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SUMMARY

Follicular B cell survival requires signaling from
BAFFR, a receptor for BAFF and the B cell antigen
receptor (BCR). This ‘‘tonic’’ BCR survival signal is
distinct from that induced by antigen binding and
may be ligand-independent. We show that inducible
inactivation of the Syk tyrosine kinase, a key signal
transducer from the BCR following antigen binding,
resulted in the death of most follicular B cells
because Syk-deficient cells were unable to survive
in response to BAFF. Genetic rescue studies demon-
strated that Syk transduces BAFFR survival signals
via ERK and PI3 kinase. Surprisingly, BAFFR sig-
naling directly induced phosphorylation of both Syk
and the BCR-associated Iga signaling subunit, and
this Syk phosphorylation required the BCR. We
conclude that the BCR and Iga may be required for
B cell survival because they function as adaptor
proteins in a BAFFR signaling pathway leading to
activation of Syk, demonstrating previously unrecog-
nized crosstalk between the two receptors.

INTRODUCTION

B lymphocytes play a critical role in the adaptive immune

response, in part by producing high affinity antibodies to patho-

gens. There are at least three main lineages of mature B cells.

Recirculating follicular B cells reside in the follicles of secondary

lymphoid organs and traffic between them through the blood

and lymphatic circulations; marginal zone (MZ) B cells are

located in the periphery of the splenic white pulp and are largely

nonrecirculating; B1 cells are found predominantly in the perito-

neal and pleural cavities. The total number of mature naive

(unactivated) B cells remains largely constant despite contin-

uous production of new B cells in the bone marrow as well as

recruitment of naive B cells into antigen-activated compart-

ments, such as germinal center cells, plasma cells, and memory

B cells. This homeostasis of mature B lymphocytes is known to

depend on at least two receptors: BAFFR (TNFRSF13C) and the

B cell antigen receptor (BCR).

Mice deficient in BAFFR or its ligand BAFF (TNFSF13B) have

substantially reduced numbers of follicular and MZ B cells, but
unaltered numbers of B1 cells (Gross et al., 2001; Mackay

et al., 2010; Miller and Hayes, 1991; Sasaki et al., 2004; Schie-

mann et al., 2001; Schneider et al., 2001; Shulga-Morskaya

et al., 2004; Thompson et al., 2001). Furthermore, treatment of

mice with reagents that block binding of BAFF to BAFFR leads

to loss of most follicular cells, whereas transgenic elevation of

BAFF expression leads to increased numbers of B cells (Gross

et al., 2000, 2001; Mackay et al., 1999). Thus BAFF regulates

B cell survival, and the amount of BAFF determines the size of

the B cell compartment. Studies have shown that BAFFR signals

in part through the TRAF2 and TRAF3 E3 ligases, leading to

activation of the MAP 3-kinase NIK and IkB kinase 1 (IKK1).

This promotes the proteolytic processing of NF-kB2 (p100) into

p52, an NF-kB family transcription factor that translocates into

the nucleus and regulates gene expression (Rickert et al., 2011).

On mature B cells, the BCR is found in the form of surface-

bound immunoglobulin M (IgM) and IgD. These proteins are

both associated with the nonpolymorphic Iga and Igb (CD79a

and CD79b) transmembrane proteins, which are required for

BCR signal transduction (Kurosaki, 1999). Inducible loss of the

BCR or Iga results in the rapid death of all subsets of mature B

cells (Kraus et al., 2004; Lam et al., 1997). Furthermore, B cells

are also lost following deletion of a portion of the cytoplasmic

domain of Iga containing an immunoreceptor tyrosine-based

activation motif (ITAM), which is critical for signaling from the

BCR (Kraus et al., 2004). These results suggest that the BCR

delivers a signal required for the survival of B cells. Such a signal

could be generated either following low-affinity interactions of

the BCR with self-antigens, or by continuous low-level ‘‘tonic’’

BCR signaling in the absence of ligand engagement. Survival

of BCR-deficient B cells can be rescued by ectopic activation

of phosphatidylinositide-3 (PI3) kinase and this survival signal

may be mediated in part by Akt, which phosphorylates and

inactivates the FOXO1 transcription factor, a regulator of proap-

optotic genes. Taken together, these results suggest that the

BCR transduces a B cell survival signal via PI3 kinase, Akt, and

FOXO1 (Srinivasan et al., 2009). However, because BAFFR can

directly lead to PI3 kinase and Akt activation (Otipoby et al.,

2008; Patke et al., 2006; Woodland et al., 2008), it remains

unclear why B cell survival requires signals from both the BCR

and BAFFR.

Whereas the BCR delivers a survival signal in resting mature

B cells, antigen binding to the receptor promotes B cell activa-

tion, proliferation, and differentiation. Thus signaling from the

BCR can lead to two quite different outcomes. However the
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Figure 1. Deletion of Syk Leads to the Loss of Most, but Not All, B Lineage Cells

Control (Sykfl/+;Rosa26MerCreMer/+, Sykfl/+RMCM) or conditional Syk-deficient mice (Sykfl/�;Rosa26MerCreMer/+, Sykfl/�RMCM) were treated with tamoxifen.

(A) The left panel shows a histogram of the amount of intracellular Syk protein in B or T cells from indicated mice 3 weeks after start of tamoxifen injections. The

right panel shows the mean (±SEM) fluorescence intensities of anti-Syk antibody, normalized to signal in T cells (dashed line) in mice of indicated genotype as

(legend continued on next page)

Immunity

BCR Is a Component of the BAFFR Signaling Pathway

476 Immunity 38, 475–488, March 21, 2013 ª2013 Elsevier Inc.



Immunity

BCR Is a Component of the BAFFR Signaling Pathway
mechanism underlying these differences is unknown. Binding of

antigen to the BCR leads to rapid phosphorylation of two tyro-

sines within the ITAMs of Iga and Igb, probably mediated by

Src-family kinases (Kurosaki, 1999). Subsequently, the tandem

phosphotyrosines on the Iga and Igb ITAMs serve as binding

sites for the tandem SH2 domains of the Syk tyrosine kinase,

leading to autophosphorylation and activation of the kinase

(Mócsai et al., 2010). Studies in the chicken DT40 leukemic B

cell line have shown that loss of Syk blocks BCR-induced

calcium flux, suggesting that Syk is critical for the antigen-

induced activation signal from the BCR (Takata et al., 1994).

Deletion of the Syk gene in mice results in a partial block in B

cell development at the pre-BCR checkpoint and complete

arrest at the BCR checkpoint. Consequently, no mature B cells

develop at all, consistent with a key role for Syk in transducing

pre-BCR and BCR signals required for developmental pro-

gression (Cheng et al., 1995; Turner et al., 1997; Turner et al.,

1995). In view of these findings, it is possible that Syk may also

be important for the tonic BCR survival signal. Here we investi-

gated this possibility by studying the effect of inducible deletion

of Syk on B cell survival.

We found that deletion of Syk led to loss of follicular and MZ

B cells, which correlated with the inability of Syk-deficient B cells

to survive in response to BAFF. By using biochemical and

genetic rescue approaches, we demonstrated that Syk trans-

duces key BAFFR survival signals via the ERK and PI3 kinase

pathways. Surprisingly, we discovered that BAFF stimulated

rapid phosphorylation of Iga and Syk and that BAFF-induced

phosphorylation of Syk required the BCR. Thus we conclude

that the BAFFR and BCR signaling pathways are closely con-

nected and that rather than delivering an independent tonic

survival signal, the BCR and its associated Iga subunit may serve

as adaptor proteins in a BAFFR signaling pathways required for

B cell survival.

RESULTS

Loss of Syk Results in Loss of Most Mature B Cells
To investigate the potential role of Syk in transducing the BCR

tonic survival signal, we utilized a mouse strain in which Syk

could be inducibly deleted. This consisted of a conditional allele
a function of time following tamoxifen injection. Note that the control mice start

treatment, and conditional Syk-deficient mice start with one allele, which is reduc

mice start with about half the amount of Syk protein compared to control mice.

(B) Flow cytometric analysis of bonemarrowB lineage cells (B220+CD19+ or B220

Numbers indicate percentages of cells in the marked gates.

(C) Graph of mean (±SEM) number of all B lineage cells (B220+CD19+), pro-B (

B (B220+CD19+IgD�IgM+CD2+), and mature B (B220+CD19+IgD+) cells in the bon

determined using gates shown in (B).

(D) Flow cytometric analysis of splenic B lineage cells before and 5 weeks after t

(B220+CD93+) andmature (B220+CD93�) B cells; right-hand panels show separati

(CD23�IgM+). Numbers indicate percentages of cells in the marked gates.

(E) Graph of mean (±SEM) number of B cells (B220+), T cells (CD4+ or CD8+

CD93�CD23�IgM+), and transitional (B220+CD93+) B cells in the spleen of indica

gates shown in (D).

(F) Flow cytometric analysis of B cells (B220+CD19+) from the peritoneal cavity

indicate percentages of cells in the marked gates.

(G) Graph of mean (±SEM) number of B1a (B220+CD19+CD5+CD23�), B1b (B220

cavity of indicated mice as a function of time following tamoxifen injection, deter
of Syk in which exon 11 is flanked by loxP sites (Sykfl) and an

allele of ROSA26 (Rosa26MerCreMer) expressing a tamoxifen-

inducible MerCreMer fusion protein consisting of the Cre recom-

binase fused to two mouse estrogen receptor hormone-binding

domains (Zhang et al., 1996). We generated two mouse strains:

control (Sykfl/+Rosa26MerCreMer/+, Sykfl/+RMCM) or conditional

Syk-deficient mice (Sykfl/�Rosa26MerCreMer/+, Sykfl/�RMCM).

Both strains of mice expressed the Cre recombinase and had

one loxP-flanked allele of Syk but differed in the second Syk

allele, with the control mice having a wild-type allele (Syk+) and

the Syk-deficient mice having a nonfunctional deleted allele

(Syk�). This allowed us to control for the activity of the recombi-

nase and any potential effect of deleting and recombining

genomic DNA. Treatment of conditional Syk-deficient mice

with tamoxifen resulted in the loss of Syk in virtually all B cells,

with the amount of Syk falling below detection by 10 days

following start of tamoxifen treatment (Figure 1A). In contrast,

treatment of control mice with tamoxifen resulted in loss of one

allele of Syk and thus protein amounts fell by about half.

Analysis of B lineage cells in these mice showed that loss of

Syk caused no change in the number of bonemarrow pro-B cells

but resulted in a rapid loss of bone marrow pre-B and immature

B cells and splenic transitional B cells (Figures 1B–1E), resem-

bling the phenotype of mice with a constitutive deficiency of

Syk, which show a developmental block at the pre-BCR check-

point and a block in BCR-driven positive selection of immature

B cells into the mature B cell compartment (Cheng et al., 1995;

Turner et al., 1995, 1997). Furthermore, we saw a loss of the

majority of marginal zone B cells and most (�80%) follicular

B cells (Figures 1D and 1E). Most recirculating follicular B cells

were also lost from blood and lymph nodes (data not shown);

however, around 50%of control numbers ofmature recirculating

B cells remained in the bone marrow (Figures 1B and 1C). Lastly,

we examined B cells in the peritoneal cavity. In agreement with

the loss of follicular B cells in the spleen, we saw a loss of the

equivalent B2 cells. However B1 cells (both B1a and B1b) were

only partially reduced (Figures 1F and 1G). In contrast, the

number of T cells was unaffected by the inducible loss of Syk

(Figure 1E). Taken together, these results show that inducible

loss of Syk in an adult mouse resulted in B cell developmental

blocks in the bonemarrow at the pre-BCR and BCR checkpoints
with two functional Syk alleles, which is reduced to one following tamoxifen

ed to no functional alleles following tamoxifen treatment. Hence the conditional

+CD19+IgD-) before and 5weeks after tamoxifen treatment from indicatedmice.

B220+CD19+IgD�IgM�CD2�), pre-B (B220+CD19+IgD�IgM�CD2+), immature

e marrow of indicated mice as a function of time following tamoxifen injection,

amoxifen treatment from indicated mice. Left-hand panels identify transitional

on ofmature B cells into follicular B cells (CD23+IgM+) andmarginal zone B cells

), and follicular (FoB, B220+CD93�CD23+IgM+), marginal zone (MZ, B220+

ted mice as a function of time following tamoxifen injection, determined using

before and 5 weeks after tamoxifen treatment from indicated mice. Numbers

+CD19+CD5�CD23�), and B2 (B220+CD19+CD5�CD23+) cells in the peritoneal

mined using gates shown in (F). See also Figure S1.
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and caused the disappearance of most mature follicular and

marginal zone B cells, though not of B1 cells. It is unlikely that

this loss of B cells is a consequence simply of a block in B cell

development, because in the absence of input from the bone

marrow, mature B cells turn over with a half-life of around

4.5 months (Hao and Rajewsky, 2001), whereas loss of Syk

caused the disappearance of most mature B cells within

3 weeks.

We analyzed the characteristics of the surviving pool of

Syk-deficient B cells. Similar to control mature B cells, these

cells were largely nondividing, turned over at an even slower

rate and persisted for at least 8 weeks from the start of tamox-

ifen treatment (see Figures S1A and S1B available online;

Figure 1E). Phenotyping of cell surface markers showed that

these surviving cells most closely resembled follicular B cells,

being B220+CD19+IgM+IgD+CD23+CD21+MHCclassII+CD40+

CD1d�CD93� (Figure S1C). However, they expressed much

more surface IgM and somewhat more CD19. It is unlikely that

this represents the selective survival of a subset of B cells with

high amounts of IgM, because this increase in IgM could be

seen already 4 days after the start of tamoxifen treatment, before

any decrease in B cell numbers (data not shown). Rather, the loss

of Syk may cause a change in the recycling of IgM between the

cell surface and the cytoplasm.

Requirement for Syk in B Cell Survival Is Intrinsic
to the B Cell Lineage
We next investigated whether the requirement for Syk in B cell

survival is cell intrinsic. This was an important issue because

Syk is expressed in most hematopoietic lineages and the

Rosa26MerCreMer allele is expressed ubiquitously, and thus loss

of Syk could affect B cell survival indirectly through other cell

types. We reconstituted the hematopoietic system of irradiated

mice with a mixture of wild-type (Ly5.1+) and either control or

conditional Syk-deficient bone marrow cells (Ly5.2+). Eight

weeks later, once the mice were fully reconstituted, they were

treated with tamoxifen and B cell numbers were followed

for 8 weeks. Results showed that there was a selective loss of

B cells that had lost Syk, even in the presence of wild-type B cells

(Figure S1D). Once again, the small surviving population of

Syk-deficient B cells most closely resembled follicular B cells,

except for elevated amounts of IgM (Figure S1E). In a second

approach, we bred the conditional Syk allele to mice expressing

the tamoxifen-inducible Cre recombinase Cre-ERT2 under the

control of the B lineage-specificCd79a promoter (Cd79aCreERT2).

As before, we found that 3 weeks after the start of tamoxifen

treatment pre-B and immature B cells were lost from the bone

marrow, all transitional and marginal zone B cells and around

80% of follicular B cells were lost from the spleen, whereas

most B1 cells persisted in the peritoneum (Figures S1F–S1I).

The surviving Syk-deficient B cells expressed the charac-

teristically high amounts of IgM described before (Figures S1F

and S1G). Taken together these results demonstrate that

the requirement for Syk in B cell survival is cell autonomous

and intrinsic to the B lineage itself. This loss of B cells after dele-

tion of Syk is similar to that reported in mice in which the BCR is

deleted (Kraus et al., 2004; Lam et al., 1997), consistent with the

hypothesis that Syk transduces the tonic BCR signal required for

cell survival.
478 Immunity 38, 475–488, March 21, 2013 ª2013 Elsevier Inc.
Syk-Deficient B Cells Are Unable to Survive in Response
to BAFF
To investigate the mechanism by which Syk contributes to B cell

survival, we examined the ability of Syk-deficient B cells to

survive in vitro in response to BAFF, a cytokine critically required

for the survival of follicular and marginal zone B cells (Mackay

et al., 2010).We found that Syk-deficient B cells were very defec-

tive in their ability to survive in response to BAFF (Figure 2A;

Figure S2A). This defect was not due to the phenotype of an

atypical subtype of B cells that survives in the absence of Syk,

because a survival defect in response to BAFF could be seen

as soon as Syk protein starts to be lost from the cells. For

example, 7 days after the start of tamoxifen the number of B cells

had not yet changed greatly, but most Syk had been lost and the

B cells were already substantially impaired in their ability to

respond to BAFF (Figure 2A). By 10 days following tamoxifen

treatment, Syk-deficient B cells showed almost no BAFF-

induced survival (Figure 2A), yet gene expression analysis

showed only very small differences in expression between

mutant and control B cells (4 differentially expressed genes out

of 21,000) supporting the view that the Syk-deficient B cells

were not an unusual subset of B cells (Figure S2B). In view of

the importance of BAFF for B cell survival, it is thus very likely

that the loss of follicular andmarginal zone B cells in the absence

of Syk is due to an inability of the cells to respond to BAFF. In

agreement with this hypothesis, we note that B1 cells do not

require BAFF for survival (Mackay et al., 2010), and this is the

subset that is least dependent on Syk for its survival.

Loss of Syk-Deficient B Cells Is Not Due to Reduced
Expression of BAFFR
It has been proposed that signaling through the BCR leads to an

increase in expression of BAFFR (Smith and Cancro, 2003). Thus

one possible reason for the inability of Syk-deficient B cells to

survive in response to BAFF is that Syk normally transduces

BCR signals required to maintain BAFFR expression. However,

flow cytometric analysis showed only a small decrease in BAFFR

in Syk-deficient B cells to �60% of control amounts (Figure 2B).

Nevertheless, to evaluate whether this decrease affected

BAFF-induced survival, we established a retroviral-based com-

plementation procedure to ectopically increase BAFFR ex-

pression. Initially, we tested the procedure by using a retroviral

vector expressing Syk and GFP (as a marker of infection) to

infect bone marrow cells from control (Sykfl/+RMCM) or con-

ditional Syk-deficient mice (Sykfl/-RMCM), which were used to

reconstitute irradiated mice. Once reconstitution was complete

(around 8 weeks posttransplant), the chimeric mice were treated

with tamoxifen and analyzed 6 weeks later. B cells from the

conditional Syk-deficient mice infected with the retrovirus

(GFP+) expressed about 40% the amount of Syk found in control

B cells (Figure S2C). This amount of expression was sufficient

to allow enhanced survival compared to uninfected (GFP�)
Syk-deficient B cells, as seen by a higher ratio of GFP+ to

GFP� conditional Syk-deficient B cells compared to the ratio

of GFP+ to GFP� T cells in the same animal (Figures S2D–S2F).

Ectopic expression of Syk in Syk-deficient B cells also

corrected the surface IgM amounts, reducing them to levels

similar to those seen in control B cells, and partially rescued

the defect in BAFF-induced survival (Figures S2G and S2H).
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Figure 2. Syk-Deficient B Cells Are Unresponsive to BAFF, a Defect that Is Not Reversed by Ectopic Expression of BAFFR

(A) Graph showing mean (±SEM) number of B cells of the indicated genotypes surviving after 4 days culture in the absence (-) or presence of BAFF, normalized to

the number of surviving control B cells in presence of BAFF. Cells were harvested 7–21 days after tamoxifen injection, as indicated.

(B) Histograms of BAFFR amounts on splenic B cells (IgM+) from mice of the indicated genotypes treated with tamoxifen 21 days earlier, and on T cells from

Sykfl/�RMCM mice as a negative control. Graph shows mean (±SEM) BAFFR amounts on B and T cells from the indicated mice.

(C and D) Irradiated mice were reconstituted with Sykfl/+RMCM or Sykfl/�RMCM bone-marrow cells, previously infected with a retrovirus expressing BAFFR and

the humanCD2 extracellular and transmembrane domains (huCD2), treated with tamoxifen and analyzed 6weeks later. Flow cytometric analysis of donor splenic

B and T cells from the chimeras: dot plot of CD19 and huCD2 expression (C) and histograms of huCD2 expression (D). Numbers indicate percentage of cells falling

into quadrants.

(E) Graph of mean (±SEM) ratio of percentage of huCD2+ B cells to percentage of huCD2+ T cells in the spleens of mice of the indicated genotypes (ns, not

significantly different). Increase in this ratio would imply a survival advantage for the transduced B cells.

(F) Histograms of surface IgM amounts on donor splenic B cells from chimeras described in (C) subdivided according to huCD2 expression, as a marker of

retroviral infection.

(G) Graph showing mean (±SEM) number of donor B cells from chimeras reconstituted with the indicated genotypes surviving after 4 days culture in the absence

(-) or presence of BAFF. Cells were subdivided according to expression of huCD2. Numbers are normalized to the number of surviving control huCD2� B cells in

presence of BAFF. See also Figure S2.
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In contrast, retroviral-driven Syk expression in control B cells did

not provide a selective survival advantage, presumably because

the amount of Syk expressed from the endogenous Syk locus

was not limiting for survival and did not change amounts of

IgM or affect BAFF-induced cell survival (Figures S2D–S2H).

We also used the same retroviral transduction system to

ectopically express a kinase dead form of Syk in both control

and conditional Syk-deficient B cells. Following deletion of the

endogenous Syk gene, this mutant Syk protein was unable to

confer a selective in vivo survival advantage to B cells that had

lost expression of endogenous Syk, did not normalize surface

IgM amounts and did not rescue the BAFF-induced survival

defect (Figures S2C–S2H). Taken together these results show

that retroviral gene transduction of Syk into bone marrow cells

from conditional Syk-deficient mice rescues B cell survival and

thus this system can be used to test the ability of other genes

to rescue survival of Syk-deficient B cells. We also conclude

that the kinase activity of Syk is essential for its function in medi-

ating B cell survival.

In order to determine whether the reduced expression of

BAFFR on Syk-deficient B cells was the cause of their failure

to survive in response to BAFF, we used a retroviral vector ex-

pressingBAFFRanda truncated formof humanCD2 (as amarker

of infection) to increase receptor amounts on both control and

conditional Syk-deficient B cells. We found that increased

expression of BAFFR did not promote increased survival of

Syk-deficient B cells in vivo, had no effect on the increased

amounts of surface IgM and did not rescue the defect in

BAFF-induced survival in vitro (Figures 2C–2G). In contrast,

increased expression of BAFFR on control B cells increased

survival in response to BAFF in vitro, demonstrating that the

increased amounts of the receptor were functional. Thus, the

reduced expression of BAFFR on Syk-deficient B cells is unlikely

to account for their failure to survive.

Reduced Survival of Syk-Deficient B Cells Is Not Caused
by Defects in the NF-kB2 p100 Pathway
A critical signaling pathway from BAFFR required for B cell

survival involves phosphorylation of NF-kB2 p100 by IKK1, its

processing into p52 and subsequent nuclear translocation of

the p52 transcription factor (Rickert et al., 2011). It has been

proposed that the BCR tonic signal through Syk is required for

the synthesis of p100, which is then used in an IKK1 signaling

pathway emanating from BAFFR (Stadanlick et al., 2008). Such

a pathway could potentially explain the dual requirement for

both the BCR and BAFFR for B cell survival. We examined this

possibility by measuring amounts of both p100 and p52 in

control and mutant B cells before and after BAFF stimulation.

For this and subsequent biochemical studies, we used B cells

from mice treated with tamoxifen 10 days earlier because by

this time point there was no detectable Syk expression, most

of the cell death had not yet occurred and in their transcriptome

the cells still closely resembled control B cells (Figure S2B). We

found that unstimulated Syk-deficient B cells had slightly lower

p100 amounts than control B cells, but unaltered total amounts

of p52+p100 protein (Figures 3A and 3B) or NF-kB2 messenger

RNA (mRNA) (data not shown). However, in response to BAFF

the amounts of p100 dropped and the ratio of p52/p100 rose

in both control and mutant B cells, suggesting that the p100
480 Immunity 38, 475–488, March 21, 2013 ª2013 Elsevier Inc.
pathway was functioning in the absence of Syk (Figures 3A

and 3B). Nevertheless, to test this hypothesis genetically, we

used the retroviral complementation system to ectopically

express p100 in both control and Syk-deficient B cells (Fig-

ure 3C). We found that increased expression of p100 did not

rescue in vivo survival of Syk-deficient B cells, did not affect

the increased amounts of surface IgM and did not rescue

BAFF-dependent survival in vitro (Figures 3D–3H). In contrast,

control B cells overexpressing p100 survived much better

in vitro in response to BAFF compared to uninfected cells,

demonstrating that the ectopically expressed p100 was bio-

logically functional.

To explore this pathway further, we made use of a mutant

form of p100 (p100DC), which is converted more efficiently to

p52 (Figure S3A) (Liao and Sun, 2003). Once again the retroviral

complementation assay showed that ectopic expression of

p100DCwas not able to increase survival of Syk-deficient B cells

in vivo, normalize IgM amounts, or rescue the defect in BAFF-

induced survival in vivo (Figures S3B–S3E). Thus we conclude

that the failure of Syk-deficient B cells to survive is not due to

a defect in the p100 pathway.

Normal Expression of Bcl-2-Family Proteins
in Syk-Deficient B Cells
Stimulation of B cells with BAFF leads to the upregulation of

several antiapoptotic members of the Bcl-2-family of proteins,

including Bcl-2, Bcl-xL, Mcl1, and A1, and to the downregulation

of the proapoptotic Bim and Bad proteins (Rickert et al., 2011).

To investigate whether dysregulation of these proteins contrib-

uted to the survival defect of Syk-deficient B cells, we initially

measured mRNA amounts for Bcl-2-family proteins (Table S1).

We detected no significant changes in any of these, except for

the genes encoding A1, which were expressed at around 60%

of the amount in control B cells. To explore this further, we immu-

noblotted cell lysates from control and mutant B cells and

probed for several Bcl-2-family members, including Bcl-2, Bcl-

xL, Mcl1, A1, Bim, Bid, Bad, and Bax. We saw no consistent

differences between mutant and control B cells in the amounts

of any of these proteins, including A1 (Figures S3F and S3G),

suggesting that reduced survival of Syk-deficient B cells is not

caused by dysregulated expression of Bcl-2-family proteins,

though we cannot rule out that there may be alterations in post-

translational modification of these proteins that contribute to

increased cell death. Because the expression of many of these

proteins is under the control of NF-kB transcription factors

(Mackay et al., 2010), these results further support the conclu-

sion that the reduced survival of Syk-deficient B cells is unlikely

to be due to defects in NF-kB pathways.

Ectopic Activation of the ERKPathway Partially Rescues
Survival of Syk-Deficient B Cells
Another critical pathway controlling B cell survival is one leading

to the activation of the ERK MAP kinases (Craxton et al., 2005).

Because Syk transduces BCR signals to the activation of ERK

following crosslinking of the BCR, it is possible that it may also

transduce the tonic BCR survival signal to ERK activation.

Indeed, we found that BAFF-induced phosphorylation of ERK,

a hallmark of its activation, was reduced in Syk-deficient B cells

(Figures 4A–4D). To investigate whether this defect may



A

D
B

22
0

GFP

IgM

G H

E

0

100

200

300

400

GFP - + +- - + +-
BAFF

F

C

** **

25

25

42

31

GFP

T cells

B cells

0.0

0.5

1.0

1.5

p100

p52

Syk

tubulin

R
at

io

ns

C
el

l n
um

be
r

(n
or

m
al

iz
ed

)

-

hu-p100

hu-p100, GFP+

hu-p100, GFP-

EV, GFP+

EV, GFP-

C
el

l n
um

be
r

C
el

l n
um

be
r

C
el

l n
um

be
r

BAFF + +--

Sykfl/+RMCM
Sykfl/-RMCM

Sykfl/+RMCM Sykfl/-RMCM

Sykfl/+RMCM
Sykfl/-RMCM

Sykfl/+RMCM Sykfl/-RMCM

Sykfl/+RMCM

Sykfl/-RMCM

Sykfl/+RMCM, GFP+

Sykfl/+RMCM, GFP-

Sykfl/-RMCM, GFP+

Sykfl/-RMCM, GFP-

B

0.0

0.5

1.0

1.5

BAFF- BAFF-
0

2

4

6

8

R
at

io
 p

52
/p

10
0

p1
00

Sykfl/+RMCM
Sykfl/-RMCM

BAFF-

 p
52

 +
 p

10
0

0

0.5

1.0

1.5

Figure 3. Ectopic Expression of p100 Does Not Rescue Defect in BAFF-Induced Survival of Syk-Deficient B Cells

(A) Immunoblot of total cell extracts from splenic B cells of the indicated genotypes that had been cultured for 16h in the absence (-) or presence (+) of BAFF,

probed with antibodies to NFkB2 (to detect p100 and p52), Syk and tubulin.

(B) Graphs ofmean (±SEM) amounts of p100, p52+p100, and ratio of p52/p100 from splenic B cells as described in (A). p100 and p52 amounts were normalized to

tubulin and then p100, p52+p100, and the ratio of p52/p100 were normalized to control B cells cultured without BAFF.

(C) Histogram shows amounts of human p100 (hu-p100) in B cells from radiation chimeras reconstituted with bone marrow of Sykfl/+RMCM mice infected with

empty vector (EV) or retrovirus expressing hu-p100; both vectors express GFP. Cells were subdivided according to GFP expression.

(D and E) Flow cytometric analysis of donor splenic B and T cells from radiation chimeras reconstituted with bone marrow of Sykfl/+RMCM or Sykfl/�RMCMmice

infected with retrovirus expressing hu-p100 and GFP, then treated with tamoxifen to induce deletion of Syk. Numbers indicate percentage of cells falling into

quadrants.

(F) Graph ofmean (±SEM) ratio of the percentage of donor B cells that were GFP+ to the percentage of donor T cells that were GFP+ in the spleens of chimeric mice

reconstituted with bone marrow of the indicated genotypes (ns, not significantly different).

(G) Histograms of surface IgM amounts on donor splenic B cells from chimeras described in (B) subdivided according to GFP expression, as amarker of retroviral

infection.

(H) Graph showing mean (±SEM) number of donor B cells from chimeras reconstituted with the indicated genotypes surviving after 4 days culture in the absence

(-) or presence of BAFF. Cells were subdivided according to expression of GFP. Numbers are normalized to the number of surviving control GFP� B cells in

presence of BAFF. See also Figure S3 and Table S1.

Immunity

BCR Is a Component of the BAFFR Signaling Pathway

Immunity 38, 475–488, March 21, 2013 ª2013 Elsevier Inc. 481



huCD2

39 4.1

5.152

20 64

9.65.9

Ig
M

huCD2

Syk

ERK2

pERK

0.0

0.5

1.0

1.5

2.0 *

*

0

2

4

6

8
T cells

B cells ***

A

C D

E F G

H

B

BAFF + +-

Syk

ERK2

pERK

0 10 60 0 10 60Time (min)

-

BAFF

0 6010
Time (min)

-

pE
R

K
/E

R
K

2

pE
R

K
/E

R
K

2

R
at

io

0

50

100

150

huCD2 - + +- - + +-
BAFF

C
el

l n
um

be
r

(n
or

m
al

iz
ed

)

-

C
el

l n
um

be
r

Sykfl/+RMCM
Sykfl/-RMCM

Sykfl/+RMCM
Sykfl/-RMCM

Sykfl/+RMCM
Sykfl/-RMCM

Sykfl/+RMCM
Sykfl/-RMCM

Sykfl/+RMCM Sykfl/-RMCM

Sykfl/+RMCM Sykfl/-RMCM

Sykfl/+RMCM

Sykfl/-RMCM

Sykfl/+RMCM

Sykfl/-RMCM

0.5

1.0

1.5

2.0

Figure 4. Ectopic Expression of Constitutively Active MEK1 (caMEK1) Rescues In Vivo Survival Defect of Syk-Deficient B Cells

(A–D) Splenic B cells of the indicted genotypes were cultured (A and B) for 16 hr in the absence (-) or presence (+) of BAFF or (C and D) for the indicated times.

(A and C) Immunoblots of total cell extracts probed with antibodies to pERK, ERK2, and Syk. (B and D) Graphs of mean (±SEM) ratio of pERK to ERK2 in splenic

B cells cultured and analyzed as described in (A) and (C), respectively. Ratios were normalized to control B cells cultured without BAFF.

(E–H) Radiation chimeras were reconstituted with bone marrow of Sykfl/+RMCM or Sykfl/�RMCM mice infected with retrovirus expressing caMEK1 and huCD2,

then treated with tamoxifen to induce deletion of Syk. (E) Flow cytometric analysis of huCD2 expression in donor splenic B and T cells from radiation chimeras.

(legend continued on next page)
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contribute to the reduced survival of Syk-deficient B cells, we

used the retroviral complementation system to ectopically

express a constitutively active MEK1 kinase (caMEK1) a direct

activator of the ERK kinases, in both control and mutant B cells.

We found that expression of caMEK1 selectively increased

survival of Syk-deficient B cells in vivo, while having no effect

on control B cells (Figures 4E and 4F). However it did not

normalize IgM amounts and did not rescue the defective

BAFF-induced survival in vitro (Figures 4G and 4H). The expres-

sion of caMEK1 did not lead to aberrant activation of the B cells

as shown by unaltered cell size and expression of the activation

markers CD69, CD86, and I-A (Figure S4). These results suggest

that Syk transduces BAFFR signals to ERK activation and that

reduced ERK activation in Syk-deficient B cells may partially

account for their decreased survival in vivo.

Activation of the PI3 Kinase Pathway Partially Rescues
Survival of Syk-Deficient B Cells
A critical pathway controlling survival of many cell types is the

PI3 kinase pathway, leading to the production of phosphatidyli-

nositide-3,4,5-trisphosphate (PIP3). Previous work has shown

that the death of B cells that have lost the BCR can be reversed

by ectopic activation of the PI3 kinase pathway, leading to the

proposal that the BCR survival signal uses this pathway (Sriniva-

san et al., 2009). To investigate whether Syk may transduce

such a signal, we examined BAFF-induced phosphorylation of

Akt as a surrogate for the production of PIP3, in both mutant

and control B cells. We found that the amount of phosphorylated

Akt was reduced in Syk-deficient B cells both before and after

stimulation with BAFF (Figure 5A), consistent with Syk trans-

ducing both the BCR survival signal and a BAFFR signal leading

to activation of PI3 kinase.

To determine whether the reduced activation of PI3 kinase

contributes to the survival defect of Syk-deficient B cells, we

generated radiation chimeras reconstituted with bone marrow

from mice carrying Rosa26MerCreMer and a conditional allele of

Syk, Pten, or both. PTEN is a phosphatase that converts PIP3

to phosphatidylinositide-4,5-bisphosphate, thereby directly

counteracting the activity of PI3 kinases. Deletion of Pten will

cause a rise in cellular PIP3 amount, and thus if loss of Syk-defi-

cient B cells is due in part to reduced PI3 kinase activity, deletion

of Pten should rescue survival. This is indeed what we observed:

loss of PTEN in Syk-deficient B cells resulted in increased

numbers of both follicular and marginal zone B cells and partially

rescued BAFF-induced survival of Syk-deficient B cells (Figures

5B–5D). Thuswe conclude that Syk transduces signals to the PI3

kinase pathway, which are in part required for B cell survival.

PDK1 Is Essential for B Cell Survival and Response
to BAFF
The PI3 kinase pathway contributes to cell survival in part

through the activation of Akt and subsequent phosphorylation

of the FOXO transcription factors (Zhang et al., 2011). The acti-
(F) Graph ofmean (±SEM) ratio of the percentage of donor B cells that were huCD2

mice reconstituted with bone marrow of the indicated genotypes. (G) Expression o

Graph showingmean (±SEM) number of donor B cells from chimeras reconstituted

presence of BAFF. Cells were subdivided according to expression of huCD2. N

presence of BAFF. See also Figure S4.
vation of Akt requires the prior PIP3-dependent activation of

the PDK1 kinase (encoded by the Pdpk1 gene) and subsequent

phosphorylation of Akt on Thr308 by PDK1 and on Ser473 by

mTORC2 or other kinases (Bozulic and Hemmings, 2009). If

the requirement for PI3 kinase activation for B cell survival

requires Akt activation, then B cell survival may also be depen-

dent on PDK1. To address this possibility, we used bonemarrow

from mice with a conditional allele of Pdpk1 (Pdpk1fl) crossed to

a tamoxifen-inducible Cre recombinase expressed from the

ROSA26 locus (Rosa26Cre-ERT2/+, RCE) to reconstitute irradiated

mice. Analysis showed that 6 weeks after tamoxifen treatment

there was a small reduction in pre-B and immature B cells in

the bone marrow, but a large decrease in mature recirculating

B cells in the marrow, as well as transitional, follicular, and

marginal zone B cells in the spleen (Figures 6A and 6B). Further-

more, the surviving PDK1-deficient B cells had elevated

amounts of IgM, and were very defective in their ability to survive

in response to BAFF in vitro (Figures 6C and 6D). Thus PDK1

is also essential for the survival of mature B cells and for

responses to BAFF, and the phenotype of PDK1-deficient

B cells is similar to that of Syk-deficient cells, consistent with

the hypothesis that Syk transduces survival signals through PI3

kinase and PDK1.

BAFFR Signals through the BCR
The previous results have shown that Syk transduces signals

critical for survival of B cells in vivo and BAFF-induced survival

in vitro, and it does so in part through ERK and PI3 kinase-

PDK1 pathways. However it is unclear from this whether Syk

transduces a tonic BCR signal that is required in conjunction

with BAFFR signals for cell survival, or whether it might trans-

duce BAFFR signals directly. The latter possibility is suggested

by the observation that BAFFR-induced activation of ERK and

PI3 kinase pathways is defective in Syk-deficient cells. To inves-

tigate this further, we measured BAFF-induced phosphorylation

of Syk, a hallmark of its activation. We were able to detect rapid

activation of Syk in response to BAFF, peaking at 5 min (Figures

7A and 7B). The increase in Syk phosphorylation in response to

BAFF was smaller than that seen following stimulation of the

BCR with an anti-IgM antibody (2.5-fold compared to 10-fold);

nonetheless, the increase was reproducible and significant.

Syk has been reported to transduce signals from different

classes of receptors, including antigen receptors, integrins,

and C-type lectins (Mócsai et al., 2010). Despite this variety, in

all cases, the activation process involves binding of the SH2

domains of Syk to phosphorylated tyrosines within ITAM-like

motifs. In view of this, we postulated that the activation of Syk

downstream of BAFFR is also likely to involve a phosphorylated

ITAM, with the most obvious candidates in a B cell being the Iga

and Igb proteins. Indeed, we detected phosphorylation of Iga in

response to BAFF, peaking around 5 min, similar to the kinetics

observed for the phosphorylation of Syk (Figures 7A and 7B).

Once again, the increase in Iga phosphorylation was smaller
+ to the percentage of donor T cells that were huCD2+ in the spleens of chimeric

f IgM and huCD2 on donor-derived splenic B cells from radiation chimeras. (H)

with the indicated genotypes surviving after 4 days culture in the absence (-) or

umbers are normalized to the number of surviving control huCD2� B cells in
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with antibodies to pS473-Akt (pAkt) and Akt. Graph shows mean (±SEM) ratio of pAkt to Akt in splenic B cells cultured with or without BAFF. Ratios were
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(B–D) Radiation chimeras were generated by reconstituting irradiated Rag1-deficient mice with bone marrow frommice carrying conditional alleles of Syk, Pten,

or both; all contained the Rosa26MerCreMer allele. Six weeks after reconstitution, chimeras were treated with tamoxifen and analyzed 3 weeks later. (B) Flow

cytometric analysis of donor-derived splenic mature B cells (B220+CD93�) from chimeras reconstituted with marrow of the indicated genotypes. Numbers

indicate percentage of B cells in the follicular (FoB, IgM+CD23+) andmarginal zone (IgM+CD23�) compartments. (C) Mean (±SEM) numbers of all B cells, FoB, and
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than that seen following BCR stimulation but was nonetheless

reproducible and significant.

These results suggested that BAFFR signaling induces Iga

phosphorylation, which in turn leads to Syk activation. If this

hypothesis is correct, the prediction would be that B cells that

had lost the BCR would also lose BAFF-induced Syk phosphor-

ylation. To investigate this, we made use of the B1-8f allele

(IghB1-8f/+) in which a rearranged VDJ segment flanked by loxP

sites is placed in the Ig heavy-chain locus in such a way that

the B cells predominantly express this one prerearranged

heavy chain (Lam et al., 1997). Cre-induced deletion of the VDJ

segment results in the loss of Igm heavy chain expression and

the associated Ig light chains and Iga and Igb proteins are no
484 Immunity 38, 475–488, March 21, 2013 ª2013 Elsevier Inc.
longer transported to the cell surface. We generated mice con-

taining both the IghB1-8f/+ allele and the tamoxifen-inducible

Rosa26MerCreMer allele, and treated adult mice with tamoxifen.

As expected, this resulted in rapid loss of cell-surface BCR

from many, though not all B cells. We purified IgM� B cells

from these mice and measured phosphorylation of Syk in

response to BAFF compared to IgM+ B cells from control mice.

Whereas IgM+ B cells again showed clear induction of Syk

phosphorylation, this was largely absent in IgM�B cells, demon-

strating that the BCR was required for BAFF-induced Syk acti-

vation (Figures 7C and 7D). Furthermore, we examined the

consequence of loss of BCR on BAFF-induced survival. We

found that, in contrast to IgM+ B cells, IgM� B cells were unable
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Figure 6. Deletion of PDK1 Leads to the

Loss of Most B Lineage Cells

Radiation chimeras reconstituted with bone

marrow from mice carrying a tamoxifen-inducible

Cre (Rosa26Cre-ERT2/+, RCE) and either wild-type or

conditional alleles of the Pdpk1 gene (Pdpk1+/+ or

Pdpk1fl/fl), which codes for the PDK1 protein, were

treated with tamoxifen and analyzed 6 weeks later.

(A) Graph of mean (±SEM) number of all B lineage

cells, pro-B, pre-B, immature B (Imm), and mature

(Mat) B cells in the bone marrow of indicated

chimeric mice. Cell populations are identified as in

Figures 1B and 1C.

(B) Graph of mean (±SEM) number of all B lineage

cells, follicular (FoB), marginal zone (MZ), and

transitional (Tr) B cells in the spleen of indicated

chimeric mice. Cell populations are identified as in

Figures 1D and 1E.

(C) Flow cytometric analysis of IgM expression on the surface of splenic B cells from chimeric mice.

(D) Graph showingmean (±SEM) number of B cells of the indicated genotypes surviving after 4 days culture in the absence (-) or presence of BAFF, normalized to

the number of surviving control B cells in presence of BAFF.
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to survive in response to BAFF (Figure 7E). Phosphorylation of

Iga and Igb and subsequent Syk activation following antigen

binding to the BCR may be mediated by Src-family kinases

(SFKs). Thus we hypothesized that SFKs may also be required

for BAFF-induced Syk activation. In agreement with this, treat-

ment of B cells with PP1, a SFK inhibitor, resulted in reduced

BAFF-induced Syk phosphorylation (Figures S5A and S5B).

Furthermore BAFF-induced B cell survival was inhibited by

PP1 and two other SFK inhibitors: PP2 and Src-I (Figure S5C).

Taken together, these results show that BAFFR signaling leads

to Syk activation via the BCR, potentially through SFK-mediated

phosphorylation of Iga, and suggest that this pathway may be

required for BAFF-mediated B cell survival (Figure 7F).

DISCUSSION

Inducible elimination of Syk or of its kinase activity leads to the

loss of most follicular and MZ B cells, while sparing the majority

of B1 cells. This disappearance of B cells is accompanied by loss

of responsiveness to BAFF, which likely accounts for the selec-

tive loss of follicular and MZ B cells compared to B1 cells,

because a very similar phenotype is seen in mice deficient in

BAFF or BAFFR (Mackay et al., 2010). This similarity also

supports our proposal that Syk transduces survival signals

from BAFFR. It is unlikely that this unresponsiveness to BAFF

is simply the result of selective survival of a subset of B cells

that cannot respond to BAFF, because the decrease in BAFF-

induced survival parallels the loss of Syk and is seen before

any substantial decrease in B cell numbers. Nonetheless, we

note that a small number of follicular B cells persist in mice

deficient in BAFF or BAFFR, particularly following an inducible

inactivation of BAFFR (Keren et al., 2011), similar to that seen

in the absence of Syk, pointing to the existence of BAFF- and

Syk-independent survival pathways for a minority of follicular

B cells.

Given the central role for Syk in transducing BCR signals

following antigen binding, we had expected that loss of Syk

would lead to a phenotype similar to that seen following removal

of the BCR frommature B cells. While the two genetic alterations
are similar in terms of leading to loss of most follicular and MZ

B cells, they are clearly distinct in their effects on B1 cells, which

are largely unaffected by loss of Syk, but disappear following

deletion of the BCR (Lam et al., 1997). Furthermore, a small

number of Syk-deficient B cells persist for many weeks in the

animal, whereas B cells without a BCR are short-lived (Kraus

et al., 2004). These differences suggest that the BCR survival

signal is transduced partly through Syk and partly through other

pathways.

Analysis of survival pathways downstream of Syk showed that

BAFF-induced activation of ERK and Akt is decreased in the

absence of Syk, and genetic rescue experiments showed that

the survival of Syk-deficient B cells could be enhanced by

ectopic expression of caMEK1 or by deletion of PTEN. More-

over, loss of PDK1 also leads to the disappearance of most

follicular and MZ B cells. Taken together, these results suggest

that Syk transduces key survival signals through the ERK and

PI3 kinase-PDK1 pathways. In contrast, our results do not

support an important role for Syk-mediated regulation of the

amounts of either BAFFR or NF-kB2 p100 in B cell survival.

Furthermore, the largely normal BAFF-induced regulation of

the p100 pathway in Syk-deficient B cells demonstrates that

this pathway alone is unable to sustain BAFF-dependent B cell

survival.

As with Syk-deficient B cells, the death of BCR-deficient

B cells could be rescued by deletion of PTEN consistent with

the possibility that the BCR survival signal is transduced at least

in part through Syk and PI3 kinase (Srinivasan et al., 2009). In

contrast, caMEK1 did not rescue survival of cells that had lost

the BCR. The reasons for this difference from Syk-deficient

B cells are not known, but one possibility is that Syk may also

transduce survival signals independently of the BCR, and that

these may be transduced via the ERK pathway. Alternatively,

the difference could be due to use of different Cre drivers. In

our studies we used the Rosa26MerCreMer allele, which induces

deletion throughout the mature B cell compartment, whereas

Kraus et al. used CD21-Cre, which starts to delete within

transitional B cells (Kraus et al., 2004). It may be that the survival

pathways used in recently matured B cells are different to those
Immunity 38, 475–488, March 21, 2013 ª2013 Elsevier Inc. 485
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Figure 7. BCR-Dependent BAFF-Induced

Phosphorylation of Syk and Iga in B Cells

(A) Immunoblots of total cell extracts from splenic

B cells stimulated with anti-IgM or BAFF for the

indicated times, probed with antibodies to phos-

phorylated Syk (pSyk), Syk, phosphorylated Iga

(pIga), and Iga. Two different exposures of the

same blots are shown for the pSyk and pIga to

show the different magnitudes of the BAFF and

anti-IgM responses.

(B) Graphs show the mean (±SEM) amounts of

pSyk or pIga in B cells stimulated with anti-IgM or

BAFF. The amounts of phosphoproteins were

normalized to the amount of Syk or Iga and further

normalized to the signal in unstimulated cells at

time = 0.

(C) Immunoblot of total cell extracts from splenic

B cells (either IgM+ or IgM�) stimulated with BAFF

for the indicated times, probed with antibodies to

pSyk and Syk. IgM+ and IgM� B cells were purified

from Rag1�/� radiation chimeras reconstituted

with bone marrow from IghB1-8f/+Tg(Em-BclxL) and

IghB1-8f/+Tg(Em-BclxL)RMCM mice respectively,

that had been treated with tamoxifen 13–18 days

earlier.

(D) Graph of mean (±SEM) amounts of pSyk in IgM+

and IgM� B cells determined as in (C), normalized

to amounts of Syk and to the signal in IgM+ B cells

at time = 0.

(E) Graph showing mean (±SEM) number of IgM+ or

IgM� B cells surviving after 4 days culture in the

absence (-) or presence of BAFF, normalized to

the number of surviving IgM+ B cells in presence of

BAFF. IgM+ and IgM� B cells were purified from

IghB1-8f/+ and IghB1-8f/+RMCM mice respectively,

that had been treated with tamoxifen 6 days earlier.

(F) Proposed signaling pathways from BAFFR

and BCR controlling B cell survival, showing

BAFFR-induced phosphorylation of Iga and acti-

vation of Syk via the BCR. As discussed in the text

and indicated by question marks, it is unclear

whether BAFFR-induced phosphorylation of Iga

occurs via NIK or IKK1 or if the signal is indepen-

dent of these kinases. See also Figure S5.

Immunity

BCR Is a Component of the BAFFR Signaling Pathway
used by the bulk of the mature B cells, with a different depen-

dence on the ERK pathway.

We note that both Syk- and BCR-deficient B cells whose

survival has been rescued by ectopic activation of the PI3 kinase

pathway remain dependent on BAFF for in vitro survival (Fig-

ure 5D; Srinivasan et al., 2009). These observations support

a model in which BAFFR delivers some critical survival signals
486 Immunity 38, 475–488, March 21, 2013 ª2013 Elsevier Inc.
independent of the BCR, Syk, and PI3

kinase; these could be through the IKK1-

p100 pathway.

Most unexpectedly, our results show

that BAFFR signaling leads to phosphory-

lation of Iga and Syk and that the phos-

phorylation of Syk is dependent on the

BCR, supporting our proposed model

that survival signals from BAFFR are

transduced via the BCR complex to the

activation of Syk. Syk transduces signals
downstream of many receptors, including antigen receptors,

C-type lectins, and integrins, and in most cases Syk activa-

tion requires binding of the kinase to a phosphorylated ITAM

(Mócsai et al., 2010). Our data suggest that in the case of BAFFR

the activation of Syk depends on the phosphorylation of Iga

and possibly Igb, though we cannot exclude that other ITAM-

bearing molecules may be involved. It remains unknown how
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signaling from BAFFR leads to phosphorylation of Iga, but it may

be via SFKs. This is supported by our observation that inhibition

of SFKs leads to reduced BAFF-induced phosphorylation of

Syk and B cell survival. It is also possible that the signal from

BAFFR to the BCR goes through the NIK and/or IKK1 kinases,

though we note that NIK activation is induced more slowly by

BAFF than the phosphorylation of Syk, making this less likely.

Previous studies had shown that the BCR and its associated

Iga subunit were essential for the survival of mature B cells,

and these observations led to the suggestion that the BCR

may transduce survival signals either following low-affinity inter-

actions of the BCRwith self-antigens, or by continuous low-level

tonic BCR signaling in the absence of ligand engagement (Kraus

et al., 2004; Lam et al., 1997). However, our current results

suggest an alternative interpretation. We propose instead that

the requirement for the BCR and Iga in B cell survival may be

due to a function for these proteins as critical adapters in

a BAFFR signaling pathway leading to the activation of Syk

and hence to the activation of ERK and PI3 kinase pathways.

Based on our data we cannot exclude the possibility that the

BCR delivers a stand-alone survival signal; however, we note

that in contrast to our proposal, such a model does not explain

why BAFFR transduces signals via the BCR to the activation of

Syk, ERK, and Akt.

EXPERIMENTAL PROCEDURES

For an extended description of experimental procedures see Supplemental

Information.

Mice

Gene targeted mice were bred in an SPF facility at NIMR. For induction of Cre

expression, mice were treated with tamoxifen (2 mg/day) for 5 days. Radiation

chimeras were generated using standard protocols. For retrovirus-mediated

gene transfer, bone-marrow cells were infected in vitro with retroviruses prior

to reconstitution of irradiated recipients. If required, chimeric mice were

treated with tamoxifen 6–8 weeks after reconstitution.

Immunoblotting

Splenic B cells were purified by depletion with antibodies to CD43 and CD1d,

and lysates were prepared using RIPA buffer. Immunoblotting was performed

using standard procedures.

B Cell Survival Assay

Purified splenic B cells were cultured for 4 days with or without BAFF. Absolute

numbers of live B cells were assessed using ToPro3 exclusion.

RNA Analysis

Follicular B cells (B220+CD93�CD23+IgM+) were sorted from spleens 10 days

after start of tamoxifen treatment. RNA was isolated using RNEasy mini kit

(QIAGEN) and used for microarray or RNASeq analysis.

Statistical Analysis

All statistical comparisonswere carried out using the nonparametric two-tailed

Mann-Whitney test. Statistically significant differences are indicated on the

figures: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures, one table, and Supplemental

Experimental Procedures and can be found with this article online at http://

dx.doi.org/10.1016/j.immuni.2012.11.015.
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