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Abstract: This pilot study examines the applicability of osteometric models for 

addressing commingled remains, which were originally developed for dry specimens, 

on 3-Dimensional bony elements in relation to a modern cadaveric population. A total of 

70 bony elements (humeri, radii, ulnae, femora, tibiae and fibulae) were segmented and 

virtually reconstructed from cadaveric whole-body CT scans. Linear measurements 

were taken (using MeshLab v.2016.12) of the 3-Dimensional elements and osteometric 

models for sorting applied to them (Byrd and Adams, 2003). This study showed that on 

the selected specimens the quality of the surface of the reconstructed specimens 

compromised the efficacy of the models, and consequently the reliability of the results. 

 

Introduction 

The identification of victims of mass fatality events, either man-made events (e.g. 

terroristic attacks) or environmental catastrophes (e.g. earthquakes), is a priority for 

the personnel involved in the investigations, as affirmed by Interpol in the RESOLUTION 

No. AGN/65/RES/13 (1996).  Computed Tomography (CT) scans are among the 

methodologies which have become integral to this identification process (Brough et al., 

2015). Additionally there is a requirement that all techniques utilised must be able to 

satisfy the standard of reliability and validity required to perform the examinations of 

remains and be acceptable in a courtroom (National Research Council 2009, The Law 

Commission, 2011, and Executive Office of the President, 2016).  

This study aims to examine whether techniques developed for osteometric sorting of 

dry bones (e.g. regression equations) can give reliable results when applied to virtual 

models especially in relation to the reliability of osteometric sorting of commingled 

scenarios, when applied to these virtual bony elements. 

 
Materials and Methods 
 
Materials  

 
Twelve cadaveric CT scans, six of which represented whole bodies and six of which 

represented partial ones, have been used for this study. They were created from already 

existent scans of individuals who had donated their bodies for research. The decision 

for utilising pre-existent materials relied on the recognition of ethical issues that exist 
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around the exposition of living subjects to ionising radiation or in the creation of a 

commingled scenario from whole human remains (Isaza et al., 2014).   

A serial number was assigned to each scan and the examiner had no access to any 

personal information on the subjects in order to not violate the privacy and ethics 

around the Body Donation Program. The details in possession of the examiner were 

limited to the patient serial number ID, the name of the institution in which they were 

scanned, the date of the series, the modality (through CT scan), the series’ description, 

the body part examined and the position in which the patient was scanned.  

Each scan was uploaded and visualised in DICOM format on a workstation using the 

software AMIRA v.5.3.0.  

 

For this study, it was decided to visualise and export 3-Dimensional models of the six 

main long bones from both sides of the body: humeri, ulnae, radii, femora, tibia and 

fibulae of each subject (See Table1 for additional details). These regions were chosen 

because it allowed the evaluation of the left and right side against each other. Moreover, 

the existent literature in the field reports that the six main long bones are more likely to 

be preserved either completely or partially in a commingled scenario (Steel and 

McKern, 1969, Simmons et al., 1990, Holland, 1992, Adam and Byrd, 2006, Chibba and 

Bidmos, 2007, Bidmos, 2008, Robinson et at., 2008, Giurazza et al., 2012, Hishmat et al., 

2014, Karell et al., 2016, and Mahfouz et al., 2016) (See Table 1 for list of the regions 

evaluated).  Once the bones had been exported and measurements taken, regression 

equations developed for use on dry bones by Byrd and Adams (2003) were tested to 

assess their efficacy in relation to identifying the likelihood that bones originated from 

the same individual as they would in a dry bone commingling scenario. 

 

 

Methods: Segmentation and extrapolation of the scans 

 

For the extrapolation of the 3-Dimensional models, each scan was segmented and 

rendered in the workstation before being uploaded in the software for the application 

of the sorting techniques (Imaging, 2009, Kranioti and Senck, 2012, and FEI, 2015).  

In AMIRA(V.5.3.0).  It was possible to obtain a 2-Dimensional image through displaying 

the orthoslices (xy, xz and yz), selecting the desired density of the elements to display 



(230.064 in this case) and adding the voltex needed for the segmentation step (See 

figure 1) (Kranioti and Senck, 2012). The semi-automated procedure described by 

Kranioti and Senck (2012) was utilised to isolate and extrapolate the single bones.  In 

each case since the software was unable to extend the selection parameters identified 

for one slice to the whole bone, the whole region of interest was selected with the 

‘Magic wand’ tool (See Figure 2).  Before the final validation it was therefore necessary 

to adjust the threshold to obtain only the cortical bone of each of the elements.  

With this procedure, there was also the possibility of selecting and deselecting the 

pixels to add or eliminate them from the area to be rendered (Kranioti and Senck, 

2012). Before the exportation of the bones in the measuring software, visualisation of 

the new surface created with the previous segmentation was undertaken through the 

option ‘Surface Generation’ with the application of the command ‘Material Statistic’.  

 

Figure 1 Displaying of the Voltex in Amira 



 

Figure 2 "Magic Wand" tool for the selection of the area of interest 

Methods: Linear measurements  

Taking into consideration the existing literature in the field, both past and present and 

based upon a comparison between left and right sides, a dataset of 29 linear 

measurements was created (Adams and Byrd, 2002, Bidmos, 2008, Buikstra and 

Ubelaker, 1994, Byrd and Adams, 2003, Chibba and Bidmos, 2007, Dedouit et al., 2007b, 

Giurazza et al., 2013, Guerrero Rodríguez et al., 2016, Moore-Jansen et al., 1994, 

Simmons et al., 1990, Stull et al., 2014).  

The parameters included in the measurements are: total length of the bony element, 

diameter, distances between regions of the left and right sides of: Humerus, ulna, radius, 

femur, tibia and fibula (See the complete list of measurements with definition and 

description in Table 1). 

 

Table 1 Measurements list and definitions 

Post-cranial 

skeletal element 

Measurement Definition and description of the virtual tool 

procedure 

Humerus MXLH (Maximum Length) 

 

APHD (A-P diameter of the 

Measure from the highest point of the head to 

the lowest in the trochlea; 

From the anterior and posterior surfaces of the 



head) 

 

VHD (Vertical diameter of the 

head) 

 

MXDM (Maximum diameter of 

the midshaft)  

 

CTB (Capitulum Trochlea 

Breadth) 

 

EBH (Epicondylar Breadth)  

head; 

 

Measured from the highest to the lowest points 

at the articular surface of the humeral head; 

 

Taken M-L below the deltoid tuberosity; 

 

 

Width between the Capitulum and Trochlea in 

the distal epiphysis;  

 

From the lateral epicondyle, the most projected 

point, to its correspondent in the medial 

condyle.  

Radius MXLH (Maximum length)  

 

 

 

SDMS (Sagittal diameter at the 

midshaft) 

 

TDMS (Transverse diameter at 

the midshaft) 

 

MXDRH (Maximum diameter of 

the radial head) 

 

MDRT (Maximum diameter on 

the radial tuberosity) 

Measure starting from the head of the radius, the 

most proximal point, to the lowest point in the 

styloid process; 

 

Measured from the anterior to the posterior 

surfaces at the midshaft; 

 

Measured from the medial to the later surfaces 

at the midshaft;  

 

Measure the maximum distance around the 

radial head; 

 

Measure the maximum distance around the 

tuberosity’s shaft. 



Ulna PLH (Physiological length)  

 

 

 

MXLH (Maximum length)  

 

 

SBH (Semilunar Breadth)  

 

MND (Minimum Diameter) 

 

 

DVD (Dorso-volar A-P 

diameter) 

 

MLTD (M-L Transverse 

diameter) 

Measure from the coronoid process, the deepest 

point, to the distal head of the ulna, at the lowest 

point; 

 

Measure from the highest point in the Olecranon, 

to the lowest in the styloid process; 

 

From the midpoint of the radial notch, at the 

edge in the middle of the semilunear notch;  

Measure the diameter in proximity of the distal 

end in the least area;  

 

At the maximum development of the crest in the 

diaphysis, between the A-P surfaces;  

 

At the maximum development of the crest in the 

diaphysis, between the M-L surfaces; 

Femur MXLH (Maximum length) 

 

 

 

MXHD (Maximum head 

diameter) 

 

EBH (Epicondylar breadth)  

 

APSD (A-P subtrochanteric 

diameter) 

 

Measure from the highest point in the femoral 

head, to the lowest point on the distal surface of 

the inferior condyles; 

 

Measure, along the edges of the auricular 

surface, the maximum diameter; 

 

Measure from the most protruding point on the 

medial and lateral epicondyle; 

Under the lesser trochanter, measure between 

the A-P surfaces; 

 



MSD (Midshaft A-P diameter)  

 

 

 

UBH (Upper Breadth) 

Measure at the midshaft of the diaphysis 

between the A-P surfaces, in the most 

protruding area of the linea aspera; 

 

The two most protruding projection in the 

proximal epiphysis of the femur.  

Tibia LH (Length) 

 

 

 

MXPEBH (Maximum proximal 

epiphyseal breath) 

 

 

MXDNF (Maximum diameter at 

the nutrient foramen) 

 

TDNF (Transverse diameter at 

the nutrient foramen) 

Measure from the highest point in the articular 

surface of the proximal diaphysis, from the 

lowest point in the medial malleolus; 

 

Measure on the proximal epiphysis, the most 

protruding points on the medial and lateral 

sides; 

 

At the same height of the nutrient foramen, 

between the posterior surface and the anterior 

crest; 

Diameter taken perpendicular to the one 

described above. 

Fibula MXDMS (Maximum diameter at 

the midshaft) 

MXLH (Maximum length)  

Measure in the midshaft the maximum diameter; 

 

From the highest point in the head to the lowest 

point in the malleolus; 

Key terms for the description: 

A-P= Antero-Posterior measurements; M-L= Medio-Lateral measurements.  

 

Methods: Measuring process  

In order to apply the selected measurements to the 3-Dimensional bones, created using 

AMIRA (V.5.3.0), the examiner imported the STL files on the software MeshLab 

(v.2016.12), an open source program used for computation of 3D models. The 



procedure was conducted through the application of the tool ‘Measures’. Once this had 

been done it was possible to undertake the measurements from the 3D model using the 

measuring tool provided within the software and the landmarks identified on the bones 

(See Figure 3). In order to examine the repeatability of the measurements, intra and 

inter observer tests were run.  

The intra observer test was conducted by the researcher in a different session from the 

first and the inter observer analysis involved a second examiner with the same level of 

experience, who was provided with instructions on the use of the software and a table 

of the measurements and landmarks required. All the data obtained by the three 

sessions (first, intra and inter) were analysed with the program SPSS Statistic, using a 

Two-Way Mix model with an absolute agreement and 95% confidence (Guerrero 

Rodríguez et al., 2016).  

 

Figure 3 MXLH, Maximum length, of left femur measured in MeshLab. 

 

Methods: Application of osteometric sorting models for linear measurements  

For the sorting procedure, the examiner applied two sets of regression models, 

developed by Byrd and Adams (2003). The first set (test one) was originally developed 

by the authors from research in which all of the bony elements had a high level of 

preservation. The second test involved a higher degree of fragmentation of the 

measured bones and therefore there were less measurements included in the equation 

(Byrd and Adams, 2003).  (See Table 2 for the complete list of regression equations). 

 



Both models provide a predicted value and the results of the regression of one bone 

(dependent variable) from a second one (independent variable), to compare against a 

true value, a natural logarithm of the measurements’ sum of the regressed bone. The 

hypothesis of two elements belonging to the same individual is accepted in the case in 

which the true value falls into the confidence interval applied to the predicted one (Byrd 

and Adams, 2003).  

The first step includes the sum of all the measurements of each element and the 

conversion of each sum in a natural logarithm, in order to not compute numbers that 

are too elevated (Byrd and Adams, 2003). As a result, a standard deviation (SD), mean 

and standard error of the mean (SE) was established for each variable and the 

confidence intervals were calculated through the formula provided by Gules and 

Klepinger (1988). After those calculations the examiner possesses the variables to 

process the two sets of regression models.  

 

Table 2 Regression models from Test 1 and 2, from Byrd and Adams (2003) 

Regression models: Test 1 Regression models: Test 2  

 

TIB=1.08(FEM)-0.78 

TIB= 0.65(ULN)+3.60 

TIB= 0.96(RAD)+0.77 

TIB=1.09(HUM)-0.54 

FEM=0.59(ULN)+4.08 

FEM=0.84(RAD)+1.74 

FEM=1.0(HUM)+0.28 

ULN=1.03(RAD)-1.78 

ULN=1.23(HUM)-3.58 

RAD=1.04(HUM)-0.81 

 

HUM=1.08(RAD)-1.27 

HUM=1.04(ULN)-1.47 

HUM=1.18(FEM)-2.98 

HUM=1.02(TIB)+1.97 

RAD=0.84(ULN)+0.34 

RAD=0.96(FEM)-0.96 

RAD=0.81(TIB)-0.02 

ULN=1.02(FEM)-0.87 

ULN=0.85(TIB)+0.11 

FEM=0.74(TIB)+1.45 

 

 
The results: 
 
Inter and Intra observer error for osteological linear measurements  



 
An Intra Class Correlation Coefficient Analysis was run on the sets of measurements 

taken by the first and second examiner. A high reliability has been found in both the 

intra-observer, with a value of 0.990, and in the inter-observer analyses, with 0.981 

(See Table 3 and Table 4), so an overall elevated agreement has been established 

(Guerrerro Rodríguez et al., 2016). 

 

Table 3 Intraclass correlation for the intra-observer reliability 

 

Intraclass 

Correlationb 

95% Confidence Interval F Test with True Value 0 

Lower 

Bound 

Upper 

Bound Value df1 df2 Sig 

Single Measures .980a .975 .984 98.325 323 323 .000 

Average 

Measures 
.990c .987 .992 98.325 323 323 .000 

 

Table 4 Intraclass correlation for the Inter-observer reliability 

 

Intraclass 

Correlationb 

95% Confidence Interval F Test with True Value 0 

Lower 

Bound Upper Bound Value df1 df2 Sig 

Single Measures 
.962a .953 .970 51.832 312 312 .000 

Average 

Measures 
.981c .976 .985 51.832 312 312 .000 

 

 
Regression models for osteometric sorting  

 
The results obtained from the two models of regression equations were computed for 

the purpose of statistical analysis. Therefore, the examiner obtained four different 

scenarios: firstly there was either an acceptance or rejection of the null hypothesis of 

having two elements belonging to the same individual, this in turn had the potential to 

give Type 1 and 2 errors. Type 1 error determines a rejection of the null-hypothesis 

when the elements are actually belonging to the same individual. On the other hand, in 



Type 2 errors there is an acceptance of elements originating from different individuals 

when in reality, they do not. The examiner computed 1908 comparisons for the first set 

of regression models listed in Test one, obtaining: 292 true acceptances were possible 

but only 75 were achieved by the software and on 1616 possible true rejection only 

1127 were achieved. For the second set of regression equations the total number of 

comparison is 1326, in which on the 210 possible acceptances only 49 were achieved; 

while on the 1116 possible rejection only 917 were found by the software. Therefore, 

for Test one, 25.6 % (75 on 292 possible) of true acceptances and 69.7 % of true 

rejections (1127 on 1616 possible) has been achieved. Regarding Test two 23.1% of 

true acceptances had been achieved (49 on the 210 possible) and 82.1% of true 

rejections (917 on the 1116 possible). 

 

Table 5 Results for the regression models from the first test. 

Tot. comparisons True acceptance True rejection 

Tibia-Femur (144) 62.5%  55%  

Tibia-Ulna (120) 0% 100%  

Tibia-Ulna (120) 

No ulna length 

0%  100%  

Tibia-Radius (120) 0%  95%  

Tibia-Humerus (172) 83.3% 13.5%  

Femur-Ulna (140) 0%  85%  

Femur-Ulna (140) 

No ulna length  

95.2%  11.9%  

Femur-Humerus (192) 83.3%  11.9% 

Femur-Radius (140) 0%  85%  

Ulna-Radius (100) 

 

0%  100%  

Ulna-Radius (100) 

No ulna length 

0%  100%  



Ulna-Humerus (140) 0%  100%  

Ulna-Humerus (140) 

No ulna length 

0%  100% 

Radius-Humerus (140) 100%  16.6% 

 

Table 6 Result for the regression models from the second test. 

 True Acceptance True Rejection 

Humerus-Radius (140) 

 

0%  100% 

Humerus- Ulna (140) 

 

0%  100% 

Humerus- Femur (154) 

 

0% 100% 

Humerus -Tibia (168) 

 

0%  100% 

Radius -Ulna (100) 

 

100% 0% 

Radius -Femur (120) 

 

0%  100% 

Radius -Tibia (120)  

 

25%  72%  

Ulna- Femur (120) 

 

0%  100% 

Ulna-Tibia (120)  

 

0% 100% 

Tibia-Femur (144) 

 

100%  24.1%  

 
Discussion: 
 
In light of the increasing application of CT scan in the forensic anthropological field this 

study sought to test whether models designed for sorting commingled scenarios, 

originally developed for dry bones, could have the same applicability for virtual models, 

in terms of validity and reliability of the results.   

Osteometric sorting models rely on a set of regression equations which utilise data 

taken through physical measurements of dry elements. Being aware of the extent to 



which this technique may be applied in a novel way, it is essential to test these methods 

to produce results which are able to stand in a courtroom against the standards of 

validity and reliability that the legislation in the field requires (National Research 

Council 2009, The Law Commission, 2011, and Executive Office of the President, 2016).  

Taking into consideration the ethical issues of exposing living subjects to radiations or 

the intentional disruption of human remains, this project used already existent 

cadaveric scans, with the approval of the University of Dundee.  Therefore, an evaluation 

of how the study might be affected with a sample originally scanned for different 

research questions is also brought to light in the project.   

 
 

Osteometric sorting models for linear measurements 

After an evaluation of the results from both the regression equations within test 1 and 

the regression equations within test 2 there were a noticeably low percentage of true 

acceptance of the null-hypothesis (25.6% for Test 1 and 23.1% for Test 2), compared 

with an elevated number of true rejections, for both tests. This has important 

implications for the segregation process.  It is important to understand that when 

resolving commingled remains, the possibility of having two elements generated from 

the same individual is not a sufficient proof of association but being able to exclude the 

pairing of two elements is as important, if not more so, than a positive match (Byrd and 

Adams, 2003 and Byrd, 2008). In fact, the authors advise that this sorting technique is 

always used with other segregation methods for the reliability of the results (Byrd and 

Adams, 2003 and Byrd, 2008).  

Moreover, in the first set of regression models, the authors noted more variability in the 

percentages of acceptance, rejections and errors (See Table 5 for details). Besides, in the 

second set of regression models, there was an overall overestimation or 

underestimation of the predicted values (e.g. the radii tend to be overestimated when 

regressed on ulnae and the humeri underestimated when regressed on the radii). This 

reduced the variability of the percentages (e.g. acceptance, rejections and errors) (See 

Table 6 for details).  

There are a number of factors that could have affected the reliability of these results. 

Firstly, the decision to create a new dataset of selected measurements from those tested 

by Adams and Byrd (2003), in order to include a wider range of studies on linear 



osteometric measurements and commingled scenarios could have had an impact on the 

results (Simmons et al., 1990, Buikstra and Ubelaker, 1994, Moor-Jansen et al., 1994, 

Adams and Byrd, 2002, Byrd and Adams, 2003, Chibba and Bidmos, 2007, Dedouit et al., 

2007, Bidmos, 2008, Giurazza et al., 2013, Stull et al., 2014, and Guerrero-Rodrìguez et 

al., 2016).  

Another important factor is represented by the quality of the representation of the 

surface of the bones in the 3D model. Adams and Byrd (2003) point out the invalidity of 

the statistical models where the surface of the bone is disrupted causing inaccuracies in 

measurements. The surfaces of the bones in the 3D models were unclear in places due 

to the elevated pixilation of the segmented elements, causing issues with location of 

bony landmarks and therefore potential issues with measurement accuracy. There were 

also issues in relation to t the application of the methodologies which originated from 

the paper of Byrd and Adams (2003).  Some of the passages in the article which 

described the method of computing the equations (e.g. from the mathematical formula 

to obtain the confidence intervals to how to apply the predicted values) are presented 

in, and originate from, a different study by Giles and Klepinger (1988). Moreover, not all 

the variables are explained in depth, such as the method for calculating the SE 

(Standard Error) in the formula.  This creates a lack of basic information, especially for 

users without a deep knowledge of statistical computations and as a result it is 

recommended that these analyses are used with caution. 

 

 
Conclusion  

This study tested the applicability of linear measurements and regression equations 

originally developed for sorting dry specimens on 3-Dimensional models virtually 

reconstructed from whole-body CT scans of a cadaveric population.  

The results suggest that use of these methods can’t be reliably applied to bones 

extracted from CT scans (Byrd and Adams, 2003)  

Among the limitations highlighted in the study, the quality of the bones’ surface during 

the rendering procedure, appears to reduce considerably the efficacy of the models and 

issue which has been highlighted in the existing literature (Byrd and Adams, 2003, and 

Byrd 2008). This can be influenced by the thickness of the slices tested and further 

research is needed to fully explore the effects of those factors.  



Moreover, the lack of clear statistical procedures when computing the equations could 

cause misinterpretation in the application of the procedures and compromise the 

reliability of the results.  

Therefore, the examiners recommend further work seeking for more accurate 

procedural description, a larger study sample and considerations regarding the 

thickness of CT scans tested.  
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