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Abstract: A growing world population and an increasing demand for greater food production 11 
requires that crop losses caused by pests and diseases are dramatically reduced. Concurrently, 12 
sustainability targets mean that alternatives to chemical pesticides are becoming increasingly 13 
desirable. Bacteria in the plant root microbiome can protect their plant host against pests and 14 
pathogenic infection. In particular, Streptomyces species are well-known to produce a range of 15 
secondary metabolites that can inhibit the growth of phytopathogens. Streptomyces are abundant in 16 
soils and are also enriched in the root microbiomes of many different plant species, including those 17 
grown as economically and nutritionally valuable cereal crops. In this review we discuss the 18 
potential of Streptomyces to protect against some of the most damaging cereal crop diseases, 19 
particularly those caused by fungal pathogens. We also explore factors that may improve the 20 
efficacy of these strains as biocontrol agents in situ, as well as the possibility of exploiting plant 21 
mechanisms that enable the recruitment of microbial species from the soil to the root microbiome. 22 
We argue that a greater understanding of these mechanisms may enable the development of 23 
protective plant root microbiomes with a greater abundance of beneficial bacteria such as 24 
Streptomyces species. 25 
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1. Introduction 28 
Cereal crops or 'cereals' are plants belonging to the grass family Poaceae that are grown and 29 

harvested primarily for their edible grain [1]. The economic and social importance of cereal crops 30 
cannot be understated, as they provide fundamental nutrition for the vast majority of the world's 31 
population. Most cereal crops are grown primarily for their grain, which contains a nutritional 32 
starchy endosperm, and forms a staple part of the human diet [1]. However, many cereals can also 33 
be used for the upkeep of animal livestock and their utility is further enhanced by their capacity for 34 
long term storage [1]. The focus of this review is directed at key global cereal crops, for example 35 
maize, wheat, rice, barley, sorghum, millet, oats, and rye [1]. The FAO predicts that 2,609 million 36 
tonnes of such cereal crops were produced in 2018 [2]. 37 

 38 
One of the greatest challenges facing the world today is to match the demand of a rapidly 39 

expanding global population with an increase in food production, whilst simultaneously ensuring 40 
that this is done sustainably and within the limitations of land availability for agriculture [3]. In order 41 
to meet this target, it will be necessary to pursue two intimately linked goals. The first is to increase 42 
crop yield, particularly that of cereal crops, which can be attained through various methods such as 43 
selective breeding, genetic modification as well as carefully controlled irrigation and fertilisation 44 
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regimes [3,4]. The second is to minimise crop losses caused by pests and diseases, which are 45 
conservatively estimated to cause between 20-40% of losses to yield, with further consequences for 46 
livelihoods, public health and the environment [3-7]. The implementation of strategies to achieve the 47 
latter are challenging, particularly as the factors that underpin plant disease are highly complex and 48 
multivariate [6].  49 

 50 
Many different types of organism can infect cereal crops including a range of bacteria, 51 

oomycetes, fungi, viruses and nematodes [8]. Fungal diseases, in particular, are considered to be one 52 
of the most dominant groups of cereal crop pathogens, with agents causing disease at every level of 53 
plant physiology [8,9]. Different fungal infections can thus cause a wide range of symptoms which 54 
can all contribute to yield losses. For example, infection by several fungal pathogens results in the 55 
formation of necrotic lesions on leaves and stems which can eventually lead to leaf senescence and a 56 
reduction in grain quantity; this is the case for rust infections caused by Puccinia species and also for 57 
rice blast fungus, caused by the species Magnoporthe oryzae [8-11]. Rice blast can be incredibly 58 
destructive, and is estimated to be responsible for 30% of losses to rice crops globally [12]. Other 59 
pathogenic soil-borne fungal species invade primarily at the plant roots, causing root rot from the 60 
base of the plant upwards, whilst simultaneously sapping the host plant of its nutrients; this is the 61 
case for the causative agent of wheat Take-all disease, Gaeumannomyces graminis, which in some cases 62 
can eliminate an entire wheat crop [13]. Thus, G. graminis is often cited as the most important root 63 
disease of wheat worldwide [13-16]. Additionally, many fungal species (such as Fusarium spp.) don’t 64 
cause plant senescence, but instead can negatively impact yield by causing a dramatic reduction in 65 
grain quality via the production of high concentrations of mycotoxins [8,17].  66 

 67 
The most widely used method to combat the losses caused by crop disease, is the routine 68 

application of chemical pesticides to crops, with the aim of eliminating or limiting the severity of 69 
disease phenotypes. However, it is increasingly becoming clear that the long-term use of chemical 70 
pesticides can have several negative side-effects. For example, many pesticides can lead to both acute 71 
and chronic toxicity in humans and they are increasingly being shown to cause wide-spread damage 72 
to the wider ecosystem, by impacting non-target organisms such pollinator species and also through 73 
the pollution of soil and water systems [18-20]. The use of chemical pesticides is additionally 74 
hampered by the evolution of microbial resistance. In much the same way that we face a crisis in 75 
modern medicine due to antimicrobial resistance, so too do we face a decline in the effectiveness of 76 
pesticides due to phytopathogen resistance [21,22].  77 

 78 
As a result of the issues and side-effects of using chemical pesticides to control crop diseases, 79 

research is beginning to re-focus on finding alternative solutions to combat pathogenic infection. 80 
Crop rotation has played a vital role in phytosanitation throughout history, and aims to prevent the 81 
accumulation of soil-borne pathogens specific to certain families of plant, by alternating with an 82 
incompatible host [13,23]. However, crop rotation is not always an economically viable strategy for 83 
farmers to adopt. In addition to rotation, selective breeding programs aim to introduce plant disease 84 
resistance genes (for example R genes) into modern cultivars [24-26]. However, in some cases this can 85 
be challenging and there are several crop species for which are there are no resistant cultivars 86 
available [24]. In addition, pathogens can quickly overcome plant host resistance mechanisms, 87 
particularly when resistance is encoded for by a single gene [24]. As an example, rice cultivars that 88 
are resistant to M. oryzae typically become ineffective every 2-3 years [18]. These problems combined, 89 
have led to the search for further alternatives. Increasingly, it is being realised that the 90 
microorganisms living within soil and in close association with plant roots can make large 91 
contributions to plant health and could be engineered as biocontrol agents. 92 

2. Plant-microbe interactions and their effect on plant health 93 
The vast majority of eukaryotes, including plants, interact extensively with a diverse community 94 

of microorganisms. In plants, interactions particularly emerge at the interface between the plant roots 95 
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and the soil environment, whereby bacteria from the soil abundantly colonise the soil layer, known 96 
as the “rhizosphere”, that is immediately surrounding and influenced by the plant root system [27-97 
30]. Several microbial species are also capable of attaching to the root surface (a region called “the 98 
rhizoplane”) and a small subset of the soil community additionally enter the plant root tissue 99 
[28,29,31]. The latter group of microorganisms are adapted to survive within the inter or intracellular 100 
spaces within the plant roots, which are collectively known as the “endophytic compartment” 101 
[28,29,31]. Advances in next generation sequencing (NGS) techniques have facilitated deeper probing 102 
into the microbial ecology of the plant root microbiome. Although abiotic factors such as soil 103 
characteristics appear to influence the composition of the microbiome, it is also clear that host genetics 104 
play a key role in root microbiome assembly and plants are likely to select beneficial species from 105 
their environment [32-35]. Factors such as differences in root architecture can influence this assembly 106 
process [31,36]. Additionally, around 20-40 % of photosynthetically fixed carbon is exuded from 107 
plants into the rhizosphere; these exudates include a broad range of organic compounds that can be 108 
utilized by microorganisms and may help to select certain species from the soil community 109 
[27,31,37,38].  110 

 111 
It has been known for some time that both soil and plant-associated microbes can contribute to 112 

plant health, since the presence of certain microbial species can result in a reduction in plant disease 113 
incidence and severity [39-42]. Additionally, specific isolates from the plant root microbiome produce 114 
a range of secondary metabolites that can inhibit plant pathogens both in vitro and in vivo 115 
[15,18,20,40]. In particular, the potential of a Gram positive genus of Actinobacteria, called 116 
Streptomyces, has drawn the attention of many in the scientific and industrial communities. 117 
Streptomycetes are saprotrophic organisms, best known for their role as producers of clinically useful 118 
antibiotics, of which they are responsible for approximately 55% [43-45]. This genus is characterised 119 
by their polar filamentous growth, their spore-forming capabilities and, particularly, their extensive 120 
secondary metabolism [43,45,46]. These secondary metabolites are known to have a diverse range of 121 
activities and have been used for a wide range of applications including as antibacterials, antifungals, 122 
anti-cancer and anti-helminthic drugs [43,45]. Since Streptomyces are abundant in soil and have been 123 
shown to suppress a range of phytopathogenic organisms both in vitro and in vivo, these organisms 124 
are gaining interest as potential biocontrol agents, that could be used in place of conventional 125 
chemical treatments [20,47]. In this review, we specifically focus on reviewing research that 126 
investigates the role that Streptomyces can play in inhibiting pathogens of cereal crops, particularly 127 
fungal pathogenic species. We focus on this in particular, due to the global importance of cereal crops, 128 
the large socioeconomic impacts of yield losses caused by fungal disease and the lack of other 129 
alternatives for controlling many of these pathogens. Several excellent reviews [e.g. 18,20,47,48] have 130 
discussed the general potential of Streptomyces as biocontrol agents or their application to one specific 131 
crop species and we extend this literature by specifically focusing on cereal crops. 132 

3. Streptomyces - plant interactions 133 
The evolution of the first true streptomycetes approximately 450 million years ago is thought to 134 

have been largely stimulated by the transition of plants onto land, approximately 550 million years 135 
ago [44]. Millions of years of plant-streptomycete interactions may explain why Streptomyces are often 136 
found to be abundant in the rhizosphere and roots of a variety of different plant species. For example, 137 
Streptomyces have been shown to be enriched in the roots and rhizosphere of Arabidopsis thaliana 138 
[33,34,49], as well as in important crop species such as potatoes [50], rice [51], wheat [52,53] and 139 
oilseed rape [35]. A long period of coevolution with plants might also have resulted in several aspects 140 
of the growth and metabolism of this genus. For example, selective pressures to break down plant 141 
material are thought to have driven the evolution of a saprotrophic and filamentous lifestyle, which 142 
would have enabled early streptomycetes to penetrate living and dead plant material in order to 143 
access otherwise unavailable nutrients stored in complex molecules such as cellulose [44,54]. This 144 
may have eventually led to an endophytic lifestyle and, indeed, fluorescent microscopy has shown 145 
that streptomycetes can exist endophytically within the roots of several different plant species, 146 
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including lettuce, wheat and pea, and that they may be able to penetrate plant roots by entering 147 
openings that occur at the bases of root hairs and lateral roots [53,55-57]. Streptomyces are also capable 148 
of producing an array of cellulolytic and hydrolytic enzymes which might allow forced entry into 149 
plant material, by breaking down the epidermal cell walls and middle lamellae between plant cells 150 
[20]. Their ability to produce a diverse array of antimicrobial secondary metabolites, may additionally 151 
allow them to compete for niche space and the carbon-rich resources that are exuded by plants.  152 

 153 
Given their ability to colonise plant roots and produce potent antimicrobial secondary 154 

metabolites, the genus Streptomyces are becoming an increasingly obvious choice when looking for 155 
novel biocontrol agents (Table 1). This is particularly the case as, in addition to contributing to plant 156 
protection, members of this genus are frequently found to contribute to plant growth promotion 157 
(PGP), under both ambient and stressful environmental conditions such as high salinity [20,44,58-60]; 158 
these additional benefits could form the basis for highly desirable biocontrol agents that can both 159 
enhance plant growth and protect against disease. 160 

 161 

Table 1. Economically important cereal crop pathogens and associated biocontrol studies involving 162 
Streptomyces species. 163 

Pathogen Cereal crop host  Symptoms Impact 
Streptomyces as 

biocontrol  

Magnaporthe 
oryzae (Rice 

blast) 
Rice, Wheat Panicle, leaf and 

head blast. 

Yield losses and 
mycotoxin 

contamination 

Greenhouse and 
in vitro studies. 

[18,61,62] 

Fusarium spp. All cereals 

Head, root, 
crown and stem 

blight in 
addition to wilt 

and grain 
contamination. 

Yield losses and 
mycotoxin 

contamination 

Greenhouse, in 
vitro and field 

studies. 
[63-70] 

Rhizoctonia solani All cereals 

Seed damping 
off, and infection 

of stems, roots 
and foliage. 

Yield losses and 
reduction in 

grain quality. 

In vitro and 
growth chamber 

studies  
[60,62,67,71-74] 

Gaumannomyces 
graminis 

(Wheat Take-all) 

Wheat, Barley, 
Rye, Rice, Oat, 

Maize 

Root lesions and 
rot that spreads 

upwards to 
aerial parts of 

the plant. 

Yield losses 

In vitro and 
greenhouse 

studies. 
[15,53] 

 

Pythium spp. Wheat, Barley, 
Rice, Maize 

Seed damping 
off, as well as 
root and stem 

rot. 

Yield losses 

In vitro and 
growth chamber 

studies. 
[72,75] 

 164 
It is important for us to note that, although many Streptomyces are either beneficial or passive 165 

colonisers of the plant microbiome, certain species have evolved a phytophathogenic lifestyle. 166 
Perhaps the most well-studied example is Streptomyces scabei, the causative agent of common potato 167 
scab [76-78]. Several virulence factors have been found to be associated with this disease-causing 168 
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lifestyle, including small molecules such as coronafacic acid and thaxtomin, the latter of which is 169 
located on a pathogenicity island within the genome of plant-pathogenic strains [79]. Only a handful 170 
of Streptomyces species have these genes, and it is suggested that their acquisition was a singular event 171 
and does not represent the interactions that are characteristic of plant-Streptomyces relationships. 172 
Indeed, out of over 500 isolated Streptomyces species, only 10 are deemed to be pathogenic [20,80]. 173 
Thus, there is a huge diversity of strains that could be screened for their potential to act as beneficial 174 
biocontrol agents. In the following sections we review the multitude of ways in which Streptomyces 175 
species can contribute to the suppression of cereal crop diseases, both directly and indirectly. We also 176 
extend this to a discussion of how such strains might be applied to cereal crops in practice, and the 177 
factors that can influence the competitiveness and efficacy of biocontrol agents and thus need to be 178 
considered during the development of such strains as biocontrol agents. 179 

3.1 Streptomyces in disease suppressive soils 180 
Streptomyces can confer plant host protection against pathogens in the soil, rhizosphere and 181 

endosphere directly, through the production of antimicrobial compounds or via specific enzymes 182 
[46]. Disease suppressive soils are perhaps some of the best known examples of microbial-based 183 
defense against soil-borne pathogens, and several studies have used these soils as a source of novel 184 
bioactive microbial strains [39,42]. Suppressive soils are those in which plants are protected from 185 
infection, due to the antagonistic activities of a community of microorganisms, or a specific microbial 186 
species, found in the soil and rhizosphere community [39]. They often occur in areas in which there 187 
has been continuous monoculture, and can be disrupted by particular farming practices such as crop 188 
rotation [39,42,64]. The mechanisms underpinning suppressiveness are only just beginning to be 189 
understood, but antibiotic-producing Streptomyces species have often been found to be enriched in 190 
these soils; a combination of metagenomics, strain isolation, genome sequencing and genome mining, 191 
has enabled the isolation of contributing species and their associated bioactive compounds [64,81-84]. 192 
For example, the strain Streptomyces S4-7 was originally isolated from a Korean soil that showed 193 
suppressiveness against Fusarium wilt disease [64]. Following genome sequencing, this strain was 194 
found to encode 35 biosynthetic gene clusters encoding putative antimicrobial agents. A novel 195 
thiopeptide was purified and shown to have potent inhibitory activity against fungal cell wall 196 
biogenesis in Fusarium, suggesting natural products such as this may be contributing to the disease 197 
suppressive nature of the original soil [64]. Streptomyces species were also found to make a major 198 
contribution to the suppressiveness of light coloured Sphagnum peat in Finland, which inhibits the 199 
development of a range of soil-borne pathogens, including Rhizoctania solani and Fusarium spp., and 200 
is therefore commonly adopted for glasshouse cultivation [39,85]. An analysis of the microbial 201 
composition of this soil led to the isolation of the bioactive strain Streptomyces griseoviridis; this was 202 
then used to formulate the broad-spectrum biofungicide Mycostop® which is active against a number 203 
of crop diseases, including wheat head blight caused by Fusarium species [66]. 204 

3.2 Antimicrobials against phytopathogens of cereal crops 205 
In addition to disease suppressive soils, there have been many efforts to isolate strains of 206 

Streptomyces from other environments that are capable of inhibiting some of the most detrimental 207 
cereal crop pathogens. Many studies have found Streptomyces species that can inhibit a range of 208 
phytopathogens in vitro, including Magnaporthe oryzae (responsible for rice blast), Gaeumannomyces 209 
graminis var. tritici (the cause of wheat take-all fungus), Fusarium species (responsible for head blight, 210 
root rot, wilt and grain contamination in a variety of species), as well as Rhizoctani solani (a soil-borne 211 
pathogen with a wide host range) [8,15,18,62,67] (Table 1). However, such inquiries only form the 212 
beginning of a chain of experiments required to identify novel biocontrol agents. In soil, Streptomyces 213 
bacteria interact with a diverse community of both prokaryotic and eukaryotic organisms which may 214 
alter their competitive ability and potential to produce antimicrobial compounds. Thus, there is a real 215 
need to demonstrate that isolates can also confer plant protection in vivo, both in green house 216 
experiments and in field trials. 217 

 218 
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Several greenhouse and growth chamber experiments have been carried out with bioactive 219 
compounds purified from cultures of Streptomyces species (Table 1). For example, a soil isolate, named 220 
N2, was shown to inhibit a broad spectrum of phytophathogenic fungi in vitro, including the mycelial 221 
growth of R. solani as well as the germination of its sclerotia [71,74]. Sclerotia mediate the dispersal, 222 
propagation and long-term survival of the fungus in soil and are persistent under unfavourable 223 
environmental conditions [71,74]. A novel antifungalmycin was found to be responsible for the 224 
inhibitory effects of N2 [74] and, when directly applied, was also able to reduce the symptoms of 225 
sheath blight on rice leaves and in pot experiments [71]. Another study has shown that culture 226 
filtrates of the strain Streptomyces globisporus JK-1 can control M. oryzae more effectively than 227 
tricyclazole, a commonly used chemical fungicide for the control of rice blast fungus [61]. Indeed, 228 
several antifungal compounds purified from Streptomyces species have been commercialized as 229 
fungicides against M. oryzae infections, for example, Kasugamycin (isolated from S. kasugaensis), is 230 
commercially produced under the trade name Kasumin, and is used in Japan to protect against rice 231 
blast disease [18].  232 

 233 
Other studies have used live strains of Streptomyces during in vivo trials rather than purified 234 

bioactive compounds [15,18,63,65] (Table 1). For example, the strain Streptomyces BN1, isolated from 235 
rice grains contaminated with Fusarium, was able to mitigate the reduction in seedling length caused 236 
by Fusarium when applied as a spore preparation to seeds. BN1 also significantly reduced Fusarium 237 
head blight symptoms when sprayed onto wheat heads [63], suggesting that the application of viable 238 
spores can be an effective way to reduce the competitive ability of pathogenic strains. Spore-coatings 239 
were also used in a study investigating the ability of Streptomyces species (isolated from healthy cereal 240 
crops) to inhibit wheat take-all infection by G. graminis var. tritici [15]. Spore-coated seeds 241 
significantly reduced wheat infection in field soils that were infested with the take-all fungus [15]; 242 
this may have been aided by the ability of these strains to colonise the endophytic compartment of 243 
wheat roots [53]. There is currently a lack of wheat cultivars with resistance to G. graminis and 244 
chemical agents are variable in their ability to control the disease [13,15,42]. Pseudomonas species have 245 
been investigated as potential biocontrol agents against take-all, but often these strains only colonise 246 
wheat plants during the early stages of growth before being out-competed, and they are also sensitive 247 
to desiccation [15,42]. Streptomyces may make a viable alternative, since their saprotrophic and spore-248 
forming lifestyle means that they survive well under unfavourable conditions [46]. They can also 249 
colonise the mature roots of cereal crops [15].  250 

3.3 Enzymatic control of phytopathogens: chitinases 251 
The majority of Streptomyces species encode an enormous variety of secreted proteins that have 252 

a diverse range of extracellular activities [86]. This includes the production of enzymes called 253 
chitinases, which degrade the biomolecule chitin. Chitin is an insoluble, nitrogen-containing, 254 
polysaccharide that is abundant in fungal cell walls [86,87]. Streptomyces are unusual amongst 255 
bacterial taxa in that they can use it as both a carbon and a nitrogen source [86]. Chitinases isolated 256 
from Streptomyces species have been shown to inhibit a broad spectrum of phytophathogenic fungi 257 
and oomyctes in vitro, including economically important genera such as Fusarium, Rhizoctania and 258 
Pythium, and are therefore receiving increasing interest from a biocontrol perspective [88-91]. 259 
Chitinases are thought to contribute to the in vivo antifungal activity demonstrated by the broad-260 
spectrum biocontrol strain Streptomyces lydicus WYEC108 which is the active ingredient in the 261 
commercially-available biocontrol agent Actinovate®. Purified chitinase from this species was able 262 
to lyse the cell walls of various phytopathogenic fungi, including several species of Pythium which 263 
can cause root rot in a variety of cereal crops [75]. Finally, transgenic expression of the S. griseus 264 
chitinase-encoding gene chiC conferred an increased level of resistance to the blast fungus 265 
Magnaporthe grisea on rice plants, suggesting that Streptomyces species may also represent an 266 
important genetic resource [92]. 267 

 268 
 269 
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3.4 Direct inhibition by Volatile Organic Compounds  270 
In addition to soluble compounds and enzymes, many Streptomyces are prolific producers of 271 

Volatile Organic Compounds (VOCs) [93]. These are characteristically small compounds with low 272 
molecular weights and high vapour pressures, meaning that they can easily diffuse through water 273 
and gas-filled pores in soil [41,94]. Strains can produce complex and diverse mixtures of VOCs that 274 
have a diverse range of functions, many of which are only just beginning to be understood [95]. 275 
Several VOCs have been identified that have antimicrobial activities against phytopathogenic 276 
species, for example, profiling of Streptomyces strains isolated from a soil suppressive to R. solani, 277 
revealed that a range of VOCs had potent antifungal activity against the pathogen in vitro and 278 
additionally resulted in an increased plant root and shoot growth [81,82,93]. Other studies have also 279 
isolated streptomycete VOCs active against R. solani in vitro, in addition to species of Fusarium and 280 
Aspergillus [68,73]. Such studies introduce the possibility that VOCs could be applied as biofumigants 281 
to suppress the growth of pathogenic species and may also have significant impacts on soil-borne 282 
pathogens when produced by Streptomyces species growing in the rhizosphere. However, more 283 
studies are needed to verify that these compounds are both produced in vivo in the plant root system 284 
and effective under natural conditions. 285 

3.5 Antihelmintic compounds 286 
In addition to antimicrobials, Streptomyces are also known to produce potent anthelmintic 287 

compounds. This includes the compound avermectin, produced by Streptomyces avermitilis, which 288 
can cause extensive mortality to nematode populations in vivo [96,97]. Cereal cyst nematodes 289 
parasitise host plants by forming root cysts in which they tap into the nutrients present in the plant 290 
vascular system; as a result they can cause extensive damage to wheat and maize crops and are 291 
prevalent in the majority of the cereal growing regions of the world [98,99]. A small number of studies 292 
have documented Streptomyces species that can control populations of cereal cyst nematodes [100-293 
102]. Given the enormous variety of natural products produced by Streptomyces strains and the fact 294 
that, in soil, they are likely to encounter and compete with a diverse population of nematode species, 295 
a greater number of such compounds may be discovered.   296 

3.6 Indirect inhibition of phytopathogens of cereal crops 297 
In addition to direct inhibition via the production of antagonistic compounds, Streptomyces can 298 

also inhibit plant pathogens indirectly. The simplest way in which this can occur is via competitive 299 
exclusion, whereby strains take up niche space and resources, therefore preventing pathogens from 300 
colonizing [20,103]. This is not mutually exclusive from direct antagonism since antimicrobials may 301 
be produced as a byproduct of interference competition over the resources provided via plant root 302 
exudates or organic matter in the soil. However, a further mechanism by which Streptomyces can 303 
indirectly provide protection to their plant host is though the activation of host resistance pathways 304 
[20,104,105]. In this case, Streptomyces strains are recognized as mildly intrusive by the host plant, 305 
which leads to the activation of phytohormone defense signaling pathways, including those 306 
producing jasmonic acid (JA) and ethylene (ET), as well as the salicylic acid (SA) dependent signaling 307 
pathway which can lead to systemic acquired resistance (SAR) to plant pathogens in distal parts of 308 
the plant [106,107]. The activation of these pathways by plant-associated microbes is known as 309 
induced systemic resistance (ISR) and acts to prime the plant immune system to deal with future 310 
pathogenic attack more efficiently [107].  311 

 312 
Endophytic Streptomyces strains isolated from healthy wheat tissue have been shown to trigger 313 

ISR against the phytopathogenic bacterium Erwinia carotovora as well as the fungus Fusarium 314 
oxysporum in A. thaliana plants; root infection by streptomycetes in the absence of the pathogen led to 315 
low levels of gene expression in defence signaling pathways [108]. Expression significantly increased 316 
upon pathogenic attack and was more rapid and greater in plants that had been pre-treated with 317 
Streptomyces versus untreated controls, suggesting an absence of priming in the latter treatment [108]. 318 
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Different streptomycetes activated ISR via either the JA/ET pathway or the SAR pathway, likely 319 
through a combination of excreted secondary metabolites and physical interactions with the plant 320 
roots [108]. Streptomyces strains isolated from sorghum stems were also suggested to inhibit the 321 
infection of rice by both M. oryzae and R. solani in vitro via ISR pathways, since several genes involved 322 
in plant defense signaling were upregulated upon colonisation by Streptomyces species [60]. 323 

4. The potential of Streptomyces bacteria as efficient biocontrol agents 324 
The ability of Streptomyces species to produce plant-protective compounds such as enzymes, 325 

secondary metabolites and volatile organic compounds as well as their ability to induce the plant 326 
immune system to rapidly respond to pathogens suggests that they would be good candidates for 327 
biocontrol agents. Biocontrol strategies can overcome some of the issues of chemical pesticides by 328 
offering a low cost alternative with greater potential for long-term sustainability [109]. Since many of 329 
the strains being developed as biocontrol agents, such as Pseudomonas and Streptomyces species, are 330 
often naturally abundant in soils it is likely that they will cause less damage to the surrounding 331 
ecosystem [20,80]. Additionally, microbes that have evolved in close symbiosis with eukaryotic 332 
organisms, such as plants, may cause fewer unwanted side-effects in other eukaryotic organisms, 333 
including humans [80,110]. One of the key issues of chemical pesticides is that disease-causing agents 334 
can rapidly evolve resistance. Streptomycetes have the advantage that apart from being a potentially 335 
co-evolving force that could engage in an arms race with pathogenic species, many also encode 336 
numerous putative antimicrobial biosynthetic gene clusters (BGCs), resulting in the simultaneous 337 
production of a multitude of different antibiotics with different modes of action; this could help to 338 
reduce the rate at which resistance evolves [46].  339 

 340 
Currently, there are two commercially available biocontrol products whose active ingredients 341 

are live Streptomyces strains. They are Mycostop® (Streptomyces griseoviridis K61 [66]) and 342 
Actinovate® (Streptomyces lydicus WYEC 108 [111]). The strains are purchased as dried spore 343 
preparations and applied as a seed treatment, or as an irrigative growth medium additive. Both 344 
Streptomyces species have demonstrated PGP and disease suppressive characteristics in a laboratory 345 
setting [57,112]. However, their efficacy as disease suppressing agents in an agricultural scenario can 346 
be inconsistent. For example, Actinovate® was found to be poor at supressing Fusarium Wilt disease 347 
(Fusarium oxysporum f. sp. niveum) of Watermelon in field trials [111] and whilst it promoted the 348 
growth of Summer Squash, it was inconsistent in its ability to provide protection against powdery 349 
mildew (Podosphaera xanthii) [113]. Another study that assessed the effectiveness of treating Barley 350 
(Hordeum vulgare) and spring wheat (Triticum aestivum) with Mycostop® at the same field site over 351 
five years, showed that, although there was an initial increase in yield in both crop species, the results 352 
were inconsistent across the years, with a similar inconsistency in disease suppression [114]. Despite 353 
Mycostop® reducing the incidence of root rot overall, it performed poorly when compared to 354 
treatment with a conventionally used (although widely banned) organomercurial pesticide [114]. 355 
This study demonstrates that yearly abiotic variation as well as biotic variation between crop species 356 
can significantly impact the potential of biocontrol treatments, but also that existing biocontrol 357 
strategies do not always match, or outperform, the performance of conventional pesticide treatments. 358 
The inconsistency of biocontrol strains such as Mycostop® and Actinovate® also demonstrates the 359 
need for a greater understanding of the factors that influence strain competitiveness and their long-360 
term establishment within the root microbiome of different crop species.  361 

 362 
There are numerous factors influencing the composition of soil and root-associated microbial 363 

communities and that, in turn, could influence the success of biocontrol strategies. Broadly, these 364 
factors can be divided into two categories. Firstly, abiotic factors such as soil type (which is defined 365 
by characteristics such as nutrient levels, water content, pH and trace metals) [115,116], climate (and 366 
climate change) [117] and farming practice (e.g. irrigation, fertilisation, tillage and pre-cropping 367 
[118,119]) can all impact on microbial assemblages. Secondly, biotic factors include host crop species 368 
[35,51,120], host genetics [51,121], root exude profiles [121,122], plant age at the time of application 369 
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[123,124], and competing microorganisms already present in the plant microbiome [125]. 370 
Additionally, many of these factors may vary significantly each growing season, adding an additional 371 
layer of complexity to the factors that influence root microbiome assembly. A detailed understanding 372 
of how these factors influence biocontrol success, and how to mitigate them, is a priority for the 373 
development of consistently effective biocontrol strategies. Progress is beginning to be made on this 374 
front, for example the Microbiome Stress project is an ambitious open access database collating and 375 
analysing 16S rRNA gene amplicon sequencing data [126]. The goal is to identify how bacterial 376 
communities respond to various environmental stressors, information which could be used to predict 377 
the efficacy of biocontrol strategies in different environmental conditions. This will be particularly 378 
important for developing robust biocontrol strategies in the face of climate change. 379 

4.1 Abiotic factors influencing biocontrol efficacy  380 
Numerous studies have experimented with strategies to improve the consistency and 381 

effectiveness of Streptomyces biocontrol agents by changing abiotic factors, such as the soil 382 
environment [127]. For example, an early study found that the application of wood chip-383 
polyacrylamide medium (PAM) around the plant root significantly increased the ability of 384 
Streptomyces lydicus WYEC108 to protect potato crops from Verticillium wilt (caused by Verticillium 385 
dahlia) [128]. By pre-inoculating the PAM medium with S. lydicus WYEC108 spores, the strain was 386 
able to germinate and establish mycelia with reduced competition from the surrounding soil 387 
microbiota. Application of the pre-inoculated medium led to a reduced level of pathogen infection, 388 
as V. dahlia had to traverse the wood chip-PAM mixture colonised by antibiotic-producing S. lydicus 389 
before invading the plant [128]. Similarly, another study showed that pre-inoculating soil with S. 390 
analatus S07, a strain originally isolated from an Heterodera filipjevi nematode cyst, significantly 391 
reduced the infection of wheat roots with this nematode in a field trial [102]. In order to give the 392 
Streptomyces strain an advantage within the soil environment, an established pure culture was added 393 
to ground wheat grain; this was then incubated at the strains optimal temperature, before being 394 
applied to the soil in field plots [102]. The efficacy of disease control by S. analatus S07 was shown to 395 
match that of an established nematicide, avermectin, which is significant given the damage 396 
avermectin can cause to the wider ecosystem [102,129]. Such studies suggest that reducing abiotic 397 
stress on the biocontrol strain, by helping it become pre-established in the soil, can improve the 398 
efficacy of biocontrol strategies.  399 

 400 
Apart from strain inoculation, a wide range of agricultural practices are thought to influence the 401 

composition and establishment of species within the plant root microbiome, including irrigation 402 
[118], tillage [119] and different cropping practices [130]. Agro-chemicals such as pesticides and 403 
fertilisers are also known to influence the composition and functioning of the plant root and soil 404 
microbiome, in ways that can help to protect against crop disease [131,132]. For example, ammonia 405 
fumigation has been shown to supress Fusarium wilt disease in Banana (Musa acuminate Cavendish) 406 
and also leads to a shift in the composition of the microbial community in the surrounding soil, with 407 
a significant reduction in the abundance of Fusarium species [132]. Other studies have suggested that, 408 
when organic fertiliser is applied in combination with biocontrol strains, the extent of disease 409 
suppression can be further enhanced. For example, suppression of the disease-causing bacterium 410 
Ralstonia solanacearum by Streptomyces rochei is significantly increased when applied in combination 411 
with organic fertiliser [133]. It is thought that adding a biocontrol strain to organic fertiliser prior to 412 
treatment generates a more favourable soil environment for the strain, with more nutrients available 413 
to support growth, increasing root colonisation and biocontrol efficacy [134]. This strategy is known 414 
as bio-organic fertiliser application and is widely reported as an effective method of enhancing 415 
disease suppression [131,135,136].  416 

 417 
There are numerous other examples of chemical additives that are being trialed to augment 418 

disease suppression in agricultural systems. For example the addition of chemical factors known to 419 
promote antibiotic production in Pseudomonas (e.g. glucose and zinc) have been shown to increase 420 
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biocontrol efficacy [137]. This implies that factors known to increase antibiotic biosynthesis in 421 
Streptomyces (for example N-acetylglucosamine, rare earth metals like scandium or siderophores 422 
[138] and some plant phytohormones [46]) could, where practical, be used as an additive in 423 
streptomycete biocontrol formulations to maximise disease suppression. Conversely, some chemical 424 
additives have been demonstrated to be detrimental to the biocontrol efficacy of Bacillus species in 425 
vitro, for example pesticides that contain heavy metals such as copper and zinc, and a number of 426 
fungicides and herbicidal compounds [139]. Despite this observation, biocontrol strain Streptomyces 427 
sp. A6 was found to be highly tolerant to a number of commonly used fungicidal compounds, and 428 
simultaneous application of the strain with these fungicides resulted in more effective Fusarium wilt 429 
control in pigeon pea (Cajanus cajan) and a 50% lower dose of fungicide was needed for effective crop 430 
protection [140]. This demonstrates that combining chemical and biological pest control methods can 431 
increase biocontrol efficacy, while simultaneously decreasing the required dose of chemical 432 
pesticides. Whilst together these studies imply that farming practices could be optimised to maximise 433 
disease suppression, comprehensive research into this is still lacking. Such research is complex, as it 434 
is likely that the best approach will depend upon the pathogen of concern, as well as the relevant 435 
climatic and edaphic conditions. 436 

4.2 Optimising biocontrol delivery systems involving Streptomyces 437 
Various methods are available for delivering biocontrol strains to crops and could further 438 

influence the consistency of biocontrol strategies. Products like Actinovate® and Mycostop® come 439 
as dried formulations containing spores and mycelia; these can either be suspended in liquid and 440 
sprayed onto crops (foliar spraying), folded into the soil prior to sowing (soil inoculation) or be used 441 
as a seed coating [141,142]. Foliar spraying approaches often seem attractive, particularly in 442 
developed countries where equipment for spraying is already available. However, microbial 443 
suspensions can damage or clog machinery by settling out of solution, and stresses caused by passage 444 
through spraying apparatus (such as heat stress or shearing forces) can decrease biocontrol strain 445 
viability [143]. Foliar spray is also typically used for microbial inoculants designed to counter foliar 446 
diseases [144], and so may be less apt for controlling root-diseases like wheat take-all fungus. Soil 447 
inoculation is another recommended mode of application, typically used if biocontrol strains are 448 
particularly vulnerable to desiccation [144]. As discussed previously, methods like bio-organic 449 
fertiliser application [131,133,135,136] and strain pre-establishment [102] can increase biocontrol 450 
success when using this method. Often however, these strategies will add to the expense and 451 
complexity of applying disease suppressive measures, and the strategies used to augment biocontrol 452 
success can have unknown or even conflicting effects by altering the soil chemistry and microbiome 453 
composition [119,132].  454 

 455 
Techniques that directly inoculate the plant microbiome with biocontrol strains, circumvent 456 

issues of soil-survivability measures, as the strain does not pass through an environmental medium 457 
prior to root colonisation. Examples of this include methods that apply biocontrol agents directly 458 
onto the plants root, such as fluid drill inoculation and root transplant dip. Both methods allow 459 
biocontrol strains to colonise roots in a controlled scenario; for root dip, roots of plant seedlings are 460 
incubated in a liquid cell suspension before transfer to the field [144] and in fluid drill methods seeds 461 
are allowed to pre-germinate within a gel containing the biocontrol strain [144,145]. In some cases, 462 
root dip has been shown to increase root colonisation by streptomycetes compared to soil inoculation 463 
[55], and this method has successfully been used to apply strains that can protect crops from diseases 464 
like Fusarium wilt [146]. However, pre-germinating plants and manually inoculating the roots is 465 
labour-intensive compared to purchasing pre-coated seeds and also requires large quantities of 466 
bacterial inoculum to be grown for this purpose [142]. Fluid drill methods have also been shown to 467 
increase colonisation of plant roots by inoculated bacterial strains and a limited number of studies 468 
show that this can result in efficient disease suppression [147,148]. However, there is little work 469 
investigating the ecological impact of fluid drill gel application. 470 

  471 
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As mentioned, plants can also be colonised by coating the seed in a formulation of biocontrol 472 
strain spores or cells. Seed coatings use a variety of methods to adhere biocontrol strains to the seed 473 
surface. For example, seeds can be immersed in a microbial suspension and dried before germination 474 
(bio-priming) [149], or a liquid cell suspension or an adhesive is used to coat the seed in bacterial cells 475 
(called film coating) [142]. Seed coating technologies can effectively deliver biocontrol strains directly 476 
to the soil immediately surrounding a germinating seed and the rhizosphere [142,144] and there are 477 
numerous examples where seed coating approaches have proven effective at suppressing disease in 478 
both field and laboratory experiments [149-153]. This includes numerous studies showing that seed 479 
coatings are an effective delivery method for Streptomyces biocontrol strains [55,154-156], to cereal 480 
crops like maize [69] and wheat [70]. While seed treatment is an effective inoculation method, 481 
practical issues like shelf-life and storage conditions remain an issue in many cases [142,157]. 482 
However, certain spore preparations of streptomycetes have been suggested to have a greater 483 
potential for long-term viability [158].  484 

4.3 Exploiting plant recruitment mechanisms to improve biocontrol agents 485 
In addition to enhancing the competitiveness of strains when applied to seeds and soil, it is 486 

possible that the mechanisms that enable plants to selectively recruit certain microbial species from 487 
the soil could be exploited to improve the efficacy of biocontrol strains [127,159,160]. As mentioned, 488 
plants exude approximately 20-40% of photosynthetically fixed carbon out of their roots into the 489 
surrounding soil [27,161]. This exudate contains a whole range of compounds including those with 490 
low molecular weights such as ions, amino acids, sugars and phenolics, as well as high molecular 491 
weight compounds such as mucilage, other polysaccharides and proteins [37,161-164]. The release of 492 
exudates into soil results in a large increase in microbial abundance and activity in the region of soil 493 
directly surrounding the roots; this is known as the “rhizosphere effect” and occurs because many 494 
microbes are attracted to the carbon-rich nutrients exuded from the roots [27,37]. However, exudates 495 
could also act as a filtering mechanism, enabling plants to selectively enrich for specific microbial 496 
species with particular metabolic capabilities [37]. This hypothesis is supported by experiments that 497 
have profiled the root exudates of Arabidopsis thaliana and found that certain groups of exudate 498 
compound correlate with the abundances of particular bacterial taxa [38,123,163]. For example, 499 
various phenolic compounds have been suggested to act as specific substrates or signaling molecules 500 
for particular microbial species, since they positively correlate with the abundances of specific genera, 501 
including Streptomyces bacteria [38,123,163,165]. Stable isotope probing experiments, that track 13C 502 
isotopes from plant metabolites to bacterial RNA, DNA or proteins, have also revealed that different 503 
microbial taxa are actively metabolising the root exudates of different plant host species, presumably 504 
due to differences in exudate composition [35,161,166]. In addition to host plant species, root 505 
exudation can also be altered by abiotic and biotic factors. For example, several studies on barley and 506 
Arabidopsis plants, have indicated that root exudate profiles change in response to foliar and soil-507 
borne pathogens which, in turn, leads to changes in the rhizosphere and endosphere bacterial 508 
community composition [167-169].  509 

 510 
In addition to changes in abundance, root exudates may also alter the functionality of the root 511 

microbiome to the benefit of the host plant, by altering microbial gene expression [123]. Increasing 512 
amounts of phenolic-related compounds are exuded by A. thaliana roots at later developmental stages 513 
and these have been shown to correlate with an increased number of microbial transcripts related to 514 
antimicrobial production, including streptomycin produced by Streptomyces species, independent of 515 
changes to bacterial abundance [123]. These antagonistic molecules may be beneficial to the plant at 516 
later developmental stages as it could encourage the suppression of pathogenic species or priming of 517 
the plant immune system, providing the host with protection against infection at the flowering stage 518 
[123]. Several plant root exudate compounds have also been shown to modulate the production of 519 
antimicrobials by Streptomyces species in vitro, including the plant phytohormones, salicylic acid, 520 
jasmonic acid and indole-3 acetic acid (IAA) [170,171].  521 

 522 
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Correlations between root exudate composition, microbial community structure and 523 
microbiome functionality open the exciting opportunity to tap into these chemical interactions in a 524 
way that enables improvements to crop productivity and health. For example, it may be possible to 525 
engineer plants that produce certain types of root exudate, that in turn improve the colonisation 526 
potential and efficacy of beneficial species and biocontrol agents such as Streptomyces species. Indeed 527 
mutant lines of Arabidopsis that have been engineered to have altered root exudation profiles have 528 
been shown to recruit different types of bacterial species, including greater numbers of beneficial 529 
plant-growth-promoting rhizobacteria [121,172,173]. Thus, it may be possible to introduce similar 530 
changes into cereal crops through breeding or genetic modification. However, there is still a huge 531 
knowledge gap regarding which compounds act as signals and nutrients for bacteria of interest. Such 532 
cues are only known in detail for a small number of plant-microbe symbioses, such as the role of 533 
flavonoids in legume- rhizobia interactions [164]. The vast majority of other systems are not so well-534 
defined. Tools such as stable isotope probing [161,174], metabolomics [162], dual RNA sequencing 535 
[175,176] and imaging mass spectrometry [177-179] are beginning to shed light on these interactions 536 
and may enable a more detailed understanding of plant-microbe interactions in the future. 537 

5. Conclusions and perspectives 538 
In summary, the use of microorganisms to suppress plant disease and increase crop productivity 539 

is gaining increasing interest as a sustainable alternative to chemical approaches to suppress crop 540 
disease. Streptomyces species have a long history of coevolution with plants and other organisms and, 541 
as a result, have evolved a plethora of secondary metabolites and enzymes that function to interact 542 
with host organisms and inhibit competitors. Many of these molecules can provide significant 543 
benefits to plants, by promoting plant growth and reducing the incidence of plant disease. These 544 
characteristics, along with the resilience of this genus to environmental stressors, suggests that they 545 
could be extremely useful as biocontrol agents. However, as highlighted in this review, a highly 546 
complex, interconnected network of factors can influence the efficacy of biocontrol in the field. 547 
Research into these factors is lacking but should be made a priority in order to enable the wide-spread 548 
application of highly effective biocontrol agents to cereal crops globally. Optimising the mode of 549 
delivery of biocontrol strains, for example by decreasing abiotic and biotic stressors, has shown some 550 
success in assisting soil and root establishment by these strains and for increasing the potency of 551 
biocontrol. However, other factors that affect plant microbiome establishment, such as agricultural 552 
practices, remain less well-studied, despite the fact that biocontrol optimisation is likely to be farm-553 
specific. It is possible that we may be able to exploit pre-existing signals between plants and microbes 554 
to increase the colonisation potential of desirable strains but in most cases these specific signals 555 
remain to be identified. For the future development of more consistent biocontrol strategies the most 556 
successful approach is likely to be combinatorial, considering delivery mechanisms, formulation 557 
additives, agricultural practices and the specific details of plant-microbe interactions.  558 
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