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A B S T R A C T

The continuing growth of the human population creates an inevitable necessity for higher crop yields, which are
mandatory for the supply with adequate amounts of food. However, increasing grain yield may lead to a re-
duction of grain quality, such as a decline in protein and mineral nutrient concentrations causing the so-called
hidden hunger. To assess the interdependence between quantity and quality and to evaluate the biofortification
potential of wild barley, we conducted field studies, examining the interplay between plant development, yield,
and nutrient concentrations, using HEB-YIELD, a subset of the wild barley nested association mapping popu-
lation HEB-25. A huge variation of nutrient concentration in grains was obtained, since we identified lines with a
more than 50% higher grain protein, iron, and zinc concentration in comparison to the recurrent parent ‘Barke’.
We observed a negative relationship between grain yield and nutritional value in barley, indicated by pre-
dominantly negative correlations between yield and nutrient concentrations. Analyzing the genetic control of
nutrient concentration in mature grains indicated that numerous genomic regions determine the final nutritional
value of grains and wild alleles were frequently associated with higher nutrient concentrations. The targeted
introgression of wild barley alleles may enable biofortification in future barley breeding.

1. Introduction

Worldwide population growth results in increasing demands for the
supply with sufficient amounts of food, as well as superior food quality
[1–3]. Cereals, including barley (Hordeum vulgare ssp. vulgare) as the
fourth-most important crop on a global scale [4,5], provide around 50%
of the required calories worldwide [3,6]. Their contribution can even
account for up to 70% of calories in least developed countries, primarily
in Africa and Asia [6], where barley still has a pronounced role as staple
food [4,7]. Moreover, cereals function not only as source for carbohy-
drates, but also for proteins, fiber, and nutrients [8–10], especially in
countries where the consumption of animal-based products is un-
affordable [3,11]. In addition, over 40% of the world production of
barley, maize and wheat is used in livestock feed with the barley

proportion in the order of 67% [5,12,13].
The main breeding goal of the ‘Green Revolution’ was to improve

grain yields, which had tremendous success [14,15]. However, the
higher yields have one substantial drawback as they lead to a reduction
in protein and mineral nutrient contents of grains, reducing their
quality and nutritional value [16–18]. Roughly one billion people suffer
from low intake of proteins and mineral nutrients, especially iron, zinc,
and calcium [19–21]. Furthermore, an adequate supply with nutrients
is also necessary for the plant itself to achieve high yields [22].
Therefore, the re-biofortification of our elite crop material represents a
worthwhile approach to achieve a balanced diet for humans and live-
stock [20,23].

Barley represents an appropriate model for cereal research due to its
relatively simple diploid genetics [24]. This suits barley as model
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species for members of the Triticeae tribe (e.g. soft wheat, durum wheat,
and rye), since those species are closely related, allowing to transfer
knowledge gained in barley to other Triticeae species [24]. Moreover,
barley shows high tolerance against abiotic stresses [25–27]. As the
already negative impacts of climate change will become more severe in
the future, especially in large parts of Africa, the Arabian Peninsula,
Southeast Asia and Central South America [28,29], the higher abiotic
stress tolerance of barley might be an option to extend its production
and provide a secure source for human food.

As a result of domestication and repetitive rounds of selection, many
modern crops, including barley, suffer from genetic erosion, which is a
loss of genetic variation [30–32]. The introgression of new genetic
variation from wild progenitors, like wild barley (Hordeum vulgare ssp.
spontaneum) from the Fertile Crescent and Tibet [33,34], is one option
to replenish the gene pools of modern elite crops [31,35]. In this regard
a successful example is the Gpc-B1 locus in bread wheat, which was
introgressed from wild emmer (Triticum turgidum ssp. dicoccoides) into
wheat through chromosomal substitution [36,37]. The locus has posi-
tive impacts on the concentration of Zn, Fe, Mn and proteins in mature
grains without a distinct negative impact on yield [38,39]. Several
studies indicated that wild barley harbors huge phenotypic variation for
a multitude of agronomic traits [40–45]. However, the usefulness of
wild barley as source for biofortification has only rarely been examined.

Therefore, we conducted a study to capture the available variation
of macronutrient and micronutrient concentrations in wild barley
grains using the wild barley population HEB-YIELD, a selected subset of
the nested association mapping (NAM) population HEB-25 [46]. For
this purpose, HEB-YIELD was grown during two years in Dundee
(United Kingdom) and Halle (Germany) with standard fertilizer appli-
cation, as well as under nitrogen deficiency to examine the impact of
nitrogen supply on mineral nutrient concentrations. In addition, we
investigated the interplay between plant development, yield, and mi-
neral concentrations by scoring key agronomical traits throughout the
growing season.

2. Material and methods

2.1. Plant material

HEB-YIELD, a subset of the wild barley nested association mapping
(NAM) population Halle Exotic Barley-25 (HEB-25) [46], was evaluated
in yield trials. HEB-25 originated from crossing 25 diverse wild barley
accessions (Hordeum vulgare ssp. spontaneum and H. v. ssp. agriocrithon)
with the German elite spring barley cultivar Barke (Hordeum vulgare
ssp. vulgare, released in 1996 by breeder Breun). HEB-25 comprises
1420 BC1S3-derived lines (backcrossed with Barke) grouped into 25
families (for more details see Maurer et al. [46]).

The HEB-YIELD subset consists of 48 HEB-25 lines that were se-
lected from HEB-25 to ensure good threshability and the absence of
brittleness to enable accurate yield estimation in field trials. In addi-
tion, the final HEB-YIELD lines were selected to independently segre-
gate for homozygous elite versus homozygous wild barley alleles at the
four major flowering time loci, which exhibited major plant develop-
mental effects in HEB-25: Ppd-H1, Sdw1, Vrn-H1 and Vrn-H3
[40,44,46].

2.2. Genotypic data

The complete HEB-25 population was genotyped in generation
BC1S3 using the barley Infinium iSelect 9k SNP chip (see Maurer et al.
[46]). The diagnostic markers i_BK_16, i_12_30924, i_11_10705 and
i_12_10218, co-segregating with the four flowering time genes Ppd-H1,
Sdw1, Vrn-H1 and Vrn-H3, respectively, were used for selection of
segregating HEB-YIELD lines that were homozygous for alternative al-
leles at the four loci (Table S1).

2.3. Field trials

The HEB-YIELD population was grown at two locations during two
years (2015 and 2016), resulting in four environments. The locations
were Dundee (United Kingdom; 56°28′53.71″N 3°6′35.17″W) and Halle
(Germany; 51°29′46.05″N 11°59′29.58″E). A detailed description for
each location is given in Table S2a. The full set of the 48 HEB-YIELD
lines was sown at both locations (Table S2b). In addition to HEB-YIELD
the recurrent parent ‘Barke’ and local cultivars were used as checks:
‘Odyssey’ (released by Limagrain, 2011) and ‘Tyne’ (RAGT, 1986) in
Dundee and ‘Marthe’ (Nordsaat, 2005), ‘Quench’ (Syngenta, 2006), and
‘Scarlett’ (Breun, 1995) in Halle.

At both locations the plants were cultivated under regular fertili-
zation (= control condition) and under nitrogen deficiency (= stress
condition; Table S2c). In contrast to the control condition, lines in the
stress treatment received no additional mineral N fertilizer in Dundee
and Halle. The difference between both treatments regarding N were
among 60 and 70 kg/N per hectare in both years by considering the
results of the Nmin analysis, which was performed in early spring prior
to sowing to determine the availability of N for the HEB-YIELD lines. In
Dundee additionally P, K and S were applied to the control blocks
following local practice (Table S2c).

A randomized complete block design with four replicates was
chosen as test design for the trials (Figure S1). The trials were con-
ducted following local practices regarding tillage and pest manage-
ment. Additional information on plant cultivation is provided in Table
S2d.

2.4. Phenotypic data

In this study 17 traits were investigated and grouped into devel-
opmental (e.g. flowering time), yield-related (e.g. grain yield), and
grain nutrient traits, including grain raw protein concentration (GPC)
and grain concentration of carbon (C), phosphorus (P), potassium (K),
sulfur (S), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn),
zinc (Zn), copper (Cu) and sodium (Na). A list of these traits is given in
Table S3, including their method of measurement and in which location
and year the traits were scored.

2.5. Determination of macronutrients and micronutrients in grains

After air-drying the harvested grains for two weeks, 6–8 g of grains
of each plot were ground and homogenized using the mixer mill MM
400 (Retsch GmbH; Haan, Germany).

The dry matter concentration (DM) of each sample was determined
after drying the barley flour for 3 h in a drying cabinet at 105 °C
(method 3.1 modified [47]).

The elements C, N, and S were measured with a CNS analyzer (vario
EL cube; Elementar Analysensysteme, Langenselbold, Germany), which
is based on combustion analysis [48]. In this analysis 30mg of flour per
sample were combusted at 1500 °C in oxygen atmosphere for 160 s
following the standard protocol of the vario EL cube. During combus-
tion the gaseous products CO2, NO2, and SO2 arose. Subsequently, after
transformation and separation, their quantity was measured by a
thermal conductivity detector. Grain raw protein concentration (GPC)
was calculated by multiplying N by 6.25, according to the general as-
sumption that barley proteins contain on average 16% of nitrogen [49].

For determination of macronutrients (P, K, Ca, Mg), micronutrients
(Fe, Mn, Zn, Cu) and Na, inductively coupled plasma - optical emission
spectrometry (ICP-OES) was used (Varian 715-ES ICP-OES; Varian, Palo
Alto, California, USA). For this, 2 g of flour per sample were combusted
in a muffle furnace at 550 °C for 14 h. The resulting ash was digested in
three steps by adding two times 10ml of hydrochloric acid (HCl, 6.0 M)
and finally 10ml of nitric acid (HNO3, 1.8M). After addition of HCl the
solution was boiled down on a laboratory sand-bath. HNO3 was eva-
porated to two thirds of the initial volume. The remaining solution was
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transferred into a volumetric flask, filled up to 100ml with bi-distilled
water, filtrated, and analyzed by ICP-OES (methods 10 & 11 modified
[47]).

2.6. Statistical analyses

All statistical analyses were carried out with SAS 9.4 (SAS Institute
Inc., Cary, NC, USA [50]). Variance components (defined as random)
were estimated with PROC VARCOMP and broad sense heritabilities
(h2) for each trait within locations and treatments were calculated
across years following the formula:

=

+ +
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The analysis of variance (ANOVA) across locations was calculated
with PROC MIXED to test for the presence of genotype, location and
year effects. For this purpose, the main effects (genotype, location and
year), as well as their corresponding interaction effects were treated as
fixed effects in the following model:

= + + + + + + + +g l y gl gy ly glyy μ e( ) ( ) ( ) ( )i j k ij ik jk ijkijk ijk (5)

where

yijk = observed phenotype of the ith genotype in the jth location and the kth
year

μ = intercept
gi = effect of the ith genotype
l j = effect of the jth location
yk = effect of the kth year
gl( )ij = interaction effect between the ith genotype and the jth location

gy( )ik = interaction effect between the ith genotype and the kth year
ly( )jk = interaction effect between the jth location and the kth year

gly( )ijk = interaction effect between the ith genotype, the jth location and the
kth year

eijk = residual/error of yijk

Fixed effects are written in bold.

Best linear unbiased estimators (BLUEs) were estimated using the
PROC MIXED procedure. The BLUEs for each HEB-YIELD line were
computed across years for each location and treatment level (gt) se-
parately, as well as across treatments (t). Genotype and treatment were
modelled as fixed effects and year as a random effect:

= + + + + + + + +g gty μ y gy yt b yt et ( ) ( ) ( ) [ ]i imikmn k ik km nkm ikmnm

(6)

where

yikmn = observed phenotype of the ith genotype in the kth year and the nth
block in the mth treatment

μ = intercept
gi = effect of the ith genotype
yk = effect of the kth year
tm = effect of the mth treatment
gy( )ik = interaction effect between the ith genotype and the kth year
gt( )im = interaction effect between the ith genotype and the mth treatment
yt( )km = interaction effect between the kth year and the mth treatment

b yt[ ]nmk = effect of the nth block nested in the kth year and the mth treatment
eikmn = residual/error of yikmn
Fixed effects are written in bold.

Pearson correlation coefficients (r) between trait BLUEs were cal-
culated via PROC CORR. Furthermore, to test for significant treatment
effects a t-test (PROC TTEST) and an ANOVA within locations were
performed (PROC MIXED). The ANOVA model included the main effects
(genotype, treatment and year) and their corresponding interaction
effects as fixed effects (comparable to model 5). A further t-test was
computed to test for differences between the locations.

Performance of the HEB-YIELD lines was compared to the recurrent
parent ‘Barke’ by conducting a Dunnett test [51] with PROC MIXED.
The resulting P-values were adjusted following Bonferroni-Holm [52].
To enable a comparison between the traits the relative performance
(RP) was calculated as:

=
− ′

′

′

′
RP BLUE HEB line BLUE Barke

BLUE Barke
[%] ( ( ) ( ))

( )
* 100

(7)

All figures were created using R (3.5.0 [53]) with the package
ggplot2 (2.2.1 [54]), except the Circos plots [55].

2.7. Single marker regression

A simple linear model was fit to regress a trait’s value on the
quantitative SNP marker score obtained from the IBD genotype matrix
of Maurer et al. [56]. For this purpose PROC GLM was used to fit the
model:

= + +y μ Marker e (8)

where

y = observed phenotype
μ = intercept
Marker = effect of SNP marker
e = residual/error

Subsequently, single marker P-values resulting from an F-test (full
model versus reduced model without marker effect) were plotted for
each trait in a Circos plot and candidate genes were indicated.

3. Results and discussion

3.1. Phenotypic data

We examined the interplay between plant development, yield, and
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nutrient concentrations in the wild barley introgression population
HEB-YIELD, a diverse subset selected from the NAM population HEB-25
[46], by scoring 17 traits at two test sites in Dundee (United Kingdom)
and Halle (Germany) (Table S2a). The examined traits can be grouped
into developmental, yield-related, and nutrient traits, including seven
macronutrients (C, N, P, K, S, Ca, Mg) and four micronutrients (Fe, Mn,
Zn, Cu), as well as Na (Table S3). All traits were determined under a
standard nitrogen fertilizer application regime, following local practice
(= control condition) and without nitrogen fertilizer (= stress condi-
tion; Table S2c), resulting in 1593 analyzed plots (Table S4a).

The majority of traits exhibited a wide range of variation within
each location and treatment, indicated by high coefficients of variation
(CV; Figures S2 & S3; Table S5). The extremely low CVs for C with less
than 0.5% were striking and confirm that the carbon concentration in
plants is very constant with values between 45 and 50% [57]. For the
remaining elements, the CVs ranged from around 5% for Mg up to more
than 20% for Na, whereby macronutrients showed in general lower CVs
than micronutrients.

The ANOVA results indicated that all investigated factors (genotype,
year, and location) had significant effects on all traits, except for Cu and
ears per square meter (EAR) where location was not significant (Table
S6a).

For most nutrients (GPC, P, K, S, Ca, Mg, Fe, Mn, Zn, Cu) we ob-
served heritabilities> 0.54 (on average 0.82; Table 1). The above-
mentioned lack of variation for C resulted in low heritabilities at both
locations (on average 0.15). Moreover, in Dundee Na had low herit-
abilities with values< 0.25. The developmental and yield-related traits
on average exhibited a heritability of 0.78, whereof the trait EAR was
lowest with an average of 0.36.

BLUEs across treatments were calculated to obtain a single value per
genotype that allowed an easier comparison with already published
results (Table S4b). The observed nutrient concentrations fit very well
to those presented in the literature (Figure S4; Table S7), except for Na
where the studies of Mengesha [58] and Jeroch et al. [59] reported
more than fourfold higher values for barley grains. Elemental con-
centrations varied substantially between genotypes. We identified
genotypes which had more than 50% higher concentrations of Na, Fe,
or Zn than the recurrent parent Barke (Figure S5). Notably, line
HEB_09_163 had 64% and 50% higher GPC than Barke in Dundee and

Halle, respectively. Overall, we identified lines with a maximum GPC of
13.5% and 15.9% in Dundee and Halle, respectively (Table S5). Wild
barley might therefore offer a good source for the improvement of GPC,
as already indicated by a survey with Tibetan wild barley [60].

3.2. Effects of nitrogen fertilization

Nitrogen undisputedly represents the key nutrient for crops, since
this element limits yield in nearly every agricultural cropping system,
and there is an increasing demand for it as long as the world population
grows. The identification of variation and finally the improvement of
the nitrogen use efficiency could be one possible solution to keep the
required demand within limits [61,62]. This attempt would help to
reduce the costs and energy consumption during the production of in-
organic N fertilizer, as well as to secure ecosystems from environmental
damage through the application of excessive amounts of N fertilizer
[63].

Therefore, we conducted nitrogen deficiency field trials at both lo-
cations to assess the effects of the N supply of barley plants on yield and
on nutrient concentrations in the grains. The outcome of this experi-
ment indicated that nutrient concentrations in the grains were only to a
minor degree influenced by the N supply level of plants, and the
treatment effects were noticeably lower than those on grain yield
(Fig. 1; Table S5). The only exception from this statement are Zn and
Na, which showed a substantial increase in concentration under stress
condition (without N fertilizer) in Dundee. Interestingly, the treatment
effect for Zn is opposite in Halle in comparison to Dundee and we have
no coherent explanation for the different behavior of the N treatment
for Zn so far. In any case, the high heritability (> 0.8) points to reliable
data. The effects found for grain yield with -17.9 dt /ha and -6.3 dt/ha
by comparing control versus stress in Dundee and Halle, respectively,
circumstantiate that the treatment was effective and that N is crucial for
achieving high yields. The strong N effects on yield are, however, only
partly reflected in GPC, especially in Dundee, although N is a main
constituent of proteins [63]. In a recently published study Guttieri et al.
[64] also observed that N fertilization appears to have only a minor
impact on different nutrient concentrations.

In the present study the responses of genotypes to the N treatment
were similar, indicated by non-significant genotype-by-treatment

Table 1
Descriptive statistics summary for BLUEs.

Traita Dundee Halle

Control Stress Control Stress

Unitb Mean CV [%] h² Mean CV [%] h² Mean CV [%] h² Mean CV [%] h²

HEA days 84.3 6.4 0.91 85.9 7.0 0.91 66.1 8.1 0.95 67.2 8.2 0.95
EAR number/m² 603.9 15.2 0.47c 468.4 11.5 0.33c 571.2 8.4 0.17 470.9 10.5 0.46
GNE number 19.4 15.9 0.94c 18.5 13.7 0.89c 19.1 14.5 0.85 19.5 12.5 0.85
TGW g 47.8 7.3 0.82 46.8 6.9 0.79 50.6 8.0 0.92 50.9 8.3 0.92
YLD dt/ha 55.3 16.7 0.93 37.4 14.8 0.80 40.1 16.8 0.78 33.7 16.2 0.84
C % DM 45.9 0.4 0.28 45.7 0.4 0.06 46.5 0.4 0.03 46.5 0.3 0.24
GPC % DM 9.9 12.3 0.91 9.8 10.2 0.85 13.0 9.1 0.80 11.9 10.0 0.89
P g/kg DM 3.6 7.6 0.91 3.7 7.0 0.88 3.5 7.7 0.83 3.7 7.3 0.87
K g/kg DM 4.3 7.3 0.87 4.5 5.9 0.84 4.2 9.3 0.85 4.5 8.7 0.89
S g/kg DM 1.2 7.8 0.65 1.2 6.4 0.76 1.4 7.2 0.83 1.3 7.2 0.81
Ca g/kg DM 0.3 10.6 0.79 0.3 10.6 0.81 0.4 11.5 0.86 0.4 12.0 0.91
Mg g/kg DM 1.2 6.3 0.85 1.2 5.8 0.81 1.2 6.1 0.92 1.2 6.3 0.93
Fe mg/kg DM 29.9 17.5 0.91 29.7 15.2 0.85 35.2 12.5 0.80 31.9 13.5 0.92
Mn mg/kg DM 8.0 11.4 0.73 7.7 10.0 0.72 11.1 12.2 0.87 10.6 13.2 0.83
Zn mg/kg DM 19.8 16.2 0.86 23.1 16.0 0.85 26.7 13.3 0.89 25.3 14.4 0.80
Cu mg/kg DM 5.0 10.5 0.62 5.2 9.2 0.54 5.0 9.5 0.82 5.0 8.0 0.61
Na mg/kg DM 31.4 20.7 0.25 40.5 17.9 0.23 72.6 29.6 0.80 74.5 27.4 0.78

a) HEA (Flowering time), EAR (Number of ears), GNE (Grain number per ear), TGW (Thousand grain weight), YLD (Grain yield), C (Carbon), GPC (Grain protein
concentration), P (Phosphorus), K (Potassium), S (Sulfur), Ca (Calcium), Mg (Magnesium), Fe (Iron), Mn (Manganese), Zn (Zinc), Cu (Copper) & Na (Sodium).
b) DM (dry matter).
c) Repeatability rather than heritability was calculated as only one year of measurements was available.
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Fig. 1. Trait variation and verification of treatment effects for the studied traits. The trait names and units of the traits are indicated in the grey rectangles above each
subplot. Trait abbreviations are listed in Supplementary Table 3. The color of the boxes represents the location, which is also indicated on the x-axis: blue for Dundee
(DUN) and grey for Halle (HAL). The y-axis reflects the value of the traits in its specific unit. Non-filled boxes refer to the control condition and filled boxes to the
stress condition. Statistically significant treatment effects were obtained via t-test and are indicated by red asterisks above the boxes with P<0.05 = *, P<0.01 =
** or P<0.001 = ***. Additionally, the difference between the means of the two treatments is given in relation to the mean of the control condition in percentage
above each box. The figure is based on BLUEs across years. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article).
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interactions for the majority of nutrients (Table S6b). This is also sup-
ported by the high positive Pearson’s correlation coefficients between
control and stress condition for the nutrient traits with an average of
0.84 in Dundee and 0.88 in Halle (Table S8a). Whilst the control plots
at Dundee also received supplementary P, K and S, the concentrations
of these elements was either less or no different in this treatment when
compared to the stress treatment. The same trend was observed at
Halle, suggesting that the addition of these elements at Dundee had not
biased the results (Table 1). Based on the minor effects of the N defi-
ciency treatment on nutrient concentrations, we decided to merge both
datasets for further analyses to increase the statistical power.

3.3. Correlations between plant development, yield, and nutrient traits

To get a first glimpse on the interplay between plant development,
yield, and nutrient concentrations, we calculated the correlations be-
tween all scored traits across treatments (Fig. 2; Table S8b), as well as
within treatments (Figures S6 & S7; Table S8b). Independent of the
location, there were two striking findings: first, the high negative cor-
relations between the majority of nutrients (except for K, Ca, and Na)
with flowering time (HEA), grain number per ear (GNE), and grain
yield (YLD), and second, predominantly positive correlations between
most nutrients except K and Na.

The first observation suggests that the mineral concentrations are
negatively affected by a ‘dilution effect’, which is in agreement with a
number of previous studies [64–66]. An improvement in yield can be
achieved by increasing the grain number per area (= EAR and GNE) or
the grain size (= thousand grain weight; TGW) [67,68]. In both cases,
the nutrients are distributed into more or larger grains whereas the
absolute amount of accumulated nutrients seems to stagnate, causing
the well-known ‘protein or nitrogen dilution effect’ [16,69,70]. In the
wild barley introgression population HEB-YIELD, lines that exhibit late
HEA and/or high GNE are characterized by superior yields (for more
details see Wiegmann et al. [45]), which explains why the nutrient
concentrations are also negatively correlated with HEA and GNE.
Overall, the negative correlations are more strongly pronounced in

Dundee than in Halle, presumably as a result of the higher yield level by
9 dt/ha. Based on the localization of the majority of mineral nutrients in
the aleurone layer of a grain, we speculated that high TGW could have a
negative impact on nutrient concentrations because larger grains have a
reduced surface-to-volume and aleurone to endosperm ratio, resulting
in a higher proportion of starch [71]. However, our results indicate no
pronounced effects of TGW on nutrient concentrations in general, since
the only significant negative correlation of TGW was observed with Ca
(-0.29/-0.35; Dundee/Halle), which is in agreement with studies from
McDonald et al. [72] and Zhao et al. [66].

The positive correlations between the majority of nutrients indicate
that these elements might share common features in uptake, distribu-
tion, or storage. Uptake and transport processes are governed by a
multiplicity of proteins, which are involved in the steps from mobili-
zation and uptake from the rhizosphere until the final translocation into
the seeds. This includes xylem and phloem loading and unloading,
tissue distribution, as well as trafficking and sequestration within the
cell [73–76]. Examples for the co-handling of mineral nutrients are the
transport of both Fe and Mn by transporters of the MTP and NRAMP
families [77,78], the transport of Mn and Ca by BICAT proteins [79,80]
or the concerted uptake of Fe and Zn through unspecific divalent metal
cation transporters [81,82], which is supported by our data as these
nutrients showed the highest positive correlations in both locations
(0.91/0.87). Recently, a study in barley investigated the role of HvIRT1,
a member of the ZIP family of transporters, which is largely responsible
for Mn uptake, translocation and accumulation in the mature grain
[83]. Moreover, HvIRT1 also transports Zn because of a broad specifi-
city [83]. This interaction is apparent in our data, since concentrations
of Mn and Zn showed highly significant positive correlations (0.68/
0.71). A further example for the interdependency of nutrient con-
centrations is the positive relationship between N/GPC and P, possibly
due to an increased root growth through N, which improves the P up-
take from the rhizosphere [84]. Several independent studies reported
the existence of such patterns of correlations between specific nutrients
[64,66,85].

In addition, the correlations between K and Na are noteworthy,

Fig. 2. Pearson correlation heat maps for the studied traits in Dundee (a) and Halle (b). The correlations are colored based on their direction (blue: negative; red:
positive) and strength (bright color: weak correlation; dark color: strong correlation). Significance of the correlations is given by asterisks with P<0.05 = *,
P<0.01 = ** or P<0.001 = ***. The trait abbreviations are C (Carbon), GPC (Grain protein concentration), P (Phosphorus), K (Potassium), S (Sulfur), Ca
(Calcium), Mg (Magnesium), Fe (Iron), Mn (Manganese), Zn (Zinc), Cu (Copper), Na (Sodium), HEA (Flowering), EAR (Number of ears), GNE (Grain number per ear),
TGW (Thousand grain weight) and YLD (Grain yield). The figure is based on BLUEs across years and treatments. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article).
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since they are mostly contrary to the remaining nutrients. Interestingly,
K and Na show only slightly negative or even positive correlations with
YLD. The stability of K concentrations in cereal grains under various
conditions has been reported before. For example, in a long-term ex-
periment, low K supply rates caused a drop in grain yield of barley and
in K concentration in straw [86]. However, K concentrations in grains
were invariant and, similar to the findings in the present study, not
negatively correlated with yield. This indicates that plants specifically
regulate K import during grain filling by unknown mechanisms [87]. K
and Na exhibited similar correlations, probably because they partially
share the same transport mechanisms and because Na can partly sub-
stitute for K in cellular functions [88,89]. Nevertheless, at present it is
unclear why K and Na behave different from the majority of other
nutrients.

3.4. Improved genotypes for barley breeding

During the last decades wild material has been frequently used for
the introgression of genes and alleles encoding for favorable attributes
into elite germplasm [31,90]. However, this was mostly successful for
the improvement of resistance against pathogens and tolerance to
abiotic stresses, rather than the improvement of quality and yield [91].
There have been only a few diversity studies which examined the ge-
netic potential for crop biofortification [64,66,85,92]. The present
study is one of the first to evaluate cereal genetic resources to improve
grain nutrient concentrations.

The huge phenotypic variation of the “Halle Exotic Barley” wild
introgression population has already been exemplified for plant devel-
opment [40,44], resistance to fungal pathogens [43,93], tolerance to
abiotic stresses [41,94] and yield [45,95]. The HEB lines offer the
possibility to estimate potentially positive wild allele effects in an
adapted background, as they are embedded into the elite barley cultivar
Barke (for more details see Maurer et al. [46]). Using such a back-
ground enables the direct use of these lines as crossing parents in elite
barley breeding programs.

In both locations we could identify HEB-YIELD lines, which sig-
nificantly outperformed the recurrent parent, cv Barke, regarding the
concentration of nearly every investigated nutrient (Fig. 3; Table S9). In
particular, for GPC, Ca, Na, Fe, and Zn we could identify a number of
promising lines with more than 50% higher elemental concentrations.
Some of these lines showed higher concentrations than the recurrent
parent Barke for several traits simultaneously, for instance HEB_08_096,
HEB_09_163, HEB_11_025, HEB_14_045, HEB_15_082, HEB_15_094,
HEB_18_225, HEB_19_076 and HEB_25_020. The increased concentra-
tions in these lines were stable across both investigated environments,
although in general nutrient concentrations are influenced by pro-
nounced genotype-by-environment interaction effects (Table S6a)
[96,97]. These distinct interactions render it difficult to select superior
lines in a breeding program based on a single or few environments
[98,99]. Additionally, we found lines that showed increased con-
centrations of single elements, like for Na (e.g. HEB_07_063 in Dundee
and HEB_08_202 in Halle) and Ca (e.g. HEB_10_184 in Dundee and
HEB_01_132 in Halle), whereby the latter lines had roughly the same
yield as Barke.

Nevertheless, it must be mentioned that the majority of lines had a
considerably reduced grain yield. This is best exemplified by
HEB_09_163, which exhibited significantly higher concentrations of
GPC, P, S, Ca, Mg, Fe, and Zn in both locations, but also a more than
50% lower yield level. As discussed in 3.3, this negative relationship
between nutrient concentration and yield is well-described [64–66],
making it difficult to select for higher nutrient concentrations without
reducing yield. Moreover, a reduction in yield is hardly acceptable, as
we need to raise yields in the next decades to supply the growing world
population with a sufficient amount of food [2,3].

3.5. Nutrient yield

We further explored the relationship between nutrient concentra-
tions and yield by calculating the nutrient yield (= product of plot
grain yield and its respective nutrient concentration; in agreement with
Khan et al. [100]).

Nearly all HEB-YIELD lines showed significantly lower nutrient
yields than Barke, particularly in Halle where we found strong reduc-
tions in nutrient yield for the elements K (up to 55%), Ca (51%), Fe
(47%), P (44%) and Zn (44%) (Figure S8; Table S9a). In contrast, in
Dundee we could detect lines that had significantly higher nutrient
yields for Ca (+32%), Fe (+27%) and Zn (+18%) (Figure S9; Table
S9a). However, the general trend is unambiguous that most HEB-YIELD
lines had inferior nutrient yields to Barke. There are only a few studies
available that investigated the relationship between nutrient con-
centrations and nutrient yields, but there is an in-depth knowledge
present about the relationship between protein concentration and
protein yield [16,101–103]. One common observation is that an im-
provement in protein yield is mainly achieved by raising grain yield
rather than protein concentration. This is in agreement with the
achievements of the last decades of breeding and selection for higher
grain yields, which resulted in lower grain protein concentrations, but
improved protein yields [17,102]. Based on our data we suggest that
this is also valid for other nutrient yields, since those lines having sig-
nificantly lower grain yields than Barke are characterized by marginal
nutrient yields, whereas the local check cultivars mostly exhibited su-
perior nutrient yields in both locations (for instance GPC: Figure S10,
and Zn: Figure S11).

Our findings clearly support the existence of high variations of
nutrient concentration in HEB-YIELD and a pronounced negative re-
lationship between yield and the majority of the investigated nutrient
concentrations with the exception of K. One breeding approach would
be to cross the best-performing HEB-YIELD lines regarding nutrient
concentration (e.g. HEB_09_163 for GPC) with a high-yielding elite line
and derive a random inbred population that could be used to determine
if the two characters can be separated genetically and, if so, identify not
only suitable recombinants but also genetic markers that could be used
in future selection programs. As reported by Bogard et al. [104] dif-
ferent strategies have already been applied to reduce the negative
correlation, including the introgression of genes from related species,
even though all of these strategies failed so far.

However, potentially methods based on genetic engineering may be
more successful, if they are transferable to field conditions. Two re-
cently published studies report on quite considerable success by over-
expressing the Fe and Mn transporter TaVIT2 [105] and the Zn trans-
porter HvMTP1 [106] under control of an endosperm-specific promoter
in wheat and barley. In both cases grain nutrient concentrations were
improved without negative impacts on growth and yield in greenhouse
trials [105,106].

3.6. Associated genomic regions

By dissecting the genetic architecture of the investigated nutrient
traits through genetic mapping, quantitative trait loci (QTL) that con-
trol the trait variation can be identified [107,108]. Therefore, we ap-
plied a single marker regression analysis aiming to identify QTLs that
improve nutrient concentration in HEB-YIELD without negative impacts
on yield, as recommended by Bogard et al. [109]. However, it must be
noted that the relatively small population size of HEB-YIELD (48 lines)
might lead to biased results, indicated by a lower QTL detection rate,
more false positives, and an overestimation of effect sizes [110–112].
Nevertheless, the obtained results can give a first glimpse on the genetic
control of our studied traits. We plan to verify detected QTLs by a
follow-up study with heterogeneous inbred families (HIFs [113,114])
segregating for the two alternative alleles present at a promising QTL.

Based on our findings we detected a number of QTLs that

M. Wiegmann, et al. Plant Science 283 (2019) 83–94

89



simultaneously influenced the majority of investigated traits and, in
several cases, corresponded to well-known candidate genes (Figs. 4 and
5; Tables S10 & S11). We identified these genomic regions simulta-
neously in both locations, indicating the robustness of the results.
Below we will discuss a few of these regions, indicating the importance
of plant development and yield, as well as nutrient uptake and trans-
location to determine the final grain nutrient concentration in HEB-
YIELD.

3.6.1. Short arm of chromosome 2H
We detected significant effects on the traits HEA, K, Fe, Mn, and Zn

in both locations, as well as on GPC, Ca, Mg, Cu, and Na in Dundee
originating from the short arm of chromosome 2H (Tables S10 & S11).
Except for HEA, K, and Na the wild barley allele increased the trait
values. In most cases SNP markers, that are located directly within the
Ppd-H1 gene sequence, showed the lowest p-values. HEA effect sizes of
around -8 days pinpoint to a possible role of Ppd-H1, confirming results
already obtained in the whole HEB-25 population [40,44,46]. Ppd-H1 is
the main regulator of photoperiodism in barley and determines flow-
ering time to a high extent [115], as well as exerting pleiotropic effects
on a number of additional developmental and yield-related traits
[40,44], however without a significant impact on yield in HEB-YIELD
[45]. Most wild barley accessions possess the dominant responsive Ppd-
H1 allele, which accelerates development under long-day conditions
[116,117]. From studies on Arabidopsis it is known that several nu-
trient transporters are regulated by the circadian clock and that the
expression of PRR7, the Arabidopsis thaliana orthologue of Ppd-H1, is
under clock control [118]. Consequently, the detected effects might be
the result of the influence of Ppd-H1 on nutrient transporter regulation,
as well as on overall plant development.

3.6.2. Long arm of chromosome 3H
Sdw1 is the major semi-dwarf gene locus in barley, located on the

long arm of chromosome 3H. Exotic Sdw1 alleles or genes in its
proximity exhibited strong effects on our studied traits, especially on
plant height [45] and YLD (Tables S10 & S11). In addition, the majority
of nutrient traits showed positive effects arising from this region, which
clearly supports the negative relationship between yield and nutrient
concentration. The region on the long arm of chromosome 3H showed
significant effects on GPC, P, Ca, Mg, and Zn in Dundee and Halle,
whereupon the wild allele increased all traits except Ca, which was
clearly reduced. Semi-dwarf alleles have been widely used in modern
breeding programs and were one crucial component of the ‘Green Re-
volution’ boosting grain yields in the past [15,119,120]. Semi-dwarf
barley cultivars are characterized by reduced plant height, late ma-
turity, increased tiller numbers, and improved harvest index, altogether
resulting in elevated grain yields [121,122]. This is in agreement to our
observations that HEB-YIELD lines carrying the wild allele (= long
straw allele) at Sdw1 had an increased plant height and a distinctly
reduced yield. The reduced yield might be one explanation why most
nutrient concentrations showed positive effects coming from the wild
allele of Sdw1, indicating the important relationship between yield and
quality.

3.6.3. Short arm of chromosome 6H
We identified pronounced impacts of the short arm of chromosome

6H on nutrient concentrations, influencing the traits C, GPC, P, S, and
Mg at both locations (Tables S10 & S11). In each case, the wild allele
increased the nutrient concentration. The senescence-inducing gene
NAM-1, located on the short arm of 6H [123], might be a probable
candidate for this locus. This gene belongs to the family of NAC (NAM,
ATAF-1,2, CUC) transcription factors, which influence a multitude of
plant processes, such as development and senescence [124]. From
studies in wheat and barley it is known that early senescence can im-
prove nutrient concentrations, especially of GPC, Fe, and Zn, accom-
panied with negative impacts on yield [123,125,126]. These findings

Fig. 3. Heatmap showing the relative performance of the 48 HEB-YIELD lines in comparison to the recurrent parent ‘Barke’ for the studied traits in Dundee (a) and
Halle (b). The color of the tiles represents a positive (red) or negative (blue) deviation from Barke. In addition, the results of a Dunnett’s test with Barke as reference
are indicated for each line inside the tile. Significant deviations are shown by asterisks with P<0.05 = *, P<0.01 = ** or P<0.001 = ***. The p-values are
Bonferroni-Holm corrected, and a summary table of the test is shown below the figure. The trait names are indicated in grey rectangles at the top, and their
abbreviations are listed in Supplementary Table 3. The figure is based on BLUEs across years and treatments (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article).
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partly match those observed in our survey, since we could also detect
increases in GPC, Fe and Zn, as well as decreases in yield in HEB-YIELD
lines carrying the wild allele, although not significant for Fe and Zn.
Therefore, lines with the wild allele seem to carry a functional version
of NAM-1, because the functional protein is associated with higher
protein concentrations [123].

3.6.4. Additional genomic regions
Also the short arm and pericentromeric region of 5H exerted sig-

nificant effects on nutrient concentrations. The first-mentioned region
might be promising, since lines carrying the wild allele were char-
acterized by higher concentrations of C, GPC, P, Mg, Fe, Mn, and Zn,
without a distinct reduction in yield (Tables S10 & S11). Such loci
might be valuable, since they could work as correlation breakers be-
tween yield and quality. It is known that CAT1 is located in this area.
CAT1 belongs to a family of cationic amino acid transporters (CAT) that
were first identified in Arabidopsis [127,128]. CATs mainly function as
amino acid transporters and are expressed in various plant tissues
[127], which may be an indication for the detected effect on GPC.

The pericentromeric region of 5H showed pronounced effects on S
(Tables S10 & S11), which might point to an aspartate/tyrosine/aro-
matic aminotransferase (IDI4) as possible candidate gene. IDI4 is lo-
cated in the centromere region of 5H and catalyzes the final step of the
synthesis of the sulfurous amino acid methionine [129].

Another interesting finding was the impact on a multitude of traits
originating from the pericentromeric region of 2H. In both locations the
traits YLD, GPC, P, S, Ca, Mg, and Zn were significantly affected,
whereupon the wild allele increased all of them except YLD. So far we
could not identify a reliable candidate gene causing the effects, and it
would be worth to have a closer look at this region in follow-up studies.

4. Conclusions

In summary, our results clearly support the existence of a negative
relationship between quantity and quality in the barley HEB-YIELD
population, expressed as a loss of nutritional value of grains with in-
creasing yields. This relationship is well-known from modern crops and
leads to an eminent dilemma [16–18] because breeding for human food
and animal feed demands to simultaneously increase both grain quan-
tity and quality [2,3,9,10]. One approach to improve both complexes
may be to continue to target grain yield as main breeding goal, which
would indirectly also increase nutrient yields, since we could show that
grain yield is highly positively correlated with them. However, this
would further dilute the nutrient concentrations and reduce the nutri-
tional value of cereal grains [18]. Therefore, yield improvements,
which are necessary to supply the growing world population, ought to
be reached without loss of quality through the identification of corre-
lation breakers [109]. Here, we showed that HEB-YIELD offers a large
amount of genetic variation for a multitude of nutrients, which can be
directly used in crossings and for the identification of genes controlling
nutrient concentration in the grain. Wild barley might harbor alleles
that increase the nutritional value without yield reductions and func-
tion as correlation breakers, as indicated by interesting genomic regions
like the one on the short arm of chromosome 5H. Consequently, we
recommend to dig deeper into the genetic regulation and identification
of exotic alleles controlling nutrient concentration traits in follow-up
studies with wild barley. Ultimately, promising wild barley alleles could
be introgressed into elite material. In addition, the expression of ef-
fective wild barley alleles could be locally regulated, for example, by
genetic engineering, as recently applied in wheat and barley [105,106].

Fig. 4. Results of the single marker regression
analysis across the studied traits in Dundee.
Barley chromosomes are indicated as colored
bars on the inner circle, and centromeres are
highlighted as transparent boxes. Grey con-
nector lines represent the genetic position of
SNPs on the chromosomes. Each track re-
presents one trait, and these are (from inside to
outside) HEA, YLD, C, GPC, P, K, S, Ca, Mg, Fe,
Mn, Zn, Cu and Na. Trait abbreviations are
given in Supplementary Table 3. The colored
tracks display the negative common logarithm
of the p-values, and the grey line shows the
baseline. For exact p-values, see Supplementary
Table 10. Peaks of a track indicate effects as-
sociated with the respective chromosome re-
gion. Candidate genes are depicted outside the
circle. The figure is based on BLUEs across
years and treatments.
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