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Abstract— Keeping a human in a robot learning cycle can
provide many advantages to improve the learning process. How-
ever, most of these improvements are only available when the
human teacher is in complete control of the robot’s behaviour,
and not just providing feedback. This human control can make
the learning process safer, allowing the robot to learn in high-
stakes interaction scenarios especially social ones. Furthermore,
it allows faster learning as the human guides the robot to the
relevant parts of the state space and can provide additional
information to the learner. This information can also enable the
learning algorithms to learn for wider world representations,
thus increasing the generalisability of a deployed system.
Additionally, learning from end users improves the precision
of the final policy as it can be specifically tailored to many
situations. Finally, this progressive teaching might create trust
between the learner and the teacher, easing the deployment
of the autonomous robot. However, with such control comes a
range of challenges. Firstly, the rich communication between
the robot and the teacher needs to be handled by an interface,
which may require complex features. Secondly, the teacher
needs to be embedded within the robot action selection cycle,
imposing time constraints, which increases the cognitive load
on the teacher. Finally, given a cycle of interaction between the
robot and the teacher, any mistakes made by the teacher can be
propagated to the robot’s policy. Nevertheless, we are are able
to show that empowering the teacher with ways to control a
robot’s behaviour has the potential to drastically improve both
the learning process (allowing robots to learn in a wider range
of environments) and the experience of the teacher.

I. INTRODUCTION

Interactive Machine Learning (IML) [1], [2] differs from
Classical Machine Learning (CML) in the fact that the
learning process is not one single monolithic step leading to a
static classifier or robot behaviour, but a continuous iterative
improvement of the behaviour. IML relies on a series of
small learning steps progressively leading to a complete and
autonomous system. Additionally, IML makes use of humans
in the learning loop, to direct the learning process, making it
at the same time faster, more adequate to the task and more
efficient.

IML can take two forms: human supported classifiers
(closer to semi-supervised learning) or agents learning to
interact from human guidance (supervised reinforcement
learning). A classical example of the first category is Active
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Learning, a learning process giving to the learner the op-
portunity to take a more active stance in the process, asking
questions and querying labels from an oracle, often a human
being [3]. The second category relates to agents learning to
interact in an environment and profiting from humans inputs
to improve the learning process. In this case, the learner is not
in control of the datapoints it has to classify as those come
directly form the environment; in fact, the agent interacts in
an environment reacting to its actions and it requires a policy
leading to a successful outcome in the task. The human
can provide additional information to support the agent in
developing its policy.

This work is focused on the second category, agents learn-
ing from human supervision to interact in an environment.
An example is presented in Figure 1, where a robot is taught
to interact with a child, supporting them in an educational
activity. Compared to CML, IML holds the promises of faster
and more flexible learning leading to a policy more adapted
to current task [1], [2].
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Fig. 1. Example of a human teaching a robot to interact with a child in
an educational scenario.

In the context of agents learning to interact, a classical
approach is to use a human to provide rewards on the
robot’s behaviour [4]. The scenario is similar to Reinforce-
ment Learning (RL) [5], where an agent interacts in an
environment providing rewards and where the agent has
to maximise a notion a cumulative reward. Compared to
traditional RL, using humans to distribute rewards possesses
many advantages: no explicit reward function has to be
provided, the human can anticipate the impacts of actions,
reducing the challenge of credit assignment, and finally, the
teacher can scaffold their reward distribution to help the
agent to progressively improve its action policy [6]. This
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way to support agent learning is attractive as it already
provides advantages compared to classic RL and requires
a simple interface between the teacher and a robot: the
teacher only needs to be able to observe the robot’s behaviour
and provide a scalar evaluation of the learner’s behaviour.
However, as shown by [2], [7], [8], human teachers desire to
have more control over the robot’s behaviour and this control
can improve drastically the learning.

This paper will present a definition of human control in
the context of IML, as well as the advantages and challenges
faced when applying it to teach robots or agents to interact in
an environment. Throughout this paper, examples and results
will be presented from a study exploring how a robot can be
taught to support child learning in a educational task. The
setup was presented in [9]. The study compared 3 conditions,
a supervised robot interactively learning to support children,
an autonomous robot re-enating the demonstrated policy and
a passive robot providing no support to children and serving
as a control condition. Final results are yet to be published.

II. HUMAN CONTROL

Robot learning possesses a unique opportunity compared
to human learning in that the teacher can be fully in control
of the learner’s behaviour. This power over the learner
provides many opportunities for agents learning from hu-
mans. Instead of simply providing feedback or labels as one
would do for animals teaching for example [4], the teacher
can actively decide the learner’s behaviour, for example
by demonstrating an efficient way of acting. Methods such
as Learning from Demonstration (LfD) [10], [11] leverage
this opportunity, often in manipulation scenario, to reach
quickly an efficient behaviour. LfD has also been applied for
interactive agents [12], [13], with offline learning. However,
interactive learning with partial control for the teacher [7],
[14], [15] hold significant promises as it would allow to
deploy robots as blank slates and simply let the end user
set the desired behaviour.

However, this partial control can be pushed further and
we define ‘human control’ as the capacity for the teacher to
ensure the robot executes a desired behaviour. This control
can be achieved through a mixed-initiative control, where
the robot behaves autonomously, while being supervised by
the teacher and learning from this supervision. This semi-
autonomous control needs to allow the teacher to select
actions for the robot to execute, while letting the human
prevent incorrect actions to negatively impact the world.
This mixed-initiative control could for example follow the
approaches proposed by [16] or [17], where a teacher can
select actions for the robot to execute, and the robot can
propose actions to the human. Depending on the method and
the context, the proposition would be executed straightaway,
with a short delay or only after approval by the teacher.
Having the robot involved in the action loop might reduce
the requirements on the teacher and the human in the loop
ensures that the robot behaviour is correct at all time, even
when the robot starts to learn to interact, a feature absent
from methods such as RL.

In the study considered as example, the human control was
provided using SPARC [17], a method allowing a teacher
to select actions for a robot to execute. Based on these
demonstrations, a learning algorithm creates a policy and
each action is submitted to the teacher before an automatic
execution. This allows the teacher to ensure that only useful
actions are executed while not having to manually enforce
each action required from the robot.

III. ADVANTAGES

This human control leads to several advantages compared
to autonomous learning or feedback based teaching: the
learning can be safe, fast and generalise more easily to
different tasks. Additionally, trust can be built between the
learner and teacher.

A. Safety
One of the main advantages of providing control over the

robot’s action to the teacher is safety. By ensuring that a
human can prevent incorrect actions to have an impact on
the real world, the policy executed by the agent is safer. This
feature is especially interesting as many environments where
artificial agents should be able to learn might present physical
risks for the agent itself and surrounding humans, or risks
of emotional harm. As the learner starts with an imperfect
policy, incorrect actions are susceptible to be executed, but
should be avoided at all costs. By providing control over the
learner’s actions to a human, such methods ensure a safe
robot behaviour, thus increasing the range of environments
where agents can learn and applications where they could be
deployed.

In the study, the teacher could teach a robot in-situ an
interactive policy to interact with children. Even in the first
interactions, the teacher’s oversight allowed the robot to
display a behaviour suited to the interaction and supporting
children in their learning task.

B. Speed
By indicating which actions an agent should take, a teacher

can both lead the agent to an efficient policy and ensure
the agent only explores parts of the environment that are
relevant to the current task. Furthermore, if provided with
an adequate interface, the teacher can provide the agent
with additional details explaining the demonstrations or their
choices, helping the learner to obtain more information about
the environment than solely the demonstration. These three
effects making a fuller use of the teacher, beyond simply
labeling actions, can drastically quicken the learning process.

Despite learning only from 25 interactions with children
(resulting in around 1 hour and half of teaching), in the
study the teacher managed to inculcate the robot with
a policy leading to a similar distribution of actions (cf
Figure 2) and impact on the children in the autonomous
and supervised conditions. It should be noted that as the
interaction involved children, the resulting environment was
non-repeatable, stochastic, social and sensitive; but despite
these challenges, the results showed a successful teaching,
demonstrating the efficiency of SPARC.
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Fig. 2. Distribution of actions executed by the autonomous and the
supervised robot.

C. Generalisation

Additionally, providing control to the teacher allows them
to specify precisely the desired agent policy. This, combined
with the faster learning would allow agents to learn policies
tailored to a specific task from a generic definition of the
world. This implies that robots could have access to a world
representation with a large number of dimensions, allowing
for a wide range of policies and tasks, and from this generic
representation of the world, learn a policy directly suited to
an application context.

Using guidance from the teacher, the algorithm created
an efficient policy mapping a state in 210 dimensions to
an action space composed of 655 discrete actions, thus
demonstrating that from a large state and action spaces,
this type of interaction allows to create a policy tailored to
a specific task. Other tasks and policies could have been
covered with the same representation of the world, interface
and algorithm, but were not evaluated in that study.

D. Trust

By progressively teaching an agent to behave, a human
teacher can build a model of the agent and create expecta-
tions on the agent’s behaviour. This accumulated knowledge
might lead to a trust between the teacher and the learner: by
supervising the agent interacting in the world, the teacher can
estimate the performance of the displayed policy. This trust
and knowledge about the agent’s capabilities might then ease
its deployment to interact autonomously in the real world.

In a report written by the teacher while she was super-
vising the robot, she reported: “robot was often suggest[ing]
good things” and “[I] Need to trust the robot more”. In later
post-study interviews she reported that she started to trust the
robot in the last interactions, even if this trust never reached
a level of full trust.

IV. CHALLENGES

While giving human teachers control over the learner’s
actions provides advantages, it also raises challenges in the
design of the interaction, the communication between the
learner and its teacher, and in the application to specific time
sensitive tasks.

A. Interface

The interface between the learner and the human teacher
is key when designing and implementing IML applications.
To provide enough control on the robot’s behaviour ensure
that the behaviour executed is safe for the agent and the sur-
rounding partners, and reach an efficient policy, the teacher
needs to be able to pre-empt any actions about to be executed
by the robot before they negatively impact the environment.
Additionally, the teacher needs to be able to select any action
for the agent to execute. This implies that the interface needs
at the same time to communicate the robot’s intentions, allow
the teacher to evaluate them and select actions to be executed
if required.

Human-robot interactions rely on the robot displaying
appropriate social behaviours, which requires often a large
set of sensory inputs to interpret human behaviours and a
large number of actions available to the robot. For example,
in the study, the robot had access to 655 actions. Giving
access to the teacher to such a large action space can be
challenging. However, depending of the application, ways
can be found to enable it. For example, for the study we
used a Graphical User Interface (GUI) and we inferred the
exact action selected by the teacher from her interaction with
a representation of the world on the GUI instead of providing
655 buttons.

B. Human Time

Providing the robot’s intentions to the teacher early enough
to allow them to prevent actions to impact the world can be
a challenge too, especially as some environments are time-
critical. For example, a car driving semi-autonomously and
detecting an obstacle requiring emergency breaking might
not have the opportunity to wait for an explicit approval
from the teacher. On the other an inappropriate emergency
breaking is also highly dangerous as it would confuse and
surprise other drivers. Consequently, the timing of actions
and the way to ensure human oversight is a serious challenge
when designing semi-autonomous agents.

A second challenge lies in the pace of the interaction.
Today, a large part of the progress in ML relies on large
quantities of data; however, when a human is included
in the action loop, gathering data is a slow and tedious
process. Even if datapoints arrive at 1Hz, the time required
to accumulate the millions of examples required for methods
such as Deep Learning [18] can be prohibitive (more than
250 hours). As such, systems relying on single humans
to interactively provide demonstrations need data-efficient
algorithms able to make better use of each datapoint.

The first challenge, time for reaction, can be mitigated by
having different types of actions, corresponding to different
ways of being communicated and approved. The second
point was addressed in the study by requiring the teacher
to specify features of the environment she used to select her
actions. This additional information provided crucial details
allowing the algorithm to make better use of demonstrations,
learning a policy from only a limited number of demonstra-
tions.



C. Human Limits

The last consideration is human limits. People are sensitive
to workload and putting them under too much pressure will
lead to human errors that will have to be corrected. When
using human teachers, their workload needs to be minimised
and ways need to be provided to recover from errors. This
recovery needs to handle two sides: the learning algorithm
needs to be informed about inaccurate demonstrations, and
on the other hand, the impact of the erroneous actions on the
environment needs to be corrected if possible. For example,
a robot interacting with humans would need to be able to
apologise in case of errors in order to maintain the trust
surrounding humans have in it and allow the interaction to
continue without friction.

In the study, the teacher reported herself making a few
errors throughout the teaching process. She had access to
a button to remove datapoints from the learning algorithm
and thus correct the algorithm side of the error. However
we didn’t plan for error recovery in case of incorrect robot
behaviour as we initially assumed the human behaviour
would be constantly correct. In future implement, we will
implement ways to recover from erroneous actions on the
environment side too (such as apologies).

V. DISCUSSION

The position defended in this paper is as follows:
When teaching robots to interact, human teach-
ers should not be simply evaluating an au-
tonomous behaviour, but should be able to
control precisely the robot behaviour when
required.

The robotics and IML communities need to give a more
complete role to the teachers, moving away from acting as
simple oracles who label datapoints, and towards the incorpo-
ration of all facets of social learning, while taking advantage
of the unique opportunities that artificial learners offer. More
specifically, a learning robot should leverage people’s natural
skills at teaching humans and animals (transparency of the
teaching process, scaffolding of the teacher’s feedback/tasks
and constant feedback from the learner), while also profiting
from the features only available to artificial agents such
as perfect memory, absence of tiredness or boredom, but
especially the opportunity to control exactly the learner’s
behaviour.

Providing humans with this control can be a challenging
task given the complexity of the problem. However, we con-
tend that the gains outweigh these limitations dramatically
compared to autonomous learning, learning from demon-
stration or retrospective evaluation of the robot’s actions.
Consequently, we suggest that research in HRI and IML
should dedicate more effort towards this goal.
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