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Abstract

Automatic classification of complex data is an area of great interest as it allows to make

efficient use of the increasingly data intensive environment that characterizes our modern

world. This thesis presents to contributions to this research area.

The first contribution relates to the problem of discriminative feature extraction for

data organized in multidimensional arrays (that is, in tensors). In machine learning, Linear

Discriminant Analysis (LDA) is a popular discriminative feature extraction method based

on optimizing a Fisher type criterion to find the most discriminative data projection. In

the past decade, various extension of LDA to high-order tensor data have been developed.

The method proposed in this thesis is called the Efficient Greedy Feature Extraction

method. It has two advantages. First of all, it avoids solving optimization problems of

very high dimension. Secondly, the algorithm can be stopped when the extracted features

are deemed to be sufficient for a proper discrimination of the classes. As other greedy

methods, the proposed method extracts the features sequentially, one feature at each step.

However, in contrast to the previously known greedy tensor LDA methods, we find a way

to condition each step on all previous steps without enforcing orthogonality between the

successive projection vectors. This makes our method more efficient than the others. The

method is implemented using two slightly different objectives, namely the multiplicative

and additive form of the Fisher criterion. The thesis presents the formulas used for the

numerical solutions of the optimization problem in both cases. The method is tested both

on synthetic data and on real data (fMRI data).

The second contribution of the thesis is an application of the above discriminative

feature extraction methods to early detection of dementia disease. For this classification

task, the classifier used are the “Learning with Privileged Information” (LUPI) extension of

Generalized Matrix Learning Vector Quantization (GMLVQ) classifiers, and also Support

Vector Machine (SVM+) that integrates privileged information via LUPI. In contrast to



the original data, Priviledged Information (PI) is the data that is used in the training

stage but not in the testing one. It has been reported in the literature that the use of PI

can significantly improve the test classification performance. For the early detection task,

four cognitive scores are used as the original data while we employ our greedy feature

extraction method to derive discriminative PI feature from fMRI data. This approach

is of practical significance because fMRI data is quite costly to obtain in practice. The

results from the experiments presented in this thesis demonstrate the advantage of using

privileged information for the early detection task.
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FP False Positives



FPR False Positive Rate

TNR True Negative Rate

FPR False Negative Rate

FNR True Negative Rate

ndots working memory

tdelay cognitive inhibition

tddisp divided attention

tsdisp selective attention



LIST OF NOTATION

mi mean of normal distributions

σi variance of normal distributions

x a vector in RN

xo a classification procedure is defined by a threshold

C1 an object will be classified to belong to Class 1

C2 an object will be classified to belong to Class 2

N1 number of objects in class 1

N2 number of objects in class 2

w a projection vector

a,b two (left and right) projection vectors of size d× 1 projecting the matrices into

real numbers

vw the reduced feature set as a map from RN to R

L the order of the tensor data

` mode index

n` dimension of mode `, ` = 1, . . . , L

K class index, k ∈ {1, 2}

Nk number of elements in each class

Mk,i order L Tensor (represented as element ofRn1×n2×....×nL),k ∈ {1, 2},i ∈ {1, . . . , Nk}

D number of learned features



d feature index d = 1, . . . , D

a`,d ∈ Rn` generating vector for mode `and feature d

a`=a`,1 ∈ Rn` generating vector for mode `and first feature

a`,d,j the component j of vector a`,d, j ∈ {1, . . . , n`}

a`,j = a`,1,j the component j of vector a`, j ∈ {1, . . . , n`}

Ad = a1,d ◦ a2,d ◦ . . . ◦ aL,d

A−`,d = a1,d ◦ . . . ◦ a`−1,d ◦ a`+1,d ◦ . . . ◦ aL,d ∈ Rn1×n2×....×n`−1×n`+1×....×nL

A−` = A−l,1 = a1 ◦ . . . ◦ a`−1 ◦ a`+1 ◦ . . . ◦ aL ∈ Rn1×n2×....×n`−1×n`+1×....×nL

vk,id ∈ R feature d representing the tensor Mk,i, k ∈ {1, 2},i ∈ {1, . . . , Nk}

vk,i ∈ RD the vector of features representing the tensor Mk,i, k ∈ {1, 2},i ∈ {1, . . . , Nk}

vk,i = fk,i1 ∈ R first feature representing the tensor Mk,i, k ∈ {1, 2},i ∈ {1, . . . , Nk}

mk
d the averages of feature d in class k

mk = mk
1 the averages of the first feature in class k

Skd the total square variations of feature d in class k

Sk = Sk1 the total square variations of the first feature in class k

Fm cost function of the Fisher multiplicative criterion for a single feature generating

vector set

FmD cost function of the Fisher multiplicative criterion for multiple feature generating

vector sets

Fa cost function of the Fisher additive criterion for a single feature generating vector

set



FaD cost function of the Fisher additive criterion for multiple feature generating vector

sets

Mk,i
q`=j

for the tensor of order L− 1 with components defined in (3.10)

∆ a tensor of order L defined as the difference of the averages of the tensor data in

the two classes

∆q`=j a tensor of order L− 1 defined by (3.16)

Ωk
q`=j

a tensor of order L− 1defined by (3.18)

Ω̃k
q`=j

a tensor of order L− 1 defined by (3.21)

ND constant defined by (3.23)

DD constant defined by (3.24)

Ωk
q`=j,D+1 a tensor of order L− 1defined by (3.33)

Ω̃k
q`=j,D+1 a tensor of order L− 1defined by (3.36)

Ω∗kq`=j a tensor of order L− 1 defined by (3.21)

Ω∗kq`=j,D+1 a tensor of order L− 1 defined by(3.46)

α` Lagrangian multipliers

nr the number of volumes scanned during the trials with random sequence

ns the number of volumes scanned during the trials with structured sequence

S the number of voxels

Is = {i1, ..., ins} the collection of “structured” volumes

Ir = {j1, ..., jns} the collection of “random” volumes

G the graph structure of a single ROI is represented by so-called graph matrix



n fMRI time series of length

yi = (yi1, ..., yin)ᵀ linear cross-correlation of fMRI time series i

yj = (yj1, ..., yjn)ᵀ linear cross-correlation of fMRI time series j

µ the mean of individual fMRI time series

σ the standard deviation of individual fMRI time series

{xn : n = 1, ..., N} N d-dimensional feature vectors for training

m1 = 1
N1

∑
xn∈C1

xn the mean vectors of Class 1

m2 = 1
N2

∑
xn∈C2

xn the mean vectors of Class 2

SB the between-class covariance matrix

SW the total within-class covariance matrix

DB the between-class distance

DW the total within-class distance

wopt the optimized w

{vn = wᵀ
optxn : n = 1, ..., N} the extracted features

{Xn : n = 1, ..., N} N graph matrices of size d× d for training

M1 = 1
N1

∑
Xn∈C1

Xn mean matrices of Class 1

M2 = 1
N2

∑
Xn∈C2

Xn mean matrices of Class 2

aopt,bopt the optimized a and b

X an ROI as a cross-correlation graph represented by an V × V symmetric matrix

N number of subjects



Np number of patients

Nc number of healthy controls

Cp the graph matrices of patients is collected in matrix sets

Cc the graph matrices of controls is collected in matrix sets

v = aᵀXb extract the discriminating feature v through a quadratic form

ai each element ai of a corresponds to a particular voxel i

ri spatial position of voxel i

N (r;µk,Σk) a set of K spatially smoothing Gaussian kernels, k = 1, 2, ..., K, in the voxel

space

µk position of spatially smoothing Gaussian kernel

Σk shape of spatially smoothing Gaussian kernel determined by the covariance matrix

ã, b̃ the feature vectors a and b reduced

X̃ the S × S graph matrix X is thus reduced to the K ×K matrix

Y fMRI data of size ∈ RS×T

T the number of volumes

(xi, yi) training data ∈ Rm × {1, · · · , K}, i = 1, 2, · · · , n, yi is class label

m the dimensionality of data

wq ∈ Rm, q = 1, 2, 3, ..., L,

c(wq) wq is characterized according to their location available in the input space and

their class ∈ {1, ..., K}

d(x,w) the (squared) Euclidean distance between the input vectors and prototypes



Λ ∈ Rm×m is a positive definite matrix, Λ � 0

Ω ∈ Rm×m is a full-rank matrix

φ a monotonic function

w+ closest prototype with correct label

w− closest prototype with wrong label

X a training dataset that in the original training data live Λ

X ∗ a training dataset that in another space where the privileged training data live

Λ∗

Λnew a new metric is learnt in the original space Λ

S+ a set of similar pairs

S− a set of dissimilar pairs

l∗ the upper bound for the distances of similar pairs in the privileged space

u∗ the lower bound for the distances of dissimilar pairs in the privileged space

a∗ lower percentile parameter in the privileged space

b∗ upper percentile parameter in the privileged space

a lower percentile parameter in the original space

b upper percentile parameter in the original space

Nd collection of classifiers trained on different versions of downsampled majority class

Λ1,Λ2 two metric tensors, their eigenvalues are normalized to sum to 1

λij eigenvalues where i = 1, 2 and j = 1, 2, ..., d

λ̂ij the normalized eigenvalues



ŷ measures the per-class accuracy of class predictions ŷ with respect to true class y

on a test set

Tn the number of test points whose true class is n

dij Mahalanobis distance between the i-th and j-th feature vectors (denoted by dMij )

I two feature-generating vectors a and b from which we can derive a task-dependent

importance matrix denoted by I



CHAPTER 1

INTRODUCTION

1.1 Introduction/Motivation

With the latest advances in sensor, storage, and networking technologies, ever larger data

are being generated daily in a wide range of applications and the need to make good use

of this data is increasing as well. Entire fields, some of them relatively recently developed,

such as computer vision, audio processing, neuroscience, remote sensing, and data mining

are important sources of big data and are benefiting from the emerging technologies to

make efficient use of it. A reference such as [42], for example, speaks of a “data avalanche”

as it refers solely to the field of genetic biology. As a result of this development, the interest

in automated processing of big data has grown tremendously. An essential ingredient in

the efficient processing of large amounts of data is the capability of data reduction, that

is the ability to extract from the raw data those features that are relevant for further

processing. Data reduction is an operation useful in itself as it allows for more efficient

storage and transmission of data. It can also be used in certain situations as a manner

of eliminating noise, or measurement errors from the data. This is a typical use of data

reduction algorithm in image processing applications. However, for data reduction to be

really useful, this operation has to be performed in such a manner that allows effective and

efficient use of the data for the specific purpose for which it was collected in the first place.

Classification is one such operation and a very important one. Being able to automate the
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sorting of data into classes of interest is a very useful feature in many application areas.

For example, medical applications require often to distinguish between healthy specimen

and pathological one. This can be the case for results of laboratory analyses, for EKG

or EEG plots, or for more complex form of information as psychological tests and fMRI

images that are the main concern of the present work.

Most data encountered in the application fields mentioned before is naturally represented

as multidimensional arrays. Mathematically, multidimensional arrays are referred as tensors

[51]. The number of dimensions (ways) defines the order of a tensor. If N denotes the

number of the tensor dimensions, then the elements (entries) of the tensor are addressed

by L indices. Each index defines one mode. The tensor concept is a generalization of

scalars, vectors and matrices. Indeed, scalars can be regarded as zero-order tensors, vectors

can be considered first-order tensors and matrices are second-order tensors. Tensors of

order three of higher, i.e. L > 2 are referred as higher-order tensors [22, 51]. One typical

example of second order tensor data encountered in practice is a gray-level image in

computer vision applications, in which case the spatial dimensions of the image represent

the two modes. Another example comes from multi channel electroencephalography (EEG)

signals in neuroscience, where the two modes consist of channel and time. Also an audio

spectrogram can be processed as a two dimensional tensor with frequency and time as

the two modes. A typical example of third order tensor is a three-dimensional (3D)

model of an object in computer vision or computer graphics [82] in which case the three

modes of the three spatial dimensions width, height and depth. Remote sensing using

hyperspectral digital imagery collection [81] offers another example of natural third order

tensor representation of data with two modes representing the spatial coordinates of the

image and a third mode representing the spectral wavelength. Video image sequences are

yet another example of data that can be naturally organized as third order tensors with

two modes representing the spatial image coordinates and the third mode representing

time. This point of view was successfully used for activity and gesture recognition in

computer vision and in human-computer interaction applications [[15], [40]]. Social media
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and network analysis [56] is a great source of big data nowadays and the higher order

tensor point of view has been successfully employed in this area as well. For example [92]

organized information from a database on scientific literature a three order tensor with the

conference, author, and keyword fields as the three modes. Another similar example comes

from web graph data mining and environmental sensor monitoring data [30]. In the case of

web graph data the three modes were chosen to be source, destination, and text, whereas

in the case of environmental sensor monitoring, three modes were type, location, and time.

With the increased interest in cloud computing [3], there are interesting developments

that use higher tensor techniques in this area. Such developments have been reported in

works such as [23] that presents the MapReduce environment and [48] that presents the

GigaTensor approach.

Returning to the topic of data reduction, it is clear that data reduction in case of

data represented as higher order tensors presents peculiar challenges. In general, data

reduction is the operation of transforming a high-dimensional dataset into a low-dimensional

representation while retaining most of the information regarding the underlying structure

or the actual physical phenomenon [53]. One important approach to data reduction

consists in the supervised learning of a mapping from the higher dimensional input space

to the lower dimensional output space. As the lower dimensional space can be regarded as

a subspace of the input space, this approach is commonly referred as subspace learning.

Traditional subspace learning algorithms are operating on vectors, that is, first-order

tensors, such as Principal Component Analysis (PCA) [46], Independent Component

Analysis (ICA) [44], Linear Discriminant Analysis (LDA) [27]. For an informative tutorial

of these methods, we refer to [12].

All the previously mentioned references on data dimension reduction refer to data

organized as vectors, or first-order tensors. Extending these methods to data organized

as multidimensional arrays, or higher order tensors, presents serious difficulties. Even

the extension of the PCA method to higher order tensor is nontrivial since the Singular

Value Decomposition (SVD), that is the underlying numerical tool for the PCA method
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cannot be extended easily to higher order tensors. An approach to generalizing the SVD

to higher order tensor originates from a relatively old publication[98] and is called the

Tucker decomposition. It has been extensively studied ever since and there are many

particular cases such as PARAFAC (Parallel Factor Analysis) and NTD (Non-negative

Tucker Decomposition) that have been proposed in the literature.

One possible solution was offered in [64] as the Multilinear PCA algorithm. An

alternative discrete spectral framework called Greedy Sparse PCA (GSPCA), based on

variation bounds on the covariance sub-spectrum derived by eigenvalue inclusion principle,

was proposed in [71] . The technique is based on finding solution with sparse linear

projections i.e. subject to a constraint on the number of non-zero entries that gives

minimum reconstruction error for PCA. The sparse projection can be found either through

(i) a mixed integer program that finds the optimal solution and (ii) a heuristic approach

through combination of greedy forward search and greedy backward elimination. Utilizing

greedy search and branch-and-bound methods to deal with small samples, the complexity

of each step of greedy algorithm is O(n3), that will lead to O(n4) in total complexity of a

full set of solutions [28].

The situation is even more complicated in case of data dimension reduction for classifi-

cation purposes. Recently, in [103], elimination iterative algorithm for sparse principal

component analysis was proposed. Two criteria imposed, the approximated minimal

variance loss criterion and the minimal absolute value criterion, to select the eliminated

variables in each iteration.

Of course, higher order order tensor data can always be folded into first order tensor

(vector) data by folding it into a single array. In this way, conventional data reduction

methods can be directly applied. However, this has the disadvantage of eliminating the

intrinsic structure of the data and will lead to suboptimal results. Another, more subtle

reason why this approach is not advised in the case of LDA is related to the Small Size

Sample issue. Indeed, it is known that when there is few data available, the optimization

problem that has to be solved during training tends to be badly conditioned numerically.
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Multilinear Discriminant Analysis can effectively eliminate this problem [63],[101], [115].

In the past few years, research on a number of multilinear discriminant algorithms

based on greedy techniques have shown that dimensionality reduction algorithms with

image data encoded as 2D matrices or higher order tensors outperform the algorithms that

represent the image data as vectors, particularly for the cases when the training samples

are small.

One such dimensionality reduction algorithm performed on face images encoded as matrices

or higher order tensors is the discriminant analysis with tensor representation (DATER)

[109]. This technique takes the form of vector based LDA tensorisation where the 2D

grayscale image is represented directly as matrices. In this method, the dimensionality

reduction of the higher order tensors is achieved by iteratively learning the multiple

interrelated discriminative sub-spaces through k-mode cluster based discriminant analysis.

Eigenvalue decomposition method can be applied to solve the k-mode clustering. It is to

note that both DATER and 2D-LDA are the direct extensions of LDA for handling tensor

data and 2D data respectively. DATER can handle general high-order input whereas 2D-

LDA handles only 2D matrix representations. Both these methods has better learnability

than conventional LDA as their projection matrices are constrained to be a Kronecker

product of smaller sizes matrices [107] resulting in small dimension of parameters to be

estimated. However, DATER is shown to have much high sensitivity to the parameter

settings [108]. Exhaustive method for determination of these parameters are not feasible as

the subspace dimensions for tensor objects are usually very high e.g. the gait recognition

problem is estimated to have 225,280 subspace dimensions. Consequently, reduction in

the subspace dimensionality for such cases through DATER becomes very ineffective.

An alternate approach to extract the image feature is called ortho-rank-one (ORO)

[43] based on tensor-to-vector projections. ORO adds orthogonal constraints on projection

vectors by adopting GLOCAL [17] tensor representation prior to learning. ORO is a

greedy tensor LDA algorithm coupling the successive projection vectors via orthogonality
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constraints on them. The orthogonality constraint ensures that the estimated projection

directions are mutually orthogonal. This iterative method solves for orthogonality con-

strained eigenvalue problem on one dimension and unconstrained eigenvalue problem on

the other dimension. The ORO technique achieves much better results as compared to the

original GLOCAL algorithm and other well-known tensor-based methods. However, this

technique has limitation as it uses the gray image as features and is therefore unable to

exploit the statistical and texture related information of the original image [93].

A more recent technique, inspired by ORO and based on supervised tensor-t for im-

age feature extraction is Local Discriminative Orthogonal Rank-One Tensor Projection

(LDOROTP) [106]. This technique has a weighting function which can encode the local

discriminant information. The LDOROTP criteria are derived from the slight differences

between matrices instead of the trace ratio which then causes a difficulty with a singular

matrix. A data pre-processing, GLOCAL, ensures an effective and unchanging iterative

scheme of solution. This technique guarantees a stable solution in solving the problem due

to fixed orthogonal constraints, as compared to the random assignment scheme of ORO

which may give sub-optimal solutions. Furthermore, imposing orthogonality constraints in

the reduced data set captures maximum information about the input image by avoiding

redundancy, as proposed in the feature extraction and classification method proposed in

[79]. The improvement is achieved through orthogonal or non-negative tensor (multi-array)

decompositions and higher order discriminant analysis (HODA), in which the input data

is treated as tensors rather than the usual matrix representations.

It is also possible to view the low-dimensional representation as latent variables that

have to be estimated, or as features that have to be learned. In the latter case, the data

reduction operation is regarded as a feature extraction process. Notwithstanding the

particular point of view, the extracted features are to be used to perform various tasks, for

example, they can be fed into a classifier to identify class labels for the original input data.

Dimension reduction of data for classification purposes presents particular challenges as

it is important to keep information that is relevant in order to make better distinction
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between classes. This requires extracting those features that vary little within the same

class, but vary as much as possible from one class to another. We will formalize this idea

later, but this is in essence the idea of Linear Discriminant Analysis, that we mentioned

before.

The main subject of this thesis is the development of a supervised tensor-based data

reduction method for automated classification and its application to the problem of early

detection of dementia disease based on cognitive data supplemented with fMRI information.

The method of data reduction proposed in this thesis is a contribution to the growing body

of Multilinear Subspace Learning (MSL) methods, that are extension of subspace learning

methods for data structured as higher order tensors. We refer to [66] for a survey of MSL

methods and numerical algorithms to implement them. The method that we propose in

this thesis that we call EGFE method differs from the other methods in the fact that it

extracts the features one-by-one rather than all at the same time (e.g. 2D-LDA), in this

case it selects non-redundant set of basis elements. As other greedy methods, the proposed

method extracts the features sequentially, one feature at each step. However, in contrast

to the previously known greedy tensor LDA methods, we find a way to condition each step

on all previous steps without enforcing orthogonality between the successive projection

vectors.

This method is applied to the practical problem of detecting Alzheimer’s disease (AD)

in the early stage in which it only manifests itself as a mild cognitive impairment (MCI) and

we show that combining cognitive test data with fMRI information can be used effectively

to select the best features that can be used for separating patients from healthy subjects.

The selected features are used for classification using a Generalized Matrix Learning Vector

Quantization (GMLVQ) classifier [38]. GMLVQ is a classification technique based on

prototypes and it is part of the more general class of Generalized Vector Quantization

techniques. The specific of GMLVQ is that the distance function used to determine the

closest prototype and thus the class of the object is adapted during learning, which gives

an additional level of flexibility to the classification method. Additionally, Support Vector
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Machine (SVM) [19], in which the performed classification depends on black box behaviour,

in prototype-based techniques, a decision boundary of classification is implemented with

maximum margin.

The main contributions of this thesis are detailed in the following section.

1.2 Contributions

The two main contributions in the field of advanced machine learning methodologies for

feature extraction and classification are the following:

• An efficient greedy feature extraction method for classification of data represented

as higher order tensors;

• An approach to the early detection of dementia disease using a combination of data

from cognitive tests and fMRI data as privileged information.

These contributions are described further in detail.

1.2.1 Greedy Methodology for Feature Extraction from Higher
Order Tensor Data in Classification Tasks

The proposed Efficient Greedy Feature Extraction (EGFE) method methodology that is

proposed in this thesis is based on the Fisher discrimination analysis theory that requires

that the features are to be extracted in such way as to:

1. Minimize the within-class distances between the feature values.

2. Maximize the inter-class distances between the means of the feature values.

There are two ways to combine these objectives in a single optimization criterion: the

multiplicative approach, in which case the ratio of the two objectives is chosen as the

optimization criterion and the additive approach, in which case the (weighted) difference

of the two objectives is chosen as the optimization criterion.
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The proposed EGFE method works in both cases and it is based on the idea of extracting

the discriminating features sequentially one by one. There are two advantages that this

method has with respect to other conventional algorithms reported in the literature that

attempt to extract directly an apriori specified number of features. The first advantage

is that the optimization problem solved at each step is of smaller dimension than it

would be required for extracting several features at the same time. The second advantage

is that the sequential extraction of the features can be stopped when it is considered

that the discrimination power of the already extracted features is sufficiently high (non-

redundant set of basis elements). Rather than extracting a number of features that may

be unnecessarily large, or a number of features that may be insufficient, our method

can be tailored to extract the exact number of features that is necessary to discriminate

between the classes. The proposed method extracts the features sequentially, one feature

at each step.we use a way to condition each step on all previous steps without enforcing

orthogonality between the successive projection vectors like existing greedy methods are

doing.

1.2.2 Application in Early Detection of Dementia Disease

Application in biomedical domain in conjunction with privileged information in order to

extract useful feature from brain imaging data. A methodology is proposed that combines

data from cognitive tests, commonly used for detecting Mild Cognitive Impairment, which

is an early stage of dementia disease, with fMRI data collected from the same subjects to

train a classifier that uses for classification solely cognitive test data. This is interesting

because fMRI data is not commonly available, and is much more expensive to collect,

however it is better suited for discrimination than cognitive test data. Therefore, the fMRI

data is used as privileged information, that is, only to help the training of the classifier.

The classifiers type that are used in this work are GMLVQ and SVM+ classifiers. The

privileged fMRI data is used to modify the tensor metric used by the classifier during

the training phase. However, the classification itself is solely based on cognitive test data.
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The fMRI data in the form of interactivity graph matrices between the voxels within a

region of interest is fed to the GMLVQ classifier only after it is reduced using our greedy

feature extraction method to a small number of features based either on spatial grouping,

or on functional grouping. In the case of SVM+, the privileged information is utilised

to evaluate a slack variable model. It turns out that the use of privileged information

can indeed improve the classification performance in comparison to the case where only

cognitive test data is used for training the classifier. The thesis presents the formulas used

by the optimization algorithms and tests the proposed algorithms on both synthetic data,

as on measurement data, e.g. fMRI data.

1.3 Thesis Outline

The rest of the thesis is structured as follows.

• Chapter 2 addresses the basic information and previous research relevant to the rest of

this work. After a general review of the literature on feature selection, the discussion

is focused on the contribution to conventional LDA algorithms. The discussion is

further concentrated on the development of 2D and multilinear extensions, with

a brief of nonlinear extensions of LDA as well. The theoretical contributions are

complemented with the development of numerical algorithms that address the various

challenges that LDA algorithms present in practice. The chapter continues with a

short overview of imaging and non-imaging applications of multilinear discriminant

analysis. Finally, a list of key research questions is listed along with their concise

answer.

• Chapter 3 introduces the Efficient Greedy Feature Extraction method for higher

tensor data. Two versions of the method are developed corresponding to the

optimization of a multiplicative form and, respectively, of an additive form of the

Fisher optimization criterion. The two versions are compared with each other and

some numerical issues are discussed.
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• Chapter 4 presents our method for detecting mild cognitive impairment using machine

learning on cognitive test results supplemented with privileged information based on

fMRI data. First, it presents a method to to incorporate the fMRI data as privileged

information with cognitive data during training. This includes an explanation of

the collection process of cognitive test and fMRI data as well as the method of

generating the graph matrix that describes the network activity as explained before.

Subsequently, we use our EGFE method for feature extraction from the data thus

obtained and we use the GMVLQ and SVM+ classifiers to process the reduced data

set. This chapter also includes the experiment design for the experiments that are

reported here. Finally, the results of a few numerical experiments are reported which

allows to quantify the value of including privileged information with the cognitive test

results in order to improve the classification performance. It discusses the extraction

of first and second features from second order tensor data obtained from fMRI data

using our EGFE methods and compares the performance of the classifier using these

features over the case that the features are extracted using the 2D-LDA method.

• In Chapter 5, demonstrates generating synthetic data of higher order tensor data

is considered, specifically third order tensor data, and the performance of the

Efficient Greedy Feature Extraction method is demonstrating by extracting three

discriminating features, Additionally, competitive experiments with ortho-rank-one

method are examined.

• Finally, Chapter 6 gives a summary of the presented work and a list of possible

research subjects that are suggested by the current work and could be considered in

the future.
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leged information in mild cognitive impairment. Frontiers in computational neuroscience,

10, 2016.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Modern digital technology has given us access to an incredible amount of data and it is

doing so at an increasing rate. However, making proper use of the data in order to make

suitable decision has not registered the same rate of progress. Perhaps in no other field is

this as obvious as in the case of image and video information. The proliferation of digital

camera’s in the modern society has generated a tremendous quantity of imaging data of

all kind. However, most tasks that make use of such information have to be performed

“manually”, in the sense that human eyes are directly involved. This is a real limitation in

many situations in which quick and reliable processing of visual information is required.

On the other hand, the potential applications are very important and range from generic

computer vision tasks, human face recognition, biomedical applications such as EEG signal

processing.

This situation has stimulated a growing interest in the development of methods and

techniques for automatic data processing in order to replace, at least partially, human

decision making. These methods and techniques originate in probability and statistics,

optimization, artificial neural networks, digital signal processing, artificial intelligence and

other disciplines, and were organized in a new research field called Machine Learning.

Although the exact boundary of this field are not exactly defined, one of the outstanding
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problems that are central to this field is classification.

This operation, also known as pattern recognition, consists in assigning the objects in a

set to a number classes, or categories based on a number of measurement data about the

objects that are called features. Practically, classification amounts to establish a mapping

between the set of all possible features and the set of classes.

There are two classes of classification methods: supervised and unsupervised. In

the case of supervised classification, a set of apriori classified objects is available and

the purpose of the automatic classification methods is to find a general mapping (or a

discriminant) between the set of all possible features and the set of classes that can be

used for an arbitrary object. This is called training and the set of apriori classified objects

is called the training set. Typically, the mapping is chosen from a particular class of

functions, for example, linear functions, which is the main interest of this work. In the

case of unsupervised classification, there is no apriori class set and the task is to find

possible partitions of the given objects into different classes. Although in practice there a

number of apriori hypotheses that are used in the process of unsupervised classification,

this is a more difficult problem that supervised classification. This work deals exclusively

with supervised classification, and therefore the further discussion is limited to this topic.

The main difficulty of establishing the classification map is that the values of the features

are “noisy” as they originate in measurements and therefore there is always some degree

of uncertainty in doing the classification. For this reason, designing a classification process

and especially evaluating a classification process is based on probabilistic and statistical

techniques. Excellent overviews of these techniques as well as detailed presentations

of some of them can be found in textbooks such as [96, 11, 73]. Since this work is a

contribution towards efficient implementation of tensor discriminant classification, that is a

subset of linear discriminant analysis classification, we will discuss this class of methods in

more details. However, let us first mention that the most general classification techniques

are based on Bayesian decision theory. Indeed, this theory allows to design classification

methods that control directly the probability of classification error (the risk), or the
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probability of correct classification (the performance). An important class of Bayesian

classifiers are actually based on evaluating the probability that a given object belongs to a

given class (conditioned by the features) and selecting the class with the highest probability.

This is the essence of the maximum likelihood approach. Of course, these probabilistic

methods are based on various hypotheses on the distribution of features, which may in

some situations be difficult to check, or may not be satisfied. However, it is shown [96,

Chapter 2, Section 2.4] that if classes are normally and identically distributed, optimal

Bayesian classifiers are linear discriminant analysis LDA functions This mathematical

result justifies and encourages the attempts to design linear classifiers irrespective of the

actual distribution of classes and features. However, to cite again [96, pag. 33] a major

problem associated with LDA is the large number of the unknown parameters that have

to be estimated in the case of high-dimensional spaces”. Indeed, in the case of imaging

applications, if the LDA would be applied to the entire set of measurements (all the pixel

values), the number of parameters of an LDA classifier would be in the order of millions

even for a modestly accurate image type. The challenge thus is to select (a small number

of) features that retain the essential characteristics of the data and allow for efficient

classification.

Posed in this way, the problem of feature selection is a dimensionality reduction problem:

a large number of features is reduced to a smaller number. However, caution is warranted

since not every dimensionality reduction method is appropriate. For example, the most

popular dimensionality reduction method, PCA (Principal Component Analysis, see e.g.

[89]) may eliminate exactly those dimensions that are essential for classification. This

problem is known for a long time as an early reference such as [35] reveals this problem.

Notice that in this cited referece, PCA is called the Karhunen-Loeve transform, just as

in other references, PCA is confused with the closely related technique of Singular Value

Decomposition (SVD). For the similarities and differences between PCA and SVD, as well

as for the more general method called Independent Component Analysis (ICA), we refer to

[89]. The contrast between PCA and Fisher’s LDA in the context of image classification is
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also revealed in the more recent publication [9]. Efforts to combine the advantages of PCA

in the case of dimensionality reduction with the advantages of LDA in class separation

and thus classification have continued within the field of image recongnition as shown

in publications such as [45, 113, 91]. A different direction of adapting PCA for handling

classification problem was proposed in [6], called supervised PCA.

It is interesting to mention that, although modern needs have stimulated tremendously

this kind of research, the problem and the main approach to its solution have a long history

as they appeared in very old research on the classification of animal species in the works

of R.A. Fisher [33, 34].

The structure of this chapter is as follows. In Section 2.2, we discuss classical LDA

from the point of view of dimensionality reduction. The discussion is extended to 2D

and multilinear discriminant analysis in Section 2.3. A discussion of nonlinear extensions

of LDA is given in Section 2.4. Numerical algorithm issues for linear and multilinear

discriminant analysis are presented in Section 2.5. Greedy algorithms for data reduction

are discussed in 2.6. A short overview of imaging applications of multilinear discriminant

analysis is given in Section 2.7.

2.2 Linear Discriminant Analysis Classification as a

Dimensionality Reduction Procedure

The presentation below of LDA classification is partially suggested by [11, Subsection

4.1.4], but the particular details are original. The presentation is limited to the case of two

classes, but extensions to multiple classes is possible. The first step in this presentation is

to consider the simplest case in classification theory, that is uni-dimensional classification.

2.2.1 Univariate Classification

In this case, the objects are characterized by a single feature and we assume that the two

classes are characterized by normal distributions of mean mi and variance σi, i = 1, 2. We
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assume that m1 < m2. In this case, a classification procedure is defined by a threshold

xo and an object will be classified to belong to class C1 if x < xo and to belong to class

C2 if x > xo. It can be proven (see e.g. [11, Subsection 1.5.1] that in order to minimize

the probability of misclassification the threshold xo has to be chosen in such a way that

the two probabilities p(xo;C1) and p(xo;C2) are equal. Based on our assumption on the

distributions of the two classes

1√
2πσ1

e
(xo−m1)

2

σ21 =
1√

2πσ2

e
(xo−m2)

2

σ22

that means (if σ1 ≈ σ2)

(xo −m1)2

σ2
1

≈ (xo −m2)2

σ2
2

(2.1)

which has as the only solution between m1 and m2

xo =
m1

σ1
+ m2

σ2
1
σ1

+ 1
σ2

. (2.2)

The common value of the fractions in (2.1) can be readily computed and is equal to

J =
(m2 −m1)2

(σ1 + σ2)2
. (2.3)

It is easy to see geometrically in figure 2.1, but it can also be justified analytically, that

the probability of error decreases as a function of this ratio, that is, if J is larger, then the

probability of error is smaller. Indeed, as the difference of the two means is greater relative

to the two variances, the probability of error represented as the area of the intersection of

the two areas in Figure 2.1.

The training process for the case of a single feature is simply based on estimating mi

and σi from the available training set. In case there are N1 objects in class C1 and N2
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Figure 2.1: The solution xo of the equation (2.1) is the approximate value of the optimal
threshold for the univariate classification of two normally distributed classes. The proba-
bility of error is smaller as the area under the intersection of the two curves is smaller.

features in class C2, then the estimates of the mean and variance are

m̂i =
1

Ni

Ni∑
k=1

xik, σ̂
2
i =

1

Ni

Ni∑
k=1

(xik − m̂i)
2, i = 1, 2.

2.2.2 Optimal Single Feature Extraction

Let us assume that each object is described by a vector of dimension N , and we want to

classify each object into two classes C1 and C2. A linear discriminant for this problem is a

function of the form

v(x) = wTx− xo

defined by a vector x in RN and a number xo such that an object is classified in C1 if

v(x) < 0 and it is classified in C2 if v(x) > 0.

As proven in [96, Section 2.4.] if the features in both classes are normally distributed

with the same covariance matrix, the optimal solution of the classification problem is

provided by a linear discriminant (whereas if the two classes have different covariance

matrixes, a quadratic discrimininant is optimal). Designing the discriminant based on a

training set can be regarded as a dimension reduction problem if the procedure of finding
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w is separated from the procedure of finding xo. Indeed, let us consider the linear mapping

vw(x) = wTx

as a map from RN to R. This transforms the N dimensional feature vector into a

single number, effectively reducing the multivariate classification problem to a univariate

classification problem. For each choice of w, the choice of xo is performed using the

procedure presented in the previous subsection. Thus w should be determined in such a

way that (2.3) is maximal. In Figure 2.2, the case N = 2 is represented graphically.

Denoting by xik, i = 1, 2 the feature values of the objects in the training set, the

reduced feature set are the images of these vectors through the map vw. If the feature

values are normally distributed with means mi, i = 1, 2 and the same variance Σ, then

the images through the map vw are normally distributed with means mi = wTmi, i = 1, 2

and variance σ2
1 = σ2

2 = wTΣw. The criterion (2.3) becomes

J =
wT (mT

1 −mT
2 )(m1 −m2)w

4wTΣw
, (2.4)

and w has to be chosen to maximize this criterion, as this will lead to the best classification

performance on the reduced feature set.

Using the values of the feature vectors in the training set, the parameters of the

criterion (2.4) can be estimated using the formula’s

m̂i =
1

Ni

Ni∑
k=1

xik, i = 1, 2

Σ̂ =
1

(N1 +N2)

2∑
i=1

Ni∑
k=1

(xik − m̂i)(x
i
k − m̂i)

T .

With these formula’s, the training process should find the vector w such that the following

criterion is maximized
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Figure 2.2: Mapping 2D data to 1D data through projection allows for univariate classifi-
cation, but only if the projection direction is chosen appropriately. The two dimensional
data corresponding to the two classes are represented in blue and red. Their image through
the map vw are represented as the projections on the line wTx = ct. Clearly, the direction
of the projection line determines the separation between the points that correspond to
the two classes. By choosing w appropriately, the separation between these points can be
improved.

J(w) =
wT (m̂T

1 − m̂T
2 )(m̂1 − m̂2)w

wT
[∑2

i=1

∑Ni
k=1(xik − m̂i)(xik − m̂i)T

]
w
. (2.5)

This is the general form of the Fisher criterion for Linear Discriminant Analysis that we

deduced here from the requirement of obtaining the best classification performance on the

univariate feature set that results from reducing the original set through a linear mapping.

The numerator of the fraction in (2.5) can be interpreted as a “between classes” variance

and the denominator can be interpreted as a sum of “within classes” variances of the data.

We have deduced the expression of this criterion under the assumption that the variance

of the data in the two classes is identical, which is a reasonable assumption as the data is

gathered using the same sensors. In practice, this assumption may not always be satisfied

since the variance of the measurement data may also be determined by the nature of the

objects themselves, so may be determined by the class those objects belong to. In this

case, a linear discriminant is not optimal. As it is shown in [96, Subsection 2.4.2], the

optimal discriminant in this case is quadratic. However, if a linear discriminant is to be

used, finding this discriminant by maximizing the criterion (2.5) is a reasonable choice,

although suboptimal. Also, notice that according to [75], the linear discriminant is quite
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robust when the data departs from the assumption of equal covariance for the two classes.

Notice that the Fisher criterion is not used to perform the classification itself. Rather

it is used to find the vector w that is subsequenly used to extract a single feature vw(x)

from the vector of features to use for the classification itself. Clearly, the criterion (2.5)

does not change if w is multiplied by a scalar, so it is reasonable to impose the additional

constrained that its norm should be 1. The training process can be restated as solving the

optimization problem

max
||w||=1

J(w).

The immediate extension of this idea is to extract multiple features from the same

vector in order to decrease the complexity of the classification process. This idea is pursued

in the following section.

2.2.3 Optimal Multiple Features Extraction

Let us assume as in the previous subsection that each object is described by a vector of

dimension N , and we want to classify each object into two classes C1 and C2. There are

simple situations that can be imagined for which the classification problem cannot be

reduced to a univariate classification problem, as we have done in the previous subsection.

In this case, a possible outcome is to try to reduce the number of features used for

classification to a smaller number ` < N , though larger than 1. A simple way to achieve

this is by using a linear transformation.

For simplicity, take ` = 2. In this case of two dimensional classification, we are looking

for a linear map from RN to R2. Such a map is defined by two vectors w1 and w2 in RN

and has the form

vw1,w2(x) =

 (w1)Tx

(w2)Tx

 .
In this case, we need to find the two vectors in such a way that the transformed data

can be efficiently classified as a two dimensional data. One way to achieve this is to

21



maximize the following Fisher criterion that can be seen as an extension of the expression

(2.4) to the case of the extraction of two features:

J(w1,w2) =
(m1 −m2)T (m1 −m2)

σ2
1 + σ2

2

, (2.6)

where

m1 =

 1
n1

∑n1

i=1(w1)Tx1
i

1
n1

∑n1

i=1(w2)Tx1
i

 , m2 =

 1
n2

∑n2

j=1(w1)Tx2
j

1
n2

∑n2

j=1(w2)Tx2
j

 ,
and

σ2
1 =

n1∑
i=1

(vw1,w2(x1
i )−m1)T (vw1,w2(x1

i )−m1),

σ2
2 =

n2∑
j=1

(vw1,w2(x2
j)−m2)T (vw1,w2(x2

j)−m2).

It is possible to rewrite (2.6) as an expression similar to (2.5) by introducing the trace

operator

J(w1,w2) =

trace

 (w1)T

(w2)T

Sm [ w1 w2

]

trace

 (w1)T

(w2)T

Ss [ w1 w2

] , (2.7)

where

Sm =
(
x̄1 − x̄2

) (
x̄1 − x̄2

)T
and

Ss =

n1∑
i=1

(x1
i − x̄1)(x1

i − x̄1)T +

n2∑
i=1

(x2
i − x̄2)(x2

i − x̄2)T

with

x̄1 =
1

n1

n1∑
i=1

x1
i , x̄2 =

1

n2

n2∑
i=1

x2
i .

The training process amounts to chosing the vectors w1 and w2 that maximize the

criterion (2.7).
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In the same way, if ` > 1 features are required, a linear map from RN to R` is defined

by a matrix W ∈ RN×` as

vW (x) = W Tx.

The best separation between the projected classes in R` can be obtained by maximizing

the criterion

J(W ) =
traceW TSmW

traceW TSsW
. (2.8)

It is easy to show that multiplying the columns of W by arbitrary scalars will not change

the value of J so it is reasonable to ask that the columns of W are constrained to have

unit norm.

The approach to feature extraction for classification presented in this section is com-

monly referred in the literature as 1D-LDA (see e.g. [114]). As it can be seen, even in

the case treated in previous section, it involves a nonlinear optimization problem with

N decision variables. In many applications such as image classification, this can be a

very large number, which makes this a very challenging problem from the numerical point

of view. An even more serious problem occurs when the number of training samples is

smaller than N . Indeed, from the expression of the matrix Ss, it is clear that it is a matrix

of rank at most n1 + n2. If n1 + n2 < N , which is practically always the case for imaging

applications, the matrix is singular and therefore the denominator of the criterion can

be nulled, which means that the maximum is infinity, and it is actually attained for very

many choices of the matrix W . This problem is known under the name small sample size

problem and has often be tackled in the literature (see e.g. [52]). An overview of methods

that modify the Fisher’s discriminant problem to this case is given in [104]. The same

reference proposes itself such a method called Penalized Linean Discriminant analysis.

Another simple method was presented in [18] that essentially proposes to modify (2.8) to

become

J(W ) =
traceW TSmW

traceW T (Ss + Sm)W
, (2.9)

as a way of avoiding the singularity of the denominator that is characteristic for the small
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sample size problem.

Again a different, more generic method that addresses this problem, and also the

problem of reducing the dimensionality of the optimisation problem, is discussed in the

next section.

For the multiclass extension of the concepts presented here, see [62].

2.3 Multilinear Discriminant Analysis

This is actually a particular case of linear classification, and not, as perhaps the name may

suggest, a more general kind of classification. The basic idea is to use the existing structure

in the feature vector that exists naturally in many of these applications. For example, in

the case of imaging applications, the sensor measurements are naturally arranged in a

matrix. It is the relation between the values of the neighboring pixels that determines the

nature of the image. It is only natural to try to use the structure of the data while doing

dimensionality reduction. This means that the optimization of the Fisher criterion could

be done over a subclass of linear maps instead of the entire class of linear maps as in the

case of (2.8). This was done first for the 2D (matrix) case, and then for more general

tensor structures of the data. We review here successively both cases.

2.3.1 2D Linear Discriminant Analysis

Indeed, assume that the objects that are to be classified are represented as matrices of

dimensions d × d, that is the vector x in Rd2 is organized as a matrix X ∈ Rd×d. A

particular kind of linear map from RN (in this case N = d2) to R can be defined by using

two vectors a and b in Rd and defining

va,b(X) = aTXb. (2.10)
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Now, instead of having to find a vector w in RN = Rd2 that is d2 components, we have

to find two vectors a and b in Rd, that is 2d components such that classification can

be realized as explained before, for example, by maximizing the Fisher criterion. As d

is typically a large number, this is a great simplification because we have to solve an

optimization problem with 2d variables instead of d2 variables, but the problem is the

same: Find a,b in Rd that maximize

J(a,b) =
(m1 −m2)2

σ2
1 + σ2

2

, (2.11)

where

m1 =
1

n1

n1∑
i=1

aTX1
i b, m2 =

1

n2

n2∑
j=1

aTX2
j b,

and

σ2
1 =

n1∑
i=1

(aTX1
i b−m1)2, σ2

2 =

n2∑
j=1

(aTX2
j b−m2)2.

Introducing these expressions in (2.11), after some simple manipulation, the expression

of the Fisher criterion can be written as

J(a,b) =
aT (X̄1 − X̄2)bbT (X̄1 − X̄2)Ta∑2

j=1

∑nj
i=1 aT (Xj

i − X̄j)bbT (Xj
i − X̄j)Ta

, (2.12)

with

X̄j =
1

nj

nj∑
i=1

Xj
i , j = 1, 2

Just as before, scaling a and b has no effect on the value of J so we add the constraint

aTa = 1 and bTb = 1.

This is termed in [58, 114] the bilateral 2D-LDA to distinguish it from a further

simplification of the method, the unilateral 2D-LDA, that uses a = b, further reducing

the dimensionality of the optimization problem. However, notice that it is not necessary

that the two vectors have the same dimensions. Indeed, the data itself may not consists of
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square matrices. If the data consists of data in Ra×b for some numbers a, b not necessarily

equal, then the map (2.10) is defined for arbitrary vectors a ∈ Ra and b ∈ Rb.

Not only does the 2D-LDA provide a serious dimensional reduction for the optimization

problem that has to be solved, but it also solves the small sample size problem that affects

the 1D-LDA method in case of imaging applications. Since, the optimization problem

associated with the 2D-LDA problem is a constrained version of the optimization problem

associated with the 1D-LDA problem, it would appear that the performance provided by

the classifier obtained from the 2D-LDA method has to be less than the performance of

the classifier obtained through the 1D-LDA method. However, reference [114] gives a quite

generic conditions for the case of imaging applications under which the 2D-LDA classifier

is Bayes optimal and it also demonstrates its efficiency with some experimental results.

Just as in the case of 1D-LDA, the 2D-LDA can be extended to reduce the dimensionality

of the data to a dimension larger than one. In this case, the problem to be solved is to

find two matrices with orthonormal columns A ∈ Ra×na and B ∈ Rb×nbthat maximize the

criterion

J(A,B) =
trace

(
AT (X̄1 − X̄2)BBT (X̄1 − X̄2)TA

)∑2
j=1

∑nj
i=1 trace

(
AT (Xj

i − X̄j)BBT (Xj
i − X̄j)TA

) . (2.13)

For an extensive treatment of this problem, we refer to [112], where 2DLDA is considered

separately and in combination with 1D-LDA. This latter combination entails a two phase

data reduction procedure with a first 2DLDA phase that reduces the data to vector form,

and a second 1D-LDA phase for further reducing the vector data.

2.3.2 M-D Linear Discriminant Analysis

In many applications, the data is naturally structured in multidimensional array. In this

case, it is appealing to look at the data as representing multimode tensors and define the

feature extraction procedure in terms of tensor algebra operations. A survey of feature

extraction methods based on multidimensional array data and tensor algebra is presented in

[66]. It includes all possible situations of reducing tensor data to lower dimensions: tensor
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to scalar reduction, that is called Elementary Multilinear Projection, tensor-to-vector and

tensor-to-tensor reductions. The last two differ only in the representation of the reduced

data: the former presents the reduced data as vectors, whereas the latter presents the

reduced data as tensors. The same reference gives also a detailed overview of the different

learning algorithms that are based on the different dimension reduction techniques.

Assume the data can be naturally represented as an M -dimensional array, with the

dimension of mode K denoted by mk for k = 1, . . . ,M , then the training data consists

of arrays Xj
i ∈ Rm1×m2×...×mM for j = 1, 2 and i = 1, . . . , nj where nj are the number of

elements in class j. A map from the data space Rm1×m2×...×mM to R is defined by a set of

vectors ak ∈ Rmkand is defined as

v{ak}k(X) =

m1∑
i1=1

m2∑
i2=1

. . .

mM∑
iM=1

Xi1,i2,...,iMa
1
i1
a2
i2
. . . aMiM (2.14)

Using this map, it is possible to define the Fisher criterion as above in the 1D and

2D case, and subsequently, the M-D LDA problem is to find the vectors ak ∈ Rmkof unit

norm that maximize the Fisher criterion

J({ak}k) =
(m1 −m2)2

σ2
1 + σ2

2

, (2.15)

where

m1 =
1

n1

n1∑
i=1

v{ak}k(X
1
i ), m2 =

1

n2

n2∑
j=1

v{ak}k(X
2
i ),

and

σ2
1 =

n1∑
i=1

(v{ak}k(X
1
i )−m1)2, σ2

2 =

n2∑
j=1

(v{ak}k(X
2
i )−m2)2.

The general formulation of the optimization problem in the case that the Fisher criterion

is used to reduce the dimension of the data from Rm1×m2×...×mM to Rm
′
1×m

′
2×...×m

′
M where

some of the m
′
i may be 1 can be found, for example, in [59]. An extensive exposition of

the general case of tensor subspace discriminant analysis, including theoretical, numerical

aspects and applications can be found in the monograph [63].
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2.4 Nonlinear Extensions

It is known that linear classifiers may fail if the data is distributed in such a way that

it can only be separated after a nonlinear transformation. This problem is typically

approached by ”kernelization” and was used in various classification methods. Of course,

the essential step of such a method is to properly choose the kernel, or the nonlinear

transformation that allows for data separation, or data reduction. A fairly new survey of

such methods, with application to face recognition, is presented in [57]. An interesting

relatively early development in this direction is presented in [90] which uses polynomial

kernels in conjunction with a genetic algorithm optimization algorithm to find the optimal

kernel for the given data.

Nonlinear extension of LDA could be implemented as follows: (1) employ a nonlinear

transformation mapping data items into a feature space in which the transformed data

items could be separated linearly; (2) formulate LDA in this feature space. Such non-

linearization strategy is usually implemented by employing a kernel function to define the

above non-linear mapping, say k : RN ×RN −→ R, (x, y) 7→ k(x, y), N is features number.

The resulting feature space is a so-called Reproducing Kernel Hilbert Space [70]. Given

M data points {x1, ...xM} ∈ RN , we define the nonlinear map Φ : RN −→ RM(M ≥ N):

Φ(x) = {k(x, x1), k(x, x2), ., k(x, xM)}(M ≥ N). We then define the Firsher criterion as

follows:

JΦ(W ) =
traceW TSΦ

mW

traceW TSΦ
s W

. (2.16)

where the class means, x̄jΦ = 1
nj

∑nj
i=1 Φ(xji ), j = 1, 2,

SΦ
m =

(
x̄1

Φ − x̄2
Φ

) (
x̄1

Φ − x̄2
Φ

)T
and

SΦ
s =

n1∑
i=1

(Φ(x1
i )− x̄1

Φ)(Φ(x1
i )− x̄1

Φ)T +

n2∑
i=1

(Φ(x2
i )− x̄2

Φ)(Φ(x2
i )− x̄2

Φ)T .

Different kernel functions are used for various applications and many applications can be
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found in papers such as [24, 57, 67] and many others. Sometimes, the optimization of

the Fisher criterion is accompanied by the adaptation of the kernel function to improve

the overall performance such as in [24]. The same idea was applied in [57] to propose

the Adaptive Quasiconformal Kernel Discriminant Analysis method specifically for face

recognition applications.

Note that in the above, LDA operates on N -dimensional vectors and kernel LDA

M -dimensional vectors. For tensor LDA, however, it operates on higher-order tensors.

Therefore, the kernel LDA should also operate on higher-order tensors which requires a

kernel defined on a product space of higher-order tensor. This is beyond the scope of this

PhD. But our approach to tensor LDA consists of (1) project higher-order tensors onto

low-dimensional feature vectors through a sequence of rank-1 projections; (2) define Fisher

criterion on those feature vectors. Therefore, kernalization of our tensor LDA can adopt

the same strategy as discussed in the above.

2.5 Algorithms for data reduction and LDA Classi-

fiers

Given the motivation for using LDA classifiers for high dimensional data, as explained

before, there has been a lot of interest in developing performant numerical algorithms to

solve the optimization problem associated with the training procedure of LDA classifiers.

The optimization of the Fisher criterion is a nonlinear optimization problem, so solving it

efficiently, in particular, of data of high dimensions, is a challenging problem. This is in

contrast to the dimensionality reduction problem using PCA. As mentioned before, the

PCA dimensional reduction is essentially achieved using Singular Values Decomposition,

for which a very efficient numerical algorithms have been developed. By selecting the first

k largest singular values, PCA is able to offer dimensionality reduction to any desired

lower dimension, provided that there is a size gap between the first k singular values and
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the rest. Achieving a similar capability for data classification purposes is a much harder

problem that has preoccupied many researchers in the field. An early solution to this

problem was offered already in [35] in the form of optimal discriminant vectors. This

solution, referred in the literature as the Foley-Sammon discriminant transformation was

modified and improved in many ways over the years. Such developments can be found in

[26] and [54] to name only a few of the papers that pursued this line of research.

Whereas the approach started by Foley and Sammon is applicable to the 1D-LDA

and 2D-LDA cases, for higher order tensors a different approach is necessary, especially

since tensor classifiers are typically used in applications where the number of available

features is enormous. Essentially, the numerical methods that were proposed to solve this

problem can be classified into methods that approach directly the problem of maximizing

the Fisher criterion as expressed in (2.15) and that are called Scatter Ratio Maximization

methods, and methods that aim to maximize the difference

Jd({ak}k) = (m1 −m2)2 − λ(σ2
1 + σ2

2), (2.17)

where λ is a scalar parameter that is usually found by cross-validation. The methods based

on the maximization of the criterion (2.17) are called Scatter Difference Maximization

methods.

One of the early approaches to this problem was proposed in [88] specifically for image

processing makes use of a higher order tensor extension of the SVD, called the tensor

rank problem, and consequently this approach was called the Tensor Rank 1 Analysis

(TR1A). This approach was extended and improved in [94] and called Tensor Rank 1

Discriminant Analysis (TR1DA). The TR1A and TR1DA methods are both Scatter

Difference Maximization methods. A very similar approach was presented in [7]. By

contrast the method proposed in [65] is a Scatter Ratio Maximization method called

Uncorrelated Multilinear Discriminant Analysis (UMLDA) as it aims at obtaining data

reduction to a set of uncorrelated features. All these methods are performing tensor-to-
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vector reduction in the sense that the reduced data set is in vector form. An overview of

these methods, together with some tensor-to-tensor reduction methods is presented in [66].

However, the development of tensor-to-tensor reduction methods has continued and [59]

proposes a few new ones, while comparing their performance with some of the previously

existing methods. Thus, the Scatter Difference Maximization method for tensor-to-tensor

reduction proposed in [95] and called General Tensor Discriminant Analysis (GTDA) is

improved to eliminate an iteration step and the new method is called Direct General Tensor

Discriminant Analysis. Also, the Scatter Ratio Maximization method for tensor-to-tensor

reduction proposed in [109] and called Discriminant Analysis with Tensor Representation

(DATER) is similarly improved and the new method is called Constrained Multilinear

Discriminant Analysis (CMDA). The paper [59] proves that the proposed methods DGTDA

and CMDA have some useful convergence properties.

A practical approach to data reduction for classification purposes is to perform in a

first phase a general data reduction step using a variant of PCA, or ICA, followed by

the classification specific data reduction algorithm such as LDA. This approach has the

advantage that the more complex LDA algorithm will be applied to a lower dimensional

data obtained from the first step. A higher order version of this two step approach is

presented in [79]. The first phase of dimensionality reduction is performed using the Tucker

decomposition, or its particular cases, such as the PARAFAC and NTD that we mentioned

before in section 1.1. The second phase of dimensionality reduction is performed using

a higher order discriminant analysis algorithm and the paper presents different ways of

combining the two steps in the data reduction workflow. However, the algorithms proposed

in the cited reference are not sequential so are requiring very serious computational efforts

in the case of large data sets.
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2.6 Greedy algorithms for data reduction

An important trend in the development of algorithms for data reduction has been the

development of stepwise or greedy methods. As one of the contributions of this thesis has

been specifically in this area, here is a short account of the prior developments in this

area. The earliest references that we are aware in this direction is [109] that proposes a

Tensor-to-Tensor projection approach.

A Tensor-to-Vector projection approach is taken in [43] and applied to face recognition.

The optimization criterion used for the learning phase in this reference is not the same as

the Fisher criterion, but quite similar. For a single feature extraction, the criterion is

F{ak}k =

∑N1

i=1

∑N2

j=1(v1,i − v2,j)2∑N1

i=1

∑N1

j=1(v1,i − v1,j)2 +
∑N2

i=1

∑N2

j=1(v2,i − v2,j)2
, (2.18)

where, using the notation (2.14) introduced above

vj,i = v{ak}k(X
j
i ).

In addition, the generating vectors for the different features are required to satisfy an

orthogonality constraint that is motivating by the aim of extracting features that are

independent of each other. Due to this additional constraint, this approach was termed

Orthogonal-Rank-One (ORO) data reduction.

A similar algorithm was proposed in [106] for an additive variant of the cost criterion

used in [43] and was called Local Discriminative Orthogonal Rank-One Tensor Projection

(LDOROTP) as it also included weighting functions in the criterion in order to capture

local discriminant information. Abstract versions of the greedy feature extraction algorithm

were presented in [49, 50].

The numerical algorithms proposed in [43] and [106] are based on reducing the problem

to (generalized) eigenvalue problems of special matrices (or matrix pencils). In contrast to

contrast to these references, the EGFE method developed in this thesis does use gradient
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search methods for the optimization which has the advantage of being more generally

applicable. For large scale problems, as those envisaged here, computational performance

may actually be better than using eigenvalue computations. Although orthogonality

constraints were not included in this work since there is no convincing example that they

improve effectively the quality of the extracted features. However, it is not difficult to

extend our method to include these constraints as well as additional constraints to the

optimization problem.

2.7 Application Specific Developments

As explained before imaging applications are most interesting for the development of LDA

classifiers. They involve objects described by a very large amount of data and the potential

for practical applications is constantly increasing.

Arguably, one of the areas that attracted most of the attention as a great field for

demonstrating the power of automatic classification method is face recognition. The

problem has received attention for a very long time. The survey article [83] lists 47

references, some of them as old as the seventies. Apparently, the first paper that uses

Linear Discriminant Analysis for face recognition is [9] and proposes a method that they

call Fisherfaces. They show that it performs much better than a previously developed

method based on PCA, and that was called Eigenfaces. This method was further improved

over the years. For example, [60] proposes two improved version of Fisherfaces. Another

improvement on the Fisherfaces method is presented in [45] based on an improvement

of the Foley-Sammon discriminant transformation. All these papers combine in different

ways dimensionality reduction through PCA at an early stage, and LDA dimensionality

reduction for classification at a later stage. However, they all use the original image

representation. By contrast, [61] uses a Gabor wavelet representation of the original image

instead of the raw pixel information. Also based on the Gabor wavelet representation, but

applying higher order tensor classification methods is the aim of [95], where it is shown
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that these methods can improve significantly the classification performance with respect to

1D-LDA and 2D-LDA. In [67], a nonlinear enhancement of LDA in the form of an implicit

kernel is used in order to improve the robustness of the method. A different improvement

of the LDA approach for face recognition is applied in [110], based on tensor subspace

classification and using a method that they call k-mode optimization for iterative learning.

In [97], color information is used to improve face recognition, effectively working with a

3D tensor. However, the paper unfolds the data in 2D and uses 2D-LDA to perform the

classification. An improvement of the 2D-LDA method for face recognition is proposed in

[91] that attempts not only to maximize the Fisher criterion, but also to minimize the

cross-correlation between the features in the reduced set. The same goal is pursued in the

more recent publication [105]. A tensor discriminant approach to face recognition in color

images is presented in [102]. Many recent contributions such as [8, 76] apply local versions

of multilinear discriminant analysis to the face recognition problem.

Besides face recognition, there are many other fields of application for automatic

classification and for which LDA is highly relevant. For example, an application of these

methods for chemical spectroscopic analysis is reported in [52]. An application to the

classification of tissues based on gene expression data, a step that is essential in medical

diagnosis of various diseases is presented in [113].

The analysis of EEG data using multilinear LDA is explored in [41]. The paper

compares an approach based on PCA reduction followed by a vector-based LDA algorithm

with an algorithm using multilinear LDA with subspace constraints and shows that the

multilinear approach provides superior performance. A recent contribution to the same

area can be found in [80].

Functional MRI (fMRI) has also been a very interesting field of application for machine

learning in general and tensor LDA in particular. In the case of fMRI, the raw features are

voxels, which are naturally structured as a three dimensional array. The scarcity of human

expertise in the field makes fMRI a natural application for machine learning, and there have

been a lot of interest in the area in the past few years. One such contribution was reported
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in [31]. The survey article [77], that discusses several machine learning classification

techniques for fMRI applications, including Fisher’s LDA, does not discuss the possibility

of using tensor techniques in this field. However, it presents many interesting comparisons

between different classifiers such as Logistic Regression, Gaussian Naive Bayes, SVM, and

LDA and conclude that LDA can be a good choice for a classifier although it is seriously

affected by the “small sample size” problem mentioned above. The recommended solution

for this issue is a dimensionality reduction of the data before applying the LDA classifier.

An earlier survey article [36] on the application of machine learning in fMRI research

does not mention LDA at all, but it is a useful reference for the problem formulation

and the type of techniques used in dimensionality reduction and classification of fMRI

data. A special LDA training method that is capable of using the spatial structure of

the features in the case of fMRI was proposed in [74] under the name Spatially-smooth

Sparse LDA (SSLDA) without explicitly using tensor techniques. A more recent survey

article comparing machine learning classification algorithms for the more general field of

brain imaging that contains fMRI is [55]. Even as the cited reference discusses LDA and

several versions like regularized LDA, it does not mention any application of tensor-based

LDA. The first reference that uses tensor LDA to the analysis of fMRI data appears to

be [5]. This particular area of research has received more interest later as reflected in

contributions such as [20] and [47].

2.8 Research Questions

The key research questions addressed in this thesis are listed below together with a brief

presentation of their answer.

• How can the Linear Discriminant Analysis methodology to feature ex-

traction be formulated so that it allows the efficient greedy extraction,

i.e. in a stepwise way? Can this be formulated for data organized in

tensor of arbitrary order?
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The primary goal of this work is on development of an efficient algorithm to extract

a small number of features from higher-order tensor data while ensuring that the ex-

tracted features are adequate for the targeted classification task. A typical challenge

in machine learning applications to biomedical problems is so-called small-sample

size (SSS) problem. That is, the number of training samples could be much smaller

than the dimension of such samples. This would cause over-fitting. Such problems

are likely to occur for high-dimensional vector data and could become more severe

for higher-order tensor data. The primary solution is dimension reduction via tensor

decomposition. For discriminative dimensional reduction, however, the problem

remains because it is still driven by classification tasks. One possible solution to

this problem is to combine greedy methods with supervised dimension reduction.

That is, one instead tackles a number of smaller dimension reduction problems at

single greedy steps. However, inclusion of greedy strategy could significantly increase

the algorithm complexity. To avoid this in a greedy approach to tensor LDA, the

research question is to find an efficient way to condition each greedy step on its

previous steps. The Efficient Greedy Feature Extraction method, that we proposed

here and is presented in Chapter 3.

• How can privileged information in the form of fMRI data be used in the

training of classifiers to detect Mild Cognitive Impairment patients from

healthy individuals based solely on the result of cognitive test data?

This question is motivated by the fact that fMRI data are much more costly to

collect than cognitive test data. For some patients, the collection of fMRI data

may not even be possible due to the presence of internal metal devices. Therefore,

although they are much better in diagnosing, it is important to avoid if possible

the use of fMRI data in practice. By using this data only in the learning phase, a

methodology known as Learning with Privileged Information (LPI, see e.g. [100]),

it should be possible in principle to improve the performance of classifiers based

only on cognitive test data. In Chapter 4, we show that fMRI data can indeed be
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used effectively as privileged information for training a Generalized Matrix Learning

Vector Quantization (GMLVQ) classifier. The use of GMLVQ classifier was suggested

by the previous application of the LPI approach for training such a classifier in

[38]. Also, Support Vector Machine (SVM) approaches are used to compare the

performance with GMLVQ. Initially, the fMRI data is organized as 2D matrix. Our

greedy feature extraction algorithm is used to extract efficiently/successively the

discriminating feature, one at each step from the fMRI data. The performance of

the classifier using privileged information is compared with the baseline classifier

using reliable statistical tests and the improvement is clearly established.

2.9 Chapter Summary

This chapter presents the background for the research presented in the rest of the paper.

It starts with a presentation of linear discriminant analysis theory, both for classification

and for feature extraction. The exposition continues with higher dimensional extensions

of linear discriminant analysis, i.e. multilinear discriminant analysis and some nonlinear

extensions.

The theoretical developments are complemented by the advances in numerical algo-

rithms. Further, the numerous areas of applications are briefly reviewed. Without trying to

be exhaustive, the presentation concentrates on applications to imaging data, in particular

for medical applications. Applications to fMRI data processing are paid special attention

as they are closely related to the work reported in this thesis.
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CHAPTER 3

A NOVEL FRAMEWORK FOR EXTRACTING
MULTIPLE FEATURES FROM TENSOR DATA IN

A GREEDY WAY

3.1 Introduction

The theoretical basis of the method proposed to reduce the dimension of tensor data in

order to simplify and improve classification. The principle of the method is schematically

represented in Figure 3.1 and is based on the idea of successively determining the elements

of the reduced vector data by applying at each step a tensor-to-scalar data reduction

algorithm. If L denotes the order of the tensor data, each of the tensor-to-scalar data

reduction step consists of determining a set of L vectors of unit norm {a`}`=1,L that are

used to reduce the tensor data M to a scalar feature v through the inner-outer product

operation

v = M · (a1 ◦ a2 ◦ . . . ◦ aL)

in such a way that the separability between the classes represented by the tensor data is

maximized. We call this set of a vectors a`, a feature generating vector set. Each feature

correspond to a different feature generating vector set

The data that is used for the training consists of a set of tensors separated in two

classes: {M1,i, i = 1, . . . , N1}, and {M2,i, i = 1, . . . , N2}. The outcome of the proposed
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method is a number of feature generating vector sets {a`,d}
` = 1 · · ·L,

d = 1 · · ·D

, where D is the

number of features, that realize the dimension reduction of the original tensor data to

vector data in RD. To simplify notation, we will omit the index d in the case that d = 1.

Figure 3.1: Schematic data flow for the proposed tensor-to-vector data reduction EGFE
method, Data Class 1 and Data class 2 represent the tensor data used in the training
process.

We distinguish in the scheme of Figure 3.1 between the process of finding the first

set of feature generating vectors, that is a pure tensor-to-scalar reduction scheme, and

the process of finding the subsequent sets of feature generating vectors. The latter has

to keep track of the previously determined sets and maximize the separability of the two

classes in a multidimensional space. This is the basic idea of our Efficient Greedy Feature

Extraction method (EGFE).

The resulting feature generating vector sets are used for data reduction in the manner

illustrated in Figure 3.2, with each set used to generate one element of the reduced vector

data.

Following the Fisher methodology, the separability of the classes is maximized by

maximizing the distance between the means of the data within the classes, while minimizing

the variability of the data within the classes. As usual the variability of the data within
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Figure 3.2: Reduction of tensor data to vector data using the feature generating vector
sets that were determined by the proposed supervised learning process.

the classes is measured by the total squares variation. In order to reduce this simultaneous

maximize-minimize problem to a single optimization problem, we use two conventional

approaches . The first is the multiplicative approach that attempts at maximizing the ratio

of the two quantities. The second is the additive approach that attempts to maximizing a

weighted difference between the two quantities. In each case, maximization will tend to

maximize the numerator, respectively the positive term, and minimize the denominator,

respectively, the negative term. We will choose the one that works better.

In both cases, the data reduction algorithm reduces to a succession of optimization

problems that can be solved in principle by any numerical algorithm. In this chapter, we

clarify the implementation of these algorithms using gradient ascent, and therefore it is

essential to derive the expression of the gradients of the optimization criterion with respect

to the elements of the feature generating vectors. More details about the implementation

of the optimization algorithms are presented in Section 3.5.

3.2 Multiplicative Criterion Case

As explained before, the training process has two parts. The first part consists of deter-

mining the first set of feature generating vectors and solves the following optimization
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problem.

Problem 1. (Single feature extraction) Find the feature generating vectors a1, . . . , aL, of

unit norm, that maximize the multiplicative Fisher criterion

Fm =
(m1 −m2)2

S1 + S2
, (3.1)

where m1,m2 are defined as:

mk =
1

Nk

Nk∑
i=1

vk,i, k = 1, 2. (3.2)

S1 and S2 are defined as:

Sk =
Nk∑
i=1

(vk,i −mk)2, k = 1, 2. (3.3)

The second part consists of determining the subsequent sets of feature generating

vectors, assuming that a number of such sets {a`,d}
` = 1 · · ·L,

d = 1 · · ·D

are already available and

solves the following optimization problem.

Problem 2. (Subsequent features extraction) Given the first D ≥ 1 sets of feature

generating vectors, find the D + 1 set of feature generating vectors a1,D+1, . . . , aL,D+1, of

unit norm, that maximize the total multiplicative Fisher criterion

FmD =

∑D+1
d=1 (m1

d −m2
d)

2∑D+1
d=1 (S1

d + S2
d)

=

∑D
d=1(m1

d −m2
d)

2 + (m1
D+1 −m2

D+1)2∑D
d=1(S1

d + S2
d) + S1

D+1 + S2
D+1

, (3.4)

where m1
d,m

2
d are defined as:

mk
d =

1

Nk

Nk∑
i=1

vk,id , k = 1, 2 (3.5)
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S1
d and S2

d are defined as:

Skd =
Nk∑
i=1

(vk,id −m
k
d)

2, k = 1, 2. (3.6)

These optimization problems can be solved in principle with any numerical algorithm

for solving constrained optimization problem. We will go later in some detail about this,

but no matter which numerical optimization method is chosen, it is required to be able to

derive the gradient of the cost functions with respect to the decision variables, that are

the elements of the feature generating vectors. Therefore, in the next two sections, we will

derive expressions for the gradients of the cost functions (3.1) and (3.4).

3.2.1 Gradient Expression for Determining the First set of Fea-
ture Generating Vectors

Let ` be a fixed mode. The gradient of Fm with respect to the vector a`,

∇a`Fm =
2(m1 −m2)(S1 + S2)∇a`(m

1 −m2)− (m1 −m2)2∇a`(S
1 + S2)

(S1 + S2)2
(3.7)

The gradients of mk and Sk, k = {1, 2} are given by the formulas

∇a`m
k =

1

Nk

Nk∑
i=1

∇a`v
k,i, (3.8)

∇a`S
k =

Nk∑
i=1

2(vk,i −mk)(∇a`v
k,i −∇a`m

k). (3.9)

These formulas can be readily computed if the gradient of vk,i = ∇a`M
k,i · (a1 ◦a2 ◦ . . .◦aL)

are known. The partial derivative of vk,i with respect to the jth coordinate of a` is
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∂

∂a`,j
fk,i =

∂

∂a`,j
Mk,i · (a1 ◦ a2 ◦ . . . ◦ aL)

=
∂

∂a`,j

n1∑
q1=1

n2∑
q2=1

. . .

nL∑
qL=1

Mk,i
q1,q2,...,qL

a1,q1a2,q2 . . . aL,qL

=

n1∑
q1=1

n2∑
q2=1

. . .

n`−1∑
q`−1=1

n`+1∑
q`+1=1

. . .

nL∑
qL=1

Mk,i
q1,q2,...q`−1,j,q`+1,...,qL

L∏
p = 1

p 6= `

ap,qp

To write this formula in a compact manner, let us denote by Mk,i
q`=j

, the tensor of order

L− 1 obtained from Mk,i by fixing the index of the ` mode to j, i.e.

(
Mk,i

q`=j

)
q1,q2,...q`−1,q`+1,...,qL

= Mk,i
q1,q2,...q`−1,j,q`+1,...,qL

(3.10)

for qi = 1, . . . , ni,i = 1, . . . , L, i 6= j. Notice thatMk,i
q`=j

is an element ofRn1×n2...n`−1×n`+1...×nL .

Also introduce the outer product

A−` = a1 ◦ . . . ◦ a`−1 ◦ a`+1 ◦ . . . ◦ aL (3.11)

that is also an element of Rn1×n2...n`−1×n`+1...×nL . With these notations, the partial derivative

of vk,i can be written compactly as

∂

∂a`,j
vk,i = Mk,i

q`=j
· A−`. (3.12)

In a similar manner, we proceed to write compact formula’s for each element of formula

(3.7). First of all, the difference of the two means can be written as
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m1 −m2 =
1

N1

N1∑
i=1

v1,i − 1

N2

N2∑
i=1

v2,i

=

(
1
N1

N1∑
i=1

M1,i − 1
N2

N2∑
i=1

M2,i

)
· A

and introducing the L order tensor

∆ =
1

N1

N1∑
i=1

M1,i − 1

N2

N2∑
i=1

M2,i (3.13)

this becomes

m1 −m2 = ∆ · A. (3.14)

Applying formula (3.12), the jthe component of the gradient with respect to the vector a`

is

[
∇a`(m

1 −m2)

]
j

=
∂

∂a`,j

(
1
N1

N1∑
i=1

v1,i − 1
N2

N2∑
i=1

v2,i

)

=
1

N1

N1∑
i=1

∂

∂a`,j
v1,i − 1

N2

N2∑
i=1

∂

∂a`,j
v2,i

= 1
N1

N1∑
i=1

M1,i
q`=j
· A−` − 1

N2

N2∑
i=1

M2,i
q`=j
· A−`.

(3.15)

Introducing the L− 1 order tensor

∆q`=j =
1

N1

N1∑
i=1

M1,i
q`=j
− 1

N2

N2∑
i=1

M2,i
q`=j

(3.16)

this can be written in a compact form

[
∇a`(m

1 −m2)

]
j

= ∆q`=j · A−`. (3.17)

Turning now to the total square variations, using (3.12) and (3.17) in (3.9), the jthe
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component of the gradient of Sk with respect to the vector a`is

[
∇a`S

k
]
j

=
Nk∑
i=1

2(vk,i −mk)(
∂

∂a`,j
vk,i −

[
∇a`m

k
]
j
)

=
Nk∑
i=1

2(vk,i −mk)(Mk,i
q`=j
· A−` −

1

Nk

Nk∑
i=1

Mk,i
q`=j
· A−`)

Taking the sum for both classes, and factoring out A−`

2∑
k=1

[
∇a`S

k
]
j

=
2∑

k=1

Nk∑
i=1

2(vk,i −mk)(Mk,i
q`=j
− 1

Nk

Nk∑
i=1

Mk,i
q`=j

) · A−`

By introducing the L− 1 order tensor

Ωk
q`=j

=
2∑

k=1

Nk∑
i=1

2(vk,i −mk)(Mk,i
q`=j
− 1

Nk

Nk∑
i=1

Mk,i
q`=j

) (3.18)

the last expression can be written in the compact form

2∑
k=1

[
∇a`S

k
]
j

= Ωk
q`=j
· A−` (3.19)

With these preparations, returning to formula (3.7),

[∇a`Fm]j =
2(m1 −m2)(S1 + S2) [∇a`(m

1 −m2)]j
(S1 + S2)2

−
(m1 −m2)2 [∇a`(S

1 + S2)]j
(S1 + S2)2

=
2(∆ · A)(S1 + S2)∆q`=j · A−` − (m1 −m2)2Ωk

q`=j
· A−`

(S1 + S2)2

=
2(∆ · A)(S1 + S2)∆q`=j − (m1 −m2)2Ωk

q`=j

(S1 + S2)2
· A−`

(3.20)
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and introducing the L− 1 order tensor

Ω̃k
q`=j

=
2(∆ · A)(S1 + S2)∆q`=j − (m1 −m2)2Ωk

q`=j

(S1 + S2)2

=
1

S1 + S2

[
2(∆ · A)∆q`=j − Fm Ωk

q`=j

]
(3.21)

the j component of the gradient of the Fisher criterion is

[∇a`Fm]j = Ω̃k
q`=j
· A−` (3.22)

3.2.2 Gradient Expressions for Determining Further Feature Gen-
erating Vector Sets

Introducing the notations

ND =
D∑
d=1

(m1
d −m2

d)
2 (3.23)

and

DD =
D∑
d=1

(S1
d + S2

d) (3.24)

the expression of the total Fisher criterion (3.4) becomes

FmD =
ND + (m1

D+1 −m2
D+1)2

DD + S1
D+1 + S2

D+1

Let ` be a fixed mode. Since ND and DD do not depend on the new feature set, the

gradient of F with respect to the vector a`,D+1 is

∇a`,D+1
FmD =

2(m1
D+1 −m2

D+1)∇a`,D+1
(m1

D+1 −m2
D+1)

DD + S1
D+1 + S2

D+1

−
(ND + (m1

D+1 −m2
D+1)2)∇a`,D+1

(S1
D+1 + S2

D+1)

(DD + S1
D+1 + S2

D+1)2

(3.25)

46



The gradients of mk
D+1 and SkD+1 k = {1, 2} are

∇a`,D+1
mk
D+1 =

1

Nk

Nk∑
i=1

∇a`,D+1
vk,iD+1, (3.26)

∇a`,D+1
SkD+1 =

Nk∑
i=1

2(vk,iD+1 −m
k
D+1)(∇a`,D+1

fk,iD+1 −∇a`,D+1
mk
D+1). (3.27)

Now the computation of the gradient has reduced to the computation of the gradient

of the features that is entirely similar to the gradient of the features for a single feature

set that was explained in Section 3.2.1

∇a`,D+1
vk,iD+1 = ∇a`,D+1

Mk,i · (a1,D+1 ◦ a2,D+1 ◦ . . . ◦ aL,D+1)

Introducing the tensor of order L− 1

A−`,D+1 = a1,D+1 ◦ . . . ◦ a`−1,D+1 ◦ a`+1,D+1 ◦ . . . ◦ aL,D+1 (3.28)

the coordinates of the feature gradient are given by

∂

∂a`,j,D+1

vk,iD+1 = Mk,i
q`=j
· A−`,D+1. (3.29)

In a similar manner, we proceed to write compact formula’s for each element of formula

(3.25):

m1
D+1 −m2

D+1 =
1

N1

N1∑
i=1

v1,i
D+1 −

1

N2

N2∑
i=1

v2,i
D+1

=

(
1
N1

N1∑
i=1

M1,i − 1
N2

N2∑
i=1

M2,i

)
· AD+1
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and using (3.13), this can be written as

m1
D+1 −m2

D+1 = ∆ · AD+1. (3.30)

Also, applying formula (3.29),

[
∇a`,D+1

(m1
D+1 −m2

D+1)

]
j

=
∂

∂a`,j,D+1

(
1
N1

N1∑
i=1

v1,i
D+1 − 1

N2

N2∑
i=1

v2,i
D+1

)

=
1

N1

N1∑
i=1

∂

∂a`,j,D+1

v1,i
D+1 −

1

N2

N2∑
i=1

∂

∂a`,j,D+1

v2,i
D+1

=
1

N1

N1∑
i=1

M1,i
q`=j
· A−`,D+1

− 1

N2

N2∑
i=1

M2,i
q`=j
· A−`,D+1

(3.31)

and with the notation (3.16), this can be written as

[
∇a`,D+1

(m1
D+1 −m2

D+1)

]
j

= ∆q`=j · A−`,D+1. (3.32)

Using (3.29) and (3.32) in (3.27),

[
∇a`,D+1

SkD+1

]
j

=
Nk∑
i=1

2(vk,iD+1 −m
k
D+1)(

∂

∂a`,j,D+1

vk,iD+1 −
[
∇a`,D+1

mk
D+1

]
j
)

=
Nk∑
i=1

2(vk,iD+1 −m
k
D+1)(Mk,i

q`=j
· A−`,D+1

− 1

Nk

Nk∑
i=1

Mk,i
q`=j
· A−`,D+1)
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Taking the sum for both classes, and factoring out A−`,D+1

2∑
k=1

[
∇a`,D+1

SkD+1

]
j

=
2∑

k=1

Nk∑
i=1

2(fk,iD+1 −m
k
D+1)

×

Mk,i
q`=j
− 1

Nk

Nk∑
i=1

Mk,i
q`=j

 · A−`,D+1

By introducing the L− 1 order tensor

Ωk
q`=j,D+1 =

2∑
k=1

Nk∑
i=1

2(vk,iD+1 −m
k
D+1)

Mk,i
q`=j
− 1

Nk

Nk∑
i=1

Mk,i
q`=j

 (3.33)

the last expression can be written in the compact form

2∑
k=1

[
∇a`,D+1

SkD+1

]
j

= Ωk
q`=j,D+1 · A−`,D+1 (3.34)

With these preparations, returning to formula (3.25),

[
∇a`,D+1

FmD
]
j

=
2(m1

D+1 −m2
D+1)

[
∇a`,D+1

(m1
D+1 −m2

D+1)
]
j

DD + S12
D+1 + S22

D+1

−
(ND + (m1

D+1 −m2
D+1)2)

[
∇a`,D+1

(S12

D+1 + S22

D+1)
]
j

(DD + S12
D+1 + S22

D+1)2

=
2(m1

D+1 −m2
D+1)∆q`=j,D+1 · A−`,D+1

DD + S12
D+1 + S22

D+1

−
(ND + (m1

D+1 −m2
D+1)2)Ωk

q`=j,D+1 · A−`,D+1

(DD + S12
D+1 + S22

D+1)2

=

(
2(m1

D+1 −m2
D+1)∆q`=j,D+1

DD + S1
D+1 + S2

D+1

−
(ND + (m1

D+1 −m2
D+1)2)Ωk

q`=j,D+1

(DD + S1
D+1 + S2

D+1)2

)
· A−`,D+1

(3.35)
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and introducing the L− 1 order tensor

Ω̃k
q`=j,D+1 =

1

DD + S1
D+1 + S2

D+1

(
2(m1

D+1 −m2
,D+1)∆q`=j,D+1 (3.36)

−FmΩk
q`=j,D+1,

)
the j component of the gradient of the Fisher criterion is

[
∇a`,D+1

FmD
]
j

= Ω̃k
q`=j,D+1 · A−`,D+1 (3.37)

3.3 Additive Criterion Case

As in the case of the multiplicative criterion, the training process has two parts. The

first part consists of determining the first set of feature generating vectors and solves the

following optimization problem.

Problem 3. (Single feature extraction) Find the feature generating vectors a1, . . . , aL, of

l2 norm, that maximize the additive Fisher criterion

Fa = (m1 −m2)2 − λ(S1 + S2), (3.38)

where m1,m2 are defined in (3.2) and S1 and S2 are defined in (3.3).

The second part consists of determining the subsequent sets of feature generating

vectors, assuming that a number of such sets {a`,d}
` = 1 · · ·L,

d = 1 · · ·D

are already available and

solves the following optimization problem.

Problem 4. (Subsequent features extraction) Find the D + 1 set of feature generating

vectors a1,D+1, . . . , aL,D+1, of a vector norm, that maximize the total additive Fisher

criterion

FaD =
D+1∑
d=1

(m1
d −m2

d)
2 − λ

D+1∑
d=1

(S1
d + S2

d), (3.39)
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where m1
d,m

2
d are defined in (3.5) and S1

d and S2
d are defined in (3.6).

Just as in the case of the multiplicative criterion, solving these optimization problems

is dependent on the compuation of the gradients of the cost functions with respect to the

decision variables. Therefore, in the next two sections, we will derive expressions for the

gradients of the cost functions (3.38) and (3.39).

3.3.1 Gradient Expression for Determining the First Set of Fea-
ture Generating Vectors

Let ` be a fixed mode. The gradient of Fa with respect to the vector a`,

∇a`Fa = 2(m1 −m2)∇a`(m
1 −m2)− λ∇a`(S

1 + S2) (3.40)

The terms in the right hand side of relation (3.40) are readily written using the

expressions(3.17) and (3.19) and the coordinates of the gradient of Fa are

[∇a`Fa]j = 2(m1 −m2)[∇a`(m
1 −m2)]j − λ[∇a`(S

1 + S2)]j

= 2(m1 −m2)∆q`=j · A−` − λ Ωk
q`=j
· A−`

= 2∆ · A(∆q`=j · A−`)− λ Ωk
q`=j
· A−`

(3.41)

and introducing the L− 1 order tensor

Ω∗kq`=j = 2∆ · A(∆q`=j · A−`)− λ Ωk
q`=j

(3.42)

the j component of the gradient of the Fisher criterion is

[∇a`Fa]j = Ω∗kq`=j · A−` (3.43)
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3.3.2 Gradient Expressions for Determining Further Feature Gen-
erating Vector Sets

With the notations introduced in Subsection 3.2.2, the expression of the total Fisher

criterion becomes

Fa = ND + (m1
D+1 −m2

D+1)2 − λ · (DD + (S1
D+1 + S2

D+1))

Let ` be a fixed mode. Since ND and DD do not depend on the new feature set, the

gradient of Fa with respect to the vector a`,D+1 is

∇a`,D+1
Fa = ND + 2(m1

d+1 −m2
d+1)∇a`,D+1

(m1
d+1 −m2

d+1) (3.44)

− λ · (DD +∇a`,D+1
(S1

d+1 + S2
d+1))

Substituting in this expression, the formulas (3.32) and (3.34), the coordinates of this

gradient can be written as

[
∇a`,D+1

Fa
]
j

= ND + 2(m1
D+1 −m2

D+1)∇a`,D+1
[(m1

D+1 −m2
D+1)]j

− λ · (DD +∇a`,D+1
[(S1

D+1 + S2
D+1)]j)

= ND + 2(m1
D+1 −m2

D+1)∆q`=j,D+1 · A−`,D+1

− λ · (DD + Ωk
q`=j,D+1 · A−`,D+1)

= ND + 2(∆ · AD+1 ·∆q`=j,D+1 · A−`,D+1)

− λ · (DD + Ωk
q`=j,D+1 · A−`,D+1)

= (ND + 2(∆ · AD+1 ·∆q`=j,D+1)

−λ · (DD + Ωk
q`=j,D+1)

)
· A−`,D+1

(3.45)
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and introducing the L− 1 order tensor

Ω∗kq`=j,D+1 = ND + 2(∆ · AD+1 ·∆q`=j,D+1)− λ · (DD + Ωk
q`=j,D+1) (3.46)

the j component of the gradient of the Fisher criterion is

[
∇a`,D+1

Fa
]
j

= Ω∗kq`=j,D+1 · A−`,D+1 (3.47)
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3.4 Algorithm Analysis and Discussions

In [59], a general framework for multi-linear discriminant analysis (MDA) of higher

order tensor data has been formulated. This framework can be used to extract multiple

discriminative features for classification tasks in non-greedy ways. The authors discussed

the convergence issues of their algorithms in great details.

By the taxonomy presented in [59], our EGFE methods can be considered as the greedy

version of so-called “Discriminant Analysis with Tensor Representation” (DATER), a

subclass of MDA algorithms. To generate n features, DATER would perform a rank-n

projection for each mode. For EGFE, we instead perform only rank-1 projections but

need to repeat this step n times in a sequence to obtain n features. Note that both the

rank-n projection matrix in DATER and the projection vector in EGFE should be jointly

optimised with such matrices or vectors from the other modes. This numerical solution to

this optimization problem is so-called alternating descent [10]. It is also phrased in [59]

as “Block coordinate descent”. For individual iterations of this optimization algorithm,

one just needs to optimize the projection matrix or vector for single modes. This results

in a convex optimization problem. But for all projection matrices/vectors together, the

optimization problem is not convex. Indeed, one needs to answer the question whether or

not this optimization procedure would converge.

It is reported that DATER does not converge over iterations (see Section 1 in [59]).

To deal with this no convergence, the authors introduced a constraint for all projection

matrices in DATER, that is, for each of these matrices, its column vectors needs be

orthonormal with each other. Under this condition, the sequence of Fisher criterion values

generated by the ”block coordinate descent” algorithm is an asymptotically bounded

sequence (See Theorem 4.2 in [59]). The revised DATER algorithm is referred to as

“Constrained MDA” (CMDA). CMDA is the first “scatter ratio maximization”-based

(that is, Fisher criterion maximization) MDA method that exhibits convergence. For our

EGFE, this implies that all projection vectors must be normed. We have implemented

this normalisation constraint in EGFE and thus it does converge (to a local extreme) over
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the “block coordinate descent” iterations.

As we can see from the above, the orthogonality constraint actually is not necessary for

the greedy approach. But it could be employed in the greedy method. We know that each

greedy step must be coupled with its previous steps. Therefore, the two successive greedy

steps can be coupled by enforcing the orthogonality of their corresponding projection

vectors for each mode. This idea has been implemented in [93]. Recall that in EGFE,

the coupling of two greedy steps is done via formulating a Fisher criterion conditioned

on the features extracted from all previous steps. We provided a comparison (in chapter

5) between EGFE and orthogonal rank-one tensor projections (ORO) [93] and show that

EGFE is comparable with ORO, although it is conceptually and practically simpler.

3.5 Implementation of the Optimization Algorithms

The pseudocode for the EGFE method is in Algorithm 1. In our experiments, the feature

generating vector sets were initialised randomly, these were sampled uniformly from [0,1].

Recall that each of the Problems 1-4 is a maximization problem. They are further

constrained (1) for the uniqueness of solution of these problems and (2) for the convergence

of the optimization algorithms. The constraints enforce the norm of these feature generating

vectors to be one. Let’s denote by F the cost function, the Lagrangian function of that for

the constrained optimization problems is given by

F − 1

2

L∑
`=1

α`(||a`||2 − 1),

where α` are the Lagrangian multipliers. The conditions for these constrained optimization
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problems are

∇a`F − α`a` = 0,

aT` a` = 1.

To compute the optimal a`

a` = − 1

α`
∇a`F (3.48)

Combining these two relations, we obtain

α` = aT` ∇a`F.

This relation can be used to obtain the optimal value of Lagrangian multiplier λ, provided

in case that an estimate of the optimal a` is known.
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Algorithm 1 Pseudo-code for the EGFE method

INPUT: S = {(Mi, ci) : i = 1, ..., N} training data set where i denotes sample index, Mi

the i-th order-L tensor, and ci ∈ {0, 1} the label of Mi;
D: the number of features to generate from and order-L tensor;
β: learning rate;
∆F thres: threshold value for stopping the alternating optimization loop.
OUTPUT:
A = {a`,d : ` = 1, ..., L; d = 1, ..., D} : feature-generating vector sets (`: mode index; d
feature index.
V = {Vd : d = 1, ...., D} = {vi,d : i = 1, ..., N ; d = 1, ...., D} feature set.
Algorithm:

1: For d = 1, 2, ..., D (greedy feature extraction loop)
2: Set counter iter to 1;
3: Initialize A = {a`,d : ` = 1, ..., L; d = 1, ..., D}
4: Compute the objective function F iter

d using Eq.(3.1) for d = 1 and Eq.(3.4) for d > 1
(which requires the values of {V1, ...Vd−1})

5: A loop for implementing Alternating Optimization (AO) loop
6: For ` = 1, 2, ...., L (A loop scanning L tensor modes)
7: Use Eq.(3.48) to compute the optimal a`,d(a

opt
`,d ) that maximizes F iter

d

8: Update a`,d by aiter+1
`,d = (1− β)aiter`,d + βaopt`,d

9: = aiter`,d + β(aopt`,d − aiter`,d )
10: End of the scan loop
11: Increase iter by 1
12: Compute F iter

d using Eq.(3.1) for d = 1 and Eq.(3.4) for d > 1 (which requires
the values of {V1, ...Vd−1})

13: Compute ∆F = F iter
d − F iter−1

d

14: if ∆F < ∆F thres

15: Set Ad = {a`,d = aiter`,d : ` = 1, .., L}
16: Break the AO loop
17: End of if
18: End of the AO loop
19: Use Ad to get generate Vd = {vi,d : i = 1, ..., N} from S = {(Mi, ci) : i = 1, ...., N}
20: End of greedy feature extraction loop
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3.6 Conclusion

The Efficient Greedy Feature Extraction (EGFE) method for higher order tensor data was

presented in this chapter in detail. As other methods that extend Linear Discriminant

Analysis to the case of higher order tensor data, this method is based on the optimization

of a Fisher-like criterion. The difference is that the features are extracted from the data

sequentially, one by one, which means that the optimization problem to be solved is, in

general, of smaller dimensions than required by other methods.

Two forms of the Fisher-like criterion are considered: the multiplicative form and

the additive form. The optimization of either of the two criteria realizes essentially the

same task. In both cases, we are maximizing the difference between the averages of the

two classes, while minimizing the scattering within each class. The additive criterion is

dependent on an additional penalty parameter λ that has to be tuned, which adds some

complexity to the numerical procedures.

One advantage enjoyed by the multiplicative criterion in the single feature generating

set case is that it is invariant to the scaling of the vectors in the set. Indeed, the expression

(3.1) does not change if each of the vectors is multiplied by some scalar. Indeed, if the

feature generating vectors a` are changed to a
′

` = c`a` for ` = 1, . . . , L where c` are arbitrary

non-zero factors, then the new features becomefk,i
′
= (
∏L

`=1 c`)f
k,i , and therefore

mk′ = (
L∏
`=1

c`)m
k, Sk

′
= (

L∏
`=1

c`)
2Sk,

but the value of Fm in (3.1) remains unchanged.

This can be used to simplify the optimization algorithm, by using an unconstrained

steepest ascent step followed by a scaling to norm one of the new vectors that, as shown

before does not change the value of the criterion. Explicitly, the iteration becomes

a
(k+1)
` =

a
(k)
` + pk∇a`Fm(a

(k)
` )

||a(k)
` + pk∇a`Fm(a

(k)
` )||

.
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Of course, the step pk needs to be chosen such that the norm in the denominator is not

zero, but otherwise, after the scaling, the criterion will keep the larger value that was

obtained after the unconstrained steepest ascent step. Notice that this simplification

cannot be applied to the multiple feature case, and to the additive criterion optimization.

3.7 Chapter Summary

This chapter presents the theoretical basis and the implementation formulas for the EGFE

method. This method is based on extracting features from higher-order tensor data in

a sequential manner. Formulas for the computation of the gradient of the optimization

criterion are derived for extracting the first feature, and for extracting one feature, after

a number of features have already been extracted. These formulas are derived for two

forms of the optimization criterion: the multiplicative form and the additive form. They

can be used in the implementation of a gradient search method in order to solve the

optimization problems that need to be solved in order to extract the most relevant features

for classification. Some implementation issues, as well as some differences between the two

optimization criteria are further discussed in this chapter.
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CHAPTER 4

APPLICATION FOR EARLY DEMENTIA
DETECTION

4.1 Introduction

Alzheimer’s Disease (AD) is the most common neurodegenerative disease in ageing. It

is characterised by the progressive impairment of neurons and their connections. Mild

Cognitive Impairment (MCI) is the prodromal stage of AD. Thus, accurate diagnosis of

MCI (i.e. the early stage of AD) is very important for timely treatment and delay of

disease progression. As MCI results in detectable loss of cognitive function, cognitive test

scores have been used diagnostically [1]. Further, MCI is known to cause changes in brain

activation patterns as well as in brain connectivity. Therefore, fMRI has been increasingly

used as a diagnostic tool of MCI patients [14, 16]. In machine learning terms, diagnosis

of MCI patients can be formulated as a classification task to discriminate MCI patients

from healthy controls. In the last decade , fMRI data has been used for studying brain

connectivity. In particular, various statistical connectivity models have been developed

to infer complex structure in fMRI brain connectivity. In cases where fMRI data are

collected from patients with Mild Cognitive Impairment, such connectivity structure could

be utilized to recognize typical behavior of different MCI types (when compared to healthy

controls) [32]. For example, the functional brain connectivity of MCI patients is compared

to that of Alzheimer’s patients or that of adults with no cognitive deterioration. For a
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comprehensive review, we refer to [32]. Among 79 studies included in this review article,

clinical implications of brain connectivity estimation was evident in most cases . As an

example, it is reported that increased activation in the hippocampus to solve memory

tasks seems to predict early detection of Alzheimer’s Disease (AD) [25, 72]. In this chapter,

we present a novel classifier using cognitive test scores as inputs to the classifier and using

fMRI data as privileged information.

In the recent literature on the classification tasks related to AD, we observe a clear trend:

state-of-the-art machine learning techniques have been increasingly employed to take

on new tasks. For example, a classification task should also provide insights into the

relevance of the input features used for the task. In [14], Gaussian process classifiers have

been employed for the discrimination between healthy controls and MCI patients as well

as the the discrimination between MCI and AD patients. More importantly, Gaussian

process classifiers have been used to automatically determine the relevant input features

when training the classifier. In [16], a challenging classification task was tested, that is,

discrimination of two subgroups of MCI patients. Patients in one subgroup will likely

progress to AD but those in another group will not convert to AD. In the literature, this

classification task is referred to as MCI-AD conversion prediction. This work incorporates

data from both healthy subjects and AD patients for classification of MCI patients using

the transfer learning framework. Transfer learning is a (relatively) new development in

machine learning that aims to boost the performance of a classifier operating in one domain

(e.g. MCI patients) by incorporating data from other domains (e.g. healthy subjects and

AD patients).

Here we ask whether MCI patients differ in their cognitive skills from controls. Our

task is to classify cognitive profiles in patients vs. controls based on cognitive scores

and fMRI data. Our EGFE method (multiplicative) is utilised to extract first feature.

Furthermore, we address the case when fMRI data are not available for classifying a new

subject. To utilise the fMRI data for the task, we train our classifier on participants for

whom both cognitive and fMRI data are available. After that, the trained classifier will
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classify a new subject solely based on his/er cognitive test scores. This case is of relevance

in practice because (1) When compared to cognitive data, the collection of neuroimaging

data is much more time-consuming and expensive; (2) Many older individuals (e.g. those

with a cardiac pacemaker) may not be safe for imaging such as fMRI scanning. On the

other hand, neuroimaging data have more diagnostic power than cognitive data and thus

should be used when available. In our work, the classifier is trained by adopting a “metric

learning” based approach to Learning with Privileged Information (LPI) [37]. As transfer

learning, LPI is also a new development in machine learning. In our context, cognitive

data are the inputs to the classifier. In contrast, fMRI data act as privileged information

that is used only for training the classifier (along with the cognitive data). As most

classifiers operate based on a distance/similarity measure between pairs of input vectors,

the metric tensor used to compute such distance is therefore crucial for the classification

task. In the model of [37], the privileged information (in our case fMRI data) is used to

modify the metric tensor (and hence the metric) in the original space (in our case cognitive

test scores) to improve the classification accuracy in the original space. Intuitively, if

cognitive test scores of two participants appear “similar”, but their fMRI data shows

different characteristics, the distance between the two cognitive test score vectors should

be increased (and vice-verse). As the scale parameter in [14], the diagonal elements of the

discriminative metric tensor can be used to automatically determine the relevant cognitive

features. Furthermore, all the experiments that show good results will be compared with

SVM and SVM+ classifiers to show the benefit of PI.

Additionally, the value of the additional feature is examined; we compared our EGFE

methods (multiplicative and additive) with the 2D-LDA method. Our motivation is to

extend the first extracted feature to extract multiple features (specifically second features

in our case here), based on a given first feature, by using a greedy approach because

of the small dataset. Our optimal solution of the objective function would be for both

features (first and second features), although the first one is given. The way of extracting

the features aims to squeeze data points not in one dimension but in every dimension
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within the classes (patients and non-patients); this is the reason for assuming spherical

Gaussian distribution. Our results showed that the multiplicative approach outperforms

both the additive and 2D-LDA methods and has fewer miss-classification errors than the

first feature; this proves that the second features are needed.

4.2 Materials

The cognitive and fMRI data used in this study were collected in the context of two

behavioral & fMRI studies [4, 69, 68] in which the participants were asked to predict the

orientation of a test stimulus following exposure to structured sequence of leftwards and

rightwards oriented gratings, and no feedback were given. Both studies aimed to (1) test

whether training on structured temporal sequences improves the ability to predict upcoming

sensory events and (2) identify brain regions that support the ability of using implicit

knowledge about the past for predicting future. In particular,[4] and [69] investigated how

MCI patients differ from healthy controls in terms of (1) their ability to learn predictive

structures as well as (2) their learning-dependent brain activation patterns. The diagnosis

of MCI patients was made by an experienced consultant psychiatrist (PB) using the

National Institute of Ageing and Alzheimer’s association working group criteria [1].

In both studies, participants took part in two fMRI scans before and after behavioural

training (i.e. pre- and post-training session) during which they completed 5–8 independent

runs of the prediction task in each scanning session. Each run comprised 5 blocks of

structured and 5 blocks of random sequences (3 trials per block) presented in a random

counterbalanced order. In each trial, the participant was presented with a sequence of

eight left and rightward oriented gratings (in rapid succession, 250ms + fixation 200ms)

followed by a repeat of the same sequence. The participant was instructed to pay attention

to the sequence and respond whether the test grating (randomly chosen grating during

the second repeat) was correct or incorrect given that presented sequence. Even though

the participants could not tell what exactly was the sequence structure, they learn how
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to correctly predict whether the grating has the correct orientation given the presented

sequence. In random sequence trials, the grating’s orientations were randomly generated

so the participant could not correctly predict them.

The fMRI data used in this study were acquired in a 3T Achieva Philips scanner at the

Birmingham University Imaging Centre using a thirty two-channel head coil. Anatomical

images were obtained using a sagittal three dimensional T1-weighted sequence with 175

slices (voxel size = 1 × 1 × 1 mm3) for localisation and visualisation of functional data.

Functional data were acquired using a T2-weighted EPI sequence with 32 slices (whole-

brain coverage; TR = 2 s; TE = 35 ms; flip angle = 73; voxel size = 2.5 × 2.5 × 4 mm3).

All the data collection is from the same project, the same software is used for all subjects

by applying same measurements devices under same conditions.

In [68], regions-of-interest (ROI) were identified by applying whole-brain general linear

model analysis with a voxel-wise mixed-design three-way (ANOVA), that is,

session (pre- vs. post-training)×sequence (structured vs. random)×group (MCI vs. controls).

Statistical maps were cluster threshold corrected (p < 0.05). Table 1 in [68] listed all

brain regions showing significant interaction between session, sequence, and group. For

the study presented in this chapter, we combined two ROIs in the frontal region (Superior

Frontal Gyrus, SFG, on the right hemisphere and Medial Frontal Gyrus, MFG, on the left

hemisphere) and two ROIs in the cerebellar region (Cerebellar Lingual and Cullmen ROIs

in both hemispheres). This resulted in a frontal ROI of size 126 and a cerebellar ROI of

size 82. Also, a subcortical ROI (that is, the parahippocampal gyrus ROI of size 32) was

selected for the study.

All 60 participants involved in this study had undergone cognitive skill tests (including

working memory, cognitive inhibition and attentional skills). These tests provide four

quantitative measures of different cognitive skills for each participant:

1. In the working memory task, a number of coloured dots are on display for half second.
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Then, they disappear for 1 second and reappear with some dots having changed their

colour. A participant is asked to judge whether a given dot has changed its colour

or not. The participant’s working memory skill can be measured by the maximal

number of coloured dots on display for achieving a 70.7% test performance (denoted

by ndots);

2. To quantify a participant’s attention skill, the following cognitive task was performed:

two objects are on display, one located at the display centre, another located on the

periphery of the display. The peripheral object can only take one of eight equally

distributed radial directions (with respect to the display center). The central object

could be either car or truck silhouette, whereas the peripheral object must always be

the truck silhouette. The participant was asked to identify the type of the central

object (car vs. truck) and the location of the peripheral stimulus before the display

was masked by white visual noise. This skill is measured by the minimal display

time required for the participant to achieve 70% task performance. Depending on

whether or not there are distractors on the display, the skill of divided or selective

attention is measured (denoted by tddisp and tsdisp, respectively);

3. The skill of inhibition is measured in a stop-signal test. A participant is first cued

to perform a motor task. This is followed by a tone with some time delay, which

signals task abortion. The quantity measuring the inhibition skill, tdelay, is given by

the minimum delay time for achieving a 70.7% test performance.

Sixty participants are involved in this study. Thirty-four of them have both cognitive

and fMRI data. Among these participants, nine MCI patients and nine healthy controls

come from the cohort reported in [69]. The remaining sixteen healthy controls come from

the cohort reported in [68]. The size of that cohort is twenty. Four of them are not included

in this study because their cognitive data were missing. Note that for these thirty-four

subjects having both cognitive and neuroimaging data for training of classifiers, MCI

patients and healthy controls were age matched: mean age of MCI patients was 68.9 , and
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mean age of controls was 68.3. The remaining twenty-six participants have cognitive data

only. Among them, four MCI patients and five healthy controls come from [4] and [69].

The remaining seventeen participants are from unpublished studies but they participated

exactly the same experiments as other participants. Note that all neuroimaging data used

in this study are reported either in [69] or in [68].

4.3 Methods

4.3.1 Generation of fMRI Features

fMRI Signal Features

For each ROI and each (pre- and post training) session, we calculated percent signal

change (PSC) by subtracting fMRI responses to random sequences from fMRI response to

structured sequences and dividing by averaged fMRI response to both stimulus sequences.

Let nr and ns denote the number of volumes scanned during the trials with random and

structured sequences, respectively. For a ROI of size S, its PSC value is computed as

follows:

PSC =
1

S

S∑
s=1

1
ns

∑
i∈Is

ysi − 1
nr

∑
j∈Ir

ysj

1
ns

∑
i∈Is

ysi + 1
nr

∑
j∈Ir

ysj
(4.1)

where i and j denote volume index, s voxel index, Is = {i1, ..., ins} the collection of

“structured” volumes and Ir = {j1, ..., jns} the collection of “random” volumes. The

above definition implies that PSC measures scaled fMRI-response to temporally structured

stimuli and it is an overall measure averaged over both volumes and voxels.

fMRI Graph Features

Graph matrix Graph structure characterises the connectivity between nodes of

a graph. In this study, the graph structure of a single ROI is represented by so-called
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graph matrix G of size S × S where S denotes the ROI size. The value of Gij measures

the functional connectivity between voxel i and voxel j, and is computed as (linear)

cross-correlation between two fMRI time series of length n on the voxel pair (denoted by

yi = (yi1, ..., yin)ᵀ and yj = (yj1, ..., yjn)ᵀ, respectively), that is,

Gij =
1

n
·

n∑
k=1

(yik − µi) · (yjk − µj)

σi · σj
(4.2)

where µ and σ stand for the mean and standard deviation of individual fMRI time series. In

the case of i = j, we obtain Gij = 1. Note that Gij is a connectivity measure independent

of the activation intensity on each of two voxels.

Discriminative feature extraction Often, a classifier’s inputs are not those raw

data to be classified but the features extracted from the raw data. This can significantly

reduce the input dimension, which tackles both “curse of dimensionality” and the small

sample-size problem. Therefore, a good choice of feature vector plays an important

role in classification. This is the motivation for extraction of discriminative features.

The discriminative features are suitable because they are extracted in a task-driven &

supervised manner. Linear Discriminant Analysis (LDA) is a machine learning technique

for discriminative feature extraction. The assumption of LDA is that the feature vectors

of each class are Gaussian-distributed. In LDA, high-dimensional feature vectors are

projected into a lower-dimensional space and the projection matrix is optimized so that

the classes are maximally separated in the projection space. To this end, the empirical

covariance matrices need to be estimated using the feature vectors from individual classes.

If the number of feature vectors is small and their dimension is high, the empirical estimates

of covariance matrices are not accurate. Thus, LDA suffers from the same problem as

classifiers do. So-called 2D-LDA has been proposed by [84] for the cases where data items

are matrices (e.g. graph matrices in this study) and a direct application of standard LDA

with vectorised matrices could fail due to the above-mentioned problem. In the following,
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we summarise both standard LDA and 2D-LDA with the dimension of the projection

space fixed to one.

For standard LDA, assume that we have N d-dimensional feature vectors, {xn : n =

1, ..., N}, for training in which N1 feature vectors are from Class 1 and N2 = N −N1 from

Class 2. Denote these two subsets by C1 and C2, respectively. The mean vectors of Class 1

and Class 2 are given by m1 = 1
N1

∑
xn∈C1

xn and m2 = 1
N2

∑
xn∈C2

xn, respectively. Define the

between-class covariance matrix SB and the total within-class covariance matrix SW as

SB = (m2 −m1)(m2 −m1)ᵀ (4.3)

and

SW =
∑

xn∈C1

(xn −m1)(xn −m1)ᵀ +
∑

xn∈C2

(xn −m2)(xn −m2)ᵀ. (4.4)

The projection matrix w of size d × 1 is optimized by maximizing the Fisher criterion

defined by

J(w) =
wᵀSBw

wᵀSWw
=

DB

DW

. (4.5)

DB and DW are referred to as the between-class distance and the total within-class

distance. Denote the optimized w by wopt and the extracted features are given as

{vn = wᵀ
optxn : n = 1, ..., N}.

For 2D-LDA, assume that we have N graph matrices of size d× d, {Xn : n = 1, ..., N},

for training in which N1 feature vectors are from Class 1 and N2 = N −N1 from Class 2.

Denote these two subsets by C1 and C2, respectively. For Class 1 and Class 2, their mean

matrices are given by M1 = 1
N1

∑
Xn∈C1

Xn and M2 = 1
N2

∑
Xn∈C2

Xn. In contrast to standard

LDA, we need two (left and right) projection matrices (or vectors), denoted by a and b of

size d× 1 projecting the matrices into real numbers. Similarly, the between-class distance

and the total within-class distance are defined as

DB = aᵀ(M2 −M1)bbᵀ(M2 −M1)a (4.6)

= bᵀ(M2 −M1)aaᵀ(M2 −M1)b (4.7)
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and

DW =
∑

Xn∈C1

aᵀ(Xn −M1)bbᵀ(Xn −M1)a +
∑

Xn∈C2

aᵀ(Xn −M2)bbᵀ(Xn −M2)a(4.8)

=
∑

Xn∈C1

bᵀ(Xn −M1)aaᵀ(Xn −M1)b +
∑

Xn∈C2

b(Xn −M2)aaᵀ(Xn −M2)b.(4.9)

Note that M1, M2, and Xn, n = 1, 2, ..., N , are all symmetric matrix. The projection

vectors a and b are optimized by maximizing J(a,b) = DB/DW iteratively. At each

iteration, we optimize a or b while keeping b or a fixed. This procedure is repeated until

J has converged. Denote the optimized a and b by aopt and bopt. The extracted features

are given as {vn = aᵀ
optXnbopt : n = 1, ..., N}.

Note that the number of free parameters to be optimised is d2 for standard LDA

operating on vectorised graph matrices and 2d for 2D-LDA operating on graph matrices

directly.

Small sample-size problem The main idea of this study is using costly but in-

formative fMRI measurements as valuable privileged information in a classification task

operating on cognitive features only. To do so the complex spatial-temporal structure

in fMRI signals will need to be transformed into a set of indexes (scalars) that best

discriminate between the classes.

In our approach we first capture the spatial-temporal structure of fMRI signals within

an ROI as a cross-correlation graph. An ROI of S voxels will be represented as a full

undirected graph with n nodes (one for each voxel) and the edge between nodes i and j is

weighted by the value of the correlation coefficient between fMRI signals in the two voxels.

Each such graph will in turn be represented by an S × S symmetric matrix X collecting

the edge weights.

In this study we have two classes of N subjects - Np patients and Nc healthy controls

(that is N = Np +Nc). The graph matrices of patients and controls are collected in matrix

sets Cp and Cc. Given the two sets of matrices, we propose to extract the discriminating
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feature v through a quadratic form applied to graph matrix X: v = aᵀXb. Both a and b

are a V -dimensional vectors determined via an optimization problem expressing the need

to maximally separate the two classes, while keeping the within-class variability minimal.

To find the projection vectors a and b we used our EGFE method (multiplicative) to

extract first feature, which is working in a similar way as 2D-LDA [111].

For an ROI with S voxels, the discriminative features a and b are S-dimensional

vectors, meaning that when determining a and b we have 2S free parameters. As the

number of subjects N is smaller than 2S, in order to avoid overfitting, the size of the

graph representing spatial-temporal structure of cortical activations in that ROI needs to

be reduced. Note that in our original formulation, each element ai of a corresponds to a

particular voxel i whose spatial position is ri. It is natural to expect that spatially close

voxels will have similar activation patterns. We therefore introduce a set of K spatially

smoothing Gaussian kernels N (r;µk,Σk), k = 1, 2, ..., K, in the voxel space, positioned at

µk, shape determined by the covariance matrix Σk . This leads to a decomposition:

ai =
K∑
k=1

ãkN (ri;µk,Σk) (4.10)

The values of the smoothing kernels k at each voxel i can be collected in the smoothing

matrix.

Pi,k = N (ri;µk,Σk) (4.11)

The feature vectors a and b can then be written as a = Pã and b = Pb̃, respectively.

We have:

v = aᵀXb = ãᵀPᵀXPb̃ (4.12)

The S × S graph matrix X is thus reduced to the K ×K matrix

X̃ = PXPᵀ (4.13)
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and

v = ãᵀX̃b̃ (4.14)

For a given number K of Gaussian kernels, their position is determined by k-means

clustering in the voxel space and the covariance matrices of each cluster were estimated

from the voxel positions within the corresponding clusters.

The number of smoothing kernels K in the three ROIs with 32, 82 and 126 voxels

was set to 3, 4 and 8, respectively. The largest ROI is contained in both hemispheres.

Hence, the sub-ROIs within each hemisphere were clustered independently into 4 clusters.

Spatial smoothing with Gaussian kernels described above expresses the assumption that

nearby voxels should have similar functionality. We refer to this approach as Spatial

Grouping (SG) and to the resulting feature as (SGF). An alternative approach would be

to identify groups of voxels that are not only spatially close but also exhibit similarity in

the activation time series (as quantified through cross-correlation) [13]. We thus obtain

N functional clusterings of the voxel space, one for each subject. These groupings at the

subject level are then merged into a single population based functional clustering of voxels

through Consensus Clustering [13]. Given the resulting K voxel clusters, we calculated

their means µk and covariance matrices Σk, thus obtaining a set of K “functionally

informed” smoothing Gaussian kernels N (ri;µk,Σk). The reduced graph matrix X̃ is

then calculated as in eqs: (4.11) and (4.13). We refer to such functional voxel clustering

as Functional grouping (FG)and to the resulting feature as (FGF).

Feature Generation Pipeline

Figure 4.1 illustrates the flow of fMRI feature generation. We obtain three fMRI features

(PSC, FGF, SGF) independently from fMRI data Y ∈ RS×T . Recall that S is number of

voxels and T is the number of volumes. Feature PSC is computed directly from Y. To

compute other two features, we first transform Y to a graph matrix X of size S × S and

reduce X to X̃ of size K ×K with (K < S) either through spatial projection or through
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functional clustering. Finally, we extract SGF from X̃ obtained by spatial projection and

FGP from X̃ obtained by functional clustering. Our EGFE method (multiplicative) is

used, 2D-DLDA method has a similar way in extracting the first feature, as they are both

optimising Fisher criteria [111].

Figure 4.1: Illustration of fMRI feature generation pipeline: from BOLD signal data Y to
three fMRI features (PSC, FGF, and SGF). FG and SG are the reduced version of graph
matrix G via functional grouping and spatial grouping (respectively). Note that FGF and
SGF are both discriminative features extracted from FG and SG in a supervised manner
using our EGFE method (multiplicative).

4.3.2 Classification Tools

Generalized Matrix Learning Vector Quantization (GMLVQ)

The classification algorithms of Learning Vector Quantization (LVQ) [2] are supervised

learning paradigms which work iteratively to modify the quantization prototypes to find

the boundaries of the class. LVQ classifiers are represented by a set of vectors, so-called

prototypes, embodying classes in the input space, and a distance metric on the input data.

During training, prototypes are adapted in an iterative manner to define class borders.

For each training point, the algorithm determines two closest prototypes, one with the
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same class as the training point, and another with a different class. The position of the

two closet prototypes are then updated, where same class prototype is moved closer to the

data point, while different class prototype is pushed away from the data point. During

testing, an unknown point is assigned to the class represented by the closest prototype

with respect to the given distance.

The LVQ scheme, which is originally introduced by [87], applies Hebbian online learning

in order to adapt prototype with training data. Subsequent, researchers proposed a number

of modifications to the basic learning scheme. Such variations utilize an explicit cost

functionality, whereas others allow for incorporating adaptive distance measures [85, 86].

Given training data (xi, yi) ∈ Rm × {1, · · · , K}, i = 1, 2, · · · , n, where m denotes

the dimensionality of data and K signifies the number of different classes. Typically, a

LVQ network will include L prototypes wq ∈ Rm, q = 1, 2, 3, ..., L, which is characterized

according to their location available in the input space and their class c(wq) ∈ {1, ..., K}.

At least one prototype in each class needs to be present. The overall number of prototypes

is a model hyper-parameter that is to be optimized. The (squared) Euclidean distance

d(x,w) = (x−w)ᵀ(x−w) within Rm quantifies the distance between the input vectors

and prototypes. The classification performed using the winner-takes all scheme: the

data point xi ∈ Rm belongs to the label c(wj) of the prototype wj if and only if with

d(x,wj) < d(x,wq), ∀j 6= q. For every prototype wj with class c(wj) a receptive field

is defined within the input space. According to the LVQ model, points located in the

respective field 1 will be assigned to the class c(wj).

The aim of learning is to adapt prototypes automatically in such a way that the gap

between data points of class c ∈ {1, ..., K} and the corresponding prototypes with label c

(the one that the data are belonging to) will be reduced to a minimum distance. During

the stage of training for each data point xi with class label c(xi), the most proximal

prototype with the same label is rewarded by pushing closer towards the training input;

the most closest prototype with a different label will be disallowed by moving pattern xi

1The set of points in the input space is defined by the receptive field of prototype w, where this
prototype is picked as their winner.
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away.

The Generalized Matrix LVQ (GMLVQ) is a recent extension of the LVQ that employs

a full matrix tensor for a better measure of distance between two feature vectors. The

new distance measure not only is capable of scaling individual features but also accounts

for pairwise correlations between the features. Assuming Λ ∈ Rm×m is a positive definite

matrix, Λ � 0, the generalized form of the squared Euclidean distance is defined as

dΛ(xi, w) = (xi −w)ᵀΛ(xi −w) (4.15)

The positive definiteness of Λ is guaranteed by imposing Λ = ΩᵀΩ, where Ω ∈ Rm×m is a

full-rank matrix. Furthermore, to prevent the degeneration of the algorithm, Λ is trace

normalized after each learning step (i.e.
∑

i Λii = 1) so that the summation of eigenvalues

is kept fixed in the learning process. The model is trained in an online-learning fashion

and the steepest descent method is employed to minimize the cost function given as:

fGMLV Q =
n∑
i=1

φ(µΛ(xi)) (4.16)

with

µΛ(xi) =
dΛ(xi,w

+)− dΛ(xi,w
−)

dΛ(xi,w+) + dΛ(xi,w−)
, (4.17)

where φ is a monotonic function (the identity function φ(l) = l is a common choice). The

main advantage of the GMLVQ framework is that (unlike LVQ [85, 86]), it allows us to

naturally incorporate privileged information through metric learning.

Privileged information (PI) guided GMLVQ

This chapter employs the Information Theoretic Metric Learning (ITML) approach [21] in

order to incorporate privileged information into the learning phase of the GMLVQ.

Given a training dataset, we have one space where the original training data live and

another space where the privileged training data live. They are denoted by X and X ∗,
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respectively, and their corresponding global metric tensors are denoted by Λ and Λ∗. The

distances between the privileged training points in X ∗ are first computed using Λ∗ and

then are sorted in ascending order. Based on the closeness information in X ∗, the original

training points are tagged in a categorical manner (similar and dis-similar). After that,

the ITML approach is adopted to impose similarity constraints in the original space. The

main goal is to learn a new metric in the original space (denoted by Λnew) so that under the

new metric, the distance between two original training points is small if their counterparts

in the privileged space are similar (close), and vice versa. Implementation of the above

concept is described in the following.

The training dataset is given as {(xi,x∗i , yi) : xi ∈X ,x∗i ∈X ∗, i = 1, 2, ..., N}. Recall

that y represents class label. For each pair of two training examples, 1 ≤ i < j ≤ N , we

compute three different squared Mahalanobis distances as follows

dΛ(xi,xj) = (xi − xj)
ᵀΛ(xi − xj),xi,xj ∈X (4.18)

dΛ∗(x
∗
i ,x

∗
j) = (x∗i − x∗j)

ᵀΛ∗(x∗i − x∗j),x
∗
i ,x

∗
j ∈X ∗ (4.19)

dΛnew(xi,xj) = (xi − xj)
ᵀΛnew(xi − xj),xi,xj ∈X (4.20)

Note that Λ and Λ∗ are both given whereas Λnew needs to be learned. The metric tensor

Λnew should be optimized in a supervised manner so that dΛnew(xi,xj) will be shrunk if x∗i

and x∗j are similar. Otherwise, dΛnew(xi,xj) will be enlarged. To this end, we form two

sets of pairs of the training data points in the original space X : S+ is a set of similar

pairs and S− a set of dissimilar pairs. These two sets are formed using the proximity

information in the privileged space X ∗ as follows:

1. If dΛ∗(x
∗
i ,x

∗
j) ≤ l∗and yi = yj(same class label), then (xi,xj) ∈ S+;

2. If dΛ∗(x
∗
i ,x

∗
j) ≥ u∗and yi 6= yj(different class label), then (xi,xj) ∈ S−.

Here, l∗ and u∗ represent the upper and lower bound for the distances of similar and

dissimilar pairs, respectively, in the privileged space. The value of l∗ is chosen as the upper
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bound for the < a∗ percentile of all dΛ∗(x
∗
i ,x

∗
j) values, 1 ≤ i < j ≤ N . Similarly, the value

of u∗ is chosen as the lower bound for the > 1 − b∗ percentile of all dΛ∗(x
∗
i ,x

∗
j) values,

1 ≤ i < j ≤ N . At the same time, the choice of l∗ and u∗ is subject to the constraint

u∗ > l∗. Also, a∗ and b∗ are pre-determined with 0 < a∗ < b∗ < 1.

In the GMLVQ framework, the privileged information is incorporated by fusing the

metric Λ∗ in the privileged space X ∗ with the metric Λ in the original space X (for more

details, see [38]).

Support Vector Machine

The idea of kernel mapping is combined with statistical learning and optimisation techniques

in supervised learning algorithms called SVMs. The simplest version of an SVM [19]

is learning a separating hyper-plane (decision surface) between two classes labelled as

Y = {1,−1} and maximising the margin. Each class contains the closest training data

points to it that solve an optimisation problem. If the principles of statistical properties of

the maximal margin solution are followed, it can be a good valid generalisation. What is

important is that working with higher dimensional spaces is possible because performance

is not affected with the change in dimensionality.

The SVMs, when used for classification, are performed in a feature space of high dimensions,

and a maximal margin separation is found using a linear classifier that defines a separating

hyperplane. When the kernels are defined in the feature space, this hyperplane can be

related to a non-linear decision boundary.

In case that the training set is not linearly separable, the standard SVM model allows

the decision margin to make a few “mistakes” which are represented by slack variables

(ξi).

Considering S is our training set, which contains labelled input vectors (xi, yi), i =

1....m, where xi ∈ Rnand yi ∈ Y = {±1}. A linear classification rule f is a function

76



defined on Rn with values in Y specified via a pair (w, b), where w ∈ Rn and b ∈ R, as

f(zi) = 〈w, zi〉+ b (4.21)

Here 〈., .〉 represents the dot product and w, b are obtained as solutions of the optimization

problem:

min
w,b,ξi

1

2
||w||22 +B

n∑
i=1

ξi (4.22)

under the constraints,

yi(〈w, zi〉+ b) ≥ 1− ξi, ξi ≥ 0, 1 ≤ i ≤ n

where B ≥ 0 is a hyper-parameter that balances the goal between classification accuracy

(i.e. keeping the slack variables as small as possible) and the smoothness of the decision

boundary in the original space. The parameter B is obtained via tuning.

Privileged information (PI) guided SVM (SVM+)

Learning using privileged information with the SVM methodology was proposed [100] and

is known as SVM+ .

Privileged information is additional information x∗i ∈ X∗ available about a training

example xi ∈ X. This means it is only available during the training phase, but

not in the testing phase. In the SVM+ model, a set of training triplets is given,

(x1, x
∗
1, yn), · · · , (xn, x∗n, yn), xi ∈ X and x∗i ∈ X∗, yi ∈ {−1, 1}, i = 1, · · · , n, generated by

a fixed (unknown) probability measure P (x, x∗, y). The classification rule is the same as

in the previous case, i.e. it is defined by the function (4.21). However, in this case, next

to the parameters w and b that define the classification rule, two additional parameters

w∗ and b∗are determined by solving the optimization problem

min
w,b,w∗,b∗

1

2
||w||22 +

p

2
||w∗||22 +B

n∑
i=1

(〈w∗, z∗i 〉+ b∗) (4.23)
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under the constraints

yi(〈w, zi〉+ b) ≥ 1− (〈w∗, z∗i 〉+ b∗), (4.24)

〈w∗, z∗i 〉+ b∗ ≥ 0 (4.25)

A possible interpretation of this problem is that the function 〈w∗, z∗i 〉+b∗ is an estimator

for the slack variables ξi in the previous case. There are two hyper-parameters in the

objective function of the SVM+ model, B, p > 0 that have to be determined by tuning. The

parameter p is a non-negative parameter that control the smoothness of the classification

function. Again, the model can be non-linearized using the kernel trick: the triplets of

training data (x1, x
∗
1, y1), · · · , (xn, x∗n, yn) are changed into (z1, z

∗
1 , y1), · · · , (zn, z∗n, yn) with

the help of mapping of vectors x ∈ X into z ∈ Z and x∗ ∈ X∗ into z∗ ∈ Z∗, where Z and

Z∗ represent the feature spaces related to the inner products 〈zi, zj〉 = k(xi, xj), 〈z∗i , z∗j 〉 =

k∗(x∗i , x
∗
j) defined by kernels k and k∗.

Imbalanced class problem

Class imbalance occurs when there is a mismatch between sample sizes representing

different classes. Class imbalance is one of the most common issues in classification. Unless

explicitly treated, the classifier can be biased towards the majority class. In general, model

fitting algorithms of various forms of classifiers assume balanced class distribution. A

variety of methods have been proposed to tackle the class imbalance problem [e.g. [39]].

For example, the imbalance problem can be addressed by either upsampling the minority

class(es) [78], or downsampling the majority class(es) [29], so that the training set becomes

balanced.

Since the data sets available for our study are relatively small, instead of upsampling

small minority class, we decided to downsample the majority class, and repeat the

downsampling Nd = 100 times. Training portion of the minority class remains fixed and
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each time the majority class is downsampled we construct a classifier based on balanced

classes. We thus obtain a collection of Nd classifiers trained on different versions of

downsampled majority class. These classifiers are then combined in an ensemble to form a

single classifier using majority voting over the ensemble members.

Employing Different Types of PI

We have two different kinds of features extracted from fMRI signals and used as privileged

information, namely percent change (PSC) in overall ROI activation and graph based

features described above.

The PSC feature quantifies the relative activation difference in the whole ROI when

subjects were shown structured vs. random stimuli. This is calculated both from both

pre- and post-training fMRI data. We consider 3 ROIs, hence there are 6 PSC privileged

information features. Analogously, for the graph-based spatial-temporal features, there is

a single feature for each ROI, measured both pre- and post-training, yielding a totality of

6 graph-based privileged information features.

An obvious combination of PSC and graph-based features would be to concatenate

them into 12-dimensional vector. However, given the small sample size of participants,

such an approach might lead to overfitting. Therefore we constructed an alternative way

of combining privileged information features, as outlined below.

We independently construct two classifiers operating in the original space, but trained

with the two different kinds of privileged information. Given a test input, if both classifiers

predict the same class label, that label is used as the model output. If, on the other hand,

they disagree, we output the class label that is predicted with “more confidence” - i.e.

smaller distance between the test input and the closest class prototype.

However, note that for the classification purposes, the metric tensor in a single classifier

can be arbitrarily scaled, since only the relative relations between distances of test point

to the class prototypes are relevant. Hence, in order to compare distances of the test point

to the closest prototype in the two classifiers, we need to normalize the learnt metrics. We
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do this by eigen-decomposing the two metric tensors Λ1 and Λ2 and normalizing their

eigenvalues to sum to 1. In particular, the eigen-decomposition of Λi, i = 1, 2, reads

Λi = Ui diag(λi1, λ
i
2, ...λ

i
d)U

ᵀ
i . The normalized metric tensor is obtained as

Λ̂i = Ui diag(λ̂i1, λ̂
i
2, ..., λ̂

i
d)U

ᵀ
i , (4.26)

where the normalized eigenvalues are

λ̂ij =
λij∑d
k=1 λ

i
k

. (4.27)

Given a test input, when combining two ensemble classifiers C1 and C2, if they agree

on the predicted label, we output that label as the overall label estimate. If, however, C1

and C2 disagree on the label, we prefer the label produced with “more certainty” - in our

context - small average distance to the closest prototype. In particular, if C1 is claiming

class +1, we calculate the mean distance of the test input to the closest prototype of class

+1 across those ensemble members that output class +1 (e.g. their closest prototype to

the test input has label +1). Analogously, for C2 claiming class -1, we record the mean

distance of the test input to the closest prototype of class -1 across ensemble members

outputting class -1. The overall class label of the combined classifier for the test input is

the label with the minimal average distance to the closest prototype.

4.3.3 Experimental Design

The value of using brain imaging data as privileged information in our setting can be

evaluated through two extreme cases:

• No privileged information is available - the models (classifiers) are constructed purely

based on the cognitive data. We will refer to this case as M -CD;

• Privileged brain imaging data is always available and is used directly as input data

in the classifier construction and testing, without the need to resort to learning with
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privileged information. We will refer to this case as M -PD. The classifiers obtained

in this regime with the PSC, FGF and SGF representations of brain imaging data

are referred to as M -PSC, M -FGF and M -SGF, respectively.

When the classifiers are constructed in the framework of learning with privileged

information, with cognitive data serving as classifier inputs and brain imaging data used

as privileged information, depending on what representation of brain imaging data is used,

we denote the resulting classifiers by M+-CD-PSC, M+-CD-FGF and M+-CD-SGF.

As explained above, PSC representation of spatial-temporal structure of cortical

activations within an ROI is the simplest one, integrating out both the spatial and temporal

structures. In contrast, a more subtle representation is obtained in the graph based features

FGF and SGF, integrating over time, but preserving aspects spatial structure. The PSC

and graph based features may contain complementary information for the classification

task and hence we further combine the classifiers obtained using brain imaging data into

composite ones, in particular M+-CD-PSC and M+-CD-FGF are combined into a single

classifier M+-CD-PSC+FGF and the combination of M+-CD-PSC and M+-CD-SGF is

referred to as M+-CD-PSC+SGF. Analogously, M -PD-PSC and M -FGF are combined to

form M -PSC+FGF and combination of M -PSC with M -SGF results in M -PSC+SGF.

The overall model structure setup is illustrated in Figure 4.2.

4.4 Baseline Experiments

This section assesses the classification performance of the proposed methodology that

incorporates fMRI as privileged information (PD) in the training phase, against baseline

algorithms trained without PD, or trained solely with PD. Since we expect that the brain

imaging fMRI data carry lot of information regarding possible MCI, the classifier trained

directly on fMRI (M-PD) will provide a lower bound on the classification error that a

classifier trained solely on cognitive data (M-CD) (carrying less information on possible

MCI) cannot achieve. We expect that the power of learning with privileged information
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Figure 4.2: Schematic illustration of the experimental design described in Section4.3.3.
The items in diamond shape denote data: (CD) for cognitive data, PD for privileged
information data, PSC for Percent Signal Change, FGF for functionally grouped graph
feature, and SGF for spatially grouped graph feature. M -XXX denotes a GMLVQ classifier
that does not use privileged information while XXX denotes the inputs to this classifier.
For example, M -PSC means a GMLVQ classifier with PSC features as its inputs. M+-
XXX-YYY denotes a GMLVQ classifier using feature XXX as its inputs and feature YYY
as privileged information. For example, M+-CD-PSC means a GMLVQ classifier using
cognitive features as its inputs and PSC features as privileged information. M+-XXX-
YYY-ZZZ denotes a hybrid classifier that combines the classification output of classifier
M+-XXX-YYY and classifier M+-XXX-ZZZ using a certain rule (e.g. majority voting
rule).

will boost the classification performance, so that the classifier trained with CD as inputs,

but able to incorporate fMRI indirectly in the training process (M+-CD-PD), will have

classification performance between the two extremes M-PD and M-CD, even though in the

test phase, both M-CD and M+-CD-PD classify solely based on CD. The methodology

is formulated in the framework of prototype-based classification (GMLVQ) with metric

learning [38, 85, 86]. In this experiment, the original and privileged features correspond to

cognitive profiles and brain imaging data, respectively. The overall experimental design is

explained in section 4.3.3.
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4.4.1 Experimental Setup

In the M -PD case, we have in total a set of 34 subjects having both cognitive and brain

imaging data, consisting of 9 patients and 25 controls. We create 50 training-test set splits

by randomly sampling 6 and 17 patients and controls, respectively, to form the training

set (the rest is in the test set). In the M -CD case we have 60 subjects having cognitive

data, consisting 13 patients and 47 controls. Again, we created 50 training-test set splits

by randomly sampling 9 and 33 patients and controls, respectively, to form the training

set. We made sure that in each resampled training and test set there is an equal balance

between subjects with and without PD.

As explained in section Section 4.3.2, to deal with class imbalance in the M-PD case, we

construct ensemble classifiers by using the same set of 6 patients and repeatedly sampled

6 controls from the 17 training ones. Analogous setting was used in the M-CD case, this

time with 9 patients and 33 controls.

In all experiments, the (hyper-)parameters of the ensemble classifiers were tuned via

cross-validation on the training set of the first sub-split only. The found values were

then fixed across the remaining 99 classifiers. In the GMLVQ classifier, data classes are

represented by one prototype per class. The class prototypes are initialized as means

of random subsets of training samples selected from the corresponding class. In the IT

metric learning settings given in [38], lower (a, a∗) and upper (b, b∗) percentile bounds for

the privileged and original spaces were tuned over the values of 5, 10, 15 and of 85, 90, 95,

respectively.

Throughout the experiments we had one data set in the original space of CD. However,

experiments were repeated for three different fMRI PD: PSC, SGF and FGF. PD of each

subject is represented by 6 features, 3 pre-training and 3 post-training, corresponding

to 3 ROIs. Due to the imbalanced nature of our classes we utilized the following below

evaluation measures:

Confusion Matrix : it is a popular performance indicator for machine learning algo-

rithms. It is organized along the the actual classes (rows) and the predicted ones columns)
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[29]. In this study positive and negative examples represent patients and controls, respec-

tively. In the confusion matrix, True Positive (TP) denotes the number of positive examples

correctly classified, True Negatives (TN) is the number of negative examples correctly clas-

sified , False Positives (FP) is the number of negative examples incorrectly classified, False

Negatives (FN) is the number of positive examples incorrectly classified as negative. The

true positive rate (TPR = TP
TP+FN

) measures the percentage of patients who are correctly

classified, whereas the true negative rate (TNR = TN
TN+FP

) measures the proportion of the

correctly identified controls. False positive rate (FPR = FP
FP+TN

), refers to the probability

of falsely classifying the patients, whereas the false negative rate (FNR = FN
FN+TP

) refers

to the probability of falsely classifying the controls. Macroaveraged Mean Absolute Error is

used for the classification errors across classes, MMAE = 1
2

(∑
yi=1 |yi−ŷi|

N1
+

∑
yi=2 |yi−ŷi|

N2

)
.

4.4.2 Classification Results

Statistical Test: All the experiment results are evaluated through a paired Wilcoxon

signed-rank test. It is a non-parametric test that has no assumption about the distribution.

The test is utilized with paired groups to measure the statistical significance of the difference

between two classifiers’ performances. The test is done for the case of the privileged brain

imaging data, when CD is operating in the original data space and trained with PI (e.g

M+-CD-PSC). The null hypothesis states that the group means for the classifiers trained

with and without privileged information are two samples from the same population.

We are primarily interested in classification performance of M+-CD-PD classifiers, that

is, classifiers using cognitive data as their inputs and incorporating brain imaging data

as privileged information. this classification performance will be put in the context of

performances when no brain imaging information is available (M -CD) and when the full

brain imaging is available as input (M -PD). This will allow us to quantitatively investigate

how much performance improvement over M -CD could be obtained by incorporating

privileged information through metric learning. Following our experimental setup, we
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obtained 50 MMAE estimates for each classifier summarised by the mean, standard

deviation, median and the (25%, 75%) percentiles. The results are summarised in Tables 4.1

and 4.2.

Table 4.1 shows that for all five types of PD, M -PD outperforms M -CD. Recall that

we have extracted three different features from the brain imaging data, namely PSC, SGF,

and FGF, and all of them can be used as PD. For PSC, which is related to brain activation

level, the corresponding median MMAE is reduced by relatively 41% when compared to

that of M -CD. The other two types of PD, SGF and FGF, are related to brain connectivity

pattern. When compared to the baseline classifier, the relative reduction of their median

MMAE is about 26% and 41%, respectively. The above results indicate that PSC is useful

as the graph feature (FGF), or even more useful (SGF). In principle, the activation level

and connectivity pattern are two independent fMRI features. Therefore, PSC could be

used as PD along with SGF or FGF. Row 6–7 in Table 4.1 show that the resulting classifier

can either attain the classification performance of M -PSC in the case of SGF, or improve

on it in the case of FGF. In summary, brain imaging data can contain more information

that are relevant to the task than cognitive data.

Models Mean Std-Dev Median (25%, 75%) Percentile
M -CD 0.39 0.09 0.39 (0.31, 0.44)
M -PSC 0.23 0.16 0.23 (0.14, 0.33)
M -SGF 0.27 0.08 0.29 (0.21, 0.32)
M -FGF 0.25 0.11 0.23 (0.21, 0.30)

M -PSC+SGF 0.25 0.11 0.25 (0.21, 0.33)
M -PSC+FGF 0.24 0.12 0.23 (0.16, 0.30)

Table 4.1: Classification performance measured by Macroaveraged Mean Absolute Error
(MMAE) for the baseline classifier, M -CD, and five different M -PD classifiers (see Column
1). For each classifier, we report both mean MMAE, its standard deviation, median
MMAE and its (25%, 75%) percentile in Column 2 – 5, respectively. They were computed
using the MMAE estimates obtained from 50 randomly created training-test splits.

Table 4.2 shows that for all five types of PD, M+-CD-PD outperforms M -CD. In

particular, PSC and SGF are the best two among the five PD types that are used as the

privileged information along with CD as GMLVQ’s inputs. Compared to M -CD, both
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M+-CD-PSC + M+-CD-SGF show a reduction of their median MMAE by relatively

21%. This relative improvement is shrunk to 15%, 13%, and 8% for M+-PSC+FGF, for

M+-PSC+SGF, and for M+-FGF (respectively). We can note that the good choice of PI

can help to improve over M -CD. In order to check whether there is a statistically significant

improvement when integrating PI along CD in the training stage, we used a one-sided

sign-rank test. It looks like there are some improvements in the case of M+-CD-PSC and

M+-CD-SGF; while the less promising combination is in the case of M+-CD-FGF. If there

was a larger sample size, perhaps we could expect larger improvements.

Models Mean Std-Dev Median (25%, 75%) Percentile
M+-CD-PSC 0.34 0.09 0.31 (0.27, 0.40)
M+-CD-SGF 0.33 0.08 0.31 (0.26, 0.40)
M+-CD-FGF 0.37 0.11 0.36 (0.30, 0.40)

M+-CD-PSC+SGF 0.33 0.09 0.34 (0.24, 0.40)
M+-CD-PSC+FGF 0.35 0.12 0.33 (0.24, 0.42)

Table 4.2: The same as in Table 4.1 but for evaluation of the classification performance of
five different M+-CD-PD classifiers, that is, the classifiers using CD as their inputs and
PD as privileged information.

Table 4.3 presents the results of the average TPR and TNR of the models. The best

two TPR results (0.69 and 0.72) were achieved by M+-CD-PSC and M -FGF respectively;

whereas the best two TNR results (0.88 and 0.89) were attained by M -PSC and M -

PSC+FGF respectively.

4.4.3 Further Analysis

GMLVQ is a fully adaptive algorithm to learn global metric tensor which accounts for

different importance weighting of individual features and pairwise interplay between the

features, with respect to the given classification task. Hence, it allows us to study the

task-dependent relevance of the input features by using the diagonal elements of the

GMLVQ metric tensor matrix. Moreover, the global metric can be further optimized

adaptively by incorporating privileged information into the GMLVQ model via the distance
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Model TPR TNR
M -CD 0.60 0.60
M -PSC 0.64 0.88

M+-CD-PSC 0.69 0.63
M -SGF 0.66 0.71

M+-CD-SGF 0.72 0.60
M -PSC+SGF 0.64 0.87

M+-CD-PSC+SGF 0.68 0.67
M -FGF 0.74 0.60

M+-CD-FGF 0.56 0.69
M -PSC+FGF 0.38 0.89

M+-CD-PSC+FGF 0.58 0.70

Table 4.3: Overall true positive rates (TPR) and true negative rates (TNR) on hold-out
sets

relations revealed in the privileged space [37]. In the following we analyse the learned

classification models in terms of the learned metric tensor and discuss possible implications

regarding the cognitive and brain imaging fMRI features used in this study.

Cognitive features only

We first present a procedure to study the relevance of four cognitive features (working

memory, cognitive inhibition, divided attention, and selective attention) using the GMLVQ

metric (tensor) matrices obtained from the experiments whose classification results are

discussed in Section 4.4.2. Each of these experiments resulted in 50 × 100 GMLVQ

classifiers with the associated metric (tensor) matrices Λ obtained by training GMLVQ

classifiers on 50 × 100 (small) data sets independently. Recall that these data sets were

generated by first randomly splitting the whole training set into 50 smaller sets of equal

size and then randomly downsampling the majority class to the size of the minority class

in each split 100 times. In this way, we ensure that the training and test subsets have the

same distribution, and we tried to do many resampling (100 times over 50 experiments

of majority class) in training set without replacements of test set. However, many of the

50 × 100 classifiers performed poorly and they should not be included in the analysis

of the relevant cognitive features. We therefore discard the data split producing the
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ensemble classfier whose Nb-th best ensemble member (classifier) produced error larger

than a threshold value denoted by Emax, and pool all ensemble members from each of

the remaining splits for further analysis. This procedure is applied to three experiments

as follows: M -CD, M+-CD-PSC and M+-CD-FGF. We found out that Nb = 15 and

Emax = 25% worked universally across these data sets.

Each of the four cognitive features is associated with one of the four diagonal element

in the metric (tensor) matrix. For each cognitive feature, its importance is measured by the

frequency of its associated diagonal elements in > 90% percentile of the set of all diagonal

elements from the metric (tensor) matrices selected by the above procedure. The left

panel in Figure 4.3 shows that the divided attention (i.e. tddisp) is the most discriminative

feature for the classification task (MCI patients vs. healthy controls).
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Figure 4.3: The importance histogram of the four cognitive features as follows: working
memory (ndots), cognitive inhibition (tdelay), divided attention (tddisp), and selective

attention (tsdisp) (numbered as 1, 2, 3, and 4 in the order). These features are used as the

input to the following GMLVQ classifiers: M -CD, M+-CD-PSC, and M+-CD-FGF (from
left to right). Note that each cognitive feature is associated with a diagonal element of the
GMLVQ metric tensor matrix Λ and the importance histogram counts the number of each
diagonal element in the >90% percentile of all diagonal elements from an ensemble of Λs.

Next, we studied the off-diagonal elements of those metric (tensor) matrices. Each

off-diagonal element controls the interplay between two associated cognitive features.
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To illustrate how this interplay works, we provide a toy example as follows: Denote a

two-dimensional feature vector by (x, y) and a 2 × 2 metric tensor by

 α γ

γ β

 . The

distance between two feature vectors indexed by i and j is given by

dij = α2 · (xi − xj)2 + β2 · (yi − yj)2︸ ︷︷ ︸
dMij

+ 2γ · (xi − xj)(yi − yj)︸ ︷︷ ︸
d2ij

. (4.28)

The first two terms of dij is actually so-called Mahalanobis distance between the i-th and

j-th feature vectors (denoted by dMij ). In the case of γ = 0, the diagonal term α and

β are optimized by maximizing between-class Mahalanobis distances while minimizing

within-class ones. When the metric matrix has non-zero off-diagonal elements, the distance

measure has additional contribution d2
ij which can either enhance or collapse the total

distance measure depending on (i) the sign of γ and (ii) the sign of between-class correlation

(i.e. correlation between class-conditional means of x and y). For example, in the case of

negative between-class correlation, negative γ can further enhance the class separation and

vice versa.

To test whether the interplay between two cognitive features, indexed by i and j,

is positive or negative, we performed two one-sided sign-rank tests for the hypotheses

Λij > 0 and Λij < 0 (respectively) using the corresponding off-diagonal element from

the selected GMLVQ metric (tensor) matrices. The upper-left panel of Figure 4.4 shows

that there exists statistically significant, negative interplay between divided attention and

two following cognitive features: (1) working memory (ndots) and (2) cognitive inhibition

(tdelay). From the lower-left panel, we found statistically significant, positive interplay

between three cognitive features as follows: (1) working memory, (2) cognitive inhibition,

and (3) selective attention (tsdisp). Finally, note that there is no significant interplay

between divided attention and selective attention.

To examine the relation between the interplay and between-class correlation revealed

by Eq. 4.28, we need to determine whether or not there exists statistically significant

between-class correlation between two of the four cognitive features. To this end, we first
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Figure 4.4: The p values of the one-sided sign-rank tests for studying the interplay between
two of the following cognitive features: working memory (ndots), cognitive inhibition
(tdelay), divided attention (tddisp), and selective attention (tsdisp) (numbered as 1, 2, 3, and

4 in the order). From each panel in the upper and lower row, one can read that if the p
value is smaller than the threshold p = 0.05 (indicated by red dashed line), the interplay
of two corresponding cognitive features is statistically significant and it takes a negative
and positive value (respectively); These features are the inputs to three GMLVQ classifiers
as follows: M -CD, M+-CD-PSC, and M+-CD-FGF (from left to right). Note that the
tests used the off-diagonal elements of the GMLVQ metric tensor matrices.

used one-sided sign-rank test to determine, for each of the four features, whether its values

for MCI patients are significantly larger or significantly smaller than those for healthy

controls. For each pair of the cognitive features, if the outcomes of their tests are both

statistically significant and are consistent with (or in opposite to) each other, then their

between-class correlation is considered as positive (or negative). Otherwise, the between-

class correlation is insignificant. From this analysis we observe (1) the class-conditional

mean of working memory is positively correlated with that of cognitive inhibition; and

(2) the class-conditional mean of divided attention is negatively correlated with that of

working memory as well as that of cognitive inhibition. These observations agree with

the observation of the interplay between the corresponding cognitive features, which can

enhance the class separation. For the remaining pairs of the cognitive features, their

between-class correlation is not significant. In Figure 4.5, we graphically illustrate the
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presence or absence of these correlations.

In summary, though the divided attention seems to be the most relevant feature

among the four cognitive features, all four features are indispensable for maximising the

classification performance. This is because these exists between-class correlation between

the features.
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Figure 4.5: Scatter plot for six possible feature pairs from the four cognitive features as
follows: Working memory (ndots), Stop signal (tdelay), Divided attention (tddisp), and

Selected attention (tsdisp). For individual MCI patients and control subjects, their feature

pairs (i.e. Feature 1 vs Feature 2) are displayed as red and blue dots (respectively).
The corresponding class-conditional means and standard deviations are also displayed
by coloured error bars. For each panel, the corresponding Feature 1 and Feature 2 are
indicated at the top of each column and on the utmost left of each row (respectively).
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fMRI features

We carried out the same relevance analysis for M -PSC, M -SGF, and M -FGF as for M -CD

in Section 4.4.3. Recall that in these three experiments, the inputs to GMLVQ classifiers

are comprised of six fMRI features as follows: (i) PSC-Cerebellar-Pre, PSC-Cerebellar-

Post, PSC-Frontal-Pre, PSC-Frontal-Post, PSC-Subcortical-Pre, PSC-Subcortical-Post;

(ii) SGF-Cerebellar-Pre, SGF-Cerebellar-Post, SGF-Frontal-Pre, SGF-Frontal-Post, SGF-

Subcortical-Pre, SGF-Subcortical-Post; and (iii) FGF-Cerebellar-Pre, FGF-Cerebellar-

Post, FGF-Frontal-Pre, FGF-Frontal-Post, FGF-Subcortical-Pre, FGF-Subcortical-Post

(respectively). The fMRI feature “PSC-Cerebellar-Pre” denotes PSC feature that is derived

from fMRI data measured in the cerebellar ROI and during the pre-training session. and

the remaining fMRI features are abbreviated in the same way. Recall that PSC is referred

to as Percent Signal Change, SGF as Spatially grouped Graph Feature and FGF as

Functionally grouped Graph Feature.

Figure 4.6 shows that PSC-Frontal-Post and FGF-Frontal-Pre are the most discrim-

inative fMRI feature in Experiment M -PSC and M -FGF (respectively). We first note

that the most relevant feature in both cases is derived from the frontal ROI (that is, the

largest ROI among the three ROIs used in this study). It is more interesting to address

two following questions: (1) why is the post-training session is more relevant than the

pre-training one, when PSC is used for the task; and (2) why is the opposite true when

the graph feature is used for the task.

The left panel in Figure 4.7 shows that before training, the PSC level for MCI patients

and healthy controls are on average comparable. However, training caused a remarkable

increase of the PSC level for MCI patients but not for healthy controls. As a result, these

two participant groups differ in their PSC level after the training. This is why PSC-

Frontal-Post is identified as the most relevant feature for Experiment M -PSC. The right

panel in Figure 4.7 shows that the graph feature FGF differs between MCI patients and

healthy controls before training. This could be related to the suggestions that MCI may

have caused changes in brain connectivity. We further observe that for both participant
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Figure 4.6: Left panel: The importance histogram of the six fMRI features as follows:
PSC-Cerebellar-Pre, PSC-Cerebellar-Post, PSC-Frontal-Pre, PSC-Frontal-Post, PSC-
Subcortical-Pre, and PSC-Subcortical-Post. (numbered as 1, ..., and 6 in the order). PSC
is referred to as Percent Signal Change, Pre as Pre-training session, Post as Post-training
session, Cerebellar (Frontal and Subcortical) as the cerebellar(frontal and subcortical,
respectively) ROI. For example, PSC-Cerebellar-Pre means that the fMRI data were
acquired before training and PSC feature was extracted from the cerebellar ROI). Right
panel: The same as in the left panel but for the following fMRI features: FGF-Cerebellar-
Pre, FGF-Cerebellar-Post, FGF-Frontal-Pre, FGF-Frontal-Post, FGF-Subcortical-Pre, and
FGF-Subcortical-Post.

groups, training increased their FGF values but to different extents. After training, the

difference between MCI patients and healthy controls became much less significant. This

is why FGF-Frontal-Pre is identified as the most relevant feature for Experiment M -FGF.

This observation allows us to speculate that training could “mitigate” the changes in brain

connectivity caused by MCI.

The above analysis suggests that brain connectivity may have changed after training

and this is significant particularly for MCI patients. In the following, we address the

question whether a sub-network rather than the entire (local) network within the frontal

ROI has changed. Recall that all 128 voxels in the frontal ROI are grouped into 7 spatially

contiguous clusters. This results in a local brain network consisting of 7 nodes and 21 edges.

Each off-diagonal element of the graph matrix G quantifies the connectivity between two

nodes and measures the strength of the corresponding edge. Recall that the graph features
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Figure 4.7: Left: Boxplot of the following fMRI features: FGF-Frontal-Pre for MCI
patients, FGF-Frontal-Pre for healthy controls, FGF-Frontal-Post for MCI patients, and
FGF-Frontal-Post for healthy controls (numbered as 1, 2, 3 and 4 in the order). Note that
the y-axis represents the values of the corresponding fMRI features; Right: Boxplot of the
following fMRI features: PSC-Frontal-Pre for MCI patients, PSC-Frontal-Pre for healthy
controls, PSC-Frontal-Post for MCI patients, and PSC-Frontal-Post for healthy controls
(numbered as 1, 2, 3 and 4 in the order).

FGF were extracted by applying multiplicative method. To this end, multiplicative method

provides two feature-generating vectors a and b from which we can derive a task-dependent

importance matrix denoted by I as follows:

I =
1

2
(abᵀ + baᵀ). (4.29)

Each off-diagonal element of I measures the importance of the corresponding edge in terms

of discriminating MCI patients from healthy controls. To identify possible sub-networks

that have significantly changed after training, we are first to identify the edges whose

importance measure has significantly changed after training. To this end, we generated an

ensemble of the selected importance matrices using the procedure that was used to generate

an ensemble of the selected GMLVQ metric (tensor) matrices for the relevance feature

analysis. Subsequently, we conducted two one-sided sign rank tests for each of the 21 edges
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to find those edges whose importance values have significantly increased or reduced after

training. Denote the edge connecting node i and j by Eij . This analysis revealed that the

importance measure of three following edges has significantly increased: E17, E16 and E64.

A significant reduction of its importance measure was observed for E65. These four edges

are displayed in Figure 4.8. Figure 4.9 highlighted a subtle difference between the sub

network (i.e. E17, E16 and E64) and the single edge E65. For the three-node sub-network,

the connectivity strength is highest for MCI patients before training. For the single edge

E65, the connectivity strength is lowest for healthy controls before training. This suggests

that FGF-Frontal-Pre, the most relevant feature in M -FGF, could be related to these

three-node and single-node sub-networks.

24
25

26
27

4.2

4.4

4.6

4.8

18

20

22

24

26
4

7

x

2

55

666

y

3

11

z

Figure 4.8: The node configuration for the frontal ROI which includes Superior Frontal
Gyrus on the right hemisphere and Medial Frontal Gyrus on the left hemisphere. The
straight lines indicate the edges whose importance for discriminating MCI patients from
healthy controls has significantly changed. For the three-node subnetwork (indicated
by red lines), its importance has increased after training. In contrast, the single-node
subnetwork (indicated by blue line), training has reduced its importance.
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Figure 4.9: For the graph matrices generated in this study, we display four of their matrix
elements which are associated with the four edges highlighted in Figure 4.8. G1,6 in the
upper-left panel, G1,7 in the upper-right panel, and G4,5 in the lower-left panel measure the
connectivity of edge E1.6, E1,7 and E4,5 (respectively) that form the three-node sub-network.
Recall that the task-related importance of this sub-network has significantly increased after
training. In contrast, G5,6 in the lower-right panel measures the connectivity of edge E5.6

and its task-related importance has significantly reduced after training. The four boxplots
in each panel are associated with pre-training session & patient group, pre-training session
& control group, post-training session & patient group, and and post-training session &
control group (from left to right, numbered as 1, 2, 3, and 4 in the order).

Privileged information

In addition to M -CD, M -PSC and M -FGF, M+-CD-PSC and M+-CD-FGF were con-

ducted to investigate GMLVQ classification of MCI patients and controls when fMRI

features were incorporated as privileged information. The relevance of the four cognitive

features in M+-CD-PSC and M+-CD-FGF was estimated from the diagonal elements of

the metric tensors and displayed in the middle and right panel of Figure 4.3 (respectively).
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Though PSC and FGF are two different kinds of fMRI features, we still consistently

observed that cognitive inhibition and divided attention are the two most relevant cog-

nitive features. Moreover, the relevance of divided attention is more profound than that

of cognitive inhibition. When compared to M -CD, cognitive inhibition did emerge as

a relevant feature only when the privileged information was incorporated. Also, Figure

4.4 shows that when compared to M -CD, the interplay between divided attention and

selective attention became significantly positive in M+-CD-PSC and M+-CD-FGF, that

is, the experiments in which the privileged information was incorporated.

4.4.4 Comparison of GMLVQ with SVM and SVM+ classifiers

The GMLVQ algorithm was compared against the SVM and SVM+ based models (explained

in section 4.3.2). To run SVM and SVM+, it is required to cross validate tuning parameters

(hyper-parameters), these are the kernel widths of the decision and slack model (correcting)

functions for both cases without and with PI, and the regularization parameters. From

Tables 4.4 and 4.5 it can be clarified that GMLVQ achieves a relatively better performance

over the SVM and SVM+. The results are comparable to GMLVQ (Tables 4.1 and 4.2),

especially in the cases where PI is incorporated in the training stage, than the results are

good over CD. Similar to GMLVQ there is a statistically significant for cases M+-CD-PSC

and M+-CD-SGF, while the less promising combination is in the case of M+-CD-FGF.

Models Mean Std-Dev Median (25%, 75%) Percentile
M -CD 0.41 0.08 0.40 (0.34, 0.47)
M -PSC 0.25 0.16 0.23 (0.16, 0.35)
M -SGF 0.30 0.08 0.30 (0.23, 0.38)
M -FGF 0.26 0.10 0.25 (0.23, 0.33)

M -PSC+SGF 0.27 0.10 0.28 (0.21, 0.33)
M -PSC+FGF 0.25 0.10 0.24 (0.20, 0.33)

Table 4.4: Classification performance measured by MMAE for the baseline classifier,
M -CD, and five different M -PD classifiers (see Column 1). For each classifier, we report
both mean MMAE, its standard deviation, median MMAE and its (25%, 75%) percentile
in Column 2 – 5, respectively. They were computed using the MMAE estimates obtained
from 50 randomly created training-test splits, the results of SVM.
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Models Mean Std-Dev Median (25%, 75%) Percentile
M+-CD-PSC 0.36 0.08 0.35 (0.29, 0.44)
M+-CD-SGF 0.32 0.10 0.32 (0.23, 0.38)
M+-CD-FGF 0.37 0.12 0.37 (0.24, 0.40)

M+-CD-PSC+SGF 0.35 0.08 0.33 (0.29, 0.40)
M+-CD-PSC+FGF 0.34 0.11 0.34 (0.27, 0.38)

Table 4.5: The same as in Table 4.4 but for evaluation of the classification performance of
five different M+-CD-PD classifiers, that is, the classifiers using CD as their inputs and
PD as privileged information using SVM+.

4.5 The Value of Additional Features

4.5.1 Extracting fMRI Features within ROIs

We focused on examining networks across ROIs rather than studying networks within

ROIs, but we did not have any improvement with second features. For this reason, we

proposed a method that based on the assumption that a Region of Interest (ROI) is

not functionally homogeneous. Therefore, each ROI is represented by more than one

functionally homogeneous cluster, and the aim is to achieve a result in which each node is

functionally homogeneous. The proposed method entails constructing 8× 8 graph matrix

by clustering a cerebellar ROI with 2 centroids,a frontal ROI with 4 centroids, and a

subcortical ROI with 2 centroids. These different unique configurations of each ROI are

used to compute one soft kernel of order8× 8 with the distribution based on the number

of voxels in each region. We applied this approach both for the case of voxels clustering

based on their common function, that is FGF, and for the case of voxels clustering based

on their proximity, that is SGF.
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4.6 Experiments of Mix ROIs together for both First

and Second features

4.6.1 Experimental Design and Setup

Both of these parts are the same as Section 4.3.3 and Section 4.4.1. In the experimental

design, the only difference here is that we have experiments of feature 1 v1 and also

experiments of feature 2 v2, data classification proceeds first based on a single feature v1

and a two dimensional feature vector V 2 = (v1, v2).

4.6.2 Classification Results

Using the Multiplicative Criterion

In comparison with when the experiment is conducted on only M-CD where MMAE result

is 0.39 and its standard deviation is ± (0.09). Table 4.6 illustrates that using the second

feature can provide a better percentage of improvements. For example, in the case of

M+-CD-FGFv1 there is percentage of improvement only 0%; whereas using a second

feature, as in M+-CD-FGFV 2 it is 8%. This demonstrates that the second feature is

needed as the number of miss-classification errors has reduced. Additionally, in the case of

SGF the percentage of improvement is 8% with M+-CD-SGFV 2, compared to the case of

M+-CD-SGFv1 it is only −3%.

Using the Additive Criterion

In the case of using the additive criterion, as shown in table 4.7, the miss-classification errors

increased more than with the multiplicative method because of λ, which is regularisation

parameter. It is determined by cross validation and it was chosen between {1− 9}.The

minimum number of miss-classification errors are given when λ = 7 with the learning

rate=.5; for that reason, it is fixed for all the experiments. For example, the percentage

of improvement is −21% with M -SGFv1, while it is −3% with M -SGFV 2, however, the
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Models Mean Std-Dev Median (25%, 75%) percentile

M -SGFv1 0.40 ± 0.14 0.39 ( 0.30, 0.54)
M -FGFv1 0.23 ± 0.13 0.23 ( 0.21, 0.33)

M -SGFV 2 0.35 ± 0.12 0.38 (0.30, 0.40)
M -FGFV 2 0.17 ± 0.11 0.16 (0.07,0.30)

M+-CD-SGFv1 0.36 ± 0.10 0.36 (0.27, 0.44)
M+-CD-FGFv1 0.38 ± 0.12 0.39 (0.31, 0.49)

M+-CD-SGFV 2 0.33 ± 0.10 0.33 (0.24, 0.39)
M+-CD-FGFV 2 0.33 ± 0.14 0.36 (0.26,0.49)

Table 4.6: MMAE results of extracting fMRI, v1 and V 2 = (v1, v2) by using Multiplicative
criterion using GMLVQ classifier.

second features are decreased the the miss-classification errors. So far, our results show

us that the multiplicative approach is much better for this purpose; the reason may be

because there is no parameter for cross validation (tuning parameters).

Models Mean Std-Dev Median (25%, 75%) percentile

M -SGFv1 0.40 ± 0.15 0.47 (0.27, 0.50)
M -FGFv1 0.37 ± 0.09 0.38 ( 0.31, 0.40)

M -SGFV 2 0.38 ± 0.12 0.38 (0.28,0.47)
M -FGFV 2 0.32 ± 0.16 0.23 (0.20, 0.35)

M+-CD-SGFv1 0.47 ± 0.07 0.40 (0.36, 0.52)
M+-CD-FGFv1 0.42 ± 0.05 0.44 (0.36,0.55)

M+-CD-SGFV 2 0.43 ± 0.12 0.52 (0.31, 0.48)
M+-CD-FGFV 2 0.47 ± 0.09 0.50 (0.44, 0.47)

Table 4.7: MMAE results of extracting fMRI, v1 and V 2 = (v1, v2) by using additive
criterion using GMLVQ classifier.

Comparing our Methods with 2D-LDA

By comparing tables 4.6, 4.7 with4.8, for multiplicative, additive and 2D-LDA approaches

respectively; they clarify that the multiplicative and 2D-LDA methods are better than the

additive method. For example, M -FGFv1 and M -FGFV 2 in the case of the multiplicative
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approach, the percentage of improvements is 41% and 59% receptively, and for the 2D-LDA

case it is 51% and 59%. However, the additive method shows 3% and 41% for M -FGFv1

and M -FGFV 2 respectively.

Additionally, M+-CD-SGFv1 and M+-CD-SGFV 2 for the case of the multiplicative ap-

proach, the percentage of improvements is −3% and 8% respectively, and for the 2D-LDA

case is 8% and 15%. Nonetheless, the additive method gives −3% and −52% for M+-CD-

SGFv1 and M+-CD-SGFV 2 respectively. This proves that the additive method is not as

good as the other two methods. For this reason, the next compromise and analysis will be

between the multiplicative and 2D-LDA approaches.

Models Mean Std-Dev Median (25%, 75%) percentile

M -SGFv1 0.39 ± 0.12 0.38 (0.30, 0.5)
M -FGFv1 0.24 ± 0.16 0.19 ( 0.14, 0.40)

M -SGFV 2 0.40 ± 0.12 0.38 (0.28,0.50)
M -FGFV 2 0.21 ± 0.12 0.16 (0.14, 0.30)

M+-CD-SGFv1 0.40 ± 0.13 0.40 ( 0.31, 0.48)
M+-CD-FGFv1 0.38 ± 0.12 0.38 (0.27,0.48)

M+-CD-SGFV 2 0.34 ± 0.11 0.36 ( 0.24, 0.44)
M+-CD-FGFV 2 0.39 ± 0.10 0.42 (0.31, 0.47)

Table 4.8: MMAE results of extracting fMRI, v1 and V 2 = (v1, v2) by using 2D-LDA
using GMLVQ classifier.

4.6.3 Comparing two Approaches in case of Mix ROIs

In the case of one prototype for both the multiplicative criterion and the 2D-LDA method,

we used the left-side sign rank test for both with each MMAE corresponding to the MMAE

in the second method. This was carried out in order to test that the MMAE of the

multiplicative is smaller than the MMAE of the 2D-LDA method. The results are as

follows in table 4.9. It can be seen that the multiplicative criterion is better than 2D-LDA

in extracting the second features for the case of integrating PI along CD in the training

stage. There are some improvements in the case of M+-CD-FGFv1 and M+-CD-FGFV 2
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for the multiplicative approach; while there is a less promising combination for the same

cases CD-FGFv1 and M+-CD-FGFV 2 for 2D-LDA.

Models p-value

M -SGFv1 0.62
M -FGFv1 0.37

M -SGFV 2 0.07
M -FGFV 2 0.05

M+-CD-SGFv1 0.89
M+-CD-FGFv1 0.55

M+-CD-SGFV 2 0.93
M+-CD-FGFV 2 0.00

Table 4.9: Left side sign rank test for both multiplicative and 2D-LDA methods

4.6.4 SVM and SVM+ for the multiplicative approach

The same experiments from Table 4.6 were repeated by SVM and SVM+ in Table

4.10. The misclassifications rates of GMLVQ were compared with the SVM and SVM+

approaches. In general, the obtained results agree with the previous findings that the

classification performance of GMLVQ/SVM+ is improved by incorporating fMRI (as

privileged information).

4.7 Conclusion

In this study, we employed GMLVQ classifiers to discriminate cognitive skills in MCI

patients vs. healthy controls using cognitive and/or fMRI data. Specially, we have adopted

a “Learning with privileged information (PI)” approach to combine cognitive and fMRI

data. In this setting, fMRI data as an addition to cognitive data are only used to train

GMLVQ classifier and classification of a new participant is solely based on cognitive

data. As the inputs to GMLVQ classifier, the cognitive features include working memory,
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Models Mean Std-Dev Median (25%, 75%) percentile

M -SGFv1 0.42 ± 0.12 0.42 ( 0.35, 0.49)
M -FGFv1 0.24 ± 0.11 0.23 ( 0.21, 0.30)

M -SGFV 2 0.38 ± 0.11 0.40 (0.30, 0.43)
M -FGFV 2 0.20 ± 0.11 0.21 (0.14,0.30)

M+-CD-SGFv1 0.37 ± 0.10 0.40 (0.30, 0.44)
M+-CD-FGFv1 0.39 ± 0.11 0.39 (0.31, 0.44)

M+-CD-SGFV 2 0.34 ± 0.11 0.36 (0.24, 0.44)
M+-CD-FGFV 2 0.37 ± 0.10 0.37 (0.29,0.46)

Table 4.10: MMAE results of extracting fMRI, v1 and V 2 = (v1, v2) by using SVM and
SVM+ classifiers.

cognitive inhibition, divided attention and selective attention scores. Also, we extracted

three different types of fMRI features from fMRI data as follows: PSC (percent signal

change), and SGF (spatially grouped graph feature) and (functionally grouped graph

feature).

We are well aware that our data is small and the reported results are indicative of

improvement of integrating PI over CD in the training stage. Of course, it would be better

if we had a larger data set (many more subjects). Our main question was whether fMRI

as PI can help CD. Indeed, the p-values showed that there is a statistically significant

improvement for the performances when PI is used in the training phase. We first tested

our baseline GMLVQ classifier with four cognitive features as inputs. Its classification

performance is measured by (25%, 75%) percentile of Macro-averaged Mean Absolute

Error (MMAE), that is, (0.32, 0.44). The best of the five fMRI GMLVQ classifiers (i.e.

the ones using the fMRI features as their inputs) yields a lower bound of classification

error, which is (0.16, 0.30). Interestingly, the best of the PI-guided GMLVQ classifiers (i.e.

the ones using the four cognitive features as their inputs and using the fMRI features as

privileged information) have achieved (0.26. 0.40). This seems to show that incorporating

fMRI features as privileged information may can significantly improve the classification

performance of a baseline GMLVQ classifier for classification of cognitive skills in MCI
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patients vs. controls.

Crucially, we have also performed “relevant feature analysis” for all three GMLVQ

classifiers: the baseline GMLVQ classifier, the best fMRI-guided GMLVQ classifier, and

the fMRI GMLVQ classifier. For the baseline classifier, “divided attention” is the only

relevant cognitive feature for the classification task. When the privileged information is

incorporated, divided attention remains the most relevant feature while cognitive inhibition

becomes also relevant. The above results may suggest that attention-rather than only

memory-plays an important role for the classification task. More interestingly, this analysis

for the fMRI GMLVQ classifier suggests that (1) among three ROIs used, the frontal

ROI seems to be the most relevant for the classification task; (2) when the PSC feature

as an overall measure of fMRI response to structured stimuli is used as the inputs to

the classifier, the post-training session seems to be the most relevant; and (3) when the

graph feature reflecting underlying spatiotemporal fMRI pattern is used, the pre-training

session seems to be the most relevant. Further analysis has indicated that training may

cause an overall increase of the brain activity only for MCI patients while it may have

“mitigated” the difference in brain connectivity pattern between MCI patients and healthy

controls. Moreover, these training-dependent changes seem to be the most significant for a

three-node sub-network in the frontal ROI. Taken together these results suggest that brain

connectivity before training and overall fMRI signal after training are both diagnostic of

cognitive skills in MCI.

The GMLVQ classifier was compared against SVM and SVM+, and the results were

sometimes better and sometimes worse; it seems that they are comparable to show that

fMRI as PI can help to learn the classifier over CD. Results were evaluated by utilizing a

paired Wilcoxon signed-rank test, and in both classifiers GMLVQ and SVM+, there are

statistically significant improvements in the cases of M+-CD-PI.

Our study employs machine learning algorithms to investigate the neurocognitive

factors and their interactions that mediate learning ability in Mild Cognitive Impairment.

Our work is not limited to developing and validating machine learning approaches; in
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contrast it advances our understanding of the neurocognitive mechanisms that mediate

learning in health and disease. For example, the role of cognitive inhibition in cognitive

profile classification seems to be significantly enhanced when brain imaging information

(obtained in a sequence learning prediction task) is provided as privileged information.

This opens questions about the possible interplay between circuits involved in cognitive

inhibition and those involved in learning sequence prediction tasks. We also observed

significant positive interplay between divided and selective attention when brain imaging

data is used as privileged information. No such interplay was detected without the

privileged information. Again, this raises interesting questions regarding circuitry involved

in sequence prediction and the two attention types.

This chapter also compared our methods (multiplicative and additive) with 2D-LDA

in extracting the second features and compared its miss-classification errors with the

extracted first feature. The reported results illustrate that extracting the second features

reduced the miss-classification errors.

4.8 Chapter Summary

In this chapter, we employed Generalised Matrix Learning Vector Quantization (GMLVQ)

classifiers to discriminate patients with Mild Cognitive Impairment (MCI) from healthy

controls based on their cognitive skills. Further, we adopted a “Learning with privileged

information” approach to combine cognitive and fMRI data for the classification task. The

resulting classifier operates solely on the cognitive data while it incorporates the fMRI

data as privileged information (PI) during training. This novel classifier is of practical

use as the collection of brain imaging data is not always possible with patients and older

participants.

MCI patients and healthy age-matched controls were trained to extract structure

from temporal sequences. We ask whether machine learning classifiers can be used

to discriminate patients from controls based on the learning performance and whether
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differences between these groups relate to individual cognitive profiles. To this end, we

tested participants in four cognitive tasks: working memory, cognitive inhibition, divided

attention, and selective attention. We also collected fMRI data before and after training on

the learning task and extracted fMRI responses and connectivity as features for machine

learning classifiers.

Our results show that the PI guided GMLVQ classifiers outperform the baseline classifier

that only used the cognitive data. In addition, we found that for the baseline classifier,

“divided attention” is the only relevant cognitive feature. When PI was incorporated,

divided attention remained the most relevant feature while cognitive inhibition became

also relevant for the task. Interestingly, this analysis for the fMRI GMLVQ classifier

suggests that (1) when overall fMRI signal for structured stimuli is used as inputs to the

classifier, the post-training session seems to be the most relevant; and (2) when the graph

feature reflecting underlying spatiotemporal fMRI pattern is used, the pre-training session

seems to be the most relevant. Further analysis reveals that for MCI patients, training

may alter brain activation level as well as local brain connectivity pattern. Taken together

these results may suggest that brain connectivity before training and overall fMRI signal

after training are both diagnostic of cognitive skills in MCI. Moreover, we compared our

methods (multiplicative and additive) with 2D-LDA to examine whether extracting the

second features can decrease miss-classification rates compared to extracting the first

features.
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CHAPTER 5

EXPERIMENTS ON SYNTHETIC DATA

5.1 Introduction

The use of synthetic data sets for validation purpose, rather than real data, is commonly

practiced in many research areas. Particularly, under circumstances where it is impossible

to acquire actual data, due to time, budget or privacy concerns, artificial data can be

used as a practical replacement. Synthetic data can be a good surrogate for real data,

especially since it offers a controlled testing environment that meets specific, well defined

conditions. This feature is very useful for proof of concept, purposes of verification or

simulation. The synthetic data is needed in this thesis because in our case the real data is

not readily available and the development of our algorithms was established before the

real data becomes available.

Recall that the greedy tensor LDA algorithm developed in this PhD work generates

discriminative features sequentially. When the newly generated feature cannot help further

improve the task performance, the feature-generating process can be terminated. If this

happened and the achievable performance remains low, we ask whether it is due to lack of

information in the data or it is because the greedy algorithm fails to extract the remaining

information hidden in the data. To answer this research question, it is absolutely necessary

to use synthetic data which is generated in a controlled manner.

In this chapter, we show how the synthetic second and third order tensor data is
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Figure 5.1: Pipeline scheme for the creation of the synthetic data.

constructed and we evaluate the performance of our methods using this data set. Addi-

tionally, we compare our method with the ORO method [43] that is also greedy tensor

LDA algorithm like the EGFE method that we proposed by applying both methods on

the same third order tensor data.

5.2 Synthetic Data Construction

Figure 5.1 depicts the pipeline of the data creation process. It illustrates in details how

we synthetically generate 2nd and 3rd order tensors datasets. The input required for

this process consists of the order of tensors, the dimensions of individual modes, and the

number of data samples.

Essentially, the data construction proceeds by selecting at random a set of rank-1

tensors, parameterized by a number of randomly generated parameter values, and using

some criterion to separate the generated tensors into two classes. The criterion is a

nonlinear condition on the parameter values. For all the data that was used in our

experiments, we set the dimension of all modes to d = 6. Notice that although the data

has very high dimension (d2 = 36 for order two tensors or d3 = 216 for order three tensors),

it is parameterized by a small number of parameters. The values of these parameters

are used to divide the data into classes using some nonlinear criterion. Therefore, these
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parameters should not be confused with the features extracted from the generated data.

Those features are used for classification using a linear classifier, whereas the true class

of the data depends in a nonlinear manner on the parameters that were used for data

generation.

The different data sets are named according the following convention: the set Dxy[C][F]

stands for a set of tensor data of order x and using y parameters. In our case x = 2, 3

and y = 2, 3. An optional additional character C is used to indicate some additional

properties of the data, as necessary to distinguish between different sets with the same x

and y values. An optional additional character is used to indicate a data set that includes

failures: F = O indicates data with overlapping and F = R indicates data with outliers.

5.2.1 Tensor data of order 2

Two parameters: the D22 data set

In this case, we generated a set of matrices G ∈ Rd×d by first choosing at random

four vectors X1, X2, X3, X4 ∈ Rd and then orthonormalising them with Gram-Schmidt

algorithm. Subsequently, the set of data is generated using the relation

G = aX1X
T
2 + bX3X

T
4 , (5.1)

where the parameters a and b are randomly generated using a Gaussian random number

generator with zero mean and unit variance. The boundary line between two classes in (a,

b)-plane is chosen to be of parabola shape. In case of b > a2, the corresponding matrix G

was labeled as Class 1, whereas those with b < a2 the matrix is labeled as Class 2.
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Three parameters: the D23 data set

In this case, six random and orthonormal vectors X1, X2, X3, X4, X5, X6 ∈ Rd were chosen

and the data was generated using the relation

G = aX1X
T
2 + bX3X

T
4 + cX5X

T
6 , (5.2)

where the three parameters a, b and c are randomly generated using a Gaussian random

number generator. The classification criteria was if a2− b2 > c, the matrix G was included

in Class 1, and otherwise in Class 2. Since the classification boundary in the a, b plane is

a hyperbola, we call the data generated in this way, the D23 set.

A data set with overlapping classes D23O was also generated by using the criterion

above only in case |a2 − b2 − c| > δov. Otherwise, if |a2 − b2 − c| ≤ δov, then the data is

included in Class 1 with probability p and in Class 2 with probability 1− p.

A data set with outlier classes D23R was also generated by adding a small proportion of

outliers to the original data set. An outlier is generated in the same way as described above

except the random numbers a, b and c are scaled in such a way that |c−a2− b2| > Moutlier.

Subsequently, the outlier data is labeled as Class 1 if a2 − b2 < c and as Class 2 if

a2 − b2 > c, which is the opposite criterion as the regular data. The number of outliers is

a small fraction poutlier ≪ 1 from the total number of data.

Two parameters with parameterized classification criterion: the D22C data
set

In the following, we describe a procedure that generates a population of rank-3 matrices with

two free parameters accounting for individual variability. For this purpose, six orthonormal

vectors X1, X2, X3, X4, X5, X6 ∈ Rdwere randomly generated. They were subsequently

used to construct three rank-1 matrices as follows: B1 = X1X
T
2 , B2 = X3X

T
4 and, B3 =

X5X
T
6 . Following this, two rank-2 matrices were constructed by BA = w1B1 + w2B2 and

BB = w2B2 + w3B3 where w1, w2, and w3 are randomly chosen real numbers but kept
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fixed for the experiment. Finally, the data, that is, rank-3 matrices, were generated as

follows: G = aBA+ bBB where a and b are the two free parameter. Next, we describe

how two classes of rank-3 matrices are defined. It is done via definition of two classes

of points (a, b) in a two-dimensional plane. First, we generate a number of (a, b) pairs

by sampling from a two-dimensional isotropic Gaussian distribution with some variance

parameter σ2. The points are to be divided into two groups through a smooth curve on

the plane, that is, a2− b2 = c where c denotes some curve parameter. Concretely speaking,

the rank3-matrices are labelled as Class 1 when their corresponding a and b is subject

toa2 − b2 > c,and vice versa. This data set is referred to as D22C because (1) two free

parameters were used to specify individual rank-3 matrices; and (2) they were partitioned

into two classes.

5.2.2 Tensor Data of order 3

To illustrate the capacity of the proposed method for higher order tensor data, we generate

a few data sets with third order tensor data. This case was sufficient to demonstrate the

main salient points of our method so data of order higher than three was not considered.

Three parameters: the D33 data set

In this case, six random and orthonormal vectors X1, X2, X3, X4, X5, X6, X7, X8, X9 ∈ Rd

were chosen and the data was generated using the relation

G = aX1 ◦X2 ◦X3 + bX4 ◦X5 ◦X6 + cX7 ◦X8 ◦X9, (5.3)

where the three coefficients a, b and c are randomly generated using a Gaussian random

number generator. The boundary surface between the two classes in Three space (a, b, c)

is chosen to be of hyperbolic paraboloid. Accordingly, we label (a, b, c) with a2 − b2 > c

as Class 1 and those with a2 − b2 < c as Class 2.

A data set with overlapping classes D33O was also generated by using the criterion
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above only in case |c− a2 − b2| > δov. Otherwise, if |c− a2 − b2| ≤ δov, then the data is

included in Class 1 with probability p and in Class 2 with probability 1− p.

A data set with outlier classes D33R was also generated by adding a small proportion of

outliers to the original data set. An outlier is generated in the same way as described above

except the random numbers a, b and c are scaled in such a way that |c−a2− b2| > Moutlier.

Subsequently, the outlier data is labeled as Class 1 if a2 − b2 < c and as Class 2 if

a2 − b2 > c, which is the opposite criterion as the regular data. The number of outliers is

a small fraction poutlier ≪ 1 from the total number of data.

5.3 Graph Models

To further validate our greedy feature extraction algorithm, we also generated a “random

graph” dataset with two explicitly defined classes of random graph.

The graph considered here (say Gr) consists of 16 nodes. Each of these 16 nodes is

represented by a point in a two-dimensional plane. Let’s denote this point pattern by

G = {Gi : i = 1, ..., 16}. Moreover, G is arranged as a 4 × 4 lattice grid within the unit

square [01]× [01]. That is,

G1
i = .... and G2

i = ....

Mathematically, this graph is described by a weight matrix (say W ) of size 16 × 16 where

Wij represents the connection strength between node i and node j.

To define a graph structure on G, we randomly generate a (irregular) point pattern of

size N over the unit square (say point pattern X = {X1, ..., XN}). These points could

be generated uniformly over the unit square or otherwise. To define a graph structure,

however, we impose the assumption that any point in X could be generated by a two-

dimensional Gaussian distribution with mean vector µ and some covariance matrix Σ

where µ must be one of 16 points in G. Accordingly, we compute the posterior probability
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of Xi being sampled from N (Gk,Σ) as follows:

p(Gk|Xi) =
N (Xi;Gk,Σ)∑k=16
k=1 N (Xi;Gk,Σ)

This results in a N -dimensional probability vector for Gk, that is

pGk = [p(Gk|X1), ..., p(Gk|XN)]ᵀ

Finally, we define the connectivity strength between node i and j by

Wij = pᵀ
Gi

pGj

To define two distinct classes of Ss and thus those of W s, we introduce two distinct

procedure to generate random pattern X. Instead of generating X uniformly over the unit

square, we generate it uniformly over the upper-left corner of the unit square for class 1

and over the lower-right corner for class 2. Alternatively, we can generate X for class 1 by

sampling N points from a two-dimensional Gaussian distribution with its mean vector

located in the upper-left corner and that for class 2 with the mean vector located in the

lower-right corner.

5.4 Numerical Results

For each test performed and reported in the sequel, we extracted sequentially three features

based on the training data. Subsequently, the extracted data is used with a Generalized

Matrix Learning Vector Quantization (GMLVQ) classifier is used as classification tool

(explained in details in previous Chapter 4.3.2) to examine classification performance. The

three extracted features are denoted by v1, v2, and v3 in the order how they were generated

by the greedy procedure. With the extracted features, data classification proceeds first

based on a single feature v1, on a two dimensional feature vector V 2 = (v1, v2) or based
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on a three dimensional vector V 3 = (v1, v2, v3).

In this work, classification performance is measured by Macroaveraged Mean Absolute

Error, which a macroaveraged version of Mean Absolute Error and it is a weighted sum

of the classification errors across classes [37]. It measures the per-class accuracy of class

predictions ŷ with respect to true class y on a test set. In the case of two classes as we

considered in this work MMAE = 1
2

(∑
yi=1 |yi−ŷi|

N1
+

∑
yi=2 |yi−ŷi|

N2

)
, where N1 and N2 is the

number of test points in class 1 and 2, respectively.

5.4.1 Performance of the EGFE method on regular data

Figures 5.2 and 5.3 display those three that were features extracted from the order-2 and

order-3 tensor data described above (respectively). The three features are denoted by

v1, v2, and v3 in the order how they were generated in a greedy procedure. In each of

these two figures, we display clouds of feature vectors V 2 = (v1, v2) for Class 1 (in Blue)

and Class 2 (in Red) on the upper-left panel and those of V 3 = (v1, v2, v3) from three

different view angles on the remaining panels. These figures visualise how the two classes

are separated in the place of (v1, v2) or (v1, v2, v3). For the case of using single feature

v1, separation of Class 1 and 2 can be visualised by projecting the data points in the

upper-left panels onto the x-axis. For both order-2 and order-3 tensor data, it seems that

class separation improves does improve by inclusion of additional discriminative features.

This motivates us to check whether we can obtain the counterpart of this observation in

classification performance, Generalized Matrix Learning Vector Quantization (GMLVQ)

classifier is used as classification tool (explained in details in previous Chapter Section

4.3.2).

Table 5.1 summarizes the classification results obtained from our numerical experiment.

Columns 2 and 3 in Table 5.1 display the mean miss-classification error and its standard

deviation that were obtained from 50 independently generated tensor data sets. For

both order-2 and order-3 tensor data, it is observed that the mean errors decrease with

increasing number of the discriminative features. Next, we check whether this trend is
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Figure 5.2: Two and three features extracted from order-2 tensors in data set D23, the
upper-left panel is when we have only v1 and V 2 of order-2 tensors. The upper-right panel
is v1 axis of order-2 tensors, the lower-left panel is V 2 axis of order-2 tensors and the
lower-right panel is V 3 axis of order-2 tensors.

statistically significant by testing two following hypotheses: (1) MMAE obtained from v1

is greater that those from V 2; (2) MMAE obtained from V 2 is greater that those from V 3.

For this purpose, one-sided rank test is employed. Table 5.2 and 5.3 show that for both

order-2 and order-3 data, the p-values are close to the commonly used threshold (that is,

p = 0.01) and they decrease with inclusion of additional discriminative features.

In this numerical experiment, we generated synthetic tensors which are uniquely

identified by two or three features (that is, the coefficients used for generating tensors

by linear combination of fixed orthogonal rank-1 tensors). Based on these features, we

further define two classes of those tensors in such way that the number of features can

not be reduced by LDA without compromising classification performance. Our numerical
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Figure 5.3: Two and three features extracted from order-3 tensors in data set D33, the
upper-left panel is when we have only v1 and V 2 of order-3 tensors. The upper-right panel
is v1 axis of order-3 tensors, the lower-left panel is V 2 axis of order-3 tensors and the
lower-right panel is V 3 axis of order-3 tensors.

experiments show that to achieve the best possible classification performance, we need

(at least) three discriminatively extracted features. This is consistent with the setup of

our experiment. Therefore, greedy feature extraction algorithm works in the way as we

designed.

5.4.2 Performance of the EGFE method on data with overlap-
ping

We examined how the performance of the EGFE method is degraded when the level of

data overlapping increases, as specified by the parameter δov. In all cases, the probability

of the data in the overlapping region of being in each of the classes is equal i.e. p = 0.5.
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Data set Models Mean Std-Dev Median (25%, 75% percentile)

D23 SOTv1 0.23 ± 0.04 0.23 (0.21 , 0.27)
D23 SOTV 2 0.22 ± 0.03 0.22 (0.21 , 0.25)
D23 SOTV 3 0.21 ± 0.03 0.2 (0.19 , 0.22)

D33 TOTv1 0.22 ± 0.02 0.21 (0.20 , 0.24)
D33 TOTV 2 0.20 ± 0.03 0.2 (0.20 , 0.23)
D33 TOTV 3 0.18 ± 0.02 0.18 (0.17 , 0.20)

Table 5.1: Macroaveraged Mean Absolute Error (MMAE) performance for extracting one,
two or three data features from data sets D23 and D33 using the EGFE method based on
the multiplicative cost criterion.

Models p-value
SOTv1 > SOTV 2 0.14
SOTv1 > SOTV 3 0.06

Table 5.2: One side sign rank test of order-2 tensors multiplicative approach for the case
of data set D23.

Models p-value
TOTv1 > TOTV 2 0.08
TOTv1 > TOTV 3 0.06

Table 5.3: One side sign rank test of order-3 tensors of multiplicative approach for the
case of data set D33.

The results are shown in Table 5.4 for δov = 0.5, in Table 5.5 for δov = 0.6 and in Table

5.6 for δov = 0.8. Comparing the data in these tables, it is obvious that the performance

is becoming worse as the degree of overlapping increases, as it was expected. However for

δov = 0.5 and 0.6, the performance increases as more features are extracted. In contrast,

for δov = 0.8, the performance does not improve as more features are extracted, but

actually degrades slightly. This means that for this degree of overlapping, the greedy

feature extraction method stops working.
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Data set Models Mean Std-Dev Median (25%, 75% percentile)

D23O SOTv1 0.26 ± 0.03 0.27 (0.23 , 0.29)
D23O SOTV 2 0.25 ± 0.03 0.24 (0.22 , 0.30)
D23O SOTV 3 0.23 ± 0.03 0.23 (0.22 , 0.29)

D33O TOTv1 0.25 ± 0.02 0.25 (0.22 , 0.29)
D33O TOTV 2 0.23 ± 0.02 0.22 (0.20 , 0.28)
D33O TOTV 3 0.21 ± 0.02 0.21 (0.20, 0.24)

Table 5.4: Macroaveraged Mean Absolute Error (MMAE) performance for extracting one,
two or three data features from data sets with overlapping: δov = 0.5, p = 0.5.

Data set Models Mean Std-Dev Median (25%, 75% percentile)

D23O SOTv1 0.30 ± 0.02 0.30 (0.28 , 0.33)
D23O SOTV 2 0.28 ± 0.02 0.29 (0.25 , 0.31)
D23O SOTV 3 0.25 ± 0.03 0.26 (0.22 , 0.30)

D33O TOTv1 0.30 ± 0.02 0.29 (0.30 , 0.36)
D33O TOTV 2 0.25 ± 0.02 0.25 (0.24 , 0.29)
D33O TOTV 3 0.23 ± 0.03 0.24 (0.23, 0.27)

Table 5.5: MMAE performance for extracting one, two or three data features from data
sets with overlapping: δov = 0.6, p = 0.5.

Data set Models Mean Std-Dev Median (25%, 75% percentile)

D23O SOTv1 0.41 ± 0.02 0.42 (0.41 , 0.45)
D23O SOTV 2 0.42 ± 0.02 0.42 (0.42 , 0.45)
D23O SOTV 3 0.42 ± 0.04 0.43 (0.41 , 0.47)

D33O TOTv1 0.42 ± 0.02 0.41 (0.40 , 0.43)
D33O TOTV 2 0.39 ± 0.03 0.39 (0.36 , 0.41)
D33O TOTV 3 0.40 ± 0.02 0.41 (0.36 , 0.42)

Table 5.6: MMAE performance for extracting one, two or three data features from data
sets with overlapping: δov = 0.8, p = 0.5.

5.4.3 Performance of the EGFE method on data with outliers

Some peformance results for data with outliers are reported in Tables 5.7 and 5.8. It can

be seen that the results are worse than those in Table 5.1 which means that the presence of

outliers does effect the performance. However, increasing the number of features improves

the classification performance.
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Data set Models Mean Std-Dev Median (25%, 75% percentile)

D23R SOTv1 0.28 ± 0.03 0.28 (0.24 , 0.32)
D23R SOTV 2 0.27 ± 0.02 0.26 (0.24 , 0.30)
D23R SOTV 3 0.24 ± 0.02 0.24 (0.20 , 0.26)

D33R TOTv1 0.26 ± 0.03 0.25 (0.25, 0.34)
D33R TOTV 2 0.24 ± 0.03 0.24 (0.20, 0.25)
D33R TOTV 3 0.23 ± 0.02 0.22 (0.20, 0.26)

Table 5.7: MMAE performance for extracting one, two or three data features from data
sets with outliers with Moutier = 0.8, poutlier = 0.04.

Models Mean Std-Dev Median (25%, 75% percentile)

D23R SOTv1 0.31 ± 0.02 0.30 (0.30 , 0.35)
D23R SOTV 2 0.27 ± 0.02 0.27 (0.25 , 0.32)
D23R SOTV 3 0.25 ± 0.03 0.25 (0.23 , 0.31)

D33R TOTv1 0.30 ± 0.02 0.30 (0.29, 0.35)
D33R TOTV 2 0.26 ± 0.02 0.26 (0.23 , 0.30)
D33R TOTV 3 0.25 ± 0.02 0.25 (0.20, 0.26)

Table 5.8: MMAE performance for extracting one, two or three data features from data
sets with outliers with Moutier = 0.8, poutlier = 0.2.

5.4.4 Performance of the EGFE method on data parameterized
classification criterion

The test results on data set D22C is reported in Table 5.9. The corresponding results

for the data set with overlapping D22CO are reported in Table 5.10. In the former case,

extracting more than one features does improve performance. By contrast, in the latter

case, the second and third features hardly improve performance even as the overlapping

degree was smaller that that considered before.

Data set Models Mean Std-Dev Median (25%, 75% percentile)

D22C SOTv1 0.39 ± 0.02 0.40 (0.39 , 0.41)
D22C SOTV 2 0.36 ± 0.02 0.36 (0.36 , 0.39)
D22C SOTV 3 0.35 ± 0.01 0.35 (0. 34, 0.37)

Table 5.9: MMAE performance for extracting one, two or three data features from data
set D22C.
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Data set Models Mean Std-Dev Median (25%, 75% percentile)

D22CO SOTv1 0.39 ± 0.04 0.41 (0.37 , 0.43)
D22CO SOTV 2 0.38 ± 0.02 0.37 (0.36 , 0.41)
D22CO SOTV 3 0.38 ± 0.02 0.38 (0.35 , 0.4)

Table 5.10: MMAE performance for extracting one, two or three data features from data
set D22CO, with δov = 0.5 p = 0.5.

5.4.5 Performance of the EGFE method on graph data model

We generated point pattern X for class 1 by sampling N points from a two-dimensional

Gaussian distribution with its mean vector located in the upper-left corner and that for

class 2 with the mean vector located in the lower-right corner.

The width of Gaussian distribution for class 1 was chosen to be 0.4, while it is 0.6 for

class 2, to have some overlapping between the two classes, and the dimension of random

graph set to d = 16. The test results on data graph data set Gr is reported in Table

5.11. By comparing V 2 and V 3 with v1, we can see that V 2 does not improve the results,

while V 3 roughly improves it. The classification performance is measured by (25%, 75%)

percentile of Macro-averaged Mean Absolute Error (MMAE), that is, (0.01, 0.03) for v1,

but it yields a lower bound of classification error, which is (0.00, 0.01) for V 3.

Data set Models Mean Std-Dev Median (25%, 75% percentile)

Gr SOTv1 0.01 ± 0.01 0.02 (0.01 , 0.03)
Gr SOTV 2 0.03 ± 0.03 0.01 (0.01 , 0.03)
Gr SOTV 3 0.00 ± 0.00 0.00 (0.00 , 0.01)

Table 5.11: MMAE performance for extracting one, two or three data features from data
set Gr.

5.4.6 Comparison of the EGFE method with the ORO method

Also, we compare the classification performance between ORO [43] (explained in Chapter

2 Section 2.6) and our method in the case of the order-3 tensor data. Table 5.12 and 5.13

show that both methods achieve comparable results. For technical details of ORO method,
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we refer to [43].

Recall that our method adopted a simple approach to conditioning successive greedy

steps on the proceeding steps whereas this is achieved in ORO by constraining the orthog-

onality between the successive projecting vectors. The above experiments demonstrate

that our simple method can achieve results which are comparable with those from ORO

although it is conceptually and practically simpler.

Data set Models Mean Std-Dev Median (25%, 75% percentile)

D33 TOTv1 −ORO 0.22 ± 0.02 0.22 (0.20 , 0.25)
D33 TOTV 2 −ORO 0.20 ± 0.02 0.20 (0.19 , 0.23)
D33 TOTV 3 −ORO 0.19 ± 0.02 0.19 (0.18 , 0.20)

Table 5.12: MMAE results of extracting synthetic data features, TOT for features (v1, V 2
and V 3) of ORO method in the case of data set D33.

Models p-value
TOTv1 −ORO > TOTv1 0.25
TOTv1 −ORO < TOTv1 0.91
TOTV 2 −ORO > TOTV 2 0.74
TOTV 2 −ORO < TOTV 2 0.50
TOTV 3 −ORO > TOTV 3 0.14
TOTV 3 −ORO < TOTV 3 0.96

Table 5.13: One side sign rank test of order-3 tensors of classification errors between ORO
approach and our multiplicative approach for the case of data set D33.

5.5 Conclusion

As real data was not available in time for testing our feature extraction method, we needed

to construct synthetic data that can be conveniently used to test and validate the method

and its software implementation. Simple algebraic criteria were used to split the data

between the two classes and we have shown how separation between classes is improved

by the extraction of more features. Results of tensors of order four and more were not

included. Testing of the EGFE method on such data is easily done, but has not delivered

qualitatively different results. After feature extraction, the reduced data was classified
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using a GMVLQ classifier. The statistical performance tests have confirmed the intuitive

picture provided by the graphical representation of the data. Further, the EGFE method

was tested on synthetic data displaying realistic features such as overlapping and outliers

classes. As the performance degraded as expected, the performance loss was moderate and

proportional to the “failures” that were introduced in the data. Moreover, more realistic

data were generated by random graph dataset, the results show that extracting the third

features can improve the classification. Also, the performance of the EGFE method was

compared with the performance of the ORO method, as an alternative greedy feature

extraction method that was proposed in the literature. The results show very comparable

performance, although our method is less complex since it does not require orthogonality

constraints for the feature generating vector sets.

5.6 Chapter Summary

In order to test our method for feature extraction, we use primarily synthetic data. This

chapter presents the process of creating this data for the case of second and third order

tensors. A few numerical examples are worked out through the data extraction phase and

the subsequent classification phase using a GMLVQ classifier. The performance of the

EGFE method was compared with the performance of the ORO method, as an alternative

greedy feature extraction method that was proposed in the literature. The classification

performance is evaluated using statistical tests.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

Two contributions to advance machine learning were presented in this thesis. The first

contribution is development of an efficient method for the greedy approach to tensor LDA.

This is of particular relevance for classification of higher-order tensor data. The second

contribution is the development of a diagnostic tool for early detection of dementia. This

tool is of practical relevance as it can potentially boost the predictive performance through

using costly privileged data in the training phase.

The method for feature extraction proposed in this thesis is referred as Efficient Greedy

Feature Extraction (EGFE) and is a new development in Multilinear Discriminant Analysis

as well as in discriminative feature extraction. All LDA methods are based on the idea

of maximizing a Fisher-type criterion to obtain a reduced set of features. In contrast to

other methods in the literature (see Chapter 2 for a detailed survey of such methods),

our method extracts features sequentially and without unnecessary constraints. In a

non-greedy LDA, all columns of the projection matrix need to be optimized jointly. In a

greedy approach, however, this optimization task is reduced to a series of smaller ones

that just optimizes the corresponding column of that projection matrix alone. Also, the

greedy approach allows us to generate an additional feature only when it is needed. The

Fisher optimization criterion can be either of multiplicative type, in which case, it is the
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ratio of the interclass variance and the sum of intraclass variances, or it can be of additive

type, in which case, it is the weighted difference between the two. The EGFE method can

be applied in both cases and formulas were derived for the iterations of the optimization

algorithm in each case.

The EGFE method is validated by numerical experiments using real data. For the

early diagnosis of dementia disease, the techniques proposed in this thesis is a classifier

equipped with “Learning with privileged information” component. The inputs to the base

classifiers (that are, GLMVQ and SVM+ classifiers) is cost-effective cognitive scores while

the discriminative features derived from expensive fMRI data were used as the privileged

information. Note that the privileged information, which is fMRI feature in this work,

is used only during the training of the classifier. The testing of the classifier is based

on cognitive scores, as it is supposed to perform in practice. The fMRI features used

include PSC (percent signal change), and SGF (spatially grouped graph feature) and FGF

(functionally grouped graph feature). The input of the GMLVQ classifier consists are the

cognitive scores is comprised of working memory, cognitive inhibition, divided attention

and selective attention scores. The working of the algorithm is as follows: fMRI data is

used to adapt the metric for the input data. Intuitively, if two cognitive test scores, which

are the input of the classifier, appear to be “similar”, but the corresponding fMRI data is

different, the metric used to compare the input data is adapted such that the distance

between the two test scores is increased. Alternatively, if two cognitive scores appear to be

different, but the corresponding fMRI data is close, the input data metric is adapted such

that the distance between the two test scores is decreased. In this way, the learning phase

constructs an input metric tensor that effectively determines the most relevant cognitive

test features. The input of the SVM+ classifier is the same as the GMLVQ classifier. The

using of fMRI data is to estimate a slack variable model for the SVM+ classifier.

It is well understood that the data set that we had at our disposal is relatively small and

therefore the reported results are only indicative of the potential of using PI in improving

CD at the training stage. Of course, a larger data set would offer better validation of this
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hypothesis. However, the reported results using p-values indicate statistically significant

performance improvement in the case that PI was used in the training phase with respect

to the baseline.

The results of the numerical experiments that we report in the thesis show that the use

of fMRI feature data as privileged information can significantly improve the performance

of the GMLVQ/SVM+ classifiers over the baseline classifiers that do not use privileged

information for training.The numerical experiments show that GMLVQ has a slightly

smaller misclassification error compared to SVM+, thus, we did the analysis for GMLVQ

classifiers. We have conducted a “relevant feature analysis” for three different GMLVQ

classifiers: the baseline GMLVQ classifier, the best fMRI-guided GMLVQ classifier, and the

fMRI GMLVQ classifier. For the baseline classifier, “divided attention” is the only relevant

cognitive feature for the classification task. When privileged information is incorporated,

divided attention remains the most relevant feature while cognitive inhibition becomes

also relevant. The above results suggest that attention, rather than only memory, plays

an important role for the diagnosis task. More interestingly, the analysis of the fMRI

GMLVQ classifier suggests three conclusion. First, among three ROIs used, the frontal

ROI seems to be the most relevant for the classification task. Secondly, the PSC feature

as an overall measure of fMRI response to structured stimuli is used as the inputs to

the classifier, the post-training session seems to be the most relevant. Finally, when the

graph feature reflecting underlying spatiotemporal fMRI pattern is used, the pre-training

session seems to be the most relevant. Further analysis has indicated that training may

cause an overall increase of the brain activity only for MCI patients while it may have

“mitigated” the difference in brain connectivity pattern between MCI patients and healthy

controls. Moreover, these training-dependent changes seem to be the most significant for

a three-node sub-network in the frontal ROI. Taken together these results suggest that

brain connectivity before training and overall fMRI signal after training are both relevant

for the diagnostic of cognitive skills in MCI.

The EGFE method is also validated by numerical experiments using the synthetic
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second- or third-order tensor data. For both higher-order cases, the synthetic data were

generated by linear combination of three orthogonal rank-1 tensors. It is expected that for

these synthetic data, the classification performance increases with the increasing number

of the extracted features, indeed, our experiments have verified this conjunction for the

third-order case. Furthermore, we compared our greedy method with the ORO method, a

greedy tensor LDA method from the literature. The both methods differ in the way how

they condition each iteration step on all steps proceeding it. Compared to ORO, they are

comparable and our method did yield lower classification error with statistical significance.

Furthermore, the method applied to more realistic higher-order tensor synthetic data (e.g.

overlapping and failure mode cases), and the classification performance increases with the

increasing the number of the extracted features. However, the missclassifications error is

higher than the cases when pure synthetic data were used, that shows overlapping, outliers

and failure modes were degraded as expected, comparing to the performance of the pure

synthetic data.

The work reported in this part of the thesis uses machine learning algorithms to

investigate the neurocognitive factors and their interactions that mediate learning ability

in Mild Cognitive Impairment. However, it is is not limited to developing and validating

machine learning approaches, but it also advances our understanding of the neurocognitive

mechanisms that mediate learning in health and disease. For example, the role of cognitive

inhibition in cognitive profile classification seems to be significantly enhanced when brain

imaging information (obtained in a sequence learning prediction task) is provided as

privileged information.

6.2 Future Work

One of the immediate directions for pursuing the work presented in this theses is to extend

the EGFE method to the case of multiple classes. We have treated here only the case

of binary classification. However, the Fisher type criteria for multiple classes, both the
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multiplicative as the additive form, are well known in literature, and the EGFE method can

be relatively easily extended to deal with those criteria in order to extract discriminating

features for a multiple class classification task.

The most important and challenging directions for future investigation are in the area

of applications, especially interdisciplinary applications. The development of the numerical

tools for dealing with large and complex data has to be guided by the requirements from

practical applications. Therefore, future work will address the application of the methods

developed in this thesis to further complex data sets such as fourth-order tensor data, for

example, depicting fMRI scan sequences in brain mapping research [99]. This is a 4D

object with four modes: three spatial modes (column, row, and depth) and one temporal

mode.

An interesting area of investigation both from theoretical and practical aspects is the

extension of the data reduction EGFE method proposed in this thesis to nonlinear data

analysis. As explained in Section 2.4, the kernel technique has been successfully used in

nonlinear discriminant analysis before. However, this was only done for vector data and

never for data organized as higher order tensors. Finding efficient ways to determine a

nonlinear map in order to improve performance for the case of higher order tensor data

remains a challenge for the future.
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[7] C. Bauckhage, T. Käster, and J. K. Tsotsos. Higher order separable LDA using
decomposed tensor classifiers.

[8] M. Belahcene, M. Laid, A. Chouchane, A. Ouamane, and S. Bourennane. Local
descriptors and tensor local preserving projection in face recognition. In Visual
Information Processing (EUVIP), 2016 6th European Workshop on, pages 1–6. IEEE,
2016.

[9] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigenfaces vs. fisherfaces:
Recognition using class specific linear projection. IEEE Transactions on pattern
analysis and machine intelligence, 19(7):711–720, 1997.

128



[10] J. C. Bezdek and R. J. Hathaway. Some notes on alternating optimization. In AFSS
International Conference on Fuzzy Systems, pages 288–300. Springer, 2002.

[11] C. M. Bishop. Pattern recognition. Machine Learning, 128:1–58, 2006.

[12] C. J. Burges et al. Dimension reduction: A guided tour. Foundations and Trends R©
in Machine Learning, 2(4):275–365, 2010.

[13] C. Carpineto and G. Romano. Consensus clustering based on a new probabilistic rand
index with application to subtopic retrieval. IEEE Trans Pattern Anal, 34(12):15–26,
2012.

[14] E. Challis, P. Hurley, L. Serra, M. Bozzali, S. Oliver, and M. Cercignani. Gaussian
process classification of Alzheimer’s disease and mild cognitive impairment from
resting-state fMRI. NeuroImage, 112:232–243, 2015.

[15] R. Chellappa, A. K. Roy-Chowdhury, and S. K. Zhou. Recognition of humans
and their activities using video. Synthesis Lectures on Image, Video & Multimedia
Processing, 1(1):1–173, 2005.

[16] B. Chen, M. Liu, D. Zhang, and D. Shen. Domain transfer learning for mci conversion
prediction. IEEE Transaction on Biomedical Engineering, 62:232–243, 2015.

[17] H.-T. Chen, T.-L. Liu, and C.-S. Fuh. Learning effective image metrics from few
pairwise examples. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International
Conference on, volume 2, pages 1371–1378. IEEE, 2005.

[18] L.-F. Chen, H.-Y. M. Liao, M.-T. Ko, J.-C. Lin, and G.-J. Yu. A new LDA-based
face recognition system which can solve the small sample size problem. Pattern
recognition, 33(10):1713–1726, 2000.

[19] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–297,
1995.

[20] I. Davidson, S. Gilpin, O. Carmichael, and P. Walker. Network discovery via
constrained tensor analysis of fMRI data. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 194–202.
ACM, 2013.

129



[21] J. Davis, B. Kulis, P. Jain, S. Sra, and I. Dhillon. Information-theoretic metric
learning. in Proceedings of the 24th International Conference on Machine Learning,
ser. ICML 07. New York, NY, USA: ACM, pages 209–216, 2007.

[22] L. De Lathauwer, B. De Moor, and J. Vandewalle. On the best rank-1 and rank-(r 1,
r 2,..., rn) approximation of higher-order tensors. SIAM journal on Matrix Analysis
and Applications, 21(4):1324–1342, 2000.

[23] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

[24] A. Diaf, B. Boufama, and R. Benlamri. Non-parametric fishers discriminant analysis
with kernels for data classification. Pattern recognition letters, 34(5):552–558, 2013.

[25] B. Dickerson, D. Salat, D. Greve, E. Chua, E. Rand-Giovannetti, D. Rentz,
L. Bertram, K. Mullin, R. Tanzi, D. Blacker, et al. Increased hippocampal ac-
tivation in mild cognitive impairment compared to normal aging and ad. Neurology,
65(3):404–411, 2005.

[26] J. Duchene and S. Leclercq. An optimal transformation for discriminant and
principal component analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 10(6):978–983, 1988.

[27] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. 2nd. Edition. New
York, page 55, 2001.

[28] A. dAspremont, F. Bach, and L. E. Ghaoui. Optimal solutions for sparse principal
component analysis. Journal of Machine Learning Research, 9(Jul):1269–1294, 2008.

[29] S. A. Elrahman and A. Abraham. A review of class imbalance problem. Journal of
Network and Innovative Computing, 1(ISSN 2160-2174):332–340, 2013.

[30] C. Faloutsos, T. G. Kolda, and J. Sun. Mining large time-evolving data using matrix
and tensor tools. In ICDM Conference, volume 565, 2007.

[31] Y. Fan, D. Shen, and C. Davatzikos. Detecting cognitive states from fMRI images by
machine learning and multivariate classification. In Computer Vision and Pattern
Recognition Workshop, 2006. CVPRW’06. Conference on, pages 89–89. IEEE, 2006.

130
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Figure 3.2: Reduction of tensor data to vector data using the feature generating vector
sets that were determined by the proposed supervised learning process.

the classes is measured by the total squares variation. In order to reduce this simultaneous

maximize-minimize problem to a single optimization problem, we use two conventional

approaches . The first is the multiplicative approach that attempts at maximizing the ratio

of the two quantities. The second is the additive approach that attempts to maximizing a

weighted difference between the two quantities. In each case, maximization will tend to

maximize the numerator, respectively the positive term, and minimize the denominator,

respectively, the negative term. We will choose the one that works better.

In both cases, the data reduction algorithm reduces to a succession of optimization

problems that can be solved in principle by any numerical algorithm. In this chapter, we

clarify the implementation of these algorithms using gradient ascent, and therefore it is

essential to derive the expression of the gradients of the optimization criterion with respect

to the elements of the feature generating vectors. More details about the implementation

of the optimization algorithms are presented in Section 3.5.

3.2 Multiplicative Criterion Case

As explained before, the training process has two parts. The first part consists of deter-

mining the first set of feature generating vectors and solves the following optimization
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Figure 5.1: Pipeline scheme for the creation of the synthetic data.

constructed and we evaluate the performance of our methods using this data set. Addi-

tionally, we compare our method with the ORO method [43] that is also greedy tensor

LDA algorithm like the EGFE method that we proposed by applying both methods on

the same third order tensor data.

5.2 Synthetic Data Construction

Figure 5.1 depicts the pipeline of the data creation process. It illustrates in details how

we synthetically generate 2nd and 3rd order tensors datasets. The input required for

this process consists of the order of tensors, the dimensions of individual modes, and the

number of data samples.

Essentially, the data construction proceeds by selecting at random a set of rank-1

tensors, parameterized by a number of randomly generated parameter values, and using

some criterion to separate the generated tensors into two classes. The criterion is a

nonlinear condition on the parameter values. For all the data that was used in our

experiments, we set the dimension of all modes to d = 6. Notice that although the data

has very high dimension (d2 = 36 for order two tensors or d3 = 216 for order three tensors),

it is parameterized by a small number of parameters. The values of these parameters

are used to divide the data into classes using some nonlinear criterion. Therefore, these
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