 0.980	 PPAP2A	 0.008	 0.997	
MEMO1	 0.021	 0.980	 Met	 0.011	 0.997	
ZNF577	 0.023	 0.980	 MED4	 0.011	 0.997	
CACNA1D	 0.025	 0.980	 MIATNB	 0.011	 0.997	
AR exon 9	 0.026	 0.980	 GJB1	 0.013	 0.997	
PDLIM5	 0.027	 0.980	 AR exon 9	 0.014	 0.997	
RP11.97O12.7	 0.033	 0.980	 SULT1A1	 0.018	 0.997	
IFT57	 0.033	 0.980	 PPFIA2	 0.018	 0.997	
MMP26	 0.033	 0.980	 FDPS	 0.019	 0.997	
MARCH5	 0.034	 0.980	 MARCH5	 0.019	 0.997	
RPS10	 0.036	 0.980	 MSMB	 0.020	 0.997	
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AR exons 4-8	 0.036	 0.980	 KLK3 exons 2-3	 0.024	 0.997	
ITPR1	 0.039	 0.980	 SNORA20	 0.026	 0.997	
SMIM1	 0.043	 0.980	 NEAT1	 0.027	 0.997	
SNORA20	 0.044	 0.980	 RPS10	 0.028	 0.997	
VPS13A	 0.046	 0.980	 SERPINB5	 0.035	 0.997	
	 	 	 TRPM4	 0.038	 0.997	
	 	 	 NLRP3	 0.040	 0.997	
	 	 	 HIST1H2BF	 0.049	 0.997	
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Supplementary Table 19 Lasso output for models detecting CB, L, I, H trend using KLK2 

ratio data. 

All Transcripts	 Significant Transcripts	 Multiple testing 
corrected Transcripts	

Transcript	 Beta	 Transcript	 Beta	 Transcript	 Beta 
PCA3	 0.21	 PCA3	 0.18	 PCA3	 0.14	
ERG3’ exons 4-
5	 0.11	

ERG3’ exons 4-
5	 0.12	

ERG3’ exons 4-
5	 0.11	

APOC1	 0.11	 APOC1	 0.08	 APOC1	 0.05	
ANKRD34B	 0.07	 TMPRSS2:ERG	 0.04	 TMPRSS2:ERG	 0.04	
NEAT1	 0.05	 SLC12A1	 0.03	 HOXC6	 0.01	
HOXC6	 0.05	 HOXC6	 0.02	 cp1	 2.05	
HPN	 0.05	 NEAT1	 0.02	 cp2	 1.26	

TMPRSS2:ERG	 0.04	 HPN	 0.01	 cp3	
-
0.36	

ITGBL1	 0.03	 ANKRD34B	 0.01	   
SLC12A1	 0.03	 DLX1	 0.00	   
SULT1A1	 0.03	 PSTPIP1	 0.00	   
ISX	 0.03	 HIST1H1E	 -0.05	   
DLX1	 0.02	 GABARAPL2	 -0.16	   
ERG3’ exons 6-
7	 0.01	 cp1	 2.19	   
TMEM47	 0.01	 cp2	 1.32	   
TDRD	 0.01	 cp3	 -0.38	   
AMACR	 0.01	     
HIST1H1E	 -0.01	     
IGFBP3	 -0.01	     
PSGR	 -0.01	     
BTG2	 -0.01	     
MED4	 -0.02	     
AR exons 4-8	 -0.02	     
PPP1R12B	 -0.02	     
AR exon 9	 -0.02	     
Timp4	 -0.03	     
DPP4	 -0.03	     
CP	 -0.04	     
MYOF	 -0.04	     
GCNT1	 -0.04	     
MEMO1	 -0.05	     
SRSF3	 -0.06	     
ZNF577	 -0.06	     
CD10	 -0.06	     
MXI1	 -0.10	     
KLK4	 -0.14	     
cp1	 2.45	     
cp2	 1.43	     
cp3	 -0.43	     
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Supplementary Table 20 Lasso output for models detecting CB, L, I, H trend using KLK2 

adjusted data. 

All Transcripts	 Significant Transcripts	 Multiple testing corrected 
Transcripts	

Transcript	 Bet
a	

Transcript	 Bet
a	

Transcript	 Beta 

AMACR	 0.14	 AMACR	 0.46	 ERG3’ exons 4-5	 0.75	

ERG3’ exons 4-5	 0.74	 ANKRD34B	 0.33	 GABARAPL2	
-
1.05	

GJB1	 0.60	 APOC1	 0.53	 GJB1	 0.63	

HOXC6	 0.36	 CD10	
-
1.04	 HOXC6	 0.38	

HPN	 0.74	 DLX1	 0.13	 HPN	 0.70	

ITGBL1	 0.12	 DPP4	
-
0.14	 ITGBL1	 0.18	

KLK4	
-
1.22	 ERG3’ exons 4-5	 0.80	 KLK4	

-
1.10	

PCA3	 2.38	 GABARAPL2	
-
0.88	 PCA3	 2.27	

SLC12A1	 0.25	 GAPDH	
-
0.07	 RP11.244H18.1.P712P	

-
1.34	

SPINK1	 0.44	 GJB1	 0.08	 SLC12A1	 0.26	
TMPRSS2:ERG	 0.36	 HOXC6	 0.22	 SPINK1	 0.38	
UPK2	 0.24	 IFT57	 0.95	 TDRD	 0.14	
cp1	 2.06	 ITPR1	 0.13	 TMPRSS2:ERG	 0.38	

cp2	 1.35	 KLK4	
-
0.60	 UPK2	 0.19	

cp3	
-
0.42	 MED4	

-
0.85	 cp1	 2.21	

  Met	
-
0.11	 cp2	 1.41	

  MIC1	 0.28	 cp3	
-
0.43	

  MIR146A.DQ658414	 0.24	   
  MMP26	 0.50	   

  MXI1	
-
1.15	   

  MYOF	
-
1.45	   

  PCA3	 2.69	   
  PPAP2A	 0.08	   

  PPFIA2	
-
0.65	   

  PTN	
-
0.79	   

  RP11.244H18.1.P712P	
-
0.72	   

  SIM2.short	 1.12	   
  SLC12A1	 0.14	   
  SMIM1	 0.40	   
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  SNCA	
-
0.77	   

  SPINK1	 0.47	   
  STEAP2	 0.82	   
  STOM	 0.11	   
  SULT1A1	 0.85	   
  TMPRSS2:ERG	 0.13	   
  UPK2	 0.25	   

  ZNF577	
-
0.49	   

  cp1	 2.47	   
  cp2	 1.52	   

  cp3 
-
0.48   
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Supplementary Table 21 Lasso output for models detecting CB, L, I, H trend using KLK3 

adjusted data. 

All Transcripts	 Significant Transcripts	 Multiple testing corrected 
Transcripts	

Transcript	 Beta	 Transcript	 Beta	 Transcript	 Beta 
ACTR5	 -0.40	 MARCH5	 -0.88	 APOC1	 0.78	

AMH	 1.60	 AMACR	 0.27	
ERG3’ 
exons 4-5	 0.56	

ANKRD34B	 0.20	 ANKRD34B	 0.21	
ERG3’ 
exons 6-7	 0.07	

APOC1	 0.96	 APOC1	 0.60	 GJB1	 0.51	
AR exon 9	 -0.05	 AR exon 9	 -0.49	 HOXC6	 0.36	
AURKA	 0.07	 AURKA	 0.70	 HPN	 0.52	
B2M	 -0.23	 CACNA1D	 0.42	 KLK4	 -1.25	
BRAF	 0.48	 CD10	 -0.75	 PCA3	 2.21	
BTG2	 -1.11	 DLX1	 0.27	 SLC12A1	 0.19	

CASKIN1	 -0.01	
ERG3’ exons 
4-5	 0.64	 SULT1A1	 0.65	

CCDC88B	 -0.27	 GABARAPL2	 -1.14	
TMPRSS2:E
RG	 0.25	

CD10	 -0.95	 GJB1	 0.28	 UPK2	 0.50	
CDC20	 -0.44	 HOXC6	 0.45	 cp1	 1.14	
CKAP2L	 -0.39	 ITGBL1	 -0.31	 cp2	 1.35	
CLIC2	 -0.52	 ITPR1	 0.68	 cp3	 -0.36	
CLU	 0.11	 KLK2	 0.42	   
CP	 -0.46	 KLK4	 -0.53	   
CTA.211A9.5.MIATNB	 -0.41	 MED4	 -0.86	   
DLX1	 0.33	 MEMO1	 -0.90	   
DNAH5	 0.23	 MIC1	 0.40	   

ERG3’ exons 4-5	 0.54	
MIR4435.1H
G.lOC541471	 -0.35	   

ERG3’ exons 6-7	 0.36	 MMP26	 0.24	   
GABARAPL2	 -1.42	 MYOF	 -1.84	   
GOLM1	 -0.02	 NEAT1	 0.80	   
HIST3H2A	 -0.34	 PCA3	 3.73	   
HOXC4	 -0.97	 PPFIA2	 -0.97	   
HOXC6	 0.76	 PTN	 -1.10	   
HPRT	 0.81	 RAB17	 -0.89	   

IGFBP3	 -0.87	
RP11.244H18
.1.P712P	 -0.34	   

IMPDH2	 0.03	
RP11.97O12.
7	 0.48	   

ITPR1	 0.17	 SIM2.short	 1.35	   
KLK4	 -1.18	 SLC12A1	 0.39	   
LASS1	 -0.16	 SMIM1	 0.47	   
LBH	 0.51	 SNCA	 -0.20	   
MCM7	 0.27	 STOM	 0.31	   
MDK	 0.01	 SULT1A1	 1.05	   

MED4	 -0.38	
TMPRSS2:E
RG	 -0.02	   
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MEMO1	 -0.97	 UPK2	 0.94	   
MGAT5B	 -0.24	 ZNF577	 -0.14	   
MIC1	 0.64	 cp1 1.77   
MIR146A.DQ658414	 0.20	 cp2 1.63   
MIR4435.1HG.lOC5414
71	 0.02	 cp3 -0.46   
MMP11	 0.61	     
MMP25	 0.83	     
MNX1	 0.42	     
MXI1	 -0.18	     
MYOF	 -1.42	     
NAALADL2	 -0.32	     
NEAT1	 0.98	     
PSGR	 -0.15	     
PALM3	 0.21	     
PCA3	 3.16	     
PPAP2A	 0.89	     
PSTPIP1	 -0.62	     
PTN	 -0.71	     
PVT1	 0.17	     
RPL23AP53	 0.06	     
RPS11	 -0.02	     
SACM1L	 -0.41	     
SERPINB5	 0.28	     
SIM2.short	 0.90	     
SIRT1	 -0.68	     
SLC12A1	 0.23	     
SMIM1	 0.20	     
SNCA	 -0.22	     
SPINK1	 0.49	     
SPON2	 -0.43	     
SRSF3	 -0.01	     
ST6GALNAC1	 0.25	     
STOM	 0.36	     
SULT1A1 0.61     
SYNM 0.19     
TDRD 0.03     
Timp4 -0.91     
TWIST1 0.65     
UPK2 0.75     
VAX2 -0.27     
ZNF577 -0.02     
cp1 2.04     
cp2 1.75     
cp3 -0.50     
	
Supplementary Table 22 Lasso output for models detecting CB, L, I, H trend using HK 

normalised data. 

All Transcripts	 Significant Transcripts	 Multiple testing 
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corrected Transcripts	
Transcript	 Beta	 Transcript	 Beta	 Transcript	 Beta 
ACTR5	 0.00	 ANKRD34B	 0.11	 APOC1	 0.14	
AMH	 0.04	 APOC1	 0.12	 DPP4	 -0.25	

ANKRD34B	 0.07	 AR exon 9	 -0.04	
ERG3’ exons 4-
5	 0.11	

APOC1	 0.11	 AR exons 4-8	 -0.04	
ERG3’ exons 6-
7	 0.01	

AR exon 9	
-
0.02	 CD10	 -0.08	 GABARAPL2	 -0.26	

AR exons 4-8	
-
0.02	 MIATNB	 0.00	 HOXC6	 0.08	

CD10	
-
0.05	 DLX1	 0.03	 HPN	 0.10	

CP	
-
0.05	 DPP4	 -0.07	 ITGBL1	 0.10	

DLX1	 0.01	 ERG3’ exons 4-5	 0.10	 KLK4	 -0.30	

DPP4	
-
0.06	 ERG3’ exons 6-7	 0.01	 MYOF	 -0.17	

ERG3’ exons 4-5	 0.10	 FDPS	 -0.03	 PCA3	 0.23	
ERG3’ exons 6-7	 0.01	 GABARAPL2	 -0.03	 TDRD	 0.04	

GABARAPL2	
-
0.08	 GJB1	 0.02	

TMPRSS2:ER
G	 0.04	

GCNT1	
-
0.03	 HOXC6	 0.06	 cp1	 2.63	

HIST1H1E	
-
0.03	 HPN	 0.08	 cp2	 1.52	

HIST1H2BF	 0.00	 ITGBL1	 0.07	 cp3	 -0.46	
HOXC6	 0.05	 KLK4	 -0.21	   
HPN	 0.05	 MED4	 -0.13	   

IGFBP3	
-
0.01	 MEMO1	 -0.09	   

ISX	 0.02	 MSMB	 0.10	   
ITGBL1	 0.07	 MXI1	 -0.24	   

KLK4	
-
0.16	 MYOF	 -0.06	   

MED4	
-
0.02	 NEAT1	 0.06	   

MEMO1	
-
0.05	 PCA3	 0.21	   

MXI1	
-
0.13	 RPS10	 -0.02	   

MYOF	
-
0.05	 SLC12A1	 0.04	   

NEAT1	 0.04	 SPINK1	 0.00	   
PCA3	 0.19	 SRSF3	 -0.09	   

PPP1R12B	
-
0.02	 SULT1A1	 0.06	   

SLC12A1	 0.03	 TDRD	 0.03	   

SRSF3	
-
0.05	 TMPRSS2:ERG	 0.03	   

SULT1A1	 0.03	 TRPM4	 -0.02	   
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TDRD	 0.01	 UPK2	 0.02	   

Timp4	
-
0.02	 ZNF577	 -0.07	   

TMPRSS2:ERG	 0.04	 cp1	 2.67	   
UPK2	 0.00	 cp2	 1.55	   

ZNF577	
-
0.04	 cp3	 -0.47	   

cp1	 2.42	     
cp2	 1.41	     

cp3	
-
0.42	     
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6.16 Multinomial CBCaM Trend 

Supplementary Table 23 Glm test significant probes for CB, Ca, Mets trend 

KLK2	ratio	data	 KLK2	adjusted	data	
Transcript	 p-value	 Adjusted	p-value	 Transcript	 p-value	 Adjusted	p-value	
HOXC6	 5.20X10-10	 8.62X10-08	 UPK2	 2.91X10-08	 4.83X10-06	
ERG3’ exons 4-5	 5.70X10-10	 9.41X10-08	 SPINK1	 2.04X10-07	 3.36X10-05	
PCA3	 4.58X10-09	 7.51X10-07	 SLC12A1	 1.61X10-06	 0.0003	
TMPRSS2:ERG	 1.27X10-08	 2.07X10-06	 HOXC6	 5.86X10-05	 0.0096	
APOC1	 1.42X10-08	 2.30X10-06	 HPN	 7.26X10-05	 0.0118	
TDRD	 2.07X10-08	 3.34X10-06	 MFSD2A	 7.70X10-05	 0.0124	
SLC12A1	 2.82X10-08	 4.51X10-06	 GAPDH	 0.0001	 0.0196	
HPN	 3.41X10-08	 5.42X10-06	 RAB17	 0.0002	 0.0285	
HOXC4	 2.04X10-07	 3.23X10-05	 KLK4	 0.0002	 0.0313	
RAB17	 2.07X10-07	 3.26X10-05	 PCA3	 0.0005	 0.0758	
GJB1	 2.14X10-07	 3.34X10-05	 GJB1	 0.0005	 0.0826	
ERG3’ exons 6-7	 2.32X10-07	 3.59X10-05	 MIR4435.1HG.lOC541471	 0.0007	 0.1054	
AMACR	 4.06X10-07	 6.25X10-05	 GABARAPL2	 0.0007	 0.1085	
SPINK1	 4.92X10-07	 7.53X10-05	 TMEM45B	 0.0009	 0.1315	
SSTR1	 5.08X10-07	 7.71X10-05	 APOC1	 0.0009	 0.1376	
UPK2	 5.69X10-07	 8.60X10-05	 AURKA	 0.0012	 0.1751	
TMCC2	 6.63X10-07	 9.94X10-05	 ANPEP	 0.0012	 0.1760	
TMEM45B	 6.75X10-07	 0.0001	 SULT1A1	 0.0017	 0.2479	
PPFIA2	 7.28X10-07	 0.0001	 RP11.244H18.1.P712P	 0.0020	 0.2933	
DLX1	 8.97X10-07	 0.0001	 ERG3’ exons 4-5	 0.0023	 0.3385	
PALM3	 9.33X10-07	 0.0001	 PALM3	 0.0023	 0.3421	
SULT1A1	 1.03X10-06	 0.0001	 TMPRSS2:ERG	 0.0024	 0.3487	
RP11.97O12.7	 1.60X10-06	 0.0002	 TDRD	 0.0028	 0.4042	
SULF2	 2.21X10-06	 0.0003	 ERG3’ exons 6-7	 0.0029	 0.4165	
AMH	 2.21X10-06	 0.0003	 TBP	 0.0031	 0.4376	
EN2	 2.70X10-06	 0.0004	 HMBS	 0.0035	 0.4878	
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CASKIN1	 2.79X10-06	 0.0004	 ITGBL1	 0.0041	 0.5687	
MIR4435.1HG.lOC541471	 2.91X10-06	 0.0004	 AMACR	 0.0042	 0.5824	
HIST1H1C	 3.23X10-06	 0.0004	 TMCC2	 0.0044	 0.6065	
MEX3A	 3.24X10-06	 0.0004	 MYOF	 0.0058	 0.7895	
PECI	 3.81X10-06	 0.0005	 RNF157	 0.0073	 0.9921	
SIM2.short	 3.92X10-06	 0.0005	 PTPRC	 0.0079	 0.9921	
ISX	 4.01X10-06	 0.0005	 SIM2.short	 0.0081	 0.9921	
TMEM86A	 4.87X10-06	 0.0006	 SULF2	 0.0088	 0.9921	
ERG5	 5.11X10-06	 0.0007	 EN2	 0.0094	 0.9921	
TWIST1	 5.24X10-06	 0.0007	 PTN	 0.0095	 0.9921	
ITGBL1	 6.47X10-06	 0.0008	 ALAS1	 0.0104	 0.9921	
MGAT5B	 6.56X10-06	 0.0008	 TMEM86A	 0.0115	 0.9921	
MMP11	 7.01X10-06	 0.0009	 RP11.97O12.7	 0.0117	 0.9921	
HMBS	 7.33X10-06	 0.0009	 PPFIA2	 0.0122	 0.9921	
MCTP1	 8.97X10-06	 0.0011	 DPP4	 0.0125	 0.9921	
GAPDH	 1.06X10-05	 0.0013	 STOM	 0.0132	 0.9921	
STOM	 1.09X10-05	 0.0014	 Met	 0.0139	 0.9921	
HIST3H2A	 1.26X10-05	 0.0016	 ZNF577	 0.0153	 0.9921	
RPL23AP53	 1.29X10-05	 0.0016	 ERG5	 0.0251	 0.9921	
MFSD2A	 1.49X10-05	 0.0018	 ITPR1	 0.0280	 0.9921	
TERT	 1.72X10-05	 0.0021	 MARCH5	 0.0299	 0.9921	
Met	 2.06X10-05	 0.0025	 HIST1H1E	 0.0342	 0.9921	
B4GALNT4	 2.08X10-05	 0.0025	 SMIM1	 0.0380	 0.9921	
NLRP3	 2.10X10-05	 0.0025	 DLX1	 0.0384	 0.9921	
PVT1	 2.14X10-05	 0.0025	 RPL23AP53	 0.0433	 0.9921	
MIR146A.DQ658414	 2.34X10-05	 0.0027	 CASKIN1	 0.0457	 0.9921	
CCDC88B	 2.70X10-05	 0.0031	 SEC61A1	 0.0474	 0.9921	
PPAP2A	 2.71X10-05	 0.0031	 AMH	 0.0478	 0.9921	
ITPR1	 3.03X10-05	 0.0034	 IFT57	 0.0481	 0.9921	
ABCB9	 3.22X10-05	 0.0035	 CLU	 0.0497	 0.9921	
ANPEP	 3.25X10-05	 0.0035	 VPS13A	 0.0499	 0.9921	
VPS13A	 3.25X10-05	 0.0035	 	 	 	
MMP25	 3.30X10-05	 0.0036	 	 	 	
PSTPIP1	 3.39X10-05	 0.0036	 	 	 	
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AURKA	 3.44X10-05	 0.0036	 	 	 	
VAX2	 3.72X10-05	 0.0039	 	 	 	
TRPM4	 3.81X10-05	 0.0039	 	 	 	
PTPRC	 3.82X10-05	 0.0039	 	 	 	
RIOK3	 3.85X10-05	 0.0039	 	 	 	
OGT	 4.06X10-05	 0.0041	 	 	 	
MNX1	 4.10X10-05	 0.0041	 	 	 	
SLC4A1.S	 4.52X10-05	 0.0045	 	 	 	
HPRT	 4.84X10-05	 0.0047	 	 	 	
TBP	 4.91X10-05	 0.0048	 	 	 	
HIST1H1E	 5.41X10-05	 0.0052	 	 	 	
NAALADL2	 5.44X10-05	 0.0052	 	 	 	
SIM2.long	 5.69X10-05	 0.0053	 	 	 	
CLIC2	 6.01X10-05	 0.0056	 	 	 	
DNAH5	 6.67X10-05	 0.0061	 	 	 	
SMIM1	 7.71X10-05	 0.0070	 	 	 	
PCSK6	 8.13X10-05	 0.0073	 	 	 	
MKi67	 8.24X10-05	 0.0073	 	 	 	
COL9A2	 8.76X10-05	 0.0077	 	 	 	
BRAF	 8.85X10-05	 0.0077	 	 	 	
COL10A1	 9.42X10-05	 0.0081	 	 	 	
TERF2IP	 9.55X10-05	 0.0081	 	 	 	
SSPO	 0.0001	 0.0091	 	 	 	
RPLP2	 0.0001	 0.0097	 	 	 	
SFRP4	 0.0001	 0.0097	 	 	 	
MAPK8IP2	 0.0001	 0.0097	 	 	 	
CDC37L1	 0.0001	 0.0097	 	 	 	
RNF157	 0.0001	 0.0101	 	 	 	
ACTR5	 0.0001	 0.0103	 	 	 	
RPS11	 0.0001	 0.0110	 	 	 	
RPS10	 0.0001	 0.0110	 	 	 	
SYNM	 0.0001	 0.0111	 	 	 	
CDKN3	 0.0002	 0.0120	 	 	 	
AATF	 0.0002	 0.0127	 	 	 	
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EIF2D	 0.0002	 0.0132	 	 	 	
ALAS1	 0.0002	 0.0139	 	 	 	
IMPDH2	 0.0002	 0.0145	 	 	 	
FDPS	 0.0002	 0.0157	 	 	 	
SACM1L	 0.0002	 0.0165	 	 	 	
TFDP1	 0.0003	 0.0170	 	 	 	
MCM7	 0.0003	 0.0202	 	 	 	
NEAT1	 0.0003	 0.0208	 	 	 	
CAMKK2	 0.0004	 0.0232	 	 	 	
IFT57	 0.0004	 0.0242	 	 	 	
MEMO1	 0.0005	 0.0299	 	 	 	
ANKRD34B	 0.0005	 0.0309	 	 	 	
RPL18A	 0.0005	 0.0310	 	 	 	
PPP1R12B	 0.0006	 0.0364	 	 	 	
CACNA1D	 0.0006	 0.0370	 	 	 	
MIC1	 0.0008	 0.0436	 	 	 	
SPON2	 0.0008	 0.0441	 	 	 	
CLU	 0.0008	 0.0441	 	 	 	
BTG2	 0.0010	 0.0526	 	 	 	
GABARAPL2	 0.0014	 0.0709	 	 	 	
SMAP1 exons 7-8	 0.0014	 0.0709	 	 	 	
STEAP4	 0.0014	 0.0709	 	 	 	
CKAP2L	 0.0015	 0.0727	 	 	 	
KLK3 exons 2-3	 0.0015	 0.0727	 	 	 	
ARHGEF25	 0.0017	 0.0796	 	 	 	
LASS1	 0.0017	 0.0796	 	 	 	
STEAP2	 0.0019	 0.0887	 	 	 	
B2M	 0.0021	 0.0964	 	 	 	
MMP26	 0.0023	 0.0996	 	 	 	
MXI1	 0.0024	 0.1046	 	 	 	
SChLAP1	 0.0025	 0.1056	 	 	 	
CDC20	 0.0026	 0.1085	 	 	 	
CAMK2N2	 0.0028	 0.1104	 	 	 	
SIRT1	 0.0032	 0.1231	 	 	 	
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GOLM1	 0.0044	 0.1676	 	 	 	
LBH 0.0062 0.2206 	 	 	
SEC61A1 0.0062 0.2206 	 	 	
AR exons 4-8 0.0064 0.2206 	 	 	
MAK 0.0066 0.2206 	 	 	
PDLIM5 0.0067 0.2206 	 	 	
SRSF3 0.0074 0.2378 	 	 	
SNCA 0.0087 0.2628 	 	 	
FOLH1 0.0089 0.2628 	 	 	
CADPS 0.0091 0.2628 	 	 	
CD10 0.0103 0.2879 	 	 	
MDK 0.0133 0.3598 	 	 	
KLK3 exons 1-2 0.0145 0.3767 	 	 	
MED4 0.0152 0.3792 	 	 	
HIST1H2BG 0.0193 0.4640 	 	 	
PTN 0.0245 0.5637 	 	 	
IGFBP3 0.0268 0.5789 	 	 	
DPP4 0.0276 0.5789 	 	 	
SERPINB5 0.0302 0.6032 	 	 	
ST6GALNAC1 0.0343 0.6512 	 	 	
MARCH5 0.0372 0.6697 	 	 	
HIST1H2BF 0.0405 0.6880 	 	 	
MSMB 0.0471 0.7190 	 	 	
SLC43A1 0.0479 0.7190 	 	 	
	
KLK3	adjusted	data	 GAPDH	and	RPLP2	normalised	data	
Transcript	 p-value	 Adjusted	p-value	 Transcript	 p-value	 Adjusted	p-value	
UPK2	 2.39x10-08	 3.97x10-06	 HOXC6	 3.39X10-06	 0.0006	
SPINK1	 1.87x10-06	 0.0003	 SLC12A1	 3.93X10-06	 0.0007	
SLC12A1	 2.58x10-06	 0.0004	 APOC1	 7.43X10-06	 0.0012	
RAB17	 4.04x10-06	 0.0007	 ERG3’ exons 4-5	 2.17X10-05	 0.0036	
MIR4435.1HG.lOC541471	 3.58x10-05	 0.0058	 SPINK1	 2.71X10-05	 0.0044	
HPN	 5.22x10-05	 0.0084	 KLK2	 3.80X10-05	 0.0062	
KLK4	 7.61x10-05	 0.0122	 TMPRSS2:ERG	 5.96X10-05	 0.0096	
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HOXC6	 0.0001	 0.0168	 HPN	 6.42X10-05	 0.0103	
GABARAPL2	 0.0003	 0.0404	 UPK2	 6.50X10-05	 0.0103	
MFSD2A	 0.0005	 0.0832	 RAB17	 6.91X10-05	 0.0109	
SULT1A1	 0.0007	 0.1103	 TDRD	 0.0003	 0.0531	
GJB1	 0.0007	 0.1155	 KLK4	 0.0005	 0.0831	
APOC1	 0.0010	 0.1464	 ERG3’ exons 6-7	 0.0005	 0.0843	
PCA3	 0.0012	 0.1782	 GABARAPL2	 0.0008	 0.1191	
TMEM45B	 0.0012	 0.1888	 HOXC4	 0.0010	 0.1498	
RP11.244H18.1.P712P	 0.0017	 0.2624	 TMEM45B	 0.0010	 0.1563	
MYOF	 0.0018	 0.2720	 P712P	 0.0012	 0.1870	
SULF2	 0.0018	 0.2720	 SULT1A1	 0.0016	 0.2338	
MARCH5	 0.0019	 0.2796	 GJB1	 0.0021	 0.3090	
GAPDH	 0.0019	 0.2826	 DLX1	 0.0023	 0.3475	
ERG3’ exons 4-5	 0.0023	 0.3348	 PCA3	 0.0024	 0.3598	
TMPRSS2:ERG	 0.0023	 0.3376	 MSMB	 0.0027	 0.3995	
PTN	 0.0025	 0.3557	 MIR4435_1HG	 0.0028	 0.4081	
AURKA	 0.0036	 0.5179	 ITGBL1	 0.0033	 0.4719	
ERG3’ exons 6-7	 0.0041	 0.5766	 DPP4	 0.0037	 0.5275	
TDRD	 0.0054	 0.7671	 SULF2	 0.0048	 0.6756	
PALM3	 0.0056	 0.7794	 ZNF577	 0.0051	 0.7173	
ITGBL1	 0.0065	 0.9059	 PPFIA2	 0.0052	 0.7324	
CD10	 0.0071	 0.9744	 PALM3	 0.0061	 0.8496	
TBP	 0.0074	 0.9897	 Met	 0.0064	 0.8839	
KLK2	 0.0093	 0.9897	 PTN	 0.0096	 0.9961	
ZNF577	 0.0106	 0.9897	 MCTP1	 0.0105	 0.9961	
RNF157	 0.0107	 0.9897	 CACNA1D	 0.0152	 0.9961	
PTPRC	 0.0107	 0.9897	 AMACR	 0.0174	 0.9961	
ANPEP	 0.0136	 0.9897	 CP	 0.0181	 0.9961	
NEAT1	 0.0137	 0.9897	 SSTR1	 0.0215	 0.9961	
Met	 0.0137	 0.9897	 GCNT1	 0.0221	 0.9961	
STOM	 0.0148	 0.9897	 PTPRC	 0.0310	 0.9961	
BTG2	 0.0150	 0.9897	 STOM	 0.0317	 0.9961	
AMACR	 0.0159	 0.9897	 IFT57	 0.0322	 0.9961	
MCTP1	 0.0175	 0.9897	 HIST1H2BF	 0.0333	 0.9961	
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CACNA1D	 0.0178	 0.9897	 RP11_97O12.7	 0.0360	 0.9961	
ALAS1	 0.0201	 0.9897	 STEAP2	 0.0398	 0.9961	
ERG5	 0.0223	 0.9897	 TMCC2	 0.0409	 0.9961	
EN2	 0.0225	 0.9897	 MARCH5	 0.0431	 0.9961	
PPFIA2	 0.0270	 0.9897	 	 	 	
SIM2.short	 0.0274	 0.9897	 	 	 	
DLX1	 0.0287	 0.9897	 	 	 	
ITPR1	 0.0289	 0.9897	 	 	 	
TMEM86A	 0.0296	 0.9897	 	 	 	
TMCC2	 0.0325	 0.9897	 	 	 	
RP11.97O12.7	 0.0336	 0.9897	 	 	 	
HMBS	 0.0343	 0.9897	 	 	 	
MSMB 0.0355 0.9897 	 	 	
IFT57 0.0375 0.9897 	 	 	
HOXC4 0.0390 0.9897 	 	 	
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Supplementary Table 24 Lasso output for models detecting CB,Ca, Mets trend using 

KLK2 ratio data. 

All Transcripts	 Significant Transcripts	 Multiple testing 
corrected Transcripts	

Transcript	 Beta	 Transcript	 Beta	 Transcript	 Beta 

PCA3	 0.12	
ERG3’ 
exons 4-5	 0.11	

ERG3’ 
exons 4-5	 0.11	

ERG3’ exons 4-5	 0.11	 PCA3	 0.09	 PCA3	 0.10	
APOC1	 0.09	 HOXC6	 0.08	 HOXC6	 0.08	
HOXC6	 0.08	 APOC1	 0.06	 APOC1	 0.06	
SLC12A1	 0.05	 DLX1	 0.03	 DLX1	 0.04	
DLX1	 0.04	 SLC12A1	 0.02	 SLC12A1	 0.03	
TDRD	 0.03	 TDRD	 0.01	 TDRD	 0.01	

TMPRSS2:ERG	 0.00	 cp1	 5.00	
ERG3’ 
exons 6-7	 0.01	

ERG3’ exons 6-7	 0.00	 cp2	
4.85x10-

14	 cp1	 5.09	

ZNF577	 -0.03	   cp2	
4.69x10-

14	
GCNT1	 -0.04	     
CP	 -0.09	     
cp1	 5.09	     

cp2	
3.99x10-

14	     
	
Supplementary Table 25 Lasso output for models detecting CB,Ca, Mets trend using 

KLK2 adjusted data. 

All Transcripts	 Significant Transcripts	 Multiple testing 
corrected Transcripts	

Transcript	 Beta	 Transcript	 Beta	 Transcript	 Beta 

MARCH5	 -2.11	 MARCH5	 -4.03	 GABARAPL2	
-
3.18	

AMACR	 0.09	 AMACR	 1.17	 GAPDH	 0.82	
APOC1	 0.16	 ANPEP	 0.06	 GJB1	 1.07	
CASKIN1	 0.46	 APOC1	 0.28	 HOXC6	 1.52	
CDC20	 -0.15	 AURKA	 0.05	 HPN	 1.12	

EN2	 0.15	 DLX1	 0.02	 KLK4	
-
1.13	

ERG5	 0.08	 EN2	 0.33	 MFSD2A	 0.97	

GABARAPL2	 -2.25	
ERG3’ exons 6-
7	 0.08	

MIR4435.1HG
.lOC541471	 0.79	

GJB1	 0.56	 ERG5	 0.23	 RAB17	 0.23	

HIST1H1C	 1.00	 GABARAPL2	 -2.92	 SPINK1	
-
0.50	

HMBS	 0.94	 GJB1	 0.67	 UPK2	 0.75	
HOXC6	 0.92	 HMBS	 1.97	 cp1	 5.36	

HPN	 0.32	 HOXC6	 1.02	 cp2	

-
4.06
x10-
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14	
IGFBP3	 -0.12	 IFT57	 1.08	   
KLK4	 -0.68	 ITGBL1	 -0.46	   
MFSD2A	 0.69	 KLK4	 -0.93	   
MIR4435.1HG.lOC5
41471	 0.28	 Met	 -0.30	   
MYOF	 -1.04	 MFSD2A	 0.96	   

NLRP3	 0.05	
MIR4435.1HG.l
OC541471	 0.35	   

PALM3	 0.11	 MYOF	 -1.57	   
PCA3	 0.81	 PALM3	 0.19	   
PPAP2A	 0.21	 PCA3	 1.49	   
PTN	 -0.25	 PPFIA2	 -0.65	   
PTPRC	 0.12	 PTN	 -0.72	   
RNF157	 0.38	 PTPRC	 0.21	   
RP11.244H18.1.P71
2P	 -0.23	 RNF157	 0.83	   

RPL23AP53	 0.49	
RP11.244H18.1
.P712P	 -0.88	   

SFRP4	 0.13	 RP11.97O12.7	 0.24	   
SIM2.short	 1.04	 SIM2.short	 1.77	   
SLC12A1	 0.07	 SLC12A1	 0.35	   
TBP	 0.22	 STOM	 0.11	   
TDRD	 0.10	 TBP	 1.04	   
Timp4	 -0.66	 TDRD	 0.17	   
TMCC2	 0.41	 TMCC2	 0.56	   
TMEM45B	 0.20	 TMEM45B	 0.36	   
TMEM86A	 0.13	 TMEM86A	 0.45	   

TMPRSS2:ERG	 0.08	
TMPRSS2:ER
G	 0.15	   

UPK2	 0.56	 UPK2	 0.73	   
ZNF577	 -0.32	 ZNF577	 -1.06	   
cp1	 5.23	 cp1 5.95   

cp2	
-3.58x10-

14	 cp2 
-3.55x10-

14   
	
Supplementary Table 26 Lasso output for models detecting CB,Ca, Mets trend using 

KLK3 adjusted data. 

All Transcripts	 Significant Transcripts	 Multiple testing 
corrected Transcripts	

Transcript	 Beta	 Transcript	 Beta	 Transcript	 Beta 

MARCH5	
-2.05 
 MARCH5	

-3.75 
 GABARAPL2	

-
1.96	

AMH	 0.42	 AMACR	 0.30	 GJB1	 0.66	
APOC1	 0.24	 APOC1	 0.45	 HOXC6	 1.57	
CP	 -0.20	 DLX1	 0.05	 HPN	 0.90	

EN2	 0.09	 EN2	 0.32	 KLK4	
-
1.24	

ERG3’ exons 4-5	 0.09	
ERG3’ exons 4-
5	 0.37	

MIR4435.1HG
.lOC541471	 0.18	
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ERG3’ exons 6-7	 0.00	 ERG5	 0.22	 RAB17	 0.66	

ERG5	 0.05	 GABARAPL2	 -1.42	 SPINK1	
-
0.68	

GABARAPL2	 -1.46	 GJB1	 0.48	 UPK2	 1.15	
GJB1	 0.18	 HMBS	 1.05	 cp1	 4.65	

HIST1H1C	 0.40	 HOXC4	 -0.40	 cp2	

6.23
x10-

14	
HMBS	 0.41	 HOXC6	 1.00	   
HOXC6	 0.79	 IFT57	 0.30	   
HPN	 0.10	 ITGBL1	 -0.59	   
IGFBP3	 -0.35	 ITPR1	 0.29	   
KLK4	 -0.46	 KLK2	 0.06	   
MFSD2A	 0.33	 KLK4	 -0.42	   
MIR4435.1HG.lOC5
41471	 0.02	 Met	 -0.12	   
MMP25	 0.15	 MFSD2A	 0.51	   

MXI1	 -0.05	
MIR4435.1HG.l
OC541471	 0.21	   

MYOF	 -0.41	 MYOF	 -0.63	   
PALM3	 0.06	 NEAT1	 0.22	   
PCA3	 1.17	 PALM3	 0.09	   
PSTPIP1	 0.05	 PCA3	 2.10	   
PTN	 -0.26	 PPFIA2	 -0.46	   
RNF157	 0.27	 PTN	 -0.75	   
RP11.244H18.1.P71
2P	 -0.04	 PTPRC	 0.03	   
RPL23AP53	 0.71	 RNF157	 0.59	   

SIM2.short	 0.87	
RP11.244H18.1
.P712P	 -0.45	   

SLC12A1	 0.23	 RP11.97O12.7	 0.37	   
TBP	 0.65	 SIM2.short	 1.56	   
TDRD	 0.05	 SLC12A1	 0.49	   
Timp4	 -0.29	 STOM	 0.02	   
TMPRSS2:ERG	 0.02	 TBP	 1.70	   
UPK2	 0.84	 TMCC2	 0.23	   
cp1	 4.52	 TMEM45B	 0.24	   

cp2	
7.49x10-

14	 TMEM86A	 0.32	   
  UPK2	 0.91	   
  ZNF577	 -0.55	   
  cp1 5.18   
  cp2 9.67x10-14   
	
	
Supplementary Table 27 Lasso output for models detecting CB,Ca, Mets trend using HK 

normalised data. 

All Transcripts	 Significant Transcripts	 Multiple testing 
corrected Transcripts	

Transcript	 Beta	 Transcript	 Beta	 Transcript	 Beta 
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MARCH5	 -0.02	 MARCH5	 -0.15	 APOC1	 0.12	

ACTR5	 -0.02	 AMACR	
0.07     
0.07	

ERG3’ exons 
4-5	 0.17	

AMACR	 0.11	 APOC1	 0.20	 HOXC6	 0.12	
AMH	 0.15	 CACNA1D	 -0.34	 HPN	 0.05	

ANKRD34B	 -0.05	 CP	 -0.33	 KLK2	
-
0.29	

APOC1	 0.22	 DLX1	 0.09	 SLC12A1	 0.08	

AR exon 9	 -0.07	
ERG3’ exons 4-
5	 0.06	 SPINK1	 0.04	

AURKA	 0.02	
ERG3’ exons 6-
7	 0.04	

TMPRSS2:ER
G	 0.03	

CACNA1D	 -0.30	 GABARAPL2	 -0.41	 UPK2	 0.00	
CASKIN1	 0.18	 GCNT1	 -0.13	 cp1	 5.27	

CD10	 -0.01	 GJB1	 0.07	 cp2	

3.65
x10-

14	
CDC20	 -0.04	 HOXC6	 0.13	   
CP	 -0.30	 IFT57	 0.10	   
DLX1	 0.09	 ITGBL1	 -0.10	   
EN2	 0.03	 KLK2	 -0.11	   
ERG3’ exons 4-5	 0.02	 KLK4	 -0.24	   
ERG3’ exons 6-7	 0.06	 MCTP1	 0.05	   
GABARAPL2	 -0.87	 Met	 -0.01	   
GCNT1	 -0.13	 MIR4435_1HG	 0.09	   
GJB1	 0.08	 MSMB	 0.07	   
GOLM1	 -0.02	 PALM3	 0.13	   
HIST1H1C	 0.41	 PCA3	 0.21	   
HMBS	 0.24	 PTN	 -0.01	   
HOXC6	 0.17	 SLC12A1	 0.05	   
IGFBP3	 -0.01	 SSTR1	 0.11	   
ISX	 0.09	 STOM	 0.03	   
ITGBL1	 -0.05	 SULF2	 0.02	   
KLK2	 -0.01	 TDRD	 0.03	   
KLK4	 -0.23	 TMCC2	 0.28	   
LASS1	 -0.11	 TMEM45B	 0.30	   
MCTP1	 0.01	 ZNF577	 -0.17	   
MED4	 -0.03	 cp1	 6.15	   
MEMO1	 -0.08	 cp2	 3.32x10-14	   
MEX3A	 0.03	     
MGAT5B	 0.15	     
MIC1	 -0.03	     
MIR146A	 -0.10	     
MIR4435_1HG	 0.09	     
MMP25	 0.11	     
MMP26	 -0.06	     
MXI1	 -0.07	     
NEAT1	 0.04	     
NLRP3 0.12     
OR52A2 -0.08     
PALM3 0.09     
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PCA3 0.15     
PDLIM5 -0.17     
PPAP2A 0.42     
PPFIA2 0.03     
PPP1R12B -0.19     
RAB17 0.00     
RNF157 0.01     
RPL23AP53 0.12     
SChLAP1 0.00     
SEC61A1 -0.02     
SFRP4 0.07     
SIRT1 -0.02     
SLC12A1 0.04     
SLC43A1 -0.12     
SSPO -0.30     
SSTR1 0.07     
SULT1A1 0.01     
TDRD 0.03     
Timp4 -0.13     
TMCC2 0.20     
TMEM45B 0.29     
TMEM86A 0.07     
TMPRSS2:ERG 0.03     
ZNF577 -0.11     
cp1 6.38     

cp2 
2.17x10-

14     
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6.17 Looking for Housekeepers 

Supplementary Table 28 Top twenty transcripts with the lowest variance in cell sediment 

urine fraction data 

Transcript Variance 
MNX1 0.94 
TWIST1 0.95 
SSPO 1.03 
SLC4A1 S 1.04 
COL9A2 1.09 
TERT 1.12 
SSTR1 1.14 
ABCB9 1.15 
CASKIN1 1.27 
MMP11 1.28 
TMCC2 1.33 
HIST1H1C 1.42 
AMH 1.42 
ISX 1.50 
RPS11 1.50 
AATF 1.51 
HIST1H1E 1.53 
VAX2 1.55 
ARHGEF25 1.66 
FDPS 1.66 
	
Supplementary Table 29 Top twenty transcripts with the lowest IQR in cell sediment urine 

fraction data 

Transcript IQR 
SSPO 0.95 
RPS11 1.01 
SLC4A1 S 1.03 
TWIST1 1.04 
ABCB9 1.05 
HIST1H1E 1.05 
B2M 1.08 
VAX2 1.13 
CASKIN1 1.13 
RIOK3 1.15 
CADPS 1.16 
RP11_97O12.7 1.18 
COL9A2 1.18 
MMP26 1.20 
MGAT5B 1.20 
ISX 1.21 
TFDP1 1.21 
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Supplementary Table 30 Comparing the expression between all clinical categories using 

Tukey test, looking for potential house keeping transcripts. 

Transcript Significan
t 

Transcript Significan
t 

Transcript Significan
t 

MARCH5 0 PTN 0 OR52A2 2 
ABCB9 0 PVT1 0 PCA3 2 
ACTR5 0 RAB17 0 PDLIM5 2 
AMACR 0 RNF157 0 PSTPIP1 2 
AMH 0 RP11_97O12.

7 
0 SIM2 long 2 

AR exon 9 0 RPL18A 0 SIM2 short 2 
AR exons 4-
8 

0 RPL23AP53 0 SLC12A1 2 

ARHGEF25 0 RPLP2 0 SNORA20 2 
BRAF 0 RPS10 0 ST6GALNAC1 2 
CAMK2N2 0 SACM1L 0 TMCC2 2 
CASKIN1 0 SChLAP1 0 TMEM86A 2 
CDC20 0 SLC4A1 S 0 AGR2 3 
CDC37L1 0 SMAP1 

exons7-8 
0 BTG2 3 

CDKN3 0 SMIM1 0 FOLH1 3 
CLU 0 SPINK1 0 GABARAPL2 3 
COL10A1 0 SPON2 0 MAPK8IP2 3 
CP 0 STEAP2 0 SLC43A1 3 
MIATNB 0 STEAP4 0 SNCA 3 
DLX1 0 SYNM 0 TDRD 3 
ERG3’ 
exons 4-5 

0 TERT 0 ANPEP 4 

ERG5’ 0 TFDP1 0 B2M 4 
FDPS 0 Timp4 0 CLIC2 4 
GOLM1 0 TMEM47 0 EIF2D 4 
HIST1H1C 0 TRPM4 0 GAPDH 4 
HIST1H1E 0 TWIST1 0 LASS1 4 
HIST1H2B
F 

0 VAX2 0 MIR146A 4 

HIST3H2A 0 VPS13A 0 MIR4435_1HG 4 
HMBS 0 ZNF577 0 NLRP3 4 
HOXC4 0 ALAS1 1 SRSF3 4 
IFT57 0 ANKRD34B 1 SSPO 4 
IGFBP3 0 AURKA 1 TERF2IP 4 
IMPDH2 0 CKAP2L 1 TMPRSS2:ER

G fusion 
4 

ITGBL1 0 COL9A2 1 AATF 5 
KLK2 0 DNAH5 1 B4GALNT4 5 
KLK3 exons 
2-3 

0 GJB1 1 CADPS 5 

MNX1 1.21 
SSTR1 1.22 
RPL18A 1.23 
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KLK4 0 KLK3 exons 
1-2 

1 CAMKK2 5 

LBH 0 MED4 1 CCDC88B 5 
MAK 0 MEMO1 1 HPN 5 
MCM7 0 MMP26 1 ISX 5 
MDK 0 MNX1 1 ITPR1 5 
Met 0 NAALADL2 1 MFSD2A 5 
MEX3A 0 P712P 1 MMP25 5 
MGAT5B 0 RPS11 1 SEC61A1 5 
MIC1 0 SFRP4 1 HPRT 6 
MKi67 0 SSTR1 1 RIOK3 6 
MMP11 0 SULT1A1 1 SERPINB5 6 
MSMB 0 TBP 1 SIRT1 6 
MYOF 0 TMEM45B 1 ERG3’ exons 6-

7 
7 

NKAIN1 0 UPK2 1 HOXC6 7 
OGT 0 CACNA1D 2 STOM 9 
PALM3 0 CD10 2 APOC1 11 
PCSK6 0 DPP4 2 MCTP1 11 
PECI 0 EN2 2 NEAT1 11 
PPAP2A 0 GCNT1 2 PTPRC 12 
PPFIA2 0 HIST1H2BG 2 SULF2 12 
PPP1R12B 0 MXI1 2 

6.18 Cancer Vs CB 

Supplementary Table 31 Transcripts that have significant differential expression between 

CB and cancer samples (L, I, H) in the baseline normalised NanoString data. 

 MWU glm  
Transcript p-value Adjusted p-

value 
p-value Adjusted p-

value 
Log2(FC) 

HOXC6 0.0002 0.024 0.0014 0.2049 1.64 
ERG3’ exons 6-
7 2.84x10-07 4.74x10-05 0.0008 0.128 1.38 

TMPRSS2:ERG 4.52x10-05 0.0069 0.0013 0.1979 1.31 
SLC43A1 0.0003 0.0406 0.0019 0.2745 1.17 
CLIC2 2.66x10-05 0.0042 0.001 0.1645 1.05 
B4GALNT4 3.38x10-05 0.0053 0.0012 0.1807 1.04 
CADPS 1.37x10-05 0.0022 0.0004 0.0682 1.04 
CKAP2L 0.0116 1 0.0033 0.4318 1.01 
HPN 7.04x10-05 0.0103 0.0006 0.1041 0.97 
LASS1 0.0002 0.022 0.0011 0.1703 0.97 
TDRD 0.0002 0.022 0.0047 0.5935 0.97 
SFRP4 0.0004 0.0478 0.0031 0.4076 0.87 
OR52A2 0.0343 1 0.0284 0.9777 0.85 
ANKRD34B 0.0013 0.1706 0.0093 0.9777 0.83 
MAPK8IP2 0.0063 0.6758 0.0067 0.7955 0.8 
PCA3 0.0004 0.0565 0.0019 0.2745 0.8 
CDKN3 0.024 1 0.011 0.9777 0.76 
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ERG5’ 0.0016 0.2005 0.009 0.9777 0.68 
MFSD2A 1.32x10-05 0.0021 0.001 0.1645 0.66 
MMP25 7.80x10-05 0.0113 0.0008 0.1278 0.66 
APOC1 1.85x10-06 0.0003 0.0004 0.0586 0.65 
TMCC2 0.0126 1 0.0075 0.8811 0.65 
NKAIN1 0.0379 1 0.0429 0.9777 0.62 
SIM2 long 3.72x10-05 0.0057 0.0031 0.4076 0.62 
MCTP1 3.97x10-07 6.59x10-05 0.0002 0.0406 0.61 
ISX 0.0007 0.086 0.0024 0.3365 0.6 
 X? 0.0032 0.3694     0.59 
MMP26 0.0448 1     0.56 
AMH 0.0032 0.3694 0.0335 0.9777 0.55 
SLC12A1 0.0014 0.1798 0.0064 0.7769 0.55 
SULF2 9.18x10-06 0.0015 0.0011 0.1754 0.55 
CCDC88B 6.34x10-05 0.0094 0.0012 0.1785 0.54 
NLRP3 0.0024 0.29 0.002 0.2817 0.54 
UPK2 0.0071 0.7532 0.0147 0.9777 -0.54 
TMEM86A 0.0001 0.0202 0.0019 0.2742 0.53 
CAMKK2 2.13x10-06 0.0003 0.0005 0.0859 0.51 
FOLH1 0.013 1 0.0121 0.9777 0.49 
ANPEP 0.0011 0.1472 0.003 0.4076 0.46 
SRSF3 0.0002 0.0311 0.0038 0.4879 0.45 
MIR146A 0.0019 0.235 0.0023 0.3187 0.44 
GCNT1 0.003 0.353 0.0035 0.4645 0.43 
SIRT1 5.71x10-05 0.0085 0.0012 0.1785 0.41 
SERPINB5 0.031 1     -0.4 
NAALADL2 0.0059 0.6513 0.0308 0.9777 -0.38 
SNORA20 0.0081 0.8455 0.0206 0.9777 0.37 
CDC20 0.0063 0.6758 0.0117 0.9777 0.35 
TMEM45B 0.0253 1     -0.35 
AATF 5.14x10-05 0.0077 0.0014 0.2012 0.34 
IGFBP3 0.0067 0.7136     -0.34 
AURKA 0.0016 0.1909 0.0056 0.6828 0.33 
CD10 0.0014 0.1798 0.0053 0.6649 0.33 
PTPRC 4.62x10-05 0.007 0.0014 0.2012 0.33 
SSTR1 0.0164 1 0.0177 0.9777 0.33 
SEC61A1 0.0002 0.0285 0.0055 0.682 0.32 
SIM2 short 0.0193 1 0.0164 0.9777 0.32 
SNCA 0.0016 0.1909 0.007 0.8231 0.32 
MMP11 0.013 1 0.0222 0.9777 0.31 
SPINK1 0.0032 0.3694 0.0133 0.9777 -0.31 
HPRT 0.0005 0.0666 0.0067 0.7955 0.29 
PSTPIP1 0.046 1 0.0226 0.9777 0.28 
HOXC4 0.0356 1     0.26 
RIOK3 1.03x10-06 0.0002 0.0013 0.1979 0.26 
  0.0469 1     0.25 
  0.0266 1     0.24 
EN2 0.0192 1 0.0282 0.9777 0.24 
MEX3A 0.0224 1 0.0252 0.9777 0.24 
CACNA1D 0.0014 0.1798 0.0054 0.681 0.23 
MIR4435_1HG 3.72x10-05 0.0057 0.0026 0.3533 0.23 
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MXI1 0.0001 0.0168 0.0026 0.3537 0.23 
DPP4 0.0048 0.54 0.0108 0.9777 0.22 
CASKIN1 0.0343 1 0.0315 0.9777 0.21 
HIST3H2A 0.0193 1     0.21 
ITPR1 4.15x10-05 0.0063 0.0019 0.2745 0.21 
NEAT1 1.89x10-05 0.003 0.0009 0.1377 0.21 
STOM 0.0116 1 0.0219 0.9777 0.21 
PDLIM5 0.0007 0.0916 0.0046 0.5856 0.2 
BTG2 0.0037 0.4198 0.0173 0.9777 0.19 
GABARAPL2 0.0003 0.044 0.0025 0.3502 0.19 
HIST1H2BG 0.0048 0.54 0.0064 0.7753 0.19 
MAK 0.0183 1     0.19 
EIF2D 0.0026 0.309 0.0125 0.9777 0.18 
MGAT5B     0.0446 0.9777 0.18 
TBP 0.0063 0.6758 0.0358 0.9777 0.18 
TWIST1 0.0138 1     0.18 
MED4 0.0146 1 0.0361 0.9777 0.17 
TERF2IP 7.80x10-05 0.0113 0.0019 0.2745 0.17 
GAPDH 2.98x10-05 0.0047 0.0007 0.109 0.16 
ACTR5 0.0164 1 0.0123 0.9777 0.15 
B2M 0.0002 0.0285 0.0044 0.5721 0.14 
  0.0438 1     0.11 
SACM1L 0.0266 1 0.0347 0.9777 0.11 
RPL18A 0.0123 1     0.1 
  0.0138 1     0.09 
STEAP4     0.0474 0.9777 0.09 
HIST1H2BF     0.0424 0.9777 0.08 
MEMO1 0.0361 1 0.0357 0.9777 0.08 
RPS11 0.0173 1     0.08 
HMBS     0.0391 0.9777 0.06 
SLC4A1 S     0.0223 0.9777 0.03 
SMAP1 exons 
7-8     0.0458 0.9777 0.03 
 

Supplementary Table 32 Transcripts that have significant differential expression between 

CB and cancer samples (L, I, H) in the KLK2 ratio NanoString data. 

 MWU glm  
Transcript p-value Adjusted p-

value 
p-value Adjusted p-

value 
Log2(FC) 

HOXC6 6.80x10-05 0.01 0.004 0.63 0.21 
ERG3’ exons 6-
7 7.80x10-05 0.01 0.001 0.24 0.18 

TDRD 0.0004 0.06 0.004 0.72 0.18 
SLC43A1 0.002 0.32     0.17 
CADPS 0.004 0.67 0.01 1 0.16 
ERG5’ 0.01 0.99     0.15 
B4GALNT4 0.01 0.87     0.14 
SLC12A1 0.003 0.54 0.03 1 0.13 
TMCC2 0.05 0.99 0.05 1 0.13 
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TMPRSS2:ERG 0.001 0.17 0.01 1 0.13 
CKAP2L 0.02 0.99 0.02 1 0.12 
MFSD2A 0.01 0.99 0.02 1 0.12 
CLIC2 0.004 0.58 0.01 1 0.11 
LASS1 0.01 0.89 0.01 1 0.11 
MMP25 0.01 0.99 0.02 1 0.11 
PCA3 3.72x10-05 0.01 0.003 0.41 0.1 
ANKRD34B 0.04 0.99     0.09 
HPN 0.001 0.23 0.01 1 0.09 
TMEM86A 0.01 0.99 0.03 1 0.09 
NAALADL2 0.03 0.99 0.04 1 -0.09 
UPK2 0.03 0.99     -0.09 
APOC1 0.004 0.65     0.08 
CCDC88B 0.01 0.99 0.05 1 0.08 
ST6GALNAC1 0.03 0.99     -0.08 
ISX 0.01 0.99     0.07 
MCTP1 0.01 0.99 0.03 1 0.07 
MIR146A 0.02 0.99     0.07 
NLRP3     0.03 1 0.07 
SULF2 0.01 0.99     0.07 
SERPINB5 0.03 0.99     -0.06 
SFRP4 0.04 0.99     0.06 
FOLH1 0.03 0.99     0.05 
OR52A2     0.03 1 0.05 
SIM2.long 0.003 0.51 0.01 1 0.05 
CAMKK2 0.004 0.62 0.04 1 0.04 
GCNT1     0.02 1 0.03 
HIST1H2BG     0.04 1 0.03 
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Supplementary Table 33 Transcripts that have significant differential expression between CB and 
cancer samples (L, I, H) in the HK normalised NanoString data. 

 MWU glm  
Transcript p-value Adjusted p-

value 
p-value Adjusted p-

value 
Log2(FC) 

HOXC6 0.0002 0.0374 0.0019 0.3087 1.5 
ERG3’ exons 6-7 0.0006 0.1045 0.0228 0.9861 1.1 
TMPRSS2:ERG 0.0036 0.5527 0.0069 0.9861 1.1 
CP 0.0146 0.9924 0.0109 0.9861 -1 
TDRD 0.001 0.153 0.0105 0.9861 0.9 
NAALADL2 3.33x10-05 0.0056 0.0012 0.2012 -0.8 
SLC43A1 0.0005 0.0895 0.0168 0.9861 0.8 
ST6GALNAC1 0.0008 0.1311 0.0238 0.9861 -0.8 
SPINK1 7.80x10-05 0.0129     -0.7 
UPK2 0.0007 0.1128 0.0026 0.4313 -0.7 
CADPS 0.0083 0.9924 0.0076 0.9861 0.7 
HPN 0.0022 0.3485 0.0072 0.9861 0.7 
MFSD2A 0.0123 0.9924 0.0082 0.9861 0.7 
DNAH5 0.0116 0.9924     -0.7 
IGFBP3 0.0086 0.9924     -0.7 
SERPINB5 0.0003 0.0489 0.0205 0.9861 -0.6 
B4GALNT4 0.0273 0.9924     0.6 
CLIC2 0.0055 0.8138 0.0097 0.9861 0.6 
LASS1 0.0055 0.8138 0.0182 0.9861 0.6 
PCA3 0.0006 0.1045 0.005 0.8153 0.6 
ITGBL1 0.0227 0.9924     -0.6 
CCDC88B 0.024 0.9924 0.0349 0.9861 0.5 
ERG5’ 0.0164 0.9924     0.5 
ISX 0.0169 0.9924 0.0124 0.9861 0.5 
MMP25 0.0071 0.9924     0.5 
AGR2 0.0227 0.9924 0.0348 0.9861 -0.5 
GJB1 0.0024 0.3722 0.0136 0.9861 -0.5 
MCTP1 0.0164 0.9924 0.0349 0.9861 0.4 
PPAP2A 0.0008 0.1311     -0.4 
PPP1R12B 0.0138 0.9924     -0.4 
TMEM86A 0.0037 0.5561 0.0227 0.9861 -0.4 
APOC1 0.003 0.4577 0.0172 0.9861 0.3 
CAMKK2 0.024 0.9924     0.3 
GCNT1 0.0482 0.9924 0.0425 0.9861 0.3 
SIM2 long 0.0109 0.9924 0.0125 0.9861 0.3 
SLC12A1 0.0398 0.9924     0.3 
SULF2     0.0391 0.9861 0.3 
MDK 0.0022 0.3485     -0.3 
MNX1 0.0193 0.9924     -0.3 
OGT 0.0253 0.9924     -0.3 
PALM3 0.0343 0.9924     -0.3 
RAB17 0.0052 0.7725     -0.3 
RPS10 0.0155 0.9924     -0.3 
STEAP2 0.0076 0.9924     -0.3 
MIR146A     0.0347 0.9861 0.2 
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RIOK3 0.0379 0.9924 0.0486 0.9861 0.2 
TMEM86A 0.0155 0.9924     0.2 
HIST1H1C 0.0379 0.9924     -0.2 
IFT57 0.0081 0.9924     -0.2 
IMPDH2 0.0361 0.9924     -0.2 
MSMB 0.0091 0.9924     -0.2 
MYOF 0.0081 0.9924     -0.2 
PTN 0.0266 0.9924     -0.2 
RPL18A 0.0253 0.9924     -0.2 
RPLP2 0.0138 0.9924     -0.2 
RPS11 0.0253 0.9924     -0.2 
ZNF577 0.0193 0.9924     -0.2 
HIST1H1E 0.0438 0.9924     -0.1 
 

 

Supplementary Figure 13 Boxplots of all of the Lasso selected probes involved in CB vs. cancer (L, I, 
and H) models from the baseline normalised data. 
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Supplementary Figure 14 Boxplots of all of the Lasso selected probes involved in CB vs. cancer (L, I, 
and H) models from the KLK2 ratio data. 
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Supplementary Figure 15 Boxplots of all of the Lasso selected probes involved in CB vs. cancer (L, I, 
and H) models from the HK normalised data. 
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Supplementary Table 34 Random Forest results for Ca vs CBN baseline normalisation 

All Transcripts (n = 167) Tanscripts identified by glm (n = 85) Transcripts identified by Mann Whitney U 
(n = 94) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
TMPRSS2:ERG 0.54 167 APOC1 0.57 85 TMPRSS2:ERG  0.78 94 
APOC1 0.53 166 SPINK1 0.47 84 APOC1 0.59 93 
ERG3’ exons 6-7 0.53 165 TMPRSS2:ERG  0.47 83 NEAT1 0.49 92 
NEAT1 0.45 164 RIOK3 0.46 82 RIOK3 0.47 91 
RIOK3 0.41 163 ERG3’ exons 6-7 0.44 81 ERG3’ exons 6-7 0.39 90 
SIM2 long 0.38 162 NEAT1 0.44 80 MCTP1 0.36 89 
MCTP1 0.35 161 SIM2 long 0.39 79 MFSD2A 0.35 88 
SPINK1 0.32 160 MCTP1 0.38 78 CADPS 0.34 87 
CCDC88B 0.28 159 CADPS 0.36 77 SIM2 long 0.28 86 
CADPS 0.27 158 MFSD2A 0.32 76 SPINK1 0.25 85 
MXI1 0.22 157 CCDC88B 0.32 75 CCDC88B 0.24 84 
MFSD2A 0.21 156 CKAP2L 0.24 74 CKAP2L 0.23 83 
MMP25 0.21 155 CAMKK2 0.21 73 GAPDH 0.22 82 
CKAP2L 0.19 154 SLC43A1 0.20 72 MXI1 0.21 81 
HOXC6 0.16 153 MIR4435_1HG 0.19 71 CAMKK2 0.20 80 
SULF2 0.16 152 MMP25 0.19 70 SLC43A1 0.17 79 
MIR4435_1HG 0.15 151 SULF2 0.17 69 MMP25 0.16 78 
SIRT1 0.15 150 HOXC6 0.17 68 AURKA 0.14 77 
CAMKK2 0.14 149 GAPDH 0.16 67 HOXC6 0.14 76 
AURKA 0.13 148 UPK2 0.15 66 HPRT 0.13 75 
GAPDH 0.13 147 ISX 0.14 65 SIRT1 0.13 74 
B4GALNT4 0.11 146 AATF 0.13 64 MIR4435_1HG 0.12 73 
TDRD 0.11 145 TDRD 0.13 63 HPN 0.12 72 
SLC43A1 0.10 144 MXI1 0.12 62 TDRD 0.11 71 
UPK2 0.10 143 AURKA 0.11 61 IGFBP3 0.10 70 
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All Transcripts (n = 167) Tanscripts identified by glm (n = 85) Transcripts identified by Mann Whitney U 
(n = 94) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
HPN 0.09 142 HPRT 0.11 60 SULF2 0.10 69 
IGFBP3 0.09 141 SLC4A1 S 0.10 59 UPK2 0.09 68 
SNCA 0.09 140 HPN 0.09 58 MMP26 0.09 67 
TMEM45B 0.07 139 PCA3 0.09 57 AATF 0.09 66 
AATF 0.07 138 MAPK8IP2 0.09 56 MAPK8IP2 0.09 65 
LASS1 0.07 137 GCNT1 0.09 55 SNCA 0.09 64 
GCNT1 0.06 136 STOM 0.09 54 LASS1 0.09 63 
HPRT 0.06 135 B4GALNT4 0.08 53 CD10 0.08 62 
NAALADL2 0.06 134 SLC12A1 0.08 52 GCNT1 0.08 61 
ISX 0.06 133 PTPRC 0.07 51 TMCC2 0.07 60 
AMH 0.05 132 DPP4 0.07 50 SFRP4 0.07 59 
SLC12A1 0.05 131 CD10 0.06 49 ITPR1 0.06 58 
SLC4A1 S 0.05 130 EN2 0.06 48 EN2 0.06 57 
CACNA1D 0.05 129 SNCA 0.06 47 B4GALNT4 0.06 56 
RPL23AP53 0.05 128 PDLIM5 0.05 46 ERG5’ 0.06 55 
CDC37L1 0.05 127 TMCC2 0.05 45 SLC12A1 0.06 54 
PCA3 0.05 126 SIRT1 0.05 44 ISX 0.06 53 
ACTR5 0.05 125 MGAT5B 0.05 43 PCA3 0.05 52 
PTPRC 0.04 124 SNORA20 0.05 42 PDLIM5 0.05 51 
MMP26 0.04 123 TMEM86A 0.05 41 STOM 0.05 50 
RNF157 0.04 122 LASS1 0.04 40 ACTR5 0.05 49 
MAPK8IP2 0.04 121 HIST1H2BG 0.04 39 DPP4 0.05 48 
STOM 0.04 120 SRSF3 0.04 38 ERG3’ exons 4-5 0.05 47 
CDC20 0.04 119 NAALADL2 0.04 37 TMEM45B 0.04 46 
EN2 0.04 118 AMH 0.04 36 AMH 0.04 45 
SRSF3 0.04 117 STEAP4 0.04 35 NAALADL2 0.04 44 
ERG5’ 0.04 116 CACNA1D 0.04 34 HIST3H2A 0.04 43 
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All Transcripts (n = 167) Tanscripts identified by glm (n = 85) Transcripts identified by Mann Whitney U 
(n = 94) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
SFRP4 0.04 115 ACTR5 0.04 33 TMEM86A 0.04 42 
MYOF 0.04 114 ANKRD34B 0.03 32 FOLH1 0.04 41 
CLIC2 0.04 113 SFRP4 0.03 31 HIST1H2BG 0.04 40 
HIST1H2BG 0.04 112 CDC20 0.02 30 FDPS 0.03 39 
MAK 0.04 111 SEC61A1 0.02 29 CLIC2 0.03 38 
Timp4 0.03 110 CLIC2 0.02 28 MIR146A 0.03 37 
TMEM86A 0.03 109 HIST1H2BF 0.02 27 SRSF3 0.03 36 
PPP1R12B 0.03 108 FOLH1 0.02 26 PTPRC 0.03 35 
STEAP4 0.03 107 ANPEP 0.02 25 MAK 0.03 34 
DPP4 0.03 106 ERG5’ 0.02 24 SEC61A1 0.03 33 
CD10 0.03 105 MIR146A 0.02 23 TWIST1 0.03 32 
SULT1A1 0.03 104 TERF2IP 0.02 22 SERPINB5 0.02 31 
PDLIM5 0.03 103 MED4 0.02 21 NLRP3 0.02 30 
P712P 0.03 102 ITPR1 0.01 20 CDC20 0.02 29 
MSMB 0.03 101 BTG2 0.01 19 RPS11 0.02 28 
ERG3’ exons 4-5 0.03 100 NKAIN1 0.01 18 CACNA1D 0.02 27 
AGR2 0.02 99 MEMO1 0.01 17 SACM1L 0.02 26 
PECI 0.02 98 CASKIN1 0.01 16 RPL18A 0.02 25 
MNX1 0.02 97 SMAP1 exons 7-

8 
0.01 15 ANKRD34B 0.01 24 

PPAP2A 0.02 96 TBP 0.01 14 TERF2IP 0.01 23 
PPFIA2 0.02 95 SIM2 short 0.01 13 GABARAPL2 0.01 22 
PALM3 0.02 94 MEX3A 0.01 12 SNORA20 0.01 21 
ITPR1 0.02 93 CDKN3 0.01 11 MEX3A 0.01 20 
RPS11 0.02 92 SACM1L 0.01 10 HOXC4 0.01 19 
VAX2 0.02 91 MMP11 0.01 9 ALAS1 0.01 18 
EIF2D 0.02 90 OR52A2 0.00 8 CAMK2N2 0.01 17 
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All Transcripts (n = 167) Tanscripts identified by glm (n = 85) Transcripts identified by Mann Whitney U 
(n = 94) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
FOLH1 0.02 89 GABARAPL2 0.00 7 MED4 0.01 16 
PVT1 0.02 88 EIF2D 0.00 6 NKAIN1 0.01 15 
AR.ex9 0.02 87 PSTPIP1 0.00 5 MMP11 0.01 14 
ANKRD34B 0.02 86 SSTR1 0.00 4 ANPEP 0.01 13 
MKi67 0.02 85 NLRP3 0.00 3 ARHGEF25 0.01 12 
MGAT5B 0.02 84 HMBS 0.00 2 CASKIN1 0.01 11 
SNORA20 0.02 83 B2M 0.00 1 B2M 0.01 10 
IMPDH2 0.01 82    OR52A2 0.00 9 
MED4 0.01 81    BTG2 0.00 8 
GJB1 0.01 80    SSTR1 0.00 7 
HIST3H2A 0.01 79    SIM2 short 0.00 6 
CAMK2N2 0.01 78    EIF2D 0.00 5 
OGT 0.01 77    MEMO1 0.00 4 
HIST1H2BF 0.01 76    CDKN3 0.00 3 
DLX1 0.01 75    TBP 0.00 2 
MCM7 0.01 74    PSTPIP1 0.00 1 
SEC61A1 0.01 73       
PSTPIP1 0.01 72       
ARHGEF25 0.01 71       
IFT57 0.01 70       
GOLM1 0.01 69       
TMCC2 0.01 68       
SERPINB5 0.01 67       
TERF2IP 0.01 66       
SPON2 0.01 65       
SSPO 0.01 64       
TMEM47 0.01 63       
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All Transcripts (n = 167) Tanscripts identified by glm (n = 85) Transcripts identified by Mann Whitney U 
(n = 94) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
GABARAPL2 0.01 62       
COL9A2 0.01 61       
RPS10 0.01 60       
SIM2 short 0.01 59       
MIR146A 0.01 58       
MEX3A 0.01 57       
ALAS1 0.01 56       
AMACR 0.01 55       
ITGBL1 0.01 54       
FDPS 0.01 53       
TWIST1 0.01 52       
HMBS 0.01 51       
KLK3 exons 1-2 0.01 50       
KLK4 0.01 49       
TFDP1 0.01 48       
VPS13A 0.01 47       
MEMO1 0.01 46       
ANPEP 0.01 45       
RAB17 0.01 44       
TRPM4 0.01 43       
HIST1H1C 0.01 42       
TBP 0.01 41       
RPL18A 0.01 40       
KLK2 0.01 39       
NKAIN1 0.01 38       
ZNF577 0.01 37       
BTG2 0.01 36       
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All Transcripts (n = 167) Tanscripts identified by glm (n = 85) Transcripts identified by Mann Whitney U 
(n = 94) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
SChLAP1 0.01 35       
PCSK6 0.00 34       
CLU 0.00 33       
RPLP2 0.00 32       
ST6GALNAC1 0.00 31       
OR52A2 0.00 30       
SMIM1 0.00 29       
CDKN3 0.00 28       
MIC1 0.00 27       
ABCB9 0.00 26       
AR.ex4_8 0.00 25       
HIST1H1E 0.00 24       
DNAH5 0.00 23       
SMAP1 exons 7-8 0.00 22       
SYNM 0.00 21       
TERT 0.00 20       
PTN 0.00 19       
NLRP3 0.00 18       
CASKIN1 0.00 17       
BRAF 0.00 16       
Met 0.00 15       
MIATNB 0.00 14       
COL10A1 0.00 13       
HOXC4 0.00 12       
MDK 0.00 11       
SSTR1 0.00 10       
LBH 0.00 9       
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All Transcripts (n = 167) Tanscripts identified by glm (n = 85) Transcripts identified by Mann Whitney U 
(n = 94) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
RP11_97O12.7 0.00 8       
STEAP2 0.00 7       
KLK3 exons 2-3 0.00 5.5       
SACM1L 0.00 5.5       
MARCH5 0.00 4       
CP 0.00 3       
B2M 0.00 2       
MMP11 0.00 1       
	
	
Supplementary Table 35 Random Forest results for comparing cancer samples with clinically benign samples in KLK2 factorised cell data. 

All Transcripts (n = 166) Tanscripts identified by glm (n = 24) Transcripts identified by Mann Whitney U (n = 
33) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
ERG3’ exons 6-7 0.85 166 SLC12A1 0.98 24 HOXC6 1.20 33 
SLC12A1 0.80 165 ERG3’ exons 6-7 0.92 23 SLC12A1 0.76 32 
HOXC6 0.69 164 HOXC6 0.92 22 ERG3’ exons 6-7 0.74 31 
APOC1 0.41 163 PCA3 0.63 21 PCA3 0.51 30 
CKAP2L 0.38 162 HIST1H2BG 0.59 20 APOC1 0.50 29 
HIST1H2BG 0.36 161 CADPS 0.46 19 CKAP2L 0.42 28 

CADPS 0.27 160 
TMPRSS2:ERG 
fusion 0.44 18 

TMPRSS2:ERG 
fusion 0.39 27 

LASS1 0.25 159 CKAP2L 0.43 17 CADPS 0.34 26 
SLC43A1 0.24 158 NAALADL2 0.37 16 HPN 0.34 25 
NAALADL2 0.23 157 SIM2 long 0.36 15 NAALADL2 0.31 24 
PCA3 0.23 156 TDRD 0.35 14 TMEM86A 0.30 23 
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All Transcripts (n = 166) Tanscripts identified by glm (n = 24) Transcripts identified by Mann Whitney U (n = 
33) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
HPN 0.23 155 HPN 0.35 13 UPK2 0.28 22 
SIM2 long 0.21 154 GCNT1 0.34 12 TDRD 0.26 21 
TMPRSS2:ERG fusion 0.19 153 TMEM86A 0.24 11 SIM2 long 0.25 20 
TMEM86A 0.19 152 LASS1 0.24 10 SLC43A1 0.24 19 
ANKRD34B 0.17 151 TMCC2 0.23 9 ST6GALNAC1 0.20 18 
AMACR 0.17 150 CLIC2 0.21 8 LASS1 0.20 17 
TDRD 0.17 149 MMP25 0.20 7 TMCC2 0.18 16 
GCNT1 0.14 148 MFSD2A 0.16 6 ERG5’ 0.18 15 
MFSD2A 0.12 147 MCTP1 0.14 5 SERPINB5 0.18 14 
MCTP1 0.10 146 OR52A2 0.14 4 CLIC2 0.17 13 
CAMKK2 0.10 145 CAMKK2 0.11 3 SFRP4 0.17 12 
CLIC2 0.09 144 CCDC88B 0.09 2 B4GALNT4 0.17 11 
TMCC2 0.09 143 NLRP3 0.05 1 ANKRD34B 0.13 10 
B4GALNT4 0.09 142    CAMKK2 0.10 9 
Timp4 0.09 141    MCTP1 0.09 8 
UPK2 0.09 140    MMP25 0.09 7 
ERG5’ 0.08 139    ISX 0.08 6 
DLX1 0.08 138    FOLH1 0.08 5 
MMP25 0.08 137    MFSD2A 0.07 4 
RNF157 0.08 136    CCDC88B 0.05 3 
AURKA 0.08 135    SULF2 0.03 2 
TERT 0.08 134    MIR146A 0.03 1 
SFRP4 0.07 133       
CP 0.06 132       
NKAIN1 0.06 131       
CCDC88B 0.05 130       
OR52A2 0.05 129       
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All Transcripts (n = 166) Tanscripts identified by glm (n = 24) Transcripts identified by Mann Whitney U (n = 
33) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
AR exons 4-8 0.05 128       
STOM 0.04 127       
ABCB9 0.04 126       
ERG3’ exons 4-5 0.04 125       
SERPINB5 0.04 124       
SULF2 0.04 123       
MAPK8IP2 0.03 122       
AGR2 0.03 121       
ISX 0.03 120       
STEAP2 0.03 119       
CDKN3 0.03 118       
FOLH1 0.03 117       
MMP11 0.03 116       
TMEM45B 0.03 115       
SPINK1 0.03 114       
ITGBL1 0.03 113       
PPAP2A 0.02 112       
MEX3A 0.02 111       
IGFBP3 0.02 110       
PVT1 0.02 109       
P712P 0.02 108       
PPFIA2 0.02 107       
TRPM4 0.02 106       
MSMB 0.02 105       
SLC4A1.S 0.02 104       
PPP1R12B 0.02 103       
AMH 0.02 102       
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All Transcripts (n = 166) Tanscripts identified by glm (n = 24) Transcripts identified by Mann Whitney U (n = 
33) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
ST6GALNAC1 0.02 101       
DPP4 0.02 100       
SNORA20 0.02 99       
TMEM47 0.02 98       
VAX2 0.02 97       
HMBS 0.02 96       
VPS13A 0.01 95       
RPL23AP53 0.01 94       
EN2 0.01 93       
MKi67 0.01 92       
KLK4 0.01 91       
PALM3 0.01 90       
ALAS1 0.01 89       
RPL18A 0.01 88       
SEC61A1 0.01 87       
PTN 0.01 86       
MNX1 0.01 85       
TWIST1 0.01 84       
MGAT5B 0.01 83       
RPS11 0.01 82       
ZNF577 0.01 81       
PSTPIP1 0.01 80       
RIOK3 0.01 79       
KLK3 exons 2-3 0.01 78       
COL10A1 0.01 77       
OGT 0.01 76       
CASKIN1 0.01 75       
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All Transcripts (n = 166) Tanscripts identified by glm (n = 24) Transcripts identified by Mann Whitney U (n = 
33) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
RPS10 0.01 74       
NLRP3 0.01 73       
CLU 0.01 72       
HIST1H1C 0.01 71       
SMIM1 0.01 70       
GJB1 0.01 69       
MIATNB 0.01 68       
CD10 0.01 67       
PDLIM5 0.01 66       
TBP 0.009 65       
MMP26 0.009 64       
CACNA1D 0.009 63       
SPON2 0.009 62       
MCM7 0.009 61       
MEMO1 0.009 60       
ACTR5 0.008 59       
RP11_97O12.7 0.008 58       
ITPR1 0.008 57       
TERF2IP 0.008 56       
STEAP4 0.008 55       
MAK 0.008 54       
SULT1A1 0.007 53       
NEAT1 0.007 52       
MYOF 0.006 51       
MIC1 0.006 50       
KLK3 exons 1-2 0.006 49       
HOXC4 0.005 48       
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All Transcripts (n = 166) Tanscripts identified by glm (n = 24) Transcripts identified by Mann Whitney U (n = 
33) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
SRSF3 0.005 47       
GAPDH 0.005 46       
MDK 0.005 45       
SACM1L 0.005 44       
HIST1H1E 0.005 43       
GABARAPL2 0.005 42       
MIR4435_1HG 0.005 41       
FDPS 0.005 40       
COL9A2 0.004 39       
DNAH5 0.004 38       
LBH 0.004 37       
RAB17 0.003 36       
SChLAP1 0.003 35       
BRAF 0.003 34       
TFDP1 0.003 33       
IFT57 0.003 32       
RPLP2 0.003 31       
HIST3H2A 0.003 30       
SIM2 short 0.002 29       
ANPEP 0.002 28       
AATF 0.002 27       
BTG2 0.002 26       
MXI1 0.002 25       
MED4 0.002 24       
IMPDH2 0.002 23       
SSTR1 0.002 22       
MIR146A 0.002 21       
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All Transcripts (n = 166) Tanscripts identified by glm (n = 24) Transcripts identified by Mann Whitney U (n = 
33) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
Mar-05 0.002 20       
SIRT1 0.002 19       
AR exon 9 0.002 18       
PECI 0.002 17       
SYNM 1.15x10-17 16       
PTPRC 1.07x10-17 15       
GOLM1 8.99x10-18 14       
ARHGEF25 7.55x10-18 13       
CDC37L1 7.11x10-18 12       
CDC20 5.77x10-18 11       
SSPO 4.00x10-18 10       
SMAP1 exons 7-8 3.55x10-18 9       
EIF2D 2.66x10-18 8       
SNCA 1.78x10-18 7       
B2M 4.44x10-19 6       
CAMK2N2 0 3       
HIST1H2BF 0 3       
HPRT 0 3       
Met 0 3       
PCSK6 0 3       
	
Supplementary Table 36 Random Forest results for CB vs Cancer in the RPLP2 and TWIST1 normalised data. 

All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 65) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
HOXC6 0.76 167 ERG3’ exons 6-7 1.05 87 ERG3’ exons 6-7 0.76 65 
SPINK1 0.73 166 APOC1 0.81 86 CCDC88B 0.53 64 
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All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 65) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
NAALADL2 0.67 165 SPINK1 0.65 85 CADPS 0.51 63 
UPK2 0.61 164 CCDC88B 0.57 84 B4GALNT4 0.29 62 
CADPS 0.43 163 CADPS 0.48 83 HOXC6 0.27 61 

ERG3’ exons 6-7 0.34 162 CKAP2L 0.43 82 
TMPRSS2:ERG 
fusion 0.24 60 

HPN 0.32 161 GAPDH 0.37 81 RIOK3 0.19 59 
ISX 0.29 160 CAMKK2 0.36 80 SIM2 long 0.19 58 
CP 0.25 159 AURKA 0.22 79 MIR4435_1HG 0.18 57 
TMPRSS2:ERG fusion 0.24 158 HPN 0.22 78 NEAT1 0.18 56 
PCA3 0.20 157 UPK2 0.21 77 AATF 0.15 55 
TDRD 0.19 156 AATF 0.21 76 SIRT1 0.13 54 
B4GALNT4 0.18 155 B4GALNT4 0.20 75 APOC1 0.12 53 
CKAP2L 0.16 154 IGFBP3 0.18 74 HPRT 0.11 52 
ST6GALNAC1 0.15 153 ISX 0.18 73 MMP25 0.11 51 
SFRP4 0.14 152 TDRD 0.17 72 TDRD 0.10 50 
GCNT1 0.14 151 PCA3 0.17 71 MCTP1 0.09 49 
Timp4 0.13 150 CD10 0.16 70 TMEM86A 0.09 48 
APOC1 0.12 149 CLIC2 0.13 69 CLIC2 0.09 47 
SLC43A1 0.12 148 NAALADL2 0.11 68 SFRP4 0.09 46 
CLIC2 0.11 147 ERG3’ exons 4-5 0.10 67 ERG5’ 0.09 45 
TMCC2 0.11 146 SLC4A1 S 0.10 66 MEX3A 0.09 44 
EN2 0.09 145 CDC37L1 0.09 65 SLC43A1 0.08 43 
AR exon 9 0.08 144 CACNA1D 0.09 64 MFSD2A 0.08 42 
RNF157 0.08 143 HIST1H2BG 0.09 63 SEC61A1 0.07 41 
ANKRD34B 0.08 142 SNORA20 0.08 62 MAK 0.07 40 
CLU 0.08 141 ACTR5 0.08 61 HPN 0.07 39 
MMP25 0.07 140 TERF2IP 0.07 60 SULF2 0.07 38 
SIM2 long 0.07 139 TMCC2 0.07 59 GCNT1 0.06 37 
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All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 65) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
TMEM86A 0.07 138 CDC20 0.06 58 EN2 0.06 36 
HMBS 0.06 137 DPP4 0.06 57 SPINK1 0.06 35 
ERG5’ 0.06 136 TFDP1 0.06 56 PTPRC 0.06 34 
DNAH5 0.06 135 AR exon 9 0.06 55 ANKRD34B 0.05 33 
MSMB 0.05 134 MYOF 0.05 54 IGFBP3 0.05 32 
MFSD2A 0.05 133 RNF157 0.05 53 UPK2 0.05 31 
SERPINB5 0.05 132 AMH 0.05 52 AURKA 0.05 30 
P712P 0.05 131 GABARAPL2 0.05 51 SNCA 0.05 29 
CAMKK2 0.05 130 FOLH1 0.05 50 CACNA1D 0.05 28 
TMEM47 0.04 129 ANPEP 0.05 49 LASS1 0.05 27 
PPFIA2 0.04 128 EN2 0.05 48 GAPDH 0.05 26 
ITGBL1 0.04 127 ST6GALNAC1 0.04 47 CAMKK2 0.04 25 
MNX1 0.04 126 ANKRD34B 0.04 46 B2M 0.04 24 
RIOK3 0.04 125 AMACR 0.04 45 ERG3’ exons 4-5 0.04 23 
GJB1 0.04 124 ERG5’ 0.03 44 SLC12A1 0.04 22 
TWIST1 0.04 123 CP 0.03 43 ITPR1 0.04 21 
SRSF3 0.03 122 EIF2D 0.03 42 MAPK8IP2 0.03 20 
AGR2 0.03 121 MCM7 0.03 41 SRSF3 0.03 19 
PPAP2A 0.03 120 Met 0.03 40 ISX 0.03 18 
PPP1R12B 0.03 119 DNAH5 0.02 39 FOLH1 0.03 17 
STEAP4 0.03 118 SIM2 short 0.02 38 EIF2D 0.03 16 
MYOF 0.03 117 SMAP1 exons 7-8 0.02 37 CDC20 0.03 15 
STEAP2 0.03 116 AGR2 0.02 36 GABARAPL2 0.02 14 
IGFBP3 0.03 115 NLRP3 0.02 35 MXI1 0.02 13 
CCDC88B 0.03 114 KLK2 0.02 34 AMH 0.02 12 
SLC4A1.S 0.03 113 AR exons 4-8 0.02 33 TBP 0.01 11 
SULF2 0.03 112 MAK 0.02 32 PDLIM5 0.01 10 
DLX1 0.03 111 TMEM47 0.02 31 ARHGEF25 0.01 9 
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All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 65) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
SEC61A1 0.03 110 CDKN3 0.02 30 ACTR5 0.01 8 
PECI 0.03 109 RPS11 0.02 29 NLRP3 0.01 7 
HIST1H2BG 0.03 108 PPAP2A 0.02 28 CD10 0.01 6 
LASS1 0.03 107 PALM3 0.02 27 TERF2IP 0.005 5 
NLRP3 0.02 106 RP11_97O12.7 0.02 26 ANPEP 0.004 4 
SULT1A1 0.02 105 CAMK2N2 0.02 25 MIC1 0.004 3 
ACTR5 0.02 104 PECI 0.02 24 CASKIN1 0.003 2 
MDK 0.02 103 FDPS 0.02 23 SACM1L 5.46x10-17 1 
SLC12A1 0.02 102 ARHGEF25 0.02 22    
TMEM45B 0.02 101 HOXC4 0.02 21    
MAK 0.02 100 MARCH5 0.01 20    
SIRT1 0.02 99 TBP 0.01 19    
MAPK8IP2 0.02 98 ABCB9 0.01 18    
MCTP1 0.02 97 B2M 0.01 17    
AATF 0.02 96 ALAS1 0.01 16    
RAB17 0.02 95 DLX1 0.01 15    
MEMO1 0.02 94 BTG2 0.01 14    
PALM3 0.02 93 PCSK6 0.01 13    
TRPM4 0.02 92 SSTR1 0.01 12    
SMIM1 0.02 91 STEAP2 0.01 11    
ABCB9 0.02 90 CLU 0.01 10    
MIR146A 0.02 89 LBH 0.01 9    
IMPDH2 0.02 88 MIATNB 0.01 8    
MGAT5B 0.02 87 COL10A1 0.01 7    
DPP4 0.02 86 COL9A2 0.01 6    
MIR4435_1HG 0.02 85 OGT 0.01 5    
CACNA1D 0.01 84 MEX3A 0.01 4    
CDC20 0.01 83 GOLM1 0.01 3    
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All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 65) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
RPS10 0.01 82 CASKIN1 0.004 2    
CASKIN1 0.01 81 BRAF 0.002 1    
Met 0.01 80       
SPON2 0.01 79       
TERF2IP 0.01 78       
HIST1H1E 0.01 77       
GAPDH 0.01 76       
AURKA 0.01 75       
NKAIN1 0.01 74       
PVT1 0.01 73       
STOM 0.01 72       
VPS13A 0.01 71       
AMH 0.01 70       
COL9A2 0.01 69       
AMACR 0.01 68       
SIM2 short 0.01 67       
CD10 0.01 66       
FDPS 0.01 65       
MMP26 0.01 64       
MXI1 0.01 63       
ARHGEF25 0.01 62       
IFT57 0.01 61       
KLK2 0.01 60       
HOXC4 0.01 59       
KLK4 0.01 58       
MED4 0.01 57       
RPLP2 0.01 56       
CDKN3 0.01 55       
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All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 65) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
CDC37L1 0.01 54       
MMP11 0.01 53       
AR exons 4-8 0.01 52       
RPS11 0.01 51       
SMAP1 exons 7-8 0.01 50       
FOLH1 0.01 49       
GOLM1 0.01 48       
PTN 0.01 47       
HIST3H2A 0.01 46       
ERG3’ exons 4-5 0.01 45       
TERT 0.01 44       
MEX3A 0.01 43       
SYNM 0.01 42       
B2M 0.01 41       
SChLAP1 0.01 40       
RP11_97O12.7 0.01 39       
RPL18A 0.01 38       
GABARAPL2 0.01 37       
HIST1H1C 0.01 36       
BRAF 0.01 35       
SNORA20 0.01 34       
OR52A2 0.01 33       
ANPEP 0.01 32       
PSTPIP1 0.01 31       
RPL23AP53 0.01 30       
COL10A1 0.01 29       
SSTR1 0.01 28       
LBH 0.005 27       
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All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 65) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
ITPR1 0.005 26       
TFDP1 0.005 25       
CAMK2N2 0.004 24       
TBP 0.004 23       
PTPRC 0.004 22       
ZNF577 0.004 21       
MARCH5 0.003 20       
ALAS1 0.003 19       
HPRT 0.003 18       
OGT 0.003 17       
KLK3 exons 1-2 0.002 16       
MCM7 0.002 15       
VAX2 0.002 14       
SSPO 0.002 13       
BTG2 0.002 12       
MIC1 0.002 11       
NEAT1 0.002 10       
MKi67 0.002 9       
MIATNB 0.002 8       
EIF2D 0.002 7       
SACM1L 1.60x10-17 6       
SNCA 1.08x10-17 5       
PCSK6 7.99x10-18 4       
HIST1H2BF 1.78x10-18 3       
KLK3 exons 2-3 4.44x10-19 2       
PDLIM5 0 1       
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6.19 High Risk Vs CB 

Supplementary Table 37 Transcripts that have significant differential expression (using 

glm and MWU tests) between clinically benign and high-risk cancer samples in the 

baseline normalized NanoString data.  

 MWU glm  
Transcript p-value Adjusted p-

value 
p-value Adjusted p-

value 
Log2(FC) 

HOXC6 0.0002 0.0299 0.004 0.6711 2 
ERG3’ exons 6-
7 6.21x10-06 0.001 0.0371 0.9942 1.6 

TDRD 0.0011 0.1558 0.0333 0.9942 1.5 
TMPRSS2:ERG  0.0004 0.0668 0.0386 0.9942 1.3 
B4GALNT4 2.88x10-05 0.0048 0.0409 0.9942 1.2 
SLC43A1 0.002 0.2897 0.0117 0.9942 1.2 
CADPS 6.70x10-05 0.011 0.02 0.9942 1.1 
CLIC2 0.0002 0.0386 0.0087 0.9942 1 
HPN 0.0008 0.1258 0.0092 0.9942 0.9 
LASS1 0.0011 0.1558 0.0103 0.9942 0.9 
MAPK8IP2 0.0148 1 0.0336 0.9942 0.9 
SFRP4 0.0013 0.1919 0.0155 0.9942 0.9 
CKAP2L   0.0392 0.9942 0.9 
CDKN3     0.0326 0.9942 0.9 
ANKRD34B 0.0054 0.7002 0.0368 0.9942 0.8 
ERG3’ exons 4-
5 0.0037 0.5042 0.0434 0.9942 0.8 

APOC1 0.0002 0.0386 0.0055 0.9103 0.7 
ERG5’ 0.0077 0.9678    0.7 
MMP25 0.0045 0.5959 0.0162 0.9942 0.7 
AMH 0.0108 1    0.6 
CCDC88B 0.0007 0.1014 0.0104 0.9942 0.6 
FOLH1 0.0108 1 0.027 0.9942 0.6 
ISX 0.0026 0.3638 0.0234 0.9942 0.6 
MCTP1 0.0001 0.0228 0.0098 0.9942 0.6 
SIM2 long 0.0002 0.0386 0.0124 0.9942 0.6 
SRSF3 0.0234 1 0.0225 0.9942 0.6 
ANPEP 0.0234 1 0.0324 0.9942 0.5 
GCNT1 0.0054 0.7002 0.0209 0.9942 0.5 
MFSD2A 0.0017 0.2364 0.0216 0.9942 0.5 
NLRP3 0.0202 1 0.0277 0.9942 0.5 
SLC12A1 0.0064 0.8317 0.0267 0.9942 0.5 
SULF2 0.0007 0.1014 0.0141 0.9942 0.5 
TMEM86A 0.0005 0.0823 0.022 0.9942 0.5 
AATF 0.0007 0.1014 0.0108 0.9942 0.4 
CAMKK2 0.0007 0.1014 0.0128 0.9942 0.4 
CDC20 0.0202 1 0.0343 0.9942 0.4 
EN2 0.0091 1    0.4 
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ARHGEF25 0.0464 1    0.3 
AURKA 0.0234 1     0.3 
CD10 0.0127 1 0.0481 0.9942 0.3 
HPRT 0.0025 0.3503 0.0255 0.9942 0.3 
MEX3A 0.0045 0.5959 0.0496 0.9942 0.3 
MIC1 0.031 1    0.3 
PTPRC 0.0013 0.1919 0.0116 0.9942 0.3 
RIOK3 5.63x10-05 0.0093 0.0237 0.9942 0.3 
SEC61A1 0.0031 0.4184 0.0341 0.9942 0.3 
SIRT1 0.0025 0.3503 0.0206 0.9942 0.3 
SNCA 0.027 1    0.3 
ACTR5 0.0127 1     0.2 
CACNA1D 0.0202 1 0.0356 0.9942 0.2 
CASKIN1 0.0464 1    0.2 
EIF2D 0.0077 0.9678 0.0297 0.9942 0.2 
GABARAPL2 0.0127 1 0.036 0.9942 0.2 
ITPR1 0.0008 0.1258 0.0091 0.9942 0.2 
MAK 0.0148 1    0.2 
MIR4435_1HG 0.0007 0.1014 0.0169 0.9942 0.2 
MXI1 0.0054 0.7002 0.0206 0.9942 0.2 
NEAT1 0.0002 0.0299 0.0039 0.6541 0.2 
PDLIM5 0.0464 1    0.2 
TBP 0.0202 1     0.2 
B2M 0.0008 0.1258 0.0203 0.9942 0.1 
GAPDH 0.0031 0.4184 0.0111 0.9942 0.1 
SACM1L 0.0234 1     0.1 
TERF2IP 0.0045 0.5959 0.0197 0.9942 0.1 
IGFBP3 0.0464 1     -0.3 
SPINK1 0.0077 0.9678     -0.4 
UPK2 0.0202 1   -0.8 
	
Supplementary Table 38 Transcripts that have significant differential expression (using 

glm and MWU tests) between clinically benign and high-risk cancer samples in the KLK2 

ratio NanoString data. 

 MWU glm  
Transcript p-value Adjusted p-

value 
p-value Adjusted p-

value 
Log2(FC) 

TMPRSS2:ERG 0.004 0.68 0.028 1.000 0.25 
ERG 3’ exons 
6-7 0.000 0.07 0.008 1.000 0.25 
HOXC6 4.28E-05 0.01   0.25 
TDRD 0.001 0.09 0.017 1.000 0.24 
SLC43A1 0.002 0.27 0.022 1.000 0.21 
CADPS 0.007 1   0.18 
B4GALNT4 0.002 0.33 0.035 1.000 0.17 
ERG 5’ 0.027 1   0.16 
SLC12A1 0.013 1   0.15 
ERG 3’ exons 
4-5 0.046 1 0.050 1.000 0.14 
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LASS1 0.015 1 0.029 1.000 0.13 
CLIC2 0.004 0.59 0.027 1.000 0.13 
HPN 0.003 0.49 0.032 1.000 0.11 
ISX 0.017 1   0.11 
APOC1 0.009 1   0.09 
TMEM86A 0.017 1   0.09 
PCA3 0.003 0.49 0.015 1.000 0.08 
CCDC88B 0.027 1   0.08 
SFRP4 0.031 1   0.08 
MCTP1 0.020 1   0.08 
SIM2 long 0.001 0.14 0.028 1.000 0.08 
FOLH1 0.008 1   0.07 
CAMKK2 0.036 1   0.05 
SEC61A1 0.046 1   0.05 
GCNT1 0.027 1 0.043 1.000 0.04 
	
	
Supplementary Table 39 Transcripts that have significant differential expression (using 

glm and MWU tests) between clinically benign and high-risk cancer samples in the HK 

normalised NanoString data. 

 MWU glm  
Transcript p-value Adjusted p-

value 
p-value Adjusted p-

value 
Log2(FC) 

HOXC6 0.0005 0.0882 0.0059 0.9765 1.6 
ERG3’ exons 6-
7 0.0013 0.2186 0.0266 0.9765 1.4 

TDRD 0.0031 0.4948 0.0272 0.9765 1.1 
TMPRSS2:ERG 
fusion 0.0094 1 0.033 0.9765 1.1 

ST6GALNAC1 0.0037 0.5969 0.0168 0.9765 -1 
SLC43A1 0.0013 0.2186 0.0197 0.9765 0.9 
B4GALNT4 0.0202 1     0.8 
HPN 0.0077 1 0.0314 0.9765 0.8 
CADPS 0.0145 1 0.0326 0.9765 0.7 
CCDC88B 0.031 1 0.0482 0.9765 0.7 
SPINK1 0.0007 0.1115 0.0092 0.9765 -0.7 
UPK2 0.0054 0.8564 0.0237 0.9765 -0.7 
CLIC2 0.0108 1 0.0278 0.9765 0.6 
LASS1 0.0202 1 0.0451 0.9765 0.6 
GJB1 0.0108 1 0.0197 0.9765 -0.6 
IGFBP3 0.0464 1    -0.6 
NAALADL2 0.0031 0.4948 0.0133 0.9765 -0.6 
SERPINB5 0.0054 0.8564 0.0199 0.9765 -0.6 
ISX 0.0288 1    0.5 
MMP25 0.0407 1    0.5 
GCNT1 0.0356 1 0.0446 0.9765 0.4 
MCTP1 0.0464 1    0.4 
SIM2 long 0.0234 1 0.0317 0.9765 0.4 
PALM3 0.0108 1 0.0394 0.9765 -0.4 
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APOC1 0.0173 1    0.3 
MSMB 0.0356 1     -0.3 
PPAP2A 0.0077 1    -0.3 
RAB17 0.0356 1    -0.3 
RPS10 0.0464 1    -0.3 
SPON2 0.0464 1     -0.3 
STEAP2 0.0173 1    -0.3 
VAX2 0.0109 1     -0.3 
TMEM86A 0.0464 1     0.2 
IFT57 0.027 1    -0.2 
PTN 0.031 1 0.0491 0.9765 -0.2 
	
	

 

Supplementary Figure 16 Boxplots showing all of the Lasso selected probes in CB Vs. high-risk 
cancer models in baseline normalised cell data. 
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Supplementary Figure 17 Boxplots showing all of the Lasso selected probes in CB Vs. high-risk 
cancer models in KLK2 ratio cell data. 

	

 

Supplementary Figure 18 Boxplots showing all of the Lasso selected probes in CB Vs. high-risk 
cancer models in HK normalised cell data. 
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Supplementary Table 40 Random Forest results for HR-Ca vs CBN. 

All Transcripts (n = 167) Tanscripts identified by glm (n = 51) Transcripts identified by Mann Whitney U 
(n = 65) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
SPINK1 0.70 167 CADPS 0.67 51 ERG3’ exons 6-7 0.76 65 
CADPS 0.69 166 ERG3’ exons 6-7 0.66 50 CCDC88B 0.53 64 
NAALADL2 0.67 165 CCDC88B 0.51 49 CADPS 0.51 63 
HOXC6 0.64 164 RIOK3 0.34 48 B4GALNT4 0.29 62 
HPN 0.57 163 HOXC6 0.27 47 HOXC6 0.27 61 

ERG3’ exons 6-7 0.49 162 B4GALNT4 0.26 46 
TMPRSS2:ERG 
fusion 0.24 60 

UPK2 0.47 161 
TMPRSS2:ERG 
fusion 0.26 45 RIOK3 0.19 59 

TMPRSS2:ERG 
fusion 0.43 160 SIM2 long 0.25 44 SIM2 long 0.19 58 
CP 0.42 159 MIR4435_1HG 0.22 43 MIR4435_1HG 0.18 57 
TDRD 0.39 158 SFRP4 0.21 42 NEAT1 0.18 56 
MNX1 0.39 157 HPRT 0.17 41 AATF 0.15 55 
PCA3 0.36 156 APOC1 0.16 40 SIRT1 0.13 54 
ST6GALNAC1 0.34 155 AATF 0.16 39 APOC1 0.12 53 
TMCC2 0.34 154 NEAT1 0.15 38 HPRT 0.11 52 
SIM2 long 0.34 153 TMEM86A 0.13 37 MMP25 0.11 51 
APOC1 0.34 152 MEX3A 0.13 36 TDRD 0.10 50 
CKAP2L 0.31 151 SLC43A1 0.11 35 MCTP1 0.09 49 
PPFIA2 0.29 150 HPN 0.11 34 TMEM86A 0.09 48 
SERPINB5 0.27 149 SEC61A1 0.10 33 CLIC2 0.09 47 
TMEM45B 0.27 148 SIRT1 0.10 32 SFRP4 0.09 46 
AGR2 0.26 147 CLIC2 0.09 31 ERG5’ 0.09 45 
EN2 0.25 146 GCNT1 0.09 30 MEX3A 0.09 44 
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All Transcripts (n = 167) Tanscripts identified by glm (n = 51) Transcripts identified by Mann Whitney U 
(n = 65) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
ISX 0.25 145 MCTP1 0.08 29 SLC43A1 0.08 43 
GCNT1 0.25 144 MFSD2A 0.08 28 MFSD2A 0.08 42 
MFSD2A 0.24 143 TDRD 0.08 27 SEC61A1 0.07 41 
DNAH5 0.24 142 SULF2 0.06 26 MAK 0.07 40 
SFRP4 0.24 141 PTPRC 0.06 25 HPN 0.07 39 
SLC43A1 0.24 140 GAPDH 0.06 24 SULF2 0.07 38 
B4GALNT4 0.24 139 ISX 0.06 23 GCNT1 0.06 37 
PTN 0.24 138 ANKRD34B 0.05 22 EN2 0.06 36 
GJB1 0.23 137 MMP25 0.05 21 SPINK1 0.06 35 
MMP25 0.23 136 ITPR1 0.04 20 PTPRC 0.06 34 
Timp4 0.22 135 CACNA1D 0.04 19 ANKRD34B 0.05 33 
RIOK3 0.21 134 MXI1 0.04 18 IGFBP3 0.05 32 
MDK 0.21 133 SRSF3 0.04 17 UPK2 0.05 31 
CLU 0.20 132 LASS1 0.03 16 AURKA 0.05 30 
LASS1 0.20 131 B2M 0.03 15 SNCA 0.05 29 
MMP11 0.20 130 SLC12A1 0.03 14 CACNA1D 0.05 28 
ERG3’ exons 4-5 0.19 129 GABARAPL2 0.03 13 LASS1 0.05 27 
VAX2 0.19 128 ERG3’ exons 4-5 0.03 12 GAPDH 0.05 26 
SPON2 0.18 127 EIF2D 0.03 11 CAMKK2 0.04 25 
PPAP2A 0.18 126 MAPK8IP2 0.02 10 B2M 0.04 24 
TMEM47 0.17 125 FOLH1 0.02 9 ERG3’ exons 4-5 0.04 23 
CLIC2 0.17 124 CAMKK2 0.02 8 SLC12A1 0.04 22 
SLC12A1 0.17 123 ANPEP 0.02 7 ITPR1 0.04 21 
COL9A2 0.17 122 CDC20 0.01 6 MAPK8IP2 0.03 20 
ANKRD34B 0.17 121 CKAP2L 0.01 5 SRSF3 0.03 19 
TWIST1 0.17 120 CDKN3 0.01 4 ISX 0.03 18 
SSPO 0.17 119 TERF2IP 0.01 3 FOLH1 0.03 17 
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All Transcripts (n = 167) Tanscripts identified by glm (n = 51) Transcripts identified by Mann Whitney U 
(n = 65) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
MYOF 0.17 118 CD10 0.01 2 EIF2D 0.03 16 
CCDC88B 0.16 117 NLRP3 0.01 1 CDC20 0.03 15 
SIM2 short 0.16 116    GABARAPL2 0.02 14 
DLX1 0.16 115    MXI1 0.02 13 
CAMKK2 0.16 114    AMH 0.02 12 
IGFBP3 0.15 113    TBP 0.01 11 
IFT57 0.15 112    PDLIM5 0.01 10 
MMP26 0.15 111    ARHGEF25 0.01 9 
SNORA20 0.15 110    ACTR5 0.01 8 
RNF157 0.14 109    NLRP3 0.01 7 
TMEM86A 0.14 108    CD10 0.01 6 
MSMB 0.14 107    TERF2IP 0.01 5 
P712P 0.14 106    ANPEP 0.00 4 
PALM3 0.14 105    MIC1 0.00 3 
SLC4A1.S 0.14 104    CASKIN1 0.00 2 
MAPK8IP2 0.14 103    SACM1L 0.00 1 
MCTP1 0.14 102       
ERG5’ 0.14 101       
FOLH1 0.14 100       
AMH 0.13 99       
SEC61A1 0.13 98       
AR.ex9 0.13 97       
ABCB9 0.13 96       
MIR146A 0.13 95       
RPS11 0.12 94       
RAB17 0.12 93       
OR52A2 0.12 92       
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All Transcripts (n = 167) Tanscripts identified by glm (n = 51) Transcripts identified by Mann Whitney U 
(n = 65) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
ACTR5 0.11 91       
RPS10 0.11 90       
Met 0.11 89       
OGT 0.11 88       
STEAP2 0.11 87       
MEX3A 0.11 86       
ITGBL1 0.11 85       
PECI 0.10 84       
SSTR1 0.10 83       
HIST1H1E 0.10 82       
HIST1H2BG 0.10 81       
MGAT5B 0.10 80       
SULF2 0.10 79       
HMBS 0.10 78       
MAK 0.10 77       
AR exons 4-8 0.10 76       
SMAP1 exons 7-8 0.10 75       
CDC37L1 0.09 74       
RPLP2 0.09 73       
AMACR 0.09 72       
NEAT1 0.09 71       
STEAP4 0.09 70       
MED4 0.09 69       
AURKA 0.09 68       
NKAIN1 0.08 67       
GOLM1 0.08 66       
CD10 0.08 65       
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All Transcripts (n = 167) Tanscripts identified by glm (n = 51) Transcripts identified by Mann Whitney U 
(n = 65) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
ZNF577 0.08 64       
GAPDH 0.08 63       
KLK3 exons 1-2 0.08 62       
IMPDH2 0.08 61       
MXI1 0.08 60       
RPL23AP53 0.08 59       
FDPS 0.08 58       
ALAS1 0.08 57       
PPP1R12B 0.08 56       
PCSK6 0.08 55       
NLRP3 0.08 54       
MCM7 0.07 53       
DPP4 0.07 52       
ARHGEF25 0.07 51       
SRSF3 0.07 50       
STOM 0.07 49       
PTPRC 0.07 48       
VPS13A 0.07 47       
CACNA1D 0.07 46       
ANPEP 0.07 45       
MIC1 0.07 44       
CAMK2N2 0.06 43       
AATF 0.06 42       
KLK4 0.06 41       
HIST1H1C 0.06 40       
TRPM4 0.06 39       
KLK3 exons 2-3 0.06 38       
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All Transcripts (n = 167) Tanscripts identified by glm (n = 51) Transcripts identified by Mann Whitney U 
(n = 65) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
PVT1 0.06 37       
BTG2 0.06 36       
TERT 0.06 35       
SIRT1 0.06 34       
HPRT 0.06 33       
MIATNB 0.05 32       
KLK2 0.05 31       
MEMO1 0.05 30       
RPL18A 0.05 29       
COL10A1 0.05 28       
RP11_97O12.7 0.05 27       
GABARAPL2 0.05 26       
LBH 0.04 25       
MKi67 0.04 24       
EIF2D 0.04 23       
SULT1A1 0.04 22       
HOXC4 0.04 21       
CDC20 0.04 20       
HIST3H2A 0.04 19       
CDKN3 0.04 18       
CASKIN1 0.03 17       
MARCH5 0.03 16       
BRAF 0.03 15       
HIST1H2BF 0.03 14       
PSTPIP1 0.03 13       
ITPR1 0.03 12       
TFDP1 0.03 11       
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All Transcripts (n = 167) Tanscripts identified by glm (n = 51) Transcripts identified by Mann Whitney U 
(n = 65) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
TERF2IP 0.03 10       
TBP 0.03 9       
MIR4435 1HG 0.03 8       
SYNM 0.03 7       
SACM1L 0.03 6       
SChLAP1 0.03 5       
SNCA 0.02 4       
SMIM1 0.02 3       
PDLIM5 0.02 2       
B2M 0.01 1       
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Supplementary Table 41 Random Forest results for comparing high-risk cancer samples with clinically benign samples in KLK2 factorised cell data. 

All Transcripts (n = 166) Tanscripts identified by glm (n = 12) Transcripts identified by Mann Whitney U (n = 
25) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
HOXC6 1.66 166 CLIC2 0.80 12 HOXC6 1.73 25 
TDRD 0.33 165 TDRD 0.70 11 FOLH1 0.48 24 
SLC43A1 0.30 164 SLC43A1 0.68 10 CADPS 0.39 23 
FOLH1 0.30 163 SIM2 long 0.65 9 TDRD 0.36 22 
CADPS 0.27 162 ERG3’ exons 6-7 0.58 8 SIM2 long 0.35 21 
SIM2 long 0.26 161 PCA3 0.56 7 CLIC2 0.33 20 
CLIC2 0.24 160 B4GALNT4 0.45 6 SLC43A1 0.30 19 
ERG3’ exons 6-7 0.21 159 HPN 0.40 5 ERG3’ exons 6-7 0.25 18 

HPN 0.19 158 
TMPRSS2:ERG 
fusion 0.34 4 PCA3 0.24 17 

PCA3 0.14 157 GCNT1 0.32 3 APOC1 0.22 16 
B4GALNT4 0.13 156 LASS1 0.23 2 SLC12A1 0.22 15 
APOC1 0.09 155 ERG3’ exons 4-5 0.12 1 B4GALNT4 0.20 14 
NAALADL2 0.09 154    GCNT1 0.11 13 

SLC12A1 0.08 153    
TMPRSS2:ERG 
fusion 0.10 12 

LASS1 0.07 152    TMEM86A 0.10 11 
TMEM86A 0.07 151    SEC61A1 0.10 10 
GCNT1 0.07 150    HPN 0.10 9 
ISX 0.05 149    CCDC88B 0.09 8 
HIST1H2BG 0.05 148    ISX 0.09 7 
DLX1 0.05 147    MCTP1 0.08 6 
Timp4 0.04 146    ERG5’ 0.07 5 
CAMKK2 0.04 145    LASS1 0.07 4 
TMPRSS2:ERG fusion 0.04 144    ERG3’ exons 4-5 0.06 3 
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All Transcripts (n = 166) Tanscripts identified by glm (n = 12) Transcripts identified by Mann Whitney U (n = 
25) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
GJB1 0.04 143    SFRP4 0.03 2 
TMEM45B 0.04 142    CAMKK2 0.03 1 
HIST1H1C 0.04 141       
SMIM1 0.04 140       
MMP25 0.03 139       
VAX2 0.03 138       
UPK2 0.03 137       
SULT1A1 0.03 136       
ABCB9 0.03 135       
SEC61A1 0.03 134       
RNF157 0.03 133       
CKAP2L 0.03 132       
AR exons 4-8 0.03 131       
AURKA 0.03 130       
IGFBP3 0.02 129       
P712P 0.02 128       
SIM2 short 0.02 127       
SFRP4 0.02 126       
GOLM1 0.02 125       
SPINK1 0.02 124       
ERG3’ exons 4-5 0.02 123       
CD10 0.02 122       
ERG5’ 0.02 121       
MGAT5B 0.02 120       
STEAP2 0.02 119       
ANKRD34B 0.02 118       
CP 0.02 117       
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All Transcripts (n = 166) Tanscripts identified by glm (n = 12) Transcripts identified by Mann Whitney U (n = 
25) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
SLC4A1.S 0.02 116       
MNX1 0.02 115       
ST6GALNAC1 0.02 114       
LBH 0.02 113       
COL9A2 0.02 112       
NKAIN1 0.02 111       
SRSF3 0.02 110       
SERPINB5 0.02 109       
KLK3 exons 2-3 0.02 108       
PPP1R12B 0.01 107       
ACTR5 0.01 106       
SPON2 0.01 105       
SULF2 0.01 104       
RPL23AP53 0.01 103       
CAMK2N2 0.01 102       
CDC37L1 0.01 101       
HIST1H2BF 0.01 100       
MIR146A 0.01 99       
TERT 0.01 98       
SACM1L 0.01 97       
ALAS1 0.01 96       
OR52A2 0.01 95       
HIST3H2A 0.01 94       
RPS11 0.01 93       
KLK3 exons 1-2 0.01 92       
NLRP3 0.01 91       
TMEM47 0.01 90       
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All Transcripts (n = 166) Tanscripts identified by glm (n = 12) Transcripts identified by Mann Whitney U (n = 
25) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
MEX3A 0.01 89       
MKi67 0.01 88       
RIOK3 0.01 87       
PSTPIP1 0.01 86       
BRAF 0.01 85       
SSPO 0.01 84       
MDK 0.01 83       
ITGBL1 0.01 82       
AMACR 0.01 81       
VPS13A 0.01 80       
RAB17 0.01 79       
MIC1 0.01 78       
PPAP2A 0.01 77       
KLK4 0.01 76       
SNORA20 0.01 75       
PECI 0.01 74       
PTN 0.01 73       
RPS10 0.01 72       
MFSD2A 0.01 71       
CACNA1D 0.01 70       
PALM3 0.01 69       
MCTP1 0.01 68       
CCDC88B 0.01 67       
AMH 0.01 66       
STOM 0.01 65       
AGR2 0.01 64       
DNAH5 0.01 63       
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All Transcripts (n = 166) Tanscripts identified by glm (n = 12) Transcripts identified by Mann Whitney U (n = 
25) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
HOXC4 0.01 62       
TWIST1 0.01 61       
PDLIM5 0.01 60       
AATF 0.01 59       
PVT1 0.004 58       
B2M 0.004 57       
HPRT 0.004 56       
DPP4 0.004 55       
RPLP2 0.004 54       
MEMO1 0.004 53       
MSMB 0.004 52       
PPFIA2 0.004 51       
COL10A1 0.004 50       
ZNF577 0.004 49       
TRPM4 0.004 48       
MIATNB 0.004 47       
SChLAP1 0.004 46       
GAPDH 0.004 44.5       
RPL18A 0.004 44.5       
TMCC2 0.003 43       
MCM7 0.003 42       
NEAT1 0.003 41       
HIST1H1E 0.003 40       
CLU 0.002 39       
MYOF 0.002 38       
BTG2 0.002 37       
ITPR1 0.002 36       
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All Transcripts (n = 166) Tanscripts identified by glm (n = 12) Transcripts identified by Mann Whitney U (n = 
25) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
CDC20 0.002 35       
STEAP4 0.002 34       
Met 0.002 33       
EN2 0.002 32       
SMAP1 exons 7-8 0.002 31       
SSTR1 0.002 30       
MAPK8IP2 0.002 29       
MAK 0.002 28       
GABARAPL2 0.002 27       
CASKIN1 0.002 26       
MED4 0.002 25       
IFT57 0.002 24       
AR.ex9 0.002 23       
TFDP1 2.17604x10-17 22       
RP11_97O12.7 2.13163x10-17 21       
CDKN3 2.04281x10-17 19.5       
HMBS 2.04281x10-17 19.5       
SNCA 1.77636x10-17 18       
ARHGEF25 1.73195x10-17 17       
OGT 1.59872x10-17 16       
MXI1 1.55431x10-17 15       
MARCH5 1.46549x10-17 14       
MMP11 1.42109x10-17 13       
TERF2IP 1.33227x10-17 12       
SYNM 1.24345x10-17 11       
ANPEP 1.19904x10-17 9.5       
IMPDH2 1.19904x10-17 9.5       
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All Transcripts (n = 166) Tanscripts identified by glm (n = 12) Transcripts identified by Mann Whitney U (n = 
25) 

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
MIR4435_1HG 1.02141x10-17 8       
MMP26 9.32587x10-18 6       
PCSK6 9.32587x10-18 6       
TBP 9.32587x10-18 6       
FDPS 8.43769x10-18 4       
EIF2D 7.10543x10-18 3       
SIRT1 3.9968x10-18 2       
PTPRC 3.55271x10-18 1       
	
Supplementary Table 42 Random Forest results when comparing clinically benign samples to high risk cancer samples using the RPLP2 and TWIST1 

normalised data. 

All Transcripts (n = 167) Tanscripts identified by glm (n = 20) Transcripts identified by polr (n = 35) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
CADPS 0.59 167 HOXC6 0.87 20 SPINK1 0.69 35 
SPINK1 0.58 166 CADPS 0.77 19 HOXC6 0.68 34 
HOXC6 0.50 165 SPINK1 0.77 18 CADPS 0.63 33 
ST6GALNAC1 0.36 164 ERG3’ exons 6-7 0.47 17 ST6GALNAC1 0.27 32 
VAX2 0.27 163 ST6GALNAC1 0.39 16 VAX2 0.26 31 
ERG3’ exons 6-7 0.19 162 NAALADL2 0.34 15 ERG3’ exons 6-7 0.25 30 
NAALADL2 0.18 161 SLC43A1 0.25 14 B4GALNT4 0.23 29 
SLC43A1 0.15 160 CLIC2 0.24 13 NAALADL2 0.22 28 
HPN 0.13 159 TDRD 0.23 12 PPAP2A 0.20 27 
PPAP2A 0.12 158 UPK2 0.22 11 SLC43A1 0.19 26 
UPK2 0.12 157 PTN 0.21 10 HPN 0.16 25 
TDRD 0.12 156 SERPINB5 0.20 9 UPK2 0.15 24 
PTN 0.11 155 PALM3 0.17 8 CLIC2 0.14 23 
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All Transcripts (n = 167) Tanscripts identified by glm (n = 20) Transcripts identified by polr (n = 35) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
TMPRSS2:ERG fusion 0.10 154 GJB1 0.16 7 APOC1 0.14 22 
IFT57 0.10 153 HPN 0.16 6 TDRD 0.13 21 

SERPINB5 0.09 152 
TMPRSS2:ERG 
fusion 0.15 5 ISX 0.13 20 

SFRP4 0.08 151 CCDC88B 0.13 4 IFT57 0.12 19 
GJB1 0.08 150 SIM2 long 0.13 3 TMEM86A 0.12 18 
CLIC2 0.08 149 LASS1 0.11 2 MSMB 0.12 17 
MAPK8IP2 0.08 148 GCNT1 0.09 1 SERPINB5 0.11 16 

B4GALNT4 0.07 147    
TMPRSS2:ERG 
fusion 0.11 15 

ERG5’ 0.06 146    MMP25 0.11 14 
COL9A2 0.06 145    SPON2 0.09 13 
APOC1 0.06 144    STEAP2 0.08 12 
SIM2 long 0.06 143    PALM3 0.08 11 
PECI 0.06 142    GCNT1 0.08 10 
ISX 0.06 141    RAB17 0.08 9 
MSMB 0.06 140    PTN 0.08 8 
CP 0.06 139    SIM2 long 0.07 7 
TMEM86A 0.05 138    RPS10 0.07 6 
MNX1 0.05 137    GJB1 0.07 5 
PALM3 0.05 136    CCDC88B 0.07 4 
IGFBP3 0.04 135    MCTP1 0.05 3 
ANKRD34B 0.04 134    LASS1 0.05 2 
LASS1 0.04 133    IGFBP3 0.05 1 
CCDC88B 0.04 132       
TMCC2 0.04 131       
GCNT1 0.04 130       
FOLH1 0.04 129       
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All Transcripts (n = 167) Tanscripts identified by glm (n = 20) Transcripts identified by polr (n = 35) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
DLX1 0.03 128       
MMP25 0.03 127       
RAB17 0.03 126       
RPL18A 0.03 125       
MDK 0.03 124       
RPS10 0.03 123       
EN2 0.03 122       
RIOK3 0.03 121       
MFSD2A 0.03 120       
KLK3 exons 2-3 0.03 119       
CKAP2L 0.03 118       
PCA3 0.03 117       
PPFIA2 0.02 116       
MCTP1 0.02 115       
MYOF 0.02 114       
RNF157 0.02 113       
CDC37L1 0.02 112       
AMACR 0.02 111       
Timp4 0.02 110       
CDC20 0.02 109       
SEC61A1 0.02 108       
STEAP2 0.02 107       
SRSF3 0.02 106       
STOM 0.02 105       
SPON2 0.02 104       
MKi67 0.02 103       
SMIM1 0.02 102       
ITGBL1 0.02 101       
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All Transcripts (n = 167) Tanscripts identified by glm (n = 20) Transcripts identified by polr (n = 35) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
HOXC4 0.02 100       
PPP1R12B 0.01 99       
KLK4 0.01 98       
ACTR5 0.01 97       
CLU 0.01 96       
AR exon 9 0.01 95       
RP11_97O12.7 0.01 94       
CAMKK2 0.01 93       
TRPM4 0.01 92       
MIR146A 0.01 91       
SIRT1 0.01 90       
GOLM1 0.01 89       
SLC4A1.S 0.01 88       
ZNF577 0.01 87       
RPS11 0.01 86       
PTPRC 0.01 85       
NLRP3 0.01 84       
TMEM47 0.01 83       
CACNA1D 0.01 82       
HMBS 0.01 81       
ABCB9 0.01 80       
PVT1 0.01 79       
SSPO 0.01 78       
ITPR1 0.01 77       
KLK3 exons 1-2 0.01 76       
STEAP4 0.01 75       
PCSK6 0.01 74       
AURKA 0.01 73       
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All Transcripts (n = 167) Tanscripts identified by glm (n = 20) Transcripts identified by polr (n = 35) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
TBP 0.01 72       
SChLAP1 0.01 71       
VPS13A 0.01 70       
NKAIN1 0.01 69       
MIATNB 0.01 68       
FDPS 0.01 67       
OR52A2 0.01 66       
RPL23AP53 0.01 65       
HIST1H2BF 0.01 64       
CAMK2N2 0.01 63       
DPP4 0.01 62       
SMAP1 exons 7-8 0.01 61       
HIST1H1C 0.01 60       
ALAS1 0.01 59       
TMEM45B 0.005 58       
TWIST1 0.005 57       
HIST1H1E 0.005 56       
MMP26 0.004 55       
SNCA 0.004 54       
BRAF 0.004 53       
GABARAPL2 0.004 52       
RPLP2 0.004 51       
MIR4435_1HG 0.004 50       
ERG3’ exons 4-5 0.004 49       
AMH 0.004 48       
ANPEP 0.004 47       
SACM1L 0.004 46       
AGR2 0.004 45       
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All Transcripts (n = 167) Tanscripts identified by glm (n = 20) Transcripts identified by polr (n = 35) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
MEX3A 0.004 44       
MXI1 0.004 43       
MARCH5 0.004 42       
CD10 0.003 41       
EIF2D 0.003 40       
ARHGEF25 0.003 39       
NEAT1 0.003 38       
IMPDH2 0.003 37       
Met 0.002 36       
PSTPIP1 0.002 35       
P712P 0.002 34       
DNAH5 0.002 33       
MAK 0.002 32       
SIM2 short 0.002 31       
SYNM 0.002 30       
MCM7 0.002 29       
TERT 0.002 28       
AR exons 4-8 0.002 27       
PDLIM5 0.002 26       
B2M 0.002 25       
COL10A1 0.002 24       
LBH 2.53x10-17 23       
SULF2 2.18x10-17 22       
MMP11 2.13x10-17 20.5       
SULT1A1 2.13x10-17 20.5       
MGAT5B 1.95x10-17 19       
CASKIN1 1.87x10-17 18       
SLC12A1 1.82x10-17 17       
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All Transcripts (n = 167) Tanscripts identified by glm (n = 20) Transcripts identified by polr (n = 35) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
HIST3H2A 1.78x10-17 15.5       
MIC1 1.78x10-17 15.5       
KLK2 1.69x10-17 14       
BTG2 1.64x10-17 13       
SNORA20 1.60x10-17 11.5       
TFDP1 1.60x10-17 11.5       
HIST1H2BG 1.24x10-17 10       
HPRT 1.15x10-17 8.5       
SSTR1 1.15x10-17 8.5       
AATF 1.02x10-17 7       
TERF2IP 9.77x10-18 6       
CDKN3 9.33x10-18 5       
MED4 8.88x10-18 4       
MEMO1 8.44x10-18 3       
GAPDH 7.99x10-18 2       
OGT 5.33x10-18 1       



9:	APPENDICES	

	 465	

6.20 CB- L-I-H Trend 

Supplementary Table 43 Transcripts that have significant expression trend (using polr and 

glm) across clinically benign, low-risk, intermediate-risk and high-risk cancer samples in 

the baseline normalised cell NanoString data. 

Transcript Glm p-value glm Adjusted 
p-value 

Polr p-value Polr adjusted 
p-value 

AATF 0.0002 0.035 0.0023 0.3326 
ACTR5 0.0114 0.9827 0.0204 0.9931 
AMH 0.0387 0.9827     
ANKRD34B 0.0033 0.4275 0.0065 0.878 
ANPEP 0.0007 0.1031 0.0033 0.4854 
APOC1 2.90x10-06 0.0005 0.0001 0.0246 
ARHGEF25 0.026 0.9827 0.0251 0.9931 
AURKA 0.0066 0.7921 0.0232 0.9931 
B2M 0.0022 0.2821 0.0092 0.9931 
B4GALNT4 7.83x10-06 0.0013 9.95x10-05 0.0166 
BTG2 0.0121 0.9827 0.0398 0.9931 
CACNA1D 0.003 0.3935 0.0184 0.9931 
CADPS 0.0001 0.019 0.0017 0.261 
CAMKK2 5.44x10-05 0.0087 0.0012 0.1813 
CCDC88B 0.0008 0.1059 0.0043 0.6079 
CD10 0.0011 0.158 0.0047 0.6525 
CDC20 0.018 0.9827 0.041 0.9931 
CDKN3 0.0218 0.9827 0.0342 0.9931 
CKAP2L 0.0063 0.7631 0.0163 0.9931 
CLIC2 0.0012 0.1699 0.0071 0.9579 
COL9A2 0.0273 0.9827 0.031 0.9931 
DPP4 0.0385 0.9827     
EIF2D 0.0038 0.4774 0.0197 0.9931 
EN2 0.0141 0.9827 0.0189 0.9931 
ERG3’ exons 4-5 0.0065 0.7819 0.0083 0.9931 
ERG3’ exons 6-7 5.87x10-06 0.001 0.0001 0.0191 
FDPS 0.0231 0.9827     
FOLH1 0.0031 0.3935 0.0055 0.7553 
GABARAPL2 0.0039 0.4932 0.0317 0.9931 
GAPDH 0.0004 0.0542 0.0022 0.3326 
GCNT1 0.0002 0.025 0.0008 0.1318 
HIST1H2BF 0.0265 0.9827 0.0481 0.9931 
HIST1H2BG 0.0092 0.9827 0.026 0.9931 
HOXC6 1.85x10-05 0.003 0.0001 0.0191 
HPN 6.51x10-05 0.0102 0.0007 0.1079 
HPRT 0.0015 0.1973 0.0107 0.9931 
ISX 3.91x10-05 0.0063 0.0004 0.066 
ITPR1 0.0016 0.2177 0.0118 0.9931 
LASS1 0.0002 0.0331 0.0019 0.2854 
MAK 0.0482 0.9827     
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Transcript Glm p-value glm Adjusted 
p-value 

Polr p-value Polr adjusted 
p-value 

MAPK8IP2 0.036 0.9827     
MCTP1 4.10x10-06 0.0007 0.0003 0.0481 
MED4 0.0335 0.9827     
MEMO1 0.0368 0.9827     
MEX3A 0.0046 0.5676 0.0073 0.9736 
MFSD2A 0.0003 0.0379 0.0035 0.4969 
MGAT5B 0.0254 0.9827 0.0352 0.9931 
MIC1 0.0484 0.9827 0.0359 0.9931 
MIR146A 0.021 0.9827     
MIR4435_1HG 0.0018 0.2367 0.0131 0.9931 
MMP11 0.0231 0.9827 0.0497 0.9931 
MMP25 0.0002 0.0277 0.0014 0.2178 
MMP26 0.0317 0.9827 0.032 0.9931 
MXI1 0.0006 0.0855 0.0057 0.7873 
NEAT1 0.0002 0.0265 0.0003 0.047 
NLRP3 0.0012 0.1632 0.0042 0.6027 
PCA3 0.0154 0.9827     
PDLIM5 0.0101 0.9827 0.0468 0.9931 
PSTPIP1 0.0149 0.9827 0.0217 0.9931 
PTPRC 0.0003 0.0504 0.0036 0.5209 
RIOK3 6.64x10-06 0.0011 0.0003 0.0515 
RPL18A 0.04 0.9827     
RPS11 0.0436 0.9827     
SACM1L 0.0239 0.9827 0.0396 0.9931 
SEC61A1 0.001 0.1335 0.0074 0.9864 
SFRP4 0.0054 0.6665 0.0235 0.9931 
SIM2 long 0.0004 0.061 0.0022 0.3237 
SIM2 short 0.0139 0.9827 0.0253 0.9931 
SIRT1 0.0018 0.2367 0.0176 0.9931 
SLC12A1 0.0317 0.9827     
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Supplementary Table 44 Transcripts that have significant expression trend (using polr and 

glm) across clinically benign, low-risk, intermediate-risk and high-risk cancer samples in 

the KLK2 ratio cell NanoString data. 

Transcript Glm p-value glm Adjusted 
p-value 

Polr p-value Polr adjusted 
p-value 

ANKRD34B 0.0112 0.998 0.0374 0.994 
APOC1 0.0178 0.998     
B4GALNT4 0.0216 0.998     
CADPS 0.0052 0.8154 0.0112 0.994 
CAMKK2 0.0385 0.998    
CCDC88B 0.0175 0.998    
CKAP2L 0.0046 0.731 0.0187 0.994 
CLIC2 0.0191 0.998 0.0397 0.994 
ERG3’ exons 4-5 0.0275 0.998 0.0243 0.994 
ERG3’ exons 6-7 2.18 x10-05 0.0036 0.0002 0.0283 
FOLH1 0.0124 0.998 0.0348 0.994 
GCNT1 0.0066 0.998 0.0104 0.994 
HOXC6 1.36x10-05 0.0023 0.0002 0.0406 
HPN 0.0027 0.4419 0.0081 0.994 
ISX 0.0022 0.3607 0.0367 0.994 
LASS1 0.005 0.7872 0.0209 0.994 
MAPK8IP2 0.0215 0.998    
MCTP1 0.0262 0.998 0.0467 0.994 
MEX3A 0.0227 0.998 0.0412 0.994 
MFSD2A 0.0103 0.998    
MIR146A 0.0494 0.998    
MMP25 0.0274 0.998 0.0463 0.994 
NLRP3 0.0386 0.998    
PCA3 0.0182 0.998    
PSTPIP1 0.0274 0.998    
RIOK3 0.0386 0.998    
SEC61A1 0.0337 0.998    
SFRP4 0.0156 0.998 0.0494 0.994 
SIM2 long 0.0031 0.5021 0.0056 0.9028 
SLC43A1 0.0199 0.998    
SNORA20 0.045 0.998    
SULF2 0.0153 0.998    
TDRD 0.0002 0.0263 0.0011 0.1757 
TMCC2 0.0331 0.998    
TMEM86A 0.0079 0.998 0.0184 0.994 
TMPRSS2:ERG  6.86 x10-05 0.0112 0.0007 0.1136 
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Supplementary Table 45 Transcripts that have significant expression trend (using polr and 

glm) across clinically benign, low-risk, intermediate-risk and high-risk cancer samples in 

the HK normalised cell NanoString data. 

Transcript Glm p-value glm Adjusted 
p-value 

Polr p-value Polr adjusted 
p-value 

CADPS 0.0213 0.9941   
CLIC2 0.0333 0.9941   
EN2    0.0463 0.9994 
ERG 3’ exons 6-7 0.0043 0.6877 0.0098 0.9994 
FOLH1 0.0174 0.9941 0.0191 0.9994 
GJB1 0.0215 0.9941    
HOXC6 4.54 x10-6 0.0008 6.37x10-05 0.0106 
LASS1 0.0287 0.9941     
MEX3A 0.0243 0.9941 0.0337 0.9994 
MSMB 0.0334 0.9941    
NAALADL2 0.0018 0.2913 0.0098 0.9994 
PALM3 0.027 0.9941 0.0461 0.9994 
SERPINB5 0.0162 0.9941 0.0425 0.9994 
SIM2 long 0.0032 0.5147 0.0043 0.7056 
SLC43A1 0.0011 0.1895 0.006 0.978 
ST6GALNAC1 0.0049 0.7755 0.0179 0.9994 
TDRD 0.0012 0.2024 0.0034 0.564 
TMEM86A 0.0107 0.9941 0.0337 0.9994 
TMPRSS2:ERG 
fusion 0.004 0.6414 0.0127 0.9994 

UPK2 0.0028 0.4609 0.0077 0.9994 
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Supplementary Figure 19 Boxplots of the Lasso identified transcripts for modeling between clinically 
benign, low-risk, intermediate-risk and high-risk cancer categories in the baseline normalised data. 
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Supplementary Figure 20 Boxplots showing the Lasso selected transcripts for CB-L-I-H trend in 
KLK2 ratio data. 

 

 

Supplementary Figure 21 Transcripts selected by Lasso for showing trend of expression levels across 
clinical categories: clinically benign, low-risk, intermediate-risk and high-risk cancer in the HK 
normalised cell data. 
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Supplementary Table 46 Random Forest rankings for three subsets of transcripts (all 167, the 87 chosen by glm, and the 70 chosen by polr*), for groups 

CB, L, I and H. (*All 70 transcripts identified by polr are were also common to those identified by glm) in the baseline normalization data.  

All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 70) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
ERG3’ exons 6-7 6.60 167 ERG3’ exons 6-7 8.10 87 ERG3’ exons 6-7 5.00 70 
TMPRSS2:ERG 
fusion 4.31 166 APOC1 3.84 86 

TMPRSS2:ERG 
fusion 4.76 69 

RIOK3 2.55 165 SPINK1 2.94 85 NEAT1 3.46 68 
NEAT1 2.32 164 CCDC88B 2.58 84 RIOK3 3.08 67 
CADPS 1.74 163 CADPS 2.36 83 APOC1 2.26 66 
APOC1 1.51 162 B4GALNT4 2.09 82 SIM2 long 2.14 65 
SIM2 long 1.51 161 CAMKK2 2.06 81 CCDC88B 1.84 64 
SPINK1 1.42 160 GAPDH 1.79 80 MCTP1 1.61 63 
MCTP1 1.34 159 CKAP2L 1.45 79 GCNT1 1.55 62 
CCDC88B 1.11 158 TDRD 1.24 78 CADPS 1.49 61 
MFSD2A 1.02 157 CP 1.19 77 HOXC6 1.49 60 
CAMKK2 1.01 156 ISX 1.07 76 MFSD2A 1.45 59 
GCNT1 1.00 155 CD10 1.01 75 SPINK1 1.43 58 
MXI1 0.90 154 HPN 0.99 74 CAMKK2 1.40 57 
TMEM86A 0.89 153 UPK2 0.97 73 SIRT1 1.27 56 
HOXC6 0.86 152 SLC4A1 S 0.93 72 SULT1A1 1.18 55 
CP 0.86 151 PCA3 0.89 71 CKAP2L 1.14 54 
SLC43A1 0.83 150 CACNA1D 0.89 70 LASS1 0.93 53 
SFRP4 0.82 149 AATF 0.83 69 TMEM86A 0.91 52 
B4GALNT4 0.78 148 SNORA20 0.81 68 SLC43A1 0.88 51 
SIRT1 0.72 147 IGFBP3 0.75 67 AURKA 0.87 50 
MIR4435_1HG 0.72 146 ANKRD34B 0.70 66 HPRT 0.85 49 
CKAP2L 0.71 145 CLIC2 0.69 65 MIR4435_1HG 0.80 48 
SULT1A1 0.71 144 SMAP1 exons 7- 0.69 64 B4GALNT4 0.76 47 
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All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 70) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 

8 
LASS1 0.67 143 DLX1 0.66 63 CD10 0.72 46 
MYOF 0.56 142 AURKA 0.65 62 MIC1 0.69 45 
HPN 0.54 141 MYOF 0.64 61 MMP25 0.69 44 
PCA3 0.54 140 ERG3’ exons 4-5 0.62 60 SFRP4 0.58 43 
SNORA20 0.52 139 AMH 0.59 59 ANKRD34B 0.57 42 
SLC4A1 S 0.50 138 TERF2IP 0.58 58 SRSF3 0.56 41 
CD10 0.49 137 AMACR 0.58 57 HIST1H2BF 0.51 40 
SMAP1 exons 7-8 0.49 136 ERG5’ 0.55 56 SULF2 0.50 39 
MMP25 0.45 135 MAK 0.48 55 TDRD 0.50 38 
AMH 0.42 134 ANPEP 0.46 54 CDKN3 0.49 37 
TDRD 0.41 133 DPP4 0.44 53 EN2 0.48 36 
SULF2 0.40 132 NAALADL2 0.44 52 MXI1 0.46 35 
OR52A2 0.39 131 MEX3A 0.43 51 STEAP4 0.46 34 
MIC1 0.39 130 EN2 0.43 50 ITPR1 0.45 33 
HPRT 0.38 129 RNF157 0.41 49 ERG3’ exons 4-5 0.45 32 
HIST1H1E 0.37 128 DNAH5 0.40 48 SNCA 0.44 31 
MAPK8IP2 0.37 127 HIST1H2BG 0.39 47 MEX3A 0.44 30 
UPK2 0.37 126 ACTR5 0.38 46 PSTPIP1 0.44 29 
GAPDH 0.36 125 TFDP1 0.37 45 GAPDH 0.41 28 
AURKA 0.33 124 CDKN3 0.37 44 CACNA1D 0.40 27 
ANKRD34B 0.32 123 MCM7 0.37 43 ISX 0.39 26 
STOM 0.29 122 CDC20 0.36 42 TMCC2 0.38 25 
Timp4 0.29 121 AR exon 9 0.34 41 PTPRC 0.38 24 
DLX1 0.28 120 PALM3 0.33 40 AATF 0.38 23 
EN2 0.27 119 SSTR1 0.31 39 MMP26 0.38 22 
RPL23AP53 0.27 118 AGR2 0.31 38 CLIC2 0.36 21 
ITPR1 0.26 117 ABCB9 0.30 37 COL9A2 0.34 20 
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All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 70) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
ISX 0.26 116 CAMK2N2 0.29 36 TERF2IP 0.33 19 
RNF157 0.25 115 CLU 0.28 35 MMP11 0.31 18 
TMEM45B 0.24 114 BTG2 0.27 34 ACTR5 0.30 17 
FOLH1 0.24 113 ALAS1 0.27 33 ANPEP 0.30 16 
CDKN3 0.24 112 NLRP3 0.27 32 SACM1L 0.30 15 
AATF 0.23 111 TMCC2 0.26 31 HIST1H2BG 0.30 14 
SLC12A1 0.23 110 OGT 0.25 30 PDLIM5 0.28 13 
CACNA1D 0.23 109 EIF2D 0.24 29 NLRP3 0.27 12 
SACM1L 0.23 108 ARHGEF25 0.24 28 HPN 0.27 11 
IGFBP3 0.22 107 FOLH1 0.24 27 MGAT5B 0.26 10 
ACTR5 0.21 106 LBH 0.23 26 FOLH1 0.26 9 
MEX3A 0.20 105 TMEM47 0.22 25 EIF2D 0.21 8 
DPP4 0.20 104 ST6GALNAC1 0.22 24 SIM2 short 0.20 7 
SRSF3 0.20 103 B2M 0.22 23 CDC20 0.20 6 
AR.ex9 0.20 102 Met 0.21 22 BTG2 0.19 5 
ANPEP 0.19 101 RP11_97O12.7 0.19 21 GABARAPL2 0.19 4 
VAX2 0.19 100 PPAP2A 0.19 20 SEC61A1 0.16 3 
ERG5’ 0.19 99 COL9A2 0.18 19 B2M 0.15 2 
COL9A2 0.19 98 COL10A1 0.18 18 ARHGEF25 0.15 1 
AGR2 0.18 97 GOLM1 0.17 17    
CLIC2 0.18 96 PECI 0.16 16    
ABCB9 0.18 95 AR exons 4-8 0.15 15    
DNAH5 0.18 94 CDC37L1 0.15 14    
MSMB 0.18 93 SIM2 short 0.15 13    
STEAP4 0.17 92 TBP 0.14 12    
SSTR1 0.17 91 MIATNB 0.14 11    
HIST1H2BF 0.16 90 PCSK6 0.14 10    
HMBS 0.15 89 MARCH5 0.13 9    
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All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 70) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
SChLAP1 0.15 88 BRAF 0.13 8    
LBH 0.15 87 HOXC4 0.13 7    
PPFIA2 0.15 86 FDPS 0.12 6    
NLRP3 0.15 85 KLK2 0.12 5    
PTPRC 0.15 84 RPS11 0.11 4    
SPON2 0.14 83 CASKIN1 0.11 3    
AMACR 0.14 82 GABARAPL2 0.10 2    
MCM7 0.14 81 STEAP2 0.08 1    
MIR146A 0.14 80       
KLK4 0.14 79       
ALAS1 0.13 78       
MMP26 0.13 77       
PPAP2A 0.13 76       
MNX1 0.13 75       
ERG3’ exons 4-5 0.13 74       
CDC37L1 0.13 73       
NAALADL2 0.13 72       
PSTPIP1 0.12 71       
SSPO 0.11 70       
EIF2D 0.11 69       
CDC20 0.11 68       
CLU 0.11 67       
PALM3 0.11 66       
KLK3 exons 2-3 0.11 65       
TRPM4 0.11 64       
MKi67 0.11 63       
TERF2IP 0.10 62       
HOXC4 0.10 61       
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All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 70) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
COL10A1 0.10 60       
RP11_97O12.7 0.10 59       
SEC61A1 0.10 58       
RAB17 0.10 57       
NKAIN1 0.10 56       
MDK 0.10 55       
SNCA 0.09 54       
MGAT5B 0.09 53       
VPS13A 0.09 52       
MED4 0.09 51       
ARHGEF25 0.09 50       
MAK 0.09 49       
PPP1R12B 0.09 48       
TBP 0.09 47       
SERPINB5 0.08 46       
GJB1 0.08 45       
BTG2 0.08 44       
MEMO1 0.08 43       
HIST3H2A 0.08 42       
TERT 0.08 41       
PVT1 0.08 40       
TFDP1 0.07 39       
P712P 0.07 38       
ZNF577 0.07 37       
Met 0.07 36       
OGT 0.07 35       
AR exons 4-8 0.07 34       
ITGBL1 0.07 33       
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All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 70) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
GOLM1 0.07 32       
FDPS 0.07 31       
MIATNB 0.07 30       
B2M 0.07 29       
RPS10 0.06 28       
ST6GALNAC1 0.06 27       
RPL18A 0.06 26       
IMPDH2 0.06 25       
SMIM1 0.05 24       
HIST1H2BG 0.05 23       
TMCC2 0.05 22       
STEAP2 0.05 21       
RPS11 0.05 20       
IFT57 0.05 19       
BRAF 0.05 18       
TWIST1 0.05 17       
CAMK2N2 0.05 16       
SIM2 short 0.05 15       
MMP11 0.04 14       
HIST1H1C 0.04 13       
PCSK6 0.04 12       
PECI 0.04 11       
PDLIM5 0.04 10       
MARCH5 0.04 9       
CASKIN1 0.04 8       
TMEM47 0.04 7       
RPLP2 0.04 6       
KLK2 0.03 5       
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All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 70) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
GABARAPL2 0.03 4       
PTN 0.03 3       
KLK3 exons 1-2 0.03 2       
SYNM 0.01 1       
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Supplementary Table 47 Random Forest results for trend across clinical categories: CBN-L-I-H in KLK2 factorised data. 

All Transcripts (n = 166) Tanscripts identified by glm (n = 36) Transcripts identified by polr (n = 20) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
PCA3 1.19 166 PCA3 3.36 36 HOXC6 3.58 20 
HOXC6 1.14 165 HOXC6 2.56 35 ERG3’ exons 6-7 2.98 19 

TMPRSS2:ERG fusion 0.89 164 ERG3’ exons 6-7 1.85 34 
TMPRSS2:ERG 
fusion 2.97 18 

ERG3’ exons 6-7 0.88 163 
TMPRSS2:ERG 
fusion 1.81 33 FOLH1 2.30 17 

SLC12A1 0.59 162 FOLH1 1.42 32 TMEM86A 2.09 16 
NAALADL2 0.59 161 TDRD 1.24 31 HPN 2.01 15 
APOC1 0.53 160 APOC1 1.20 30 CKAP2L 1.97 14 
FOLH1 0.50 159 SLC43A1 1.16 29 GCNT1 1.82 13 
CP 0.49 158 TMEM86A 1.15 28 CADPS 1.79 12 
OR52A2 0.49 157 GCNT1 1.11 27 TDRD 1.77 11 
SIM2 long 0.49 156 CKAP2L 1.09 26 MMP25 1.71 10 
TDRD 0.47 155 SIM2 long 1.08 25 SIM2 long 1.54 9 
PALM3 0.45 154 HPN 1.07 24 CLIC2 1.52 8 
SERPINB5 0.44 153 B4GALNT4 1.07 23 ISX 1.48 7 
AR exons 4-8 0.41 152 CADPS 1.02 22 ANKRD34B 1.47 6 
TMEM86A 0.40 151 MAPK8IP2 0.95 21 MCTP1 1.46 5 
MSMB 0.40 150 ANKRD34B 0.91 20 LASS1 1.44 4 
MDK 0.39 149 MMP25 0.90 19 SFRP4 1.40 3 
CKAP2L 0.38 148 SEC61A1 0.90 18 MEX3A 1.30 2 
DLX1 0.37 147 LASS1 0.87 17 ERG3’ exons 4-5 1.08 1 
HPN 0.36 146 CLIC2 0.85 16    
SLC43A1 0.36 145 SULF2 0.82 15    
STEAP2 0.35 144 TMCC2 0.80 14    
IGFBP3 0.34 143 CCDC88B 0.77 13    



9:	APPENDICES	

	 479	

All Transcripts (n = 166) Tanscripts identified by glm (n = 36) Transcripts identified by polr (n = 20) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
SPON2 0.34 142 MEX3A 0.75 12    
LASS1 0.34 141 CAMKK2 0.74 11    
TMEM47 0.34 140 SNORA20 0.72 10    
AGR2 0.33 139 SFRP4 0.72 9    
CADPS 0.32 138 MFSD2A 0.69 8    
MMP11 0.31 137 MCTP1 0.68 7    
GJB1 0.30 136 ERG3’ exons 4-5 0.66 6    
SSTR1 0.30 135 NLRP3 0.62 5    
TMCC2 0.30 134 PSTPIP1 0.59 4    
AMACR 0.30 133 MIR146A 0.58 3    
B4GALNT4 0.29 132 RIOK3 0.54 2    
SULF2 0.29 131 ISX 0.45 1    
GCNT1 0.29 130       
ZNF577 0.28 129       
ANKRD34B 0.28 128       
HIST1H2BG 0.27 127       
SPINK1 0.27 126       
MMP25 0.27 125       
HIST3H2A 0.26 124       
TRPM4 0.26 123       
SLC4A1.S 0.25 122       
SULT1A1 0.25 121       
CDKN3 0.25 120       
Timp4 0.25 119       
ST6GALNAC1 0.25 118       
SNORA20 0.25 117       
EN2 0.25 116       
AR exon 9 0.24 115       
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All Transcripts (n = 166) Tanscripts identified by glm (n = 36) Transcripts identified by polr (n = 20) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
ITGBL1 0.24 114       
UPK2 0.24 113       
MKi67 0.24 112       
SChLAP1 0.24 111       
AMH 0.23 110       
MCTP1 0.23 109       
SFRP4 0.23 108       
MFSD2A 0.23 107       
SIM2 short 0.23 106       
PPP1R12B 0.23 105       
TERT 0.23 104       
RAB17 0.22 103       
NKAIN1 0.22 102       
SMIM1 0.22 101       
P712P 0.22 100       
ERG3’ exons 4-5 0.22 99       
PECI 0.22 98       
ERG5’ 0.22 97       
VAX2 0.22 96       
CLIC2 0.22 95       
RNF157 0.21 94       
CDC37L1 0.21 93       
CCDC88B 0.21 92       
CLU 0.20 91       
MIC1 0.20 90       
TMEM45B 0.20 89       
MNX1 0.20 88       
ISX 0.20 87       
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All Transcripts (n = 166) Tanscripts identified by glm (n = 36) Transcripts identified by polr (n = 20) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
HIST1H1C 0.19 86       
KLK4 0.18 85       
LBH 0.18 84       
COL10A1 0.18 83       
MED4 0.18 82       
HIST1H2BF 0.18 81       
PPAP2A 0.18 80       
ABCB9 0.17 79       
STOM 0.17 78       
DNAH5 0.17 77       
DPP4 0.17 76       
MMP26 0.17 75       
HOXC4 0.16 74       
MGAT5B 0.16 73       
MIR146A 0.16 72       
PCSK6 0.16 71       
CAMKK2 0.16 70       
MARCH5 0.15 69       
RPL23AP53 0.15 68       
IMPDH2 0.15 67       
HPRT 0.15 66       
ACTR5 0.15 65       
MAPK8IP2 0.15 64       
SNCA 0.15 63       
SYNM 0.15 62       
PSTPIP1 0.15 61       
CACNA1D 0.14 60       
PVT1 0.14 59       
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All Transcripts (n = 166) Tanscripts identified by glm (n = 36) Transcripts identified by polr (n = 20) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
HMBS 0.14 58       
SACM1L 0.14 57       
KLK3 exons 2-3 0.14 56       
COL9A2 0.14 55       
SRSF3 0.14 54       
KLK3 exons 1-2 0.13 53       
RPS10 0.13 52       
NLRP3 0.13 51       
RP11_97O12.7 0.13 50       
PPFIA2 0.13 49       
SMAP1 exons 7-8 0.13 48       
MAK 0.13 47       
AATF 0.13 46       
CDC20 0.13 45       
MXI1 0.13 44       
SSPO 0.13 43       
MEX3A 0.13 42       
MCM7 0.12 41       
PDLIM5 0.12 40       
OGT 0.12 39       
GOLM1 0.12 38       
MYOF 0.12 37       
VPS13A 0.12 36       
CASKIN1 0.12 35       
RPS11 0.11 34       
RIOK3 0.11 33       
B2M 0.11 32       
FDPS 0.11 31       
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All Transcripts (n = 166) Tanscripts identified by glm (n = 36) Transcripts identified by polr (n = 20) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
ANPEP 0.11 30       
CD10 0.11 29       
RPL18A 0.11 28       
ITPR1 0.11 27       
SEC61A1 0.11 26       
EIF2D 0.11 25       
TFDP1 0.10 24       
TWIST1 0.10 23       
MEMO1 0.10 22       
RPLP2 0.10 21       
HIST1H1E 0.10 20       
Met 0.10 19       
GABARAPL2 0.10 18       
AURKA 0.10 17       
MIATNB 0.10 16       
ALAS1 0.09 15       
PTN 0.09 14       
STEAP4 0.09 13       
GAPDH 0.09 12       
TERF2IP 0.08 11       
IFT57 0.08 10       
MIR4435_1HG 0.08 9       
TBP 0.08 8       
BRAF 0.07 7       
BTG2 0.07 6       
CAMK2N2 0.07 5       
ARHGEF25 0.07 4       
NEAT1 0.06 3       
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All Transcripts (n = 166) Tanscripts identified by glm (n = 36) Transcripts identified by polr (n = 20) 
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank 
PTPRC 0.05 2       
SIRT1 0.05 1       
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Supplementary Table 48 Random Forest results for CB, low-risk, intermediate-risk and high-risk cancer trend using the RPLP2 and TWIST1 

normalised data. 

All Transcripts (n = 167) Tanscripts identified by glm (n = 19) Transcripts identified by polr (n = 15) 
Transcript MeanDecreaseGini Rank Transcript MeanDecreaseGini Rank Transcript MeanDecreaseGini Rank 
PCA3 1.20 167 HOXC6 3.24 19 HOXC6 3.53 15 
HOXC6 0.81 166 NAALADL2 2.78 18 NAALADL2 3.35 14 

CP 0.79 165 ERG3’ exons 6-7 2.75 17 
TMPRSS2:ERG 
fusion 2.84 13 

PALM3 0.70 164 PALM3 2.47 16 UPK2 2.76 12 
ERG3’ exons 6-7 0.67 163 UPK2 2.34 15 PALM3 2.75 11 

NAALADL2 0.61 162 
TMPRSS2:ERG 
fusion 2.28 14 ERG3’ exons 6-7 2.64 10 

UPK2 0.60 161 ST6GALNAC1 2.11 13 SIM2 long 2.53 9 
TMPRSS2:ERG 
fusion 0.57 160 TMEM86A 2.06 12 TMEM86A 2.47 8 
OR52A2 0.52 159 CADPS 2.00 11 TDRD 2.44 7 
SPINK1 0.51 158 SIM2 long 1.97 10 ST6GALNAC1 2.43 6 
VAX2 0.49 157 SERPINB5 1.79 9 EN2 2.30 5 
TDRD 0.48 156 GJB1 1.76 8 SERPINB5 2.14 4 
CKAP2L 0.44 155 TDRD 1.75 7 FOLH1 1.94 3 
CADPS 0.43 154 LASS1 1.66 6 SLC43A1 1.85 2 
HPN 0.42 153 CLIC2 1.47 5 MEX3A 1.68 1 
AMH 0.42 152 SLC43A1 1.43 4    
HMBS 0.38 151 MSMB 1.40 3    
APOC1 0.37 150 FOLH1 1.22 2    
PPAP2A 0.37 149 MEX3A 1.18 1    
TMEM47 0.37 148       
LASS1 0.34 147       
SIM2 long 0.34 146       
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All Transcripts (n = 167) Tanscripts identified by glm (n = 19) Transcripts identified by polr (n = 15) 
Transcript MeanDecreaseGini Rank Transcript MeanDecreaseGini Rank Transcript MeanDecreaseGini Rank 
ST6GALNAC1 0.33 145       
ISX 0.33 144       
DLX1 0.32 143       
MAPK8IP2 0.31 142       
AR.ex9 0.30 141       
MKi67 0.30 140       
TMEM45B 0.30 139       
TMEM86A 0.29 138       
PTN 0.29 137       
TERT 0.28 136       
EN2 0.28 135       
B4GALNT4 0.28 134       
CAMKK2 0.28 133       
ERG5’ 0.27 132       
IGFBP3 0.27 131       
GCNT1 0.27 130       
MMP11 0.27 129       
AGR2 0.27 128       
MFSD2A 0.26 127       
SFRP4 0.26 126       
NKAIN1 0.26 125       
MDK 0.26 124       
DNAH5 0.26 123       
Timp4 0.25 122       
SLC4A1.S 0.24 121       
SPON2 0.24 120       
GJB1 0.24 119       
KLK4 0.24 118       
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All Transcripts (n = 167) Tanscripts identified by glm (n = 19) Transcripts identified by polr (n = 15) 
Transcript MeanDecreaseGini Rank Transcript MeanDecreaseGini Rank Transcript MeanDecreaseGini Rank 
PPP1R12B 0.24 117       
AMACR 0.24 116       
SLC43A1 0.24 115       
TMCC2 0.24 114       
HOXC4 0.23 113       
ANKRD34B 0.23 112       
SERPINB5 0.23 111       
SChLAP1 0.23 110       
SLC12A1 0.23 109       
MMP25 0.23 108       
CLU 0.23 107       
TWIST1 0.23 106       
MYOF 0.22 105       
Met 0.22 104       
MARCH5 0.22 103       
MIR146A 0.22 102       
FOLH1 0.21 101       
CCDC88B 0.21 100       
COL9A2 0.21 99       
HIST1H2BG 0.20 98       
MNX1 0.20 97       
PCSK6 0.20 96       
AATF 0.20 95       
SMIM1 0.20 94       
PDLIM5 0.20 93       
HPRT 0.20 92       
ACTR5 0.19 91       
KLK3 exons 2-3 0.19 90       
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All Transcripts (n = 167) Tanscripts identified by glm (n = 19) Transcripts identified by polr (n = 15) 
Transcript MeanDecreaseGini Rank Transcript MeanDecreaseGini Rank Transcript MeanDecreaseGini Rank 
HIST1H2BF 0.19 89       
ZNF577 0.19 88       
SRSF3 0.19 87       
ANPEP 0.19 86       
CLIC2 0.18 85       
MAK 0.18 84       
RIOK3 0.18 83       
SIRT1 0.18 82       
SMAP1 exons 7-
8 0.18 81       
VPS13A 0.18 80       
PPFIA2 0.18 79       
ERG3’ exons 4-5 0.17 78       
IMPDH2 0.17 77       
IFT57 0.17 76       
GOLM1 0.17 75       
LBH 0.17 74       
TFDP1 0.17 73       
CDKN3 0.17 72       
ITGBL1 0.17 71       
RP11_97O12.7 0.17 70       
BTG2 0.17 69       
CACNA1D 0.16 68       
HIST1H1C 0.16 67       
MIC1 0.16 66       
CASKIN1 0.16 65       
CDC37L1 0.16 64       
PECI 0.16 63       
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All Transcripts (n = 167) Tanscripts identified by glm (n = 19) Transcripts identified by polr (n = 15) 
Transcript MeanDecreaseGini Rank Transcript MeanDecreaseGini Rank Transcript MeanDecreaseGini Rank 
MMP26 0.16 62       
MCTP1 0.16 61       
MGAT5B 0.15 60       
HIST3H2A 0.15 59       
TRPM4 0.15 58       
HIST1H1E 0.15 57       
RNF157 0.15 56       
ARHGEF25 0.15 55       
SNORA20 0.14 54       
STEAP2 0.14 53       
MEX3A 0.14 52       
CD10 0.14 51       
RAB17 0.14 50       
MCM7 0.14 49       
PTPRC 0.14 48       
PSTPIP1 0.14 47       
SULF2 0.14 46       
SSTR1 0.14 45       
SACM1L 0.14 44       
RPLP2 0.13 43       
KLK3 exons 1-2 0.13 42       
KLK2 0.13 41       
P712P 0.13 40       
SIM2 short 0.13 39       
MSMB 0.13 38       
SEC61A1 0.13 37       
AR.ex4_8 0.13 36       
SULT1A1 0.13 35       
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All Transcripts (n = 167) Tanscripts identified by glm (n = 19) Transcripts identified by polr (n = 15) 
Transcript MeanDecreaseGini Rank Transcript MeanDecreaseGini Rank Transcript MeanDecreaseGini Rank 
SSPO 0.13 34       
OGT 0.13 33       
ALAS1 0.12 32       
RPL23AP53 0.12 31       
STEAP4 0.12 30       
SYNM 0.12 29       
COL10A1 0.12 28       
AURKA 0.12 27       
ABCB9 0.12 26       
NEAT1 0.12 25       
PVT1 0.12 24       
RPS11 0.12 23       
DPP4 0.12 22       
SNCA 0.12 21       
CAMK2N2 0.11 20       
STOM 0.10 19       
RPL18A 0.10 18       
MED4 0.10 17       
GABARAPL2 0.10 16       
RPS10 0.10 15       
FDPS 0.10 14       
CDC20 0.10 13       
MXI1 0.10 12       
ITPR1 0.09 11       
TBP 0.09 10       
MIR4435_1HG 0.09 9       
TERF2IP 0.09 8       
BRAF 0.09 7       
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All Transcripts (n = 167) Tanscripts identified by glm (n = 19) Transcripts identified by polr (n = 15) 
Transcript MeanDecreaseGini Rank Transcript MeanDecreaseGini Rank Transcript MeanDecreaseGini Rank 
MIATNB 0.09 6       
NLRP3 0.08 5       
EIF2D 0.08 4       
GAPDH 0.07 3       
B2M 0.07 2       
MEMO1 0.06 1       



9:	APPENDICES	

	 492	

6.21 Cell vs EV fraction 

Supplementary Table 49 The 129 transcripts that are significantly (post multiple testing 

correction) different between the cell and microvesicular fraction. 

Transcript p-value Adjusted p-value Log2 Fold Change 
NEAT1 1.77E-16 2.94E-14 -0.88 
PTPRC 1.77E-16 2.94E-14 -1.97 
MMP25 2.17E-16 3.58E-14 -1.43 
SULF2 2.48E-16 4.07E-14 -1.69 
HIST1H1C 2.83E-16 4.59E-14 0.25 
MCTP1 2.83E-16 4.59E-14 -1.09 
IFT57 2.93E-16 4.66E-14 0.43 
CCDC88B 2.93E-16 4.66E-14 -1.27 
STOM 2.93E-16 4.66E-14 -1.73 
MFSD2A 3.24E-16 5.12E-14 -1.66 
B2M 3.46E-16 5.44E-14 -0.36 
PSTPIP1 3.96E-16 6.17E-14 -1.44 
APOC1 6.72E-16 1.03E-13 -1.07 
NLRP3 6.72E-16 1.03E-13 -1.64 
MIR4435_1HG 6.94E-16 1.06E-13 -0.43 
MSMB 7.18E-16 1.09E-13 0.29 
KLK2 8.19E-16 1.24E-13 0.55 
AR.ex4_8 9.33E-16 1.40E-13 0.51 
KLK3.ex2_3 1.03E-15 1.53E-13 0.51 
KLK4 1.10E-15 1.63E-13 0.41 
PTN 1.17E-15 1.73E-13 0.76 
BTG2 1.34E-15 1.95E-13 -0.34 
DPP4 1.52E-15 2.20E-13 0.47 
CLIC2 1.52E-15 2.20E-13 -1.35 
STEAP2 1.57E-15 2.25E-13 0.52 
MIR146A 1.74E-15 2.47E-13 -0.96 
PECI 2.04E-15 2.88E-13 0.30 
IMPDH2 2.65E-15 3.70E-13 0.30 
RPLP2 3.77E-15 5.24E-13 0.11 
P712P 6.29E-15 8.69E-13 0.67 
TWIST1 8.38E-15 1.15E-12 0.34 
RP11_97O12.7 8.65E-15 1.18E-12 0.22 
RPS11 9.51E-15 1.27E-12 0.10 
TMEM86A 9.51E-15 1.27E-12 -1.19 
MAK 1.39E-14 1.85E-12 -1.15 
ZNF577 1.43E-14 1.89E-12 0.38 
PPAP2A 1.68E-14 2.20E-12 0.29 
HIST1H2BF 2.16E-14 2.80E-12 0.24 
TERT 2.22E-14 2.87E-12 0.51 
05-Mar 3.04E-14 3.89E-12 0.26 
PCA3 7.66E-14 9.73E-12 0.58 
SERPINB5 9.78E-14 1.23E-11 0.79 
NKAIN1 1.07E-13 1.34E-11 0.57 
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Transcript p-value Adjusted p-value Log2 Fold Change 
SMIM1 1.69E-13 2.09E-11 0.62 
SSPO 1.85E-13 2.27E-11 0.38 
FOLH1 2.28E-13 2.78E-11 0.51 
RPL18A 2.57E-13 3.11E-11 0.17 
FDPS 3.27E-13 3.92E-11 0.19 
AMACR 3.37E-13 4.01E-11 0.50 
OR52A2 3.57E-13 4.22E-11 0.77 
MIC1 4.15E-13 4.85E-11 -0.67 
GABARAPL2 6.86E-13 7.95E-11 0.15 
PDLIM5 7.06E-13 8.12E-11 0.19 
RPS10 7.27E-13 8.29E-11 0.14 
KLK3.ex1_2 7.71E-13 8.71E-11 0.46 
PPFIA2 2.07E-12 2.32E-10 0.65 
SEC61A1 2.40E-12 2.66E-10 -0.46 
MNX1 3.48E-12 3.82E-10 0.40 
CD10 4.24E-12 4.63E-10 0.30 
NAALADL2 5.18E-12 5.59E-10 0.38 
CAMK2N2 6.68E-12 7.14E-10 0.53 
TFDP1 9.35E-12 9.91E-10 0.18 
Met 9.62E-12 1.01E-09 -0.88 
SIM2.long 1.68E-11 1.74E-09 0.65 
COL10A1 2.09E-11 2.15E-09 -0.59 
SSTR1 3.16E-11 3.22E-09 0.24 
CP 4.49E-11 4.54E-09 -0.99 
PCSK6 6.05E-11 6.05E-09 0.40 
Timp4 6.74E-11 6.67E-09 0.61 
VAX2 1.09E-10 1.06E-08 0.36 
CACNA1D 1.09E-10 1.06E-08 0.19 
HOXC6 1.12E-10 1.07E-08 0.81 
SPON2 2.40E-10 2.28E-08 0.34 
AMH 2.60E-10 2.44E-08 0.30 
ARHGEF25 6.56E-10 6.10E-08 0.58 
EIF2D 6.90E-10 6.35E-08 0.12 
SChLAP1 8.67E-10 7.89E-08 0.67 
GJB1 1.01E-09 9.08E-08 0.49 
AURKA 1.17E-09 1.04E-07 -0.35 
HIST3H2A 2.08E-09 1.83E-07 0.37 
RAB17 2.47E-09 2.15E-07 0.38 
HMBS 2.80E-09 2.41E-07 0.25 
MKi67 3.85E-09 3.27E-07 -1.18 
DNAH5 5.02E-09 4.22E-07 0.57 
CKAP2L 8.93E-09 7.41E-07 -0.50 
CASKIN1 1.05E-08 8.65E-07 0.24 
SULT1A1 1.08E-08 8.75E-07 -0.18 
MXI1 1.57E-08 1.24E-06 0.13 
ITPR1 1.57E-08 1.24E-06 -0.14 
MMP11 1.94E-08 1.51E-06 0.30 
HPRT 3.16E-08 2.43E-06 0.18 
SIM2.short 3.30E-08 2.51E-06 0.35 
PALM3 3.62E-08 2.72E-06 0.31 



9:	APPENDICES	

	 494	

Transcript p-value Adjusted p-value Log2 Fold Change 
AGR2 4.06E-08 3.00E-06 0.32 
SYNM 4.87E-08 3.55E-06 0.54 
MDK 1.42E-07 1.02E-05 0.21 
EN2 2.66E-07 1.89E-05 0.36 
MED4 3.15E-07 2.21E-05 0.09 
RNF157 3.58E-07 2.47E-05 0.58 
MGAT5B 7.01E-07 4.76E-05 0.28 
LBH 1.01E-06 6.80E-05 0.28 
IGFBP3 1.06E-06 6.98E-05 -0.56 
TMEM45B 1.30E-06 8.42E-05 -0.28 
HOXC4 1.82E-06 0.0001 0.37 
CLU 2.99E-06 0.0002 0.61 
SNCA 2.99E-06 0.0002 0.15 
MYOF 4.76E-06 0.0003 0.12 
CDC37L1 5.24E-06 0.0003 0.11 
GOLM1 7.66E-06 0.0005 0.39 
SACM1L 1.11E-05 0.0006 0.11 
SFRP4 1.27E-05 0.0007 0.35 
ERG3prime.ex4_5 2.31E-05 0.001 0.64 
LASS1 2.31E-05 0.001 -0.46 
B4GALNT4 2.71E-05 0.001 -0.45 
MEX3A 2.86E-05 0.002 0.39 
STEAP4 4.06E-05 0.002 -0.11 
HPN 4.66E-05 0.002 0.21 
MAPK8IP2 4.74E-05 0.002 -0.45 
TRPM4 7.91E-05 0.004 0.37 
ANPEP 9.04E-05 0.004 -0.18 
TERF2IP 9.50E-05 0.004 0.04 
SRSF3 9.99E-05 0.005 -0.19 
HIST1H1E 0.0002 0.007 0.09 
ANKRD34B 0.0003 0.012 -0.35 
PPP1R12B 0.0003 0.015 0.12 
HIST1H2BG 0.0005 0.021 0.15 
CDC20 0.0009 0.039 0.22 
TMEM47 0.0011 0.043 0.61 
SMAP1.ex7_8 0.0013 0.049 0.14 


