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Summary 

O-acetylserine sulfhydrylase (OASS) and cystathionine β-synthase (CBS) are members of the 

PLP-II family, and involved in L-cysteine production. OASS produces L-cysteine via a de 

novo pathway while CBS participates in the reverse transsulfuration pathway. O-acetylserine-

dependent CBS (OCBS) was previously identified as a new member of the PLP-II family, 

which are predominantly seen in bacteria. The bacterium Helicobacter pylori possesses only 

one OASS (hp0107) gene and we showed that the protein coded by this gene actually 

functions as an OCBS and utilizes L-homocysteine and O-acetylserine (OAS) to produce 

cystathionine. HpOCBS did not show CBS activity with the substrate L-serine and required 

OAS exclusively. The HpOCBS structure in complex with methionine showed a closed-cleft 

state, explaining the initial mode of substrate binding. Sequence and structural analyses 

showed differences between the active sites of OCBS and CBS, and explain their different 

substrate preferences. We identified three hydrophobic residues near the active site of OCBS, 

corresponding to one serine and two tyrosine residues in CBSs. Mutational studies were 

performed on HpOCBS and Saccharomyces cerevisiae CBS. A ScCBS double mutant 

(Y158F/Y226V) did not display activity with L-serine, indicating indispensability of these 

polar residues for selecting substrate L-serine, however did show activity with OAS. 

 

Keywords: Cystathionine β-synthase, Helicobacter pylori, Hydrogen sulfide, O-acetylserine 

sulfhydrylase, pyridoxal 5’-phosphate, reverse transsulfuration pathway 

 

Introduction 

L-cysteine can be produced via the transsulfuration pathway or a de novo pathway depending 

on the presence of enzymes in the organism. In the transsulfuration pathway, L-methionine is 

converted into L-homocysteine in multiple steps, with this conversion requiring the action of 

different enzymes. The L-homocysteine is either converted back to L-methionine via the 

action of the enzyme L-homocysteine S-methyltransferase or is converted to L-cysteine 

through an intermediate L-cystathionine via the reverse transsulfuration pathway (Scriver & 

Kaufman, 2001, Stipanuk, 2004) (Fig. 1). In the reverse transsulfuration pathway, 

homocysteine reacts with L-serine and is converted to cystathionine by the action of 

cystathionine β-synthase (CBS), and cystathionine is further acted upon by cystathionine γ-

lyase (CGL) to produce L-cysteine. The de novo pathway of L-cysteine production from L-

serine with O-acetylserine as an intermediate has been shown in bacteria and plants, where 

serine O-acetyl transferase (SAT) and O-acetylserine sulfhydrylase (OASS) function in 

tandem (Rabeh & Cook, 2004, Wirtz & Droux, 2005, Kopriva, 2006) (Fig. 1). Recently a few 

O-acetylserine-dependent CBSs (OCBSs) have been identified and characterised in certain 

bacteria, have been shown to function in the reverse transsulfuration pathway, specifically 

being involved in methionine-to-cysteine conversion that takes O-acetylserine from the de 

novo pathway (Devi et al., 2017, Hullo et al., 2007, Matoba et al., 2017). 
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CBS belongs to the type II fold of PLP-dependent enzymes, and OASS also adopts a similar 

three-dimensional fold (Alexander et al., 1994, Grishin et al., 1995, Meier et al., 2001, 

Burkhard et al., 1998). Extensive research has been carried out on Homo sapiens CBS 

(HsCBS), Droshophila melanogaster CBS (DmCBS) (Koutmos et al., 2010) and 

Saccharomyces cerevisiae CBS (ScCBS) (Tu et al., 2018). HsCBS and DmCBS each have an 

extended N-terminal heme-binding region, which probably serves as a redox sensor (Taoka et 

al., 2002). But neither ScCBS (Tu et al., 2018) nor protozoan CBSs have N-terminal heme-

binding region (Nozaki et al., 2001). HsCBS, DmCBS and ScCBS each have a regulatory C-

terminal Bateman domain, which is absent in protozoan CBS (Nozaki et al., 2001), but only 

HsCBS is activated by the binding of the allosteric regulator S-adenosylmethionine (AdoMet) 

(Finkelstein et al., 1975). All CBSs catalyze the generation of cystathionine via a β-

replacement reaction of L-serine with L-homocysteine, along with other alternative β-

replacement and β-elimination reactions in which L-cysteine and L-homocysteine are utilized 

to release H2S. CBS, especially in the brain, serves as a major source of H2S, which is 

involved in modulating the cell function (Chen et al., 2004). Bacterial OCBS also belongs to 

the PLP type II fold and catalyzes the synthesis of cystathionine via the β-replacement 

reaction of O-acetylserine and L-homocysteine. OCBS has neither an N-terminal heme-

binding region nor a C-terminal regulatory domain (Devi et al., 2017, Matoba et al., 2017). 

These OCBSs are also capable of catalyzing the production of H2S efficiently via β-

replacement with substrate L-cysteine and L-homocysteine (Devi et al., 2017, Matoba et al., 

2017). 

 

Helicobactor pylori is a pathogenic Gram-negative bacterium known to colonize the 

stomachs of about half of the global human population, largely in developing and resource-

poor countries. It afflicts the majority of people with subclinical to progressive clinical 

gastritis and peptic ulcers (Nesic et al., 2014, Singh et al., 2002). Thus, considering the global 

etiological magnitude and prominence of the invasiveness of H. pylori, this pathogen has 

been listed as a group 1 carcinogen by the World Health Organisation (WHO) and is 

considered as the strongest risk factor associated with duodenal and gastric cancers (Peek & 

Blaser, 2002). 

 

 

 

In the H. pylori genome, both the SAT and OASS genes have been annotated to belong to the 

de novo pathway, but an overview of the genome of H. pylori showed a gene cluster 

containing the annotated OASS gene (hp0107) along with the genes of the cystathionine γ-

synthase (hp0106) and S-ribosylhomocysteinase (hp0105) enzymes of the transsulfuration 

pathway. This analysis suggested the product of the hp0107 gene to be also involved in the 

transsulfuration pathway, where the products of all of these genes are required and thus 

expressed simultaneously as reported earlier (Doherty et al., 2010). Some recent findings also 

suggested (Devi et al., 2017, Matoba et al., 2017) that the product of hp0107 gene could 

actually be an OAS-dependent CBS (HpOCBS) in H. pylori. It should be noted that the 

transsulfuration pathway has been indicated to be crucial for the viability of H. pylori since it 

grows only in L-methionine-rich media (Mendz & Hazell, 1995, Nedenskov, 1994, Reynolds 
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& Penn, 1994), and mutations in any one of these genes have been shown to impede the 

growth of the organism and to result in it becoming a cysteine auxotroph (Doherty et al., 

2010). 

 

In the current work, we first carried out an in silico study to identify the sub-family to which 

HP0107 belongs. A phylogenetic tree analysis showed the presence of an OCBS clad separate 

from OASS and CBS, with the OCBS branch including all annotated OCBSs along with 

HP0107. This observation indicated HP0107 to be an OCBS (HpOCBS). The HpOCBS 

protein showed OAS-dependent CBS activity and also catalysed the production of H2S in the 

presence of L-cysteine and L-homocysteine. Furthermore, we determined the crystal structure 

of HpOCBS with bound L-methionine (substrate analog); this analog was observed to be 

bound near PLP at the active site in one of the protomers of the dimeric structure, explaining 

the pre-reactive substrate binding state. A comparison of the active sites of OCBS and CBS 

revealed three key residues playing an important role in substrate selectivity for β-

replacement activity to produce cystathionine. Mutation of two of these residues in 

Saccharomyces cerevisiae CBS (ScCBS) resulted in a loss of activity with substrate L-serine 

and a gain of activity with OAS. Earlier reports on OCBS (Devi et al., 2017, Hullo et al., 

2007, Matoba et al., 2017) suggested OCBS to be present only in a few bacteria, but our 

study revealed the presence of OCBS in a greater variety of bacteria. 

 

Results 

In silico study indicates HP0107 is an OCBS 

We retrieved many protein sequences annotated either as cysteine synthase or OASS from the 

NCBI database using PSI-BLAST with Bacillus anthracis OCBS as the search template (due 

to it having previously been shown to be an OCBS (Devi et al., 2017)). Most of these 

retrieved sequences probably corresponded to OCBS, with the product of the gene hp0107 of 

H. pylori being one of them. These probable OCBSs derived from the phyla Firmicutes, 

Chlamydiae, Acidobacteria, Fibrobacter, Actinobacteria and Proteobacteria of Bacteria and 

Euryochaeota of Archaea (Table S1). A separate list of CBS and OASS proteins from various 

organisms were also created using PSI-BLAST, with the OASS family containing sequences 

of OASSs from both bacteria and plants, and the CBS family including sequences from the 

phyla Arthropoda, Chordata and Nematoda. 

 

Furthermore, a phylogenetic tree was constructed using sequences considered likely to be 

OCBS, CBS and OASS. A total of 55 probable OCBS sequences (most of them annotated as 

cysteine synthase in NCBI) clubbed neither with OASS nor with CBS and were instead 

included in a separate OCBS branch. This separate OCBS branch also contained the product 

of the gene hp0107 along with other annotated OCBS sequences as well. This analysis 

suggested OCBS to differ from OASS and CBS in the PLP-II family of enzymes (Fig. 2) and 

indicated that the product of the gene hp0107 belongs to the OCBS subfamily. 
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Sequence conservation near the active site in OCBS, CBS and OASS 

Three multiple sequence alignments were carried out using OCBS, OASS and CBS 

sequences, respectively, to determine the level of conservation within each of these three 

types of proteins. The Multalin server was used, which gave a consensus sequence and 

printed a residue at any particular position when the level of conservation was at least 50% 

(Fig. S1). The consensus sequence near the active site of the enzyme was divided into five 

conserved blocks, which showed differences among the sub-families. Inspection of the 

sequence alignment of conserved block 1, consisting of residues 
73

TAGNTG
78 

in OCBS 

sequences (residue numbers according to HpOCBS), indicated TSGNTG to be the 

corresponding conserved residues in CBS and OASS (Table S2, see also Fig. 3). This 

sequence in OASS and CBS has been shown to interact using multiple contacts with, 

respectively, substrate OAS (Schnell et al., 2007) and L-serine (Koutmos et al., 2010) and to 

also stabilize the α-aminoacrylate intermediate. Inspection of crystal structures indicated this 

conserved block, also known as the ‘asparagine loop’, to move upon substrate binding and to 

close the active site cleft. Conserved block 2, consisting of 
180

GSGGT
184 

in OCBS, has been 

indicated to interact with the phosphate moiety of PLP and to anchor the moiety throughout 

the β-replacement reaction in OCBS (Matoba et al., 2017), OASS (Schnell et al., 2007) and 

CBS (Koutmos et al., 2010). However, GTGGT was found to be the corresponding sequence 

conserved in both CBS and OASS. Conserved block 3 
221

TEGIGME
227

, has been predicted to 

interact with the second substrate (L-homocysteine or HS
-
 in CBS (Lodha et al., 2009) or 

OASS, respectively) and  to allow this second substrate to participate in a nucleophilic attack 

on α-aminoacrylate and then release product and regenerate enzyme with an internal 

aldimine. In the third block, the Met was found to be mostly conserved, but with a Val 

instead present in HpOCBS. Moreover, these conserved residues were observed to be located 

near the lip of the active site. Previous analyses of CBS and OCBS crystal structures showed 

Glu222 of this conserved stretch to form a network of hydrogen bond interactions and to 

close the active site cleft upon substrate binding (Devi et al., 2017). Sequence alignment 

revealed IQGIGAG and VEGIGYD to be the block 3 sequences conserved in OASS and 

CBS, respectively. Tyr in conserved block 3 of CBS has been reported to interact with the 

substrate L-serine and to play an important role during the β-replacement reaction (Koutmos 

et al., 2010, Tu et al., 2018). Ser267 of conserved block 4 
266

SSSG
269 

of OCBS was observed 

to interact with the nitrogen of the pyridine ring of PLP; thus, this conserved block may be 

stabilizing the PLP ring and also holding it during the interconversion between the internal 

and external aldimines (Schnell et al., 2007, Koutmos et al., 2010). Ser267 and Ser268 were 

found to be conserved in CBS and OASS as well. Inspection of crystal structures showed 

conserved block 5 
298

RYLSK
302 

to be located at the C-terminal tail and Lys302 of this block 

to interact with other residues at the lip of active site in OCBS and CBS. And inspection of 

the sequence alignment indicated RYLST and NYMTK to be the sequences of this block 

conserved in OASS and CBS, respectively, with the lysine at the fifth position of this block 

notably conserved in OCBS and CBS. These analyses taken together revealed differences at 

the sequence level in the conserved blocks in different members of the PLP-II family (Table 

S2 and Fig. 3). 
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Kinetics analysis revealed that HP0107 is an OCBS 

To confirm that HP0107 is an OCBS, we carried out various biochemical assays. Enzyme 

was purified to homogeneity to carry out all the enzymatic assays. First, we performed a CBS 

assay in the presence of substrate L-serine and homocysteine, but it did not show any 

production of cystathionine. Then OCBS activity was measured to determine whether 

HP0107 produces L-cystathionine via the β-replacement reaction with OAS and L-

homocysteine. HP0107 showed OCBS activity with a kcat/Km of 12.6 mM
-1

·s
-1 

for OAS 

(Table 1 and Fig. 4a), similar to that previously reported from B. anthracis (Devi et al., 2017) 

and L. plantarum (Matoba et al., 2017). The HP0107 Km value for OAS was 2.92 mM, 

comparable to 1.16 mM and 4.2 mM of OCBS activity of B. anthracis (Devi et al., 2017) and 

L. plantarum (Matoba et al., 2017) respectively. Various reported Km value for L-serine of 

Homo sapiens, Leishmania major and Trypanosoma cruzi CBS were 1.74 mM, 1.1 mM and 

1.0 mM respectively (Chen et al., 2004, Nozaki et al., 2001, Williams et al., 2009), similar to 

Km of OCBS activity of HP0107. Initially, the OCBS assay was performed using various 

buffers at different pH values and the highest activity was observed when using HEPES [pH 

7.5] buffer. Thus, this buffer was used to carry out all of the reactions. Absence of CBS 

activity with the substrate L-serine was also observed in the case of other OCBSs, i.e., from 

B. anthracis (Devi et al., 2017), B. subtilis (Hullo et al., 2007) and L. plantarum (Matoba et 

al., 2017) and showed production of cystathionine with the substrate O-acetylserine. This 

result thus indicated HP0107 to be exclusively an OCBS enzyme and to require O-

acetylserine instead of L-serine as its first substrate for the reaction (Fig. 5). 

 

HpOCBS releases hydrogen sulfide (H2S) 

CBSs and OCBS produce H2S in the presence of L-cysteine and L-homocysteine via the β-

replacement reaction (Chiku et al., 2009, Devi et al., 2017, Matoba et al., 2017). HpOCBS 

was also found to produce H2S with Km and kcat values for L-homocysteine of 86 µM and 

6.05 s
-1

, respectively (Table 1 and Fig. 4b). The specificity constant of HpOCBS for H2S 

generation was observed to be relatively high, when compared with other enzymatic activities 

of this enzyme. Similarly high efficiency for H2S production has also been observed in B. 

anthracis (Devi et al., 2017) and L. plantarum (Matoba et al., 2017). HpOCBS was also able 

to produce H2S using only substrate L-cysteine, which might be producing another product 

L‐lanthionine as suggested by (Matoba et al., 2017) but with very low efficiency (data not 

shown), compared to the production of H2S with the β-replacement reaction of cysteine and 

homocysteine that might be producing another product L‐cystathionine (Fig. 5b) as reported 

(Matoba et al., 2017). The presence of L-homocysteine as a second substrate was found in the 

current work as well as in previous investigations with B. anthracis and L. plantarum to 

greatly enhance the production of H2S. Inhibition of H2S production has been shown to make 

pathogenic bacteria more susceptible to antibiotics (Shatalin et al., 2011). Thus H2S was 

concluded to protect the bacteria from oxidative stress, and the higher kcat/Km indicated its 

importance for survival of the bacteria. 
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HpOCBS also shows O-acetylserine sulfhydrylase (OASS) activity 

OCBS, like OASS, can consume H2S to produce L-cysteine (Matoba et al., 2017, Devi et al., 

2017). We found HP0107 showing OASS activity, but with a low specificity constant 

compared to its OCBS and H2S generation activities. Its kcat was measured to be 

approximately 0.108 s
-1 

(Table 1 and Fig. 4c), considerably less than the values for OASSs 

from other organisms (Bonner et al., 2005, Mizuno et al., 2002). OCBS and CBS from other 

organisms also displayed OASS activity, attributed to their three-dimensional structures and 

active site residues being similar to those of the OASS proteins. 

 

Three-dimensional structure of HpOCBS reveals its dimeric conformation  

The crystal structure of native HpOCBS was determined to a resolution of 1.9 Å (Fig. 6), and 

refined to an R and Rfree of 18% and 21%, respectively. Figure 6c shows the quality of the 

electron density of the PLP molecule and one of the representative regions of the protein. 

Over 96.4% of the 506 total number of amino acid residues refined in the most favourable 

region of the Ramachandran plot, and the remaining 3.6% of the residues in the additionally 

allowed region, i.e., with no residues in the outlier region (Table 2).  

 

The HpOCBS protein crystallized as a dimer with extensive interactions between two 

protomers (Fig. 6a). The dimeric interface was observed to include both the N- and C-

terminal domains. The association between the two monomers was observed to primarily take 

place through hydrophobic interactions, salt bridges, sulfur-aromatic amino acid interactions 

(of Phe17 of chain A with Met7 of chain B and chain B Phe17 with chain A Met7) and 

hydrogen bonds. Together this association resulted in a buried surface area of 3533 Å
2
, 

equivalent to 13.4% of the total surface area of the monomer. 

 

Each protomer was observed to consist of two non-contiguous α/β motifs, each having a 

topology similar to those of other type-II PLP enzymes (Fig. 6b). Inspection of the structure 

of the N-terminal domain indicated it to consist of residues 1-12 and 40-149, and to include 

α-helices H1, H2, H3 and H4, β-strands B1, B4, B5, B6 and B7, and 310 helices G1, G3 and 

G4, with the β-strands mostly parallel to each other and surrounded by helices H2 and H3 

from one side and H4 from the other. Inspection of the structure of the C-terminal domain 

indicated it to consist of residues 13-39 and 150-306, and to include α-helices H5, H6, H7, 

H8 and H9, β-strands B2, B3, B8, B9, B10 and B11, and 310 helices G2, G5 and G6, with 

these strands also parallel to each other, and surrounded by helices H6 and H7 from one side 

and H8 and H9 from the other. 

In the HpOCBS crystal structure, PLP cofactor was observed buried in a cleft between the 

two domains. The cofactor linked to the ε-amino group of Lys44 via a Schiff base linkage to 

form a lysine-pyridoxal-5`-phosphate (LLP) internal aldimine structure (Fig. 6c). The 

nitrogen of the pyridine ring (N1) formed a hydrogen bond with the oxygen of Ser267, and 

the OH (O3) of PLP formed an interaction with Asn76. The phosphate-binding loop or ‘G/T 

loop’ was observed to connect β8 and α7 and to be composed of residues 
180

GSGGT
184

. 

These amino acid residues were found to anchor the phosphate moiety by forming a hydrogen 
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bond network holding the PLP coenzyme firmly (Fig. S2). These residues and the associated 

hydrogen bonds and hydrophobic interactions near PLP were found to be mostly conserved 

or similar in other homologous CBS, OCBS and OASS structures. 

Methionine complexed with one of the protomers of HpOCBS shows a pre-reactive state 

In the HpOCBS crystal structure, methionine (substrate analog) was observed to be bound to 

one of the protomers of the HpOCBS dimer, at the active site near the PLP. This was, to the 

best of our knowledge, the first-ever OCBS structure reported with bound methionine along 

with an internal Schiff base (with PLP covalently linked to the ε-amino group of Lys). In 

most of the reported substrate-bound structures of this family, PLP is present as an external 

Schiff base, i.e., with PLP covalently linked to the α-amino group of the substrate or present 

as an aminoacrylate intermediate (Koutmos et al., 2010, Schnell et al., 2007, Matoba et al., 

2017). In two experiments involving OASS, one from Salmonella typhimurium (PDB ID: 

1D6S) (Burkhard et al., 1999) and the other from Arabidopsis thaliana (PDB ID: 1Z7Y) 

(Bonner et al., 2005), the lysine normally bound to PLP (PLP-linked lysine-LLP) was 

mutated by the experimenters to Ala, and in these structures PLP makes a covalent bond with 

methionine (external aldimine). In both of these structures, methionine was not added in the 

crystallization condition but OASS acquired it during the protein production, indicative of its 

affinity for methionine. Of all the available OASS structures, only that from Entamoeba 

histolytica has been reported to have methionine at the active site along with the internal 

aldimine, and this structure was obtained using co-crystallization with the methionine (Raj et 

al., 2013). Binding constant (Kd) values of methionine were reported to be 78 ± 9 µM and 

0.70 ± 0.06 mM, respectively, for the OASSs of S. typhimurium and A. thaliana, with the 

latter value comparable to the 0.252 ± 0.055 mM value measured here for HpOCBS (Fig. 

S3). Based in part on this result, HpOCBS may be predicted to have a high affinity for 

methionine and trapped methionine in the pre-reactive state from the media during protein 

production. The presence of methionine in the pre-reactive state in only one of the protomers 

(of the dimeric HpOCBS) and without it covalently bound to the PLP to form an external 

aldimine were attributed to the suboptimal concentration of the methionine in our 

experiments. However, a high Kd value of 1.5 ± 0.4 mM was reported for methionine with E. 

histolytica OASS, indicative of the inability of this protein to easily take up methionine from 

media, and thus the need to have added it externally during the crystallization (Chinthalapudi 

et al., 2008). 

Superposition of the two protomers of the HpOCBS dimer revealed an approximately 0.78 Å 

root-mean-square deviation (RMSD) of backbone ɑ-carbon atoms, similar to that found for 

L-serine-bound D. melanogaster CBS (Koutmos et al., 2010). Methionine binding led to a 

closing of the active site as a result of the movement of mobile loop 222-230 of the C-

terminal domain and a nearly 10° bending of the N-terminal domain (Fig. 7c), making the 

two domains approach each other, and specifically decreasing the distance between the 

domains by 3.2 Å (Fig. 7c). Here, in the presence of methionine, Glu222 (conserved in 

OCBSs (Devi et al., 2017) and CBSs) formed interactions with Lys302 of the C-terminal tail 

and with the backbone amide of Ser101 of the N-terminal domain (Fig. 7d).  
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Methionine in HpOCBS was observed to form a hydrogen bond with the side chain of 

Lys104. A mutation of the corresponding lysine in yCBS (K112) was carried out previously 

by Lodha et. al, 2009 to determine its importance in L-homocysteine binding, but 

surprisingly it yielded an increase in the Km of L-serine instead of L-homocysteine, indicating 

that this particular Lys binds to L-serine  instead of L-homocysteine (Lodha et al., 2009). 

This conclusion was also consistent with the above-indicated observation of an interaction 

between methionine and Lys104 in the present methionine-bound HpOCBS structure. The 

backbone nitrogen atom of Asn76 of the 
73

TAGNT
77 

‘asparagine loop’ also made a hydrogen 

bond with the carboxyl group of methionine, while other residues of this loop formed 

hydrophobic interactions with methionine (Fig. 7a and b) and apparently promoted closing of 

the active site (Burkhard et al., 1999). Ser has been found to be conserved instead of Ala74 in 

the asparagine loops of CBSs, and mutation of Ala to Ser in OCBS yielded an increase in H2S 

generation (Devi et al., 2017, Matoba et al., 2017), indicating the involvement of the Ser 

residue in anchoring the substrate. 

Gln146, conserved across OCBS, CBS and OASS sequences, was observed to interact with 

methionine in HpOCBS to form an internal Schiff base. A Gln157Ala mutation in yeast CBS 

abolished β-replacement reaction and this result confirmed the role of this residue in substrate 

positioning and in the subsequent reaction mechanism (Aitken & Kirsch, 2004). In the 

current HpOCBS crystal structure, Phe147and Gly223 also interacts with the methionine 

(Fig. 7a and b). Also note that the residue corresponding to HpOCBS Phe147 is a Tyr in 

CBS, and a Tyr158Phe mutation in yeast CBS was previously shown to yield a 3-fold 

decrease in kcat/Km for L-serine in the β-replacement reaction (Aitken & Kirsch, 2004). The 

hydroxyl group of this Tyr was reported to form a hydrogen bond network with the β-OH 

group of the substrate L-serine and other residues at the active site of CBS and hence to 

facilitate the β-replacement reaction (Koutmos et al., 2010). 

Structural comparison of HpOCBS with other homologous enzymes of the PLP-II family 

We compared the HpOCBS structure with the available structures of CBS, OCBS and OASS 

of the PLP-II family. CBS was found to have N- and C-terminal domains with three-

dimensional structures similar to those of HpOCBS. In addition to these domains, CBSs from 

higher organisms also have C-terminal extended regulatory and N-terminal heme-binding 

domains (Omura et al., 1984, Finkelstein et al., 1975, Koracevic & Djordjevic, 1977). In 

mammals, CBS is activated by the binding of AdoMet to the regulatory domain (Prudova et 

al., 2006, Finkelstein et al., 1975, Koracevic & Djordjevic, 1977), while CBS proteins from 

different classes remain constitutively active and do not require AdoMet for the activation 

(Koutmos et al., 2010, Gimenez-Mascarell et al., 2017). Four CBS structures have been 

reported, from H. sapiens (Meier et al., 2001), D. melanogaster (Koutmos et al., 2010), Apis 

mellifera (Gimenez-Mascarell et al., 2017) and S. cerevisiae (Tu et al., 2018), and 3-

dimentional structural superposition of these CBSs with HpOCBS showed RMSD values of 

approximately 2.0 Å for about 300 aligned Cα atoms of the core catalytic domain (i.e., N- 

and C-terminal domains) (Table 3 and Fig. 8b). Sequence comparison of CBSs with 

HpOCBS showed only 23 to 28 % sequence identity values (Table 3), with these low values 

due to the presence of extra residues at both the N- and C-termini.  
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To date, only two OCBS structures have been published, from B. anthracis (PDB ID: 5XW3) 

(Devi et al., 2017) and L. plantarum (PDB ID: 5B1H ) (Matoba et al., 2017), and rigid body 

superpositions of these structures with the HpOCBS structure using the FATCAT server gave 

RMSD values of 3.0 Å and 1.15 Å, respectively. The very high RMSD between HpOCBS 

and B. anthracis OCBS was due to the large angle between the N- and C-terminal domains in 

the latter. On comparing the methionine-bound H. pylori OCBS structure (PDB ID: 6AHI) 

with the methionine-bound L. plantarum OCBS structure (PDB ID: 5B1I), we found the 

methionine in the H. pylori structure to be present as a pre-reactive state and not linked to 

PLP (Fig. 9b). This methionine is expected to adopt a conformation similar to the methionine 

of L. plantarum OCBS after making a Schiff base linkage with PLP.  

Structural superposition of HpOCBS with known OASSs yielded RMSD values of 1.8 to 2.0 

Å, indicating their structures to be highly similar; these superpositions also yielded very good 

structural alignments of their active site residues (Fig. 8a). Sequence comparisons of 

HpOCBS with OASSs showed only 33 to 40 % identities but with the OCBSs showed nearly 

53 to 58 % identities (Table 3). These results clearly justified the placement of HpOCBS in a 

separate OCBS clad in the phylogenetic tree. 

Mode of OAS and L-homocysteine binding at active site 

To date, no CBS or OCBS structure with bound L-homocysteine has been published. 

Therefore, to gain an understanding of the modes of interactions of OAS and L-homocysteine 

at the active site for the β-replacement reaction, L-homocysteine was docked in silico in the 

closed conformation of the methionine-bound HpOCBS structure to identify the residues 

involved in the binding of L-homocysteine. Here, L-homocysteine bound between the 

asparagine loop and the loop containing residues 222 to 227 of the C-terminal domain (Fig. 

S4a). The docking produced hydrogen-bond interactions of the backbone of Gly223 and 

Gly225 with the α-carboxylate and α-amino group of L-homocysteine (Fig. S4b and c).These 

same residues formed interactions with a distal portion of L-cystathionine docked in yeast 

CBS, with this distal portion of L-cystathionine corresponding to the L-homocysteine moiety 

(Lodha et al., 2009). Residues Glu222, Ile224, Glu227 and His219 from the C-terminal 

domain and Phe100 and Ile124 from the N-terminal domain formed hydrophobic contacts 

with L-homocysteine (Fig. S4b and c). Methionine was observed to be located in between 

PLP and L-homocysteine, more towards the N-terminal domain below the asparagine loop 

(Fig. S4a). 

Mutational studies confirm the critical active site residue differences between conventional 

CBS and OCBS 

Conventional CBS prefers L-serine as its first substrate to carry out β-replacement reaction, 

while OCBSs exclusively require OAS for the reaction and do not show any functionality in 

the presence of the substrate L-serine (Devi et al., 2017), with this different behaviour 

towards OAS and L-serine perhaps due to the difference between certain residues at the 

active site of CBS and those of OCBS (Table S2 and Fig. 9a). Inspection of the HpOCBS and 

CBS structures specifically showed three residues located near the active site, at (HpOCBS) 

positions 74, 147 and 226, to differ between them —identified, respectively, as Ala, Phe, and 
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Val in HpOCBS, but Ser, Tyr and Tyr in CBS. The hydroxyl groups of the Ser and Tyr 

residues may provide necessary hydrogen bonding to the leaving hydroxyl (β-OH) group of 

the L-serine substrate and facilitate its β-elimination (Koutmos et al., 2010), while absence of 

these residues in OCBS, may be making it incapable of utilizing L-serine for the reactions 

and thus requiring activated L-serine, i.e., OAS, for its activity. 

To confirm the identity of the residues crucial for the reaction mechanism, a series of 

mutations of HpOCBS were made (listed in Table S3). The β-replacement activity of each 

mutation was checked with the substrate L-serine or OAS in the presence of 5 mM of 

homocysteine. Specifically three structure-guided mutations, A74S, F147Y, and V226Y, 

were made to HpOCBS. In addition to these single-residue-substitution mutants, one double-

residue-substitution mutant (F147Y/V226Y) and one triple-residue-substitution mutant 

(A74S/F147Y/V226Y) were also generated. All five of these mutants were generated with 

the expectation that they would show activity with the substrate L-serine, with this 

expectation due to the interactions made between the β-OH of L-serine-bound CBS structures 

(Koutmos et al., 2010) (Tu et al., 2018) and the homologous residues. However, none of the 

mutants showed β-replacement activity with the L-serine (Fig. S5), even though there was no 

structural change upon mutation (Fig. S6). The F147Y mutant showed activity with OAS but 

with less catalytic efficiency than did wild type (WT) HpOCBS. Surprisingly, the V226Y 

variant did not show any β-replacement activity with substrate OAS. We checked OCBS 

activity with a higher enzyme concentration (1.48 µM) of the HpOCBS V226Y mutant 

together with 5mM each of OAS and L-homocysteine; only slight activity was observed in 

this case. Also, neither the double mutant (F147Y/V226Y) nor the triple mutant 

(A74S/F147Y/V226Y) of HpOCBS showed any activity with substrate OAS even at the high 

enzyme concentration, again despite the lack of any considerable structural differences 

between the mutant and WT HpOCBS structures (Fig. S6). 

To verify our hypothesis on the importance of these residues for substrate binding occurring 

via the β-replacement reaction mechanism, mutation was made to S. cerevisiae CBS (ScCBS) 

at the corresponding homologous residues listed in Table S3. ScCBS was chosen due to its 

lack of an N-terminal iron-binding region and due to the constitutive activity of its catalytic 

core domain, which has been shown to not require AdoMet for activation. Also, ScCBS has 

been shown to be stable for nearly 6-7 days at 4°C. ScCBS showed kcat and Km values for 

CBS activity to be 55.6 s
-1

 and 2.26 mM respectively. The discrepancy in the kcat and Km 

values of CBS activity of ScCBS with the earlier report may have been due to the difference 

in the method employed for detecting cystathionine (Table 4); however the kcat/Km of ScCBS 

was determined to be 24.68 mM
-1

s
-1

, comparable to the previously reported value (Lodha et 

al., 2010). The double mutant (Y158F/Y248V) generated in ScCBS was tested for 

cystathionine generation in the presence of substrate L-serine and OAS, individually. The 

ScCBS double mutant (Y158F/Y248V) did not show any CBS activity with L-serine but 

showed enhanced activity in the presence of substrate OAS, with a kcat/Km of about 18.2 mM
-

1
s

-1 
(Table 4), compared to the 12.6 mM

-1
s

-1 
value for the WT ScCBS OCBS activity (Fig. 

S5). Based on these results, we hypothesized that Y248 and Y158 are indispensable for CBS 

activity with L-serine not only in yeast CBS but in all CBSs, since these tyrosine residues are 

conserved across this sub-family. However, the OCBS activity displayed by the ScCBS 
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double mutant (Y158F/Y248V) showed a higher specificity constant than did that displayed 

by WT ScCBS (Table 4 and Fig. S5), indicating the favorability of the active site architecture 

for OAS, hence validating the importance of these residues for OAS binding. 

The absence of CBS activity with substrate L-serine by the triple mutant 

(A74S/F147Y/V226Y) and double mutant (F147Y/V226Y) of HpOCBS could be due to the 

different orientation adopted by Val226 in HpOCBS than that adopted by the homologous 

Tyr248 in ScCBS. In the HpOCBS crystal structure, Val226 faces away from the active site 

towards the C-terminal domain and its movement seems to be restricted due to the presence 

of Glu227 which interacts with the residues of N-terminal domain in a closed conformation 

upon substrate binding (methionine-bound protomer of HpOCBS) (Matoba et al., 2017). Thus 

even upon mutation of Val226 to Tyr in HpOCBS, this residue would still presumably be 

facing away from the active site and hence unable to contact the substrate L-serine. 

Discussion 

The reverse transsulfuration pathway is well characterised in higher organisms such as H. 

sapiens (Ereno-Orbea et al., 2013, Ereno-Orbea et al., 2014, McCorvie et al., 2014), S. 

cerevisiae ( Jhee et al., 2000), A. mellifera (Gimenez-Mascarell et al., 2017) and D. 

melanogaster (Koutmos et al., 2010), where it is the sole source of L-cysteine production 

from methionine. In bacteria, the reverse transsulfuration pathway is also known as the 

‘methionine-to-cysteine conversion pathway’. CBS and CGL have been named, respectively, 

as MccA and MccB enzymes of the methionine-to-cysteine conversion pathway. This 

pathway is not universally present in bacteria but study shows some bacteria possess enzymes 

to carry out methionine-to-cysteine conversion. In Lactobacillus casei, the expression levels 

of cbs and cgl genes decrease in cysteine-containing media; these genes are present in a 

reading frame along with the gene for serine O-acetyl transferase (Bogicevic et al., 2012). 

Various Lactobacillus paracasei strains possess the highly mobile gene cluster cysK-ctl-cysE 

responsible for the conversion of methionine to cysteine in dairy products, which are highly 

rich in methionine compared to cysteine (Wuthrich et al., 2018). Similarly, Klebsiella 

pneumoniae uses its mtcBC operon to produce cystathionine β-synthase and cystathionine γ-

lyase (Seiflein & Lawrence, 2006) for the production of cysteine from methionine. 

Mycobacterium tuberculosis has a bifunctional gene (rv1079),which allows this organism to 

carry out both cystathionine γ-lyase and cystathionine γ-synthase activities and use 

methionine as a sole sulfur source, and hence demonstrate a functional reverse 

transsulfuration pathway (Wheeler et al., 2005). Bacillus subtilis possesses CBS, which 

shows activity with OAS and not with serine and can use methionine as a sole source of 

sulfur since it also has the cgl gene (Hullo et al., 2007). Recent investigations have also 

shown the importance of CBS for the survivability and pathogenicity of bacterial pathogens 

under oxidative stress (Shatalin et al., 2011, Devi et al., 2017, Matoba et al., 2017).  

 

The present study along with earlier studies showed the presence of the OCBS gene in the 

genomes of some bacteria, and showed these bacterial OCBSs to differ from the CBSs found 

in higher organisms in their domain architecture, length, regulation and most importantly 

substrate requirements. These studies showed bacterial OCBSs to function in the presence of 
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OAS instead of L-serine to produce L-cystathionine, to not require AdoMet for its activation, 

and to also be devoid of a heme-binding domain and C-terminal regulatory domain (Devi et 

al., 2017, Matoba et al., 2017). OCBS was shown to be widely found in bacteria, and to share 

a high similarity with OASS, and in fact has been misannotated as either cysK or cysteine 

synthase (OASS). OASS has been shown to be involved in different activities in addition to 

its role in cysteine production in the de novo pathway, such as an antibacterial nuclease toxin 

produced by Escherichia coli (Campanini et al., 2015) and in transcription repression in B. 

subtilis (Tanous et al., 2008). OCBS has apparently maintained its integrity at the sequence 

level, showing no mixing either with OASS and CBS in the phylogenetic tree (Fig. 2). The H. 

pylori hp0107 gene is annotated as an OASS in the NCBI database but the protein encoded 

by this gene was found in the current work to show OCBS activity and to also display O-

acetylserine sulfhydrylase activity, albeit at a relatively low level, a feature observed for other 

OCBSs as well (Matoba et al., 2017, Devi et al., 2017). Based on the phylogenetic analysis 

and analysis of the HpOCBS structure with bound methionine (substrate analog) at the active 

site, we concluded the present hp0107 gene to actually code for an OCBS. 

 

An in depth structural comparison of OCBS with conventional CBS, which uses L-serine, 

revealed possible key residues that determine the respective substrate preferences of these 

two proteins. Analysis of the active sites was performed by using L-serine-bound S. 

cerevisiae CBS (PDB ID: 6C2Q) (Tu et al., 2018) and methionine-bound HpOCBS. We 

identified three residues that may play important roles in selecting L-serine as the substrate 

for the reaction performed by CBS. Inspection of the ScCBS structure showed Ser82 and 

Tyr248 forming hydrogen bonds with the hydroxyl group of the substrate L-serine, and this 

substrate covalently linked to PLP (forming an external aldimine). A network of polar 

interactions of Tyr158 and Tyr248 would appear to also stabilize the reaction intermediate 

(Fig. 9a). Inspection of conventional CBS also showed its active site cavity to be polar, due to 

the presence of two tyrosine residues and one serine residue, with these three residues 

ultimately making polar interactions with the hydroxyl group of the L-serine substrate and 

participating in its activation and dehydroxylation. Analysis of the OCBS structures showed 

them to contain a conserved Ala74 (residue number according to H. pylori OCBS) instead of 

Ser82 in the ‘TSGNT’ loop, while showing Tyr158 replaced by Phe147 and Val226 (or Met 

or any other hydrophobic amino acid) at the homologous position of Tyr248 in the ‘EGIGY’ 

loop (Fig. 9a). These residues make the active site of OCBS hydrophobic and unable to 

participate in the activation of L-serine. Interestingly, the ScCBS double mutant containing 

Phe and Val instead of Tyr (Y158F/Y248V) behaved like an OCBS and showed β-

replacement activity only with substrate OAS. Perhaps CBS evolved from bacterial OCBS to 

take L-serine instead of OAS as its substrate, with evidence for this speculation including the 

observed lack of the enzyme to produce OAS in higher organisms and the measured retention 

of ancestral OCBS activity in the ScCBS mutants. 

 

Nevertheless, to complete the reverse transsulfuration pathway, another enzyme known as 

cystathionine γ-lyase (CGL) is required (Banerjee et al., 2003, Miles & Kraus, 2004). In H. 

pylori, the hp0106 gene (annotated as cystathionine γ-synthase) is in the same gene cluster as 

that encoding OCBS but has been predicted to function as a CGL (Doherty et al., 2010). Our 
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investigation also revealed the ability of HP0106 to efficiently convert cystathionine to 

cysteine (data not shown). Thus functional OCBS and CGL are present in H. pylori and a 

complete reverse transsulfuration pathway is functional in this pathogen. 

 

Experimental procedures 

In silico analysis 

Various OCBS protein sequences were retrieved using PSI-Blast with B. anthracis O-

acetylserine-dependent CBS (BaOCBS) as the search template (Devi et al., 2017). 

Furthermore, a few resultant sequences were used as search templates to retrieve additional 

distantly related OCBSs present in various phyla of bacteria. We used here only a few protein 

sequences from any particular genus. This means that there are many such proteins present in 

different species of the same genus. CBS proteins present in different organisms were 

retrieved using H. sapiens CBS (Ereno-Orbea et al., 2014) as a template in PSI-Blast. 

However, annotated CBSs present in a few bacteria were retrieved from the NCBI database 

manually. Similarly, OASS sequences from bacteria and plants were also extracted using E. 

histolytica OASS (PDB ID: 2PQM) as a template sequence in PSI-Blast (Chinthalapudi et al., 

2008). Finally, a total of 154 sequences were used for the construction of the phylogenetic 

tree. Initially a multiple sequence alignment was done using Clustal Omega with all of the 

sequences. The aligned sequences were then used as input into MEGA 5.1 software and a 

phylogenetic tree was generated using maximum likelihood based on the default parameters 

with 250 bootstraps (Tamura et al., 2011). 

 

Furthermore, multiple sequence alignment was done using the MULTALIN tool to obtain a 

consensus sequence for the members of the CBS, OASS and OCBS families (Corpet, 1988). 

All sequences from one particular family were input into the server for the multiple sequence 

alignment, which used the BLOSUM62 comparison table. The output file gave the aligned 

sequences along with the consensus sequence, which included residues conserved in more 

than 50% of the sequences.  

 

Amplification, cloning and site-directed mutagenesis of HP0107 and ScCBS 

The hp0107 gene was amplified by performing the polymerase chain reaction (PCR) on the 

genomic DNA of H. pylori 26695 as a template using gene specific primers (Table 5) and 

Phusion High-Fidelity DNA Polymerase (Thermo Scientific
TM

). The amplicon of the 921 bp 

gene was first purified using a PCR purification kit (Qiagen, Germany) and digested with 

NcoI and XhoI at 37°C for five hours. The pET28b expression vector was also digested with 

NcoI and XhoI, and the digested vector was purified using a gel extraction kit (Qiagen, 

Germany). The purified hp0107 gene was ligated, using T4 DNA ligase, into the pET28b 

expression vector at the NcoI and XhoI sites with a C-terminal (His)6 tag. The positive 

construct was selected and screened using a Luria-Bertani (LB) agar plate supplemented with 

kanamycin (50 μg·ml
-1

) and colony PCR, respectively. The site-directed mutagenesis was 

performed on a pET28b-hp0107 plasmid using mutagenic primers for the corresponding 

mutations listed in Table 5. In brief, pET28b-hp0107 was used as a template for PCR to 
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generate variants. Following the amplification of the whole plasmid, parental methylated 

DNA was digested using DpnI enzyme. The digested mixture was directly transformed in the 

DH5α strain of E. coli. All of the intended mutations were confirmed by carrying out whole 

gene sequencing. 

 

Similarly, amplification of the catalytic core region of the Sccbs gene was done by PCR on 

genomic DNA of S. cerevisiae with the primers listed in Table 5, followed by cloning of 

Sccbs in pET28b at the NheI and XhoI sites. Furthermore, site-directed mutagenesis was 

performed on the Sccbs gene as described above. 

 

Overexpression and purification of HP0107 and ScCBS 

Plasmids of pET28b-hp0107 and pET28b-Sccbs were transformed in the BL21 (DE3) strain 

of E. coli for the protein expression. The colonies were picked from LB plates containing 

kanamycin and inoculated into 50 ml of LB media for overnight growth. One percent of this 

culture was inoculated into one litre of secondary culture containing 50 μg·ml
-1 

of kanamycin. 

The culture was incubated at 37°C until the OD600 reached 0.6 to 0.8. Gene expression was 

initiated with the addition of isopropyl β-D-thiogalactoside (IPTG) to a final concentration of 

250 µM, the temperature was lowered to 16°C after induction, and the culture was allowed to 

grow for another 12 h. Cells were harvested at 4°C by subjecting them to centrifugation at 

7500 g for 5 minutes and then resuspending the pellet in buffer A containing 50 mM Tris 

[pH7.5], 150 mM NaCl, 1 mM phenylmethanesulfonyl fluoride (PMSF), 0.1% Triton X-100, 

5 mM imidazole, 0.01 mg·ml
-1 

lysozyme and 5 mM β-mercaptoethanol (βMe). Then, cells 

were sonicated and centrifuged at 25 000 g for 1 h. The cleared supernatant was applied onto 

Ni-NTA Sepharose column that had previously been equilibrated with 50 ml buffer B (50 

mM Tris [pH 7.5], 150 mM NaCl, 5 mM βMe and 5 mM imidazole). The protein was eluted 

in buffer C containing 50 mM Tris [pH7.5], 150 mM NaCl, 300 mM imidazole, 5% glycerol 

and 5 mM βMe.  

 

For further purification and removal of imidazole, the protein was concentrated using a 

Centricon filter with 30 kDa cut-off and loaded onto a HiLoad 16/60 Superdex 200 column 

(GE Healthcare) and eluted at a flow rate of 1 ml·min
-1

. The column that had previously been 

equilibrated with running buffer D containing 10 mM Tris [pH 7.5], 150 mM NaCl, 5% 

glycerol and 5 mM βMe. The purity of the desired protein was checked using 12% SDS-

PAGE and purified fractions were pooled and concentrated using a Centricon filter (cut-off 

30 kDa). Nearly 95 to 99% pure protein was obtained from gel-filtration chromatography 

(GFC) and purified protein was used to perform all of the experiments. 

 

Purification of the hp0107 mutant proteins were done using a method similar to that used for 

WT HP0107 (HpOCBS), and an SDS-PAGE analysis of the purified proteins obtained after 

GFC showed 90 to 99% pure protein (Fig. S7). The expression levels of the HpOCBS A74S 

and HpOCBS F147Y single mutants were similar to that of WT HpOCBS, each 

approximately 8 to 10 mg of protein from one litre of culture, while a mass of only 3 to 4 mg 

of protein was obtained from the same volume of culture for the HpOCBS V226Y mutant 
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and the HpOCBS double (F147Y/V226Y) mutant (Fig. S8). The expression level of the 

HpOCBS triple mutant (A74S/F147Y/V226Y) was 6 to 7 mg from one litre of culture (Fig. 

S8), better than that of the HpOCBS double mutant but poorer than that of WT HpOCBS. 

Furthermore, the HpOCBS V226Y mutant and HpOCBS double (F147Y/V226Y) mutant 

were observed to be less stable that the WT HpOCBS and tended to precipitate when kept at 

4°C for more than 3 to 4 days, but the HpOCBS A74S and HpOCBS F147Y mutants were 

found to be as stable as HpOCBS. The HpOCBS triple mutant (A74S/F147Y/V226Y) was 

observed to be more stable than the HpOCBS double mutant (F147Y/V226Y) and remained 

in solution for 5 to 6 days at 4°C. The stability of this triple mutant may have been provided 

in part by the hydrogen bonding made between Ser at position 74 and the PLP. 

 

WT ScCBS and its ScCBS double (Y158F/Y428V) mutant were expressed at high levels, 

approximately 25 to 30 mg of protein from 500 mL of culture. No significant difference was 

observed between the expression and stability of the ScCBS double mutant and those of WT 

ScCBS (Fig. S9). 

 

Biochemical characterisation 

O-acetylserine-dependent CBS (OCBS) assay 

An O-acetylserine-dependent CBS assay was conducted using a colorimetric method as 

described earlier for CBS (Kashiwamata & Greenberg, 1970). An OCBS enzyme assay was 

performed in a final volume of 200 µl with final concentrations of 0.367 μM for HpOCBS, 

0.25 mM for pyridoxal 5`-phosphate and various concentrations for OAS in 50 mM HEPES 

[pH 7.5] buffer, while keeping the L-homocysteine concentration constant at 5 mM, to 

determine the Km for OAS. In each experiment, the reaction mixture was incubated for 5 

minutes at 37°C, and then the reaction was stopped with the addition of ninhydrin reagent 

directly into the reaction mixture. The reaction solution was heated for 5 minutes on a boiling 

water bath and then incubated for 3 minutes on ice, after which it was left to develop colour 

for 20 minutes at 25°C. The absorbance of the solution was measured at a wavelength of 451 

nm and from this absorbance value was subtracted the absorbance of an enzyme-free blank. 

Initially, this assay was performed with various buffers of different pH values (50 mM each 

of sodium acetate [pH 4.0 to 5.0], Bis-Tris [pH 5.5 to 6.5], HEPES [pH 7.0 to 8.1] and Tris-

HCl [pH 8.5 to 8.8]) to determine the optimal pH for the OCBS activity. In initial assays, the 

concentrations of L-homocysteine and OAS were kept constant at 1 mM and 5 mM, 

respectively. The amount of cystathionine produced in a reaction was calculated from the 

standard curve of the cystathionine (50 to 5000 µM). All results shown represent mean ± SD 

of three (n=3) independent experiments. Data obtained from all of the above assays were 

fitted by the Michaelis-Menten equation v = (Vmax[OAS])/(Km+[OAS]) using GraphPad 

Prism 5 to calculate the Km and Vmax values of the reactions. 

 

Cystathionine β-synthase (CBS) assay 

CBS assay was also carried out with substrate L-serine and L-homocysteine as described 

above for the OCBS assay. All of the reactions with HpOCBS and its variants were 
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performed in 50 mM HEPES [pH 7.5] with a final enzyme concentration of 0.367 μM. 

Reactions were performed with a constant amount of homocysteine (5 mM) and various 

concentrations of freshly prepared L-serine along with 0.25 mM of PLP. Reaction mixtures 

were incubated at 37 °C for 5 minutes and stopped with the addition of ninhydrin.  

 

The CBS and OCBS assays performed with the ScCBS protein used 0.30 μM of the ScCBS 

enzyme, 0.25 mM pyridoxal 5`-phosphate and 5 mM of L-homocysteine in 50 mM of Tris 

[pH 8.6] buffer as done earlier (Lodha et al., 2009). 

 

Data obtained from the CBS assay were fitted by the Michaelis-Menten equation v = (Vmax 

[L-Ser])/(Km+[L-Ser]) using GraphPad Prism 5 to calculate the Km and Vmax values of the 

reactions while the data for the OCBS assay were fitted by the equation v = 

(Vmax[OAS])/(Km+[OAS]) using GraphPad Prism 5 to calculate the Km and Vmax values of 

these reactions. Each result shown is the mean ± SD of three (n=3) independent experiments. 

 

H2S production assay 

OCBSs and CBSs produce H2S via the β-replacement reaction with L-cysteine and L-

homocysteine as substrates (Devi et al., 2017, Banerjee et al., 2003, Matoba et al., 2017). The 

production of H2S catalyzed by HpOCBS was monitored by measuring the absorption (at 

λ=390 nm) due to lead sulfide formed from the reaction of H2S with lead acetate. A reaction 

mixture of 400 µl containing 0.4 mM lead acetate, various concentrations of L-homocysteine, 

and a fixed concentration of L-cysteine (1 mM) in 50 mM HEPES [pH 7.5] was preincubated 

at 25°C. The reaction was started by adding 10 µg (final concentration 0.367μM) of enzyme, 

and the absorption was monitored at a wavelength of 390 nm for 2 minutes. A molar 

extinction coefficient of 5,500 M
-1

cm
-1 

was used to determine the amount of lead sulfide 

produced (Chiku et al., 2009). Each result shown is the mean ± SD of three (n=3) 

independent experiments. 

 

The Michaelis-Menten equation v = (Vmax [L-homocysteine])/(Km+[L-homocysteine]) was 

used to fit the data obtained from the H2S production assay and hence calculate the Km and 

Vmax values of the reaction. 

 

O-acetylserine sulfhydrylase (OASS) assay 

The OASS activity was determined as described previously (Kumar et al., 2011). Briefly, the 

reaction mixtures (final volume 400 µL) contained 1.58 µM (final concentration) of enzyme, 

100 µM of 5-thio-2-nitrobenzoate TNB (alternative substrate) and various concentrations of 

OAS (6.75 to 250 µM) in 50 mM HEPES [pH 7.5] buffer. The reaction was initiated with the 

addition of OAS to the mixture of enzyme and TNB, and readings were taken immediately at 

a wavelength 412 nm for 3 minutes. The extinction coefficient of the TNB (A412; ε=13,600 

M
-1

cm
-1

) was used to calculate the rates of the reactions (Bonner et al., 2005). All of the 

experiments were done at 25°C and the results shown each represented a mean ± SD of three 

(n=3) independent experiments. 
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Data obtained from the OASS assay were fitted by the Michaelis-Menten equation v = 

(Vmax[OAS])/(Km+[OAS]) using GraphPad Prism 5 to calculate the Km and Vmax values of the 

reactions. 

 

Methionine binding 

Binding of methionine to OASS results in the formation of an external aldimine with PLP. 

Methionine binding to HpOCBS was measured using a spectrofluorometer to monitor the 

changes in fluorescence spectra of this complex during the course of the binding. Spectra 

were taken from 450 nm to 600 nm, upon excitation at wavelength 412 nm, while keeping the 

slit width at 5 nm. Titration of HpOCBS (100 μg) with methionine (0 to 700 µM) was 

performed in 50 mM HEPES [pH 7.5] buffer and an appropriate concentration of methionine 

was employed to achieve the saturation curve. All of the experiments were performed at 

25°C. The maximum change in the fluorescence was observed at 516 nm. The binding 

constant (Kd) of methionine was calculated by fitting to the data a reversible two-state model 

of binding using the equation ∆F = (∆Fmax[M]/ Kd + [M]), where ∆F represents the change in 

fluorescence at a particular wavelength upon addition of methionine at concentration [M] 

which is corrected for dilution (Bonner et al., 2005, Banerjee et al., 2011). ∆Fmax represents 

the maximum change in the fluorescence at that particular wavelength. The binding constant 

(Kd) of methionine for HpOCBS was calculated to be 0.252 ± 0.055 mM (Fig. S3). 

 

Crystallization and X-ray diffraction data collection 

The purified HpOCBS protein was concentrated up to 8 mg·ml
-1

in a solution containing 10 

mM Tris [pH 7.5] with 150 mM NaCl, 5% glycerol and 5 mM βMe. After continuous 

optimization using the hanging-drop vapour-diffusion method, crystals appeared in 3 to 4 

days at 16°C using a mixture of 15% PEG 20000, 15% PEG MME 550, and 0.03 M NPS 

(sodium nitrate, disodium hydrogen phosphate and ammonium sulfate) at pH 6.5 (0.1 M 

MES/imidazole) as the precipitant, this condition was similar to the Morpheus crystallization 

screen condition number C1(Gorrec, 2009). 

 

The needle-shaped crystals that formed were carefully picked up, mounted in cryoloops, and 

flash frozen in liquid nitrogen at 100 K. These flash-frozen crystals diffracted X-rays 

(λ=0.978Å) to a resolution of 1.9 Å at ESRF BM14, Grenoble, France (Table 2). The data 

were indexed and processed using HKL2000 (Otwinowski & Minor, 1997). These crystals 

were shown to belong to the space group P22121 with two HpOCBS protomers per 

asymmetric unit. 

 

Structure solution and refinement  

The HpOCBS structure was determined by carrying out molecular replacement using the 

structure of O-acetylserine sulfhydrylase from Arabidopsis thaliana (AtCS) (PDB ID: 1Z7W, 

43% sequence identity). This AtCS structure and the aligned sequences of HpOCBS and 

AtCS were input into CHAINSAW (Schwarzenbacher et al., 2004) to produce the specific 

search model used for molecular replacement, which was then carried out using Phaser 
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(McCoy et al., 2007) of CCP4 (Winn et al., 2011). This procedure gave a single solution with 

a high translation function Z-score (TFZ score) and log-likelihood gain (LLG). An initial 

cycle of restrained refinement using this solution and Refmac5 (Murshudov et al., 1997) 

resulted in a drop of the R-factor to 30%. The model was then submitted to ARP/wARP for 

auto-building, which successfully built 93% of the side chains of the model into good quality 

electron density. The remaining parts of the polypeptide were built manually with COOT, 

and later the PLP and water molecules were added according to the electron density. 

 

Multiple rounds of manual adjustments of the model in COOT (Emsley & Cowtan, 2004) and 

refinement with Refmac5 (Murshudov et al., 1997) were carried out. This process resulted in 

a final model for HpOCBS consisting of 4680 protein atoms and 142 water molecules, and 

that fit well into the electron density and yielded good refinement statistics with an R and 

Rfree of 18% and 21%, respectively (Table 2). One of the protomers adopted a closed cleft 

conformation and had extra density that appeared to be methionine with 50% occupancy. The 

structure factors and coordinates of this model have been deposited in the Protein Data Bank 

with the PDB ID: 6AHI. 

 

Circular dichroism spectropolarimetry 

Far-UV CD spectra were recorded using a Chirascan
TM

 Plus CD spectrometer from Applied 

Photophysics (Surrey, UK) equipped with a Peltier element, in a 1.0 mm quartz cuvette 

between wavelengths of 260 nm and 200 nm at a rate of 1 nm per step. Spectra of WT 

HpOCBS and mutant HpOCBS were taken at a protein concentration of 0.15 mg·mL
-1

. Each 

spectrum represented the average of 10 scans taken at 20ºC. Analysis of these spectra 

indicated similar secondary structures for all the HpOCBS mutants and WT HpOCBS (Fig. 

S6a).  

 

Thermal unfolding of the protein at a concentration of 0.15 mg·mL
-1 

was monitored by 

acquiring the CD responses at 222 nm with increasing temperature at a rate of 1°C·min
-1

 

from 25 to 90°C. HpOCBS A74S and the HpOCBS F147Y mutant showed comparable 

midpoints of thermal denaturation (Tm), each at about 72.96 ± 0.71 and 72.61 ± 1.22°C 

respectively (Table S4) and hence indicated to be slightly more stable than HpOCBS which 

showed Tm of 70.55 ± 0.31°C, while HpOCBS V226Y was shown to be less stable, with a Tm 

of 63.55 ± 0.15°C. The HpOCBS double mutant (F147Y/V226Y) and HpOCBS triple mutant 

(A74S/F147Y/V226Y) were also found to be less stable, with Tm of only about 66.06 ± 1.08 

and 55.12 ± 1.44°C respectively (Fig. S6 and Table S4). These melting temperature were 

calculated as described elsewhere (Ubaid-Ullah et al., 2014). All CD experiments were 

performed in 20 mM of phosphate buffer [pH 7.5]. 

 

Similarly, we also acquired far-UV CD scans and monitored the thermal unfolding of ScCBS 

and its mutant, each at concentration of 0.15 mg·mL
-1

. The Tm values of ScCBS and its 

mutant were each determined to be about  59.2°C as reported earlier (Tu et al., 2018) (Fig. 

S10 and Table S4). 
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Docking of L-homocysteine at the active site of HpOCBS structure 

The Met-bound HpOCBS structure was used for the docking of L-homocysteine at the active 

site. First, we prepared the HpOCBS protein structure for the docking using the Schrodinger 

Protein Preparation Wizard program with the default parameters. This program was used to 

add missing hydrogen atoms, remove water molecules beyond 5 Å of HET groups, determine 

the protonated state for histidine residues, and highlight the missing residues. Further energy 

minimization and optimization of the protein structure was done using an OPLS2005 force 

field with a maximum RMSD of 0.30 Å for atom displacement to terminate the minimization. 

A ligand-binding site or ligand receptor grid was created in the energy-minimized structure of 

HpOCBS near the PLP. The ligand receptor grid covered all of the expected residues of the 

active site from the N- and C-terminal domains of HpOCBS. The L-homocysteine substrate 

was prepared using Schrodinger Ligprep Wizard before docking; here, hydrogen atoms were 

added, followed by energy minimization. Finally, docking of substrate in the HpOCBS 

receptor grid was performed using the program GLIDE with the extra precision (XP) module. 

 

 

Accession number 

The accession number (PDB ID) for HpOCBS structure reported in this paper is 6AHI 
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TABLES 

 

Table 1. Various kinetics parameters of the reactions catalyzed by HpOCBS 

 

 

 Substrate Vmax (µM s
-1

) Km (mM) kcat (s
-1

) kcat/Km 

(mM
-1

s
-1

) 

OCBS  activity
a O-acetylserine 13.51 ±  0.52 2.92 ± 0.28 36.8 ± 1.4 12.6 ± 1.31 

CBS  activity
a L-serine NA

¶
 NA NA NA 

H2S-production 

activity
b 

L-homocysteine 2.22  ± 0.05 0.086 ± 

0.007 

6.05 ± 0.13 70.33 ± 5.98 

OASS activity
c O-acetylserine 0.17 ± 0.006 0.025 ± 

0.003 

 

0.108 ± .004 

 

4.42 ± 0.17 

 

 

 
¶
 NA-

 
No detectable activity. 

a
OCBS and CBS kinetics experiments were carried out in 50 mM 

HEPES [pH 7.5] buffer at 37°C. 
b
 H2S-production activity experiments were carried out in 50 mM 

HEPES [pH 7.5] buffer at 25°C. 
c
 OASS activity was determined in 50mM HEPES [pH 7.5] buffer at 

25°C. Each result shown is the mean ± SD of three (n=3) independent experiments. 
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Table 2. HpOCBS crystallographic statistics  

 

 

Data statistics HpOCBS 

Crystallographic data  

Diffraction source ESRF beamline BM14 

Wavelength (Å) 0.978 

Space group P22121  

a, b, c (Å) 71.4, 82.7, 96.1 

α, β, γ (°) 90, 90, 90 

Resolution range (Å) 50–1.9 (1.93–1.9) ¶ 

Rr.i.m. 0.121 (0.88) 

R-meas 0.117 (0.862) 

Completeness (%) 100 (100) 

Redundancy 16.3 (15.8) 

〈I/σ(I)〉 47 (4.4) 

Overall B factor from Wilson plot (Å
2
) 24.4 

CC1/2 0.99 (0.97) 

No. of molecules per asymmetric unit 2 

Refinement  

Total No. of reflections 741356 

No. of unique reflections 45368 

Final Rcryst 0.183  

Final Rfree 0.207  

 No of protein/water atoms 4667/132 

R.m.s. deviations   

 Bonds (Å) 0.010 

 Angles (°) 1.469 

Average B factors (Å
2
)   

 Protein 37.5 

 Water 33.4 

Ramachandran plot   

Favoured (%)  96.4 

 Allowed (%)  3.6 

 

 
¶
 Values for the highest-resolution shell are shown in parentheses. 
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Table 3. Comparisons of the structure and sequence of HpOCBS with those available for OCBS, 

OASS and CBS. Table shows RMSDs of Cα atoms with number of equivalent residues and 

percentage sequence identity values. 

 

 PDB ID RMSD 

(Å) 

Equivalent 

residues 

Sequence  

identity (%) 

OCBS 5B1H (Matoba et al., 2017) 1.15 301 58.1 

5XW3 (Devi et al., 2017) 3.06 257 54.9 

 

 

 

OASS 

1OAS (Burkhard et al., 2000) 1.98 299 37.5 

1VE1
¶ 

1.69 298 37.2 

1Z7W (Bonner et al., 2005) 1.80 303 40.2 

2JC3 (Chattopadhyay et al., 2007) 1.88 289 34.9 

2PQM (Chinthalapudi et al., 2008) 1.87 304 35.4 

2Q3B (Schnell et al., 2007) 1.96 297 40.8 

3SPX (Raj et al., 2012) 1.85 302 35.2 

5JIS (Dharavath et al., 2017) 2.01 302 33.9 

 

 

CBS 

1JBQ (Meier et al., 2001) 1.93 301 28.8 

3PC2 (Koutmos et al., 2010) 1.98 305 23.2 

5OHX (Gimenez-Mascarell et al., 2017) 2.00 305 27.1 

6C2H(Tu et al., 2018) 2.10 304 33.8 
 

 

¶
O-acetylserine sulfhydrylase from Thermus thermophilus HB8 
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Table 4. Kinetics parameters of HpOCBS variants, and of ScCBS WT and its variants. 

 

 

Protein Variant Substra

te 

Vmax (µM s
-

1
) 

Km (mM) kcat(s
-1

) kcat/Km (mM
-

1
s

-1
) 

 

 

 

 

 

 

HpOCBS
a 

A74S OAS 8.43 ± 0.56 1.78 ± 0.39 22.96 ± 1.53 12.89 ± 2.96 

L-serine NA
¶
 NA NA NA 

F147Y OAS 
5.77 ± 0.32 1.57 ± 0.29 

15.72 ±  0.87 10.04 ±1.92 

 L-serine NA NA NA NA 

V226Y OAS NA NA NA NA 

L-serine NA NA NA NA 

F147Y/

V226Y 

OAS NA NA NA NA 

L-serine NA NA NA NA 

A74S/F

147Y/V

226Y 

OAS NA NA NA NA 

L-serine NA NA NA NA 

 

 

ScCBS
b
 

ScCBS 

WT 

OAS 6.89 ± 0.67 1.82 ± 0.43 22.50 ± 2.20 12.35 ± 3.13 

Lserine 17.03 ± 1.15 2.26 ± 0.37 55.65 ± 3.75 24.68 ± 4.41 

Y158F/

Y248V 

OAS 14.67 ± 1.06 2.69 ± 0.53 47.94 ± 3.47 17.85 ±  9.47 

L-serine NA NA NA NA 

 

 
¶  

NA-No detectable activity. 
a
OCBS and CBS kinetics experiments were carried out in 50 mM 

HEPES [pH 7.5] buffer at 37 °C for  WT HpOCBS and mutant proteins. 
b
OCBS and CBS kinetics 

experiments of ScCBS and its mutant were carried out in 50 mM Tris-HCl [pH 8.6] buffer at 37 °C. 

Each result shown is the mean ± SD of three (n=3) independent experiments. 

 

 

 

Table 5. Primers sequences used in present study. 

 

Primer Sequences 

HpOCBS_Fp
¶ 

5'-CATGCCATGGCAATGATGATTATCACCACAATG-3' 

HpOCBS_Rp
¶ 

5'-CGGCTCGAGTAAATAAATACCTTTTGAGAGATAA-3' 

HpOCBS_A74S_Fp 5'-CATCATTGAGCCTACCAGCGGCAATACCGGCATCG-3' 

HpOCBS_A74S_Rp 5'-CGATGCCGGTATTGCCGCTGGTAGGCTCAATGATG-3' 

HpOCBS_F147Y_Fp 5'-AGCTATTTGCCCTTACAATATGAAAACCCTGATAATCCCG-3' 

HpOCBS_F147Y_Rp 5'-CGGGATTATCAGGGTTTTCATATTGTAAGGGCAAATAGCT-3' 

HpOCBS_V226Y_Fp 5'-AGATTGAGGGCATTGGCTATGAGTTCATCCCTCCTTT-3' 

HpOCBS_V226Y_Rp 5'-AAAGGAGGGATGAACTCATAGCCAATGCCCTCAATCT-3' 

ScCBS_Fp
a 

5'-CTAGCTAGCATGACTAAATCTGAGCAGCAAG-3' 

ScCBS_Rp
a 

5'-CGGCTCGAGTCACAGCTTTGAAGAGTCAAAACG-3' 

ScCBS_Y158F_Fp 5'-GTTATACTTGACCAATTTAACAATATGATGAAC-3' 

ScCBS_Y158F_Rp 5'-GTTCATCATATTGTTAAATTGGTCAAGTATAAC-3' 

ScCBS_Y248V_Fp 5'-AGTTGAGGGTATTGGTGTGGATTTTGTTCCTCAGG-3' 

ScCBS_Y248V_Rp 5'-CCTGAGGAACAAAATCCACACCAATACCCTCAACT-3' 
 

¶ 
underlined sequences represent the restriction sites, while Fp and Rp stand for forward and reverse 

primers, respectively. 
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FIGURE LEGENDS 

 

Figure 1. Reverse transsulfuration pathway and de novo pathway in Helicobacter pylori. 

In the reverse transsulfuration pathway, L-homocysteine reacts with L-serine in the presence 

of CBS to produce the intermediate L-cystathionine, which is further converted to L-cysteine 

by the action of the enzyme cystathionine γ-lyase (CGL) (Scriver & Kaufman, 2001, 

Stipanuk, 2004) (shown with green arrow). H. pylori can produce L-cysteine utilizing L-

methionine via the reverse transsulfuration pathway. The organism includes OCBS (HP0107) 

and can produce L-cystathionine from L-homocysteine and OAS (an intermediate in the de 

novo pathway) (shown with red arrow). HP0106 is annotated as cystathionine γ-synthase but 

predicted to function as CGL in H. pylori (Doherty et al., 2010). H. pylori also has de novo 

pathway enzymes, namely serine O-acetyltransferase (SAT) and O-acetylserine sulfhydrylase 

OASS (OCBS in H. pylori), and can produce L-cysteine. In H. pylori, OASS was shown in 

the current work to function as an OCBS. 

 

Figure 2. Phylogenetic study of OASS, OCBS and CBS of the PLP-II family. A 

phylogenetic analysis was carried out with 154 sequences using the maximum likelihood 

method with 250 bootstraps of the Mega 5.1 software. This analysis yielded a phylogenetic 

tree made up of three different clads, namely OCBS (red), OASS(green) and CBS (blue), 

with the OCBS clad containing well-annotated OCBSs from various bacteria, including 

HpOCBS (PDB ID: 6AHI). Red stars indicate experimentally verified OCBS proteins while 

blue stars indicate sequences predicted, but not yet shown experimentally, to be OCBS in 

whole genome sequencing of the corresponding bacterial genome. 

 

Figure 3. WebLogo generated from multiple sequence alignment of OCBSs (55 sequences), 

CBSs (52 sequences) and OASSs (47 sequences). Residue numbering is according to 

HpOCBS for the OCBS alignment, H. sapiens CBS for the CBS alignment and OASS of M. 

tuberculosis for the OASS alignment. Consensus sequences near the active site were divided 

into 5 conserved blocks and the residues in CBS and OASS differing from those in OCBS are 

shown with red stars. Height of an individual amino acid in Weblogo indicates level of 

conservation at the particular portion (Crooks et al., 2004).  

 

Figure 4. Biochemical characterisation of HpOCBS. (a) The OAS-dependent CBS activity 

of HpOCBS was characterised with 5 mM L-homocysteine and various concentrations of 

OAS in 50 mM of HEPES [pH 7.5] to determine the Km and Vmax values of the reaction. 

HpOCBS also catalyzes the production of H2S from the reaction of L-cysteine with L-

homocysteine. (b) Continuous monitoring of hydrogen sulfide production in the presence of 

0.4 mM lead acetate upon reaction of L-cysteine (1 mM) with increasing concentrations of L-

homocysteine. (c) HpOCBS was also found to display OASS activity, which was measured 

with various concentrations of OAS in 50 mM HEPES [pH 7.5] in the presence of 100 μM of 

TNB. Each result shown is the mean ± SD of three (n=3) independent experiments. 
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Figure 5. Reactions catalyzed by HpOCBS. 1) HpOCBS shows OCBS activity with 

substrates OAS and L-homocysteine and catalyzes the production of L-cystathionine. 2) 

HpOCBS also catalyzes the production of H2S with substrates L-cysteine and homocysteine. 

3) OASS activity is also displayed by HpOCBS with substrate OAS and reduced sulfur. 

 

 

Figure 6. HpOCBS structure. (a) HpOCBS formed a dimer with two protomers interacting 

with each other in the crystal structure. (b) Each protomer was found to include N- and C-

terminal domains consisting of α/β motifs, with these motifs having topologies similar to 

those in type-II PLP enzymes. ɑ-helices, β-strands and 310 helices are marked accordingly 

from the N-terminus to the C-terminus. (c) 2Fo-Fc electron density (at a 1σ cutoff) of PLP 

covalently bound to Lys46 (LLP46). 

 

Figure 7. Geometry of the HpOCBS active site with bound methionine. (a) Residues 

interacting with methionine in the methionine-bound HpOCBS structure. Methionine (blue) 

was observed to form hydrogen bond (orange) and hydrophobic interactions with surrounding 

residues (yellow). Lysine-pyridoxal-5`-phosphate (LLP46) is shown in pink. (b) Ligplot 

showing the residues interacting with methionine (number 601) in chain B. The inset shows 

2Fo-Fc electron density (1σ cutoff) of methionine. (c) Superposition of chain A and chain B 

(having bound methionine) of HpOCBS revealed the presence of methionine causing a 

closing of the active site between the N- and C-terminal domains, specifically with abending 

of the N-terminal domain by 10° leading to a decrease of up to3Å in the distance between the 

domains. Encircled loops are the asparagine loop and the loop encompassing residues 222-

227, both of which apparently moved upon binding of methionine. (d) Superposition of chain 

A (pink) and chain B (green) showing bound methionine near the PLP at the active site. 

Binding of methionine resulted in closing of the active site and coincided with the formation 

of hydrogen bonds by Glu222 with Lys302 of the C-terminal tail and with Ser101 of the N-

terminal domain. 

 

Figure 8. Structural superposition of HpOCBS with OASS and CBS. (a) Structural 

superposition of HpOCBS (yellow) with OASS (PDB ID: 2Q3B blue) and (b) CBS (PDB 

ID:1M54 purple) to highlight the differences in residues near the active site. Active site 

residues of OASS and CBS differing from those of OCBS are shown with dark colours with 

side chains while only the main chain is shown for identical residues found in different 

members of the PLP-II family. The five conserved blocks are also labelled. See also Figure 

S1. 

 

Figure 9. Crucial residues for substrate specificity in OCBS and CBS. (a) Superposition 

of H. pylori OCBS and S. cerevisiae CBS structures showing key residues involved in the 

interaction with the first substrate and thus discriminating between OAS and L-serine. (b) 

Superposition of active sites of H. pylori OCBS and L. plantarum OCBS with bound 

methionine. 
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