
ALGORITHMS AND STABILITY ANALYSIS FOR
OPTIMIZATION PROBLEMS WITH SPARSITY

by

JIALIANG XU

A thesis submitted to
The University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Mathematics
College of Engineering and Physical Sciences
The University of Birmingham
Sep 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Archive, E-theses Repository

https://core.ac.uk/display/210994141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

Abstract

The optimization models with sparsity arise in many areas of science and engineering,

such as compressive sensing, image processing, statistical learning and machine learning.

In this thesis, we study a general `0-minimization model, which can be used to deal

with many practical applications. It is therefore important to study both the theoretical

property and efficient algorithms for this sparsity model.

We characterize the nonuniqueness of the sparsest solutions of this model and show

the existence of a lower bound for the nonzero absolute entries of the solutions of this

model. We define the notation of an optimal weight, which ensures that the solution of

the weighted `1-minimization coincides with the sparsest solution of the corresponding

`0-model. The existence of an optimal weight for the weighted `1-minimization problem

will be shown as well.

Two types of re-weighted `1-algorithms will be developed in this thesis from both

the perspectives of primal and dual spaces, respectively. The primal re-weighted `1-

algorithms will be derived through the 1st order approximation of the so-called merit

functions for sparsity. The so-called dual re-weighted `1-algorithms for the general `0-

model will be developed based on the reformulation of the general `0-model as a certain

bilevel programming problem under the assumption of strict complementarity. Following

the development of these algorithms, we conduct numerical experiments to demonstrate

the efficiency of the primal and dual re-weighted `1-algorithms and compare with some

existing algorithms.

We also establish a general stability result for a class of `1-minimization approach

which is broad enough to cover many important special cases. We introduce the concept

of restricted weak RSP of order k which is a generalized version of the weak RSP of

order k. Unlike the existing stability results developed under the null space property and

restricted isotonic property, we use a classic Hoffman’s theorem to establish a restricted-

weak-RSP-based stability result for this class of `1-minimization approach.

Acknowledgments

It is great to have this opportunity to express my appreciation to the staff and my friends

who have supported my PhD study at the University of Birmingham.

Firstly, I would like to thank my supervisor Dr Yun-bin Zhao for his invaluable help

throughout my time in Birmingham. Without his support and encouragement in the last

four years, this PhD thesis would not be possible. He took me into the field of optimization

with sparsity and gave me immense instruction and support, especially when I faced a

challenging research question. I would also like to acknowledge the generosity and kindness

of his wife Lily and his daughter Jessie.

I would also like to thank my co-supervisor Prof Michal Kočvara for his guidance and

support, especially for his advice on my second year thesis. I should acknowledge a debt

to the other staff in the optimization group at the School of Mathematics, University of

Birmingham: Dr Sergey Sergeev, Dr Sándor Zoltán Németh and Prof Peter Butkovic. I

would like to thank Dr Sergey Sergeev for being my interior examiner of my thesis for

four years, and I also appreciate for his earnest reading and helpful comments on my

thesis. I also express my thanks to all my friends (especially, Wenxin Zhang, Meng Nan

and Dr Guohan Zhang). I would give a special thanks to Yue Wang for her support and

forbearance.

Finally, I am deeply grateful to my parents Jiang Xu and Hong Li for their constant

encouragement and endless love throughout my study at the University of Birmingham,

especially during the hard-working period of my PhD project.

contents

1 Introduction 1

1.1 Model . 1

1.1.1 Two special cases . 3

1.2 Some applications . 4

1.2.1 Compressive sensing (CS) . 4

1.2.2 1-bit compressive sensing (1-bit CS) 6

1.2.3 Fused Lasso . 7

1.2.4 Low-rank matrix recovery . 8

1.3 Main research work . 9

1.3.1 Properties of solutions to (P0) . 10

1.3.2 Equivalence of weighted `1- and `0-problems via optimal weights . . 10

1.3.3 Algorithmic development . 11

1.3.4 Stability analysis . 16

1.4 Preliminary, terminology and notation . 17

2 Nonuniqueness and Lower Bounds of Solutions of General `0-minimization 19

2.1 Properties of solutions of model (P0) . 19

2.2 Multiplicity of sparsest solutions of model (P0) 26

2.3 Lower bound for nonzero absolute entries of solutions 37

2.4 Approximation of general `0-minimization 40

3 General Weighted `1-minimization: Existence and Bilevel Model for Op-

timal Weights 43

3.1 Introduction . 44

3.2 General weighted `1-minimization model 46

3.3 Existence of optimal weights for finding sparsest points 47

3.4 Duality and complementary conditions . 52

3.4.1 Dual problem of (Pw1) . 53

3.4.2 Strong duality between (Pw1) and (Dw1) 56

3.4.3 Optimality condition for (Pw1) and (Dw1) 59

3.4.4 Complementary and strictly complementary conditions 61

3.5 Optimal weights via bilevel programming 70

4 Primal and Dual Re-weighted `1-algorithms 76

4.1 Introduction . 76

4.2 Merit functions for sparsity . 77

4.3 Re-weighted `1-algorithms in primal space 82

4.3.1 Approximation by first-order method 83

4.3.2 Re-weighted `1-algorithm via first-order approximation 84

4.3.3 Convergence of PRA . 85

4.3.4 Numerical performance . 87

4.4 Dual weighted `1-algorithm for solving (P0) 94

4.4.1 Relaxation model 1 . 95

4.4.2 Relaxation model 2 . 99

4.4.3 Relaxation model 3 . 104

4.4.4 Summary of dual `1-algorithms . 108

5 Numerical Performance of Dual Re-weighted `1-algorithms 110

5.1 Merit functions and parameters . 111

5.1.1 Environment of experiemnts . 112

5.1.2 Choosing merit functions . 112

5.1.3 Choice of parameters . 115

5.2 B = 0 and b = 0 . 122

5.3 B = −I and b = 0 . 125

5.4 Monotone sparse model . 127

5.5 B ∈ R15×200 . 129

5.6 B ∈ R50×200 . 131

5.7 The influence of ε . 133

6 Stability of `1-minimization Methods under Restricted Range Space

Property 136

6.1 Introduction . 136

6.2 Basic facts and restricted weak RSP . 138

6.2.1 Hoffman theorem . 138

6.2.2 Restricted weak RSP of order k . 138

6.2.3 Polytope approximation of unit ball B 140

6.3 Approximation of the solution set of (6.5) 142

6.4 Approximation of (6.2) . 144

6.5 Main stability theorem . 146

7 Conclusions and Future Work 161

7.1 Conclusions . 161

7.2 Future work . 164

List of References 165

List of Figures

1.1 The graphs of ‖x‖0, log(|x| + 1), ‖x‖1, ‖x‖
p
p , p = 0.25 and 0.5 in 1-

dimensional space . 14

4.1 The success rate of finding a sparse vector in T via CWB, REW1, REW2

and ARCTAN with Gaussian matrices A ∈ R50×200, B ∈ R15×200 and

(ε, ε) = (10−4, 10−1). For each sparsity of ‖x‖0 6 35, 200 trials were

performed. 89

4.2 The success rate of finding the sparse vectors in T via CWB, REW1, REW2

and ARCTAN with Gaussian matrices A ∈ R50×200 and B ∈ R30×200 and

(ε, ε) = (10−4, 10−1). For each sparsity of ‖x‖0 6 40, 200 trials were made. 90

4.3 The success rate of finding the sparse vectors in T via CWB, REW1, REW2

and ARCTAN with Gaussian matrices A ∈ R50×200 and B ∈ R50×200 and

(ε, ε) = (10−4, 10−1). For each sparsity of ‖x‖0 6 45, 200 trials were

performed. 91

4.4 Empirical resluts of the frequency of success of REW1 with different ε in

locating the sparse vectors in T . The Gaussian matrices are of the size:

A ∈ R50×200 and B ∈ R40×200. For each sparsity level of ‖x‖0 6 40, 200

trials were made. 93

4.5 Empirical resluts of the frequency of success of ARCTAN with different ε

in locating the sparse vectors in T where A ∈ R50×200 and B ∈ R40×200 are

Gaussian matrices. For each sparsity level of ‖x‖0 6 40, 200 trials were

made. 93

4.6 Comparsion of success rate of CWB, ARCTAN and REW1 with (4.20) in

finding the sparse vectors in T where A ∈ R50×200 and B ∈ R40×200 are

Gaussian matrices. For each sparsity level of ‖x‖0 6 40, 200 trials were

made. 94

5.1 The performance of DWA(I) in finding the sparsest points in T via different

bounded merit functions Ψ ∈ F. Each algorithm is tested by using 200

randomly generated examples with Gaussian matrices A ∈ R50×200 for each

sparsity level from 1 to 25. 113

5.2 The performance of DWA(VI) with different functions f(λ6) in finding the

sparsest points in T . Each algorithm is tested by using 200 randomly

generated examples with Gaussian matrices A ∈ R50×200 for each sparsity

level from 1 to 25. 114

5.3 Parameter choices for DRA(III). Comparison of the performance of DRA(III)

with different M∗ in (i), M in (ii) and α in (iii). Each algorithm is

tested by using 200 randomly generated examples with Gaussian matrices

A ∈ R50×200 for each sparsity level from 1 to 25. All re-weighted algorithms

are performed only one iteration for each example. 116

5.4 Parameter choices for DRA(IV). Comparison of the performance of DRA(IV)

with different M in (i), in α (ii) and σ1 in (iii). Each algorithm is tested

by using 200 randomly generated examples with Gaussian matrices A ∈

R50×200 for each sparsity level from 1 to 25. All re-weighted algorithms are

performed only one iteration for each example. 117

5.5 Parameter choices for DRA(V). Comparison of the performance of DRA(V)

with different M∗ in (i), M in (ii) and γ in (iii). Each algorithm is tested

by using 200 randomly generated examples with Gaussian matrices A ∈

R50×200 for each sparsity level from 1 to 25. All re-weighted algorithms are

performed only one iteration for each example. 119

5.6 Parameter choices for DRA(VI). Comparison of the performance of DRA(VI)

with different M in (i), γ in (ii) and σ1 in (iii). Each algorithm is tested

by using 200 randomly generated examples with Gaussian matrices A ∈

R50×200 for each sparsity level from 1 to 25. All re-weighted algorithms are

carried out only one iteration for each example. 120

5.7 (i)-(iii) Comparison of the performance of the dual re-weighted algorithms

by using one iteration and five iterations. (iv)-(v) Comparison of the per-

formance of CWB and ARCTAN when ε = 0.1 or ε is updated by (4.20).

Each algorithm is tested by using 200 randomly generated examples with

Gaussian matrices for each sparsity level from 1 to 30. All the examples

are with random matrix A ∈ R50×200, B = 0 and b = 0. 122

5.8 Comparison of the performance of the dual re-weighted `1-algorithms and

primal re-weighted algorithms using updated ε in the case ofA ∈ R50×200, B =

0 and b = 0. Each algorithm is tested by using 200 randomly generated

examples with Gaussian matrices for each sparsity level from 1 to 30. All

re-weighted algorithms are performed five iterations for each example. . . 124

5.9 (i)-(iii) Comparison of the performance of the dual re-weighted algorithms

with one iteration and five iterations. (iv) Comparison of the performance

of primal re-weighted algorithms when ε = 0.1 or ε is updated by (4.20).

Each algorithm is tested by using 200 randomly generated examples with

Gaussian matrices for each sparsity level from 1 to 40. All the examples use

random matrices of size A ∈ R50×200 and B ∈ R15×200. (v)-(vi) Comparison

of the performance of dual re-weighted algorithms with (4.29) or (4.30) . . 125

5.10 Comparison of the performance of the dual re-weighted algorithms and pri-

mal re-weighted algorithms using updated ε in the case of A ∈ R50×200, B =

−I and b = 0. Each algorithm is tested by using 200 randomly generated

examples with Gaussian matrices for each sparsity level from 1 to 40. All

re-weighted algorithms are performed five iterations for each example. . . 126

5.11 (i)-(iii) Comparison of the performance of the dual re-weighted algorithms

with one iteration and five iterations. (iv)-(v) Comparison of the perfor-

mance of primal re-weighted algorithms with five iterations. All of exper-

iments are implemented in the case that A ∈ R50×200 and B and b are

given as (1.4). Each algorithm is tested by using 200 randomly generated

examples with Gaussian matrices for each sparsity level from 1 to 30. . . . 127

5.12 Comparison of the performance of the dual re-weighted algorithms and pri-

mal re-weighted algorithms using updated ε in the case of random Gaussian

matrices A ∈ R50×200 and B = 0 and b = 0. Each algorithm is tested by

using 200 randomly generated examples for each sparsity level from 1 to 30.

All re-weighted algorithms are performed five iterations for each example. 128

5.13 (i)-(iii) Comparison of the performance of the dual re-weighted algorithms

with one iteration and five iterations. (iv) Comparison of the performance

of unified re-weighted algorithms with ε = 0.1. Each algorithm is tested by

using 200 randomly generated examples with Gaussian matrices for each

sparsity level from 1 to 35. The size of matrices in these examples are

A ∈ R50×200 and B ∈ R15×200. (v)-(vi) Comparison of the performance of

dual re-weighted algorithms with W (4.29) or (4.30) 129

5.14 Comparison of the performance of the dual re-weighted algorithms and

primal re-weighted algorithms in the case of A ∈ R50×200 and B ∈ R15×200.

Each algorithm is tested by using 200 randomly generated examples with

Gaussian matrices for each sparsity level from 1 to 35. All re-weighted

algorithms are performed five iterations for each example. 130

5.15 (i)-(iii) Comparison of the performance of the dual re-weighted algorithms

with one iteration and five iterations. (iv) Comparison of the performance

of primal re-weighted algorithms with ε = 0.1 and 10−5. Each algorithm is

tested by using 200 randomly generated examples with Gaussian matrices

for each sparsity level from 1 to 45. The size of matrices in these examples

are A ∈ R50×200 and B ∈ R50×200. (v)-(vi) Comparison of the performance

of dual re-weighted algorithms with (4.29) or (4.30) 131

5.16 Comparison of the performance of the dual re-weighted algorithms and uni-

fied re-weighted algorithms using updated ε in the case of A ∈ R50×200 and

B ∈ R50×200. Each algorithm is tested by using 200 randomly generated

examples with Gaussian matrices for each sparsity level from 1 to 45. All

re-weighted algorithms perform five iterations for each example. 132

5.17 Comparison of the performance of dual re-weighted algorithms with dif-

ferent ε in the case of A ∈ R50×200 and B ∈ R40×200. Each algorithm is

tested by using 200 randomly generated examples with Gaussian matrices

for each sparsity level from 1 to 40, and performed five iterations for each

example. 133

5.18 Comparison of the performance of dual re-weighted algorithms with ε =

10−15 in the case of A ∈ R50×200 and B ∈ R40×200. Each algorithm is tested

by using 200 randomly generated examples with Gaussian matrices for each

sparsity level from 1 to 40, and performed five iterations for each example. 134

5.19 Comparison of the performance of dual re-weighted algorithms with ε =

10−15 and primal re-weighted algorithms with ε = 10−1 in the case of

A ∈ R50×200 and B ∈ R40×200. Each algorithm is tested by using 200

randomly generated examples with Gaussian matrices for each sparsity

level from 1 to 40, and performed five iterations for each example. 134

List of Tables

4.1 Algorithms to be tested . 88

4.2 Convexity and concavity of composition 103

4.3 Dual Weighted `1-algorithms and Dual Re-weighted `1-algorithms 109

5.1 Parameters in dual re-weighted `1-algorithms 115

5.2 Default parameters in each dual re-weighted `1-algorithm 121

6.1 The constant Υ̂ . 158

6.2 The constant Υ̂′ . 160

Chapter 1

Introduction

Many practical applications in science and engineering, for example, compressive sensing,

signal and image processing, machine learning and statistical regressions can be formu-

lated as the optimization problem with sparsity. The purpose of this thesis is to study

some theoretical properties (including stability) and efficient convex optimization algo-

rithms for a class of sparse optimization problems, called the general `0-minimization

problem. Two types of algorithms are developed for this sparsity model: primal re-

weighted `1-algorithms and dual re-weighted `1-algorithms. The numerical behaviours of

our algorithms are also investigated. Using a certain matrix condition, a stability result

for a class of convex optimization algorithms for the sparsity problems is also shown,

which includes several existing results as special cases.

1.1 Model

We consider a new sparsity model, which is called general `0-minimization in this thesis:

(P0) min
x∈Rn

‖x‖0

s.t. ‖y − Ax‖2 6 ε,

Bx 6 b,

(1.1)

where A ∈ Rm×n and B ∈ Rl×n are two matrices with m � n and l ≤ n, y ∈ Rm

and b ∈ Rl are two given vectors, and ε ≥ 0 is a given parameter, and ‖x‖0 represents

1

the number of nonzero components of the vector x, and ‖x‖2 = (
∑n

i=1 |xi|
2)1/2 is `2-

norm on Rn. In compressive sensing (CS), the parameter ε is used to estimate the level of

measurement error e = y−Ax. The existence of error e is natural since the measurements

y may not be accurate and thus might not exactly equal to Ax. Clearly, the purpose of

(1.1) is to find the sparsest point in the convex set T , which is defined as

T = {x : ‖y − Ax‖2 6 ε, Bx 6 b}. (1.2)

The constraint Bx ≤ b is motivated by some practical applications. For instance, many

signal recovery models might not only include y = Ax or ‖y − Ax‖2 6 ε as constraints,

but also need to impose extra conditions in order to reflect certain special structures of the

target signals. This motivates us to consider the general `0-minimization model (1.1). In

the next section, we will point out that this model covers several important applications in

such areas as compressive sensing, 1-bit compressive sensing and statistical regression, and

it is closely related to machine learning and low-rank matrix recovery. We also consider

another general sparsity model as follows:

min
x∈Rn

‖x‖0

s.t. a1 ‖y − Ax‖2 + a2

∥∥UT (Ax− y)
∥∥
∞ + a3

∥∥UT (Ax− y)
∥∥

1
≤ ε,

Bx ≤ b,

(1.3)

where ε is a given parameter, and A ∈ Rm×n (m � n) and U ∈ Rm×h are two matrices

with full row rank, and a1, a2 and a3 are three given parameters satisfying ai ∈ [0, 1] and∑3
i=1 ai = 1, and ‖x‖1 =

∑n
i=1 |xi| and ‖x‖∞ = maxni=1 |xi| are `1- and `∞-norms on

Rn, respectively. Both of the problems (1.1) and (1.3) are two state-of-the-art sparsity

problems which have never been studied before.

2

1.1.1 Two special cases

Monotone sparse model. When B and b are given as

B =

−1 1

−1 1

.

−1 1

∈ R(n−1)×n, and b =

0

0

...

0

∈ Rn−1, (1.4)

then (1.1) is reduced to the following structured sparsity model:

min
x
{‖x‖0 : ‖y − Ax‖2 6 ε, x1 > x2 > · · · > xn} . (1.5)

The aim of this model is to find the sparsest point with monotonically descent entries in

the convex set

T1 = {x : ‖y − Ax‖2 6 ε, x1 > x2 > · · · > xn}.

Moreover, when A is the identity matrix and B and b are given as above, the model (1.1)

is closely related to the following problem:

min
x

{ n∑
i=1

(yi − xi)2 : s.t. x1 > x2 > · · · > xn, ‖x‖0 ≤ r

}
.

Without the sparsity constraint ‖x‖0 ≤ r, this problem is called the isotonic regression

problem (Tibshirani, Hoefling and Tibshirani [84], Hastie, Tibshirani and Wainwright

[82]).

Nonnegative sparse model. If B and b are given as

B = −I ∈ Rn×n and b = (0, ..., 0)T ∈ Rn, (1.6)

3

then (1.1) is reduced to the following nonnegative sparse model:

min
x
{‖x‖0 : ‖y − Ax‖2 6 ε, x ≥ 0} , (1.7)

which is to hunt for the sparsest points in the convex set

T2 = {x : ‖y − Ax‖2 6 ε, x ≥ 0}.

The model (1.7) is closely related to the Nonnegative Garrote with sparsity [82], i.e.,

{
min
x

m∑
i=1

(
yi −

n∑
j=1

xjaij

)2

: x ≥ 0, ‖x‖0 6 τ

}
,

where aij is the entry in the ith row and jth column of A and τ is a given parameter.

1.2 Some applications

We shall briefly introduce several applications which can be formulated as or be closely

related to the model (1.1).

1.2.1 Compressive sensing (CS)

Compressive sensing (compressed sensing or compressive sampling) has attracted plenty

of attention in signal and image processing [18,20,21,33]. It was first studied by Donoho,

Candès, Tao, Romberg and others [18,20,31,33] and was one of the important and exten-

sively studied areas in the past decade in science and engineering [7,18,30,33,68,86,97,99].

The sparsity is a key assumption in CS theory and its applications, and it has become

an important tool to deal with many applications in the field of information science and

applied mathematics. Before further discussion, let us define the k-sparse vectors.

Definition 1. [21] Let x ∈ Rn be a vector. If the number of non-zero components of x

does not exceed k, i.e.,

‖x‖0 := |{i : xi 6= 0}| ≤ k,

4

then x is called a k-sparse vector, where ‖x‖0, called the `0-norm, denotes the number of

nonzero components of x.

In signal processing, the measurements y ∈ Rm can take the form

y = Ax,

where x ∈ Rn is the signal to recover, and A ∈ Rm×n is the measurement matrix. When

m < n, (i.e., the number of measurements is lower than the signal dimension), the above

linear system is underdetermined. Therefore it is impossible to reconstruct a signal from

such a linear system unless certain additional information is available. Compressive sens-

ing assumes that the signal to recover is sparse. Therefore to recover the signal, one may

solve the `0-minimization problem:

min
x
‖x‖0

s.t. y = Ax,
(1.8)

where A ∈ Rm×n withm� n and y ∈ Rm are given measurements. Based on this, finding

the original sparse signal by an underdetermined system of linear equations can be actu-

ally achieved by developing efficient algorithms for this model. However, measurements

are often inaccurate or incomplete in many situations due to measurement errors, missing

values or unavoidable noises. In such cases, we hope that the error between the measure-

ments y and the information data Ax can be bounded in a certain way. As a result, the

following sparsity optimization model with `2-norm constraint is also commonly used in

CS:

min
x

‖x‖0

s.t. ‖y − Ax‖2 6 ε.

(1.9)

The following two sparse optimization problems are closely related to the problems (1.8)

5

and (1.9):

min
x

‖y − Ax‖2

s.t. ‖x‖0 6 τ,

(1.10)

and

min
x
‖y − Ax‖2 + λ ‖x‖0

where τ and λ are two given positive parameters. Replacing ‖x‖0 by ‖x‖1 leads to

two relaxation problems [43, 82] which are widely used in statistical regression and CS.

Obviously, both the standard CS problems (1.8) and (1.9) are the special cases of (1.1).

1.2.2 1-bit compressive sensing (1-bit CS)

The 1-bit compressive sensing has also attracted some attention in the field of signal

processing [9, 10, 50, 57, 58, 88, 100]. As shown above, a sparse signal is possible to be

recovered even when the number of measurements is less than the signal length. However,

the fine measurements impose a heavy burden on the measurement system, and require

more processing time and storages. The 1-bit CS requires only one bit of measurements,

for instance, only the sign of measurements. Zhao and Xu [100] have shown that in some

situations, it is possible to have a sign recovery of the signal from 1-bit measurements.

A typical 1-bit CS problem is modelled as follows:

min
x
‖x‖0

s.t. y = sign(Ax),
(1.11)

where A ∈ Rm×n is the sensing (measurement) matrix and y ∈ {−1, 0, 1}m is the sign

measurements. Let S+, S− and S0 be the three sets, i.e.,

S+ = {i : yi = 1}, S− = {i : yi = −1}, S0 = {i : yi = 0}.

6

Indexed by S+, S− and S0, the constraints in (1.11) can be rewritten as

sign(AS+,nx) = eS+ , sign(AS−,nx) = −eS− and sign(AS0,nx) = 0,

where AS+,n, AS−,n and AS0,n are the submatrices of A which decompose A according

to the row indices S+, S− and S0. The vectors eS+ and eS− denote the vectors of ones.

By introducing a positive parameter ρ, Zhao and Xu have shown that [100] the 1-bit CS

model (1.11) can be reformulated as the following `0-minimization model:

min
x
‖x‖0

s.t. AS+,nx ≥ ρeS+ , AS−,nx ≤ −ρeS− , AS0,nx = 0.
(1.12)

Clearly, the model (1.12), the reformulation of 1-bit CS model (1.11), is a special case of

our model (1.1), corresponding to the case where (A,B, y, b, ε) are of the form

A = AS0,n ∈ R|S0|×n, B =

 −AS+,n

AS−,n

 ∈ R(|S+|+|S−|)×n, and b =

 −ρeS+

−ρeS−

 ∈ R(|S+|+|S−|),

y = 0 and ε = 0.

1.2.3 Fused Lasso

In many situations, noise data are frequently incurred in measurements or sampling data.

A high noise level may cause the signal recovery or statistical regression to fail. As one of

important methods to deal with the high-level noise data, the so-called Fused Lasso (least

absolute shrinkage and selection operator) is introduced (see, e.g. [52,59,72,81,83]). The

Fused Lasso model with sparsity is stated as follows:

min
x

λ1 ‖x‖0 + λ2 ‖Dx‖0 + ‖y − x‖2
(1.13)

7

where

D =

1 −1

1 −1

.

1 −1

∈ R(n−1)×n

and λ1 and λ2 are the nonnegative regularization weights. Replacing ‖·‖0 by ‖·‖1 in

(1.13), the solution to this `1-minimiation counterpart of (1.13) is called Fused Lasso

signal approximator [82]. Let

C =

 λ1I

λ2D

 ∈ R(2n−1)×n

be a matrix. Clearly, C is a full-column-rank matrix. Let C† = (CTC)−1CT ∈ Rn×(2n−1).

Then (1.13) is equivalent to

min
z
‖z‖0 +

∥∥y − C†z∥∥
2

which is closely related to the following model:

min
z
‖z‖0

s.t.
∥∥y − C†z∥∥

2
6 ε,

.

which is a special case of (1.1). It is worth mentioning that other statistical learning

problems can be also formulated or related to `0-minimization (1.8) (see. e.g. [5, 11, 17,

61,82]) and the general `0-minimization (1.1) (see. e.g. [54,87]).

1.2.4 Low-rank matrix recovery

In many practical situations, one needs to recover a matrix with low rank. The asso-

ciated problem is called low-rank matrix recovery [8, 12, 41, 43, 60, 91]. The problem is

often modelled as the so-called matrix rank minimization problem. Given a linear map

8

A : Rn1×n2 → Rm and a vector y ∈ Rm, the low-rank minimization problem is stated as

follows:
min
X

rank(X)

s.t. A(X) = y.
(1.14)

Consider the singular value decomposition of X ∈ Rn1×n2 , i.e.,

X =
n∑
i=1

σiuiv
∗
i ,

where n is the minimum number between n1 and n2, σ1 ≥ σ2 ≥ ... ≥ σn are the singular

values of X, u1 and v1 are the left and right singular vectors. Note that X has rank r if

and only if the singular value vector σ(X) = (σ1, ..., σn) is an r-sparse vector. Thus (1.14)

can be written as the following `0-model:

min
X
‖σ(X)‖0

s.t. A(X) = y.
(1.15)

This problem is more general than the standard `0-minimization problem in vector forms.

Based on the above observations, a generalised version of the low-rank minimization

problem can be obtained from the model (1.1) in matrix form.

1.3 Main research work

The research work carried out in this thesis includes the following four aspects:

(i). Properties of the solutions to (1.1);

(ii). Equivalence of weighted `1-minimization and `0-minimization via optimal weights;

(iii). Algorithms for solving (1.1);

(iv). Stability of `1-minimization algorithms.

In what follows, we briefly introduce the background (existing work) in these aspects and

the main outcome of our researches.

9

1.3.1 Properties of solutions to (P0)

The work carried out in this aspect is included in Chapter 2. Let us first review the

properties of the solutions to the standard `0-minimization (1.8). It is well-known that

the uniqueness of the solutions of (1.8) can be guaranteed if Null(A)
⋂

Σ2k = 0, where k

is the optimal value of (1.8), Null(A) is the null space of the matrix A and Σ2k denotes

the set of all 2k-sparse vectors, i.e., Σ2k = {x : ‖x‖0 ≤ 2k}. Based on such a fact,

several uniqueness conditions have been developed for the problem (1.8), such as mutual

coherence [38,55], Babel function [85], exact recovery condition (ERC) [38,43], NSP [28,89]

and RIP [19] also ensure that (1.8) has a unique solution. A good summary of such

uniqueness conditions can be found in Zhao [94].

Main work: In Chapter 2, we first develop a necessary condition for the vector x to

be the sparsest solution of (1.1). Since the model (1.1) is more complex than the standard

`0-minimization (1.8), the uniqueness of solutions of (1.1) is usually not ensured under

the similar conditions for the uniqueness of solutions to the standard `0-minimization

(1.8). In Chapter 2, we mainly show the nonuniqueness conditions for the solutions of

(1.1). Under a certain assumption, we also explore the existence of a lower bound for the

absolute nonzero components in the solution set of (1.1).

1.3.2 Equivalence of weighted `1- and `0-problems via optimal

weights

There are several existing conditions for `1-minimization counterpart of (1.8) being able to

exactly solve the standard `0-minimization (1.8). The conditions NSP of order k [28], RIP

of order 2k [21], mutual coherence [55] or RSP of order k [92] are sufficient conditions for

`1-minimization to exactly solve the problem (1.8). Moreover, the NSP of order k as well

as the RSP of order k is also the necessary conditions for the success of `1-minimization

in solving (1.8). Since the conditions NSP and RIP will be mentioned many times in this

thesis, we include their definitions here:

10

• (NSP of order k) A matrix A ∈ Rm×n is said to satisfy the null space property (NSP)

of order k if for any set Λ ⊂ {1, . . . , n} with |Λ| 6 k, ‖hΛ‖1 < ‖hΛ̄‖1 is satisfied for

any h ∈ Null(A) \ {0}, where Λ̄ = {1, ..., n} \ Λ, and hΛ is the subvector of h with

the components hi, i ∈ Λ.

• (RIP of order k) If there exists a constant δk ∈ (0, 1) such that for all k-sparse

vectors we have (1− δk) ‖x‖2
2 ≤ ‖Ax‖

2
2 ≤ (1 + δk) ‖x‖2

2 , then A is said to satisfy the

restricted isometry property (RIP) of order k.

Main work: In Chapter 3, we study the weighted `1-minimization model for the

`0-minimization problem (1.1) and address the issue of when these two problems are

equivalent. We introduce the concept of optimal weights which ensures the solution of

the weighted `1-problem is the sparsest solution of (1.1). We show the existence of such

an optimal weight for weighted `1-minimization. This provides a theoretical basis for the

development of the algorithms in later chapters. To provide a possible way to find an opti-

mal weight, we investigate the dual problem of the weighted `1-minimization counterpart

of (1.1), and study some properties, such as strong duality and strict complementarity

between the two problems. Based on this, we prove that as a certain bilevel programming

problem may provide an optimal weight.

1.3.3 Algorithmic development

Let us take (1.8) and (1.9) as examples to briefly introduce some existing approaches for

the standard `0-minimization (1.8) and (1.9). Directly solving (1.8) or (1.9) is generally

very difficult since the `0-norm is a nonlinear, nonconvex and discrete function. Although

(1.8) and (1.9) are NP-hard problems [1, 65], an efficient algorithm is needed from the

perspectives of both mathematics and applications. Some algorithms have been developed

for (1.8) and (1.9) over the past decade, including convex optimization, heuristic methods,

non-convex optimization and Bayes’ analysis. We briefly introduce the first three types

of methods. Let’s first recall the following definition:

11

Definition 2 (Lower Convex Envelope). The lower convex envelope f̃ of a function f on

the interval [a, b] is defined at each point of the interval as the supremum of all convex

functions that lie under that function, i.e.,

f̃(x) = sup{g(x) : g(x) is convex and g 6 f over[a, b]}.

Convex optimization methods. The `1-norm ‖x‖1 is the lower convex envelope of the

`0-norm ‖x‖0 over the set {x : ‖x‖∞ 6 1} [43]. Therefore, the `1-norm is often called the

convex relaxation of the `0-norm over the above set. By replacing the `0-norm in (1.9)

with the `1-norm, we obtain the following popular `1-minimization problem:

min
x

‖x‖1

s.t. ‖y − Ax‖2 6 ε,

(1.16)

which is called quadratically constrained basis pursuit [25,37,39,42,43,80]. Moreover, the

above model is also closely related to the Lasso problem [80,82]

min ‖y − Ax‖2

s.t. ‖x‖1 ≤ τ,
(1.17)

and the Dantzig Selector [23]

min ‖x‖1

s.t.
∥∥AT (y − Ax)

∥∥
∞ ≤ ε,

(1.18)

where τ and ε are given parameters. Note that when ε is 0, the problem (1.16) reduces

to the standard `1-minimization

min
x

‖x‖1

s.t. y = Ax,

(1.19)

12

which is also called basis pursuit, a popular method for solving (1.8) (see, e.g., [26], [38]).

Due to its convexity, `1-minimization has been widely used in CS to recover sparse signals.

Another effective convex method for solving `0-minimization problems is the so-called re-

weighted `1-minimization. Firstly, the weighted `1-minimization method [24,46] for (1.8)

and (1.9) can be stated respectively as follows:

min
x

‖Wx‖1

s.t. y = Ax,

(1.20)

and

min
x

‖Wx‖1

s.t. ‖y − Ax‖2 6 ε,

(1.21)

where W is a diagonal matrix, i.e., W = diag(w) where w ∈ Rn
+ is the vector of weights.

Re-weighted `1-minimization is a very useful method for solving sparse optimization prob-

lems (see [24], [97]). This method consists of solving a series of individual weighted `1-

minimization problems [3,4,24,46]. Taking (1.20) as example, the method solves a series

of the following problems:

(`kw) min
x

(wk)T |x|

s.t. y = Ax,
(1.22)

where k represents the kth iteration and wk can be updated by certain rules.

Non-convex optimization. Non-convex methods for solving `0-minimization usually

arise from the approximation of the `0-norm. The `0-norm can be approximated by

some concave merit functions for sparsity with a suitably choice of parameters. For

example, the log-type function
∑n

i=1 log(|xi|+ ε) and `p-quasinorm function ‖x‖pp , where

0 < p < 1. The concave merit functions for sparsity can approximate the `0-norm better

than the `1-norm (see e.g. [21], [8], [97]). We will discuss the merit functions for sparsity

in detail and give more specific examples in Chapter 4. Figure 1.1 shows the graphs of

13

`1-norm, `0-norm, log-type function log(|x| + 1), and the quasinorm function ‖x‖pp with

p = 0.25 and 0.5 respectively. Clearly, the log-type function and quasinorm functions, in

general, approximate the `0-norm better than the `1-norm. Because of this, (1.8) or (1.9)

can be well approximated by a certain concave minimization through a concave merit

function. Such a non-convex optimization can not only approximate `0-minimization

better than `1-minimization, but also may lead to efficient 1st-order-approximation-based

method (see Zhao [94,97]).

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
l1norm
log(|x|+1)
l0norm
lpnorm,p=0.5
lpnorm,p=0.25

Figure 1.1: The graphs of ‖x‖0, log(|x|+1), ‖x‖1, ‖x‖
p
p , p = 0.25 and 0.5 in 1-dimensional

space

The first-order method would yield a framework for the updating scheme for wk in (1.22).

For instance, Candès, Wakin and Boyd [24] proposed their re-weighted `1-algorithm for

(1.8) with the following updating scheme:

wk+1
i =

1

|xki |+ ε
, i = 1, ..., n.

After that, Needell analyzed re-weighted `1-minimization for (1.9) in [66] and showed that

the error bound for signal recovery can be tighter than that of standard `1-minimization

14

(1.16). The re-weighted `1-minimization (1.22) with

wk+1
i =

1

(|xki |+ ε)1−p , i = 1, ..., n

was analyzed in [42]. Zhao and Li [97] have investigated a unified method for a family of

re-weighted `1-minimization algorithms. The convergence of the re-weighted algorithms

was shown under some conditions in [27], [56] and [97]. Both `1-minimization and re-

weighted `1-minimization are popular methods for signal recovery. The former is very

easy to implement and has a good performance on recovering sparse signals while the

latter has a better success rate on sparse signal recovery than `1-minimization when the

initial point is suitably chosen, see, e.g., [24, 27,42,56,97].

Heuristic. Some heuristic and greedy algorithms for (1.8) have also been widely studied

in the CS literature, such as orthogonal matching pursuit [32, 62, 68, 79, 86], compressive

sampling matching pursuit [43, 67], subspace pursuit [7, 43], and thresholding algorithms

[7, 30,38,43].

Main work: In Chapters 4 & 5, we only consider the convex and nonconvex optimization

methods for the `0-minimization model (1.1). In Chapter 4, we introduce a new merit

function and define a set of merit functions for sparsity. By using such merit functions,

we develop the primal re-weighted `1-algorithm, based on the idea of Zhao & Li [97].

Following that, we propose some new convex relaxations to the bilevel programming

model developed in Chapter 2, and in the meantime, we also use the relaxation method

provided by Zhao and Kočvara [96] and Zhao and Luo [99]. Three types of relaxation

models for the bilevel problem will be developed, by which the three types of new dual

re-weighted `1-algorithms will be developed. Chapter 5 presents detailed numerical results

regarding the choice of the default parameters and merit functions for the dual algorithms

and also provides comparisons of the performance of the proposal algorithms and existing

ones. We also implement the primal and dual algorithms for different cases of B and b

including: (i) B and b are given as in (1.4); (ii) B, b are given as in (1.6); (iii) B = 0 and

15

b = 0; (iv) B is a randomly generated matrix.

1.3.4 Stability analysis

Stability of an algorithm for CS means that when the signal is not exactly k-sparse or

the measurements are slightly inaccurate, the error between the solution obtained by an

algorithm and the sparse signal can be controlled in terms of the measurement error as

well as the error of the k-term approximation of the signal. The error of the best k-term

approximation of a vector (x) is defined as follows [28]:

σk (x)p = min
z∈Σk
‖x− z‖p , (1.23)

where ‖·‖p is the `p-norm for p ≥ 1 and Σk is the set of k-sparse vectors. Clearly, the

best k-term approximation of x is obtained by holding the largest k absolute entries of

x and setting the remaining components to 0. Obviously, x is k-sparse if and only if its

best k-term approximation error is 0.

For the models (1.19) and (1.16), and any x ∈ Rn in the feasible set of these problems,

if the solution x# of (1.19) or (1.16) satisfies the following bounds:

∥∥x− x#
∥∥ 6 C0σk(x)p (1.24)

for (1.19) and ∥∥x− x#
∥∥ 6 C1σk(x)p + C2ε (1.25)

for (1.16), then (1.19) and (1.16) are said to be stable for the recovery of a signal or

locating the solution of `0-minimization problem. In the CS scenarios, to ensure an

algorithm being stable, the sensing matrix A must satisfy a certain property, such as the

stable NSP of order k [13, 28, 40, 77, 89], RIP of order 2k [2, 14–16, 19–21, 42, 64], singular

minmial value [78] and weak RSP of order k [92–95,100]. Meanwhile, the constants C0, C1

and C2 in (1.24) and (1.25) are determined by NSP or RIP constant when the sensing

matrix A satisfies the stable NSP of order k [13, 43, 77] or RIP of order 2k [21, 22, 43].

16

However, in [94,95], these constants are determined by the so-called Robinson’s constant

when AT satisfies weak RSP of order k.

Main work: In Chapter 6, we study the stability of a class of `1-minimization asso-

ciated with (1.3). For general `1-minimization methods, it seems difficult to study the

stability under the NSP of order k or RIP of order 2k since the problem includes more

complicated constraints than (1.19) and (1.16). Different from NSP and RIP, the RSP

condition is derived from the classic optimality conditions of (1.19), so the RSP condi-

tion is more adaptive to the structure of the problem. In Chapter 6, we introduce the

so-called restricted weak RSP of order k, under which, a general stability result for the

`1-minimization associated with (1.3) is established. It includes several existing stability

results as special case.

1.4 Preliminary, terminology and notation

Definition 3. A nonnegative function ‖·‖: X −→ [0,+∞) is called a norm if it satisfies

the following properties:

(A1). ‖x‖ = 0 if and only if x = 0;

(A2). ‖λx‖ = |λ| ‖x‖ where λ is a real number;

(A3). ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for any x, y.

It is well known that ‖x‖p = (
∑n

i=1 |xi|
p)1/p, p ≥ 1, is a norm, called `p-norm on Rn. The

following Hölder inequality is stated in terms of `p-norm.

Lemma 4. For any p, q ∈ [1,∞] such that 1/p + 1/q = 1 (admitting 1/∞ = 0 and

1/0 =∞), one has ∣∣xTy∣∣ ≤ ‖x‖p ‖x‖q .
The matrix norm can be also defined in terms of the `p-norm of vectors.

17

Definition 5. For 1 ≤ p, q ≤ ∞, the matrix norm ‖A‖p→q is defined as follows

‖A‖p→q = sup
‖x‖p≤1

‖Ax‖q .

Notation : Unless otherwise stated, the identity matrix of a suitable size is denoted by

I. The field of real numbers is denoted by R and the n-dimensional Euclidean space is

denoted by Rn. Let Rn
+ be the set of nonnegative vectors in Euclidean space and Rn

− be the

set of the nonpositive vectors. Given a vector u ∈ Rn, |u|, (u)+ and (u)− denote the vectors

with components |u|j = |uj|, [(u)+]j = max{uj, 0} and [(u)−]j = min{uj, 0}, j = 1, ..., n,

respectively. The cardinality of the set S is denoted by |S| and the complementary set

of S ⊆ {1, ..., n} is denoted by S̄, i.e., S̄ = {1, ..., n} \ S. For a given vector x ∈ Rn,

denoted by xS, the vector supported on S. Given a matrix A, ai,j denotes the entry of A

in row i and column j. For two sets S ⊆ {1, ..., n} and T ⊆ {1, ...,m}, AT,S denotes the

submatrix of A ∈ Rm×n with components ai,j, i ∈ T, j ∈ S, and AS denotes the submatrix

of A ∈ Rm×n obtained by deleting the columns indexed by S̄. For a matrix A = (ai,j),

|A| represents the absolute version of A, i.e., |A| = (|ai,j|). R(AT) = {ATy : y ∈ Rm}

denotes the range space of AT .

18

Chapter 2

Nonuniqueness and Lower Bounds of Solutions of
General `0-minimization

In this chapter, we discuss some fundamental properties of the general `0-minimization

problem (P0) given in (1.1). This chapter is organized as follows. In Section 2.1, we show

some theoretical properties of this model such as the necessary conditions for a point

being the sparsest solution to this model. Section 2.2 demonstrate the nonuniqueness of

the sparsest solutions of the model, respectively. In Section 2.3, the existence of a positive

lower bound for the nonzero absolute entries of the sparsest points will be proven under

some conditions. An approximation and the `1-minimization counterpart of (1.1) will be

introduced in the final section.

2.1 Properties of solutions of model (P0)

We first develop some necessary conditions for a point to be the solution of (1.1), which

are summarized in the following Theorem 6 and Lemma 8.

Theorem 6. If x∗ is a sparsest solution to (1.1) where A ∈ Rm×n and B ∈ Rl×n with

columns ai (i = 1, 2, ..., n) and bi (i = 1, 2, ..., n) respectively, then

Null(AS) ∩ Null(BS) = {0},

where S ⊆ {1, 2, . . . , n} is the support set of x∗, AS denotes the submatrix of A with

19

columns ai, i ∈ S, and BS denotes the submatrix of B with columns bi, i ∈ S.

Proof. Let x∗ be a sparsest solution of (1.1) and k be the optimal value of (1.1). We

prove this by contradiction. If Null(AS) ∩ Null(BS) 6= {0}, there exists a nonzero vector

∆x ∈ Rn with ∆xS 6= 0 such that AS∆xS = 0 and BS∆xS = 0. The above linear

equalities can be written as

∑
i∈S

ai∆xi = 0,
∑
i∈S

bi∆xi = 0. (2.1)

Since ∆xS 6= 0, there is a nonzero component ∆xj, where j ∈ S, such that the corre-

sponding aj and bj can be represented as the linear combination of the other columns,

that is,

aj = −
∑

i∈S,i6=j

ai
∆xi
∆xj

, bj = −
∑

i∈S,i6=j

bi
∆xi
∆xj

. (2.2)

We know that x∗ satisfies the following system

‖y − Az‖2 6 ε, Bz 6 b, (2.3)

which can be rewritten as

∥∥∥∥∥y −
(∑
i∈S,i6=j

aix
∗
i

)
− ajx∗j

∥∥∥∥∥
2

6 ε,

(∑
i∈S,i6=j

bix
∗
i

)
+ bjx

∗
j 6 b.

Substituting aj and bj in (2.2) into the above system yields

∥∥∥∥∥y − ∑
i∈S,i6=j

(
x∗i −

∆xi
∆xj

x∗j

)
ai

∥∥∥∥∥
2

6 ε,
∑

i∈S,i6=j

(
x∗i −

∆xi
∆xj

x∗j

)
bi 6 b. (2.4)

The inequalities in (2.4) imply that the vector x̄, with ‖x̄‖0 6 k − 1 and constructed

x̄i =

x∗i − ∆xi

∆xj
x∗j , i ∈ S, i 6= j

0, i = j

0, i /∈ S

,

20

satisfies the conditions in (2.3). This means that x̄ is a sparser solution of (1.1) than x∗.

This is a contradiction. The desired result follows.

Note that Null(AS)∩Null(BS) = {0} means

 A

B

S

has full column rank. We make

the following comments for the condition Null(AS) ∩ Null(BS) = {0}.

Remark 7. Let x∗ be an arbitrary sparsest point in T given in (1.2) and S be the support

of x∗. It can be seen that Null(AS) ∩ Null(BS) = {0} has some equivalent forms. Since

BSx
∗
S ≤ b can be separated or decomposed by active and inactive constraints, the following

conditions can be regarded as the equivalent conditions for Null(AS) ∩ Null(BS) = {0}:

• Null(AS) ∩ Null
(
BI,S
BĪ,S

)
= {0};

• Null(AS) ∩ Null(BI,S) ∩ Null(BĪ,S) = {0};

• Null
(
AS
BI,S

)
∩ Null(BĪ,S) = {0};

where I ⊆ {1, 2, . . . ,m} is the index set of active constraints in BSx
∗
S 6 b and Ī =

{1, 2, . . . ,m} \ I is the index set of inactive constraints in BSx
∗
S 6 b, BI,S denotes the

submatrix of B with components bi,j, i ∈ I, j ∈ S and BĪ,S denotes the submatrix of B

with components bi,j, i ∈ Ī , j ∈ S.

One may ask which condition can ensure Null
(
AS
BI,S

)
= {0}. Let |I(x)| be the cardinality

of active constraints in Bx 6 b with respect to x. Denote the sparsest solution set by

Λ = {x ∈ Rn : ‖x‖0 = k, x ∈ T}, (2.5)

where k is the optimal value of (1.1). We have the following lemma. The proof of this

lemma follows the idea of Lemma 3.3 in [100].

Lemma 8. Let x∗ be a sparsest solution to (1.1) and S be the support of x∗. If x∗ admits

21

the maximum cardinality of I(x), x ∈ Λ, i.e., |I(x∗)| = max{|I(x)| : x ∈ Λ}, then

M∗ =

 AS

BI,S

 (2.6)

has a full column rank where I is the index set of active constraints in Bx∗ 6 b, i.e.,

I = I(x∗).

Proof. Suppose that x∗ is the sparsest solution to (1.1) which satisfies the assumption in

Lemma 8. We now prove that Null(M∗) = {0}, i.e., M∗ has a full column rank. We prove

this fact by contradiction.

Assume that Null(M∗) 6= {0}. Then there exists a nonzero vector ∆x with ∆xS̄ = 0

and ∆xS 6= 0 such that

AS∆xS = 0 and BI,S∆xS = 0 (2.7)

Then we construct a new vector x̄(λ) such that

x̄(λ) = x∗ + λ∆x

where λ is a parameter. Clearly, x̄(λ) continuously changes with λ and

supp(x̄(λ)) ⊆ supp(x∗) and ‖x̄(λ)‖0 6 ‖x
∗‖0 (2.8)

for all λ. If x̄(λ) satisfies the following system:

‖y − ASzS‖2 6 ε, BI,SzS 6 bI , BĪ,SzS 6 bĪ , (2.9)

then x̄(λ) is a feasible solution to (1.1), and hence x̄(λ) is a sparsest solution to (1.1)

which follows from (2.8) and the fact that x∗ is a sparsest solution. We now prove that

there exists a nonzero λ such that x̄(λ) satisfies the system (2.9). Based on (2.7), the

22

following two constraints are satisfied for all λ:

‖y − ASx̄S(λ)‖2 6 ε, BI,Sx̄S(λ) = bI . (2.10)

We only need to check if x̄(λ) satisfies the third inequality in (2.9). First we denote three

disjoint sets J+, J−, J0 as follows,

J+ = {j : (BĪ,S∆xS)j > 0}, J− = {j : (BĪ,S∆xS)j < 0}, J0 = {j : (BĪ,S∆xS)j = 0}.

(2.11)

Consider the possible two cases:

(M1) BĪ,S∆xS = 0. In this case J+ ∪ J− = ∅. Since ∆xS ∈ Null(M∗), we have ∆xS ∈

Null(M∗)∩Null(BĪ,S). This contradicts to Theorem 6. Thus we actually have only

the following case BĪ,S∆xS 6= 0.

(M2) BĪ,S∆xS 6= 0. In this case J+ ∪ J− 6= ∅. Let λ ∈ [λmin, λmax] be continuously

increased from λmin to λmax where

λmax = min
j∈J+

{
(bĪ −BĪ,Sx

∗
S)j

(BĪ,S∆xS)j

}
, λmin = max

j∈J−

{
(bĪ −BĪ,Sx

∗
S)j

(BĪ,S∆xS)j

}
.

Clearly, from (2.11), we see that λmin < 0 and λmax > 0. For λ ∈ (0, λmax], we have

that:

(BĪ,Sx̄S(λ))i

6 (bĪ)i, i ∈ J+,

< (bĪ)i + λ ∗ 0 = (bĪ)i, i ∈ J−,

< (bĪ)i i ∈ J0.

The above second and third inequalities are obvious, and the first inequality follows

23

from the fact that for i ∈ J+,

(BĪ,Sx̄S(λ))i = (BĪ,Sx
∗
S)i + λ(BĪ,S∆xS)i

6 (BĪ,Sx
∗
S)i + min

j∈J+

{ (bĪ−BĪ,Sx∗S)j

(BĪ,S∆xS)j
}(BĪ,S∆xS)i

6 (BĪ,Sx
∗
S)i +

(bĪ−BĪ,Sx∗S)i

(BĪ,S∆xS)i
(BĪ,S∆xS)i

= (bĪ)i,

where ‘=’ in the first inequality holds when λ = λmax and ‘=’ in the second inequality

holds when

i ∈ J ′ =

{
j :

(bĪ −BĪ,SxS)j

(BĪ,S∆xS)j
= z∗, j ∈ J+

}
where

z∗ = min
j

{
(bĪ −BĪ,SxS)j

(BĪ,S∆xS)j
: j ∈ J+

}
.

For λ ∈ [λmin, 0), we have that

(BĪ,Sx̄S(λ))i

< (bĪ)i + λ ∗ 0 = (bĪ)i, i ∈ J+,

6 (bĪ)i, i ∈ J−,

< (bĪ)i i ∈ J0,

where the second inequality follows from the fact that for i ∈ J−,

(BĪ,Sx̄S)i = (BĪ,Sx
∗
S)i + λ(BĪ,S∆xS)i,

6 (BĪ,Sx
∗
S)i + max

j∈J−
{ (bĪ−BĪ,Sx∗S)j

(BĪ,S∆xS)j
}(BĪ,S∆xS)i,

6 (BĪ,Sx
∗
S)i +

(bĪ−BĪ,Sx∗S)i

(BĪ,S∆xS)i
(BĪ,S∆xS)i,

= (bĪ)i,

where ‘=’ in the first inequality holds when λ = λmin and ‘=’ in the second inequality

holds if the index of (BĪ,Sx̄S)i, i ∈ J− ensures the value of (bĪ−BĪ,SxS)j

(BĪ,S∆xS)j
, j ∈ J− to be

24

maximal. Note that when λ = 0, x̄(λ) = x∗. Thus we have

BĪ,Sx̄S(λ) 6 bĪ

for all λ ∈ [λmin, λmax]. Combining this with (2.10), we see that x̄(λ) 6= x∗ for all

λ ∈ [λmin, λmax] satisfying (2.9) and hence x̄(λ) is a feasible solution to (1.1). Now

starting from λ = 0, we continuously increase the value |λ|. In this process, if one

component of x̄S(λ) satisfying (2.9) becomes 0, then we find a sparser solution than

x∗ which contradicts the fact that x∗ is a sparsest solution. Thus, without loss of

generality, we assume supp(x̄(λ)) = supp(x∗) when |λ| is increased continuously.

Note that there exists a λ∗ ∈ [λmin, λmax] such that at least one index of inactive

constraints in BSx
∗
S ≤ b will be added to the index set of active constraints in

BSx̄S(λ∗) 6 b. That is, the index set of active constraints in BSx̄S(λ∗) 6 b includes

I and D, where

D = {j : (BĪ,Sx̄S(λ∗))j = (bĪ)j}, D 6= ∅.

This means |I(x̄(λ∗))| > |I(x∗)| which contradicts the fact that I(x∗) has the max-

imum cardinality of I(x) amongst all sparsest solutions of (1.1). In addition, from

the above case (M2), there are two extreme cases. That is,

(N1) the components of BĪ,S∆xS are nonpositvie. In this case, J+ = ∅ and J− 6= ∅.

(N2) the components of BĪ,S∆xS are nonnegative. In this case J− = ∅ and J+ 6= ∅.

In the first case (N1), x̄(λ) can be proven to be a sparsest solution of (1.1) when

λ ∈ [λmin,+∞) while in the second case (N2), x̄(λ) can be proven to be a sparsest

solution of (1.1) when λ ∈ (−∞, λmax]. For example, consider the case (N1). For

λ ∈ [λmin, 0), BĪ,Sx̄S(λ) has the components with

(BĪ,Sx̄S(λ))i 6 (bĪ)i, i ∈ J− and (BĪ,Sx̄S(λ))i < (bĪ)i, i ∈ J0,

25

while for λ ∈ (0,+∞), we have

(BĪ,Sx̄S(λ))i < (bĪ)i, i ∈ Ī = (J− ∪ J0).

Thus we have BĪ,Sx̄S(λ) 6 bĪ when λ ∈ [λmin,+∞). This, combined with (2.10),

yields x̄(λ) being the sparsest point in T . Similarly, without loss of generality,

supp(x̄(λ)) = supp(x∗) is maintained when λ is increased continuously in [λmin,+∞).

However, there also exists λ∗ ∈ [λmin,+∞) such that I(x̄(λ∗)) > I(x∗) which con-

tradicts the fact that x∗ admits the maximum cardinality of I(x), x ∈ Λ.

In summary, the case (M1) does not exist, and the case (M2), including its two ex-

treme cases (N1) and (N2), contradicts the fact that I(x∗) has the maximum cardinality

amongst I(x), x ∈ Λ. This contradiction shows that M∗ given in (2.6) has full column

rank.

2.2 Multiplicity of sparsest solutions of model (P0)

In section 2.2, we will characterize the solutions of (1.1). The sparsest solutions to (1.1)

might not be unique when the null space of (AT , BT)T is not reduced to the zero vector.

In fact, any slight perturbation of the problem data (A,B, b, ε) may lead to the non-

uniqueness of the solutions to the modified problem. This means that in most cases, the

sparsest solutions for the problem (1.1) are largely non-unique.

In this subsection, we show that (1.1) has infinitely many solutions with the same

support under some mild conditions. Let x∗ be a sparsest solution to (1.1) and S be the

support of x∗. From Theorem 6, we know that

Null

(
AS
BI,S

)
∩ Null(BĪ,S) = {0}, (2.12)

where I and Ī are the index sets of active and inactive constraints in BSx
∗
S 6 b respectively.

26

Note that (2.12) can be separated into four cases:

Null
(
AS
BI,S

)
6= {0}, Null(BĪ,S) = {0},

Null
(
AS
BI,S

)
6= {0}, Null(BĪ,S) 6= {0} and Null

(
AS
BS

)
= {0},

Null
(
AS
BI,S

)
= {0}, Null(BĪ,S) 6= {0},

Null
(
AS
BI,S

)
= {0}, Null(BĪ,S) = {0}.

(2.13)

Under some conditions, it can be shown that for each case in (2.13), there are many

vectors satisfying the following system:

‖y − ASzS‖2 6 ε, BĪ,SzS 6 bĪ , BI,SzS 6 bI , (2.14)

and therefore (1.1) has infinite sparsest solutions admitting the same support as that of

the sparsest solution x∗, as indicated by the following Theorems 9 and 10. Theorem 9

covers the first three cases and Theorem 10 covers the last case in (2.13) respectively.

Theorem 9. Let x∗ be an arbitrary sparsest solution to (1.1), S be the support of x∗.

The problem (1.1) has infinitely many optimal solutions which have the same support as

x∗ if the following condition (C1) holds:

• (C1). Null
(
AS
BI,S

)
= Null(M∗) 6= {0} and x∗ does not admit the maximum cardinality,

i.e., |I(x∗)| 6= max{|I(z)| : z ∈ Λ} where Λ given in (2.5) is the optimal solution set

of (1.1).

If the corresponding error vector e∗, i.e., e∗ = y−Ax∗, satisfies ‖e∗‖2 < ε, then (1.1) has

infinitely many optimal solutions which have the same support as x∗ if one of the following

conditions (C2), (C3) and (C4) holds:

• (C2). Null(M∗) = {0} and Null(BS) 6= {0}.

• (C3). Null(M∗) = {0} and {d : BI,Sd > 0} ∩ Null(BĪ,S) 6= ∅.

• (C4). Null(M∗) = {0} and {d : BI,Sd < 0} ∩ Null(BĪ,S) 6= ∅.

27

Proof. (C1). Consider the case (C1) in Theorem 9. It follows from Lemma 8 that the

linear dependence of the columns of M∗ implies that I(x∗) does not have the maximum

cardinality amongst I(x), x ∈ Λ. Therefore the condition in (C1) is mild. We can find a

nonzero ∆x such that ∆xS ∈ Null(M∗) and ∆xS̄ = 0, leading to

AS∆xS = 0 and BI,S∆xS = 0.

Due to (2.12), we know that BĪ,S∆xS 6= 0 no matter whether the null space of BĪ,S is

only 0 or not. Let z(λ) be a vector which is constructed as

z(λ) = x∗ + λ∆x

where λ is a parameter. It is easy to check that zS(λ) satisfies

‖y − ASzS(λ)‖2 6 ε and BI,SzS(λ) = bI .

Let the sets J+, J− and J0 be still defined as the corresponding sets in (2.11) and J+∪J− 6=

∅. Let λ be restricted in [λmin, λmax] where

λmax = min
j∈J+

{
(bĪ −BĪ,Sx

∗
S)j

(BĪ,S∆xS)j
}, λmin = max

j∈J−
{

(bĪ −BĪ,Sx
∗
S)j

(BĪ,S∆xS)j
}.

Similar to the case (M2) in the proof of Lemma 8, it can be proven that for all λ ∈

[λmin, λmax], we have

BĪ,SzS(λ) 6 bĪ .

Then z(λ) is a feasible solution to (1.1) when λ ∈ [λmin, λmax], which together with the fact

that x∗ is a sparsest solution and supp(z(λ)) ⊆ supp(x∗), implies for all λ ∈ [λmin, λmax]

z(λ) is a sparsest solution of (1.1) and hence

supp(x∗) = supp(z(λ)).

28

Since z(λ) varies when λ is changed continuously in the interval [−λmax, λmax], it implies

that (1.1) has infinitely many sparsest solutions with the same support as x∗.

(C2). Consider the case (C2) in Theorem 9. We choose a nonzero vector µ from the

set Null(BS) such that

BĪ,Sµ = 0, BI,Sµ = 0.

Due to (2.12), we have ASµ 6= 0. Let z(λ) be a vector with components

zS(λ) = x∗S + λµ and zS̄(λ) = 0.

Then we have BĪ,SzS(λ) < bĪ and BI,SzS(λ) = bI for all λ which imply

BSzS(λ) 6 b.

Let |λ| be restricted in (0, λ′max] with

λ′max =
ε− ‖e∗‖2

‖ASµ‖∞
√
m
,

and e∗ = y − ASx∗S. We have

‖y − AS(x∗S + λµ)‖2 = ‖e∗ − λASµ‖2 ,

6 ‖e∗‖2 + |λ| ‖ASµ‖2 ,

6 ‖e∗‖2 +
ε−‖e∗‖2
‖ASµ‖∞

√
m
‖ASµ‖2 ,

= ‖e∗‖2 +
ε−‖e∗‖2√

m
‖ASµ/ ‖ASµ‖∞‖2 ,

6 ‖e∗‖2 +
ε−‖e∗‖2√

m
‖em‖2 = ε,

where the first inequality follows from the triangle equality and em is the vector of ones

with m dimension. Combining this with the fact BSzS(λ) 6 b implies that z(λ) satisfies

(2.14) and hence z(λ) is a feasible solution of (1.1) when λ ∈ [0, λ′max]. Same as the proof

in (C1), it implies that z(λ) is a sparsest solution of (1.1) when λ ∈ [0, λ′max], and hence

29

(1.1) has infinitely many sparsest solutions which have the same support as x∗. Moreover,

the active and inactive indices in Bz(λ) 6 b are the same as that in Bx∗ 6 b.

(C3). Consider the case (C3) in Theorem 9. We can find a nonzero vector ξ from the

set {d : BI,Sd > 0} ∩ Null(BĪ,S) satisfying

BĪ,Sξ = 0 and BI,Sξ > 0.

Since the two cases ASξ = 0 and ASξ 6= 0 do not contradict Null(M∗) = {0}, we consider

both of them. Let v(λ) be a vector with components

vS(λ) = x∗S + λξ and vS̄(λ) = 0,

where λ is a parameter. Clearly, supp(v(λ)) ⊆ supp(x∗) for λ. Now we claim that v(λ) is

a sparsest solution to (1.1) in both cases of ASξ = 0 and ASξ 6= 0 when λ is restricted in

certain interval.

• 1). ASξ 6= 0

When λ ∈ [−λ′′max, 0) with λ′′max =
ε−‖e∗‖2
‖ASξ‖∞

√
m
, by the same proof as in (C2), we have

‖y − ASvS(λ)‖2 6 ε.

It is easy to check that

BI,SvS(λ) < bI and BĪ,SvS(λ) < bĪ .

Thus v(λ) satisfies (2.14), and therefore v(λ) is feasible in T for all λ ∈ [−λ′′max, 0].

supp(v(λ)) ⊆ supp(x∗) and the fact that x∗ is a sparsest point in T imply that v(λ)

is a sparsest point in T when λ ∈ [−λ′′max, 0], and supp(x∗) = supp(v(λ)).

• 2). ASξ = 0

30

In this case, λ can be any negative number so that v(λ) is a feasible point in T .

Similarly, v(λ) is a sparsest solution to (1.1) when λ ∈ (−∞, 0]. Combining 1) and

2) implies that (1.1) has infinitely many sparsest solutions which have the same

support as that of x∗ for the case (C3).

(C4). This proof is omitted. Note that {d : BI,Sd > 0} ∩Null(BĪ,S) 6= ∅ is equivalent

to {d : BI,Sd < 0} ∩ Null(BĪ,S) 6= ∅. Thus we can directly get the desired result.

Note that the case (C1) corresponds to the first case in (2.13), and the cases (C2)−(C4)

correspond to the third case in (2.13). Now we consider the last case in (2.13) and show

that (1.8) has infinitely many sparsest solutions with the same support under some mild

conditions, as indicated by the following theorem.

Theorem 10. Let x∗ be an arbitrary sparsest solution of (1.1), S be the support of x∗.

Assume that Null(M∗) = {0} and Null(BĪ,S) = {0}. Then (1.1) has infinitely many

optimal solutions with the same support as x∗ if one of the following conditions holds:

• (D1). {d : BI,Sd > 0} ∩ {d : ASd = 0} 6= ∅.

• (D2). {d : BI,Sd < 0} ∩ {d : ASd = 0} 6= ∅.

If the corresponding error vector e, i.e., e∗ = y − Ax∗, satisfies ‖e∗‖2 < ε, then (1.1) has

infinitely many optimal solutions which have the same support as x∗ if one of the following

conditions holds:

• (D3). Null(BI,S) 6= {0}.

• (D4). {d : BI,Sd > 0} ∩ {d : ASd 6= 0} 6= ∅.

• (D5). {d : BI,Sd < 0} ∩ {d : ASd 6= 0} 6= ∅.

Proof. We start from (D3).

(D3). Since Null(M∗) = {0} and Null(BI,S) 6= {0}, for ∀d1 ∈ Null(BI,S), we have

BI,Sd1 = 0 and ASd1 6= 0.

31

Since Null(BĪ,S) = {0}, we have BĪ,Sd1 6= 0. Denote

J0 = {j : (BĪ,Sd1)j = 0}, J− = {j : (BĪ,Sd1)j < 0}, J+ = {j : (BĪ,Sd1)j > 0}.

Clearly, J+∪J− 6= ∅ and J+, J− and J0 are disjoint. Let z(λ) be a vector with components

zS(λ) = x∗S + λd1 and zS̄(λ) = 0.

Clearly, supp(z(λ)) ⊆ supp(x∗) for all λ. Let |λ| be restricted in (0,min(λ1, λ2)] where

λ1 = min
j∈J+∪J−

(bĪ −BĪ,Sx
∗
S)j

|(BĪ,Sd1)|j
, λ2 =

ε− ‖e∗‖2

‖ASd1‖∞
√
m
.

For i ∈ J+ ∪ J−,

(BĪ,SzS(λ))i = (BĪ,Sx
∗
S)i + λ(BĪ,Sd1)i 6 (BĪ,Sx

∗
S)i + |λ(BĪ,Sd1)i|

6 (BĪ,Sx
∗
S)i + |λ||(BĪ,Sd1)i| 6 (BĪ,Sx

∗
S)i + λ1|(BĪ,Sd1)i|

= (BĪ,Sx
∗
S)i +

(bĪ−BĪ,Sx∗S)i

|(BĪ,Sd1)|i |(BĪ,Sd1)i|

6 (bĪ)i.

The above fact, combined with (BĪ,SzS(λ))i < (bĪ)i, i ∈ J0, implies that BĪ,SzS(λ) 6 bĪ .

We also have ‖y − ASzS(λ)‖2 6 ε which has been proven for many times in Theorem 9.

These, combined with the fact that BI,SzS(λ) = bI , implies that z(λ) is a feasible point in

T when λ ∈ [0,min(λ1, λ2)]. Since x∗ is a sparsest point in T and supp(z(λ)) ⊆ supp(x∗),

z(λ) is a sparsest point in T with the same support as x∗ when λ ∈ [0,min(λ1, λ2)], i.e.,

supp(x∗) = supp(z(λ)).

(D4). Clearly, there exists a nonzero vector d′ such that

BI,Sd
′ > 0, ASd

′ 6= 0.

32

Since Null(BĪ,S) = {0}, we have BĪ,Sd
′ 6= 0. Denote

J ′0 = {j : (BĪ,Sd
′)j = 0}, J ′− = {j : (BĪ,Sd

′)j < 0}, J ′+ = {j : (BĪ,Sd
′)j > 0}.

Clearly, J ′+∪J ′− 6= ∅ and J ′+, J ′− and J ′0 are disjoint. Let z′(λ) be a vector with components

z′S(λ) = x∗S + λd′ and z′S̄(λ) = 0.

Obviously, supp(z′(λ)) ⊆ supp(x∗) for all λ. Let λ be restricted in [max(λ′1, λ
′
2), 0) where

λ′1 = max
j∈J ′−

(bĪ −BĪ,Sx
∗
S)j

(BĪ,Sd′)j
, λ′2 = − (ε− ‖e∗‖2)

‖ASd′‖∞
√
m
.

For i ∈ J ′−, we have

(BĪ,Sz
′
S(λ))i = (BĪ,Sx

∗
S)i + λ(BĪ,Sd

′)i,

6 (BĪ,Sx
∗
S)i + λ′1(BĪ,Sd

′)i,

6 (BĪ,Sx
∗
S)i +

(bĪ−BĪ,Sx∗S)i

(BĪ,Sd
′)i

(BĪ,Sd
′)i,

6 (bĪ)i.

For i ∈ J ′+ ∪ J ′0, we have (BĪ,Sz
′
S(λ))i < (bĪ)i. It can be proven that ‖y − ASz′S(λ)‖2 6 ε

for λ ∈ [max(λ′1, λ
′
2), 0), which combined with the fact BI,Sz

′
S(λ) < bI implies that z′(λ)

is a sparsest point in T with the same support as x∗ when λ ∈ [max(λ′1, λ
′
2), 0], i.e.,

supp(x∗) = supp(z′(λ)). Thus (1.1) has infinitely many optimal solutions in this case.

(D1). Clearly, there exists a nonzero vector d′′ such that

BI,Sd
′′ > 0, ASd

′′ = 0.

Since Null(BĪ,S) = {0}, we have BĪ,Sd
′′ 6= 0. Denote

J ′′0 = {j : (BĪ,Sd
′′)j = 0}, J ′′− = {j : (BĪ,Sd

′′)j < 0}, J ′′+ = {j : (BĪ,Sd
′′)j > 0}.

33

Clearly, J ′′+∪J ′′− 6= ∅ and J ′′+, J ′′− and J ′′0 are disjoint. Let z′′(λ) be a vector with components

z′′S(λ) = x∗S + λd′′ and z′′S̄(λ) = 0.

Clearly, supp(z′′(λ)) ⊆ supp(x∗) for all λ. Due to ASd
′′ = 0, ‖y − ASz′′S(λ)‖2 6 ε is

satisfied. Let λ be restricted in [λ′′1, 0) where

λ′′1 = max
j∈J ′′−

(bĪ −BĪ,Sx
∗
S)j

(BĪ,Sd′′)j
.

For i ∈ J ′′−, we have

(BĪ,Sz
′′
S(λ))i = (BĪ,Sx

∗
S)i + λ(BĪ,Sd

′′)i,

6 (BĪ,Sx
∗
S)i + λ′′1(BĪ,Sd

′′)i,

6 (BĪ,Sx
∗
S)i +

(bĪ−BĪ,Sx∗S)i

(BĪ,Sd
′′)i

(BĪ,Sd
′′)i,

6 (bĪ)i.

For j ∈ J ′′+∪J ′′0 , we have (BĪ,Sz
′′
S(λ))i < (bĪ)i. The factBI,Sz

′′
S(λ) < bI and ‖y − ASz′′S(λ)‖2 6

ε implies that z′′(λ) is a sparsest point in T with the same support as x∗ when λ ∈ [λ′′1, 0],

i.e., supp(x∗) = supp(z′′(λ)). Thus (1.1) has infinitely many sparsest solutions in this

case.

(D2,5). The proof of the case 2 and the case 5 are omitted. Note that (D2) is equivalent

to (D1) and that (D5) is equivalent to (D4). Thus the desired results can be obtained

immediately.

Through the above theoretical analysis, we know that (1.1) may have infinitely many

sparsest solutions. We also want to know whether the sparsest solution set Λ given in

(2.5) is bounded or not. This question will be explored in the subsection 2.3. Now, the

example below is given to illustrate the results of Theorems 9 and 10.

34

Example 11. Consider the system ‖y − Ax‖2 6 ε, Bx 6 b with ε = 10−1 and

A =

1 0 −2 5

0 1 4 −9

1 0 −2 5

 , B =

−0.5 0 1 −2.5

0.5 −0.5 −1 2

−3 −3 −2 3

 , y =

1

−1

1

 , b =

−0.5

1

−1

 .

It can be seen that (0, 0, 2, 1)T and (0, 1,−1/2, 0)T are the sparsest solutions to the

above convex system. Next, we show that the above two sparsest solutions satisfy the

corresponding assumptions in Theorems 9 and 10 respectively, and hence the convex

system has infinitely many sparsest solutions with identical support to the two solutions.

• x = (0, 0, 2, 1)T : We have AS =

−2 5

4 −9

−2 5

, BI,S =

 1 −2.5

−2 3

 and BĪ,S =

[
−1 2

]
. We can see that

Null(AS) = {0}, Null(BI,S) = {0}, Null(BĪ,S) 6= {0},

and

(2, 1)T ∈ {d : BI,Sd < 0} ∩ Null(BĪ,S), (−2,−1)T ∈ {d : BI,Sd > 0} ∩ Null(BĪ,S)

which satisfy (C4) and (C3) in Theorem 9. For both cases, the value of λ in the

proof of (C4) or (C3) can be determined, i.e.

λ ∈ (0, 1/10
√

3] for (2, 1)T , λ ∈ [−1/10
√

3, 0) for (−2,−1)T .

Then another sparsest solution can be formed as

(0, 0, 2, 1)T + λ(0, 0, 2, 1)T , λ ∈ (0, 1/10
√

3],

35

and hence the system ‖y − Ax‖2 6 ε, Bx 6 b in this example has infinitely many

sparsest solutions. If λ takes its maximum absolute value, then another sparsest

solution is (0, 0, 2 + 1
5
√

3
, 1 + 1

10
√

3
)T since

∥∥∥∥∥∥∥∥∥∥∥∥∥

1

−1

1

− A

0

0

2 + 1
5
√

3

1 + 1
10
√

3

∥∥∥∥∥∥∥∥∥∥∥∥∥
2

= 10−1 = ε, B

0

0

2 + 1
5
√

3

1 + 1
10
√

3

=

−0.5− 1/20

√
3

0

−1− 1/10
√

3

 < b.

• x = (0, 1,−1/2, 0)T : We haveAS =

0 −2

1 4

0 −2

, BI,S = (0, 1) andBĪ,S =

 −0.5 −1

−3 −2

.
It is easy to check

Null(AS) = Null(BĪ,S) = {0} and Null(BI,S) 6= {0}

so that this example satisfies Null(M∗) = {0} and Null(BĪ,S) = {0}. We can find

two vectors which meet (D5) and (D4) in Theorem 10, i.e,

(4,−1)T ∈ {d : BI,Sd < 0} ∩ {d : ASd 6= 0}, BĪ,Sd 6= 0

and

(−4, 1)T ∈ {d : BI,Sd > 0} ∩ {d : ASd 6= 0}, BĪ,Sd 6= 0.

Then the value of λ in the proof of (D5) or (D4) can be determined. Analogously,

for all λ ∈ [max(−1/10,−1/20
√

3), 0], the vector (0, 1,−1/2, 0)T + λ(0,−4, 1, 0)T is

a sparsest point in T . Note that Null(BI,S) 6= {0}, which meets (D3) in Theorem

10. We can find (1, 0)T ∈ Null(BI,S), and therefore λ1 and λ2 in the proof of (D3)

can be determined. Consequently, for all λ such that |λ| ∈ [0, 1/10
√

3], the vector

(0, 1,−1/2, 0)T + λ(0, 1, 0, 0)T is a sparsest point in T . Thus both cases show that

36

(1.1) has infinitely many sparsest solutions.

In the next subsection, we will show the following property: For any vector x ∈ Rn in

Λ where Λ is the solution set of (1.1), there exists a positive lower bound γ∗ such that

|xi| ≥ γ∗, for xi 6= 0

when Λ is bounded. The sufficient conditions for the boundedness of Λ will also be

identified.

2.3 Lower bound for nonzero absolute entries of solu-

tions

We start to discuss the lower bound on the absolute value of nonzero components of

vectors in

Λ := {x ∈ Rn : ‖x‖0 = k, x ∈ T}

where k is the optimum value of (1.1). We only consider the case that Λ is bounded.

Lemma 12. If the sparse solution set Λ is bounded, then there exists a positive lower

bound γ∗ for the nonzero component xi of any vector x in Λ, that is,

|xi| ≥ γ∗, i ∈ supp(x). (2.15)

Proof. We prove this result by considering only two situations: Λ is finite or Λ is infinite.

(i) Let the set Λ be finite and bounded. Denote the cardinality of Λ as L and the sparsest

solutions of (1.1) as {xk}, where 1 6 k 6 L. Obviously, we can find the minimum value

among the nonzero absolute entries of all vectors in Λ and set such a minimal value as

γ∗, which is expressed as

γ∗ = min
1≤k≤L

min
i∈supp(xk)

|xki |. (2.16)

This implies that the absolute values of the nonzero components of vectors in Λ have a

37

positive lower bound γ∗.

(ii) Let the set Λ be infinite and bounded. In this case, L is an infinite number. Since Λ

is bounded, there exists a positive number U such that the absolute value of all entries

of vectors in Λ is less or equal than U . We assume that (2.15) does not hold for x ∈ Λ.

This means there exists a sequence {xk} ∈ Λ, such that the minimum nonzero absolute

entries of xk approach to 0, i.e.,

min
i∈supp(xk)

|xki | → 0 as k →∞. (2.17)

By Λ is bounded, this implies that

|xki | 6 U, i ∈ supp(xk).

Following by Bolzano-Weierstrass Theorem, the sequence {xk} has at least one convergent

subsequence, denoted still by {xk}, with a limit point x∗ ∈ T satisfying ‖x∗‖0 6 k − 1.

This is a contradiction, and hence the lower bound is ensured when Λ is infinite and

bounded. Combining (i) and (ii) obtains the desired result.

The above lemma ensures the existence of a positive lower bound for the absolute

value of the nonzero components of the vectors in Λ when Λ is bounded. In the following

lemma, some sufficient conditions are developed to guarantee that the sparsest solution

set Λ is bounded.

Lemma 13. Let k be the optimal value of (1.1). The sparse solution set Λ is bounded if

one of the following conditions holds:

• (E1) For any Π ⊆ {1, ..., n} and |Π| = k, we have

{η : AΠη = 0} ∩ {η : BΠη 6 0} = {0}. (2.18)

• (E2) Any k columns in A are linearly independent.

38

• (E3) k < spark(A), where spark(A) denote the minimum number of linearly de-

pendent columns in A.

Proof. First of all, we suppose that the solution set Λ is unbounded. There exists a

sequence of the sparsest solutions of (1.1), denoted by {xk}, satisfying the following

properties: ∥∥xk∥∥∞ →∞
and there is a fixed index set S1 such that

|xki | → ∞ for all i ∈ S1, as k →∞ (2.19)

and the remaining components xki , i ∈ supp(xk) \ S1 are bounded. Denote by S2 =

supp(xk) \ S1. Based on the fact that xk satisfies the constraints in (1.1), we have

∥∥AS2x
k
S2

+ AS1x
k
S1
− y
∥∥

2
6 ε

and

BS2x
k
S2

+BS1x
k
S1

6 b.

We divide the above two inequalities by
∥∥xkS1

∥∥
2
to obtain

∥∥AS2x
k
S2

+ AS1x
k
S1
− y
∥∥

2∥∥xkS1

∥∥
2

6
ε∥∥xkS1

∥∥
2

,
BS2x

k
S2

+BS1x
k
S1∥∥xkS1

∥∥
2

6
b∥∥xkS1

∥∥
2

.

Then we have

∥∥∥∥∥AS2

xkS2∥∥xkS1

∥∥
2

+ AS1 η̄ −
y∥∥xkS1

∥∥
2

∥∥∥∥∥
2

6
ε∥∥xkS1

∥∥
2

, BS2

xkS2∥∥xkS1

∥∥
2

+BS1 η̄ 6
b∥∥xkS1

∥∥
2

,

where η̄ is a unit vector in R|S1|. Note that

lim
k→∞

xkS2∥∥xkS1

∥∥
2

= 0, lim
k→∞

y∥∥xkS1

∥∥
2

= 0, lim
k→∞

b∥∥xkS1

∥∥
2

= 0, lim
k→∞

ε∥∥xkS1

∥∥
2

= 0.

39

Thus there exists a unit vector η̄ ∈ R|S1| satisfying

AS1 η̄ = 0, BS1 η̄ 6 0.

This means {
η : AS1η = 0

}
∩
{
η : BS1η 6 0

}
6= {0}. (2.20)

which contradicts to the assumption (2.18). Thus under (2.18), Λ is bounded (see Lemma

12). It is clear that if any k columns of A are linearly independent or k < spark(A), then

the set {η : AΠη = 0} = {0} and thus (2.18) holds. Hence the second and third conditions

in Lemma 13 can also ensure Λ to be bounded.

In summary, the boundedness of Λ can be ensured under some conditions, and a lower

bound for nonzero absolute entries of points in Λ exists when Λ is bounded. After dis-

cussing the properties of the vectors in Λ, including the multiplicity of the sparsest points

and the existence of a positive lower bound for absolute values of nonzero components of

the vectors in Λ, in the next subsection we introduce some approximation to the problem

(1.1), such as `δ0-minimization and `1-minimization.

2.4 Approximation of general `0-minimization

Based on the discussions in 2.2, we know that (1.1) usually has many optimal solutions.

In this subsection, we further point out that it is possible to find a feasible solution for

(1.1) with small "tails" which means the value of some nonzero components in such a

feasible solution are nearly close to 0. For example, if x is a sparsest solution to (1.1),

then it might be possible to find a feasible point in T , denoted as x̄ with components

x̄i ≈ xi, i ∈ S; |x̄i| ≤ δ, i /∈ S,

where δ is a sufficiently small number. Note that x̄ can be compressed since the magnitude

of the "tail" part is sufficiently small. If the approximate solution we obtained satisfies

40

this property, then these approximate solutions are worthy to be considered instead of

being discarded. For the convenience of later discussion, we now give some definitions

about the thresholding operator and the `δ0-norm.

Definition 14. [43] Given a threshold δ > 0, the thresholding operator Hδ(z) is defined

as

Hδ(z) =

zi, |zi| > δ,

0, otherwise.
(2.21)

Hδ(z) is called δ-thresholding of z, which can be obtained by setting the value of

components indexed by {i : |zi| 6 δ} to 0 and keeping the value of components indexed

by {i : |zi| > δ}. We also call Hδ(z) the δ-compression of z. The parameter δ is often a

sufficiently small positive number and can be determined by practical demands. Another

common compression operator, called soft thresholding operator, is defined as

[Sδ(z)]i = sign(zi)(|zi| − δ)+,

which has been widely used (see, e.g. [43] and [82]). Now we introduce `δ0-norm:

Definition 15. Given a z ∈ Rn, ‖z‖0̃,δ is called `δ0-norm of z, where

‖z‖0̃,δ = n− |{i : |zi| 6 δ}|, (2.22)

where |{i : |zi| 6 δ}| represents the cardinality of the set {i : |zi| 6 δ}.

Note that

‖z‖0̃,δ = ‖Hδ(z)‖0 .

The `δ0-norm can be used to choose some dense vectors with small "tails" as the candidates

of the solution of the problem (1.1) when δ is properly chosen. For example, if x =

(100, 1, 0, 0)T is the optimal solution of (1.1) and x̃ = (99.98, 1.01, 10−4, 10−5)T is the

optimal solution obtained by a decoding algorithm, due to the fact ‖x‖0 = ‖x̃‖0̃,δ when δ ∈

[10−4, 1.01), we see that (99.98, 1.01, 10−4, 10−5)T can be compressed to (99.98, 1.01, 0, 0)T

41

by Hδ(x̃) with δ ∈ [10−4, 1.01). As a result, x̃ can be seen as an approximate sparse

solution of (100, 1, 0, 0)T . Replacing `0-norm by `δ0-norm yields an approximation model

of (1.1):

(P0̃) min ‖x‖0̃,δ

s.t. ‖y − Ax‖2 6 ε,

Bx 6 b,

(2.23)

which is referred to as the general `δ0-minimization problem. Note that the two problems

(1.1) and (2.23) are equivalent when δ → 0, therefore the problem (2.23) can be also

regarded as the relaxation of the problem (1.1). The following `1-minimization is a convex

method for solving the `0-minimization (1.1):

(P1) min ‖x‖1

s.t. ‖y − Ax‖2 6 ε,

Bx 6 b,

(2.24)

Clearly, this `1-minimization is also a convex method for solving (2.23) if δ is suf-

ficiently small. In the next chapter, we focus on the properties of the general weighted

`1-minimization problem for solving (1.1), and we will develop a bilevel optimization prob-

lem for determining the so-called optimal weights so that the weighted `1-minimization

can solve the problem (1.1), in theory.

42

Chapter 3

General Weighted `1-minimization: Existence and
Bilevel Model for Optimal Weights

The weighted `1-minimization counterpart for (1.1) and its Lagrangian dual are analyzed

in this chapter. Some properties of the weighted `1-problem and its dual problem, such as

strong duality and complementary condition, will be discussed in details. Moreover, the

strict complementarity condition for the weighted `1-problem is also developed under some

assumption. Following the ideas in Zhao & Kočvara [96] and Zhao & Luo [99] (see also

Zhao [94]), using the strict complementarity can prove that locating a sparsest solution

of our sparsity model can amount to finding the densest optimal slack variable of the

dual problem of the weighted `1-minimization through the so-called optimal weights. As

a result, the general `0-minimization model can be converted to certain `0-maximization

in dual space with non-convex constraints, which can be reformulated as a certain bilevel

programming problem. Finally, under a mild assumption (see Assumption 34 for details),

it can be proven that the bilevel programming problem can provide a weight by which the

solution of the `0-model can be obtained via weighted `1-minimization. Such a weight is

referred to as an optimal weight. This provides a theoretical basis for the development of

new re-weighted `1 algorithms for general sparsity models.

This chapter is organized as follows. The weighted `1-minimization counterpart of

(1.1) is introduced in Section 3.2, and the existence of an optimal weight for general

weighted `1-minimization is shown in Section 3.3. The Lagrangian dual problem of the

43

weighted `1-minimization, strong duality, strict complementarity and optimality condition

are discussed in Section 3.4. Finally, the bilevel programming model for determining the

optimal weights so that the weighted `1-minimization can guarantee to solve the sparsity

model is presented in Section 3.5.

3.1 Introduction

For weighted `1-minimization, how to determine a weight to guarantee the exact recovery,

sign recovery or support recovery of sparse signals is an important issue in CS theory. We

recall the definition of the optimal weight in [96] and [99].

Definition 16 (Optimal Weight). A weight is called an optimal weight if the solution

of the weighted `1-problem with this weight is one of the sparsest solution of the `0-

minimization problem.

In this chapter, we study the existence of an optimal weight for the weighted `1-

problem. Let’s first review some existing work for weighted `1-problem. The standard

weighted `1-minimization is stated as follows:

min ‖Wx‖1

s.t. y = Ax,

(3.1)

where A ∈ Rm×n with m � n is a sensing matrix in CS scenarios, y is a given vector

and W is a diagonal matrix. Note that if W is positive definite, (3.1) is equivalent to

(1.19). Due to this, (3.1) can exactly solve (1.8) if AW−1 satisfies one of the following

conditions: mutual coherence (Donoho and Huo [55], Elad [38]), RIP of order 2k (Candès

and Tao [21]), NSP of order k (Cohen et al. [28], Zhang [89], [90]), minimal singular

value (Tang and Nehorai [78]), or RSP of order k (Zhao [92], [93], [100], [94]). Depending

on these conditions, however, the optimal weight for solving (1.8) is not given to have

an explicit form. Recently, Zhao and Luo [99] (see also in Zhao and Kočvara [96]) have

44

proved that if z is a sparsest point in the set

Q = {x : y = Ax, x ≥ 0},

and if the weight w satisfies

wJ+(z) > AT
J+(z)

AJ+(z)(A
T
J+(z)AJ+(z))

−1wJ+(z) (3.2)

where J+(z) = {i : zi > 0}, then z is the unique optimal solution to the weight `1-problem:

min ‖Wx‖1

s.t. y = Ax,

x ≥ 0.

(3.3)

Thus, by a suitable choice of weight, the weighted `1-problem (3.3) can be used to solve

min ‖x‖0

s.t. y = Ax,

x ≥ 0.

(3.4)

Thus the weights satisfying (3.2) can guarantee exact recovery of sparse vectors and

belong to the set of optimal weights. In addition, such optimal weights depending on the

sparse vector z are still not given explicitly but show the existence of optimal weights for

solving (3.4). In the following Sections 3.2 and 3.3, we consider the weight `1-minimization

counterpart of (1.1) and show the existence of an optimal weight for guaranteeing to find

the support of the solution of (1.1). In this case, we also say the support recovery of

the solution of (1.1). More specifically, the support of a sparse vector is understood as

follows.

Definition 17 (Support Recovery). A solution x of a system is said to have a support

recovery by an algorithm if the solution x∗ found by this algorithm has the same support

45

as that of x, i.e.,

supp(x∗) = supp(x).

Clearly, a weight ensuring support recovery of sparse vectors belong to the set of optimal

weights.

3.2 General weighted `1-minimization model

Let W ∈ Rn×n be a diagonal matrix with nonnegative diagonal elements wi, i = 1, ..., n,

i.e., W = diag(w). Let us consider the following weighted problem:

(Pw) min ‖Wx‖1 = wT |x|

s.t. ‖y − Ax‖2 6 ε,

Bx 6 b,

(3.5)

which is the general weighted `1-minimization problem associated with (1.1). The problem

(3.5) has a close relationship to the following problem:

min λ ‖Wx‖1 + ‖y − Ax‖2
2

s.t. Bx 6 b.

(3.6)

where λ is a positive parameter. The following lemma shows the relationship between

them.

Lemma 18. If z is a minimiser of (3.6), then there exists ε > 0 in (3.5) such that z is

also a minimiser of (3.5).

Proof. Suppose that z is any minimiser of (3.6) and ε = ‖y − Az‖2. Let x be any feasible

solution to (3.5). Clearly, x is also a feasible solution to (3.6). Since z is a minimiser of

(3.6), we have

λ ‖Wz‖1 + ‖y − Az‖2
2 6 λ ‖Wx‖1 + ‖y − Ax‖2

2 6 λ ‖Wx‖1 + ‖y − Az‖2
2 ,

46

which implies that ‖Wz‖1 6 ‖Wx‖1. Note that z satisfies both constraints of (3.5). Thus

z is a minimiser of (3.5).

3.3 Existence of optimal weights for finding sparsest

points

From a computaional point of view, it is vital to know whether there exists a weight such

that the sparsest point in T given in (1.2) is a unique optimal solution to the weighted

`1-minimization (3.5), or the solution of (3.5) and the sparsest point of T share the

same support and/or sign. Such weights belongs to the set of optimal weights (Zhao &

Kočvara [96], Zhao & Luo [99]), by which we can use the weighted `1-minimization (3.5)

to find a sparsest point in T , or to find the sign or support of the sparsest point in T . Note

that the parameter ε and other linear inequalities appear in the constraints of the model

(3.5). To a large extent, (3.5) has many optimal solutions and may have some solutions

which are compressible. Thus we may consider the support recovery by (3.5) instead of

exact recovery. We expect that the support of the sparsest point ν in T , given in (1.2),

can be exactly recovered by (3.5), i.e., the solution x∗ to (3.5) satisfies that

supp(x∗) = supp(ν).

The existence of a weight for support recovery is guaranteed, as shown by the next

result.

Theorem 19. Let ν be a sparsest point in T = {x : ‖y − Ax‖2 ≤ ε, Bx ≤ b} where ε > 0.

Let the weight w in (3.5) satisfy

wi

= 0, i ∈ supp(ν),

> 0, i ∈ supp(ν).
(3.7)

Then x∗ is an optimal solution of (3.5) if and only if supp(ν) = supp(x∗).

47

Proof. Suppose that x̄ is an arbitrary feasible solution of (3.5) with W = diag(w) where

w is given as in (3.7). We can see that

‖Wν‖1 − ‖Wx̄‖1 = wTsupp(ν)|νsupp(ν)| − wTsupp(ν)|x̄supp(ν)| − wTsupp(ν)
|x̄supp(ν)|

= −wT
supp(ν)

|x̄supp(ν)|.

Note that ‖Wν‖1 = ‖Wx̄‖1 if x̄ has the same support as ν. Otherwise, ‖Wν‖1 < ‖Wx̄‖1.

Thus, under the weights in (3.7), any solution that has the same support of ν, i.e.,

supp(x̄) = supp(ν), is an optimal solution of (3.5). Conversely, let x∗ be any arbitrary

optimal solution to (3.5). We have

‖Wx∗‖1 − ‖Wx̄‖1 = wTsupp(ν)|x∗supp(ν)|+ wT
supp(ν)

|x∗
supp(ν)

|

−wTsupp(ν)|x̄(supp(ν))| − wTsupp(ν)
|x̄supp(ν)|,

= wT
supp(ν)

|x∗
supp(ν)

| − wT
supp(ν)

|x̄supp(ν)| 6 0.

Note that ν is also a feasible point in T . If x̄ = ν, the above inequality implies

(x∗)i = 0, i ∈ supp(ν).

If not, then ‖Wx∗‖1 > ‖Wν‖1 which contradicts the fact that x∗ is optimal to (3.5). Then

we have

supp(x∗) ⊆ supp(ν).

Note that ν is a sparsest point in the feasible set T . Thus x∗ must have same support as

ν, i.e. supp(x∗) = supp(ν).

In addition, in Theorem 19, x∗ can be equal to ν. If ν is the unique sparsest point in T ,

then ν is unique to (3.5) with w being given in (3.7). Moreover, if there are many sparsest

solutions with the same support as ν, then all these solutions are optimal solutions of

(3.5) provided that w is given by (3.7). Note that some components of weights in (3.7)

are equal to 0. If w is a positive vector, the following theorem claims that the same result

48

in Theorem 19 remains valid.

Theorem 20. Let ν be a sparsest point in T = {x : ‖y − Ax‖2 ≤ ε, Bx ≤ b} where ε > 0.

Let the weight w in (3.5) satisfy

wi

 = 1, i ∈ supp(ν),

= γ∞, i ∈ supp(ν).
, (3.8)

where γ∞ is a big positive number. If x∗ is an optimal solution of (3.5), then

supp(ν) = supp(x∗).

Proof. Let Z∗ be the optimal value of (3.5). Since ν is a feasible point in T , Z∗ has an

upper bound wTsupp(ν)|vsupp(ν)| =
∥∥vsupp(ν)

∥∥
1
. Note that wi = γ∞ for i ∈ supp(ν) implies

that the value of x∗i indexed by supp(ν) must be 0 provided γ∞ is large enough. Otherwise,

the optimal value Z∗ of (3.5) is ∞. So we have

‖v‖0 ≥ ‖x
∗‖0 .

This, combined with the fact that ν is the sparsest among all the points in T , yields that

‖v‖0 = ‖x∗‖0. Note that x∗i = 0 for i ∈ supp(ν). Thus,

supp(ν) = supp(x∗),

which means that given a sparsest point in T , there exists a weight satisfying (3.8) such

that any optimal solution of (3.5) are the sparsest points in T , and their support is

consistent with that given point.

The following theorem shows the existence of an optimal weight for (3.5) in the case

of ε = 0.

Theorem 21. Let ν be a sparsest point in T = {x : ‖y − Ax‖2 ≤ ε, Bx ≤ b} where ε = 0

49

and K(ν) be the support set of ν, i.e.,

K(ν) = {i : νi 6= 0}, K(ν) = {i : νi = 0}.

If AK(ν) has a full column rank and w ∈ Rn
+ satisfies

wK(ν) > |A
T
K(ν)

AK(ν)(A
T
K(ν)AK(ν))

−1|wK(ν) (3.9)

then ν is the unique solution to (3.5).

Proof. Let us consider the case that the measurements y in (3.5) are accurate, i.e., y = Ax.

Let z be any point in T and z 6= ν. Then we have

AK(ν)νK(ν) = y = AK(ν)zK(ν) + AK(ν)zK(ν).

Due to the full column rank property of AK(ν), the above equality can be reduced to

νK(ν) = zK(ν) + (ATK(ν)AK(ν))
−1ATK(ν)AK(ν)zK(ν). (3.10)

Note that zK(ν) can not be 0. Otherwise, νK(ν) = zK(ν) which leads to z = ν. Now we

verify that ν is the optimal solution to (3.5) under the condition that the weight w satisfies

(3.9). We calculate the difference between wT |ν| and wT |z|, which is given as follows:

wT |ν| − wT |z| = wTK(ν)|νK(ν)| − wTK(ν)|zK(ν)| − wTK(ν)
|zK(ν)|.

50

Using (3.10), we have

wT |ν| − wT |z| 6 wTK(ν)|zK(ν)|+ wTK(ν)|(ATK(ν)AK(ν))
−1ATK(ν)AK(ν)zK(ν)|

−wTK(ν)|zK(ν)| − wTK(ν)
|zK(ν)|,

6 wTK(ν)|(ATK(ν)AK(ν))
−1ATK(ν)AK(ν)||zK(ν)| − w

T
K(ν)
|zK(ν)|,

= (|AT
K(ν)

AK(ν)(A
T
K(ν)AK(ν))

−1|wK(ν) − wK(ν))
T |zK(ν)|,

where the first inequality follows from the nonnegativeness of weight w and the triangle

inequality. The above inequality, together with (3.9) and the positiveness of |zK(ν)|, implies

that

wT |ν| < wT |z|

for ∀z ∈ T and ν 6= z, which means that v is the unique solution to (3.5).

The idea of the proof of Theorem 21 follows from Zhao and Luo [99]. We denote the

optimal solution set of (3.5) as

G =
{
x ∈ Rn : wT |x| = z∗, ‖Ax− y‖2 ≤ ε, Bx ≤ b

}
,

where z∗ is the optimal value of (3.5). Based on the above analysis in Theorems 19 and

20, (Pw) given in (3.5) guarantees the support recovery of the sparsest point in T , i.e.,

there exists a weight satisfying (3.7) or (3.8) such that all the solutions of (3.5) have the

identically unique support as that of the sparsest point.

However, these theorems only provide a theoretical choice of the (optimal) weights for

(3.5) since the weights shown in these theorems are not given explicitly. Which practical

methods can be used to determine an optimal weight in (3.5) to find a sparsest point in

T is still a hard issue.

51

3.4 Duality and complementary conditions

In this section, we present some fundamental properties of (3.5), including strong duality

and complementary condition. By introducing two variables t ∈ Rn and γ ∈ Rm such

that

|x| 6 t and γ = y − Ax,

we can rewrite (3.5) as the following programming:

(Pw1) min
(x,γ,t)

wT t

s.t. ‖γ‖2 6 ε, Bx 6 b,

γ = y − Ax, |x| 6 t,

t > 0,

(3.11)

where w ∈ Rn
+ is a given vector. Obviously, (3.11) is equivalent to (3.5), and the solution

of (3.11), denoted by (x∗, t∗, γ∗), must have

|x∗supp(w)| = t∗supp(w), |x∗supp(w)
| 6 t∗

supp(w)
and γ∗ = y − Ax∗.

Additionally, if w ∈ Rn
++, then the solution (x∗, t∗, γ∗) to (3.11) must satisfy that |x∗| = t∗

and γ∗ = y − Ax∗. The relation of the solutions of (3.5) and (3.11) is stated as follows:

Lemma 22. If x∗ is optimal to the problem (3.5), then all vectors (x∗, t∗, γ∗) satisfying

|x∗supp(w)| = t∗supp(w), |x∗supp(w)
| 6 t∗

supp(w)
and γ∗ = y − Ax∗,

are optimal to the problem (3.11). Moreover, if (x̄, t̄, γ̄) is optimal to the problem (3.11),

then x∗ is optimal to the problem (3.5).

52

3.4.1 Dual problem of (Pw1)

We start to derive the dual problem of (Pw1) given in (3.11). Denote Lagrangian multi-

pliers of (3.11) as λ = (λ1, ..., λ6), where

1. λ1 ∈ R corresponds to ‖γ‖2 6 ε;

2. λ2 ∈ Rl corresponds to Bx 6 b;

3. λ3 ∈ Rm corresponds to γ = y − Ax;

4. λ4 ∈ Rn corresponds to x 6 t;

5. λ5 ∈ Rn corresponds to −t 6 x;

6. λ6 ∈ Rn corresponds to t > 0.

Then Lagrangian function of (3.11) is given as

L(x, γ, t, λ) = wT t−λ1(ε−‖γ‖2)−λT2 (b−Bx)−λT3 (Ax+γ−y)−λT4 (t−x)−λT5 (x+t)−λT6 t,

(3.12)

and the Lagrangian dual function of (3.11) is

g(λ) = inf
(x,γ,t)∈R2n+m

L(x, γ, t, λ),

where λ = (λ1, ..., λ6). Let p∗ be the optimal value of the problem (3.11). We now derive

the value of g(λ) together with λi > 0, i = 1, 2, 4, 5, 6 to find the best lower bound of p∗,

and we establish the dual problem of (3.11). Firstly, by rearranging the terms of (3.12),

we have

g(λ) = inf
(x,γ,t)∈R2n+m

{(λT2B − λT3A+ λT4 − λT5)x+ (λ1 ‖γ‖2 − λ
T
3 γ)

+ (wT − λT4 − λT5 − λT6)t− λ1ε− λT2 b+ λT3 y}
(3.13)

53

To determine the minimum value of the terms involving x or t, we first calculate the

derivatives of the Lagrangian function with respect to x and t respectively as follows:

∂L(x, γ, t)

∂x
= BTλ2 − ATλ3 + λ4 − λ5,

∂L(x, γ, t)

∂t
= w − λ4 − λ5 − λ6.

Setting them to 0, the infimum of the terms involving x and t in (3.13) can be obtained

as follows,

inf
x∈Rn

{
(λT2B − λT3A+ λT4 − λT5)x

}
=

 0, BTλ2 − ATλ3 + λ4 − λ5 = 0

−∞, otherwise.
(3.14)

inf
t∈Rn

{
(wT − λT4 − λT5 − λT6)t

}
=

 0, w = λ4 + λ5 + λ6

−∞, otherwise.
(3.15)

Now we calculate the infimum of (λ1 ‖γ‖2 − λT3 γ). Note that

inf
γ

(λ1 ‖γ‖2 − λ
T
3 γ) = − sup

γ
(λT3 γ − λ1 ‖γ‖2). (3.16)

By Cauchy-Schwarz inequality, we have

λT3 γ − λ1 ‖γ‖2 ≤ ‖λ3‖2 ‖γ‖2 − λ1 ‖γ‖2 = ‖γ‖2 (‖λ3‖2 − λ1). (3.17)

Consider the case ‖λ3‖2 6 λ1. Then (3.17) implies that (λT3 γ − λ1 ‖γ‖2) is nonpositive,

and the supremum of (λT3 γ − λ1 ‖γ‖2) attains at 0 (when γ = 0). When ‖λ3‖2 > λ1, by

taking γ = αλ3 where α is a positive parameter, we see that

λT3 γ − λ1 ‖γ‖2 = α ‖λ3‖2 (‖λ3‖2 − λ1),

54

and

sup
γ

(λT3 γ − λ1 ‖γ‖2)→∞, as α→∞.

Therefore, it follows from (3.16) that

inf
γ∈Rm

(λ1 ‖γ‖2 − λ
T
3 γ) =

 0, ‖λ3‖2 ≤ λ1,

−∞, otherwise.
(3.18)

Denote the set D by

D = {λ : w = λ4 + λ5 + λ6, ‖λ3‖2 ≤ λ1, B
Tλ2 − ATλ3 + λ4 − λ5 = 0}.

By pluging (3.18), (3.15) and (3.14) into (3.13), the value of inf
(x,γ,t)∈R2n+m

L(x, γ, t, λ) can

be determined as follows

inf
(x,t,γ)∈R2n+m

L(x, t, γ, λ) =

 −λ1ε− λT2 b+ λT3 y, if λ ∈ D,

−∞, otherwise.
(3.19)

Note that the Lagrange dual function g(λ) is finite only on the convex set D. This,

combined with λi > 0 for i = 1, 2, 4, 5, 6, can give the optimal value p∗ of (3.11) a

nontrivial lower bound. Since for any feasible solution (x̃, t̃, γ̃) in T , we have

g(λ) = inf
(x,t,γ)∈R2n+m

L(x, t, γ, λ) 6 L(x̃, t̃, γ̃, λ) 6 wT t̃.

Thus g(λ) 6 p∗. In order to obtain the best lower bound of p∗, we maximize −λ1ε−λT2 b+

λT3 y over the convex set D in (3.19) and λi, i = 1, 2, 4, 5, 6 > 0. Then the dual problem of

55

(Pw1) can be stated as the following optimization:

(Dw1) max
λ
−λ1ε− λT2 b+ λT3 y

s.t. BTλ2 − ATλ3 + λ4 − λ5 = 0,

‖λ3‖2 ≤ λ1, λi > 0, i = 1, 2, 4, 5, 6,

w = λ4 + λ5 + λ6.

(3.20)

Note that (3.20) can be rewritten more concisely. By eliminating ‖λ3‖2 ≤ λ1 and the

nonnegative slack variable λ6, the dual problem (3.20) can be simplified to

(Dw2) max
λ
−ε ‖λ3‖2 − λT2 b+ λT3 y

s.t. BTλ2 − ATλ3 + λ4 − λ5 = 0,

w > λ4 + λ5, λi > 0, i = 2, 4, 5.

(3.21)

We see that when ε > 0, the optimal solution of (3.20) λ∗ = (λ∗1, ..., λ
∗
6) must satisfy

‖λ∗3‖2 = λ∗1. Moreover, λ∗ = (λ∗1, ..., λ
∗
6) is an optimal solution to (3.20) if and only if

(λ∗i), i = 2, 3, 4, 5 is an optimal solution to (3.21) and ‖λ∗3‖2 = λ∗1.

3.4.2 Strong duality between (Pw1) and (Dw1)

In the above subsection, we developed the dual problem of (3.11). Next, we further

explore the relationship of the solutions of (3.11) and (3.20) such as strong duality and

complementarity property. The strong duality between (3.11) and (3.20) is explored in

this subsection. The optimality condition and the strictly complementary condition for

(3.11) will be discussed under some conditions in subsection 3.4.4.

The strong duality, in general, means that the optimal values of primal problem and

dual problem are equal and can be achieved in their feasible sets. It is well known that

the strong duality holds for any linear programming problem (Goldman and Tucker [45]

and Dantzig [29]). For example, consider the following standard linear program and its

dual problem:

min
x
{cTx : Ax = b, x > 0}, (3.22)

56

max
(y,s)
{bTy : ATy + s = c, s > 0}, (3.23)

if (3.22) and (3.23) have feasible solutions, then both problems have optimal solutions,

and for any optimal pair (x∗, y∗, s∗) to (3.22) and (3.23), there is no gap between the

optimal objective values of (3.22) and (3.23), that is

cTx∗ = bTy∗.

The problems (3.22) and (3.23) also have strictly complementary solutions. Specifically, if

(3.22) and (3.23) have feasible solutions, then there exists a pair of strictly complementary

optimal solutions (x̃, ỹ, s̃) such that

s̃T x̃ = 0, x̃+ s̃ > 0, x̃ ≥ 0, s̃ ≥ 0.

Since some constraints in (3.11) are non-linear, there is no guarantee for the strong duality

or the strictly complementary property for (3.11) and (3.20). However, we may still find

some conditions under which the strong duality and strictly complementary property hold

for (3.11) and (3.20). Let’s first recall the well-known Slater condition (see, e.g., Boyd [8]).

Definition 23 (Slater Condition). Consider the following convex minimization problem

min
x

ψ0(x)

s.t. ψi(x) 6 0, i = 1, ...,m,

hi(x) = 0, i = 1, ..., n,

(3.24)

where ψ1, ..., ψk are affine functions, ψk+1, ..., ψm are convex functions, and h1, ..., hn are

linear functions. Let E be the feasible set of (3.24), i.e.,

E = {x : ψi(x) 6 0, i = 1, ...,m, hi(x) = 0, i = 1, ..., n}.

Slater condition means that there exists x∗ ∈ ri(E), where ri(E) is the relative interior

57

of E, i.e.,

ψi(x
∗) 6 0, i = 1, ..., k, ψi(x

∗) < 0, i = k + 1, ...,m, hi(x
∗) = 0, i = 1, ..., n.

It is well-known that (see, e.g. [76] [12]) the Slater condition is a sufficient condi-

tion (constriant qulification) for strong duality to hold for convex optimization problems.

Moreover, Browein and Lewis [8] pointed out that under the Slater condition, if the opti-

mal value of a primal convex problem is finite, then there exists a dual solution achieving

that optimal value. We summarize this property as follows:

Lemma 24. [8,12] Let Slater condition (Definition 23) hold for the convex problem (3.24).

Then there is no duality gap between (3.24) and its dual problem. Moreover, if the optimal

value of (3.24) is finite, then there exists at least one optimal Lagrangian multiplier such

that the dual optimal value can be attained.

Note that (3.11) is a convex problem. Based on the above lemma, if the Slater condi-

tion holds in (3.11), i.e., there exists (x∗, γ∗, t∗) ∈ ri(T) such that

‖γ∗‖2 < ε, Bx∗ 6 b, |x∗| 6 t∗, y = Ax∗ − γ∗, t∗ > 0,

then strong duality holds for (3.11) and (3.20). We state this property in the next theorem.

Theorem 25. Let two vectors y ∈ Rm and b ∈ Rl be given, A ∈ Rm×n and B ∈ Rl×n

be given matrices and ε be a given positive number. Strong duality holds for the problem

(3.11) and its dual (3.20) if one of the following conditions is satisfied:

(F1)

Ω = {x : Ax = y,Bx 6 b} 6= ∅; (3.25)

(F2) ε > ε∗ where

ε∗ = min
x
{‖y − Ax‖2 : Bx ≤ b}.

58

Proof. If (F1) holds, i.e., Ω = {x : Ax = y,Bx 6 b} 6= ∅, then there exists a vector x∗

such that y = Ax∗ and Bx∗ 6 b. Thus there exists a vector (x∗, γ∗ = 0, t∗) satisfying

‖γ∗‖2 < ε,Bx∗ 6 b, |x∗| 6 t∗, y = Ax∗ − γ∗, t∗ > 0.

If (F2) holds, then it implies that the set {x : ‖y − Ax‖2 < ε,Bx ≤ b} is not empty.

Then either (F1) or (F2) shows that there is a relative interior point in the feasible set of

(3.11). By Definition 23, either of them ensures that the Slater condition holds for (3.11).

Hence, by Lemma 24, (3.11) and its dual problem (3.20) satisfy strong duality.

The hypothesis in Theorem 25 is very mild. The set Ω = {x : Ax = y, Bx 6 b} is in

practice not empty due to the fact that y and b are the measurements of certain signals.

The condition (F2) in Theorem 25 can be also satisfied very easily provided ε is chosen to

be greater than the lower bound of ‖y − Ax‖2 subject to Bx 6 b. In summary, the Slater

condition is a very mild sufficient condition for strong duality to hold for the problem

(3.11) and (3.20). If the optimal value of (3.11) is finite, together with Slater condition

(ensured by (F1) or (F2)), Lemma 24 implies that there exists a dual solution such that

the dual optimal value can be attained.

3.4.3 Optimality condition for (Pw1) and (Dw1)

It is well-known that for any convex problem with differentiable objective and constraints

functions for which strong duality holds, Karush-Kuhn-Tucker (KKT) condition is the

necessary and sufficient optimality condition for the convex minimization problem and its

dual problem, which is stated in the following theorem.

Theorem 26. [8,74][KKT condition for convex problem] The Langranian dual function

of (3.24) is

g(λ, τ) = inf
x

(
ψ0(x) +

m∑
i=1

λiψi(x) +
n∑
i=1

τihi(x)

)
If strong duality holds for the problem (3.24) and its dual problem, then x∗ and (λ∗, τ ∗)

are the optimal solutions to the problem (3.24) and its dual problem respectively if and

59

only if (x∗, λ∗, τ ∗) satisfies the following condition:

• ψi(x∗) 6 0, i = 1, ...,m,

• hi(x∗) = 0, i = 1, ..., n,

• λ∗i > 0, i = 1, ...,m,

• λ∗iψi(x∗) = 0, i = 1, ...,m,

• ∇ψ0(x∗) +
∑m

i=1 λ
∗
i∇ψi(x∗) +

∑n
i=1 τ

∗
i ∇hi(x∗) = 0,

which are called Karush-Kuhn-Tucker (KKT) conditions.

Note that (3.11) is a convex programming and all the constraints and objective function

are differentiable. This, together with Slater condition, yields the optimality condition

for (3.11), which is stated in the following theorem.

Theorem 27. If Slater condition holds for (3.11), then (x∗, γ∗, t∗) is optimal to (3.11) and

λ∗i , i = 1, ..., 6 is optimal to (3.20) if and only if (x∗, γ∗, t∗, λ∗) satisfy the KKT conditions

for (3.11), i.e.,

γ∗ = y − Ax∗, ‖γ∗‖2 6 ε, x∗ 6 t∗,−t∗ 6 x∗, Bx∗ 6 b, t∗ > 0,

λ∗i ≥ 0, i = 1, 2, 4, 5, 6,

λ∗1(ε− ‖γ∗‖2) = 0, λ∗T2 (b−Bx∗) = 0,

λ∗T4 (t∗ − x∗) = 0, λ∗T6 t∗ = 0, λ∗T5 (x∗ + t∗) = 0,

L(x, γ, t, λ∗) = wT t− λ∗1(ε− ‖γ‖2)− λ∗T2 (b−Bx)− λ∗T3 (Ax+ γ − y)

−λ∗T4 (t∗ − x∗)− λ∗T5 (x∗ + t∗)− λ∗T6 t∗,

∂xL(x∗, γ∗, t∗, λ∗) = BTλ∗2 − ATλ∗3 + λ∗4 − λ∗5 = 0,

∂γL(x∗, γ∗, t∗, λ∗) = (λ∗1)∇(‖γ∗‖2)− λ∗3 = 0,

∂tL(x∗, γ∗, t∗, λ∗) = w − λ∗4 − λ∗5 − λ∗6 = 0.

(3.26)

60

3.4.4 Complementary and strictly complementary conditions

It is well known that for any convex problem with strong duality, the optimal primal and

dual solutions satisfy the so-called complementary property, as stated in the following

theorem.

Theorem 28 (Complementary Slackness Condition). [8] Assume that strong duality holds

for (3.24). Let x∗ and (λ∗, τ ∗), where λ∗ > 0, be the optimal solutions to (3.24) and its

dual problem, respectively. Then λ∗i and ψi(x∗) are complementary, i.e.,

λ∗iψi(x
∗) = 0, i = 1, ..,m, (3.27)

which is called complementary slackness property.

It means for every i, there exists at least one of λ∗i and ψi(x∗) being 0. The condition

(3.27) together with λ∗i + |ψi(x∗)| > 0 is called strictly complementary condition. The

strictly complementary condition might not hold for a convex problem even when strong

duality holds for this problem. However, this property always holds for linear program-

ming problems. Consider the standard linear programming (3.22) and its dual problem

(3.23). The complementary and strictly complementary conditions for (3.22) and (3.23)

can be stated as follows.

Theorem 29. [45] If both problems (3.22) and (3.23) are feasible, then both have optimal

solutions, and any pair (x∗, s∗) of optimal solutions to (3.22) and (3.23) are complementary

in the sense that (s∗)Tx∗ = 0, s∗ > 0, x∗ > 0. Moreover, (3.22) and (3.23) have a pair of

strictly complementary solutions x̄ > 0 and s̄ > 0 satisfying

x̄T s̄ = 0 and x̄+ s̄ > 0.

In this subsection, we explore the complementary condition for (3.11) and (3.20) and

develop the conditions to ensure the strictly complementary condition for the two prob-

61

lems. From the optimality condition given in (3.26) in Theorem 27, the term (t∗)Tλ∗6 = 0

and the positiveness of t∗ and λ∗6 show that t∗ and λ∗6 satisfy the complementary condition.

Theorem 30. Let Slater condition hold in (3.11). If the optimal value of (3.11) is finite,

then for any optimal solution pair ((x∗, t∗, γ∗), λ∗), where (x∗, t∗, γ∗) is optimal to (3.11)

and λ∗ = (λ∗1, ..., λ
∗
6) is optimal to (3.20), t∗ and λ∗6 are complementary in the sense that

(t∗)Tλ∗6 = 0, t∗ > 0 and λ∗6 > 0.

That is,

t∗i (λ
∗
6)i = 0, t∗i > 0 and (λ∗6)i > 0, i = 1, .., n. (3.28)

The proof is omitted since it is obvious. Clearly, if (x∗, t∗, γ∗) is optimal to (3.11) and w

is positive, it must hold |x∗| = t∗, and hence by Theorem 30, we have

|x∗i |(λ∗6)i = 0, (λ∗6)i ≥ 0, i = 1, .., n. (3.29)

When w is nonnegative, clearly, if (x∗, t∗, γ∗) is optimal to (3.11), we have

|x∗i | = t∗i , i ∈ supp(w); |x∗i | 6 t∗i , i ∈ supp(w).

For i ∈ supp(w), (3.29) is valid. For i ∈ supp(w), due to the constraints w = λ4 +λ5 +λ6

and λ4,5,6 > 0, wi = 0 implies that (λ∗6)i = 0. This means (3.29) is valid for i ∈ supp(w).

Therefore, we have the following theorem:

Theorem 31. Let Slater condition hold in (3.11). If the optimal value of (3.11) is finite,

then for any optimal solution pair ((x∗, t∗, γ∗), λ∗), where (x∗, t∗, γ∗) is optimal to (3.11)

and λ∗ = (λ∗1, ..., λ
∗
6) is optimal to (3.20), |x∗i | and (λ∗6)i are complementary in the sense

that

|x∗i |(λ∗6)i = 0 and (λ∗6)i > 0, i = 1, ..., n. (3.30)

62

The relation (3.30) implies that

‖x∗‖0 + ‖λ∗6‖0 ≤ n,

where n is the size of the dimension of x∗ or λ∗6. Suppose |x∗| and λ∗6 are strictly comple-

mentary, i.e.,

(|x∗|)Tλ∗6 = 0, λ∗6 ≥ 0 and |x∗|+ λ∗6 > 0.

Then

‖x∗‖0 + ‖λ∗6‖0 = n.

Unfortunately, for nonlinear optimization models, the strictly complementary property

might not hold. However, for our model (3.5) or (3.11), it might be possible to develop a

condition such that the strict complementarity still holds. We now develop this property

for the problems (3.11) and (3.20) under the following Assumption 32.

Assumption 32. Let W = diag(w) satisfy the following properties:

• 〈G1〉 The problem (3.5) with w has an optimal solution which is a relative interior

point in the feasible set T , denoted by x∗ ∈ ri(T), such that

‖y − Ax∗‖2 < ε, Bx∗ ≤ b,

• 〈G2〉 the optimal value Z∗ of (3.5) is finite and positive, i.e., Z∗ ∈ (0,∞),

• 〈G3〉 wj ∈ (0,∞] for all 1 6 j 6 n.

Based on the multiplicity of solutions to (3.5), the first condition in Assumption 32

might be achieved. (G3) and (G1) require that (3.5) with certain positive weight has

at least one optimal solution such that the constraint ‖y − Ax‖2 ≤ ε is inactive. This

assumption also requires the optimal value Z∗ to be finite and positive. This assumption

63

is mild and can be satisfied very easily. Moreover, (G1) is equivalent to the fact that there

exists is a relative interior optimal solution (x∗, t∗, γ∗) of (3.11) such that

‖γ∗‖2 < ε, Bx∗ 6 b, |x∗| 6 t∗, y = γ∗ + Ax∗, t∗ > 0,

and (G2) is equivalent to the fact that the optimal value of (3.11) is finite and posi-

tive. Using the Example 11, we can see that (3.5) with W = I has an optimal solution

(1/2, 0,−1/4, 0)T such that Assumption 32 is satisfied. Next we prove the following the-

orem concerning the strict complementarity for (3.11) and (3.20) under Assumption 32.

Theorem 33. Let two vectors y and b be given, A ∈ Rm×n and B ∈ Rl×n be two given

matrices, and w be a given weight which satisfies Assumption 32. Then there exists a pair

((x∗, t∗, γ∗), λ∗), where (x∗, t∗, γ∗) is an optimal solution to (3.11) and λ∗ = (λ∗1, ..., λ
∗
6) is

an optimal solution to (3.20), such that t∗ and λ∗6 are strictly complementary, i.e.,

(t∗)Tλ∗6 = 0, t∗ + λ∗6 > 0, (t∗, λ∗6) ≥ 0.

Moreover,

P ∗ = {i : t∗i > 0}

and

Q∗ = {i : (λ∗6)i > 0}

are invariant for all pairs of strictly complementary solutions.

Proof. Note that (G1) in Assumption 32 implies the Slater condition for (3.11). This,

combined with (G2), indicates from Lemma 24 that the duality gap is 0, and the optimal

value Z∗ for (3.20) can be attained. Hence (3.20) has optimal solutions. For any given

64

index j : 1 ≤ j ≤ n, we consider a series of minimization problems:

min
(x,t,γ)

−tj

s.t. ‖γ‖2 6 ε,

Bx 6 b,

γ = y − Ax,

|x| 6 t,

−wT t ≥ −Z∗,

t > 0.

(3.31)

The dual problem of (3.31) can be obtained by using the same method for developing the

dual problem of (3.11), which is stated as follows:

max
(µ,τ)

−µ1ε− µT2 b+ µT3 y − τZ∗

s.t. BTµ2 − ATµ3 + µ4 − µ5 = 0,

‖µ3‖2 ≤ µ1,

τw = µ4 + µ5 + µ6 + ej,

µi > 0, i = 1, 2, 4, 5, 6, τ ≥ 0,

(3.32)

where ej is a vector whose jth component is 1 and the remaining components are 0, i.e.,

eji = 1, i = j; eji = 0, i 6= j.

Next we show that (3.31) and (3.32) satisfy the strong duality property under Assumption

32. It can be seen that (x, t, γ) is a feasible solution to (3.31) if and only if (x, t, γ) is

an optimal solution of (3.11), or if x is optimal to (3.5). If w satisfies the conditions in

Assumption 32, then there exists an optimal solution x̄ of (3.5) such that ‖y − Ax̄‖2 <

ε, Bx̄ 6 b, wT |x̄| = Z∗ which means there is a relative interior point (x̄, t̄, γ̄) of the

65

feasible set of (3.31) satisfying

‖γ̄‖2 < ε, Bx̄ 6 b, γ̄ = y − Ax̄, |x̄| ≤ t̄, wT t̄ ≤ Z∗, t̄ ≥ 0.

As a result, the strong duality holds for (3.31) and (3.32) for all j. Moreover, due to (G2)

and (G3), w is positive and Z∗ is finite, so tj cannot be ∞. Thus the optimal value of all

jth minimization problems (3.31) is finite. It follows from Lemma 24 that for each jth

optimization (3.31) and (3.32), the duality gap is 0, and each jth dual problem (3.32) can

achieve their optimal value.

We use ξ∗j to denote the optimal value of the jth primal problem in (3.31). Clearly,

ξ∗j is nonpositive, i.e.,

ξ∗j < 0 or ξ∗j = 0.

Case 1: ξ∗j < 0. Then (3.11) has an optimal solution (x′, t′, γ′) where the jth component

in t′ is positive since t′j = −ξ∗j and admits the largest value amongst all the optimal

solutions of (3.11). By Theorem 30, the complementary condition implies that (3.20) has

an optimal solution λ′ = (λ′1, ..., λ
′
6) where jth component in λ′6 is 0. Then we have an

optimal solution pair ((x′, t′, γ′), λ′) for (3.11) and (3.20) such that t′j > 0 and (λ′6)j = 0.

It means that

t′j = −ξ∗j > 0 implies (λ′6)j = 0.

Case 2: ξ∗j = 0. Following from the strong duality between (3.31) and (3.32), we have

an optimal solution (µ, τ) of the jth optimization problem (3.32) such that

−µ1ε− µT2 b+ µT3 y = τZ∗.

First, we consider τ 6= 0. The above equality can be reduced to

−µ1

τ
− µT2

τ
b+

µT3
τ
y = Z∗,

66

and we also have

BT µ2

τ
− AT µ3

τ
+
µ4

τ
− µ5

τ
= 0,

∥∥∥µ3

τ

∥∥∥
2
≤ µ1

τ
, w =

µ4

τ
+
µ5

τ
+
µ6

τ
+
ej

τ
.

We set

λ
′

1 =
µ1

τ
, λ

′

2 =
µ2

τ
, λ

′

3 =
µ3

τ
, λ

′

4 =
µ4

τ
, λ

′

5 =
µ5

τ
, λ

′

6 =
µ6

τ
+
ej

τ
.

Due to strong duality of (3.11) and (3.20) again, λ′ = (λ
′
1, ..., λ

′
6) is optimal to (3.20).

Note that

(λ6)
′

j =
(µ6)j + 1

τ
.

Thus (λ6)
′
j > 0, which follows from µ6 ≥ 0 and τ > 0. So

t′j = −ξ∗j = 0 implies (λ6)
′

j > 0.

Note that the third constraint in jth optimization of (3.32) requires τ 6= 0 since w, µ4,

µ5, µ6 are all non-negative and ejj = 1 so that the jth component in τw must be greater

or equal than 1. Therefore, all jth optimization problems in (3.32) are infeasible if τ = 0.

As a result, the optimal solution (µ, τ) of (3.32) must have τ 6= 0 and the case of τ = 0

is impossible to occur. Combining the cases 1 and 2 implies that for each 1 ≤ j ≤ n, we

have an optimal solution pair ((xj, tj, γj), λj) such that tjj > 0 or (λj6)j > 0. For all jth

solution pairs, they all satisfy the following properties:

• (1) (xj, tj, γj) is optimal to (3.11), and (λj1, λ
j
2, λ

j
3, λ

j
4, λ

j
5, λ

j
6) is optimal to (3.20);

• (2) the jth componment of tj and the jth component of λj6 are strictly complemen-

tary, such that tjj(λ
j
6)j = 0, tjj + (λj6)j > 0.

Denote (x∗, t∗, γ∗, λ∗) by

x∗ =
1

n

n∑
j=1

xj, t∗ =
1

n

n∑
j=1

tj, γ∗ =
1

n

n∑
j=1

γj, λ∗i =
1

n

n∑
j=1

λji , i = 1, 2, · · · , 6.

67

Since (xj, tj, γj), j = 1, 2, ..., n are all optimal solutions of (3.11), then for any j, we have

wT tj = Z∗,

‖γj‖2 ≤ ε,

Bxj ≤ b,

γj = y − Axj,

|xj| ≤ tj, tj ≥ 0.

(3.33)

It is easy to see that

wT t∗ = Z∗, Bx∗ ≤ b, γ∗ = y − Ax∗, t∗ ≥ 0.

Moreover,

‖γ∗‖2 =

∥∥∥∥∥ 1

n

n∑
j=1

γj

∥∥∥∥∥
2

≤
n∑
j=1

∥∥∥∥ 1

n
γj
∥∥∥∥

2

≤ ε,

|x∗| =

∣∣∣∣∣ 1n
n∑
j=1

xj

∣∣∣∣∣ ≤ 1

n

n∑
j=1

|xj| ≤ 1

n

n∑
j=1

tj = t∗,

where the first inequality of each equation above follows from the triangle inequality.

Then the vector (x∗, t∗, γ∗) satisfies

wT t∗ = Z∗,

‖γ∗‖2 ≤ ε,

Bx∗ ≤ b,

γ∗ = y − Ax∗,

|x∗| ≤ t∗, t∗ ≥ 0.

(3.34)

Thus (x∗, t∗, γ∗) is optimal to (3.11), and similarly it can be proven that λ∗ = (λ∗1, ..., λ
∗
6)

is an optimal solution to (3.20). By strong duality, t∗ and λ∗6 are complementary, i.e.,

(t∗)Tλ∗6 = 0. We now check whether t∗ and λ∗6 are strictly complementary or not. Due to

the above-mentioned property (2), it is impossible to find a pair (t∗, λ∗6) such that their

68

jth component are both 0. Thus, (t∗, λ∗6) is the strictly complementary solution pair for

(3.11) and (3.20).

Next, we demonstrate the support of strictly complementary pairs are invariant. Sup-

pose there are two distinct optimal pairs of the solutions of (3.11) and (3.20), denoted

by (xk, tk, γk, λk), k = 1, 2, such that (tk, λk6), k = 1, 2 are strictly complementary pairs,

where (xk, tk, γk) are optimal to (3.11) and (λk) are optimal to (3.20). Due to Theorem

30, we know that

(λ1
6)T t2 = 0 and (λ2

6)T t1 = 0.

It means that the supports of all strictly complementary pairs of (3.11) and (3.20) are

invariant. Otherwise, there exists an index j such that t1j > 0 and (λ2
6)j > 0, leading to a

contradiction.

Since the optimal solution (x∗, t∗, γ∗) to (3.11) must have t∗ = |x∗| if w > 0, the

main results of Theorem 33 also imply that |x∗| and λ∗6 are strictly complementary under

Assumption 32. Let Z∗ be the optimal value of (3.5). Notice that the optimal solution

of (3.5) remains the same when w is replaced by αw for any positive α. When Z∗ 6= 1,

by replacing W by W/Z∗, we can obtain

1 = min
x
{‖(W/Z∗)x‖1 : x ∈ T}.

We use ζ to denote the set of such weights, i.e.,

ζ = {w ∈ Rn
+ : 1 = min

x
{‖Wx‖1 , x ∈ T}}, (3.35)

where W = diag(w). Clearly,
⋃
α>0

αζ is the set of weights such that (3.5) has a finite

optimal value, and ζ is not necessarily bounded. Note that (3.5) is equivalent to (3.11),

and under Slater condition, (3.11) and (3.20) satisfy strong duality. Thus under Slater

condition, for each w ∈ ζ, (3.11) and (3.20) satisfies strong duality and the optimal value of

(3.20) can be attained. Moreover, given any w ∈ ζ, by Theorem 31, any optimal solutions

69

of (3.11) and (3.20), denoted by (x∗(w), t∗(w), γ∗(w)) and λ∗(w) = (λ∗1(w), ..., λ∗6(w)),

satisfy that |x∗(w)| and λ∗6(w) are complementary, i.e.,

‖x∗(w)‖0 + ‖λ∗6(w)‖0 6 n. (3.36)

If w∗ satisfies Assumption 32, then Slater condition is automatically satisfied for (3.11)

with w∗ and (3.36) is also valid. Moreover, by Theorem 33, there exists a strictly com-

plementary pair (|x∗(w∗)|, λ∗6(w∗)) such that

‖x∗(w∗)‖0 + ‖λ∗6(w∗)‖0 = n.

If w∗ is an optimal weight (see Definition 3.1), then λ∗6(w∗) must be the densest slack

variable among all w ∈ ζ, and locating a sparse vector can be converted to

λ∗6(w∗) = argmax{‖λ∗6(w)‖0 : w ∈ ζ}.

Note that if there exists a weight in (3.7) in Theorem 19 or (3.8) in Theorem 20 satisfying

Assumption 32, then such a weight w∗ does exist and can be obtained by solving the

problem max{‖λ∗6(w)‖0 : w ∈ ζ}. Inspired by the above fact, we develop a theorem

under Assumption 34 in the next section which claims that finding a sparsest point in T

is equivalent to seeking the proper weight w such that the dual problem (3.20) has the

densest optimal variable λ6. Such weights are optimal weights and can be determined by

certain bilevel programming. This idea was first introduced by Zhao & Kočvara [96] (and

also by Zhao & Luo [99]) to solve the standard `0-minimization (1.8). In this thesis, we

generalise this idea to solve the model (1.1).

3.5 Optimal weights via bilevel programming

In this section, we develop a bilevel programming model related to the sparsity problem

(1.1). Before that, we make the following assumption:

70

Assumption 34. Let ν be an arbitrary sparsest point in T given in (1.2). There exists

a weight w̄ > 0 such that

• 〈H1〉 The problem (3.5) with W = diag(w̄) has an optimal solution x̄ such that

‖x̄‖0 = ‖ν‖0,

• 〈H2〉 there exists an optimal variable in (3.20) with w = w̄, denoted as λ̄, such that

λ̄6 and x̄ are strictly complementary,

• 〈H3〉 the optimal value of (3.5) with W = diag(w̄) is finite.

Note that Theorem 20 implies that there exists a weight such that 〈H1〉 and 〈H3〉

are satisfied. Among these weights, if (3.5) has an optimal solution which is a relative

interior point in T , then Theorem 33 indicates that 〈H2〉 is automatically satisfied for

such a weight. An example for the existence of a weight satisfying Assumption 34 is given

in the remark after the following theorem.

Theorem 35. Let the set Ω, given in (3.25), be nonempty and Assumption 34 hold.

Consider the bilevel programming

(Pb) max
(w,λ)

‖λ6‖0

s.t. BTλ2 − ATλ3 + λ4 − λ5 = 0,

‖λ3‖2 ≤ λ1, w = λ4 + λ5 + λ6 ≥ 0,

−λ1ε− λT2 b+ λT3 y = min
x
{‖Wx‖1 : x ∈ T},

λi > 0, i = 1, 2, 4, 5, 6,

(3.37)

where W = diag(w) and T = {x ∈ Rn : ‖y − Ax‖2 6 ε, Bx 6 b}. If (w∗, λ∗) is an optimal

solution to the above optimization problem (3.37), then any optimal solution x∗ to

min
x
{‖W ∗x‖1 : x ∈ T}, (3.38)

is a sparsest point in T .

71

Proof. Let ν be a sparsest point in T . Since the set Ω is not empty, Slater condition

holds for (3.5) and (3.11). Suppose that (w∗, λ∗) is an optimal solution of (3.37). We

now prove that any optimal solution to (3.38) is a sparsest point in T under Assumption

34. Let w′ be a weight satisfying Assumption 34, meaning that (3.5) with W = diag(w′)

has an optimal solution x′ such that ‖x′‖0 = ‖ν‖0. Moreover, there exists a strictly

complementary pair (x′, λ′6) satisfying

‖x′‖0 + ‖λ′6‖0 = n = ‖λ′6‖0 + ‖ν‖0 . (3.39)

where the vector λ′ = (λ′1, ..., λ
′
6) is the dual optimal solution of (3.20) with w = w′, i.e.,

max
λ
−λ1ε− λT2 b+ λT3 y

s.t. BTλ2 − ATλ3 + λ4 − λ5 = 0,

‖λ3‖2 ≤ λ1,

w
′
= λ4 + λ5 + λ6,

λi > 0, i = 1, 2, 4, 5, 6.

(3.40)

By Theorem 25, the nonemptyness of Ω implies that strong duality holds for the problems

(3.40) and (3.11) with w′. Note that the optimal values of (3.11) and (3.5) with w′ are

equal and finite so that (w′, λ′) is feasible to (3.37). Let x∗ be an arbitrary solution to

(3.38). Note that (3.11) with w∗ is equivalent to (3.38), to which the dual problem is

max
λ
−λ1ε− λT2 b+ λT3 y

s.t. BTλ2 − ATλ3 + λ4 − λ5 = 0,

‖λ3‖2 ≤ λ1,

w∗ = λ4 + λ5 + λ6,

λi > 0, i = 1, 2, 4, 5, 6.

(3.41)

Moreover, λ∗ = (λ∗1, ..., λ
∗
6) is feasible to (3.41) and the fourth constraint of (3.37) implies

that there is no duality gap between (3.11) with w∗ and (3.41). Thus, by strong duality,

72

λ∗ = (λ∗1, ..., λ
∗
6) is an optimal solution to (3.41). Therefore, by Theorem 31, |x∗| and λ∗6

are complementary. Hence, we have

‖x∗‖0 6 n− ‖λ∗6‖0 . (3.42)

Since (w∗, λ∗) is optimal to (3.37), we have

‖λ′6‖0 6 ‖λ
∗
6‖0 . (3.43)

Pluging (3.39) and (3.43) into (3.42) yields

‖x∗‖0 6 n− ‖λ∗6‖0 6 n− ‖λ′6‖0 = ‖x′‖0 = ‖ν‖0 ,

which implies

‖x∗‖0 = ‖ν‖0 ,

due to the assumption that ν is the sparsest point in T . Then any optimal solution to

(3.39) is a sparsest point in T .

Given Assumption 34 and the nonempty set Ω, finding a sparsest point in T is tan-

tamountly equal to look for the densest dual solution via the bilevel model (3.37). The

above theorem can be seen as a generalized version of a result in Zhao and Kočvara [96]

(see also Zhao and Luo [99]). Before we close this chapter, we make some remarks for

Assumption 34 and the necessary condition in Theorem 35.

Remark 36. See Example 11. We know (0, 0, 2, 1) is a sparsest point in the feasible set

T . If we choose weights w = (100, 100, 1, 1), then we can see that (0, 0, 2, 1) is the unique

optimal solution of (3.5) which satisfies 〈H1〉 in Assumption 34. Note that the optimal

value Z∗ is 3. Thus, 〈H3〉 in Assumption 34 is also satisfied. In addition, (0, 0, 2, 1) is

a relative interior point in the feasible set T . This, combined with the fact that weights

are positive, implies that Assumption 32 is satisfied, and hence the strictly complemen-

73

tary condition is satisfied. Therefore, by Theorem 33, it indicates that there must have

a strictly complementary solution pair for (3.5) and (3.20). Note that (0, 0, 2, 1) is the

unique optimal solution of (3.5). Thus 〈H2〉 in Assumption 34 is satisfied. Specifically,

we can find an optimal dual solution λ̄ = (λ̄1, ..., λ̄6) with λ̄6 = (32.27, 31.71, 0, 0). There-

fore, the weight w = (100, 100, 1, 1) satisfies Assumption 34.

Remark 37. Suppose there exist some weights satisfying Assumption 34. For any w ∈ ζ,

let x∗(w) and λ∗(w) be the optimal solutions to the problem (3.5) and (3.20), respectively.

Denote λ∗6(w∗) as a densest variable among the set {λ∗6(w) : w ∈ ζ}. Clearly, (w∗, λ∗(w∗))

is an optimal solution to (3.37). By the definition of optimal weights, Theorem 35 implies

that w∗ is an optimal weight, i.e.,

w∗ ∈ argmax{‖λ∗6(w)‖0 : w ∈ ζ},

by which a sparsest point can be obtained via (3.5). If there is no weight satisfying the

properties in Assumption 34, a heuristic method for finding a sparse point in T can be

also developed from (3.36) since the increase in ‖λ6(w)‖0 leads to the decrease of ‖x(w)‖0

to a certain level.

Remark 38. If w∗ is an optimal weight and also satisfies (H2) and (H3) in Assumption

34 or satisfies Assumption 32, then there exists a strictly complementary pair (x∗, λ∗6) such

that

‖x∗‖0 + ‖λ∗6‖0 = n (3.44)

where x∗ is an arbitrary solution of (3.38) and λ∗ is an optimal solution of (3.20) with

weight w∗, and hence x∗ is a sparsest point in T and (w∗, λ∗) is feasible to (3.37). We can

further show that (w∗, λ∗) is actually the optimal solution of (3.37). In fact, let (w̄, λ̄) be

an arbitrary solution to (3.37) and x̄ be a solution to (3.5). The equivalence between (3.5)

and (3.11) implies that strong duality holds for (3.11) and (3.20) with w̄, and hence λ̄ is

74

optimal to (3.20) with w̄. By Theorem 31, we have

‖x̄‖0 +
∥∥λ̄6

∥∥
0
6 n. (3.45)

Since x∗ is a sparsest point in T , we have

‖x∗‖0 6 ‖x̄‖0 . (3.46)

Combining (3.44), (3.45) and (3.46) yields:

‖λ∗6‖0 = n− ‖x∗‖0 > n− ‖x̄‖0 >
∥∥λ̄6

∥∥
0
.

Thus (w∗, λ∗) is optimal to (3.37).

Theorem 35 indicates that an optimal solution of (3.37) is the optimal dual variable

λ6 with the maximum number of nonzero components. This provides a theoretical basis

to obtain an optimal weight, i.e., solving the problem (3.37). However, exactly solving

this bilevel problem (3.37) [49] is difficult due to the discrete objective function and

the nonconvex constraint. In the next chapter, we introduce a certain relaxation or

approximation of this bilevel problem to develop some heuristic methods for solving the

sparse optimization problem (1.1).

75

Chapter 4

Primal and Dual Re-weighted `1-algorithms

4.1 Introduction

We first briefly review some existing re-weighted `1-algorithms for sparse optimization

problems. Consider the standard `0-minimization (1.8) and the corresponding weighted

`1-minimization:

min wT |x| = ‖Wx‖1

s.t. y = Ax,

(4.1)

where w is a given vector of positive weights and W = diag(w). Given w, the solution

of (4.1) may not be the sparsest solution of the system y = Ax. Thus, in order to find

a sparse solution, the re-weighted `1-algorithm is developed, which consists of a series

of individuals weighted `1-minimization like (1.22). In the method proposed by Candès,

Wakin and Boyd [24], the ith component of the weight wk+1, denoted by wk+1
i , is updated

via the current iterate xki , i.e.,

wk+1
i =

1

|xki |+ ε
, i = 1, ..., n, (4.2)

where ε is a small positive number ensuring that wk+1
i is not equal to∞ when xki = 0. The

weight (4.2) penalizes the ith component of |x| when xki has a sufficiently small absolute

value. By such a choice of weight, the iterate xk+1 (the solution of (4.1) with weight

76

wk+1) satisfies |xk+1
i | ≈ 0. As a result, the new iterate xk+1 has almost the same sparsity

pattern as xk. More general than the method in [24], Zhao and Li [97] have proposed

a unified method of the re-weighted `1-algorithms for solving (1.8). The performance

of re-weighted `1-algorithms may depend on the initial weight w0. For example, given

an initial weight, if the support of the iterate obtained in the initial iteration is totally

different from that of the sparsest solution of the linear system Ax = y, then the weight

given as (4.2) might lead to the next iterate still with incorrect support. This might cause

the algorithm to fail in some situations. Thus how to choose a proper weight in the first

iteration is an issue for re-weighted `1-algorithms. In existing re-weighted `1-algorithms

(e.g. [24], [42], [56], [97], [94]), the identity matrix I is chosen as the initial matrix W 0.

This means that x0 is obtained by solving the standard `1-minimization. Recently, Zhao,

Kočvara and Luo [96, 99] have derived a new framework of re-weighted algorithms for

solving (1.8) and (3.4) from the perspective of dual space.

In this chapter, we develop re-weighted `1-algorithms for the general model (P0) given

in (1.1) from the above-mentioned two different viewpoints of primal space and dual

space. This chapter is organized as follows. First, Section 4.2 serves as an introduction

to the merit functions for sparsity approximating the `0- and `δ0-norms and defines a new

merit function. In Section 4.3, we apply the re-weighted `1-algorthms proposed by Zhao

and Li [97] to solve (1.1) and demonstrate their empirical performance by comparing with

several existing algorithms. In Section 4.4, by connecting the merit functions to the bilevel

programming (3.37), we present three types of relaxations for the bilevel problem (3.37)

to develop the dual weighted algorithms and dual re-weighted algorithms for solving the

`0-minimization problem (1.1).

4.2 Merit functions for sparsity

A function is called a merit function for sparsity if it can approximate ‖s‖0 in some sense

(see Zhao [94] and Zhao and Li [97]). As discussed in Chapter 2,
n∑
i=1

(log(|si| + ε)) and

‖s‖pp , 0 < p < 1 can be seen as merit functions. Due to the approximation of `0-norm,

77

concave functions are shown to be the good candidates for the merit functions for sparsity.

In fact, Harikumar and Bresler in [51] have shown that when finding a sparsest point of

a linear system, the concave function is an ideal choice for approximating the `0-norm,

since convex functions might hinder locating the sparsest point because of their bulgy

features. Many researches do indicate that the concave functions, denoted by Ψε(s), may

approximate ‖s‖0 better than other functions where ε is sufficiently small [24, 94, 96].

In [97], Zhao and Li have identified a family of merit functions in the form

Ψε(s) =
n∑
i=1

ϕε(si), s ∈ Rn
+, (4.3)

satisfying, roughly, the following properties:

• (P1). for any given s ∈ Rn
+, Ψε(s) tends to ‖s‖0 as ε tends to 0, i.e.,

lim
ε→0

Ψε(s) = ‖s‖0 ;

• (P2). Ψε(s) is twice continuously differentiable with respect to s in all of Rn
+;

• (P3). Ψε(s) is strictly concave in s ∈ Rn
+ and strictly increasing in every si ∈ R+;

• (P4). Ψε(s) is separable and coercive in s;

• (P5). for any given si > 0, ∇ϕε(si) tends to a finite positive number when ε → 0,

and

lim
(si,ε)→(0,0)

∇ϕε(si) = lim
(si,ε)→(0,0)

(∇Ψε(s))i =∞.

Clearly, (4.3) can be rewritten as Ψε(|s|) =
n∑
i=1

ϕε(|si|), s ∈ Rn. Zhao and Li [97] have

given a list of merit functions satisfying (P1)-(P5), for example,

Ψε(|s|) = n−
∑n

i=1 log(|si|+ ε)

log ε
, s ∈ Rn, (4.4)

78

Ψε(|s|) =
1

p

n∑
i=1

(|si|+ ε)p, p ∈ (0, 1), s ∈ Rn. (4.5)

In this chapter, the merit functions we used are not required to satisfy all the properties

(P1)-(P5). Instead, we consider a function satisfying (P1) and (P2) and the following

conditions:

• (P3′). Ψε(s) is non-strictly concave and strictly increasing with respect to every

s ∈ Rn
+.

• (P4′). Ψε(s) is separable in s.

Note that (P3′) is weaker than (P3), and (P4′) is weaker than (P4). Moreover, we hope

that the merit functions satisfy the monotonic property such that the merit function

Ψε(|s|) increases when ‖s‖0 increases. Zhao and Luo have defined this property in [99],

and we still use the same definition of such monotonic property. This, together with (P1),

(P2), (P3′) and (P4′), yields a family of merit functions we will use to approximate the

`0-norm or `δ0-norm in this chapter.

Assumption 39. Let <(ϑ1, ϑ2) = {s ∈ Rn : ϑ1 6 |si| 6 ϑ2 when si 6= 0} be a set

where ϑ1, ϑ2 are two given positive constants and ϑ1 6 ϑ2. Let Ψε(|s|), s ∈ Rn be a merit

function satisfying the following properties:

• (P1), (P2), (P3′) and (P4′);

• the monotonic property: for any fixed ϑ∗ ∈ (0, 1), there exists a positive number ε∗

such that for any ε ∈ (0, ε∗], any (s1, s2) satisfying

s1 ∈ <(ϑ1, ϑ2), s2 ∈ <
′
(ϑ2) = {s ∈ Rn : 0 6 |si| 6 ϑ2} and ‖s1‖0 > ‖s2‖0 ,

the following inequality holds:

Ψε(|s2|)−Ψε(|s1|) 6 ϑ∗ − 1 < 0. (4.6)

79

In this chapter, we use such merit functions satisfying Assumption 39. Note that (P3′)

and (P4′) are milder than (P3) and (P4), respectively. Thus (4.4) and (4.5) both satisfy

(P1), (P2), (P3′) and (P4′). Zhao and Luo [99] have given examples of merit functions

satisfying the monotonic property, for example,

Ψε(|s|) =
n∑
i=1

|si|
|si|+ ε

, s ∈ Rn, (4.7)

Ψε(|s|) =
n∑
i=1

(|si|+ ε1/ε)ε, s ∈ Rn (4.8)

and (4.4) where ε ∈ (0, 1). It is easy to check the above functions (4.7) and (4.8) satisfy

(P1), (P2), (P3′) and (P4′). Therefore the functions (4.4), (4.7) and (4.8) are the specific

examples of merit functions satisfying Assumption 39. We now introduce a new merit

function:

Ψε(|s|) =
2

π

n∑
i=1

arctan(
|si|
ε

), s ∈ Rn (4.9)

where ε > 0. It can be shown that (4.9) satisfies Assumption 39.

Lemma 40. The function (4.9) satisfies Assumption 39.

Proof. Obviously, the function (4.9) satisfies (P1), (P2) and (P4′). In Rn
+, note that

∇Ψε(s) = (∇ϕε(s1), ...,∇ϕε(sn))T =
2

π

(
ε

s2
1 + ε2

, ...,
ε

s2
n + ε2

)T
,

∇2Ψε(s) =

∇2ϕε(s1)

. . .

∇2ϕε(sn)

 =
4

π
diag

(
− εs1

(s2
1 + ε2)2

, ...,− εsn
(s2
n + ε2)2

)
.

Due to si > 0 and ε > 0, we have ∇ϕε(si) > 0 and ∇2ϕε(si) � 0 for i = 1, ..., n (i.e.,

∇2Ψε(s) is negative semidefinite) which means Ψε(s) is concave and strictly increasing

with respect to every entry of s ∈ Rn
+. Thus (4.9) satisfies (P1), (P2), (P3′) and (P4′).

We now prove that (4.9) satisfies the monotonic property in Assumption 39. Let ϑ1, ϑ2

be two arbitrary numbers such that 0 < ϑ1 6 ϑ2, and the two sets <(ϑ1, ϑ2) and <′(ϑ2)

80

be defined as in Assumption 39. Let ϑ∗ ∈ (0, 1) be a fixed number. We now prove that

there exists a small ε∗ such that (4.9) satisfies

Ψε(|s2|)−Ψε(|s1|) 6 ϑ∗ − 1 < 0,

for any ε ∈ (0, ε∗] and any (s1, s2) such that s1 ∈ <(ϑ1, ϑ2), s2 ∈ <
′
(ϑ2) and ‖s1‖0 > ‖s2‖0.

Since the function arctan(|si|/ε) is a continuously increasing function when |si| increases,

then for any s1 ∈ <(ϑ1, ϑ2), we have

arctan
ϑ1

ε
6 arctan

|(s1)i|
ε

6 arctan
ϑ2

ε
, i = 1, ..., n. (4.10)

We can find ε∗ > 0 such that

arctan
ϑ1

ε∗
=
π

2
− ϑ∗π

2n
,

i.e.,

ε∗ =
ϑ1

tan(π
2
− ϑ∗π

2n
)
.

Clearly, for any ε ∈ (0, ε∗] and for any |s1| ∈ <(ϑ1, ϑ2), we have

π

2
− ϑ∗π

2n
= arctan

ϑ1

ε∗
6 arctan

ϑ1

ε
6 arctan

|(s1)i|
ε

6 arctan
ϑ2

ε
<
π

2
, i = 1, ..., n. (4.11)

Thus, for any ε ∈ (0, ε∗] and (s1, s2) such that s1 ∈ <(ϑ1, ϑ2) and s2 ∈ <
′
(ϑ2), we have

Ψε(|s1|) =
2

π

n∑
i=1

arctan(
|(s1)i|
ε

) =
2

π

∑
|(s1)i|∈[ϑ1,ϑ2]

arctan(
|(s1)i|
ε

)

>
2

π
‖s1‖0 (

π

2
− ϑ∗π

2n
) = ‖s1‖0 (1− ϑ∗

n
),

and

Ψε(|s2|) =
2

π

∑
|(s2)i|∈(0,ϑ2]

arctan(
|(s2)i|
ε

) < ‖s2‖0 ,

81

which follows from the truth that

arctan
|(s2)i|
ε

6 arctan
ϑ2

ε
<
π

2
, ∀s2 ∈ <

′
(ϑ2).

Combining the above inequalities and the condition ‖s2‖0 < ‖s1‖0 yields

Ψε(|s2|)−Ψε(|s1|) < ‖s2‖0 − ‖s1‖0 + ‖s1‖0

ϑ∗

n
6 −1 + ‖s1‖0

ϑ∗

n
6 −1 + ϑ∗ < 0,

which is the desired result.

We will focus on the merit functions satisfying Assumption 39. We denote the set of

such merit functions by

F = {Ψε : Ψε satisfies Assumption 39}

Note that the functions (4.4), (4.7), (4.8) and (4.9) are in the set F. Any convex combi-

nation of a finite number of merit functions in F also satisfies Assumption 39. Thus the

set F is convex. In the next sections, we use the merit functions Ψε ∈ F to develop the

re-weighted algorithms for solving (1.1) from the viewpoints of primal and dual spaces.

4.3 Re-weighted `1-algorithms in primal space

By replacing ‖x‖0 with Ψε(|x|) ∈ F, we obtain an approximation problem of (1.1):

min

{
Ψε(|x|) =

n∑
i=1

ϕε(|xi|) : ‖y − Ax‖2 6 ε, Bx 6 b

}
. (4.12)

Denote by

T̃ = {(x, t) : ‖y − Ax‖2 6 ε, Bx 6 b, |x| 6 t}.

82

Since ϕε(|xi|) is strictly increasing with respect to |xi|, then the above optimization (4.12)

can be rewritten as the following problem:

min
(x,t)
{Ψε(t) : (x, t) ∈ T̃}. (4.13)

4.3.1 Approximation by first-order method

By using 1st order Taylor expansion of Ψε(t) ∈ F at point tk, we have

Ψε(t) = Ψε(t
k) +∇ΨT

ε (tk)(t− tk) + o(
∥∥t− tk∥∥).

The concavity of Ψε(t) implies

Ψε(t) 6 Ψε(t
k) +∇ΨT

ε (tk)(t− tk) for t ∈ Rn. (4.14)

Thus (4.13) can be approximated by the following optimization:

min
(x,t)
{Ψε(t

k) +∇ΨT
ε (tk)(t− tk) : (x, t) ∈ T̃}, (4.15)

which is equivalent to min(x,t){∇ΨT
ε (tk)t : (x, t) ∈ T̃}. By setting k as the iteration index,

(4.15) can be seen as an iterative scheme to generate the new point (xk+1, tk+1), i.e.,

(xk+1, tk+1) ∈ argmin
(x,t)

{∇ΨT
ε (tk)t : (x, t) ∈ T̃}. (4.16)

Clearly, due to the fact that Ψε(t) is strictly increasing with respect to each ti ∈ R+ (see

P (3′)), it is evident that the iterate (xk, tk) must satisfy tk = |xk|, which implies that

(4.16) is equivalent to

xk+1 ∈ argmin
x
{∇ΨT

ε (|xk|)|x| : x ∈ T}. (4.17)

83

4.3.2 Re-weighted `1-algorithm via first-order approximation

Note that ∇Ψε(|xk|) in (4.17) can be seen as the weight w in (3.5). Therefore (4.17)

motivates us to develop the re-weighted algorithm with the weight updating scheme

wk+1
i = (∇Ψε(|xk|))i, i = 1, ..., n or W k+1 = diag(∇Ψε(|xk|)).

to find the sparsest point in the feasible set T . This can be stated as follows:

Algorithm: Primal Re-weighted `1-algorithm (PRA)
Input:

merit function Ψε ∈ F;
sensing matrices A ∈ Rm×n and B ∈ Rl×n;
measurements y ∈ Rm and b ∈ Rl and error bound ε ∈ R+;
small positive parameter ε ∈ R++ and initial weight w0;
the iteration index k and the largest number of iterations kmax.

Iteration: At the current iterate xk−1, solve the weighted `1-minimization

xk ∈ argmin

{ n∑
i=1

wki |xi| : x ∈ T
}
,

where wki = ∇Ψε(|xk−1|)i = ∇ϕε(|xk−1
i |), i = 1, ..., n.

Update: wk+1
i := (∇Ψε(|xk|))i = ∇ϕε(|xki |), i = 1, ..., n; Repeat the above iteration

until k = kmax (or certain other stopping criterion is met).

In order to let PRA likely have a good performance in solving (1.1) or recovering

sparse vectors, we may require that the merit functions Ψε(t) ∈ F satisfy the second part

of (P5), i.e., for all i = 1, ..., n, (∇Ψε(t))i tends to infinity as (ti, ε) tends to 0. In fact,

the merit functions (4.4), (4.7), (4.8) and (4.9) all satisfy the above property. For (4.9),

note that for any si ∈ R+, we have

lim
(si,ε)→(0,0)

∇ϕε(si) =∞

since limsi→0∇ϕε(si) = 1
ε
. Having such a property can let the merit functions Ψε(t) ∈ F

have a better approximation of `0-norm. Due to this, the algorithms might have a good

performance of recovering sparse vectors. In Subsection 4.3.4, we carry out some numer-

84

cial experiments to show the performance of PRA by using three different merit functions

(4.7), (4.8), (4.9) and we compare their performances with the traditional re-weighted

algorithm with the weight updating scheme in [24], which is often called CWB.

4.3.3 Convergence of PRA

Clearly, (4.17) is equivalent to (4.16) for any Ψε(t) ∈ F. So Algorithm PRA may take

another form by replacing

xk ∈ argmin

{ n∑
i=1

wki |xi| =
n∑
i=1

(∇Ψε(|xk−1|))i|xi|, s.t. x ∈ T
}

with its equivalent version:

(xk, tk) ∈ argmin

{ n∑
i=1

wki ti =
n∑
i=1

(∇Ψε(t
k−1))iti, s.t. (x, t) ∈ T̃

}
.

We now briefly discuss the convergence of PRA with the iteration scheme (4.16).

Mangasarian [63] showed that under suitable assumption, the well-known successive

linearization algorithm (SLA), an algorithm for concave minimization over a polyhedral

set, terminates at a stationary point after a finite number of steps and generates a series of

points with decreasing objective function value. For the noiseless recovery, Lai and Wang

[56] showed that the re-weighted `1-algorithm based on `q-minimization with q ∈ (0, 1)

creates a sequence convergent to a stationary point under some additional assumptions on

the underdetermined linear systems y = Ax. Zhao and Li [97] showed that if AT satisfies

the so-called RSP condition, the re-weighted `1-algorithms for (1.8) can truly converge to

a sparse solution when the merit functions for sparsity are properly chosen. Note that

the constraints in (4.13) are more general than the constraints in (1.8) or (1.9). Thus,

it is more challenging to prove that Algorithm 1 converges to a sparse point. This is a

worthwhile future work. Nevertheless, the convergence to a stationary point can be shown

under some mild assumptions.

85

Rinaldi, Schoen and Sciandrone [71], and Rinaldi [70] considered the following concave

problem:

min{g(x, z) +
n∑
i=1

hi(zi) +
n∑
i=1

fi(xi) : (x, z) ∈ F, zi ≥ 0}, (4.18)

where F is a compact convex set in the form

F =

{
(x, z) ∈ Rn ×Rn : Sp(x) +

n∑
i=1

Qpi(zi) 6 0

}

and

• g : Rn → R is a continuously differentiable function;

• for all i, hi, fi : R→ R are concave and continuously differentiable functions;

• for all i, Sp and Qpi are convex and continuously differentiable functions.

They proposed a revised Frank-Wolfe algorithm (called FW -RD algorithm) via the 1st

order approximation to solve the concave minimization (4.18) over F , and showed its

convergence under mild conditions for hi. The problem (4.13) can be written as (4.18)

where we have

• g(x, z) = 0, hi(zi) = ϕε(ti), fi(xi) = 0, zi = ti, i = 1, ..., n;

• S1(x) = ‖y − Ax‖2 − ε, Q1i(zi) = 0, i = 1, ..., n, p = 1;

• S1+j(x) = xj, Q(1+j)i(ti) =

 0, i 6= j

−ti, i = j
, j = 1, ..., n, i = 1, ..., n;

• S1+n+j(x) = −xj, Q(1+n+j)i(ti) =

 0, i 6= j

−ti, i = j
, j = 1, ..., n, i = 1, ..., n;

• S1+2n+j(x) = Bjx− bj, Q(1+2n+j)i(ti) = 0, j = 1, ..., l, i = 1, ..., n,

where Bj is the jth row in B. Clearly, T̃ is a closed convex set but may not be bounded.

However, we can add some constraints to give a sufficiently large upper bound for t such

86

that ti 6 C, i = 1, ...n, which can be represented as

S1+2n+l+j(x) = −C, Q(1+2n+l+j)i(ti) =

 0, i 6= j

ti, i = j
, j = 1, ..., n, i = 1, ..., n.

In that case, T̃ can be converted to a bounded set, and hence the problem (4.13) with T̃

can be written as (4.16) from the above observation. We consider the following property

for hi:

(P7) for every i, there exists a number K such that ∇hi(0) ≥ K.

Rinaldi [70] has shown the generic convergence of FW -RD algorithms for a large number

of concave functions satisfying (P7). With such a function, the FW -RD algorithm can

guarantee that every limit point of the generated sequence is a stationary point of the

problem.

For our model (4.13), (P7) means that for ∀i, (∇Ψε(0))i = ∇ϕε(0) ≥ K. Clearly, due

to (P3′), (P7) is automatically satisfied for ∀Ψε ∈ F by choosing K = 0. Thus under the

compactness of the feasible set T̃ , the convergence of the algorithm PRA can be obtained,

that is, there exists a family of merit functions Ψε ∈ F such that PRA converges to a

stationary point.

4.3.4 Numerical performance

In this subsection, through different merit functions Ψε ∈ F, we demonstrate the numerical

performance of PRA for finding a sparse point in T . Since we can not test all of the merit

functions in F, we only consider the merit functions (4.7), (4.8) and (4.9). For each

case, we also compare the algorithms with `1-minimization (2.24) and CWB method with

weight

wk+1
i =

1

|xki |+ ε
, i = 1, ..., n. (4.19)

Since (4.19) is motivated by the merit function (4.4), we do not carry out the numerical

experiments for PRA by (4.4). The following table shows the algorithms to be performed.

87

Table 4.1: Algorithms to be tested

Name Merit Function Re-weighted Methods

`1 ‖x‖1 `1-minimization

CWB
∑n

i=1 log(|xi|+ ε) PRA

REW1 (4.7) PRA

REW2 (4.8) PRA

ARCTAN (4.9) PRA

The algorithm names listed in the ‘Name’ column are for the `1 and PRA methods

with those merit functions listed in the central column of the above table, respectively.

We now briefly introduce the environment of our experiments. Given the noise level

ε = 10−4, the parameter ε = 10−1 and the dimension (m,n) = (50, 200) of A. We set

three different values of l = 15, 30, 50 (the number of the columns in matrix B) to compare

the performance of the above-mentioned algorithms for locating the sparse points in T . To

determine the convex set T , we generate the data (A,B, x∗) with given sparsity levels of

x∗. The elements of A and B, and the nonzero entries of the sparse vector x∗ are randomly

generated from independent and identically distributed (i.i.d.) random Gaussian variables

with zero means and unit variances. As long as (A,B, x∗) is generated, we can determine

the measurements y and b as

y = Ax∗ +
c1ε

‖c‖2

c, b = Bx∗ + d,

where d ∈ Rl
+ is randomly generated as the absolute value of Gaussian random variables

with zero means and unit variances, and c ∈ Rm and c1 ∈ R are randomly generated

Gaussian random variables with zero means and unit variances. Then the set T can be

obtained and all examples of T in our experiments are given this way. Clearly, x∗ is a

feasible point in T := {x : ‖y − Ax‖2 6 ε, Bx 6 b}. For each sparsity level, we generate

200 trials of (A,B, x∗) and calculate the success frequency of finding the sparsest points in

88

T for all algorithms being tested. If x∗ is the solution found by an algorithm, we count one

‘success’ for this trial. However, when the convex set T admits multiple sparsest points,

an algorithm is still successful in solving `0-problem if the found solution is one of the

sparsest points in T . Therefore, in this case, the criterion ‘exact recovery’ is not suitable

to measure the success frequency of an algorithm. Instead, we can use
∥∥xk∥∥

0
6 ‖x∗‖0

or
∥∥xk − x∗∥∥

2
/‖x∗‖2 6 10−5 as the criteria of finding the sparse vector x∗ where xk is

the point generated by an algorithm after k iterations. In our experiments, we prefer

to choose the second criterion
∥∥xk − x∗∥∥

2
/‖x∗‖2 6 10−5 as our default criterion, and we

perform at most 5 iterations for each re-weighted algorithm CWB, REW1, REW2 and

ARCTAN at each sparsity level. The following three figures show the numerical results of

CWB, REW1, REW2 and ARCTAN via calculating the success rate of finding the sparse

vector at each sparsity level in the case of l = 15, 30 and 50, respectively.

The numerical result in the case of l = 15

0 5 10 15 20 25 30 35

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u

e
n

c
y
 o

f
S

u
c
c
e

s
s

l1

CWB

ARCTAN

REW1

REW2

Figure 4.1: The success rate of finding a sparse vector in T via CWB, REW1, REW2 and
ARCTAN with Gaussian matrices A ∈ R50×200, B ∈ R15×200 and (ε, ε) = (10−4, 10−1).
For each sparsity of ‖x‖0 6 35, 200 trials were performed.

89

The parameters m,n, ε and the noise level ε are fixed as

(m,n, ε, ε) = (50, 200, 10−1, 10−4)

in all the cases of l = 15, 30, 50. Figure 4.1 indicates that CWB, REW1, REW2 and

ARCTAN outperform l1. For our new algorithms, the experiments show that ARCTAN

performs better than others, and it is quite comparable to CWB. Note that CWB, REW1

and ARCTAN are very capable of locating the sparse vectors in T , even when these vectors

have high sparsity levels. For example, Figure 4.1 shows that when at the sparsity level

25, REW1 and l1 fail to find sparse vectors but CWB, REW1 and ARCTAN still have

reasonably good success rate 16%, 29%, 31%, respectively.

The numerical result in the case of l = 30

0 5 10 15 20 25 30 35 40

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u

e
n

c
y
 o

f
S

u
c
c
e

s
s

l1

CWB

ARCTAN

REW1

REW2

Figure 4.2: The success rate of finding the sparse vectors in T via CWB, REW1,
REW2 and ARCTAN with Gaussian matrices A ∈ R50×200 and B ∈ R30×200 and
(ε, ε) = (10−4, 10−1). For each sparsity of ‖x‖0 6 40, 200 trials were made.

Figures 4.2 and 4.3 show the similar results to Figure 4.1. In addition, Figures 4.2 and 4.3

also show that the curves of CWB, REW1, REW2 and ARCTAN in Figure 4.1 is shifted

90

to the right slightly when l is increased. This makes sense since when l is increased, more

information for the measurements can be acquired, the re-weighted `1-algorithms may

gain a better performance in finding the sparse vectors in T .

The numerical result in the case of l = 50

0 5 10 15 20 25 30 35 40 45

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u

e
n

c
y
 o

f
S

u
c
c
e

s
s

l1

CWB

ARCTAN

REW1

REW2

Figure 4.3: The success rate of finding the sparse vectors in T via CWB, REW1,
REW2 and ARCTAN with Gaussian matrices A ∈ R50×200 and B ∈ R50×200 and
(ε, ε) = (10−4, 10−1). For each sparsity of ‖x‖0 6 45, 200 trials were performed.

The influence of ε

The above numerical results are based on a fixed parameter ε. Candès et al. [24] developed

an updating scheme for the parameter ε in their algorithm with weight (4.19). This might

improve the performance of the CWB. Similar to Candès’s idea, we use the following

updating scheme for ε in PRA:

εk+1 = max{(σ(xk))ī, 10−3}, (4.20)

where ī denotes the nearest integer to (m+ l)/4(log(n/(m+ l))) and σ(xk) is an operator

sorting the absolute value of xki from largest to smallest. Adding ε0 = 10−3 in the

91

initialization step and using the update rule (4.20) in PRA, we obtain the following

algorithm:

Algorithm: Revised Primal Re-weighted `1-algorithm [RPRA]
Input:

merit Function Ψε ∈ F;
sensing matrices A ∈ Rm×n and B ∈ Rl×n;
measurements y ∈ Rm and b ∈ Rl and error bound ε ∈ R++;
initial weight w0 and initial parameter for merit function ε0 = 10−3;
the iteration index k and the largest number of iteration kmax;

Iteration: At the current iterate xk−1, solve the weighted `1-minimization

xk ∈ argmin

{ n∑
i=1

wki |xi| : x ∈ T
}
,

where wki = ∇Ψε(|xk−1|))i and ε = εk = max{(σ(xk−1))ī, 10−3};
Update:

wk+1
i = (∇Ψε(|x|k))i, i = 1, ..., n where ε = εk+1 = max{(σ(xk))ī, 10−3};

Repeat the above iteration until k = kmax (or certain other stopping criterion is met).

By adding the rule (4.20), we now compare the performance of the algorithms CWB,

REW1 and ARCTAN with `1-minimization in locating the sparse vectors in T . With

updating rule (4.20), the performance of REW1 and ARCTAN for finding the sparse

vectors in T were given in Figures 4.4 and 4.5 respectively.

Here we consider the case l = 40 and the parameters, except for ε, are taken the same

values as that in previous cases. We first compare the performance of each algorithm

REW1 and ARCTAN with different parameter ε = 0.1, 0.01 and (4.20). The right number

in the legend of Figures 4.4 and 4.5 means the level of the parameter ε. For example, 0.1

means ε = 0.1 and the ‘update’ means that ε is updated by the scheme (4.20).

Clearly, when ε = 0.001, both algorithms REW1 and ARCTAN cannot compete with

the case where ε = 0.1 or ε being updated by (4.20). However, they are still better than

`1-minimization (2.24). In addition, with (4.20), REW1 and ARCTAN are the ‘best’

among the algorithms that we compare. For example, REW1 has an improvement in its

performance when 21 ≤ ‖x‖0 ≤ 36, and so does ARCTAN when 17 ≤ ‖x‖0 ≤ 30.

92

0 5 10 15 20 25 30 35 40

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u

e
n

c
y
 o

f
S

u
c
c
e

s
s

l1

REW1,0.1

REW1,0.001

REW1,update

Figure 4.4: Empirical resluts of the frequency of success of REW1 with different ε in
locating the sparse vectors in T . The Gaussian matrices are of the size: A ∈ R50×200 and
B ∈ R40×200. For each sparsity level of ‖x‖0 6 40, 200 trials were made.

0 5 10 15 20 25 30 35 40

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u

e
n

c
y
 o

f
S

u
c
c
e

s
s

l1

ARCTAN,0.1

ARCTAN,0.001

ARCTAN,update

Figure 4.5: Empirical resluts of the frequency of success of ARCTAN with different ε
in locating the sparse vectors in T where A ∈ R50×200 and B ∈ R40×200 are Gaussian
matrices. For each sparsity level of ‖x‖0 6 40, 200 trials were made.

93

Figure 4.6 presents the result for ARCTAN, CWB and REW1 when ε is updated by

(4.20). Clearly, all these algorithms remarkably outperform l1, and ARCTAN with (4.20)

performs better than CWB with (4.20) as well. In addition, ARCTAN performs slightly

better than REW1 when ‖x‖0 6 31 but its curve is slightly lower than REW1 when

31 6 ‖x‖0 6 38. Overall, ARCTAN outperforms others in this situation when the

updating scheme (4.20) for ε is used.

0 5 10 15 20 25 30 35 40

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u

e
n

c
y
 o

f
S

u
c
c
e

s
s

l1

CWB,update

ARCTAN,update

REW1,update

Figure 4.6: Comparsion of success rate of CWB, ARCTAN and REW1 with (4.20) in
finding the sparse vectors in T where A ∈ R50×200 and B ∈ R40×200 are Gaussian matrices.
For each sparsity level of ‖x‖0 6 40, 200 trials were made.

4.4 Dual weighted `1-algorithm for solving (P0)

As shown in the previous chapter, the solution of weighted `1-minimization (3.5) with an

optimal weight is the sparsest point in T , and such the optimal weight can be determined

by solving the bilevel programming (3.37). Note that it is difficult to solve such a bilevel

programming (which is NP-hard). However, due to its special structure, it is possible to

solve it via certain relaxation. We will develop three relaxation models for solving the

bilevel programming (3.37), which are shown in subsections 4.4.1, 4.4.2 and 4.4.3.

94

4.4.1 Relaxation model 1

Zhao and Luo [99] presented a method to relax a bilevel problem similar to (3.37). Mo-

tivated by their idea, we now relax our bilevel model. We focus on relaxing the strong

duality constraint −λ1ε− λT2 b+ λT3 y = minx{‖Wx‖1 : x ∈ T} and the objective function

in (3.37). By replacing the objective function ‖λ6‖0 in (3.37) by Ψε(λ6) ∈ F, λ6 > 0, we

obtain an approximation problem of (3.37), i.e.,

max(w,λ) Ψε(λ6)

s.t. BTλ2 − ATλ3 + λ4 − λ5 = 0,

‖λ3‖2 ≤ λ1, w = λ4 + λ5 + λ6 ≥ 0,

−λ1ε− λT2 b+ λT3 y = minx{‖Wx‖1 : x ∈ T},

λi > 0, i = 1, 2, 4, 5, 6.

(4.21)

Clearly, (3.11) and (3.5) are equivalent and have the same optimal value. We recall the

set of the weights ζ given in (3.35). It can be seen that w being feasible to (4.21) implies

that (3.11) and (3.20) hold strong duality and have the same finite optimal value, which

is equivalent to the fact that w ∈ ζ when Slater condition holds for (3.11). Moreover,

note that the constraints of (4.21) indicate that for any given w ∈ ζ, λ satisfying the

constraints of (4.21) is optimal to (3.20). Therefore the purpose of (4.21) is to find the

densest dual optimal variable λ6 for all w ∈ ζ. Thus (4.21) can be rewritten as

max(w,λ6) Ψε(λ6)

s.t. w ∈ ζ, BTλ2 − ATλ3 + λ4 − λ5 = 0, ‖λ3‖2 ≤ λ1,

w = λ4 + λ5 + λ6 ≥ 0, λi ≥ 0, i = 1, 2, 4, 5, 6,

where λi, i = 1, 2, ..., 5 is optimal to

maxλ

{
− λ1ε− λT2 b+ λT3 y : ‖λ3‖2 ≤ λ1, w = λ4 + λ5 + λ6,

BTλ2 − ATλ3 + λ4 − λ5 = 0, λi > 0, i = 1, 2, 4, 5, 6

}
.

(4.22)

95

Denote the feasible set of (3.20) by

D(w) :={λ : BTλ2 − ATλ3 + λ4 − λ5 = 0, ‖λ3‖2 ≤ λ1, w = λ4 + λ5 + λ6 ≥ 0,

λi ≥ 0, i = 1, 2, 4, 5, 6}.
(4.23)

Clearly, the problem (4.22) can be presented as

max(w,λ6) Ψε(λ6)

s.t. w ∈ ζ, λ ∈ D(w), where λ is optimal to

maxλ{−λ1ε− λT2 b+ λT3 y : λ ∈ D(w)}.

(4.24)

An optimal solution of (4.24) can be obtained by maximizing Ψε(λ6) which is based on

maximizing −λ1ε − λT2 b + λT3 y over the feasible set of (4.24). Therefore, Ψε(λ6) and

−λ1ε − λT2 b + λT3 y are required to be maximized over the dual constraints λ ∈ D(w) for

all w ∈ ζ. To maximize both the objective functions, we consider the following model as

a relaxation of (4.22):

max(w,λ) −λ1ε− λT2 b+ λT3 y + αΨε(λ6)

s.t. w ∈ ζ, BTλ2 − ATλ3 + λ4 − λ5 = 0

‖λ3‖2 ≤ λ1, w = λ4 + λ5 + λ6 ≥ 0

λi ≥ 0, i = 1, 2, 4, 5, 6.

(4.25)

where α > 0 is a small parameter. There are still two difficulties for solving (4.25). The

first one is that w ∈ ζ might be unbounded which might lead Ψε(λ6) to be an infinite

value. We may introduce a bounded convex set W for w into (4.25) so that the optimal

value of (4.25) is finite. The second difficulty is that ζ has no explicit form. However,

under Slater condition, w ∈ ζ can be relaxed to −λ1ε − λT2 b + λT3 y ≤ 1 based on weak

duality. Based on the above observations, we obtain the following convex relaxation model

96

of (4.25):

(PR) max(w,λ) −λ1ε− λT2 b+ λT3 y + αΨε(λ6)

s.t. w ∈ W , BTλ2 − ATλ3 + λ4 − λ5 = 0

‖λ3‖2 ≤ λ1, w = λ4 + λ5 + λ6 ≥ 0,

−λ1ε− λT2 b+ λT3 y ≤ 1,

λi ≥ 0, i = 1, 2, 4, 5, 6.

(4.26)

Inspired by [96] and [99], we can choose the following bounded convex set:

W =

{
w ∈ Rn

+ : (x0)Tw ≤M, 0 ≤ w ≤M∗e

}
, (4.27)

where x0 is the initial point, which can be the solution of the `1-minimization (2.24), and

M , M∗ are two given positive numbers such that 1 6 M 6 M∗. Now we develop a new

W as follows:

W =

{
w ∈ Rn

+ : wi 6
M

|x0
i |+ σ1

}
, (4.28)

where both M and σ1 are two given positive numbers. (x0)Tw ≤ M in (4.27) and

wi 6 M
|x0
i |+σ1

in (4.28) are motivated by the idea of existing re-weighted algorithm in [24]

and [96,99]. Based on (4.27) and (4.28), we update W as follows:

Wk =

{
w ∈ Rn

+ : (xk−1)Tw ≤M, 0 ≤ w ≤M∗e

}
, (4.29)

Wk =

{
w ∈ Rn

+ : wi 6
M

|xk−1
i |+ σ1

}
. (4.30)

This yields the following two re-weighted `1-algorithms, called DRA(I) and DRA(II),

respectively.

97

Algorithm: Dual Re-weighted `1-algorithm [DRA(I)]
Input:

merit function Ψε ∈ F; sensing matrices A ∈ Rm×n and B ∈ Rl×n;
measurements y ∈ Rm and b ∈ Rl, error bound ε ∈ R+;
positive parameters ε ∈ R++, α ∈ R++, M > 1;
initial weight w0; the iteration index k, the largest number of iteration kmax;

Initialization:
1. Solve the weighted `1-minimization min{(w0)T |x| : x ∈ T} to get x0 and Z0;
2. Set W1 = {w ∈ Rn

+ : (x0)Tw ≤M, 0 ≤ w ≤M∗e} where M∗ = M(max(1, 1/Z0) +
1).

Iteration:
At the current iterate xk−1, solve the dual weighted `1-minimization

(wk, λk6) ∈ argmax{−λ1ε−λT2 b+λT3 y+αΨε(λ6) : w ∈ Wk, λ ∈ D(w), −λ1ε−λT2 b+λT3 y ≤ 1},

where Wk = {w ∈ Rn
+ : (|xk−1|)Tw ≤ M, 0 ≤ w ≤ M∗e} with M∗ =

M(max(1, 1/Zk−1) + 1). Then, solve the weighted `1-minimization

xk ∈ argmin{(wk)T |x| : x ∈ T}

to get Zk;
Update:

Set M∗ = M(max(1, 1/Zk) + 1) and Wk+1 = {w ∈ Rn
+ : |xk|Tw ≤M, 0 ≤ w ≤M∗e};

Repeat the above iteration until k = kmax (or certain other stopping criterion is met).

Algorithm: Dual Re-weighted `1-algorithm [DRA(II)]
Input:

merit function Ψε ∈ F; sensing matrices A ∈ Rm×n and B ∈ Rl×n;
measurement vectors y ∈ Rm and b ∈ Rl, error bound ε ∈ R+;
positive parameters ε ∈ R++, α ∈ R++, σ1 ∈ R++, M > 1;
initial weight w0; the iteration index k, the largest number of iteration kmax;

Initialization:
1. Solve the weighted `1-minimization min{(w0)T |x| : x ∈ T} to get x0;
2. Set W1 by W1 = {w ∈ Rn

+ : (|x0
i |+ σ1)wi ≤M}.

Iteration:
At the current iterate xk−1, solve the dual weighted `1-minimization

(wk, λk6) ∈ argmax{−λ1ε−λT2 b+λT3 y+αΨε(λ6) : w ∈ Wk, λ ∈ D(w), −λ1ε−λT2 b+λT3 y ≤ 1},

where Wk = {w ∈ Rn
+ : (|xk−1

i | + σ1)wi ≤ M}. Then, solve the weighted `1-
minimization

xk ∈ argmin{(wk)T |x| : x ∈ T};

Update: Update Wk+1 = {w ∈ Rn
+ : (|xki | + σ1)wi ≤ M}; Repeat the above iteration

until k = kmax (or certain other stopping criterion is met).

98

The updating scheme of M∗ in DRA(I) is

M∗ = M(max(1, 1/Zk) + 1) (4.31)

where Zk is the optimal value of the weighted `1-minimization (3.5) with wk. This scheme

follows the idea in [96] and [99]. Zhao and Luo developed such a scheme for the dual

weighted algorithms for (1.8) in [99]. Notice that w is restricted in the bounded set W so

that the optimal value of (4.26) cannot be infinite. Therefore, we can use the bounded or

unbounded merit functions in Ψ ∈ F, for example, (4.4), (4.7), (4.8) and (4.9).

4.4.2 Relaxation model 2

Now we develop the second relaxation of the bilevel programming (3.37). All analysis is

under the Slater condition. We start from the model (4.24):

max(w,λ6) Ψε(λ6)

s.t. w ∈ ζ, λ ∈ D(w), where λ is optimal to

maxλ{−λ1ε− λT2 b+ λT3 y : λ ∈ D(w)},

where D(w) is given in (4.23). From the above model, we can see that both of Ψε(λ6)

and −λ1ε − λT2 b + λT3 y are required to be maximized over the feasible set of (4.24).

Note that under Slater condition, for all w ∈ ζ, the dual objective −λ1ε − λT2 b + λT3 y

must be nonnegative and is homogeneous in λ = (λ1, ..., λ6). Moreover, if w ∈ ζ, then

−λ1ε−λT2 b+λT3 y has a nonnegative upper bound due to the weak duality. Inspired by this

observation, in order to maximize both Ψε(λ6) and −λ1ε− λT2 b+ λT3 y, we may introduce

99

a small positive α and consider the following approximation:

max(w,λ) −λ1ε− λT2 b+ λT3 y

s.t. w ∈ ζ, BTλ2 − ATλ3 + λ4 − λ5 = 0,

‖λ3‖2 ≤ λ1, w = λ4 + λ5 + λ6 ≥ 0,

−λ1ε− λT2 b+ λT3 y ≤ αΨε(λ6),

λi > 0, i = 1, 2, 4, 5, 6.

(4.32)

The constraint

−λ1ε− λT2 b+ λT3 y ≤ αΨε(λ6) (4.33)

implies that Ψε(λ6) might be maximized when −λ1ε − λT2 b + λT3 y is maximized if α is

small and suitably chosen. Thus (4.32) can be seen as a relaxation problem of (4.24).

There are two difficulties for solving the above problem. Similar to the relaxation model

1, ζ is not given explicitly so we need to deal with the constraint w ∈ ζ. However, unlike

the relaxation model 1, we will adopt a relaxation method different from applying weak

duality. Another difficulty for solving (4.32) is that Ψε(λ6) might attain an infinite value

when wi → ∞. This situation might occur due to the choice of the merit functions for

sparsity and unboundedness of the set ζ. To overcome these drawbacks, we may use the

bounded merit functions such as the merit function (4.7) and merit function (4.9), and

we may relax w ∈ ζ to w ∈ Rn
+. In this case, even if there are some infinite components

in w, αΨε(λ6) is still finite. Based on the above observation, we give a new relaxation for

(3.37) as follows:

max(w,λ) −λ1ε− λT2 b+ λT3 y

s.t. w ∈ Rn
+, B

Tλ2 − ATλ3 + λ4 − λ5 = 0,

‖λ3‖2 ≤ λ1, w = λ4 + λ5 + λ6 ≥ 0,

−λ1ε− λT2 b+ λT3 y ≤ αΨε(λ6),

λi > 0, i = 1, 2, 4, 5, 6.

(4.34)

100

Based on the above optimization problem, a new weighted `1-algorithm for the model

(1.1) is developed:

Algorithm: Dual Weighted `1-algorithm [DWA(I)]
Input:

merit function Ψε ∈ F; sensing matrices A ∈ Rm×n and B ∈ Rl×n;
measurements y ∈ Rm and b ∈ Rl, error bound ε ∈ R++;
small positive parameters ε ∈ R++ and α ∈ R++;

Step:
1. Solve the problem

(w0, λ0
6) ∈ argmax{−λ1ε−λT2 b+λT3 y : w ∈ Rn

+, λ ∈ D(w), −λ1ε−λT2 b+λT3 y ≤ αΨε(λ6)},

2. Let x0 ∈ argmin{(w0)T |x| : x ∈ T}.

The set D(w) is the feasible set of (3.20), which is also given in (4.23). The numerical

results in Chapter 5 will indicate that the problem (4.34) has a similar ability of finding

the sparse vectors in T as the `1-minimization counterpart of (1.1). The difference is that

(2.24) is derived from the primal space while the dual algorithm DWA(I) is developed

from the perspective of dual space. Now we develop a re-weighted algorithm for (1.1)

based on (4.32). By replacing ζ with a bounded convex set W , we obtain the following

new relaxation of the bilevel programming (3.37):

(PR1) max(w,λ) −λ1ε− λT2 b+ λT3 y

s.t. w ∈ W , BTλ2 − ATλ3 + λ4 − λ5 = 0,

‖λ3‖2 ≤ λ1, w = λ4 + λ5 + λ6 ≥ 0,

−λ1ε− λT2 b+ λT3 y ≤ αΨε(λ6),

λi > 0, i = 1, 2, 4, 5, 6.

(4.35)

The set W can be seen as not only a relaxation of ζ, but also being used to ensure the

boundedness of Ψε(λ6). We can still use (4.30) or (4.29) as the candidate for W . Then,

we obtain the re-weighted dual algorithms DRA(III) and DRA(IV).

101

Algorithm: Dual Re-weighted `1-algorithm [DRA(III)]
Input:

merit function Ψε ∈ F, sensing matrices A ∈ Rm×n and B ∈ Rl×n;
measurements y ∈ Rm and b ∈ Rl, error bound ε ∈ R++;
positive parameters ε ∈ R++, α ∈ R++, M∗ >M > 1;
initial set W0 = {w ∈ Rn : w ∈ Rn

+}; the iteration index k, the largest number of
iteration kmax;

Initialization:
1. Solve the problem (4.35) with W0 to get w0;
2. Solve the weighted `1-minimization min{(w0)T |x| : x ∈ T} to get x0;
3. Set W1 = {w ∈ Rn

+ : |x0|Tw ≤M, 0 ≤ w ≤M∗e}.
Iteration:

At the current iterate xk−1, solve the problem

(wk, λk6) ∈ argmax{−λ1ε−λT2 b+λT3 y : w ∈ Wk, λ ∈ D(w), −λ1ε−λT2 b+λT3 y ≤ αΨε(λ6)}

where Wk = {w ∈ Rn
+ : (|xk−1|)Tw ≤ M, 0 ≤ w ≤ M∗e}. Then, solve the `1-

minimization min{(wk)T |x| : x ∈ T} to get the vector xk;
Update:

Set Wk+1 = {w ∈ Rn
+ : (|xk|)Tw ≤M, 0 ≤ w ≤M∗e};

Repeat the above iteration until k = kmax (or certain other stopping criterion is met).

Algorithm: Dual Re-weighted `1-algorithm [DRA(IV)]
Input:

merit function Ψε ∈ F, sensing matrices A ∈ Rm×n and B ∈ Rl×n;
measurement vectors y ∈ Rm and b ∈ Rl, error bound ε ∈ R++;
positive parameters ε ∈ R++, α ∈ R++, 1 6M , σ1 ∈ R++;
initial set W0 = {w ∈ Rn : w ∈ Rn

+}; the iteration index k, the largest number of
iteration kmax;

Initialization:
1. Solve the problem (4.35) with W0 to get w0;
2. Solve the weighted `1-minimization min{(w0)T |x| : x ∈ T} to get x0;
3. Set W1 = {w ∈ Rn

+ : (|x0
i |+ σ1)wi ≤M},

Iteration:
At the current iterate xk−1, solve the problem

(wk, λk6) ∈ argmax{−λ1ε−λT2 b+λT3 y : w ∈ Wk, λ ∈ D(w), −λ1ε−λT2 b+λT3 y ≤ αΨε(λ6)}

where Wk = {w ∈ Rn
+ : (|xk−1

i | + σ1)wi ≤ M}. Then, solve the `1-minimization
xk ∈ argmin{(wk)T |x| : x ∈ T};

Update:
SetWk+1 = {w ∈ Rn

+ : (|xki |+σ1)wi ≤M}; Repeat the above iteration until k = kmax

(or certain other stopping criterion is met).

102

The initial steps of the above two algorithms are the same, which is to solve the

problem (4.34) and to get the initial weight w0 and the set W1. In addition, M can

not be too small. If M is a sufficiently small positive number, there might be a gap

between the maximum of −λ1ε−λT2 b+λT3 y and the maximum of Ψε(λ6) over the feasible

set. Instead of using Ψε(λ6) in the step of Iteration in the above algorithms DRA(III)

and DRA(IV), we can use bounded and concave composite functions such as the logistic

function P (u) = 1
1+e−u

with u = Ψε(λ6), which yields the following the optimization

problem:

(PRl) max(w,λ) −λ1ε− λT2 b+ λT3 y

s.t. w ∈ W , BTλ2 − ATλ3 + λ4 − λ5 = 0,

‖λ3‖2 ≤ λ1, w = λ4 + λ5 + λ6 ≥ 0,

−λ1ε− λT2 b+ λT3 y ≤ α
1+e−Ψε(λ6) ,

λi > 0, i = 1, 2, 4, 5, 6.

(4.36)

The concavity of 1
1+e−Ψε(λ6) , λ6 > 0 needs to be verified. We know that the logistic

function is an increasing concave function with respect to u > 0, and we can use the

following Theorem 41 to check the concavity of 1
1+e−Ψε(λ6) , λ6 > 0.

Theorem 41. [8, 12] Consider the composition f for h : R→ R and g : Rn → R, defined

by f(x) = h(g(x)),dom f = {x ∈ dom g | g(x) ∈ dom h}. We define the extended-

value-extension of a function h as h̆ such that assigns ∞(−∞) to the points not in dom

h when h is convex (concave). The following table shows the judgement of convexity or

concavity for the composition functions:

Table 4.2: Convexity and concavity of composition

h h̆ g f

convex nondecreasing convex convex

convex nonincreasing concave convex

concave nonincreasing convex concave

concave nondecreasing concave concave

103

By the definition of the extended-value-extension, we see that the extended-value-

extension for 1
1+e−u

, u > 0 is nondecreasing. Moreover, due to the fact that Ψε(λ6) is

concave and nonnegative for λ6 > 0 and the fact that 1
1+e−u

is concave for u > 0, Theorem

41 implies that 1
1+e−Ψε(λ6) is a concave function for λ6 > 0. Then (4.36) is a convex

programming. Moreover, if we maximize the the dual objective −λ1ε − λT2 b + λT3 y, via

the constraint −λ1ε− λT2 b+ λT3 y ≤ α
1+e−Ψε(λ6) , then Ψε(λ6) might be maximized over the

feasible set of (4.36). In addition, the logistic function is bounded and thus the choice

of the merit function Ψε(λ6) in (4.36) is flexible. Due to this advantage, the unbounded

merit functions, for example, (4.8) and the function Ψε(s) =
∑n

i=1 log(si + ε), s ∈ Rn
+ can

be the candidates of Ψε(λ6) in (4.36).

From the above discussions, to ensure the efficiency of the relaxation, we may either

use a bounded merit function or the logistic function. Also, ζ can be replaced by Rn
+ or

a bounded convex set W , which leads to the well-defined algorithms.

4.4.3 Relaxation model 3

Now we consider another method to relax the model (4.24). Consider the following in-

equality:

−λ1ε− λT2 b+ λT3 y + f(λ6) 6 γ, (4.37)

where γ is a given positive number, f(λ6) is a certain function depending on ϕε((λ6)i),

which satisfies the following properties:

(I1). f(λ6) is convex and continuous with respect to λ6 ∈ Rn
+;

(I2). maximizing Ψε(λ6) over the feasible set can be equivalently or approximately achieved

by minimizing f(λ6).

In many practical cases like (J1)-(J3) below, minimising f(λ6) is equivalent to maximising

Ψε(λ6). Replacing −λ1ε − λT2 b + λT3 y ≤ αΨε(λ6) in (4.32) by (4.37) leads the following

104

model:
max(w,λ) −λ1ε− λT2 b+ λT3 y

s.t. w ∈ ζ, BTλ2 − ATλ3 + λ4 − λ5 = 0,

‖λ3‖2 ≤ λ1, w = λ4 + λ5 + λ6 ≥ 0,

−λ1ε− λT2 b+ λT3 y + f(λ6) 6 γ,

λi > 0, i = 1, 2, 4, 5, 6.

(4.38)

Clearly, the convexity of f(λ6) guarantees that (4.38) is a convex programming. Moreover,

(4.37) and the property (I2) of f(λ6) imply that maximizing −λ1ε−λT2 b+λT3 y is roughly

equivalent to minimizing f(λ6) over the feasible set, and thus likely maximizing Ψε(λ6).

The properties (I1) and (I2) ensure that the problem (4.38) is computationally tractable

and is a good relaxation of (4.24). There are many functions satisfying the properties

(I1) and (I2). For instance, we consider the following functions:

(J1). e−Ψε(λ6),

(J2). − log(Ψε(λ6) + σ2),

(J3). 1
Ψε(λ6)+σ2

,

(J4). 1
n

∑n
i=1

1
ϕε((λ6)i)+σ2

, σ2 is a small positive number.

Now we claim that the functions (J1)-(J4) satisfy (I1) and (I2). Clearly, the functions

(J1), (J2) and (J3) satisfy (I2). Note that

1

Ψε(λ6) + σ2

6
1

n

n∑
i=1

1

ϕε((λ6)i) + σ2

.

Thus the minimization of 1
n

∑n
i=1

1
ϕε((λ6)i)+σ2

is likely to imply the minimization of 1
Ψε(λ6)

,

which means the maximization of Ψε(λ6). It is easy to check that the functions (J1)-(J4)

are continuous in λ6 > 0. To verify the convexity of (J1)-(J3), we can use the criterion in

the second row of Table 4.2, which implies that (J1)-(J3) are convex for λ6 > 0. Note that

for any ϕε((λ6)i) > −σ2 > 0, i = 1, ..., n, all functions 1
ϕε((λ6)i)+σ2

are convex. Still based

on Theorem 41, 1
ϕε((λ6)i)+σ2

is convex for (λ6)i > 0, i = 1, ..., n. Therefore their sum is

105

convex for λ6 > 0 as well. Thus all functions (J1)-(J4) satisfy the two properties (I1) and

(I2). Moreover, the functions (J1), (J3), (J4) have finite values even when (λ6)i → ∞.

By replacing ζ by Rn
+, we obtain a new relaxation of (3.37):

max(w,λ) −λ1ε− λT2 b+ λT3 y

s.t. w ∈ Rn
+, B

Tλ2 − ATλ3 + λ4 − λ5 = 0,

‖λ3‖2 ≤ λ1, w = λ4 + λ5 + λ6 ≥ 0,

−λ1ε− λT2 b+ λT3 y + f(λ6) 6 γ,

λi > 0, i = 1, 2, 4, 5, 6.

(4.39)

Based on (4.39), we have the following dual weighted `1-minimization for solving the

sparsity model (1.1): The algorithm DWA(II) can be seen as a dual weighted `1-algorithm

Algorithm: Dual Weighted `1-algorithm [DWA(II)]
Input:

merit function Ψε ∈ F; sensing matrices A ∈ Rm×n and B ∈ Rl×n;
measurement vectors y ∈ Rm and b ∈ Rl, error bound ε ∈ R++;
positive parameters ε ∈ R++ and γ ∈ R++

Step:
1. Solve the problem

(w0, λ0
6) ∈ argmax{−λ1ε−λT2 b+λT3 y : w ∈ Rn

+, λ ∈ D(w), −λ1ε−λT2 b+λT3 y+f(λ6) 6 γ};

2. Let x0 ∈ argmin{(w0)T |x| : x ∈ T}.

which is derived from the dual space. Since w is not restricted in DWA(II), this algorithm

is expected to have similar ability for recovering sparse signals as `1-minimization (2.24).

We will illustrate this in the next chapter. Using a bounded convex set W to replace ζ in

106

(4.38) yields the following relaxation of (3.37):

(PR2) max(w,λ) −λ1ε− λT2 b+ λT3 y

s.t. w ∈ W , BTλ2 − ATλ3 + λ4 − λ5 = 0,

‖λ3‖2 ≤ λ1, w = λ4 + λ5 + λ6 ≥ 0,

−λ1ε− λT2 b+ λT3 y + f(λ6) 6 γ,

λi > 0, i = 1, 2, 4, 5, 6.

(4.40)

Based on the two choices of W in (4.29) and (4.30), we may now develop the dual re-

weighted `1-algorithms DRA(V) and DRA(VI), respectively.

Algorithm: Dual Re-weighted `1-algorithm [DRA(V)]
Input:

merit function Ψε ∈ F; sensing matrices A ∈ Rm×n and B ∈ Rl×n;
measurements y ∈ Rm and b ∈ Rl and error bound ε ∈ R++;
positive parameters ε ∈ R++, γ ∈ R++, M∗ >M > 1;
initial set W0 = {w ∈ Rn : w ∈ Rn

+}; the iteration index k, the largest number of
iteration kmax;

Initialization:
1. Solve (4.40) with W0 to get w0;
2. Solve the weighted `1-minimization min{(w0)T |x| : x ∈ T} to get x0;
3. Set W1 = {w ∈ Rn

+ : |x0|Tw ≤M, 0 ≤ w ≤M∗e}.
Iteration:

1. At the current iterate xk−1, solve the problem

(wk, λk6) ∈ argmax{−λ1ε−λT2 b+λT3 y : w ∈ Wk, λ ∈ D(w), −λ1ε−λT2 b+λT3 y+f(λ6) 6 γ};

where Wk = {w ∈ Rn
+ : |xk−1|Tw ≤M, 0 ≤ w ≤M∗e}.

2. Solve min{(wk)T |x| : x ∈ T} to get xk;
Update:

Set Wk+1 := {w ∈ Rn
+ : |xk|Tw ≤M, 0 ≤ w ≤M∗e};

Repeat the above iteration until k = kmax (or certain other stopping criterion is met).

107

Algorithm: Dual Re-weighted `1-algorithm [DRA(VI)]
Input:

merit function Ψε ∈ F; sensing matrices A ∈ Rm×n and B ∈ Rl×n;
measurements y ∈ Rm and b ∈ Rl, error bound ε ∈ R++;
positive parameters ε ∈ R++, γ ∈ R++, 1 6M and σ1 ∈ R++;
initial set W0 = {w ∈ Rn : w ∈ Rn

+}; the iteration index k, the largest number of
iteration kmax;

Initialization:
1. Solve (4.40) with W0 to get w0;
2. Solve the weighted `1-minimization min{(w0)T |x| : x ∈ T} to get x0;
3. Set W1 = {w ∈ Rn

+ : (|x0
i |+ σ1)wi ≤M}.

Iteration:
1. At the current iterate xk−1, solve the problem

(wk, λk6) ∈ argmax{−λ1ε−λT2 b+λT3 y : w ∈ Wk, λ ∈ D(w), −λ1ε−λT2 b+λT3 y+f(λ6) 6 γ};

where Wk = {w ∈ Rn
+ : (|xk−1

i |+ σ1)wi ≤M};
2. Solve min{(wk)T |x| : x ∈ T} to get xk;

Update:
Set Wk+1 = {w ∈ Rn

+ : (|xki |+ σ1)wi ≤M};
Repeat the above iteration until k = kmax (or certain other stopping criterion is met).

Note that the initial steps of DRA(V) and DRA(VI) are the same. It is to solve

DWA(II) to get the initial weight w0 and initial set W1.

4.4.4 Summary of dual `1-algorithms

In the above three subsections, we present three ways to relax the model (3.37). Firstly,

following the idea in [96] and [99], (3.37) can be relaxed to (4.25). By using two bounded

convex set (4.29) and (4.30) respectively, the dual re-weighted `1-algorithms DRA(I) and

DRA(II) are developed to solve the `0-minimization problem (1.1). The main contribution

here is to develop new relaxation of (4.24) and to obtain the convex problems (4.32) and

(4.38). In other words, the problems (4.32) and (4.38) are the relaxation versions of

the bilevel problem (3.37). Thus the new weighted algorithms DWA(I) and DWA(II) as

well as the re-weighted `1-algorithms DRA(III), DRA(IV), DRA(V) and DRA(VI) are

developed from the perspective of dual space. Note that PRA, DRA(I) and DRA(II),

similar to existing re-weighted `1-algorithms, always need an initial iterate, which is often

obtained by solving a simple `1-minimization. Unlike these methods, DRA(III)-DRA(VI)

108

can create an initial iterate by themselves. All developed algorithms are based on the

relaxation of the set ζ and the choice of merit functions. The following table shows the

details of these algorithms.

Table 4.3: Dual Weighted `1-algorithms and Dual Re-weighted `1-algorithms

Relaxation models Merit functions ζ Algorithm types Algorithms

(PR) unbounded/bounded W (4.29) Dual Re-weighted DRA(I)

(PR) unbounded/bounded W (4.30) Dual Re-weighted DRA(II)

(4.34) bounded Rn
+ Dual Weighted DWA(I)

(PR1) unbounded/bounded W (4.29) Dual Re-weighted DRA(V)

(PR1) unbounded/bounded W (4.30) Dual Re-weighted DRA(IV)

(PRI) unbounded/bounded W (4.30) Dual Re-weighted N/A

(4.39) unbounded/bounded Rn
+ Dual Weighted DWA(II)

(PR2) unbounded/bounded W (4.29) Dual Re-weighted DRA(V)

(PR2) unbounded/bounded W (4.30) Dual Re-weighted DRA(VI)

In the next chapter, we will carry out experiments to demonstrate the performance of

each dual algorithm proposed in this chapter, and compare their performances with that

of several existing algorithms such as CWB and `1-minimization.

109

Chapter 5

Numerical Performance of Dual Re-weighted
`1-algorithms

In this chapter, we carry out numerical experiments to demonstrate the performance of the

dual weighted `1-algorithms and dual re-weighted `1-algorithms listed in Table 4.3. The

model (1.1) is a general sparsity model, and it covers some particular models with special

matrix B and the vector b, such as the nonnegative sparse model and the monotonic sparse

model (see Section 1.1.1 for details). We mainly consider the two cases in our numerical

experiments: (1) B and b are given deterministically; (2) B is a random Gaussian matrix.

Specifically, for the first case, we take the following cases into our consideration:

(N1) B = 0 and b = 0 (that is the model (1.9));

(N2) B = −I and b = 0 (that is (1.7));

(N3) (B, b) is given by (1.4) (that is (1.5)).

For the second case, we consider the following cases in our experiments:

(N4) B ∈ R15×200;

(N5) B ∈ R50×200.

For all cases (N1)-(N5), we implement the algorithms DRA(I), DRA(II), DRA(III), DRA(IV),

DRA(V) and DRA(VI), and compare their performance in finding the sparse vectors in

T with `1-minimization, CWB and ARCTAN.

110

This chapter is organised as follows. In Section 5.1.1, we review the environment of

our experiments. In Section 5.1.2, the similar performance of DWA(I), DWA(II) and `1-

minimization (2.24) is illustrated. Moreover, the default merit function for DRA(III) and

DRA(IV) and the default function f(λ6) for DRA(V) and DRA(VI) are chosen based on

the numerical results in Section 5.1.2. In Section 5.1.3, the default parameters of these

algorithms are suggested. By using chosen parameters and merit functions in the dual

algorithms for each case (N1)-(N5), we perform the numerical experiments to demonstrate

the behaviours of DRA(I), DRA(II), DRA(III), DRA(IV), DRA(V) and DRA(VI). The

results are given in Sections 5.2, 5.3, 5.4, 5.5 and 5.6, respectively. Finally, Section 5.7

reveals the influence of ε on the dual re-weighted `1-algorithms.

5.1 Merit functions and parameters

In this section, we focus on the case B = 0 and b = 0 and screen out the ‘ideal’ merit

functions and parameters for each algorithm DRA(III), DRA(IV), DRA(V) and DRA(VI).

The default parameters in DRA(I) and DRA(II) are set as that of the algorithms in [99],

and the function (4.7) is set as the default merit function when implementing DRA(I) and

DRA(II) (also based on the choice in [99]). Note that DWA(I) and DWA(II) are the initial

steps of DRA(III) and DRA(IV), and DRA(V) and DRA(VI), respectively. In Subsection

5.1.2, in order to choose suitable merit functions for DRA(III), DRA(IV), DRA(V) and

DRA(VI), we compare DWA(I) and DWA(II) via using different merit functions in F

and different functions f(λ6), and we compare their performance with `1-minimization

(2.24). To help choose the suitable parameters for DRA(III), DRA(IV), DRA(V) and

DRA(VI), we compare the algorithms with different choices of parameters by fixing other

parameters and using a certain merit functions as default. In the process of choosing

parameters and merit functions, we set the parameter (merit functions) with highest

success rate of finding the sparse vectors in T as our default parameter (merit functions)

for the algorithms. Subsection 5.1.3 summarizes the default parameters for each dual

re-weighted `1-algorithm. Before we start, we review the environment of our experiments.

111

5.1.1 Environment of experiemnts

We only consider the random examples of convex sets T . We first set the noise level ε and

the parameter ε of merit function. The sparse vector x∗ and the entries of A and B (if B

is not deterministic) are generated from Gaussian random variables with zero mean and

unit variance. For each generated (x∗, A,B), we determine the vectors (measurements) y

and b by

y = Ax∗ +
c1ε

‖c‖2

c, Bx∗ + d = b, (5.1)

where d ∈ Rl
+ is generated as absolute Gaussian random variables with zero mean and

unit variance, and c1 ∈ R and c ∈ Rm are generated as Gaussian random variables with

zero mean and unit variance. Then the convex set T is generated, and all the examples of

T are generated this way. Note that by using such a method, T must contain the sparse

vector x∗. We still use
‖x′ − x∗‖
‖x∗‖

6 10−5 (5.2)

as our default stopping criterion where x′ is the solution found by the algorithm, and one

success is counted as long as (5.2) is satisfied. In our experiments, we make 200 random

examples for each sparsity level. All the algorithms are implemented in Matlab 2017a,

and all the convex programming problems in tested algorithms are solved by CVX (Grant

and Boyd [47]).

5.1.2 Choosing merit functions

In order to choose a merit functions as default for DRA(III) and DRA(IV), we compare

the performance of DWA(I) with different merit functions. From Table 4.3, it is better

to choose the bounded merit functions Ψε ∈ F when implementing DWA(I). Thus we

can choose the functions (4.4), (4.7) and (4.9). Note that CVX does not recognise arctan

function (4.9) so that we choose (4.4) and (4.7) to test. By setting the parameters

(ε, ε, α) = (10−4, 10−5, 10−5)

112

and performing 200 random examples for each sparsity level (ranged from 1 to 25), we

carry out the experiments for DWA(I) with (4.4) and (4.7), and compare their perfor-

mances with `1-minimization, which is shown in Figure 5.1:

0 5 10 15 20 25

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

Ψε(λ6) =
∑n

i=1
(λ6)i

(λ6)i+ε

0 5 10 15 20 25

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

Ψε(λ6) = n−
∑n
i=1 log((λ6)i+ε)

log ε

Figure 5.1: The performance of DWA(I) in finding the sparsest points in T via different
bounded merit functions Ψ ∈ F. Each algorithm is tested by using 200 randomly gen-
erated examples with Gaussian matrices A ∈ R50×200 for each sparsity level from 1 to
25.

Clearly, in this case, DWA(I) with (4.7) is very comparable to DWA(I) with (4.4) in finding

the sparsest points in T . Moreover, both of them are almost identical to the performance

of `1-minimization (2.24). Thus the functions (4.4) and (4.7) can be the candidates of

default merit functions for the dual re-weighted `1-algorithms DRA(III) and DRA(IV).

Next, in order to choose default functions f(λ6) for DRA(VI) and DRA(V), we com-

pare the performance of DWA(II) with different f(λ6), including the functions (J1)-(J4)

given in Subsection 4.4.3. Due to the fact that CVX can not implement f(s) with the

merit functions (4.4), (4.8) and (4.9), so we choose ϕε((λ6)i) = (λ6)i
(λ6)i+ε

, (λ6)i ∈ R+ in

f(λ6). We fix

(ε, ε, γ, σ2) = (10−4, 10−5, 1, 1)

and perform 200 randomly generated examples for each sparsity level from 1 to 25. The

numerical results of DWA(II) with (J1)-(J4) are shown in Fig 5.2, from which it can be

seen that all of them are quite comparable to `1-minimization (2.24). Moreover, DWA(II)

with (J1)-(J3) performs slightly better than DWA(II) with (J4). The value of σ2 may

113

influence the performance of DWA(II) since the sufficiently small σ2 cause that Ψε(λ6)

might not reach the maximum over the dual feasible set D when maximizing −λ1ε −

λT2 b + λT3 y. From this experiment, the functions (J1), (J2) and (J3) can be used as the

functions f(λ6) as default for the dual re-weighted `1-algorithms DRA(V) and DRA(VI).

0 5 10 15 20 25

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

(J1). f(λ6) = e−Ψε(λ6)

0 5 10 15 20 25

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

(J2). f(λ6) = − log(Ψε(λ6) + σ2)

0 5 10 15 20 25

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

(J3). f(λ6) = 1
Ψε(λ6)+σ2

0 5 10 15 20 25

sparsity

0

10

20

30

40

50

60

70

80

90

100
F

re
q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

(J4). f(λ6) = 1
n

∑n
i=1

1
ϕε((λ6)i)+σ2

Figure 5.2: The performance of DWA(II) with different functions f(λ6) in finding the
sparsest points in T . Each algorithm is tested by using 200 randomly generated examples
with Gaussian matrices A ∈ R50×200 for each sparsity level from 1 to 25.

As shown in Figures 5.1 and 5.2, DWA(I) with (4.4) or (4.7), as well as DWA(II) with

one of the functions (J1), (J2), (J3) and (J4), have almost the same performance as

`1-minimization. In this chapter, we set (4.7) as the default merit function for DRA(III)

and DRA(IV), and set (J2) with the form

f(λ6) =
1

Ψε(λ6) + σ2

, Ψε(λ6) =
n∑
i=1

(λ6)i
(λ6)i + ε

, λ6 ∈ Rn
+ (5.3)

as the default function f(λ6) for DRA(V) and DRA(VI). We also set σ2 = 10−1 as a

114

default parameter. DRA(III) and DRA(IV) with (4.4) and DRA(V) and DRA(VI) with

(J1) and (J3) are worthwhile further work.

5.1.3 Choice of parameters

We are now in progress to choose the parameters as default ones for the dual re-weighted

`1-algorithms DRA(III), DRA(IV), DRA(V) and DRA(VI). The following table shows

what parameters are needed in these dual algorithms:

Table 5.1: Parameters in dual re-weighted `1-algorithms

Algorithms DRA(III) DRA(IV) DRA(V) DRA(VI)

Parameters (M,M∗, α) (M,α, σ1) (M,M∗, γ) (M,γ, σ1)

By comparing the performance of a certain algorithm with different value of a param-

eter when other parameters are fixed, the parameter with best algorithmic performance

can be set as default parameter in the algorithm. All default parameters will be chosen

this way. In this subsection, all algorithms are performed for only one iteration. By fixing

the noise level ε, the parameter ε and the merit function, we test the dual algorithms to

find the default parameters. The numerical results for DRA(III), DRA(IV), DRA(V) and

DRA(VI) are shown as follows.

115

DRA(III)

0 5 10 15 20 25

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u

e
n

c
y
 o

f
S

u
c
c
e

s
s

l1

M*=1

M*=10

M*=100

M*=1000

M*=zhao

(i) M∗ comparison

0 5 10 15 20 25

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u

e
n

c
y
 o

f
S

u
c
c
e

s
s

l1

M=0.1

M=1

M=10

M=100

(ii) M comparison

0 5 10 15 20 25

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u

e
n

c
y
 o

f
S

u
c
c
e

s
s

l1

α=1

α=1e-1

α=1e-3

α=1e-5

α=1e-15

(iii) α comparison

Figure 5.3: Parameter choices for DRA(III). Comparison of the performance of DRA(III)
with different M∗ in (i), M in (ii) and α in (iii). Each algorithm is tested by using
200 randomly generated examples with Gaussian matrices A ∈ R50×200 for each sparsity
level from 1 to 25. All re-weighted algorithms are performed only one iteration for each
example.

We fix M = 10 and α = 10−5 and compare the performance of DRA(III)) with different

M∗ such as M∗ = 1, 10, 100, 1000 or M∗ is updated by (4.31) which is labelled as " M∗ =

Zhao" in Figure 5.3 (i). Empirical result in (i) indicates that DRA(III)) with M∗ = 10

has the best performance than the others. By setting M∗ = 10 and α = 10−5, the result

(ii) shows the performance of DRA(III)) with M = 0.1, 1, 10 and 100. Clearly, DRA(III))

withM = 10 outperforms the others. Note that DRA(III)) withM = 100 performs worse

than `1-minimization. In fact, due to w 6M∗e in the bounded set W l (4.29), the choice

likeM ≥M∗ might lower the success rate of finding the sparsest points in T by DRA(III).

116

Finally, we compare the performance of DRA(III) with α = 1, 10−1, 10−3, 10−5 and 10−15,

which is shown in (iii). As expected, DRA(III) with sufficiently small α, such as 10−5

and 10−15, have better performance than DRA(III) with 1, 10−1 and 10−3. In addition,

the performance of DRA(III) with 10−1 and 1 is almost identical to the performance of

`1-minimization. As a result, we set (M∗,M, α) = (10, 10, 10−5) as default parameters for

DRA(III).

DRA(IV)

0 5 10 15 20 25

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u

e
n

c
y
 o

f
S

u
c
c
e

s
s

l1

M=1

M=10

M=100

M=1000

(i) M comparison

0 5 10 15 20 25

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u

e
n

c
y
 o

f
S

u
c
c
e

s
s

l1

α=1

α=10
-1

α=10
-3

α=10
-5

α=10
-15

(ii) α comparison

0 5 10 15 20 25

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u

e
n

c
y
 o

f
S

u
c
c
e

s
s

l1

σ1=1

σ1=0.1

σ1=10
-2

σ1=10
-5

σ1=10
-15

(iii) σ1 comparison

Figure 5.4: Parameter choices for DRA(IV). Comparison of the performance of DRA(IV)
with different M in (i), in α (ii) and σ1 in (iii). Each algorithm is tested by using
200 randomly generated examples with Gaussian matrices A ∈ R50×200 for each sparsity
level from 1 to 25. All re-weighted algorithms are performed only one iteration for each
example.

By fixing (α, σ1) = (10−5, 10−1), we compare the performance of DRA(IV) when M =

1, 10, 102 and 103 are taken in DRA(IV). The result was given in Figure 5.4 (i). Clearly,

117

the performance of the DRA(IV) is not sensitive to our choice of M . Moreover, DRA(IV)

with M = 10 performs slightly better than the others. Thus we set M = 10 as default for

DRA(IV). We fix (M,σ1) = (10, 10−1) and compare the performance of DRA(IV) with

α = 1, 10−1, 10−3, 10−5 and 10−15 in Figure 5.4 (ii). Similar to the results in Figure 5.3

(iii), DRA(IV) is insusceptible to the choice of α if α is small enough. Finally, when

(M,α) = (10, 10−5), the success frequencies of DRA(IV) with σ1 = 1, 10−1, 10−2, 10−5 and

10−15 are shown in Figure 5.4 (iii). We can see that DRA(IV) with σ1 = 10−1 has the best

performance among the others. Thus, we choose (M,α, σ1) = (10, 10−5, 10−1) as default

parameters for DRA(IV).

118

DRA(V)

0 5 10 15 20 25

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u

e
n

c
y
 o

f
S

u
c
c
e

s
s

NBl1new

M*=1

M*=10

M*=100

M*=1000

M*=zhao

(i) M∗ comparison

0 5 10 15 20 25

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u

e
n

c
y
 o

f
S

u
c
c
e

s
s

l1

M=0.1

M=1

M=10

M=100

(ii) M comparison

0 5 10 15 20 25

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u

e
n

c
y
 o

f
S

u
c
c
e

s
s

l1

γ=1

γ=3

γ=10

γ=100

γ=1000

(iii) γ comparison

Figure 5.5: Parameter choices for DRA(V). Comparison of the performance of DRA(V)
with different M∗ in (i), M in (ii) and γ in (iii). Each algorithm is tested by using
200 randomly generated examples with Gaussian matrices A ∈ R50×200 for each sparsity
level from 1 to 25. All re-weighted algorithms are performed only one iteration for each
example.

We compare the performance of DRA(V) with different M∗ by fixing (M,γ) = (10, 1) in

Figure 5.5 (i). Clearly, DRA(V) with M∗ = 10 outperforms DRA(V) with other choices.

From Figures 5.3 (i) and 5.5 (i), we can see that the algorithms with a bounded convex

set B, such as DRA(III)) and DRA(V), have a better performance when M ≈ M∗ than

the case when the difference between M and M∗ is remarkable. The numerical results

of DRA(V) with different M (and fixed (M∗, γ) = (10, 1)) and different γ (and fixed

(M,M∗) = (10, 10)) are shown in Figure 5.5 (ii) and (iii), respectively. Figure 5.5

(ii) shows that DRA(V) with M = 10 outperforms DRA(V) with others in the success

119

frequencies of finding the sparsest points in T . In addition, the performance of DRA(V)

with M = 0.1 in Figure 5.5 (ii) is almost identical to the performance of `1-minimization.

Figure 5.5 (iii) demonstrates that DRA(V) with smaller γ might perform better than

DRA(V) with a larger γ. It might be that a small M and a large γ may prevent Ψε(λ6)

from reaching the maximal value over the dual feasible set. Thus we choose (M∗,M, γ) =

(10, 10, 1) as default parameters for DRA(V).

DRA(VI)

0 5 10 15 20 25

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u

e
n

c
y
 o

f
S

u
c
c
e

s
s

l1

M=1

M=10

M=100

M=1000

M=0.1

(i) M comparison

0 5 10 15 20 25

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u

e
n

c
y
 o

f
S

u
c
c
e

s
s

l1

γ=1

γ=10

γ=10
2

γ=10
3

γ=10
4

(ii) γ comparison

0 5 10 15 20 25

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u

e
n

c
y
 o

f
S

u
c
c
e

s
s

l1

σ1=1e-1

σ1=1e-2

σ1=1e-5

σ1=1e-10

σ1=1

(iii) σ1 comparison

Figure 5.6: Parameter choices for DRA(VI). Comparison of the performance of DRA(VI)
with different M in (i), γ in (ii) and σ1 in (iii). Each algorithm is tested by using 200
randomly generated examples with Gaussian matrices A ∈ R50×200 for each sparsity level
from 1 to 25. All re-weighted algorithms are carried out only one iteration for each
example.

Figure 5.6 (i) compares the performance of DRA(VI) with M = 10−1, 1, 10, 102 and 103

when (γ, σ1) = (1, 10−1), and it demonstrates that DRA(VI) is insensitive to the choice

120

of M . However, DRA(VI) with M = 10 performs moderately better than that with

M = 0.1, 1, 100 and 1000 while this difference is not remarkable. Due to this, we set

M = 10 as the default parameter for DRA(VI). The performance of DRA(VI) with

different γ (and fixed (M,σ1) = (10, 10−1)) and different σ1 (and fixed (M,γ) = (10, 103))

are shown in Figure 5.6 (ii) and (iii), respectively. Note that DRA(VI) is insensitive to

the choice of γ when (M,σ1) = (10, 10−1). We set γ = 103 as the default parameter

in DRA(VI). Similarly, we set σ1 = 10−1 as the default parameter for DRA(VI) since

DRA(VI) with this value has slightly better performance although the its advantage is

not remarkable.

In summery, the default parameters for each dual re-weighted `1-algorithm are sum-

marized in the following table:

Table 5.2: Default parameters in each dual re-weighted `1-algorithm

Algorithm/Parameter α γ M M∗ σ1 ε

DRA(I) 10−8 102 (4.31) 10−15

DRA(II) 10−8 102 10−1 10−15

DRA(III) 10−5 10 10 10−5

DRA(IV) 10−5 10 10−1 10−5

DRA(V) 1 10 10 10−5

DRA(VI) 103 10 10−1 10−5

In the following sections, we perform numerical experiments to show the behaviours of

the dual re-weighed `1-algorithms in different cases (N1)-(N5). The parameters of tested

algorithms are chosen as in the above table. We choose the noisy level ε = 10−4 for the

cases (N1), (N2), (N4) and (N5) and choose ε = 10−1 for (N3).

121

5.2 B = 0 and b = 0

0 5 10 15 20 25 30

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

(i) DRA(III)) and DRA(IV)

0 5 10 15 20 25 30

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

(ii) DRA(V) and DRA(VI)

0 5 10 15 20 25 30

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

(iii) DRA(I) and DRA(II)

0 5 10 15 20 25 30

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

ACRTAN,0.1

ACRTAN,update

(iv) ARCTAN with ε = 0.1 and updated
rule (4.20)

0 5 10 15 20 25 30

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

CWB,0.1

CWB,update

(v) CWB with ε = 0.1 and updated rule
(4.20)

Figure 5.7: (i)-(iii) Comparison of the performance of the dual re-weighted algorithms by
using one iteration and five iterations. (iv)-(v) Comparison of the performance of CWB
and ARCTAN when ε = 0.1 or ε is updated by (4.20). Each algorithm is tested by using
200 randomly generated examples with Gaussian matrices for each sparsity level from 1
to 30. All the examples are with random matrix A ∈ R50×200, B = 0 and b = 0.

122

For the merit function, we choose (4.7) as Ψε(λ6) in DRA(I), DRA(II), DRA(III)) and

DRA(IV), and we choose (5.3) as f(λ6) in DRA(V) and DRA(VI). The parameters for

each dual algorithms are taken as in Table 5.2. We now perform numerical experiments

for our dual re-weighted `1-algorithms in the case of B = 0 and b = 0. Note that in this

case, the model (1.1) is reduced to the sparse model (1.9). The numerical results are given

in Figure 5.7 (i)-(iii), each of them compares one type dual re-weighted `1-algorithms by

using different sets W (4.29) and (4.30). Note that there are five legends in each figure

(i)-(iii), corresponding to `1-minimization, the dual re-weighted `1-algorithms with one

iteration or five iterations. For instance, in (i), we compare DRA(III)) and DRA(IV)

which all take either one iteration or five iterations. (DRA(III),1) and (DRA(III),5)

represent (DRAIII) take one iteration and five iterations, respectively . It can be seen

that the dual re-weighted algorithms are performing better when the number of iteration

is increased and all of them outperform `1-minimization, while the performance of DRA(I)

with one or five iterations is similar to the performance of `1-minimization. (i)-(iii) indicate

the same phenomena: the algorithms based on (4.30) might achieve more improvement

than the ones based on (4.29) when the number of iteration is increased. In addition, in

(i) and (ii), the algorithms based on (4.30) with one iteration perform almost the same

as the algorithms based on (4.29) with five iterations. For example, in (ii), the success

rate of DRA(VI) with five iterations has improved by nearly 25% compared with those

with one iteration for each sparsity from 14 to 20, while DRA(V) has only improved

its performance by 10% after increasing the number of iterations, and DRA(VI) with

one iteration performs quite similar to DRA(V) with five iterations. We also show the

empirical results of CWB and ARCTAN in (iv) and (v), respectively, when ε = 0.1 or ε is

updated by (4.20). As expected, the algorithms with ε being updated by (4.20) perform

better than those with fixed ε.

123

0 5 10 15 20 25 30

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

CWB,update

ARCTAN,update

Figure 5.8: Comparison of the performance of the dual re-weighted `1-algorithms and
primal re-weighted algorithms using updated ε in the case of A ∈ R50×200, B = 0 and
b = 0. Each algorithm is tested by using 200 randomly generated examples with Gaussian
matrices for each sparsity level from 1 to 30. All re-weighted algorithms are performed
five iterations for each example.

We filter the algorithms with the best performance from (i)-(v) in Figure 5.7 and merge

them into Figure 5.8. It can be seen that ARCTAN with iterative ε, DRA(II), DRA(IV)

and DRA(VI) slightly outperform CWB with iteratively updated ε. It is a surprising

results since CWB where ε is updated by (4.20) can be seen as one of the efficient choice

for primal re-weighted algorithms, and DRA(IV) and DRA(VI) do not use the iterative

scheme for ε. Next, we do numerical experiments on the model (1.1) with B = −I and

B = 0, which is the nonnegative sparse model (1.7).

124

5.3 B = −I and b = 0

0 5 10 15 20 25 30 35 40

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

(i) DRA(III) and DRA(IV)

0 5 10 15 20 25 30 35 40

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

(ii) DRA(V) and DRA(VI)

0 5 10 15 20 25 30 35 40

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

(iii) DRA(I) and DRA(II)

0 5 10 15 20 25 30 35 40

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

CWB, 0.1

CWB, update

ARCTAN, 0.1

ARCTAN, update

(iv) ARCTAN and CWB with ε = 0.1 or ε
updated by (4.20)

0 5 10 15 20 25 30 35 40

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

(v) The dual algorithms with (4.29)

0 5 10 15 20 25 30 35 40

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

(vi) The dual algorithms with (4.30)

Figure 5.9: (i)-(iii) Comparison of the performance of the dual re-weighted algorithms
with one iteration and five iterations. (iv) Comparison of the performance of primal re-
weighted algorithms when ε = 0.1 or ε is updated by (4.20). Each algorithm is tested
by using 200 randomly generated examples with Gaussian matrices for each sparsity level
from 1 to 40. All the examples use random matrices of size A ∈ R50×200 and B ∈ R15×200.
(v)-(vi) Comparison of the performance of dual re-weighted algorithms with (4.29) or
(4.30)

125

As demonstrated in Figures 5.9 (i), (ii) and (iii), for all tested dual re-weighted `1-

algorithms, the success frequencies in finding the sparse points in T have improved when

the number of iterations is increased from 1 to 5. As shown in precious section, we have

three relaxation models for (3.37) and each of them can be relaxed to two different algo-

rithms when using different bounded convex set W l. Figures 5.9 also shows that the dual

re-weighted algorithm withW l in (4.29) outperforms the one usingW l in (4.30) no matter

the number of iterations is 1 or 5. For our dual re-weighted algorithms, W in (4.29) or

(4.30) has enhanced the ability to find the sparse points in T . For the dual re-weighted

`1-algorithms with (4.29), Figure (v) indicates that DRA(III) has a better performance

than DRA(I) and DRA(V). For the dual re-weighted `1-algorithms with (4.30), Figure (v)

indicates that DRA(VI) has a better performance than DRA(II) and DRA(IV). Different

from the case ‘B = 0 and b = 0’, Figures 5.9 (iv) demonstrates that using the rule (4.20)

in ARCTAN and CWB might not enhance the success rate of finding sparse points in T .

0 5 10 15 20 25 30 35 40

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

CWB, 0.1

ACRTAN, 0.1

Figure 5.10: Comparison of the performance of the dual re-weighted algorithms and
primal re-weighted algorithms using updated ε in the case of A ∈ R50×200, B = −I and
b = 0. Each algorithm is tested by using 200 randomly generated examples with Gaussian
matrices for each sparsity level from 1 to 40. All re-weighted algorithms are performed
five iterations for each example.

We pick the algorithms with the best performance in Figures 5.9 (i)-(iv) and present

them in Figure 5.10. Note that all the re-weighted algorithms in Figure 5.10 perform

much better than `1-minimization. In addition, the performance of DRA(VI) almost the

126

same as the performance of ARCTAN and CWB with fixed ε = 0.1.

5.4 Monotone sparse model

0 2 4 6 8 10 12 14 16 18

sparsity

50

55

60

65

70

75

80

85

90

95

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

(i) DRA(III)) and DRA(IV)

0 2 4 6 8 10 12 14 16 18

sparsity

50

55

60

65

70

75

80

85

90

95

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

(ii) DRA(V) and DRA(VI)

0 2 4 6 8 10 12 14 16 18

sparsity

50

55

60

65

70

75

80

85

90

95

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

(iii) DRA(I) and DRA(II)

0 2 4 6 8 10 12 14 16 18

sparsity

50

55

60

65

70

75

80

85

90

95

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

ARCTAN,10
-1

ARCTAN,10
-2

ARCTAN,update

(iv) ARCTAN with ε = 0.1 and updating
rule (4.20)

0 2 4 6 8 10 12 14 16 18

sparsity

50

55

60

65

70

75

80

85

90

95

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

CWB,10
-1

CWB,10
-2

CWB,update

(v) CWB with ε = 0.1 and updating rule
(4.20)

Figure 5.11: (i)-(iii) Comparison of the performance of the dual re-weighted algorithms
with one iteration and five iterations. (iv)-(v) Comparison of the performance of primal
re-weighted algorithms with five iterations. All of experiments are implemented in the
case that A ∈ R50×200 and B and b are given as (1.4). Each algorithm is tested by using
200 randomly generated examples with Gaussian matrices for each sparsity level from 1
to 30.

127

The success rate of locating the sparse vectors by `1-minimization in this case is lower

than that in the above case when the sparsity level is low (for example, from 1 to 6).

As demonstrated in Figures (i), (ii) and (iii), the dual re-weighted `1-algorithms have an

enormous improvement of the performance of finding the sparse vectors in T . For exam-

ple, by using five iterations, the success rate of sparse recovery of DRA(III), DRA(IV),

DRA(V) and DRA(VI) is nearly 100% from sparsity k = 1 to k = 18. Figure 5.11 (iv)

and (v) show an interesting phenomena. First, CWB or ARCTAN with update rule (4.20)

of ε performs worse than the one with a fixed ε. Moreover, we notice that the primal

re-weighted algorithms with relatively smaller ε have a better performance than those

with larger ε, which is different from the above cases. Note that the monotonic constraint

x1 > x2 > ... > xn forces the algorithms to find the solutions in such a sparsity structure.

Thus, a smaller ε might make the weights be updated effectively to keep the sparsity

structure of the solution so that the algorithms might effectively find a sparser solution.

0 2 4 6 8 10 12 14 16 18

sparsity

50

55

60

65

70

75

80

85

90

95

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

CWB,0.1

ARCTAN,0.1

Figure 5.12: Comparison of the performance of the dual re-weighted algorithms and
primal re-weighted algorithms using updated ε in the case of random Gaussian matrices
A ∈ R50×200 and B = 0 and b = 0. Each algorithm is tested by using 200 randomly
generated examples for each sparsity level from 1 to 30. All re-weighted algorithms are
performed five iterations for each example.

As usual, we pick the best algorithms in Figures 5.11 (i)-(v). Notice that the perfor-

mance of all ‘best’ re-weighted algorithms is similar. It is interesting to note that the dual

and primal re-weighted `1-algorithms not only outperform `1-minimization, but also have

128

nearly 100% of success rate of locating the sparse vectors from the sparsity level 1 to 18

although this case admits larger noisy level than the others.

5.5 B ∈ R15×200

0 5 10 15 20 25 30 35

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

(i) DRA(III) and DRA(IV)

0 5 10 15 20 25 30 35

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

(ii) DRA(V) and DRA(VI)

0 5 10 15 20 25 30 35

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

DRA(I),I=1

DRA(I),I=5

(iii) DRA(I) and DRA(II)

0 5 10 15 20 25 30 35

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

CWB, 0.1

ARCTAN, 0.1

(iv) CWB and ARCTAN with ε = 0.1

0 5 10 15 20 25 30 35

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

(v) Algorithms with updating rule (4.29)

0 5 10 15 20 25 30 35

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

(vi) Algorithms with updating rule (4.30)

Figure 5.13: (i)-(iii) Comparison of the performance of the dual re-weighted algorithms
with one iteration and five iterations. (iv) Comparison of the performance of unified
re-weighted algorithms with ε = 0.1. Each algorithm is tested by using 200 randomly
generated examples with Gaussian matrices for each sparsity level from 1 to 35. The size
of matrices in these examples are A ∈ R50×200 and B ∈ R15×200. (v)-(vi) Comparison of
the performance of dual re-weighted algorithms with W (4.29) or (4.30)

129

As shown in the above Figure (i)-(iv), the result in the case that B ∈ R15×200 is nearly the

same as in the case B = −I and b = 0. As shown in (v), for the dual algorithms using the

updating rule (4.29) for W , by executing five iterations, DRA(V) performs better than

others. We compare the performance of the dual algorithms with updating rule (4.30)

and find that DRA(II) and DRA(VI) perform slightly better than DRA(IV).

0 5 10 15 20 25 30 35

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

CWB,0.1

ARCTAN,0.1

Figure 5.14: Comparison of the performance of the dual re-weighted algorithms and primal
re-weighted algorithms in the case of A ∈ R50×200 and B ∈ R15×200. Each algorithm
is tested by using 200 randomly generated examples with Gaussian matrices for each
sparsity level from 1 to 35. All re-weighted algorithms are performed five iterations for
each example.

The results shown in Figure 5.14 demonstrate that CWB, ARCTAN, DRA(II) and

DRA(VI) perform slightly better than DRA(III)), DRA(IV) and DRA(V) while the dif-

ference is not remarkable.

130

5.6 B ∈ R50×200

0 5 10 15 20 25 30 35 40 45 50

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

(i) DRA(III) and DRA(IV)

0 5 10 15 20 25 30 35 40 45 50

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

(ii) DRA(V) and DRA(VI)

0 5 10 15 20 25 30 35 40 45 50

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

(iii) DRA(I) and DRA(II)

0 5 10 15 20 25 30 35 40 45 50

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

CWB,10
-1

CWB,10
-5

ARCTAN,10
-1

ARCTAN,10
-5

(iv) CWB and ARCTAN with ε =
10−1, 10−5

0 5 10 15 20 25 30 35 40 45 50

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

(v) Algorithms with updating rule (4.29)

0 5 10 15 20 25 30 35 40 45 50

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

(vi) Algorithms with updating rule (4.30)

Figure 5.15: (i)-(iii) Comparison of the performance of the dual re-weighted algorithms
with one iteration and five iterations. (iv) Comparison of the performance of primal
re-weighted algorithms with ε = 0.1 and 10−5. Each algorithm is tested by using 200
randomly generated examples with Gaussian matrices for each sparsity level from 1 to
45. The size of matrices in these examples are A ∈ R50×200 and B ∈ R50×200. (v)-(vi)
Comparison of the performance of dual re-weighted algorithms with (4.29) or (4.30)

131

Similar to the results in the above sections, the performance of DRA(I) resembles the

performance of DRA(I) regardless of one iteration or five iterations being executed, which

is shown in Figure 5.15 (iii). We compare the re-weighted `1-algorithms with updating

rule (4.29) ((4.30)), which are shown in (v) ((vi)). For the dual algorithms using the

updating rule (4.29), when executing 5 iterations, Figure (5.15) (v) shows that DRA(III)

and DRA(V) performs much better than DRA(I). For the dual algorithms using the

updating rule (4.30), when executing 5 iterations, Figure (5.15) (vi) indicates that the

success rates of finding the sparse vectors in T by DRA(II) and DRA(VI) are very similar.

The other behaviours are similar to the case of B = −I and b = 0 or B ∈ R15×200.

0 5 10 15 20 25 30 35 40 45 50

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

CWB,0.1

ARCTAN,0.1

Figure 5.16: Comparison of the performance of the dual re-weighted algorithms and uni-
fied re-weighted algorithms using updated ε in the case of A ∈ R50×200 and B ∈ R50×200.
Each algorithm is tested by using 200 randomly generated examples with Gaussian matri-
ces for each sparsity level from 1 to 45. All re-weighted algorithms perform five iterations
for each example.

We still put all the best algorithms in each Figure 5.15 (i)-(iv) into Figure 5.16. It

reveals that although the performance of ARCTAN and DRA(VI) is slightly better than

that of DRA(II) and CWB, these four algorithms can compete to each other in successfully

finding sparse vectors at high sparsity level in many situations.

132

5.7 The influence of ε

0 5 10 15 20 25 30 35 40

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

-1

-5

-15

(i) DRA(III)

0 5 10 15 20 25 30 35 40

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

-1

-5

-15

(ii) DRA(IV)

0 5 10 15 20 25 30 35 40

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

-1

-5

-15

(iii) DRA(V)

0 5 10 15 20 25 30 35 40

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

-1

-5

-15

(iv) DRA(VI)

0 5 10 15 20 25 30 35 40

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

-1

-5

-15

(v) DRA(I)

0 5 10 15 20 25 30 35 40

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

-1

-5

-15

(vi) DRA(II)

0 5 10 15 20 25 30 35 40

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

CWB,10
-1

CWB,10
-5

CWB,10
-15

(vii) CWB

0 5 10 15 20 25 30 35 40

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

ARCTAN,10
-1

ARCTAN,10
-5

ARCTAN,10
-15

(viii) ARCTAN

Figure 5.17: Comparison of the performance of dual re-weighted algorithms with different
ε in the case of A ∈ R50×200 and B ∈ R40×200. Each algorithm is tested by using 200
randomly generated examples with Gaussian matrices for each sparsity level from 1 to 40,
and performed five iterations for each example.

133

0 5 10 15 20 25 30 35 40

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

Figure 5.18: Comparison of the performance of dual re-weighted algorithms with ε = 10−15

in the case of A ∈ R50×200 and B ∈ R40×200. Each algorithm is tested by using 200
randomly generated examples with Gaussian matrices for each sparsity level from 1 to 40,
and performed five iterations for each example.

0 5 10 15 20 25 30 35 40

sparsity

0

10

20

30

40

50

60

70

80

90

100

F
re

q
u
e
n
c
y
 o

f
S

u
c
c
e
s
s

l1

CWB

ARCTAN

Figure 5.19: Comparison of the performance of dual re-weighted algorithms with ε =
10−15 and primal re-weighted algorithms with ε = 10−1 in the case of A ∈ R50×200 and
B ∈ R40×200. Each algorithm is tested by using 200 randomly generated examples with
Gaussian matrices for each sparsity level from 1 to 40, and performed five iterations for
each example.

In this section, we compare how the parameter ε of merit functions affect the performance

of locating the sparse vectors in T by dual re-weighted `1-algorithms. The numerical

134

results for each primal and dual algorithm with different ε are shown in Figure 5.17. It

indicates that the performance of all our dual algorithms is relatively insensitive to the

choice of small ε compared to the primal re-weighted algorithms.

The performance of the dual re-weighted algorithms with ε = 10−15 are summarized

into Figure 5.18, and we conclude that by executing 5 iterations, DRA(II) and DRA(VI)

perform better than the others in this case.

In Figure 5.19, we compare the performance of the ‘best’ dual algorithms in Figure

5.18 and the ‘best’ algorithm in Figure 5.17 (vii) and (viii). It can be seen that these

algorithms perform similarly in finding the sparse vectors in T , and they outperform `1-

minimization. It worth nothing that we did not use any iterative scheme for ε in our dual

re-weighted `1-algorithms, which can be studied in the near future.

135

Chapter 6

Stability of `1-minimization Methods under
Restricted Range Space Property

6.1 Introduction

We have studied some algorithms for the general sparsity model (1.1), and carried out

numerical experiments for these algorithms in previous chapters. In this chapter, we

establish a stability result for the `1-minimization method for locating the solution of the

following `0-minimization model:

min
x∈Rn

‖x‖0

s.t. a1 ‖y − Ax‖2 + a2

∥∥UT (Ax− y)
∥∥
∞ + a3

∥∥UT (Ax− y)
∥∥

1
≤ ε,

Bx ≤ b.

(6.1)

where ε is a given parameter, and A ∈ Rm×n (m � n) and U ∈ Rm×h are two matrices

with full row rank, and a1, a2, a3 are three given parameters satisfying ai ∈ [0, 1] and∑3
i=1 ai = 1. The above model covers several important special cases depending on the

special choices of ai’s, B and b. For example, the `0-minimization models with only one

of the following constraints are clearly the special cases of (6.1):

(C1). y = Ax;

(C2). ‖y − Ax‖2 6 ε;

136

(C3).
∥∥UT (Ax− y)

∥∥
1
6 ε;

(C4).
∥∥UT (Ax− y)

∥∥
∞ 6 ε.

Constraints (C1) or (C2) appears in standard basis pursuit (1.19) and quadratically con-

strained basis pursuit (1.16) [26,34,35,43]. (C4) reduces to the Dantzig Selector constraint

in (1.18) [19, 23, 43] when U = A. The general `0-minimization model (1.1) is still a spe-

cial case of (6.2). Cleraly, the nonnegative sparsity model (1.7) [20,21,43] and monotonic

sparsity model (1.5) (isotonic regression [82]) are also the special cases of (6.1). Moreover,

the model (6.1) can be used to deal with sparsity recovery problems with certain structure

which is one of the important aspects in compressive sensing.

The `1-minimization associated with (6.1) can be stated as follows:

min
x∈Rn

‖x‖1

s.t. a1 ‖y − Ax‖2 + a2

∥∥UT (Ax− y)
∥∥
∞ + a3

∥∥UT (Ax− y)
∥∥

1
≤ ε,

Bx ≤ b.

(6.2)

The stability of (6.2) concerns about how close the solution of (6.2) to that of the original

problem (6.1). We use the classic Hoffman Theorem to develop a stability result for

the model (6.2) under the assumption of restricted weak range space property (RSP) of

order k (which will be introduced in next section). Our result generalizes several stability

theorems established by Zhao et al. [94, 95,98].

This chapter is organized as follows. In Section 6.2, we recall some basic definitions

about range space property (RSP) and introduce restricted weak RSP of order k. Then

we review Hoffman Theorem. An approximation of the solution set of (6.2) and its related

problem will be discussed in Sections 6.3 and 6.4, respectively. Finally, in Section 6.5, we

show the main stability results of this chapter.

137

6.2 Basic facts and restricted weak RSP

6.2.1 Hoffman theorem

To develop a stability theory for basis pursuits, Zhao et al. [94, 95] utilized the classic

Hoffman theorem [53,73] associated with the following polyhedral set:

Q = {x ∈ Rn : M1x ≤ p, M2x = q}. (6.3)

Lemma 42 (Hoffman Theorem). [53,73] Given two matrices M1 ∈ Rm×n and M2 ∈ Rl×n

and the set Q in (6.3), for any vector x ∈ Rn, there exists a vector x∗ ∈ Q satisfying

‖x− x∗‖2 ≤ σ(M1,M2)

∥∥∥∥∥∥∥
 (M1x− p)+

M2x− q

∥∥∥∥∥∥∥

1

,

where σ(M1,M2) is a constant determined by M1 and M2. In addition, Rosenbloom [75]

obtain the same result.

6.2.2 Restricted weak RSP of order k

The range space property (RSP) of order k was first introduced by Zhao in [92,93], which

is described as follows:

Definition 43 (RSP of order k). [93], [100], [95], [94] Given a matrix A ∈ Rm×n, if for

any two disjoint sets J1, J2 such that J1, J2 ⊆ {1, ..., n} and |J1| + |J2| ≤ k, there is a

vector η ∈ R(AT) such that

ηi = 1, i ∈ J1;

ηi = −1, i ∈ J2;

|ηi| < 1, i ∈ J̄1 ∩ J̄2,

,

then AT is said to satisfy the RSP of order k.

138

Closely related to NSP of order k and RSP of order 2k, the RSP of order k is one of

the important matrix properties in compressive sensing. It originates from the uniqueness

condition of the solution of basis pursuit for noiseless situations (`1-minimization with

linear constraints y = Ax). More specifically, it has been shown in [43, 44, 48,69, 93] that

for any given vector x̄, x̄ is the unique least `1-norm solution of the system Ax = Ax̄ if

and only if the following two conditions are satisfied:

• the matrix Asupp(x̄) has full column rank;

• there exists a vector η ∈ R(AT) such that

ηi = 1 for x̄i > 0; ηi = −1 for x̄i < 0; |ηi| < 1 for x̄i = 0.

In fact, Zhao [92, 93] has shown that any k sparse vector can be exactly recovered by

the basis pursuit if and only if AT satisfies the RSP of order k. So NSP of order k is

a sufficient and necessary condition for the uniform recovery of sparse signals via basis

pursuit. This means NSP of order k is equivalent to RSP of order k.

Zhao et al. [95] used a relaxed form of RSP of order k (i.e., weak RSP of order k) to

develop the stability theorem for compressive sensing algorithms. The weak RSP of order

k can be immediately obtained from the RSP of order k by changing |ηi| < 1 to |ηi| ≤ 1

for i ∈ J̄1 ∩ J̄2, which is stated as follows:

Definition 44 (weak RSP of order k). Given a matrix A ∈ Rm×n, AT is said to satisfy

the weak RSP order k if for any two disjoint sets J1, J2 such that J1, J2 ⊆ {1, ..., n} and

|J1|+ |J2| ≤ k, there exists a vector η ∈ R(AT) such that

ηi = 1, i ∈ J1;

ηi = −1, i ∈ J2;

|ηi| ≤ 1, i ∈ J̄1 ∩ J̄2.

In [94, 95], Zhao et al. used Hoffman theorem to show that the `1-minimization with

139

linear constraints such that basis pursuit [26] and Dantzig Selector [23], are stable in

sparse recovery under the weak RSP order k. Moreover, the weak RSP order k is also

the necessary condition for the basis pursuit and Dantzig Selector to be stable in sparse

recovery. Different from the standard `1-minimization, the model (6.2) has more complex

structures. To investigate the stability of (6.2), we need to extend the notion of RSP of

order k to the so-called restricted weak RSP of order k, which is stated as follows:

Definition 45 (Restricted weak RSP of order k). Given matrices A ∈ Rm×n and B ∈

Rl×n, (AT , BT) is said to satisfy the restricted weak RSP of order k if for any two disjoint

sets J1, J2 such that J1, J2 ⊆ {1, ..., n} and |J1| + |J2| ≤ k, there exists a vector η ∈

R(AT , BT) such that η = (AT , BT)

 ν

u

 where ν ∈ Rm, u ∈ Rl
− and

ηi = 1, i ∈ J1;

ηi = −1, i ∈ J2;

|ηi| ≤ 1, i ∈ J̄1 ∩ J̄2.

It is worth mentioning that a generalized version of RSP of order k is also used to study

the exact sign recovery in 1-bit compressive sensing in [100].

6.2.3 Polytope approximation of unit ball B

The unit `2-ball is defined as B = {s ∈ Rm : ‖s‖2 6 1}. The unit ball B can also be seen

as the intersection of the half spaces as follows:

B =
⋂
‖a‖2=1

{s ∈ Rm : aT s 6 1}. (6.4)

The unit ball B appears in (6.2) since the `2-norm ‖y − Ax‖2 appears in the constraints

of (6.2). To use Hoffman Theorem to establish stability result for (6.2), we need to

approximate the unit ball B by a certain polyhedral set in order to make the constraint

linear. To this need, we use Lemma 47 (Zhao et al. [95]) which is based on Dudley

140

approximation of the unit ball to create a polytope as an approximation of B. After that,

under the restricted weak RSP of order k, we prove that the model (6.2) is stable in the

sense that

‖x− x∗‖ ≤ C1σk(x)1 + C2ε,

where x∗ is the found solution by (6.2), and x denotes a solution of (6.1) or x denotes

the signal to recover in CS, and C1, C2 are two constants and σk(x)1 is the best k term

approximation of x.

By introducing the slack variables µ, s, ξ and v, the `1-model (6.2) can be rewritten

as the following model:

min
(x,µ,s,ξ,v)

‖x‖1

s.t. a1s+ a2ξ + a3e
Tv 6 ε, Bx 6 b,

µ ∈ sB, µ = y − Ax, (s, ξ, v) ≥ 0,∥∥UT (Ax− y)
∥∥
∞ ≤ ξ,

∣∣UT (Ax− y)
∣∣ ≤ v.

(6.5)

Before we discuss the stability of (6.2), let us specify the polytope approximation of the

unit ball B first. Through taking K half spaces in (6.4), the unit ball can be approximated

by the polytope

PK =
⋂

‖ai‖2=1,16i6K

{s ∈ Rm : (ai)T s 6 1}. (6.6)

Dudley [36] established the following lemma to ensure that PK can approximate B to a

certain level of accuracy. Recall the Hausdorff metric of two sets M1,M2 ⊆ Rm:

δH(M1,M2) = max

{
sup
x∈M1

inf
z∈M2

‖x− z‖2 , sup
z∈M2

inf
x∈M1

‖x− z‖2

}
. (6.7)

Lemma 46. (Dudley, [36]) There exists a constant τ such that for every integer number

K > m, there exists a polytope PK of the form (6.6) containing B and satisfying

δH(B, PK) ≤ τ

K2/(m−1)
, (6.8)

141

where δH(B, PK) is the Hausdorff metric of B and PK .

For the convenience of later analysis, we include the following 2m half spaces into PK

in (6.6):

±βTi s ≤ 1, i = 1, ...,m, (6.9)

where βi is the ith column of the m × m identity matrix. These extra half spaces can

further shrink the original PK (K ≥ 2m), so (6.8) remains valid. Therefore, without loss

of generality, we assume that PK always include the half spaces in (6.9).

6.3 Approximation of the solution set of (6.5)

Denote the set C by

C = {(x, s, ξ, v) : a1s+ a2ξ + a3e
Tv ≤ ε, Bx ≤ b,

∥∥UT (Ax− y)
∥∥
∞ ≤ ξ,∣∣UT (Ax− y)

∣∣ ≤ v, (s, ξ, v) ≥ 0},

and hence the solution set of (6.5) can be represented as

Ω∗ = {(x, µ, ξ, s, v) : ‖x‖1 ≤ θ∗, µ ∈ sB, µ = y − Ax, (x, s, ξ, v) ∈ C}, (6.10)

where θ∗ is the optimal value of (6.5) or (6.2). In what follows, we will create a sequence of

polytopes, denoted by {P̃V }. By replacing B in (6.10) with P̃V , we can get the relaxation

(approximation) of Ω∗, denoted by ΩP̃V
, i.e.,

ΩP̃V
= {(x, µ, ξ, s, v) : ‖x‖1 ≤ θ∗, µ ∈ sP̃V , µ = y − Ax, (x, s, ξ, v) ∈ C}. (6.11)

The sequence {P̃V } is chosen such that the Hausdorff distance between ΩP̃V
and Ω∗ tends

to 0 as V tends to ∞.

In fact, we consider the polytopes PK , K > 2m in Lemma 46, which is an approxima-

tion of B when K is sufficiently large. Let {PK}K>2m be a sequence of such polytopes.

Let MPK be the matrix whose columns are ai ∈ Rm, i = 1, ..., K, which define the half

142

spaces in PK , i.e.,

MPK = [a1, ..., aK],

and hence

PK = {s ∈ Rm : (MPK)T s ≤ eK},

where eK ∈ RK is the vector of ones. We now consider the sequence of such polytopes

{P̃V }V >2m such that

P̃V =
⋂

2m<K≤V

PK . (6.12)

Clearly, P̃V is still a polytope consisting of a finite number of half spaces with the

form: (ai)T s ≤ 1, ‖ai‖2 = 1, i = 1, ..., K̃, where K̃ is an integer number. Let MP̃V
be the

matrix whose columns are such vectors ai. Thus P̃V can be written as

P̃V = {s ∈ Rm : (MP̃V
)T s ≤ eK̃}, (6.13)

where eK̃ is the vector of ones in RK̃ . The following result was established by Zhao, Jiang

and Luo [94,95].

Lemma 47. [94,95] Let {PK}K>m be the sequence of polytopes given in (6.8) in Lemma

46, and let {P̃I}I>m be the sequence of polytopes such that P̃I =
⋂

m<K≤I
PK . For any

s ∈ Rm with ‖s‖2 = 1, there is a column of MP̃I
, denoted by ai, satisfying

∥∥s− ai∥∥
2
≤
√

2τ

I2/(m−1) + τ
,

where τ is given in Lemma 46.

By using the above lemma, it is not very difficult to prove the following lemma.

Lemma 48. Let the sequence {PK}K>m given as Lemma 47, and let {P̃V }V >m be the

sequence of polytopes such that P̃V =
⋂

m<K≤V
PK. The corresponding sets Ω∗ and ΩP̃V

are

143

defined as (6.10) and (6.11), respectively. Then the following property is satisfied:

δH(Ω∗,ΩP̃V
)→ 0 as V →∞. (6.14)

The proof is omitted since it is similar to the proof of Lemma 5.3 in [95]. Let ε′ be

any fixed small number. Thus from the above observations, there is an integer number

V0 > 2m such that

δH(Ω∗,ΩP̃V0
) ≤ ε′. (6.15)

In the remainder of the chapter, we use a polytope P̃V0 satisfying (6.15) to replace the

unit `2-ball B to obtain the approximation model of (6.2).

6.4 Approximation of (6.2)

Let N be the number of half spaces ((ai)T s ≤ 1, ‖ai‖2 = 1) which determine P̃V0 , and let

MP̃V0
be a matrix with the columns ai, 1 ≤ i ≤ N , i.e., MP̃V0

= [a1, ..., aN]. By replacing

B by MP̃V0
, we obtain the following approximation of the optimal value θ∗ of (6.2):

θ∗
P̃V0

: = min
(x,µ,ξ,s,v)

{‖x‖1 : µ ∈ sP̃V0 , µ = y − Ax, (x, s, ξ, v) ∈ C}

= min
(x,ξ,s,v)

{‖x‖1 : (MP̃V0
)T (y − Ax) ≤ seN , (x, s, ξ, v) ∈ C},

(6.16)

and the associated problem of (6.2) can be written as

min
(x,s,ξ,v)

‖x‖1

s.t. a1s+ a2ξ + a3e
Tv ≤ ε, Bx ≤ b,

(MP̃V0
)T (y − Ax) ≤ seN , (s, ξ, v) ≥ 0,∥∥UT (Ax− y)

∥∥
∞ ≤ ξ,

∣∣UT (Ax− y)
∣∣ ≤ v,

(6.17)

144

where eN is the vector of ones in RN . Clearly, (6.17) is an approximation of (6.2). The

optimal solution set of (6.17) is

Ω∗
P̃V0

= {x ∈ Rn : ‖x‖1 ≤ θ∗
P̃V0

, µ ∈ sP̃V0 , µ = y − Ax, (x, s, ξ, v) ∈ C}

= {x ∈ Rn : ‖x‖1 ≤ θ∗
P̃V0

, (MP̃V0
)T (y − Ax) ≤ seN , (x, s, ξ, v) ∈ C}

(6.18)

Note that B ⊆ P̃V0 implies that θ∗ ≥ θ∗
P̃V0

. So we can see that Ω∗
P̃V0

⊆ ΩPV0
. Let ΩP̃V0

be the set defined as (6.11) by replacing P̃V with P̃V0 . By the definition, we know that

Ω∗ ⊆ ΩP̃V0
. In the next section, we develop the main stability result for the model (6.2)

and we will prove it by using the following result established by Zhao [94,98].

Lemma 49. [94,98] Let πS(s) be the projection of s into S. Let the three convex compact

sets T1, T2 and T3 satisfy that T1 ⊆ T2 and T3 ⊆ T2, then we have the following properties:

for any x ∈ Rn and any z ∈ T3,

‖x− πT1(x)‖2 ≤ δH(T1, T2) + 2 ‖x− z‖2 ; (6.19)

Before we analyse the stability for (6.2), we also need to define some constants. Let

C =

 A

B

 (6.20)

be the matrix with full row rank. Then given three positive numbers c, d, e ∈ [1,∞], we

define two constants Υ(d, e) and ϑ(c) as follows:

Υ(d, e) = max
0⊆{1,...,h},|0|=m

∥∥U−1
0

∥∥
e→d

∥∥(CCT)−1C
∥∥
∞→e , (6.21)

ϑ(c) =
∥∥(CCT)−1C

∥∥
∞→c . (6.22)

145

Specifically, we will use the following values for the analysis of the stability of (6.2):

Υ(1, 1) = max
0⊆{1,...,h},|0|=m

∥∥U−1
0

∥∥
1→1

∥∥(CCT)−1C
∥∥
∞→1

, ϑ(1) =
∥∥(CCT)−1C

∥∥
∞→1

, (6.23)

Υ(∞,∞) = max
0⊆{1,...,h},|0|=m

∥∥U−1
0

∥∥
∞→∞

∥∥(CCT)−1C
∥∥
∞→∞ . (6.24)

6.5 Main stability theorem

Introducing a variable t yields the equivalent form of (6.17):

min
(x,t,s,ξ,v)

eT t

s.t. a1s+ a2ξ + a3e
Tv ≤ ε, Bx ≤ b, |x| ≤ t,

(MP̃V0
)T (y − Ax) ≤ seN , (t, s, ξ, v) ≥ 0,∥∥UT (Ax− y)

∥∥
∞ ≤ ξ,

∣∣UT (Ax− y)
∣∣ ≤ v.

(6.25)

The solution set of (6.25) is given as (6.18). Note that the above optimization is equivalent

to a linear programming. In fact, the constraint
∥∥UT (Ax− y)

∥∥
∞ ≤ ξ can be rewritten as

the following constraint: ∣∣UT (Ax− y)
∣∣ ≤ ξe.

Thus the model (6.25) can be rewritten explicitly as a linear programming problem as

follows:
min

(x,t,s,ξ,v)
eT t

s.t. x+ t ≥ 0, − x+ t ≥ 0,

−a1s− a2ξ − a3e
Tv ≥ −ε,MT

P̃V0

Ax+ eNs ≥MT
P̃V0

y,

UTAx+ ξe ≥ UTy,−UTAx+ ξe ≥ −UTy,

UTAx+ v ≥ UTy,−UTAx+ v ≥ −UTy,

−Bx ≥ −b, (t, s, ξ, v) ≥ 0.

(6.26)

146

Now the dual problem of (6.26) is given as follows:

max
w

−εw3 + yTMP̃V0
w4 + yTU(w5 − w6 + w7 − w8)− bTw9

s.t. w1 − w2 + ATMP̃V0
w4 + ATU(w5 − w6 + w7 − w8)−BTw9 = 0,

w1 + w2 ≤ e,

−a1w3 + (eN)Tw4 ≤ 0,

−a2w3 + eT (w5 + w6) ≤ 0,

−a3ew3 + w7 + w8 ≤ 0,

w1, w2 ∈ Rn
+, w3 ∈ R+, w4 ∈ RN

+ , , w5−8 ∈ Rh
+, w9 ∈ Rl

+.

(6.27)

The optimality condition of linear programmings yields the following proposition:

Proposition 50. A vector x∗ is an optimal solution of (6.17) if and only if there exist

vectors (x∗, t∗, s∗, ξ∗, v∗, w∗) ∈ Π, where Π is the set given as

Π =

{
(x, t, s, ξ, v, w) : −x− t ≤ 0, x− t ≤ 0, a1s+ a2ξ + a3e

Tv ≤ ε,

−MT
P̃V0

Ax− eNs ≤ −MT
P̃V0

y, Bx ≤ b,

−UTAx− ξe ≤ −UTy, UTAx− ξe ≤ UTy,

−UTAx− v ≤ −UTy, UTAx− v ≤ UTy,

w1 − w2 + ATMP̃V0
w4 + ATU(w5 − w6 + w7 − w8)−BTw9 = 0,

w1 + w2 ≤ e, − a1w3 + (eN)Tw4 ≤ 0, (t, s, ξ, v, w) ≥ 0,

−a2w3 + eT (w5 + w6) ≤ 0, − a3ew3 + w7 + w8 ≤ 0,

eT t = −εw3 + yTMP̃V0
w4 + yTU(w5 − w6 + w7 − w8)− bTw9

}
.

(6.28)

Clearly, |x∗| = t∗ must hold for every (x∗, t∗, s∗, ξ∗, v∗, w∗) ∈ Π. Note that the set Π

can be rewritten as the form (6.3) by setting the matrices M ′
1 and M ′

2 and the vectors p′

147

and q′ as follows:

M ′
1 =

D1 0

0 D2

D3 0

0 Ĩ

(6.29)

M ′
2 =

 0 0 0 0 0 I −I 0 ATMP̃V0
ATU −ATU ATU −ATU −BT

0 eT 0 0 0 0 0 ε −yTMP̃V0
−yTU yTU −yTU yTU bT

(6.30)

p′ =

[
0 0 ε −MT

P̃V0

y b −UTy UTy −UTy UTy e 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

]
, q′ = 0, (6.31)

where 0’s in (6.29), (6.30) and (6.31) are zero matrix with suitable sizes and the matrices

D1, D2 and D3 and Ĩ have the following forms:

D1 =

−I −I 0 0 0

I −I 0 0 0

0 0 a1 a2 a3e
T

−MT
P̃V0

A 0 −eN 0 0

B 0 0 0 0

−UTA 0 0 −e 0

UTA 0 0 −e 0

−UTA 0 0 0 −I

UTA 0 0 0 −I

, Ĩ =

I 0 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 IN 0 0 0 0 0

0 0 0 0 Ih 0 0 0 0

0 0 0 0 0 Ih 0 0 0

0 0 0 0 0 0 Ih 0 0

0 0 0 0 0 0 0 Ih 0

0 0 0 0 0 0 0 0 I l

148

D3 =

0 −I 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 Ih

, D2 =

I I 0 0 0 0 0 0 0

0 0 −a1 (eN)T 0 0 0 0 0

0 0 −a2 0 eT eT 0 0 0

0 0 −a3e 0 0 0 I I 0

,

where I, IN , Ih and I l are the identity matrices with the size of n× n, N ×N , h× h

and l × l, respectively. Then we can apply Lemmas 42 and 49 to prove the following

theorem, which is the main result for the model (6.2). The idea of this proof follows that

of Zhao, Jiang and Luo [95].

Theorem 51. Let the problem data (U,A,B, ε, a, b, y) be given, where y ∈ Rm and b ∈ Rl

are two vectors, ai’s are three nonnegative numbers satisfying ai ≥ 0 and
∑3

i=1 ai = 1, and

A ∈ Rm×n, B ∈ Rl×n, C ∈ R(m+l)×n given in (6.20) as well as U ∈ Rm×h are full-row-

rank matrices. Let P̃V0 be given as the polytope in (6.12) satisfying (6.15). If (AT , BT)

satisfies restricted weak RSP of order k, then for any x ∈ Rn, there is an optimal solution

x∗ of (6.2) satisfying the following bound:

‖x− x∗‖2 ≤ ε′ + 2σ(M ′
1,M

′
2)

{
‖(Bx− b)+‖1 + εΥ̂ + 2σk(x)1 + ‖Bx− b‖c′ ϑ(c)+(

a1 ‖y − Ax‖2 + a2

∥∥UT (Ax− y)
∥∥
∞ + a3

∥∥UT (Ax− y)
∥∥

1
−Υ

)+

+∥∥UT (Ax− y)
∥∥
d′

Υ(d, e)

}
.

(6.32)

where σ(M ′
1,M

′
2) is the constant determined by (6.29) and (6.30), Υ̂ = (max{Υ(1, 1),Υ(∞,∞), ϑ(1)})

is a constant, Υ(e, d) is the constant given in (6.21) and ϑ(c) is the constant given in

(6.22), e, d, c, d′, c′ are five given positive numbers (allowing to be ∞) satisfying

1

c
+

1

c′
= 1,

1

d
+

1

d′
= 1, e, d, c, d′, c′ ∈ [1,+∞]. (6.33)

Υ(1, 1), Υ(∞,∞) and ϑ(1) are the constants given in (6.23) and (6.24). If x is a feasible

149

solution of (6.2), then there is an optimal solution x∗ of (6.2) such that the following

inequality holds:

‖x− x∗‖2 ≤ ε′ + 2σ(M ′
1,M

′
2)

{
εΥ̂ + 2σk(x)1 +

∥∥UT (Ax− y)
∥∥
d′

Υ(d, e) + ‖Bx− b‖c′ ϑ(c)

}
.

(6.34)

Proof. Let x be any vector in Rn and P̃V0 be the polytope given as (6.12) which can

approximate the unit `2-ball with error bound in (6.15). Clearly, it can be represented as

a finite number of half spaces

(ai)T z ≤ 1,
∥∥ai∥∥

2
= 1, i = 1, ..., N for some N.

Let MP̃V0
be the matrix with columns ai such that

MP̃V0
= [a1, ..., aN].

Now we construct vectors (t, s, ξ, v, w) satisfying some properties. We first let (t, s, ξ, v)

satisfy that

t = |x|, s =
∥∥∥(MP̃V0

)T (y − Ax)
∥∥∥
∞
, ξ =

∥∥UT (y − Ax)
∥∥
∞ , v =

∣∣UT (y − Ax)
∣∣ . (6.35)

With such a choice of (t, s, ξ, ν), we have

(−x− t)+ = 0, (x− t)+ = 0, (MT
P̃V0

(y − Ax)− eNs)+ = 0, (UT (y − Ax)− ξe)+ = 0,

(−UT (y − Ax)− ξe)+ = 0, (UT (y − Ax)− v)+ = 0, (−UT (y − Ax)− v)+ = 0.

(6.36)

Let S be the support set of k largest components of x, and S1 and S2 be the sets such

that

S1 = {i : xi > 0, i ∈ S}, S2 = {i : xi < 0, i ∈ S}.

150

Clearly, |S1

⋃
S2| = |S| = |S1|+ |S2| ≤ k. Let S3 be the complementary set of S. Clearly,

S1, S2 and S3 are disjoint. By the restricted weak RSP of order k, there exists a vector

η ∈ R(AT , BT) such that η = ATν∗ +BTh∗ for some ν∗ ∈ Rm and h∗ ∈ Rl
− satisfying

ηi = 1 for i ∈ S1; ηi = −1 for i ∈ S2; |ηi| ≤ 1 for i ∈ S3. (6.37)

Now we construct a feasible solution w = (w1, ..., w9) to the dual problem (6.27).

Constructing (w1, w2): Set w1 and w2 as follows:

(w1)i = 0, (w2)i = 1, i ∈ S1;

(w1)i = 1, (w2)i = 0, i ∈ S2;

(w1)i = 1−ηi
2
, (w2)i = 1+ηi

2
, i ∈ S3.

(6.38)

Such w1 and w2 satisfy that

w1 + w2 ≤ e, w2 − w1 = η, w1, w2 ≥ 0. (6.39)

Constructing (w5-w8): Note that U is a matrix with full row rank. Thus there must exist

an invertible m × m matrix of U , denoted by U0, where 0 ⊆ {1, ..., h} with |0| = m.

Denote the complementary set of 0 by 0̄ = {1, ..., h} \ 0. Then we construct a vector

g ∈ Rh with

g0 = U−1
0 ν∗, g0̄ = 0.

Clearly, it implies

Ug = ν∗. (6.40)

Let g+ (g−) be a vector obtained by keeping the components with positive (negative)

value and setting the remaining components to 0 in g. By using the vector g, w5 − w9

can be constructed as follows:

w5 = a2g+, w6 = −a2g−, w7 = a3g+, w8 = −a3g−, (6.41)

151

which implies

w5 − w6 + w7 − w8 = (a2 + a3)g, w5, w6, w7, w8 ≥ 0. (6.42)

Constructing (w4): Without loss of generality, we suppose that the first m columns in

MP̃V0
are βi, i = 1, ...,m, and −βi, i = 1, ...,m are the second m columns of MP̃V0

. The

components of w4 can be assigned as follows:

(w4)i = a1ν

∗
i , if ν∗i > 0, i = 1, ...,m;

(w4)i+m = −a1ν
∗
i , if ν∗i < 0, i = 1, ...,m;

0, otherwise.

(6.43)

From this choice of w4, we can see that

MP̃V0
w4 = a1ν

∗, ‖w4‖1 = a1 ‖ν∗‖1 and w4 ≥ 0. (6.44)

Constructing (w3): Let w3 = max {‖ν∗‖1 , ‖g‖1 , ‖g‖∞}. Such a choice of w3 together with

the choice of w4-w8 implies

(−a1w3 + (eN)Tw4)+ ≤ (−a1 ‖ν∗‖1 + (eN)Tw4)+ = 0,

(−a2w3 + eT (w5 + w6))+ ≤ (−a2 ‖g‖1 + a2 ‖g‖1)+ = 0,

(−a3ew3 + w7 + w8)+ ≤ (−a3e ‖g‖∞ + a3g)+ = 0.

(6.45)

Constructing (w9): Let w9 = −h∗. Clearly, w9 ≥ 0 due to h∗ ≤ 0.

With the above choice of w and (6.39), (6.42), (6.44) and (6.45), we deduce that

w1 − w2 + ATMP̃V0
w4 + ATU(w5 − w6 + w7 − w8)−BTw9 = 0,

(w1 + w2 − e)+ = 0, (−a1w3 + (eN)Tw4)+ = 0,

(−a2w3 + eT (w5 + w6))+ = 0, (−a3ew3 + w7 + w8)+ = 0,

t− = 0, s− = 0, ξ− = 0, v− = 0, w− = 0.

(6.46)

Note that Π given as (6.28) can be represented as Q in terms of (M ′
1,M

′
2, p
′, q′) given in

152

(6.29) and (6.30). Thus for the vector (x, t, s, ξ, ν, w) constructed above, we can apply

Lemma 42 to get the following results: For the vector (x, t, s, ξ, ν, w), there exists a vector

(x̂, t̂, ŝ, ξ̂, v̂, ŵ) ∈ Π such that

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

x

t

s

ξ

v

w

−

x̂

t̂

ŝ

ξ̂

v̂

ŵ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

≤ σ(M ′
1,M

′
2)

∥∥

(−x− t)+

(x− t)+

(a1s+ a2ξ + a3e
Tv − ε)+

(MT
P̃V0

(y − Ax)− eNs)+

(Bx− b)+

(UT (y − Ax)− ξe)+

(−UT (y − Ax)− ξe)+

(UT (y − Ax)− v)+

(−UT (y − Ax)− v)+

(w1 + w2 − e)+

(−a1w3 + (eN)Tw4)+

(−a2w3 + eT (w5 + w6))+

(−a3ew3 + w7 + w8)+

{w1 − w2 + ATMP̃V0
w4+

ATU(w5 − w6 + w7 − w8)−BTw9}

{eT t+ εw3 − yTMP̃V0
w4−

yTU(w5 − w6 + w7 − w8) + bTw9}

(t−, s−, ξ−, v−, w−)

∥∥
1

(6.47)

where σ(M ′
1,M

′
2) is a constant depending only on M ′

1 and M ′′
2 given in (6.29) and (6.30).

Since the vector (x, t, s, ξ, v, w) satisfies (6.46) and (6.36), the inequality (6.47) can be

153

simplified to

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

x

t

s

ξ

v

w

−

x̂

t̂

ŝ

ξ̂

v̂

ŵ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

≤ σ(M ′
1,M

′
2)

∥∥∥∥∥∥∥∥∥∥∥∥∥

(a1s+ a2ξ + a3e
Tv − ε)+

(Bx− b)+

{eT t+ εw3 − yTMP̃V0
w4−

yTU(w5 − w6 + w7 − w8) + bTw9}

∥∥∥∥∥∥∥∥∥∥∥∥∥
1

=
∣∣(a1s+ a2ξ + a3e

Tv − ε)+
∣∣+ ‖(Bx− b)+‖1 +∣∣∣eT t+ εw3 − yTMP̃V0

w4 − yTU(w5 − w6 + w7 − w8) + bTw9

∣∣∣
(6.48)

Note that |(ai)T (Ax − y))| ≤ ‖ai‖2 ‖y − Ax‖2 for all i ∈ {1, ..., N}, which imply that

max1≤i≤N

∣∣∣(MP̃V0
)T (Ax− y)

∣∣∣
i
≤ ‖y − Ax‖2. The value of s in (6.35) implies that

s ≤ ‖y − Ax‖2 .

Therefore the following inequality holds:

(a1s+a2ξ+a3e
Tv− ε)+ ≤ (a1 ‖y − Ax‖2 +a2

∥∥UT (y − Ax)
∥∥
∞+a3

∥∥UT (y − Ax)
∥∥

1
− ε)+.

(6.49)

Due to (6.40), (6.42) and (6.44), we have

∣∣∣eT t+ εw3 − yTMP̃V0
w4 − yTU(w5 − w6 + w7 − w8) + bTw9

∣∣∣ =
∣∣eT t+ εw3 − yTMg − bTh∗

∣∣
=
∣∣eT t+ εw3 − xTATν∗ + (UT (Ax− y))Tg + (Bx− b)Th∗ − xTBTh∗

∣∣ .
The fact ATν∗ +BTh∗ = η and the triangle inequality imply that

∣∣eT t+ εw3 − yTν∗ − bTh∗
∣∣ ≤ ∣∣eT t− xTη∣∣+ ε |w3|+

∣∣(UT (Ax− y))Tg
∣∣+
∣∣(Bx− b)Th∗∣∣ .

(6.50)

Now we deal with the right-hand side of the above inequality. First, By using the index

154

sets S and S3, we have

∣∣eT t− xTη∣∣ =
∣∣eTS tS + eTS3

tS3 − xTSηS − xTS3
ηS3

∣∣ . (6.51)

It follows from t = |x| and (6.37) that

∣∣eTS tS + eTS3
tS3 − xTSηS − xTS3

ηS3

∣∣ =
∣∣eTS3

tS3 − xTS3
ηS3

∣∣ ≤ ∣∣eTS3
tS3

∣∣+
∣∣xTS3

ηS3

∣∣
= ‖xS3‖1 +

∣∣xTS3

∣∣ |ηS3| ≤ ‖xS3‖1 +
∣∣xTS3

∣∣ e
= 2 ‖xS3‖1 .

We recall the error of best k term approximation σk(x)1 = infz{‖x− z‖1 : ‖z‖0 ≤ k}.

Then we obtain ∣∣eT t− xTη∣∣ ≤ 2 ‖xS3‖1 = 2σk(x)1. (6.52)

By using the restricted weak RSP of order k, we have

‖ν∗‖1 ≤

∥∥∥∥∥∥∥
 ν∗

h∗

∥∥∥∥∥∥∥

1

≤
∥∥(CCT)−1Cη

∥∥
1
≤
∥∥(CCT)−1C

∥∥
∞→1
‖η‖∞ ≤ ϑ(1),

where C ∈ R(m+l)×n is a matrix given in (6.20) and ϑ(1) is defined in (6.24). Moreover,

we have

‖g‖1 =
∥∥U−1

0 ν∗
∥∥

1
≤
∥∥U−1

0

∥∥
1→1
‖ν∗‖1

≤
∥∥U−1

0

∥∥
1→1

∥∥(CCT)−1Cη
∥∥

1

≤
∥∥U−1

0

∥∥
1→1

∥∥(CCT)−1C
∥∥
∞→1
‖η‖∞

≤
∥∥U−1

0

∥∥
1→1

∥∥(CCT)−1C
∥∥
∞→1

.

Recall that Υ(1, 1) is given in (6.23). Then ‖g‖1 ≤ Υ(1, 1). Similarly, ‖g‖∞ ≤ Υ(∞,∞)

155

can be obtained. Due to w3 = max {‖ν∗‖1 , ‖g‖1 , ‖g‖∞}, we have

ε |w3| ≤ ε(max{Υ(1, 1),Υ(∞,∞), ϑ(1)}). (6.53)

Let c, d, e ∈ [1,+∞] be three given positive numbers and d, d′ be two given numbers

satisfying (6.33). For the term
∣∣(UT (Ax− y))Tg

∣∣ in (6.50), by using Hölder inequalities,

we have

∣∣(UT (Ax− y))Tg
∣∣ ≤ ∥∥UT (Ax− y)

∥∥
d′
‖g‖d

=
∥∥UT (Ax− y)

∥∥
d′

∥∥U−1
0 ν∗

∥∥
d

≤
∥∥UT (Ax− y)

∥∥
d′

∥∥U−1
0

∥∥
e→d ‖ν

∗‖e

≤
∥∥UT (Ax− y)

∥∥
d′

∥∥U−1
0

∥∥
e→d

∥∥(CCT)−1C
∥∥
∞→e .

(6.54)

Let Υ(d, e) be given as (6.21), i.e.,

Υ(d, e) = max
0⊆{1,...,h},|0|=m

∥∥U−1
0

∥∥
e→d

∥∥(CCT)−1C
∥∥
∞→e .

Thus we have ∣∣(UT (Ax− y))Tg
∣∣ ≤ Υ(d, e)

∥∥UT (Ax− y)
∥∥
d′
. (6.55)

Similarly, the following inequalities holds

∣∣(Bx− b)Th∗∣∣ ≤ ‖Bx− b‖c′ ‖h∗‖c

≤ ‖Bx− b‖c′
∥∥(CCT)−1C

∥∥
∞→c ‖η‖∞

≤ ‖Bx− b‖c′
∥∥(CCT)−1C

∥∥
∞→c .

(6.56)

Let ϑ(c) be given as (6.22), i.e.,

ϑ(c) =
∥∥(CCT)−1C

∥∥
∞→c .

156

Thus for any given c, ∣∣(Bx− b)Th∗∣∣ ≤ ϑ(c) ‖Bx− b‖c′ . (6.57)

Due to (6.52), (6.53), (6.55) and (6.57), the inequality (6.50) is reduced to

∣∣eT t+ εw3 − yTν∗ − bTh∗
∣∣ ≤ ε(max{Υ(1, 1),Υ(∞,∞), ϑ(1)}) + 2σk(x)1

+
∥∥UT (Ax− y)

∥∥
d′

Υ(e, d) + ‖Bx− b‖c′ ϑ(c).
(6.58)

Note that ‖x− x̂‖2 ≤
∥∥∥(x, t, s, ξ, ν, w)− (x̂, t̂, ŝ, ξ̂, ν̂, ŵ)

∥∥∥
2
. Thus it follows from (6.49),

(6.57) and (6.48) that

‖x− x̂‖2 ≤ σ(M ′
1,M

′
2)

{
‖(Bx− b)+‖1 + ε(max{Υ(1, 1),Υ(∞,∞), ϑ(1)})+

(a1 ‖y − Ax‖2 + a2

∥∥UT (Ax− y)
∥∥
∞ + a3

∥∥UT (Ax− y)
∥∥

1
− ε)++

2σk(x)1 +
∥∥UT (Ax− y)

∥∥
d′

Υ(e, d) + ‖Bx− b‖c′ ϑ(c)

}
.

(6.59)

We recall the three sets Ω∗, ΩP̃V0
and Ω∗

P̃V0

, where Ω∗ and Ω∗
P̃V0

are the solution sets of

(6.2) and (6.17), given as (6.10) and (6.18), respectively, and ΩP̃V0
is given as (6.11) with

V = V0. Clearly, x∗ ∈ Ω∗ and x̂ ∈ Ω∗
P̃V0

. Let x∗ denote the projection of x onto Ω∗, that

is,

x∗ = πΩ∗(x).

Note that the three sets are compact convex sets, and Ω∗ ⊆ ΩP̃V0
and Ω∗

P̃V0

⊆ ΩP̃V0
. Then

by applying Lemma 49 with T1 = Ω∗, T2 = ΩP̃V0
and T3 = Ω∗

P̃V0

, (6.19) implies that

‖x− πT1(x)‖2 = ‖x− x∗‖2 ≤ δH(Ω∗,ΩP̃V0
) + 2 ‖x− x̂‖2 .

Since PV0 satisfies (6.15), it implies that

‖x− x∗‖2 ≤ ε′ + 2 ‖x− x̂‖2 .

Let Υ̂ = max{Υ(1, 1),Υ(∞,∞), ϑ(1)}. Combination of the above inequality and (6.59)

157

yields the desired results (6.32). If x is the feasible solution of (6.2), then ‖(Bx− b)+‖1 = 0

and

(a1 ‖y − Ax‖2 + a2

∥∥UT (Ax− y)
∥∥
∞ + a3

∥∥UT (Ax− y)
∥∥

1
− ε)+ = 0,

and thus the desired error bound (6.34) is obtained.

Before closing this chapter, we make some remarks for Theorem 51.

Remark 52. By setting different values of a1, a2 and a3, (6.2) can be reduced to several

special cases, and the corresponding stability results for these special cases, can be obtained

from (6.32) and (6.34) immediately. Note that if any of a1, a2 and a3 becomes zero, the

constant Υ̂ = max{Υ(1, 1),Υ(∞,∞), ϑ(1)} in (6.32) and (6.34) will be simplified as well.

For example, if a1 = 0, the constant Υ̂ is reduced to max{Υ(1, 1),Υ(∞,∞)}. Thus we

use the following table to show the form of the constant Υ̂ for different choices a1, a2 and

a3.

Table 6.1: The constant Υ̂

ai Υ̂

a1 + a2 = 0 Υ(∞,∞)

a1 + a3 = 0 Υ(1, 1)

a2 + a3 = 0 ϑ(1)

a1 = 0 max{Υ(1, 1),Υ(∞,∞)}

a2 = 0 max{Υ(∞,∞), ϑ(1)}

a3 = 0 max{Υ(1, 1), ϑ(1)}

a1, a2, a3 6= 0 max{Υ(1, 1),Υ(∞,∞), ϑ(1)}

Note that for any case with a1 = 0, we have Ω∗ = ΩP̃V0
= Ω∗

P̃V0

so that x̂ = x∗ where

x̂ ∈ Ω∗
P̃V0

and x∗ ∈ Ω∗. Thus instead of using Lemma (49), the stability results can be

immediately obtained from (6.59).

158

Remark 53. If the matrix B does not appear in (6.2), then (6.2) is reduced to the model

min
x∈Rn

‖x‖1

s.t. a1 ‖y − Ax‖2 + a2

∥∥UT (Ax− y)
∥∥
∞ + a3

∥∥UT (Ax− y)
∥∥

1
≤ ε.

(6.60)

In this case, the restricted weak RSP of order k is reduced to weak RSP of order k, which

means ATν∗ = η. In fact, the upper bound of
∣∣(UT (Ax− y))Tg

∣∣ in (6.54) can be improved

to ∣∣(UT (Ax− y))Tg
∣∣ ≤ ∥∥UT (Ax− y)

∥∥
d′
‖g‖d

=
∥∥UT (Ax− y)

∥∥
d′

∥∥U−1
0 ν∗

∥∥
d

≤
∥∥UT (Ax− y)

∥∥
d′

∥∥U−1
0 (AAT)−1Aη

∥∥
d

≤
∥∥UT (Ax− y)

∥∥
d′

∥∥U−1
0 (AAT)−1A

∥∥
∞→d .

(6.61)

Then in order to obtain a tighter bound, Υ(e, d) can be replaced by

Υ′(d) = max
0⊆{1,...,h},|0|=m

∥∥U−1
0 (AAT)−1A

∥∥
∞→d .

Then we have
∣∣(UT (Ax− y))Tg

∣∣ ≤ ∥∥UT (Ax− y)
∥∥
d′

Υ′(d). Similarly, the constants Υ1,1

and Υ∞,∞ are replaced by Υ′(1) and Υ′(∞), respectively. Clearly, in this case, ϑ(c) =∥∥(AAT)−1A
∥∥
∞→c. Let Υ̂′ = max{Υ′(1),Υ′(∞), ϑ(1)}. Then the bound (6.34) is reduced

to the following one:

‖x− x∗‖2 ≤ ε′ + 2σ(M ′
1,M

′′
2)

{
εΥ̂′ + 2σk(x)1 +

∥∥UT (Ax− y)
∥∥
d′

Υ′(d)

}
. (6.62)

Similarly, we list the constants Υ̂′ for different choices of ai, i = 1, 2, 3.

159

Table 6.2: The constant Υ̂′

ai Υ̂′

a1 + a2 = 0 Υ′(∞)

a1 + a3 = 0 Υ′(1)

a2 + a3 = 0 ϑ(1)

a1 = 0 max{Υ′(1),Υ′(∞)}

a2 = 0 max{Υ′(∞), ϑ(1)}

a3 = 0 max{Υ′(1), ϑ(1)}

a1, a2, a3 6= 0 max{Υ′(1),Υ′(∞), ϑ(1)}

Note that when a1 = 0, Υ̂′ = Υ′(1) since
∥∥U−1

0 (AAT)−1A
∥∥
∞→1

≥
∥∥U−1

0 (AAT)−1A
∥∥
∞→∞.

Setting d = 1 yields

‖x− x∗‖2 ≤ σ(M ′
1,M

′′
2)

{
εΥ′(1) + 2σk(x)1 +

∥∥UT (Ax− y)
∥∥
∞Υ′(1)

}
, (6.63)

which is identical to the bound for the `1-minimization established by Zhao and Li [98]

(see also in Zhao [94]),

min{‖x‖1 : a2

∥∥UT (Ax− y)
∥∥
∞ + a3

∥∥UT (Ax− y)
∥∥

1
≤ ε}.

In particular, when x̂ is the solution to `0-minimization, it must be feasible to `1-minimization.

So (6.32) and (6.63) are exactly the error bound between x̂ and the solution of `0-minimization

x∗.

Our stability result is only determined by the problem data itself and can be applied

to many sparsity models. Different from the stability results obtained by NSP of order

k or RSP of order k, Theorem 51 is proven under the so-called restricted weak RSP of

order k.

160

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Optimization models with sparsity lie at the heart of many practical applications such

as compressive sensing, 1-bit compressive sensing, statistical and machine learning, etc.

Although these models are often difficult to solve in general, certain efficient algorithms

are still urgently needed. In the meantime, the practical algorithms are also required

to be stable in finding the sparse solutions of these models. In this thesis, we have

studied the general `0-minimization models (1.1) and (6.1). We have mainly discussed

the nonuniqueness properties of the solutions to (1.1) and the existence of an optimal

weight guaranteeing the problem (1.1) can be solved by weighted `1-minimization. The

reformulation of (1.1) as a bilevel optimization was established under the assumption

of strict complementarity. Based on this analysis, the primal and dual re-weighted `1-

algorithms were developed for the model (1.1) and some numerical experiments were

carried out to illustrate the efficiency of these methods. Moreover, a stability result was

established for the model (6.2). The main results of this thesis are described in more

detail as follows.

Properties of the solutions of (1.1): Some basic properties of the solutions of

(1.1) are developed in Chapter 2, such as the necessary conditions for a point being the

sparsest point in T given in (1.2). Since the model (1.1) is more complex than the basis

pursuit (1.8), it seems difficult to guarantee the uniqueness of the solutions of (1.1) under

161

some standard conditions such as the NSP or RIP condition. So we have shown the

nonuniqueness of the sparsest solutions of (1.1) under some mild conditions. We also

discussed the boundedness of the solution set of (1.1) under certain conditions. Based on

this, a lower bound for the absolute entries of the solutions to (1.1) can be guaranteed

when the solution set of (1.1) is bounded.

Existence of optimal weights and reformulation of (1.1): Due to the complexity

of the model (1.1), it is difficult to ensure it being exactly solved by the `1- or weighted `1-

minimization model. In Chapter 3, we introduce the concept of optimal weights which, in

theory, guarantee the solution of the weighted `1-problem is the sparsest point in the fea-

sible set of the sparse optimization problem. We have shown in Theorems 19 and 20 that

the existence of an optimal weight for the weighted `1-minimization problem associated

with (1.1). We further discussed some fundamental properties of the weighted `1-problem

(3.5) and its dual problem (3.20) such as strong duality and strictly complementary con-

dition. We show that under the well-known Slater condition, strong duality for (3.5) and

(3.20) is satisfied. Moreover, strict complementarity is proven to be guaranteed under

Assumption 32. Finally, we have shown that the `0-problem (1.1) can be formulated as

a bilevel programming problem under Assumption 34. This fact provides a basis for the

development of algorithms in Chapter 4.

Primal and dual re-weighted algorithms: The main contribution of this thesis is

to develop two new types of re-weighted algorithms for the problem (1.1). In Chapter 4,

a family of merit functions is introduced, including a new merit function (4.9). We apply

the first order approximation (linearization) to the model (3.5) to develop the primal

re-weighted `1-algorithm. We test the numerical behaviour of the primal algorithm PRA

with this new merit function and other merit functions. Our simulations indicate that

PRA with this new merit function is very promising compared with other tested merit

functions. We also demonstrate the influence of the parameter ε of merit functions, and

our experiments indicate that a sufficiently small ε might lead to a low success rate of

finding the sparsest point in T .

162

Next, we develop a framework for the dual re-weighted `1-algorithms. We have intro-

duced two new ideas to relax the bilevel programming problem (3.37), which, together with

the idea of Zhao and Luo [99], lead to three relaxation models (4.25), (4.32) and (4.38). As

a result, we develop several specific algorithms: DWA(I), DWA(II) and DRA(I)-DRA(VI).

It is worth stressing that the new dual re-weighted `1-algorithms provide a competitive

and alternative computational approach for solving the `0-problems.

Numerical experiments: In Chapter 5, we have carried out a number of simula-

tions in order to choose a good candidate for parameters and merit functions in our dual

algorithms. We have also performed experiments on the noisy sparse model (1.9), mono-

tonic sparse model (1.5) and nonnegative sparse model (1.7), in which the matrix B has

special structures. We also consider the cases where the matrix B is a random Gaussian

matrix. Our numerical results show that the performance of DWA(I) and DWA(II) are

almost identical to that of `1-method (2.24). The dual re-weighted `1-algorithms, ex-

cept for DRA(I), remarkably outperform the `1-minimization and the dual re-weighted

`1-algorithms DRA(II), DRA(IV) and DRA(VI) always have a better performance of

finding the sparse vector in T among these dual algorithms. Finally, we have carried

out experiments to demonstrate that the dual algorithms are insensitive to the choice of

parameter ε provided that ε is relatively small.

Stability theory: In Chapter 6, we have discussed the stability issue of the `1-

minimization method for a class of sparse optimization problems. To establish our re-

sults, we first introduced the restricted weak RSP of order k which is one of the mildest

assumption governing the stability of sparsity-seeking algorithms. By using the classic

Hoffman theorem and Lemma 49, we have shown that under the restricted weak RSP of

order k, the `1-minimization method (6.2) is stable (see Theorem 51 for details). Our

results can apply to a wide range of situations, including the problem with simple `1, `2

and `∞ constraints. Also several existing stability results based on the RSP conditions

can be re-obtained from our general results.

163

7.2 Future work

In our view, the study of dual re-weighted `1-algorithms remains incomplete, as for exam-

ple, some other relaxation versions of the bilevel model (3.37) and a different choice ofW

or a different constraint that reflects the relation of the dual objective −λ1ε− λT2 b+ λT3 y

and ‖λ6‖0 can still be developed. Next, it is necessary to analyse the convergence of the

dual re-weighted `1-algorithms. It seems such an analysis can be possibly made under a

certain assumption such as restricted isometry property (RIP) or restricted weak RSP of

transposed matrices.

Secondly, it would be interesting to develop re-weighted `1-algorithms via the second

order approximation of merit function for sparsity. By using the second order approxi-

mation, (4.14) can be extended to

Ψε(t) 6 Ψε(t
k) +∇ΨT

ε (tk)(t− tk) +
L

2
‖t− tk‖2

2 (7.1)

when Ψε is a continuously differentiable function with a Lipschitz continuous gradient

(the Lipschitz constant is L) (see more details in Descent Lemma [6]). How to determine

L or to choose the merit functions satisfying (7.1) is also a future work.

Last but not least, the main stability result (6.34) in Chapter 6 has indicated that an

error bound can be measured by using the parameters d, e and c. How to choose such

proper parameters to obtain a tighter error bound would be an interesting research topic.

164

List of References

[1] E. Amaldi and V. Kann. On the approximability of minimizing nonzero variables or
unsatisfied relations in linear systems. Theoretical Computer Science, 209(1-2):237–
260, 1998.

[2] J. Andersson and J. O. Strömberg. On the theorem of uinform recoery of structured
random matrices. IEEE Trans. Inform. Theory, 60(1):1700–1710, 2014.

[3] M. S. Asif and J. Romberg. Fast and accurate algorithms for re-weighted `1-norm
minimization. IEEE Trans. Signal Process., 61(23):5905–5916, 2013.

[4] M. S. Asif and J. Romberg. Sparse recovery of streaming signals using `1-homotopy.
IEEE Trans. on Signal Process., 62(16):4209–4223, 2014.

[5] F. Bach, R. Jenatton, J. Mairal, G. Obozinski, et al. Optimization with sparsity-
inducing penalties. Foundations and Trends R© in Machine Learning, 4(1):1–106,
2012.

[6] D. P. Bertsekas. Nonlinear programming. Athena Scientific Belmont, 1999.

[7] T. Blumensath, M. Davies, and G. Rilling. Greedy algorithms for compressed sens-
ing. Compressed Sensing: Theory and Applications, pages 348–393, 2012.

[8] J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization:
Theory and Examples. Springer Science & Business Media, 2010.

[9] P. T. Boufounos. Greedy sparse signal reconstruction from sign measurements.
In Porc. 43rd Asilomar Conf. Signals, Systems and Computers, pages 1305–1309.
Pacific Grove, 2009.

[10] P. T. Boufounos and R. G. Baraniuk. 1-bit compressive sensing. In Proc. 42nd Ann.
Conf. Information Sciences and Systems, pages 16–21. Princeton, 2008.

165

[11] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foun-
dations and Trends R© in Machine learning, 3(1):1–122, 2011.

[12] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[13] J. Cahill, X. Chen, and R. Wang. The gap between the null space property and
restricted isometry property. Linear Algebra Appl, 501(1):363–375, 2016.

[14] T. Cai, L. Wang, and G. Xu. New bounds for restricted isometry constants. IEEE
Transactions on Information Theory, 56(9):4388–4394, 2010.

[15] T. Cai and A. Zhang. Sharp rip bound for sparse signal and low-rank matrix
recovery. Applied and Computational Harmonic Analysis, 35(1):74–93, 2013.

[16] T. Cai and A. Zhang. Sparse representation of a polytope and recovery of sparse sig-
nals and low-rank matrices. IEEE Transactions on Information Theory, 60(1):122–
132, 2014.

[17] G. Camps-Valls, D. Tuia, L. Bruzzone, and J.A. Benediktsson. Advances in hyper-
spectral image classification: Earth monitoring with statistical learning methods.
IEEE Signal Processing Magazine, 31(1):45–54, 2014.

[18] E. Candès. Compressive sampling. In Proceedings of the International Congress of
Mathematicians, volume 3, pages 1433–1452. Madrid, Spain, 2006.

[19] E. Candès. The restricted isometry property and its implications for compressed
sensing. Comptes Rendus Mathematique, Paris, 346(9-10):589–592, 2008.

[20] E. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and
inaccurate measurements. Communications on Pure and Applied Mathematics,
59(8):1207–1223, 2006.

[21] E. Candès and T. Tao. Decoding by linear programming. IEEE Transactions on
Information Theory, 51(12):4203–4215, 2005.

[22] E. Candès and T. Tao. Near-optimal signal recovery from random projections:
Universal encoding strategies? IEEE Transactions on Information Theory,
52(12):5406–5425, 2006.

166

[23] E. Candès and T. Tao. The dantzig selector: Statistical estimation when p is much
larger than n. The Annals of Statistics, 35(6):2313–2351, 2007.

[24] E. Candès, M. Wakin, and S. Boyd. Enhancing sparsity by reweighted `1 minimiza-
tion. Journal of Fourier Analysis and Applications, 14(5-6):877–905, 2008.

[25] D. Chen and R. Plemmons. Nonnegativity constraints in numerical analysis. In
Symposium on the Birth of Numerical Analysis, 2007.

[26] S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit.
SIAM J. Sci. Comput., 20:33–61, 1998.

[27] X. Chen and W. Zhou. Convergence of reweighted l1 minimization algorithms and
unique solution of truncated lp minimization. Department of Applied Mathematics,
The Hong Kong Polytechnic University, 2010.

[28] A. Cohen, W. Dahmen, and R. DeVore. Compressed sensing and best k-term ap-
proximation. Journal of the American Mathematical Society, 22(1):211–231, 2009.

[29] G. Dantzig. Linear programming and extensions. Princeton University Press,
Princeyon, NJ, 1963.

[30] I. Daubechies, M. Defrise, and C. D. Mol. An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint. Communications on Pure and
Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical
Sciences, 57(11):1413–1457, 2004.

[31] M. A. Davenport, M. F. Duarte, Y. C. Eldar, and G. Kutyniok. Introduction to
compressed sensing. preprint, 93(1):2, 2011.

[32] G. Davis, S. Mallat, and Z. Zhang. Adaptive time-frequency decompositions. Optical
Engineering, 33(7):2183–2191, 1994.

[33] D. Donoho. Compressed sensing. IEEE Transactions on Information Theory,
52(4):1289–1306, 2006.

[34] D. Donoho and M. Elad. On the stability of the basis pursuit in the presence of
noise. Signal Processing, 86(3):511–532, 2006.

167

[35] D. Donoho, M. Elad, and V. N. Temlyakov. Stable recovery of sparse overcomplete
representations in the presence of noise. IEEE Transactions on Information Theory,
52(1):6–18, 2006.

[36] R. Dudley. Metric entropy of some classes of sets with differentiable boundaries.
Journal of Approximation Theory, 10(3):227–236, 1974.

[37] M. Elad. Optimized projections for compressed sensing. IEEE Transactions on
Signal Processing, 55(12):5695–5702, 2007.

[38] M. Elad. Sparse and Redundant Representations: From Theory to Applications in
Signal and Image Processing. Springer, New York, 2010.

[39] M. Elad and A. Bruckstein. A generalized uncertainty principle and sparse repre-
sentation in pairs of bases. IEEE Transactions on Information Theory, 48(9):2558–
2567, 2002.

[40] Y. Eldar and G. Kutyniok. Compressed Sensing: Theory and Applications. Cam-
bridge University Press, 2012.

[41] M. Fazel, H. Hindi, and S. Boyd. Log-det heuristic for matrix rank minimization
with applications to hankel and euclidean distance matrices. In American Control
Conference, 2003. Proceedings of the 2003, volume 3, pages 2156–2162. IEEE, 2003.

[42] S. Foucart and M. Lai. Sparsest solutions of underdetermined linear systems via
`q-minimization for 0 < q < 1. Applied and Computational Harmonic Analysis,
26(3):395–407, 2009.

[43] S. Foucart and H. Rauhut. A Mathematical Introduction to Compressive Sensing.
Springer, NY, 2013.

[44] J. J. Fuchs. On sparse representations in arbitrary redundant bases. IEEE Trans-
actions on Information Theory, 50(6):1341–1344, 2004.

[45] A. Goldman and A. Tucker. Theory of linear programming, volume 38. Princeton
University Press, 1956.

[46] I. F. Gorodnitsky, J. George, and B. Rao. Neuromagnetic source imaging with
focuss: a recursive weighted minimum norm algorithm. Electroencephalography and
Clinical Neurophysiology, 95(4):231–251, 1995.

168

[47] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming.
Version 2.1, 2017.

[48] M. Grasmair, O. Scherzer, and M. Haltmeier. Necessary and sufficient conditions
for linear convergence of `1-regularization. Communications on Pure and Applied
Mathematics, 64(2):161–182, 2011.

[49] O. Güler. Foundations of optimization, volume 258. Springer Science & Business
Media, NY, 2010.

[50] A. Gupta, R. Nowak, and B. Recht. Sample complexity for 1-bit compressed sensing
and sparse classification. In IEEE International Symposium on Information Theory,
pages 1553–1557. IEEE, 2010.

[51] G. Harikumar and Y. Bresler. A new algorithm for computing sparse solutions to
linear inverse problems. In Acoustics, Speech, and Signal Processing, 1996 (ICASSP-
96), volume 3, pages 1331–1334, 1996.

[52] H. Hoefling. A path algorithm for the fused lasso signal approximator. Journal of
Computational and Graphical Statistics, 19(4):984–1006, 2010.

[53] A. J. Hoffman. On approximate solutions of systems of linear inequalities. J. Res.
Nat. Bur. Standards, 49:263–265, 1952.

[54] J. Huang, T. Zhang, and D. Metaxas. Learning with structured sparsity. Journal
of Machine Learning Research, 12(Nov):3371–3412, 2011.

[55] X. Huo and D. Donoho. Uncertainty principles and ideal atomic decomposition.
IEEE Transactions on Information Theory, 47(7):2845–2862, 2001.

[56] M. Lai and J. Wang. An unconstrained `q minimization with 0 < q 6 1 for sparse so-
lution of underdetermined linear systems. SIAM Journal on Optimization, 21(1):82–
101, 2010.

[57] J. Laska and R. Baraniuk. Regime change: Bit-depth versus measurement-rate
in compressive sensing. IEEE Transactions on Signal Processing, 60(7):3496–3505,
2012.

169

[58] J. Laska, Z. Wen, W. Yin, and R. Baraniuk. Trust, but verify: Fast and accurate
signal recovery from 1-bit compressive measurements. IEEE Transactions on Signal
Processing, 59(11):5289–5301, 2011.

[59] J. Liu, L. Yuan, and J. Ye. An efficient algorithm for a class of fused lasso problems.
In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 323–332. ACM, 2010.

[60] C. Lu, J. Tang, S. Yan, and Z. Lin. Generalized nonconvex nonsmooth low-rank
minimization. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4130–4137, 2014.

[61] J. Lucas, C. Carvalho, Q. Wang, A. Bild, J. R. Nevins, and M. West. Sparse
statistical modelling in gene expression genomics. Bayesian Inference for Gene
Expression and Proteomics, 1:0–1, 2006.

[62] S. Mallat and Z. Zhang. Matching pursuit with time-frequency dictionaries. Tech-
nical report, Courant Institute of Mathematical Sciences New York United States,
1993.

[63] O. L. Mangasarian. Machine learning via polyhedral concave minimization. In
Applied Mathematics and Parallel Computing-Festschrift for Klaus Ritter, pages
175–188. Springer, Heidelberg, 1996.

[64] Q. Mo and S. Li. New bounds on the restricted isometry constant δ2k. Applied and
Computational Harmonic Analysis, 31(3):460–468, 2011.

[65] B. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on
Computing, 24(2):227–234, 1995.

[66] D. Needell. Noisy signal recovery via iterative reweighted `1-minimization. In Pro-
ceedings of the 43rd Asilomar Conference on Signals, Systems and Computers, pages
113–117. IEEE, 2009.

[67] D. Needell and J. A. Tropp. CoSaMP: Iterative signal recovery from incomplete and
inaccurate samples. Applied and Computational Harmonic Analysis, 26(3):301–321,
2009.

[68] D. Needell and R. Vershynin. Uniform uncertainty principle and signal recovery via
regularized orthogonal matching pursuit. Foundations of Computational Mathemat-
ics, 9(3):317–334, 2009.

170

[69] M. Plumbley. On polar polytopes and the recovery of sparse representations. IEEE
Transactions on Information Theory, 53(9):3188–3195, 2007.

[70] F. Rinaldi. Concave programming for finding sparse solutions to problems with
convex constraints. Optimization Methods and Software, 26(6):971–992, 2011.

[71] F. Rinaldi, F. Schoen, and M. Sciandrone. Concave programming for minimizing
the zero-norm over polyhedral sets. Computational Optimization and Applications,
46(3):467–486, 2010.

[72] A. Rinaldo et al. Properties and refinements of the fused lasso. The Annals of
Statistics, 37(5B):2922–2952, 2009.

[73] S. M. Robinson. Bounds for error in the solution set of a perturbed linear program.
Linear Algebra and Its Applications, 6:69–81, 1973.

[74] R. T. Rockafellar. Convex analysis. Princeton University Press, Princeton, New
Jersey, 1970.

[75] P. Rosenbloom. Quelques classes de problèmes extrémaux. ii. Bulletin De La Societe
Mathematique De France, 79:1–58, 1951.

[76] M. Slater. Lagrange multipliers revisited. Technical report, Cowles Foundation for
Research in Economics, Yale University, 1959.

[77] Q. Sun. Recovery of sparsest signals via `q-minimization. Applied and Computational
Harmonic Analysis, 32(3):329–341, 2012.

[78] G. Tang and A. Nehorai. Performance analysis of sparse recovery based on
constrained minimal singular values. IEEE Transactions on Signal Processing,
59(12):5734–5745, 2011.

[79] V. N. Temlyakov. Nonlinear methods of approximation. Foundations of Computa-
tional Mathematics, 3(1), 2003.

[80] R. Tibshirani. The lasso method for variable selection in the cox model. Statistics
in Medicine, 16(4):385–395, 1997.

171

[81] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smooth-
ness via the fused lasso. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 67(1):91–108, 2005.

[82] R. Tibshirani, M. Wainwright, and T. Hastie. Statistical Learning with Sparsity:
The Lasso and Generalizations. Chapman and Hall/CRC, 2015.

[83] R. Tibshirani and P. Wang. Spatial smoothing and hot spot detection for cgh data
using the fused lasso. Biostatistics, 9(1):18–29, 2007.

[84] R. Tibshirani2, H. Hoefling, and R. Tibshirani. Nearly-isotonic regression. Techno-
metrics, 53(1):54–61, 2011.

[85] J. A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE
Transactions on Information Theory, 50(10):2231–2242, 2004.

[86] J. A. Tropp and A. Gilbert. Signal recovery from random measurements via orthogo-
nal matching pursuit. IEEE Transactions on Information Theory, 53(12):4655–4666,
2007.

[87] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity in
deep neural networks. In Advances in Neural Information Processing Systems, pages
2074–2082, 2016.

[88] C. Xu. Sparsity optimization and RRSP-based theory for 1-bit compressive sensing.
PhD Dissertation, University of Birmingham, 2015.

[89] Y. Zhang. A simple proof for recoverability of `1-minimization (ii): the nonnegative
case. Technical Report, Rice University, 2005.

[90] Y. Zhang. Theory of compressive sensing via `1-minimization: a non-rip analysis
and extensions. Journal of the Operations Research Society of China, 1(1):79–105,
2013.

[91] Y. B. Zhao. An approximation theory of matrix rank minimization and its appli-
cation to quadratic equations. Linear Algebra and its Applications, 437(1):77–93,
2012.

172

[92] Y. B. Zhao. RSP-based analysis for sparsest and least `1 -norm solutions to under-
determined linear systems. IEEE Transactions on Signal Processing, 61(22):5777–
5788, 2013.

[93] Y. B. Zhao. Equivalence and strong equivalence between the sparsest and least
`1-norm nonnegative solutions of linear systems and their applications. Journal of
the Operations Research Society of China, 2(2):171–193, 2014.

[94] Y. B. Zhao. Sparse Optimization Theory and Methods. CRC Press, Taylor & Francis
Group, 2018.

[95] Y. B. Zhao, H. Jiang, and Z. Q. Luo. Weak stability of `1-minimization meth-
ods in sparse data reconstruction. Mathematics of Operations Reseach, 44, 2019,
https://doi.org/10.1287/moor.2017.0919.

[96] Y. B. Zhao and M. Kočvara. A new computational method for the sparsest solutions
to systems of linear equations. SIAM Journal on Optimization, 25(2):1110–1134,
2015.

[97] Y. B. Zhao and D. Li. Reweighted `1-minimization for sparse solutions to underde-
termined linear systems. SIAM Journal on Optimization, 22(3):1065–1088, 2012.

[98] Y. B. Zhao and D. Li. Theoretical analysis of sparse recovery stability of dantzig
selector and lasso. arXiv: 1711.03783, 2017.

[99] Y. B. Zhao and Z. Q. Luo. Constructing new weighted `1-algorithms for the sparsest
points of polyhedral sets. Mathematics of Operations Research, 42(1):57–76, 2017.

[100] Y. B. Zhao and C. Xu. 1-bit compressive sensing: Reformulation and RRSP-based
sign recovery theory. Science China Mathematics, 59(10):2049–2074, 2016.

173

