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Abstract 
Several studies have demonstrated the capability of data-driven modelling based on on-site 
measurements to characterise the thermal performance of building envelopes. 
Currently, such methods include steady-state and dynamic heating experiments and have mainly 
been applied to scale models and unoccupied test buildings. Nonetheless, it is proposed to upscale 
these concepts to characterise the thermal performance of in-use buildings based on on-board 
monitoring (OBM) devices which gather long-term operational data (e.g. room temperatures, gas 
and electricity consumption…). It remains, however, to be proven whether in-use data could be a 
cost-effective, practical and reliable alternative for the dedicated tests whose more intrusive 
measurements require on-site inspections. Furthermore, it is presently unclear what the optimal 
experimental design of the OBM would be and which data analysis methods would be adequate. 
This paper presents a first step in bridging this knowledge gap, by using on-board monitoring data to 
characterise the overall heat loss coefficient (HLC) [W/K] of an occupied, well-insulated single-family 
house in the UK. With the aid of a detailed building physical framework and specifically selected data 
subsets a sensitivity analysis is carried out to analyse the impact of the measurement set-up, the 
duration of the measurement campaign and the applied data analysis method. 
Although the exact HLC of the building is unknown and no absolute errors could hence be calculated, 
this paper provides a new understanding of the decisions that have to be made during the process 
from design of experiment to data analysis. It is demonstrated that such judgements can lead to 
differences in the mean HLC estimate of up to 89.5 %. 

Keywords: Characterisation, Building Energy Performance, HLC, On-board Monitoring, Data Analysis, 
Sensitivity, Uncertainty 

1. Introduction 

In response to growing environmental concerns and given the fact that the residential sector 
accounts for a major share of the final energy consumption in the European Union (25.4 %, [1]), 
governments have developed increasingly stringent policies with regard to the energy performance 
of new and renovated dwellings. The European Energy Performance of Buildings Directive (EPBD) 
recast impels its member states, amongst other things, to set minimum requirements for the energy 
performance of (1) a newly constructed or thoroughly renovated building as a whole; (2) the building 
elements that form part of the building envelope and (3) the technical building systems, and to 
regularly update them [2]. 

The performance metrics are mainly determined using quasi-steady-state calculations which are 
(necessarily) based on building plans, theoretical performance indicators of materials and technical 
systems, as well as default assumptions on occupant behaviour. However, research shows that the 
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results of these calculations, but also of dynamic simulations, may significantly differ from the actual 
as-built performance, a problem often referred to as the ‘performance gap’. Several authors [3–8] 
reported, for instance, considerable differences between the theoretical and actual energy use in 
dwellings, which could among other things lead to false assumptions about energy-saving measures. 
Potential causes of these deviations are (1) invalid simplifications in the prediction models; (2) 
differences between assumed and actual material properties; (3) workmanship issues; (4) incorrect 
modelling or malfunctioning of building services and (5) the influence of user behaviour. The first 
three sources of the gap already happen on the building element level [9,10] and propagate further 
to the building level, as signalled by Gupta & Dantsiou [11], Johnston et al. [12], Marshall et al. [13] 
and Wingfield et al. [14,15]. 

In this context, characterisation methods which adequately combine on-site measurements with 
statistical modelling are put forward, for instance by the IEA EBC Annex 58 project [16]. These 
methods could prove useful in supporting a range of applications including certification for new or 
renovated constructions, the evaluation of the effectiveness of applied energy-saving measures and 
the identification of the potential for demand side flexibility. 
One of the performance indicators that is interesting to determine is the heat loss coefficient (HLC). 
This steady-state characteristic of the building envelope describes the amount of heating power [W] 
that is needed to sustain a temperature difference of 1 K between the interior and exterior 
environment. The most commonly applied on-site measurement to assess the HLC is the coheating 
test [17]. The data, collected during the (quasi-)steady-state experiment, need to be further 
analysed to obtain the HLC. Bauwens [18] demonstrates how Auto-Regressive Models with 
eXogenous inputs (ARX models), adopted from the field of system identification, can be used for this 
purpose. ARX models [19] are transfer function models that are able to describe and predict a 
building’s dynamic behaviour by factoring in a number of past observations from so-called ‘input’ 
and ‘output’ variables. The models base their parametrization on statistical correlations present in 
the data, disregarding any prior knowledge of the physical processes underpinning the behaviour. 
Hence, their estimated model coefficients cannot directly be related to actual physical properties, 
which explains their classification as ‘black-box models’. 
In the course of the years, several dynamic heating experiments have been suggested as an 
alternative to the coheating test to shorten the measurement duration. These include the Quick U-
value of Buildings (QUB) test [20], the ISABELE method [21,22] and the Short Term Energy 
Monitoring (STEM) using PSTAR [23]. Nevertheless, these methods, and the current established 
characterisation methods in general, are still difficult to apply on large scale, since they deploy costly 
experimental set-ups. Therefore, they are categorised as being intrusive, since they require 
unoccupied buildings. 

Meanwhile, a trend to equip buildings with relatively cheap data collection systems such as wireless 
temperature sensors and ‘smart’ energy meters can be observed. In its revision of the EPBD, which 
forms part of the Clean Energy for All Europeans Package, the European Commission also 
encourages the collection of data on the measured energy consumption of buildings and the use of 
smart meters and building automation and control systems [24,25]. This increasing uptake of 
sensors and Internet of things (IoT) technology in buildings raises the question whether on-board 
monitoring of the indoor climate and energy use of real in-use buildings could form a worthy 
alternative for the dedicated tests [26]. 
The fact that the building’s own heating and ventilation system are used, and that the occupants do 
not have to vacate their dwelling, would make this a less resource-intensive and more practical 
approach. However, these same occupants pose a great challenge to the characterisation because of 
the hard-to-trace disturbances they induce, such as varying internal gains and the opening and 
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closing of doors and windows. An additional limitation of on-board monitoring as compared to 
dedicated experiments is the limited freedom in excitation signal that can be used due to comfort 
constraints. 

The key to tackling these barriers may already lie in the design of the experiment itself. However, to 
date, the optimal set-up of such on-board monitoring for building energy performance 
characterisation remains unclear in terms of variables, resolution and analysis methods. This 
discussion should moreover be put in a perspective of desired accuracy of the outcome and 
maximum cost of the procedure. Therefore, this paper investigates the potential of the emerging 
concept of ‘in-use characterisation’, and more specifically its applicability to assess the Heat Loss 
Coefficient of a building envelope. The impact of methodological choices on the characterisation 
outcome is demonstrated by means of a case study and supported by a building physical framework. 
Such methodological choices include the decisions made during the design of experiment, the 
methods used to pre-process some of the data and the selected properties of the ARX models. 
Since the actual HLC of the studied dwelling is unknown, the research cannot declare the accuracy of 
the examined methods. Instead, this work aims to advance the understanding of the sensitivity of 
the characterisation procedure and the pitfalls one could encounter on the path from measurement 
set-up to characterisation results. 

In the next section of the paper, the building and monitoring data set used in the case study analysis 
will be introduced. The description of the research methodology in section 3 has been divided into 
two parts. First, the physical phenomena relevant to the HLC are identified through a review of the 
underlying building physics principles, and mapped against the available measurement data. 
Secondly, the data subsets that are constructed, and the statistical techniques that are applied to 
infer the HLC estimates are discussed. Section 4 presents and discusses the characterisation results. 
In a concluding section 5, the main findings are summarized. 

2. Case Study (data set) 

2.1. The Building 

The case study is a residential building that is part of a development of four social houses in 
Gainsborough, UK (53.4° N, 0.77° W). All four houses were certified to the Code for Sustainable 
Homes Level 5 [27] and monitored from October 2012 (three months after completion of the 
construction works) until November 2015. The houses and the results of the in-use monitoring 
campaign are extensively described in [28]. 
This paper focuses on the south-facing end-terrace house (Figure 1). The house is a two-storey 
dwelling with a total internal gross floor area of 67.2 m2 and an internal volume of 192.7 m³. Floor 
plans are shown in Figure 2. 
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Figure 1: South and east elevations of the house in Gainsborough, UK. 

 

Figure 2: Floor plans of the house (units in mm). 

2.1.1. Building Envelope 
Table 1 summarizes the surface areas and design U-values of the building envelope components. 
Notably, the ground floor slab is assumed to be in contact with the ambient since it concerns a 
suspended concrete structure with a ventilated underfloor void.  
The design U-value of the external wall was verified on site by means of heat flux measurements 
performed on the north façade of the opposite end-terrace house of the development, which has an 
identical construction design. The measurements, that were carried out and analysed in accordance 
with the ISO 9869-1 standard [29], show a slightly lower U-value (0.12 W/K) compared to the design 
value of 0.14 W/K. 
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A thermographic survey, conducted in accordance with ISO 6781 [30], showed that the thermal 
resistance of the building envelope might furthermore be negatively influenced by the occurrence of 
thermal bridging at window openings, floor junctions and the interface of different wall finishes. 
 

Table 1: Composition, area and U-value of the building components in contact with the ambient, as detailed in the 
construction specifications and predicted by SAP calculations [28]. 

 Composition Area [m²] Design U-value [W/m²K] 
Ground Floor Slab Proprietary suspended concrete beam 

and block with 20 mm of insulation 
33.62 0.12 

External Walls 142 mm Structural Insulated Panels 
(SIPs) finished in brick or render clad 

76.15 0.14 

Roof Single ply roofing membrane fixed to 
142 mm Structural Insulated Panels 
(SIPs) and 50 mm rigid insulation 

33.62 0.12 

Front Door Munster EcoClad timber board effect 
with triple glazed side screen 

1.89 1.20 

Windows Munster EcoClad triple glazed 
windows 

15.66 (of which 6.24 
south-oriented) 

1.15 

 
The house is designed to achieve an air permeability at 50 Pa (AP50) of maximum 3.0 m³/h.m². Three 
air leakage tests, conducted following the procedures for whole building pressurization tests 
detailed in Technical Standard 1 of ATTMA [31], resulted in values for AP50 ranging between 1.9 and 
3.7 m³/hr.m² with an average value of 2.9 m³/hr.m². 
The limited on-site tests could build a certain degree of confidence in the construction quality and 
suggest that no large discrepancies (order of magnitude) between the design and real performance 
of the façade should be expected. Nevertheless, the limited scope of the U-value measurements and 
the unknown quality of workmanship cast doubt on the actual performance. 

2.1.2. Technical Building Systems 
Space heating (SH) and domestic hot water (DHW) production are provided by a Potterton Promax 
combination gas boiler with a manufacturer’s quoted SEDBUK (Seasonal Efficiency of Domestic 
Boilers in the UK [32]) efficiency of 91 %. SH is accomplished by hydronic radiators and controlled 
using two room thermostats located in respectively the hall on the ground floor and master 
bedroom at the first floor. 
Ventilation is provided by a ‘Lo-Carbon Astra’ mechanical ventilation system with heat recovery 
(MVHR) from Vent-Axia. According to the manufacturer’s specifications, the heat recovery system 
has a thermal efficiency of up to 91 % for a specific fan power of 0.73 W/l/s. 
Part of the electricity demand is generated on site by a 3 kWpeak PV system, composed of Hengji 
PV-Tech Mono-crystalline Photovoltaic Panels. The panels are installed on the roof of the dwelling 
and face south, with an inclination angle of about 35 degrees. 

2.2. The Monitoring Campaign 

Table 2 gives an overview of the data that was collected during the 3-year monitoring campaign. 
Only those measurements that are used for this study are listed; for the full monitoring set-up the 
reader is referred to [28]. 
The interior temperature was monitored in two rooms in both the house (θi) and its adjacent 
dwelling (θa). The aggregate gas consumption was monitored with a volumetric gas meter (Gasmains). 
No sub-meters were installed to differentiate between SH and DHW production. Furthermore, the 
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amount of electricity drawn from the national grid (Elecmains) and the PV production (ElecPV) were 
registered. However, a lack of sub-metering made it impossible to distinguish between the 
percentage of the electrical energy generated by the PV system that was consumed on site and the 
percentage that was exported to the grid. None of the electrical appliances, except for the MVHR, 
was fitted with a sub-meter to track individual consumption. 
Since some climate variables, e.g. solar radiation, could not be measured on site, the original data 
set was supplemented with meteorological data recorded at an RAF weather station located in 
Waddington (53.18° N, 0.55° W). 

Throughout the monitoring campaign the property was inhabited by one adult and two children. 
Occupant behaviour, however, was not monitored. 

Table 2: Overview of the variables registered during the earlier performed monitoring campaign and the main properties of 
the instrumentation used. 

Measurement Instrumentation 
Description Abbreviation Resolution Accuracy 

1. Measured on site, 5-min sampling interval 

Exterior temperature θe1 0.05oC +/- 0.5oC 
Interior temperature in the living room and bedroom 1 
(master bedroom) of the house 

θi_liv, θi_bed 0.05oC +/- 0.25oC 

Interior temperature in the living room and master bedroom 
of the adjacent dwelling 

θa_liv, θa_bed 0.05oC +/- 0.25oC 

Mains gas consumption of the house Gasmains 0.001 m3 +/-2% 
Mains water consumption of the house Watermains 1 litre +/-2% 
Mains electricity consumption of the house Elecmains 1Wh +/-2% 
Electricity generated by PV system of the house ElecPV 1Wh +/-2% 
The room air supply temperature of the MVHR of the house θsupply 0.05oC +/- 0.25oC 
The return temperature of the MVHR of the house (the 
average temperature of the extracted air, before the HR unit) 

θreturn 0.05oC +/- 0.25oC 

2. Available through ‘nearby’ weather station1, 1-hour sampling interval 

Exterior air temperature θe2 0.1°C <  +/- 0.2°C 
Global horizontal solar irradiance GHR < +/- 1W/m² +/- 3% 

3. Research Methodology 

Incorrect assumptions about the relationship between the actual physical processes related to a 
building envelope, the statistical model used to describe these processes and the available input 
data for the model undermine the validity of the HLC estimates. Hence, in the following two 
sections, a detailed analysis of the 3 components (physical case, statistical model, measurement 
data) and their interactions will be made. In order to adequately define the ‘Heat Loss Coefficient’ 
and its influence factors, section 3.1 will systematically deduce the equations describing a building’s 
dynamic thermal behaviour and capture them in a ‘building physical framework’. Next, the available 
OBM data will be mapped to the theoretical variables of the heat balance. In section 3.2, ‘Statistical 
Framework’, the heat balance equation will then be translated into an ARX model on the basis of 
which the HLC can be assessed. 

                                                             
1 The climate data registered at the weather station in Waddington were obtained from Met Office (UK). 
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3.1. Building Physical Framework (BPF) 

The parameter of interest of this paper, the HLC, is a property of the overall building envelope 
separating the interior from the exterior environment. Its assessment hence calls for a single-zone 
approach, although the actual case study concerns a two-storey building with six rooms and 
unknown internal partitions and air flows. The simplified, dynamic, single-zone heat balance that will 
be taken as a starting point, Eq.1, states that over time the interior temperature θi [K] of a zone with 
effective heat capacity Ci [J/K] is affected by heat transfer through transmission and ventilation (φtr 
and φvent resp., both expressed in [W]), the net heating power supplied by the heating system (φH)	
and internal, solar and latent gains (φint, φsol	and φLG resp.). 

𝐶= ∙
?@A
?B
= 𝜑BE;B +	𝜑HIJB;B + 𝜑K;B + 𝜑=JB;B + 𝜑LMN;B + 𝜑OP;B (1) 

The effective heat capacity of the zone Ci is here simplified as a lumped capacity comprising the 
thermal mass of the building envelope, internal partitions and furniture, and zone air [33]. 
In what follows, the interior temperature term and the driving forces behind each of the heat flow 
rate terms will be further detailed. The equations will be based on ISO 52016-1 [34] and Hens [35].  
Next, the identified explanatory variables will be compared to the collected monitoring data. This 
will enable pointing out characteristics of the case study building and monitoring campaign that 
might cause difficulties or even errors in the characterisation process. Often, the theoretically 
required input data cannot be measured directly and other measured variables will have to be put 
forward as an alternative, or assumptions will have to be made. The process is summarized in (the 
left half of) Table 3 at the beginning of the next subsection. The first column of this table lists the 
physically relevant variables that are identified in the heat balance equations. The second column 
sums up the monitoring data that could be used to represent them. 

3.1.1. Interior temperature 
The simplified heat balance equation, Eq. 1, represents the case study building with its six rooms as a 
single thermal zone. The positioning of doors, windows and ventilation and heating elements, the 
occupant behaviour and thermal stack effect make one uniform interior temperature throughout 
the house, as represented by θi	in Eq.1, highly unlikely. In an attempt to capture this non-uniformity, 
a sample of the interior temperature was taken at two points across the dwelling: θi_liv and θi_bed (see 
Table 2). The question arises whether and how the two registered temperatures should be related to 
obtain one single signal for the dwelling as a whole. Furthermore, it should be noted that the 
physical representativeness of the sensor data itself is uncertain, since the sensors do not register 
the equivalent temperature as required by the transmission term in the heat balance equation (see 
further, Eq.2) or the pure air temperature as required by the ventilation term (see further, Eq.5), but 
an unspecified combination of the air and radiative temperature of their surroundings. 
The second column of Table 3 presents four different approaches in which the collected interior 
temperature data can be used as input for the variable θi in the heat balance: θi_liv or θi_bed can be 
used individually, or an arithmetic mean or (internal) volume weighted average of both 
temperatures can be considered. In the latter case, both temperatures are assumed to represent the 
interior temperature of their entire storey. Another option would be to consider a heat loss area 
weighted average temperature. However, the limited data available on the building geometry does 
not allow the calculation of this time series. 

3.1.2. Transmission heat flow rate 
Theoretically, the transmission heat flow rate of a zone, φtr, is given by Eq.2 and depends on 
equivalent indoor and outdoor temperatures (θeq). Equivalent temperatures differ from air 
temperatures (θair) in encompassing longwave and shortwave radiation exchange and thus being 
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building element specific [35]. To obtain one interior-exterior temperature difference term as in 
Eq.2, the disparate temperature terms of the individual building elements hence need to be 
averaged (subscript ‘avg’) as also discussed in [36]. 
The overall heat transfer coefficient by transmission Htr [W/ K] in Eq.2 represents the sum of the 
direct transmission heat transfer coefficient between the conditioned zone and the exterior (Htr,e) 
and the transmission heat transfer coefficients through the ground (Htr,g), unconditioned spaces 
(Htr,u) and adjacent buildings (Htr,a) (Eq.3). Htr,e can in turn be split into the heat transfer through the 
elements j, linear thermal bridges k and point thermal bridges m of the building envelope in contact 
with the ambient (Eq.4). Aj and Uj hereby respectively represent the building elements’ surface area 
[m²] and thermal transmittance [W/m²K], ψk is the linear and χm the point thermal transmittance of 
the linear [W/mK] and point thermal bridges [W/m²K], respectively. The factor btr ensures that the 
appropriate temperature difference (compared to the interior-exterior temperature difference) is 
taken into account. Hence btr,e equals 1. 
Htr,a, Htr,g and Htr,u	follow analogous equations but are adjusted by a factor btr different from 1. 

𝜑BE;B = 𝐻BE;B]𝜃I_;=;`Ha;B −	𝜃I_;I;`Ha;Bc (2) 

𝐻BE;B = 𝐻BE,I;B + 𝐻BE,a;B + 𝐻BE,d;B + 𝐻BE,`;B (3) 

𝐻BE,I;B = ]∑ ]𝐴g ∙ 𝑈g;Bcg + ∑ ]𝑙j ∙ 𝜓j;Bcj + ∑ 𝜒m;Bm c	∙ 𝑏BE,I;B  (4) 

Since the presented case study concerns a semi-detached dwelling with a suspended ground floor 
construction, only the transmission heat losses to the ambient and the adjacent dwelling are 
retained. According to the above-developed formulas, these depend on θeq,e, θeq,i and the equivalent 
temperature of the adjacent dwelling θeq,a. Comparison of these variables with those listed in Table 2 
shows that a one-to-one matching is impossible: assumptions for plausible substitutes for θeq,a and 
θeq,e are discussed below. 

Just like the case study dwelling, the adjacent dwelling was fitted with two sensors, registering a 
temperature θa_liv and θa_bed (Table 2). Hence, similar sensor choices and approaches for data 
aggregation could be evaluated for θa. In this work however, only the variant with the arithmetic 
mean of the two available signals will be illustrated (Table 3). 

Two time series describe the exterior temperature observed during the monitoring campaign: the 
first one, referred to as θe1, was collected on the site of the dwelling; the second one, θe2, at a 
national weather station about 30 km from the site (see Table 2). On the one hand, the closer 
proximity to the research object and the lower sampling interval are advantages of the sensor 
registering θe1, on the other hand, the θe2 data series have been acquired with a greater accuracy 
regarding the measurement equipment and potentially also its positioning. The consequences of a 
choice for one of both will be analysed further on. The reservations concerning the equivalent 
temperature expressed in the paragraph about θi apply here as well. 

3.1.3. Ventilation heat flow rate 
The ventilation heat flow rate term φvent from Eq.1 can be further elaborated as described in Eq.5, 
with Hve the overall heat transfer coefficient by ventilation and θair,i and θair,e the zone and exterior 
air temperature respectively. 
As can be seen from Eq.6,	Hve [W/K] takes the sum over the air flow rates Gv [m³/s] of all relevant air 
flow elements, such as air infiltration and mechanical or intended natural ventilation. The unitless 
factor bve adjusts the temperature difference whenever the supply temperature of the air flow 
element does not equal the temperature of the external environment, e.g. due to the presence of a 
heat recovery unit. ρa is the density of air [kg/m³] and ca its specific heat capacity [J/(kgK)]. 
Hve	can thus also be written as the sum of Hve,wtt	, which comprises the heat transfer through the air 
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flow elements for which the factor bve equals 1, implying that the external air flow enters the zone 
without prior thermal treatment (subscript ‘wtt’), and Hve,tt which takes the sum over the remaining 
air flow rates undergoing thermal treatment (subscript ‘tt’) for example in a heat recovery unit. 

𝜑HIJB;B = 𝐻HI;B ∙ ]𝜃`=E,=;B −	𝜃`=E,I;Bc        (5) 

𝐻HI;B = 𝜌` ∙ 𝑐` ∙ ∑ ]𝑏HI;u;B ∙ 𝐺w;u;BcE
uxy = 𝐻HI,zBB;B + 𝐻HI,BB;B     (6) 

As for the equivalent temperatures, no monitoring data of the pure air temperatures θair,i and θair,e	
are available (see §3.1.1). The infiltration losses will therefore be accounted for in the same way as 
the transmission losses to the external environment; using the candidate substitutes for θi and θe 
listed in Table 3. The disregard of the distinction between the air and equivalent temperatures will 
be further discussed in §3.1.8. 
The actual air change rate of the Mechanical Ventilation Heat Recovery (MVHR) system is unknown, 
but sensors were installed inside the unit to monitor both the supply and return temperature (Table 
2). However, due to technical problems, no observations are available for θreturn during the 
measurement period selected to train the model (see further in §3.2.1). At times when the return 
temperature is indeed adequately tracked, the difference between θsupply and θreturn is small 
(RMSE=0.6 °C), which suggests that the actual energy efficiency of the heat recovery unit is rather 
high. 
Assuming that the heat recovery efficiency of the MVHR, which equals (1- bve) (Eq.6), is constant, the 
temperature difference driving the mechanical ventilation heat losses is a multiple of the one driving 
the air infiltration losses. Therefore, the former losses will be modelled using the same θi and θe 
signals as the latter. 

3.1.4. Net heating power 
The net heating power supplied by the heating system φH	(Eq.1) is linked to the energy use of this 
system φH;sys	[W] by the overall system efficiency	ηH;sys, which accounts for unrecoverable 
generation, storage, distribution and emission losses: 

𝜑K;B = 	𝜂K;L�L;B ∙ 𝜑K;L�L;B         (7) 

During the monitoring campaign, the mains gas consumption [m³] was tracked. The conversion 
factor between this variable and φH;sys	is the volumetric calorific value (CV) of the gas (1). As 
postulated in Eq.7, φH;sys	 should be multiplied with the system efficiency ηH;sys (2) to obtain the 
sought-after net heating power. 
The volumetric CV of natural gas can be calculated as the product of (a) the volume correction 
factor, a national fixed factor equal to 1.02264, and (b) the gross calorific value. Daily averaged, 
charging area specific values of the latter may be taken from the website of National Grid UK [37]. 
For Gainsborough, the mean daily averaged gross calorific value for the 2014-2015 heating season 
(October 1 till March 31), for instance, equals 39.3 MJ/m³. Lander [38] demonstrates how employing 
these conversion factors ensures that the bias on the volume and energy conversion is limited to less 
than 1%, notwithstanding the fact that the precise composition of the delivered gas, and its pressure 
and temperature over the meter may vary over time. 
The overall efficiency 𝜂L�L of the heating system installed in the case study dwelling is unknown, 
except for one of its components: the production efficiency of the combi boiler, which reaches 91% 
according to the manufacturer’s specifications. However, this SEDBUK rating is a measure of the 
annual average energy performance achieved in typical domestic conditions. Full and 30 % part load 
efficiency are averaged out and in addition, no differentiation is made between the production 
efficiency of respectively Space Heating (SH) and Domestic Hot Water (DHW) [32]. 

Furthermore, the monitoring only covers the total fuel consumption of the combi boiler and does 
not differentiate the consumption for SH from the consumption for DHW production (gas is not used 
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for cooking). Although some of the gas consumption for DHW production can be expected to result 
in internal gains (see further) a significant fraction of the DHW leaves the house without having 
contributed to a raise of θi. Hence, the energy use breakdown into these two end-uses has to be 
estimated. In Senave et al. [39] different options to accomplish this were compared using the same 
monitoring data set as the present study. The approach resulting in the gas consumption for SH 
profile with which the best scores were obtained on some simulation cross-validation tests 
(following the same principles and on the same data periods as used here) will be adopted for this 
investigation. It is a deterministic method that requires monitoring data of the mains water 
consumption and draws its disentanglement on the following assumptions: (1) the gas boiler cannot 
operate in SH and DHW mode at the same time; and (2) hot water is produced instantaneously 
(hence, no storage tank). For a more detailed explanation, the reader is referred to [39]. For now, it 
is important to notice that the split-up of total gas consumption in SH and DHW fractions is a first 
approximation. The validity of the approach and its applicability for this specific case study could not 
be verified. 

In conclusion, based on the available measurement data, φH can be approximated by Gasmains, a 
variant of Gasmains altered by the known boiler efficiency, and an estimate of the gas consumption 
for SH (Table 3). 

3.1.5. Internal heat gains 
φint in Eq.1 includes the heat flow rate from occupants φint,Oc, appliances φint,Ap and lighting	φint,Li, 
the heat dissipated from or absorbed by hot and mains water and sewage φint,Wa, and the 
recoverable losses from or to heating, cooling and ventilation systems φint,HVAC: 

𝜑=JB;B = 𝜑=JB,��;B + 𝜑=JB,�u;B + 𝜑=JB,O=;B + 𝜑=JB,�`;B + 𝜑=JB,Kw��;B    (8) 

The electricity imported from the grid (Elecmains) and the energy yield of the PV installation (ElecPV) 
were being registered during the monitoring campaign. However, there was no meter installed to 
specifically measure the amount of energy exported to the grid. The mains meter also does not work 
in reverse. The total electricity consumption of the dwelling Electotal will therefore be calculated as 
the sum of Elecmains and a cover factor for self-consumption 𝛾L times ElecPV (see Table 3). In a first 
approximation, it will be assumed that 50 % of the generated electricity has been exported and that 
the remaining half is used on site (𝛾L=0.50), an approach adopted from BSRIA (BSRIA, personal 
communication, January 4, 2018). Alternatively, a cover factor of 0.31 will be used as suggested by 
Reynders et al. [40] for a system sized to annually produce as much as the house consumes and 
where no heat pump is installed. 
To a large extent, this total electrical energy will be converted into internal gains by appliances and 
lighting (φint,Ap and φint,Li, resp.). Notable exceptions are for example the energy used by a washing 
machine to elevate the water temperature and the heat generated by an electric cooking stove that 
is extracted by a range hood. 
The internal gains φint,Wa cannot be measured directly and no accurate estimate can be made. 
Similarly, uncertainty exists about φint,Oc and φint,HVAC (Eq.8). Ultimately, since no direct useful 
alternative inputs are available, φint	will crudely be represented by Electotal alone (Table 3). 

3.1.6. Solar heat gains 
A fifth driving force of θi in Eq.1, φsol, are the solar gains through each of the k transparent envelope 
elements (Eq.9). Isol;k represents the solar irradiance per square metre of collecting area of surface k 
[W/m²], and encompasses both direct and diffuse solar radiation. Fsh;ob;k	is a time-dependent (t) 
shading reduction factor for external obstacles such as trees and roof overhangs. Asol;k, the effective 
collecting area of surface k, corresponds to the overall projected area of the glazed element altered 
by the frame area fraction, the total solar energy transmittance of the transparent part of the 
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element, and a shading reduction factor for movable shading provisions. Both Asol;k	and Isol;k	are 
applicable for a given orientation and tilt area and thus moment in time t. 

𝜑LMN;B = ∑ 𝜑LMN;j;Bj = ∑ ]𝐹L�;M�;j;B ∙ 𝐴LMN;j;B ∙ 𝐼LMN;j;Bcj 	 	 	 	 	 	 (9) 

Ideally, the direct and diffuse radiation for each orientation would have been registered on site 
during the OBM. Since this was practically unfeasible, the available GHR data, measured 30 km off 
site will be used instead. Limitations associated with this measurement variable are for example that 
it does not account for the site-specific shading and that it might suffer from time delays regarding 
for instance clouds. 
Alternatively, the registered ElecPV (Table 2) can be used to represent the solar irradiance Isol. 
Although this variable might better represent the actual incident radiation on the site, the raw PV 
production data might lack a correction for its area and electricity generation. 
Furthermore, the GHR can be converted into the incident radiation on the vertical surfaces, by 
means of TRNSYS Type 99 [41]. Yet, to ensure practical identifiability in the ARX model, only the 
incident radiation on the surface with the most dominant solar orientation, the south surface, will be 
used. 

3.1.7. Latent heat gains 
Over time, the building elements surrounding the zone load and unload hygroscopically, for newly 
built dwellings mainly by evaporating encapsulated moisture. These latent heat flows ΦLG can be 
mathematically expressed as the product of (1) the latent heat of evaporation hL [J/(kg)] and (2) the 
moisture exchange rates G [kg/s] between the zone air on the one hand and the interior surfaces of 
the building elements separating the considered zone from the exterior environment (Gsi,e), the 
ground (Gsi,g), unconditioned spaces (Gsi,u) and adjacent buildings (Gsi,a) on the other hand:	

𝜑OP;B = ℎO ∙ ]𝐺L=,I;B + 𝐺L=,a;B + 𝐺L=,d;B + 𝐺L=,`;Bc (10) 

In both the case study house and the adjacent dwelling, two sensors were installed to register the 
relative humidity (RH). The derived level of vapour pressure could give an indication of the latent 
heat gains, as well as of the presence of occupants and thus the internal gains. However, an in-depth 
study is needed to examine this relationship. Since φLG can be assumed to represent only a small 
fraction in the overall heat balance (up to 5 % of the heating power, [12]), it will further be 
neglected. 

3.1.8. Definition of Heat Loss Coefficient 
In this case, the difference between the air and equivalent temperature is small, as it concerns a 
well-insulated, airtight dwelling. In practice, it is even hard to measure on site with low-cost 
equipment. Therefore, the temperature difference terms in φtr (Eq.2) and φvent (Eq.5) can be 
approximated by one general (θi-θe) term. It is then possible to rewrite the transmission and 
ventilation losses as demonstrated in Eq.11. The sum of Htr	and Hve, the heat transfer coefficient by 
transmission and ventilation respectively, is commonly (subscript ‘c’) defined as the ‘(overall) Heat 
Loss Coefficient’ or HLC.  

𝜑BE;B + 𝜑HIJB;B = ]𝐻BE;B + 𝐻HI;Bc ∙ ]𝜃=;B −	𝜃I;Bc = 𝐻𝐿𝐶� ∙ ]𝜃=;B −	𝜃I;Bc 	 (11) 

In this paper, however, a narrower definition is adopted, which excludes the transmission heat 
transfer coefficient through adjacent buildings (Htr,a), the subterm of Htr	in Eq.3 in which a 
temperature difference adjustment factor btr different from 1 is embedded (Htr,g and Htr,u are not 
present in this case study). The considered HLC thus forms a subterm of HLCc, only taking account of 
the transmission heat loss to the ambient and the ventilation losses, as demonstrated in Eq12a-b. 
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θa represents the temperature of the adjacent building and	φtr,a the transmission heat flow rate to 
the adjacent building. 

𝜑BE;B + 𝜑HIJB;B = ]𝐻BE,I;B + 𝐻HI;Bc ∙ ]𝜃=;B −	𝜃I;Bc + ]𝐻BE,`;B/𝑏BE,`;Bc ∙ ]𝜃=;B − 	𝜃`;Bc 																			(12a)
= 𝐻𝐿𝐶 ∙ ]𝜃=;B −	𝜃I;Bc +	𝜑BE,`;B 																			(12b)

 

Finally, since it was decided to	neglect ΦLG	in this case study, Eq.1 may be reformulated as: 

𝐶= ∙
?@A
?B
= 𝐻𝐿𝐶 ∙ ]𝜃=;B −	𝜃I;Bc + 𝜑K;B + 𝜑=JB;B + 𝜑LMN;B +	𝜑BE,`;B (13) 

The outcome of the building physical framework is thus a definition of the HLC and its variables of 
influence, with some of the OBM data mapped to it (Table 3). But, it must be stressed that none of 
the ‘monitoring variables’ is a direct, one-to-one match with the ‘theoretical variables’ from the heat 
balance. 

3.2. Statistical Framework 

This work uses a transfer function modelling approach to characterise the HLC. More precisely ARX 
models will be identified on the available dataset using a combination of the variables listed in Table 
3 as inputs and the interior temperature as output. The following paragraphs describe the steps 
needed to prepare the data set, estimate and validate the model coefficients and map the identified 
model coefficients to the physical parameter HLC. 

3.2.1. Pre-processing of the data 
Pre-processing of the collected monitoring data was carried out to adjust for Daylight Saving Time, 
discriminate and convert the Gasmains data (as discussed in §3.1.4) and calculate the incident 
radiation on the south facade based on the GHR data (§3.1.6). 
To ensure a relatively large interior-exterior temperature difference and limit the influence of the 
solar radiation on the overall heat balance, the heating season of 2014-2015 (October 1 till March 
31) was selected as training period for the characterisation of the HLC. The monitoring data of 
October and November 2013 and January, February and March 2014 are used for cross-validation. 
The resulting data set was resampled to hourly values. Consequently, the percentage of missing data 
points per variable and per month of the considered periods ranges between 0.0 % and 6.7 % 
(disregarding the completely missing θreturn time series). 
To validate the choice of resampling time, variants with resampling times of 4, 6 and 24 hours were 
explored as well. 

3.2.2. Development of Data Subsets 
To gain insight into the relative influence of the above-discussed heat flows on the HLC estimate, 5 
subsets are taken of the original dataset. The data subsets, described in columns 3 to 7 of Table 3, 
are numbered according to increasing extent (regarding the number of sensors installed) and thus 
cost of the measurement campaign. 
To be able to evaluate all the candidate substitutes for the variables of the heat balance equation, it 
was furthermore decided to consider both a basic (‘B’) and some alternative (‘A’) versions of data 
subsets 1, 3 and 4. 
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Table 3: LEFT SIDE: Mapping of the available measurement data to the variables present in the heat balance. 
RIGHT SIDE: Overview of the data included in the 5 established subsets, with ‘1’ the most rudimentary data set and ‘5’ the 
most extensive one. ‘B’ marks elements present in the Base case, ‘A’ denotes investigated Alternatives with regard to the 

aspect included in the name tag. 

 
• In this manner, the base version of data subset 1 (‘1_B’) is limited to three time series: 

θi_mean, θe1 and Gasmains. To analyse the sensitivity of the HLC estimate to the sensor set-up 
the alternative candidates for θi, listed in column 2 of Table 3, are subsequently used in 
‘1_A_θi_liv’, ‘1_A_θi_bed’ and ‘1_A_θi_vol’. Likewise, the characterisation exercise is executed 
with and without taking account of the theoretical boiler efficiency in respectively cases 
‘1_A_Efficiency’ and ‘1_B’. 

• Data subset 2 (DS2) entails a larger measurement set-up with an extra sensor to register 
Watermains. This way it is possible to estimate the gas consumption for space heating and 
hence assess the impact on the HLC of the exclusion of the energy consumption for DHW 
production from φH. 

• An even more elaborate measurement campaign also tracks Elecmains and ElecPV. At its most 
extreme, all electricity use (Electotal) can be attributed to internal gains. Hence, DS3 
examines the expected increase of the estimated HLC when including these gains. 

• In the case of DS4 we furthermore consider the accessibility to the data of a ‘local’ weather 
station. This not only makes it possible to investigate the difference between an HLC 
estimation based on exterior temperatures measured on site (basic version ‘4_B’) or 30 km 
off site (alternative version ‘4_A_θe2’), but also to include the solar radiation explicitly in the 
model in the form of the GHR (‘4_B’) or its alternatives. 

• Finally, DS5 additionally encompasses detailed information on the temperature of the 
neighbouring dwelling θa_mean. This is in contrast to the other cases for which the heat losses 
to the adjacent building were not modelled explicitly (see further). 

3.2.3. Model Parametrization and Selection 
The model structure of the ARX, as it was defined by Madsen et al [42], is being tailored to this 
application. Since the case study concerns a real-life occupied building in which the temperature 
fluctuates, it is opted to analyse the data subsets using a model with θi as output variable. The 
previously-discerned physical phenomena influencing θi (Table 3) determine the input variables. 
Hence, the translation of the considered heat balance (Eq.13) into an ARX model formula is 

Heat 
Balance

Available from collected data or assumptions
Data

  subset 1
Data

 subset 2
Data

 subset 3
Data

 subset 4
Data

 subset 5
• θi_liv [°C] 1_A_θi_liv

• θi_bed [°C] 1_A_θi_bed

• θi_mean (arithmetic mean of θi_liv and θi_bed) [°C] 1_B 2_B 3_B 4_B 5_B
• θi_vol (volume weighted average of θi_liv and θi_bed) [°C] 1_A_θi_Vol

• θe1 [°C] 1_B 2_B 3_B 4_B 5_B
• θe2 [°C] 4_A_θe2

θa • θa_mean (arithmetic mean of θa_liv and θa_bed) [°C] 5_B

• Gasmains [W] 1_B
• Gasmains * boiler efficiency [W] 1_A_Efficiency
• (Estimated) gas consumption for SH [W] 2_B 3_B 4_B 5_B

φint • Electotal = Elecmains + 0.50*ElecPV [W] 3_B 4_B 5_B
• Electotal = Elecmains + 0.31*ElecPV [W] 3_A_Int
• GHR [W/m²] 4_B 5_B
• (Modelled) Incident radiation on the south surface [W/m²] 4_A_South
• ElecPV [W] 4_A_PV

θi

θe

φH

Isol
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presented in Eqs. 14 and 15. φx(B) and ωy(B) are, respectively, output and input polynomials of 
order px and py in the backshift operator B.	Int is a constant intercept term and εt the residual (error) 
[42]. 
Eq.14 was applied on DS1 and DS2. Next, the model structure was gradually extended with more 
variables to analyse the more elaborate data sets (Eq.15). An approach which sums up the gas use 
for space heating and the total electricity use (crudely representing estimable internal gains by 
appliances and lighting) is adopted since both phenomena are assumed to mainly use convection as 
heat transfer mode. 

𝜑=(𝐵) ∙ 𝜽𝒊;𝒕 = 𝜔K(𝐵) ∙ 𝝋𝑯;𝒕 + 𝜔I(𝐵) ∙ 𝜽𝒆;𝒕 + 𝐼𝑛𝑡 +	𝜀B (14) 

𝜑=(𝐵) ∙ 𝜽𝒊;𝒕 = 𝜔K(𝐵) ∙ ]𝝋𝑯;𝒕 + 𝝋𝒊𝒏𝒕;𝒕c + 𝜔I(𝐵) ∙ 𝜽𝒆;𝒕 + 𝐼𝑛𝑡 +	𝜀B§¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ©¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ª
Data set 3

+ 𝜔LMN(𝐵) ∙ 𝑰𝒔𝒐𝒍;𝒕
§¨¨¨¨̈ ¨¨¨¨¨¨¨¨̈ ¨¨¨¨¨¨¨¨̈ ¨¨©¨¨¨¨¨̈ ¨¨¨¨¨¨¨¨̈ ¨¨¨¨¨¨¨¨̈ ¨ª

Data set 4

+𝜔`(𝐵) ∙ 𝜽𝒂;𝒕

§¨¨¨̈ ¨¨¨¨̈ ¨¨¨¨̈ ¨¨¨¨¨̈ ¨¨¨¨̈ ¨¨¨¨̈ ©¨¨¨¨¨̈ ¨¨¨¨̈ ¨¨¨¨¨̈ ¨¨¨¨̈ ¨¨¨¨̈ ¨¨¨ª
Data set 5

   

(15) 

To decide on the model order, a backward elimination procedure is followed. In a first step, a model 
including 24 lags for each of the considered polynomials (px=pY= 24) is fitted on the data using the lm 
function in R [43]. It was chosen to involve 24 data points from the past since this corresponds, for a 
1-hour resampling time, to a daily cycle2. Based on the results of the fitting, in subsequent runs all 
model coefficients of the highest order present (initially: 24) which prove insignificant according to a 
t-test (threshold of 0.05) are removed. Hence, following this iterative selection procedure, a model 
with the lowest possible order for all polynomials and significant model coefficients is retained. 

3.2.4. Model Validation and Comparison 
A number of performance tests are carried out to verify the validity of the developed models. 
First, the fitted model coefficients are evaluated by means of a marginal t-test. Since the model 
order selection process already uses the coefficients’ significance as a criterion, all final models 
should pass this first test. 

Next, the prediction accuracy of the model is assessed. 
The autocorrelation function (ACF) and cumulated periodogram (CP) of the model residuals are 
inspected to verify that they show no significant autocorrelation. If any autocorrelation is still 
existing, the cross-correlation function of the residuals with the input variables and the time series 
plots of the residuals and input variables are examined for any clear patterns, indicating model 
deficiencies. To ensure that the developed models are not over-fitted, the normalized root mean 
square error nRMSE [%] between the observed interior temperature and 1-step ahead predictions is 
furthermore determined for both a two-month period embedded in the training period (November-
December 2014) and a two-month period that has not been used for the parameter estimation 
process, a so-called ‘cross-validation period’ (November-December 2013). The nRMSE is hereby 
defined as Eq.16, with θi(t) and θ± i(t) the observed and predicted signals, respectively, and n the 
number of samples considered. The result of this cross-validation test should be that there is no 
significant difference between the model’s goodness-of-fit for both periods. 

                                                             
2 For the model variants fitted on data resampled to 4-hour, 6-hour and 24-hour values, starting orders of 
respectively p=6, p=4 and p=1 were used. 
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𝑛𝑅𝑀𝑆𝐸 = ¶∑·@A(B)¸@¹º (B)»
¼

(J¸y)
∙ y½½
]@A,¾¿À¸@A,¾AÁc

 (16) 

Taking this cross-validation even a step further, the developed models are challenged to simulate 
the model output θi for 3 different validation periods, selected based on the condition that no 
observations of the input variables or their lags are missing. The validation periods for simulation 
hence are (1) January 7 till January 16, 2014; (2) January 27 till February 5, 2014 and (3) February 20 
till March 2, 2014. The nRMSE between the simulated (θ± i) and measured (θi) time series gives insight 
into the ability of the model to predict the dynamic behaviour of the real system. If the developed 
model has trouble or even fails to explain the observed variances, its internal structure and thus the 
inferred HLC can be questioned. 

3.2.5. Determination of ‘HLC’  
The identified model coefficients of Eqs.14-15 are physically interpreted as outlined in Eq.17: by 
taking the quotient of the exterior air and heating power polynomials, the parameter HLC is 
obtained. This parameter represents the sum of Htr,e, and Hve as stated in Eqs.12, if there is no cross-
correlation between unmodelled phenomena and θe. The backshift operator B is set equal to 1 in 
order to obtain the steady-state gain, as desired in the case of the HLC.  

ÂÃ(y)
ÂÄ(y)

= 𝐻𝐿𝐶 (17) 

4. Results and Discussion 

As can be deduced from Eqs. 6 and 12, the heat loss coefficient of the case study dwelling comprises 
three components: Htr,e, Hve,wtt	 and Hve,tt. The information available on the building allows to make 
an initial estimate for each of them: 

• Based on the building components’ surface areas and design U-values (Table 1) a design Htr,e of 
39.0 W/K is calculated (Eq.4). 

• Considering that there are no natural ventilation systems and that a target threshold was set 
for the infiltration rate, Hve,wtt should not exceed 8.2 W/K (Eq.18, with AE the building envelope 
area). 
𝐻HI,zBB = 	0.34 ∙ ]0.05 ∙ (𝐴𝑃Ç½ ∙ 𝐴È)c	 (18) 

• Given the missing measurement data and the limited information on the mechanical ventilation 
system, an assumption will have to be made on the value of Hve,tt (Eq.6). An air change rate of 
0.4 1/h, which implies a GV of 0.02 m³/s, and an efficiency of the heat recovery unit of 91.0 % 
(bve=0.09), result in a value of 2.4 W/K for Hve,tt. By setting bve equal to 0.09, the heat recovery 
unit is assumed to work at its maximum efficiency, as the limited measurement data of θsupply 
and θreturn seem to suggest. Meanwhile, with a lower efficiency of 80 % or 60 %, Hve,tt could 
grow as large as 5.2 W/K or 10.5 W/K respectively. 

Adding up these three heat transfer coefficients, a design HLC ranging between 49.6 W/K and 57.7 
W/K is obtained (Eqs. 6 and 12). 
On-site measurements of the U-value of the external walls and the AP50, as well as infrared 
thermography, already indicated that the actual as-built HLC might deviate from this theoretical 
value, which for example excludes any thermal bridging effects (§2.1.1). Moreover, the actual air 
change rate and energy efficiency of the MVHR are unknown and no information is available on the 
opening of windows. Therefore, this design value ‘range’ will merely be considered as an indicative 
reference, not as a strict criterion to evaluate the accuracy of the estimation outcomes. 
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In what follows, an overview will be given of the characterisation results for the 5 data subsets. This 
will provide insight into the sensitivity of the HLC estimate to the extent of the monitoring set-up 
and the assumptions made in case of missing input data. 
However, first, the impact of the duration and timing of the monitoring campaign and the applied 
data analysis techniques will be demonstrated, since this will underpin some of the choices made in 
setting up the experiment. Hereto the most limited and most extensive data subset will be used (DS1 
and DS5 respectively). 
It is important to emphasise that the case study building has a highly insulated and airtight envelope. 
The results should be looked at in this context. 

4.1. Sensitivity of Estimate to Duration and Timing of the Monitoring Campaign 

For data subset 1_B, which only includes monitoring data of the total gas consumption and an 
assessment of the temperature difference over the building envelope, an estimate of the HLC of 69.6 
W/K (range 95% confidence interval (CI)=21.5 W/K) is obtained. This result was deduced from 
monitoring data for a full heating season (Oct 1-Apr 1, 26 weeks). Nonetheless, it can be seen from 
Figure 3 that a similar result could have been found for a monitoring campaign of at least 16 weeks. 
From this point on, the mean estimates for HLC vary consistently around approximately 70 W/K and 
within 13.3 % of their mean. The range of the 95% CI too drops significantly until a duration of 16 
weeks, but remains almost constant thereupon. It is hence essential to consider a sufficiently long 
monitoring period (at least 16 weeks in this case) and to verify whether the estimates converge. The 
limited convergence could for this first data subset be attributed to the crude input data, since for 
the more extensive data set 5, the results seem to stabilize earlier in time and from the 16week-
mark on, the results only vary within 11.8 % of their mean and the range of the 95 % CI is limited to 
17.5 W/K. 
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Figure 3: From a monitoring period of 16 weeks onwards, about the same range of 95 % confidence interval (‘CI’, indicated 
by the whiskers) is obtained for Data Subset 1 and the mean estimates (dots) appear to stabilize. Full convergence, 

however, cannot be expected from this plain model; the mean estimates continue to fluctuate between approximately 60 
W/K and 80 W/K. 

For the more extensive Data Subset 5, the results seem to stabilize 3 weeks earlier: the range of the 95 % CI remains quasi-
constant from week 13 onwards. 

Naturally, both the characterisation outcome and convergence rate depend on the quality of the 
training data. This is demonstrated in Figure 4, which shows the base case estimates for DS1 and DS5 
on the far left, and the results of five investigated variants on the right. A variant of case 1_B with a 1 
month shifted monitoring data set, spanning from November 1 to May 1, resulted in a 21.6 % higher 
mean estimate (Figure 4, variant ‘Starting point’). However, the estimate for the shifted data set is 
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considered less reliable than that for case 1_B: the model residuals show a higher autocorrelation 
and in addition, the estimate did not converge towards the result obtained for the 26-week data set. 
Performing the same period-shifting exercise on Data Subset 5, results in a less deviant estimate. 
Hence, the seemingly limited robustness of estimate 1_B might among other things be attributed to 
the lack of modelling of the solar gains, which have more importance in spring time. 
Nonetheless, repeating the characterisation exercise on a different measurement period, as is also 
done in the cross-validation tests, is a good approach to assess the robustness of the outcome. 

Figure 4: An investigation of some variants of the base cases 1_B (upper row) and 5_B (lower row) learns that shifting the 
monitoring campaign in time or adopting an altered data analysis approach can result in deviations of the HLC estimate up 

to 21.6 %. The figure presents the results obtained from 26 weeks of hourly data 

4.2. Sensitivity of Estimate to Data Analysis Technique 

As stated earlier (§3.2.1) it was decided to fit the ARX models on data with the highest available 
frequency: hourly values. In Figure 4, however, the sensitivity of the characterisation result to the 
resampling time (RT) of the data is explored. For 4-hourly and 6-hourly averaged data, slightly lower 
mean estimates are obtained (2.5 % and 4.5 % resp. for DS1, 12.7 % and 6.3 % resp. for DS5). The 
uncertainty on the outcome reduces even more (12.8 % and 23.6 % resp. for DS1, 17.1 % and 0.1 % 
resp. for DS5). Analysis of diurnal data, on the other hand, results in higher mean HLCs and larger 95 
% CIs. For both the base model and its variants, all model coefficients are significant and the 
residuals pass the ACF and CCF tests. Although the hourly resampling time does not provide the 
smallest CI, the cross-validation tests via simulation argue in its favour, by pointing out that the 
models 1_B and 5_B are better at predicting the dwelling’s behaviour (indoor temperature profile) 
than their variants, as expressed by lower nRMSE-values (Table 4). At larger data resampling 
intervals, the faster dynamics are averaged out to a certain extent. This appears to make the 
considered ARX model less appropriate to analyse the data. 
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Table 4: The nRMSE between θi and θ± i for some prediction tests performed on both training data and validation data. The 
results of the one-step-ahead predictions signal no significant problems of over-fitting, the nRMSEs of the cross-validation 

tests via simulation are used for model comparison. RT= resampling time. 

Cases 

nRMSE [%] 

One-step-ahead Simulation 

Nov-Dec ‘14 
(Training) 

Nov-Dec ‘13 
(Validation) 

Jan ‘14 
(Validation) 

Jan-Feb ‘14 
(Validation) 

Feb-Mar ‘14 
(Validation) 

1_B 1.7 2.7 31.0 21.3 28.7 
1_B, RT=4u 5.4 8.1 31.9 23.0 29.9 
1_B, RT=6u 6.0 11.1 39.3 25.9 39.2 
1_B, RT=24u 9.8 17.9 97.4 26.8 39.1 
1_A_Efficiency 1.7 2.7 31.0 21.3 28.7 
      
2_B 1.7 2.7 14.5 10.7 12.8 
      
3_B 1.5 2.6 25.5 17.7 21.6 
3_A_Int 1.6 2.6 27.0 18.0 20.0 
      
4_B 1.5 2.6 22.7 16.4 23.5 
4_A_θe2 1.5 2.6 27.0 17.0 25.5 
4_A_PV 1.5 2.6 22.7 16.6 23.1 
4_A_South 1.5 2.6 25.1 17.5 21.4 
      
5_B 1.5 2.6 22.1 16.0 24.0 
5_B, RT=4u 4.7 7.9 30.3 22.7 28.2 
5_B, RT=6u 5.1 10.7 29.9 20.1 28.4 
5_B, RT=24u 8.8 19.5 41.1 24.4 41.4 

 

Forcing the model structure through the origin by setting the intercept term in Eqs. 14-15 equal to 
zero, might come across as an attractive option, as it gives realistic results with smaller confidence 
intervals (13.6 % and 8.9 % smaller ranges compared to the 95 % CIs of 1_B and 5_B respectively, as 
demonstrated by the rightmost estimates in Figure 4). Nevertheless, deliberately excluding a 
statistically significant constant term seems incorrect as the term might represent the unmodelled 
steady-state phenomena. The type of physical phenomena that could be lumped into the constant 
term are also discussed by Bauwens [18]. 

Hence, to ensure comparability, a training data set spanning over 26 weeks, hourly resampling time 
and non-zero intercept term will be assumed for all subsequent analyses. 

4.3. Sensitivity of Estimate to Extensiveness of the Monitoring Set-up and Assumptions Made 

Figure 5 displays an overview of the estimated HLCs for all the base case data sets and the 
investigated alternatives (‘B’ and ‘A’, respectively) listed in Table 3. 
Overall and ignoring some outliers, the characterisation results for HLC show remarkable agreement, 
considering the rather distinct underlying data sets and assumptions. The majority of the estimated 
HLC values are to be found within the range of 60.7 to 71.6 W/K, and their confidence intervals show 
considerable overlap. The uncertainty on the estimates reduces with 30.7 % from the base case 
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model of DS1 (‘1_B’) to case 3_B, but does not decrease further for cases 4_B and 5_B. 
A more detailed description of the statistical and physical interpretation of the different cases will be 
given below. The base case and alternative cases will be discussed subsequently, starting from DS1. 

 

 

Figure 5: The deviation between the HLC estimates for the different cases exhibits the characterisation outcome’s sensitivity 
to decisions made during the monitoring campaign and data analysis.  

4.3.1. Data subset 1 
The base case 1_B uses θi_mean as interior temperature. The three alternatives for θi, outlined in Table 
3, were evaluated as well. An overview of a few statistical features of all four time series is provided 
in Table 5. Figure 5 displays the sensitivity of the HLC estimate to the choice for θi. Strikingly, the 
interior temperature signals cannot be used interchangeably for the characterisation. Although their 
mean values and variance closely align and they are highly correlated, as can be expected from a 
well-insulated, airtight building, the HLC estimates deviate considerably (up to 89.5 %). Especially the 
use of θi_liv leads to a deviant, highly uncertain estimate. 
The ARX model used for the characterisation is a black-box model; it thus entirely depends on the 
provided data to create its internal structure. Since the parameter which we ultimately aim to 
deduce from the model coefficients, the HLC, depends on the interior temperature of a 
homogeneously assumed zone (see BPF §3.1.1), it seems appropriate to initiate the model with a 
combination of θi_liv and θi_bed as model input. Volume weighted averaging requires prior knowledge 
of the building geometry which will not always be readily available for remote assessments. 
Therefore, preference will be given to the use of θi_mean in the remainder of the paper. 
The reservations concerning the suitability of the available time series to represent θi (see §3.1.1), 
and the above-demonstrated sensitivity of the estimate to θi, should be kept in mind when 
interpreting the obtained HLC estimates. Moreover, the results shown in Figure 5 stress the need for 
further research into the optimal set-up of interior temperature sensors, as they evidently have 
strong implications on the HLC estimate, even in a well-insulated, relatively small building. 
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Table 5: At first sight, a statistical description of the four candidate time series for ‘θi’ (taking the integral heating season 
into consideration) does not reveal any major differences that could give rise to divergent HLC estimates. 

θi candidate → θi_liv	 θi_bed θi_mean θi_vol 
Average(θi) [°C] 21.1 21.6 21.3 21.4 

Standard deviation(θi) [°C] 1.7 1.5 1.4 1.4 
Correlation(θi, θe1) 0.5 0.1 0.4 0.4 
Correlation(θi, θi_liv) 1 0.5 0.9 0.9 

Another variant of data subset 1 assesses the consequence of using the gross energy input (Gasmains), 
instead of an energy input that takes account of a constant boiler efficiency of 91%. As might be 
expected, Figure 5 shows a semi-net HLC (‘1_A_Efficiency’) that is 9.0 % lower than its gross variant 
(‘1_B’), and has an accordingly reduced CI. Since the boiler efficiency only represents a part of the 
overall system efficiency, the actual overestimation associated with an HLC solely based on gas 
consumption data will be even larger. This raises the question whether it is possible to perform 
accurate estimations of the heat loss coefficient based on smart meter gas data - certainly without 
prior knowledge of the building systems. 

4.3.2. Data subset 2 
In a first attempt to align the outcome of the characterisation more closely with the actual physical 
HLC, the φH variable was modified towards DS2 to only represent the gas use for space heating (see 
§3.1.4). This lowers the mean HLC estimate of the base case with 12.8 %, from 69.6 W/K to 60.7 W/K 
(cases 1_B and 2_B, Figure 5). The (range of the) associated 95 % CI decreases as well, with 8.5 %. 
The rather large reduction of the nRMSE (Table 4) between cases 1_B and 2_B indicates a significant 
improvement of the model. The disentanglement of the gas consumption for SH and the production 
of DHW hence is an important adaptation, certainly in this case study of a well-insulated house. 
Nonetheless, given the fact that the applied decomposition method has not yet been validated, a 
significant degree of uncertainty remains with regard to the assessed values for both φH	and the HLC 
[39]. 

4.3.3. Data subset 3 
For DS3, which additionally includes the measurements Elecmains and ElecPV, the assumption is made 
that all electricity consumption results in internal gains that, together with the net heating input, 
cover the heating demand in winter (Eq.15). A cross-correlation plot of the residuals of the ARX 
model of case 2_B with the Electotal time series of 3_B indeed corroborates the view that this 
variable is a useful extension of the model description (Figure 6). 
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Figure 6: The cross-correlation function (CCF) between the residuals of case 2_B and the estimated total electricity 
consumption of case 3_B shows significant correlation (especially at the first lag, but also at some further lags), which 
emphasises the potential of Electotal to improve the model fit. 

Since the actual total electricity consumption is unknown, two estimates were made using different 
cover factors 𝛾L for the gains from local photovoltaic energy generation (see Table 3). Figure 5 shows 
that the base and alternative case are characterised by a respectively 11.6 % and 18.0 % higher HLC 
than case 2_B. The fact that the higher supply cover factor does not result in the higher estimate 
may be attributed to the ARX model’s black-box structure that considers the correlation between 
the input and output variables, which does not necessarily imply conservation of energy. 
Both models score well on the aforementioned validation tests (ACF, CCF), and a comparison of the 
nRMSEs of the one-step-ahead predictions indicates that the models are not over-fitted (Table 4). 
However, the cross-validation tests via simulation mark the models as less suitable candidates to 
represent the dwelling system than model 2_B. The relatively higher nRMSEs indicate that arbitrarily 
adding the whole mains electricity use plus either 50 % or 30 % of the PV-production in each time 
step might be an overestimation of the actual internal heat gains. Notably, however, this finding 
might emerge from a time shift between the electricity consumption and thermal gains or from a 
mismatch between the position of the temperature sensors and the electrical appliances. In 
addition, it is important to emphasize that the heat flow rate from occupants, which forms part of 
the total internal heat gain, is not explicitly incorporated in either of the models. 
Since case 3_B approximates the dwelling’s behaviour slightly closer than 3_A_Int, the 50 % cover 
factor will be applied in DS4 and DS5.  

4.3.4. Data subset 4 
The dynamic heat balance also includes the incident solar radiation as an explanatory variable for 
the variation of θi in time. Not monitoring it, and hence not being able to include it in the ARX 
model, may therefore lead to a model structure that is missing out on the fast dynamics and result in 
an incorrect HLC estimate. However, including it improperly, might be even more harmful while 
giving a false sense of accuracy. Data subset 4 is intended to examine the impact on the HLC 
estimate of, firstly, the mere inclusion of an explicit solar radiation term and, secondly, the form in 
which it is included. Three different variables, feasible to monitor in practice, were investigated (see 
Table 3). It must be noted that none of these three time series corresponds to the solar radiation as 
requested by Eq.9, since the actual incident radiation, per orientation and tilt angle and accounting 
for external shading, is not available. This may have repercussions for the interpretability of the 
estimated HLC values. 
Cross-validation shows that all three models (4_B, 4_A_ PV and 4_A_ South) are better at explaining 
the variance in the interior temperature than their equivalent without an explicit Isol term (case 3_B). 
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Still, the addition of the solar radiation enhances the model only moderately. Possible reasons are 
not hard to find. Firstly, the three discussed models include the solar radiation in a very crude way: 
the solar radiation was averaged to hourly values on a horizontal or south facing surface and the 
solar aperture is modelled as a single term (instead of for example as a function of time and 
orientation). Moreover, it should be noted that the window area of the case study dwelling is rather 
small (Table 1). Finally, the solar registrations at a weather station 30 km off site and the PV yields 
potentially do not fully capture the actual solar heat gains. 
Regardless of whether or not the model has sufficiently improved, Figure 5 shows that the estimates 
obtained with the base case model and its two solar radiation related alternatives are nearly equal 
(largest difference between their means is 0.9 W/K), which suggests that in this case inquiring off-
site GHR data and modelling the solar radiation in TRNSYS were unnecessary. 
Another variable related to the local climatic conditions is the outdoor air temperature. Substituting 
the exterior temperature measured on site (θe1) in model 4_B with the off-site registrations (θe2,	see 
Table 3), results in a 7.3 % lower mean HLC estimate with a larger CI (17.0 % higher range). The 
RMSE between both exterior temperature time series is 1.2 °C with a maximum absolute difference 
of 5.3 °C. The cross-correlation of θe1 and	θe2	with Isol	is almost the same (maximum cross-correlation 
over 100 lags of 0.29 and 0.26 respectively). A detailed investigation of the positioning of the sensors 
registering θe1 and θe2 with respect to local shading and wind flow patterns should reveal which 
time series is most representative. For the next data subset preference will be given to θe1 since 
model 4_B scores better at the cross-validation tests. 

4.3.5. Data subset 5 
The assumption for the 5th and final data subset is that the temperature of the neighbouring 
dwelling is monitored as well. The model structure of the ARX (Eq.15) can now be extended with this 
variable, as a result of which the heat loss through the party wall is modelled explicitly. This model 
extension should not only enable the explanation of a larger amount of the dynamics and variance 
available in the observed interior temperature. It should also give the means for purging other 
model coefficients, whose variables are somewhat correlated with θa, such as possibly ωe, from 
disturbances and uncertainty. 
Despite these expectations, it appears in practice impossible to distinguish between θa and the 
constant intercept term. Therefore, the ωa polynomial had to be eliminated from the model 
description for being ‘insignificant’. 
 

5. Conclusion 

Currently, the question is raised whether and how on-board monitoring could be used to 
characterise the building energy performance of occupied buildings on site. This paper presents a 
first step in answering this question by assessing the heat loss coefficient (HLC) of a well-insulated, 
semi-detached, occupied house in the UK based on on-board monitoring and data analysis using ARX 
models. 
The HLC estimates that are labelled ‘more trustworthy’ on the basis of a validation process 
consistently range between 60.7 W/K and 71.6 W/K (this compared to a design-value of 49.6 -57.7 
W/K). With a range of about 17.2 W/K the 95% confidence intervals are rather high, but they 
overlap. 
However, the paper also shows that estimates as far as 89.5 % apart can be obtained due to 
decisions made by the user throughout the characterisation process. With the aid of a carefully 
designed system of ‘data subsets’, ‘variants’ and ‘alternative variables’, insight was offered into the 
origin of these deviations. 
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Firstly, the sensitivity of the outcome to the timing and duration of the monitoring campaign was 
addressed. It was shown how, for a data subset only including the exterior and interior temperatures 
and total gas consumption, the monitoring should span over at least 16 weeks. For a more extensive 
data set with more sensors, a 3-week shorter monitoring period appeared to suffice. Reapplying the 
characterisation on a different part of the monitoring data set proved to be a good approach to 
evaluate the robustness of the outcome. 
Secondly, the influence of the extensiveness of the monitoring set-up was evaluated. The number of 
interior temperature sensors, and their position, proved to have an important impact on the HLC 
estimate, even in a well-insulated dwelling. The estimate based on a single temperature signal 
(registered in the living room) was for instance 68.9 % higher than the one based on a volume 
weighted average of two sensors installed on different floors (in the living and bedroom). The study 
furthermore demonstrated the uncertainty and the overestimation associated with HLC 
characterisations based solely on smart meter gas consumption data. Not accounting for the boiler 
efficiency can already cause an overestimation of 9.9 %. However, accounting for solar gains and the 
temperature of the neighbouring dwelling did not appear to significantly alter the assessed HLC for 
this case. The inability to explicitly model the ventilation losses on the other hand causes a lingering 
uncertainty about the accuracy of the fitted HLC. 
Furthermore, the analyses provided a deeper understanding of the assumptions surrounding the 
handling of unmeasured phenomena. For this specific case, (1) GHR data registered in a weather 
station 30 km off site, (2) incident radiation on the south surface calculated based on these data, and 
(3) the electricity generated by the on-site PV-system could serve interchangeably as a placeholder 
for the incident solar radiation, with a difference of the HLC estimate smaller than 1.3 %. However, 
larger differences (7.3 %) were observed when substituting the exterior temperature measurements 
of a sensor installed in a professional weather station by on-site registrations. 
Regarding the internal gains, too, assumptions have to be made as to which share of the total 
electricity consumption can be classified as internal heat gains. In the case where PV generation is 
present but not submetered, additional assumptions will have to be made concerning the supply 
cover factor. It was shown how these can introduce deviations of up to 5.7 %. In the same vein, 
different approaches to disentangle the non-submetered gas consumption for space heating and 
domestic hot water can lead to significant deviations in the HLC estimate. 
A fourth element that was analysed is the applied data analysis technique. It was found that it is 
necessary to add an intercept term to the ARX model structure as long as it proves to be statistically 
significant. Furthermore, ARX models proved to be better able to describe the dynamical behaviour 
of the system, and hence can be assumed to yield more accurate HLC estimates, when the faster 
dynamics are not averaged out of their training data. 

The research did not only address the pitfalls when characterising the as-built HLC, but also provided 
some handles for appraising the validity of the characterisation results. First, the model description 
should be carefully compared to the underlying building physical framework, to verify if any relevant 
physical phenomena are not (accurately) included or are counterintuitively classified as insignificant. 
Further, the statistical validity of the model should be checked, especially by investigating the model 
residuals. Finally, it was shown how cross-validation via simulation (the nRMSE) can be used to test 
the model structure’s ability to explain the dynamics present in the measurement observations. 
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