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Abstract

Methods to Increase Efficiency in Clinical Trials with Restricted Sample Size

by Kristian BROCK

Efficiency is a perennial motivation of statistical analysis and clinical trials. This is

most pertinent when sample size is constrained. When trials and their analyses are

more efficient, results can be more precise, can be disseminated quicker, and impact

the clinical pathway faster.

This thesis describes methods developed and investigated by the author in three

trials at the Cancer Research UK Clinical Trials Unit. Methods for seamless phase

I/II trials that conduct dose-finding by efficacy and toxicity outcomes are studied.

A repeated measures analysis in an ultra-rare disease yields a feasible trial where

standard approaches do not. Finally, this thesis develops methods for a phase II trial

with co-primary outcomes and predictive covariate information.

We conclude that two common goals to increase efficiency are: i) use more out-

comes to answer trial questions; and ii) use all available information. In our exam-

ples, analysing efficacy and toxicity in dose-finding lets these trials simultaneously

achieve phase I and II objectives. However, this thesis highlights operational is-

sues that can impair efficiency. We show that statistical performance is improved

by analysing the information in repeated measures and predictive baseline covari-

ates. Methods developed herein help to achieve conventional error rates without

prohibitive increases in sample size.
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two most reliable diversions, Isabella (aged four) and Elodie
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thing we have, and that we are never poorer for knowing a
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Chapter 1

Introduction

1.1 Aims of this thesis

There are instances in clinical trials where innovative or uncommon methods are

used to increase efficiency, particularly when the feasible sample size is smaller than

would generally be desirable. This thesis describes in detail a number of methods

that have been used and developed by the author in three clinical trials at the Cancer

Research UK Clinical Trials Unit of the University of Birmingham.

In this section, we proceed with a brief introduction to clinical trials. We define

efficiency in this scientific context, elaborating on the significance of a restricted sam-

ple size. We then give a brief overview of the chapters in this thesis, highlighting the

novel elements of each.

1.2 Clinical trials

Clinical trials are medical experiments on human subjects. They are generally se-

quential in nature, with treatments typically passing through trials at phases I, II

and III before being accepted as part of the standard of care. The collective aim is to

learn about clinical interventions so that the conditions that impair our health may

be treated and the overall health of the population may be maintained or improved.

The objectives of the individual trial phases are specialised to reflect that this oner-

ous task is tackled in stages. The trial phases are not particularly well defined, so

considerable heterogeneity is seen. However, a generally accepted pathway to mar-

ket authorisation for a drug could be described as follows.
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Pre-clinical and animal studies yield information on the range of doses that might

be tolerable and active in humans. The typical objective of a phase I trial is to select

from this dose range the most attractive dose for further investigation in subsequent

trials. What constitutes attractive varies by scenario, but it usually entails being tol-

erable to most patients. It might also entail being sufficiently active, in some clinical

or pharmacological sense. Sometimes phase I trials are genuinely “first in man”

scenarios.

In phase II, a typical objective is to assess early signs of efficacy at the dose se-

lected at phase I. The dose may yet be adjusted as safety data continues to be col-

lected, but the primary focus is to establish the presence of some therapeutic ben-

efit. Trials may or may not be randomised, and the use of shorter-term predictive

outcomes is relatively common to make trials quicker. Crucially, this step affords

investigators the opportunity to assess whether an expensive and lengthy phase III

trial is warranted.

If the treatment looks to hold promise, it is then typically tested at phase III

against the standard of care. Phase III trials are usually randomised, and often

blinded. Generally, in the case of drugs, the results of phase III trials are used to

support applications for marketing authorisation so that the treatment may become

part of the standard of care.

1.3 Efficiency in Clinical Trials

In their recent review “Improving Clinical Trial Efficiency: Thinking Outside the

Box”, Mandrekar et al.[62] describe some novel approaches to clinical trials that seek

to increase efficiency. They identify that efficiency equates to “reduced sample size

requirements”. This is probably the most common interpretation of efficiency in the

clinical trial context. Simon & Maitournam[83] also use this definition in their article

evaluating the efficiency of trial designs that seek to allocate patients to treatments

based on the presence of molecular targets. If trial design A can expect to arrive

at a conclusion subject to given statistical error rates, requiring fewer patients than

design B, then A can be said to be more efficient than B.
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However, sample size is not the sole resource that is sought to be optimised in

the pursuit of increased efficiency in trials. In this thesis, we define efficient methods

in clinical trials to be those that reduce the expected resource required for a trial or

sequence of trials to achieve their objectives. In addition to patients, two other re-

sources invariably required in clinical trials are time and money. Thus, for instance,

an approach that reduces the expected amount of time required to satisfactorily con-

duct a sequence of trials may also be regarded as efficient.

Efficiency is a perennial motivation in the design and analysis of clinical trials

because we want to share the benefits of health research as quickly as possible. The

sooner that good treatments are approved, the sooner they may benefit the diseased

population. The sooner that unacceptable treatments are discarded, the more re-

sources will be dedicated to investigating alternatives that could provide benefit.

Broadly speaking, efficiency can be imparted on clinical trials in two main ways:

through operational and statistical methods. Operational methods are those that al-

ter the way clinical trials are conducted. Efficiency is garnered when a trial is able

to achieve its objective faster, or achieve the objectives of several trials faster than

conducting them separately.

PICO, a mnemonic that lists the core defining elements of a comparative clinical

trial, stands for Population, Intervention, Comparison, Outcome. In this section, it may

serve to illustrate how clinical trials have typically been conducted, as a hypothetical

traditional trial would have a single response to each item. The article by Mandrekar

et al.[62] focuses on so-called basket and umbrella trials. These augment the PICO

approach by investigating a single novel intervention in several disease populations,

and multiple novel interventions in a single population, respectively. The rationale

is that several similar questions can likely be more quickly answered in a single

larger trial than separate parallel trials, when we consider the fixed costs in time

and money required to conduct a clinical trial. The marginal cost of adding to an

existing protocol an extra patient population or novel intervention, keeping the other

elements of PICO constant, is likely to be less than those required to run a completely

new trial. These examples demonstrate how operational efficiency can be achieved.

Another example of operational efficiency comes from achieving the objectives of

two consecutive trial phases in a single over-arching seamless trial. So-called phase
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I/II trials conduct dose-finding whilst assessing efficacy in addition to toxicity in

an experimental treatment, thus achieving the objectives of trials at phases I and II.

There have been a number of designs proposed in this area[12, 92, 98, 112]. These de-

signs are the subject of Chapters 2 and 3 in this thesis. Further examples of seamless

methodology are multi-arm multi-stage (MAMS) trials[77], that fuse the traditional

objectives of phases II and III. However, these are not a particular focus of this work.

There are typically many possible ways to analyse a dataset. In the context where

a decision must be made on the acceptability of a treatment, the type of decision

generally made in trials, statistical methods may be considered efficient when they

achieve given error rates with a smaller sample size. In a clinical trial, those errors

typically involve concluding a novel treatment is superior to a comparator when it

truly is not; and rejecting a novel treatment when it truly is superior. Error rates are

expected to reduce as sample size is increased and more information is provided to

the analysis algorithm. Some algorithms are able to incorporate information from

other sources to increase efficiency and outperform alternatives that have no such

facility. This is the focus of Chapters 4, 5 and 6.

1.4 Restrictions on Sample Size

Sample sizes are constrained in clinical trials for many reasons. The most intuitive

is that the number of patients that may be required to conduct a conventional anal-

ysis simply does not exist. Obviously, this is particularly pertinent in rare diseases.

However, it can be very difficult to recruit to trials in relatively common diseases

like lung cancer and leukaemia, if a particular disease subtype or patient character-

istic is sought. In this regard, every disease has the capacity to suffer from a small

recruitment pool.

Elsewhere, the feasible recruitment level in a trial can be constrained for reasons

other than patient availability. For instance, with novel therapeutics that are difficult

or expensive to manufacture, it may transpire that only a small number of patients

can be treated. If research funds are constrained, as they so often are, only a small

trial may be possible. Finally, time is often a limited commodity. There is a strong

motivation to conduct phase I and II trials quickly so that the time novel treatments
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spend in trials can be reduced and effective new treatments delivered to patients in

a timely manner.

There are many reasons that sample sizes are restricted and we will encounter

several of them in this thesis. When sample sizes are restricted, trialists have strong

motivation to use efficient methods to make the most of the available information.

1.5 Chapters in this thesis

It is preferable to pass through the trial phases as quickly as possible. A seamless

phase I/II trial that achieves both the traditional objectives of separate phase I and

II trials is efficient if it is faster and cheaper than separate trials. Seamless phase I/II

trials are the focus of Chapters 2 and 3.

In Chapter 2, we describe our experiences using the EffTox dose-finding de-

sign[92] in the Matchpoint trial. The design estimates the rates of binary efficacy

and toxicity events at a range of different doses using logit models. The probabil-

ity model uses six parameters in total. A feature of dose-finding trial designs is

that they must make inferences when very few patient outcomes are observed. For

example, in typical dose-finding scenarios, patients are treated in cohorts of three.

Once the first cohort is treated and assessed, the trial design advises the dose for

the second cohort based on the outcomes observed hitherto. In this scenario with

the EffTox model, there are fewer patients than parameters so inferences are subject

to great amounts of uncertainty. We introduce the phenomenon of dose ambivalence

where the design can recommend different doses in response to identical outcomes,

and advocate a simulation-based method to overcome the ensuant uncertainty. We

also describe the challenge arising from outcome ambiguity, and advocate a practical

solution using dose-transition pathways in the phase I/II setting. Our methods pro-

mote efficiency by aiding the selection of the optimal dose and overcoming delays

in the assessment of outcomes.

Chapter 3 introduces a novel design for seamless phase I/II clinical trials. It fuses

elements from EffTox and an alternative design by Wages & Tait[98] that uses adap-

tive randomisation to explore the doses under investigation. Wages & Tait’s method
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uses a simpler probability model that requires fewer parameters than EffTox. How-

ever, randomisation brings potential operational complexity. Our motivation was

to create a hybrid design that uses fewer parameters than EffTox in the hope that

this would maintain statistical efficiency, whilst abrogating the need for randomisa-

tion and reducing possible administrative inefficiency. We present the design and

investigate performance in Matchpoint scenarios in Chapter 3.

The desire for efficiency is not unique to early phase trials. It is important when-

ever sample size is constrained, and felt particularly acutely in rare diseases in piv-

otal settings. This is the topic of Chapter 4, where we describe a design for a ran-

domised controlled trial in an ultra-rare disease. A traditional experiment where

outcomes are compared at the end of an intervention period would require a sample

size that exceeds the total number of patients in the UK to achieve conventional error

rates. We describe an approach using repeated measures, linear hierarchical models,

and simulation to design a trial that is feasible and defensible. Key to achieving this

was using all of the information in the repeated measures. The flexibility of the sim-

ulation method allowed us to examine expected power under different patterns of

missing data. Our motivation for this level of scrutiny was the severely constrained

sample size. Our literature review shows that this approach is novel in clinical trials

of visual acuity, and indicative of other scenarios where repeated measures analyses

are possible but generally not conducted.

Patient numbers might be constrained in otherwise common diseases because of

specific eligibility criteria. This is the focus of Chapter 5 where we introduce a novel

adaptation to the design of Thall, Nguyen & Estey[89] to assess an immunother-

apy drug in a specific subgroup of non-small-cell lung cancer patients. Lung cancer

is a regrettably common disease but subgroups can be quite small once molecular

stratifiers are included. Our design incorporates baseline predictive information to

increase efficiency when simultaneously assessing efficacy and toxicity outcomes

in a phase II trial. It achieves statistical operating performance superior to bench-

mark designs that assess treatment cohort-by-cohort. One of the goals of stratified

medicine is to tailor treatments by patient subgroup. We use predictive categorical

variables, presented and validated in a trial of a related patient group, to increase

efficiency in estimating the event rates of our co-primary outcomes. The design
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satisfies an otherwise unmet need that will become more common as biomarker-

associated therapies are further investigated.

In Chapter 6, we extend further the scenario in Chapter 5 by considering alterna-

tive model specifications. Our chosen model forms were motivated by the available

literature and our feasible sample size. However, the implicit assumptions were po-

tentially undesirable. We research the implications of more complex model forms,

and discuss the trade-off of a more flexible model with the attendant greater re-

source requirements. We describe how marginal further efficiencies are available at

relatively little marginal cost.

Finally, in Chapter 7 we discuss the broad themes spanned by the topics in the

contained chapters, and highlight some motivations for further work.

7





Chapter 2

Implementing EffTox in the

Matchpoint Trial

Background: Methods for phase I/II dose-finding use efficacy outcomes in ad-

dition to toxicity outcomes to identify the most attractive dose. EffTox is one of

the earliest and best-known. The Matchpoint trial uses EffTox to search for an ef-

fective and tolerable dose of ponatinib to combine with FLAG-IDA chemother-

apy.

Notable methods in this chapter: We describe a nomenclature for succinctly

describing outcomes in phase I/II dose-finding trials. We use dose-transition

pathways in the phase I/II setting, where doses are calculated for each feasible

set of outcomes in future cohorts. We introduce the phenomenon of dose ambiva-

lence, where EffTox can recommend different doses after observing the same

outcomes. We also describe our experiences with outcome ambiguity, where the

categorical evaluation of some primary outcomes is temporarily delayed.

The implications on efficiency: Phase I/II trials are efficient because they allow

the objectives of two trial phases to be addressed at once. However, phenomena

like dose ambivalence and outcome ambiguity stand to erode that efficiency by

allowing sub-optimal doses to be selected and causing delays in the assessment

of outcomes. The methods we introduce show how those complications can

be managed and overcome. Furthermore, our methods facilitate efficient trial

planning and conduct.
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2.1 Introduction

The introduction of BCR-ABL tyrosine kinase inhibitors (TKIs; imatinib, dasatinib,

nilotinib, bosutinib and ponatinib) has revolutionised the treatment of chronic myeloid

leukaemia (CML). The great majority of patients with chronic phase (CP)-CML ob-

tain a durable complete cytogenetic response and the rate of progression to blast

phase (BP) is 1 to 2% per annum in the first few years after diagnosis, falling sharply

when major molecular response is obtained[34, 47, 58]. A minority of patients (<10%)

present with de novo BP-CML and of these two-thirds are myeloid and one-third

lymphoid BP[43]. Despite the use of TKIs, median survival after the diagnosis of

BP-CML is between 6.5 and 11 months[33, 41, 71, 78], with the majority of long-term

survivors being recipients of allogeneic stem cell transplant in second chronic phase

of disease[48]. This poor survival is often due to patients developing new mutations,

most frequently within the BCR-ABL kinase domain, resulting in resistance to TKIs

and further rapid disease progression[85]. Therefore, novel therapies to improve

and prolong therapeutic responses in BP-CML are urgently sought.

In the Matchpoint trial (EudraCT 2012-005629-65) we plan to simultaneously as-

sess co-primary safety and efficacy outcomes for the combination of a novel TKI,

ponatinib, with conventional FLAG-IDA chemotherapy. We believe this to be the

first such study in blastic phase CML. It is envisaged that the data will be the first

step to improve the treatment of this difficult clinical problem.

Historically, dose-finding trials in oncology have sought to find the maximum

tolerable dose (MTD) of a treatment under the cytotoxic assumption. Rule-based de-

signs like 3+3 change dose based on the number of dose-limiting toxicities (DLTs)

observed. Using a model-based design like the seminal continual reassessment

method[69] (CRM), dosage is increased to find the dose with an associated probabil-

ity of toxicity that is less than (or close to) a pre-specified threshold. The rate of effi-

cacy does not directly affect the dose selection decision. Instead, it is assumed to in-

crease monotonically with the probability of toxicity and dose. This has been a valid

assumption in treatments like chemotherapy, that kill diseased and non-diseased

cells alike. A notable advantage of the cytotoxic assumption is that it simplifies the

mathematics when calculating the ideal dose.
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Increasingly, modern treatments like molecularly targeted agents and immunother-

apies are being investigated for their therapeutic effects in oncology. Targeted ther-

apies work by altering the behaviour of cells at a molecular level to slow or stop

the malignant proliferation. Immunotherapies work by instigating a response from

the patient’s immune system to fight disease. A positive outcome like longer sur-

vival may be achieved whilst containing the aggregate disease burden, rather than

reducing it. With each of these classes of treatment, the cytotoxic assumption is

not necessarily valid so we can no longer assume that the most toxic dose is the

most efficacious dose. This presents a methodological challenge to investigators in

dose-finding trials. The goal here is to find the optimal dose rather than merely the

maximum tolerable dose. We may regard the optimal dose as that which provides

the most attractive trade-off between the probabilities of efficacy and toxicity, or that

which offers maximal chance of efficacy with the chance of toxicity less than some

critical value. Generally, these targeted therapies and immunotherapies are less toxic

than cytotoxic therapies, so the optimal dose may be much lower than the MTD[1].

In the so-called cytostatic setting, dosing decisions should be guided by patients’

outcomes with regard to efficacy and toxicity, yielding designs for joint phase I/II

trials.

Published clinical trial designs in this arena include extensions of CRM. Braun’s

bivariate CRM[12] models separate toxicity and disease progression events. Zhang

et al.’s variant of CRM[112] uses an ordered trinary outcome that incorporates re-

sponse and toxicity. More recently, Wages & Tait[98] introduced a method that uses

a latent CRM model to monitor toxicity and selects amongst candidate efficacy mod-

els using Bayes factors. Amongst non-CRM alternatives, Wang & Day [99] introduce

a utility-maximising approach that assumes responses and toxicity occur in patients

according to log-normally distributed patient thresholds.

Thall & Cook[92] introduced EffTox, the method we chose to use in Matchpoint.

EffTox is a Bayesian adaptive dose-finding trial design that models correlated binary

efficacy and toxicity outcomes. A search of PubMed on 17th October 2016 for articles

that have cited Thall & Cook[92] returned 54 items. Of these, 36 were methodolog-

ical in nature, detailing extensions or alternative designs. A further 14 were review

articles. Only four articles pertained to the design or reporting of a specific clinical
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trial. Three of these used the EffTox design[4, 23, 81]. The first author is based at the

MD Anderson Cancer Center for two of these papers[4, 81], and at the University

of Washington for the third[23]. The fourth trial article[13] cites the EffTox paper

but uses a randomised trial design. It is not our intention to give a full systematic

review but this scoping search suggests that EffTox is not widely used, and scarcely

used at all outside the USA. Thall[88] himself admitted that “[Bayesian models for

early phase clinical trials] have seen limited use in clinical practice”. In describing

our experience using this important dose-finding clinical trial design, we hope to en-

courage others to use it too. Our proposed solutions to the problems we encountered

will expedite the trial design process.

In Section 2.2 we recap the EffTox design. Section 2.3 details our rationale for

choosing EffTox and our experience using it in Matchpoint, the problems we faced

and the solutions we proposed. We provide some discussion in Section 2.4, culmi-

nating in some conclusions on the impact on clinical trial efficiency in Section 2.5.

2.2 The EffTox Design

Thall & Cook[92] introduced the adaptive Bayesian design EffTox to facilitate seam-

less phase I/II dose-finding. EffTox uses logit models for the marginal probabilities

of efficacy and toxicity at each dose and utility contours to measure the attractive-

ness of each dose based on the posterior probabilities of efficacy and toxicity.

Let y = (y1, ..., yn) be the n doses under investigation. Thall & Cook use the

codified doses x = (x1, ..., xn):

xi = log yi −
n∑
j=1

log yj
n

(2.1)

For example, a trial of 4 doses, 10mg, 20mg, 30mg and 50mg, would have y =

(10, 20, 30, 50), and x = (−0.85,−0.16, 0.25, 0.76). These values are used as explana-

tory variables so it is desirable that they are centralised and relatively small in mag-

nitude.

Using the notation of Thall & Cook[92], let Y = (YE , YT ) be indicators of binary

efficacy and toxicity events. Let πa,b(x, θ) = Pr(YE = a, YT = b|x, θ) for a, b ∈ {0, 1}.
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The marginal probabilities of efficacy and toxicity at dose x are given by

logitπE(x, θ) = µE + βE,1x+ βE,2x
2 (2.2)

and

logitπT (x, θ) = µT + βTx (2.3)

When βT > 0, the toxicity probabilities increase monotonically in dose. In contrast,

the efficacy curve is not necessarily monotonically increasing. The presence of βE,2

allows for non-linearity and possibly a turning point.

The joint probability model is

πa,b(x, θ) = (πE)a(1− πE)1−a(πT )b(1− πT )1−b

+ (−1)a+b(πE)(1− πE)(πT )(1− πT )
eψ − 1

eψ + 1
(2.4)

where ψ is an association parameter and (x, θ)-notation has been suppressed in

each function for brevity. Here, a, b are binary patient-specific variables that denote

whether efficacy and toxicity events occurred. For a given patient, a = 1 means the

patient experienced efficacy and b = 1 means they experienced toxicity.

The EffTox design requires several pieces of information to be elicited from the

investigators. Firstly, the statistician must elicit the prior probability of efficacy

and toxicity at each dose. Let us label the vector of efficacy probabilities ηE , and

the toxicity analogue ηT . The EffTox software[45] published by the MD Ander-

son Cancer Center will take these prior beliefs and a desired effective sample size

(ESS) and convert them into univariate normal priors on each component of θ =

(µT , βT , µE , βE,1, βE,2, ψ). Thall et al.[94] detail the algorithm and advise that ESS

should be between 0.5 and 1.5. High values for ESS reflect stronger prior infor-

mation. The preference is for priors that are strong enough to sensibly guide early

dosing decisions but weak enough to be overridden by patient outcomes where they

diverge from prior beliefs.

Secondly, the statistician must elicit parameters to calculate the utility contours.

Thall et al. discuss one particular method for this task[92, 93]. The points (π∗1,E , 0),

(1, π∗2,T ) and (π∗3,E , π
∗
3,T ) are elicited from the investigator such that the pairs are
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equally attractive. The quantity π∗1,E is the minimum required probability of efficacy

when toxicity is impossible. The quantity π∗2,T is the maximum permissible proba-

bility of toxicity when efficacy is guaranteed. The point (π∗3,E , π
∗
3,T ) is chosen in the

first quadrant (i.e. not lying on the x- or y-axis), representing a pair of probabilities

for efficacy and toxicity that are of equal attractiveness as the two other points.

EffTox originally used inverse quadratic functions to model the utility contours

but, after observing that the design was reticent was escalate to more efficacious

doses, the authors later advocated using Lp norms[27]. An Lp norm is a mathemati-

cal tool for generally measuring the distance between two points. The best known is

L2, the Euclidean norm, that measures the length of a hypotenuse c in a right triangle

to satisfy c2 = a2 + b2, where a and b are the lengths of the other two sides.

Thall et al.[94] stressed the importance of using contours that are steep enough

to encourage the design to accept slightly higher probabilities of toxicity when they

are compensated with materially higher probabilities of efficacy. This point was de-

veloped in detail in Yuan et al.[111]. In Figure 2.1, we see that the neutral utility

contour in bold is practically vertical when the probability of toxicity belongs to

(0, 0.2), illustrating what we mean by a steep contour. Here, an equal absolute per-

centage increase in the probabilities of efficacy and toxicity will increase the utility

score. In contrast, the neutral utility contour is flatter, or more horizontal, where the

probability of efficacy belongs to (0.8, 1.0). Here, an identical increase in the prob-

abilities of efficacy and toxicity results in a decrease in utility. When the contours

are too flat, pathological behaviour can manifest where the design becomes stuck at

a sub-optimal dose. This point was unfortunately missed in earlier publications on

EffTox[92, 93]. Furthermore, the illustrative example in the original EffTox paper[92]

inadvertently uses a family of contours that exhibit pathological behaviour. In order

to achieve a design with good properties, Thall advocates selecting three equivalent

points that yield a reasonably steep contour, and not trying to elicit points of equal

utility from clinicians. Fundamentally, trialists should note that EffTox has evolved

since its original 2004 publication[92].
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The utility of a dose with associated posterior efficacy and toxicity probabilities

πE and πT is

u(πE , πT ) = 1−

((
1− πE

1− π∗1,E

)p
+

(
πT
π∗2,T

)p) 1
p

(2.5)

In (2.5), p determines the extent of the curvature of the utility contours. For p > 1,

the contours are convex and for p = 1, the contours are simply straight lines[27].

The value for p is calculated by the EffTox software so that the neutral utility curve

intersects (π∗1,E , 0), (1, π∗2,T ) and (π∗3,E , π
∗
3,T ).

EffTox uses decision criteria to determine the set of admissible doses based on

posterior beliefs. Given trial data for the first j patients,D = {(x1, a1, b1), ..., (xj , aj , bj)},

dose x is admissible if

Pr {πE(x,θ) > πE |D} > pE (2.6)

and

Pr {πT (x,θ) < πT |D} > pT (2.7)

where πE is a lower bound on the acceptable efficacy rate and πT an upper bound on

the toxicity rate. In order to resolve (2.6) and (2.7), a prior-to-posterior analysis must

be carried out to combine the investigators’ priors with D. This involves solving a

six-dimensional integral. The details are given in Thall et al.[92].

The investigators provide values for πE , πT , pE and pT . The set of doses that

are admissible is said to be the admissible set. When a dose selection decision is

required (e.g. at the end of a cohort), the admissible set is recalculated. If no dose

is admissible, the trial stops and no dose is selected for further research. This may

occur if all of the doses are too toxic or insufficiently efficacious, or both. If the

admissible set is non-empty, the dose with maximal utility, subject to rules about not

skipping untested doses, is recommended to be given to the next cohort or patient.

This iterative process is repeated until the maximum sample size or some pre-

defined stopping criteria is reached. The dose recommended after all patients have

been treated and evaluated is the dose selected for further research in a later phase

trial.

15



Chapter 2. Implementing EffTox in the Matchpoint Trial

2.3 EffTox in the Matchpoint trial

The EffTox design was originally selected for use in Matchpoint by Christina Yap

(CY), working with the chief investigator and co-investigators. She was aided in

early trial design work by Josephine Khan (JK). The trialists chose to use a seamless

phase I/II dose-finding design in Matchpoint because it would be more efficient that

running separate trials in phases I and II. We wanted the observed efficacy events

to influence the doses selected because there was clinical justification in suspecting

cytostatic behaviour with respect to the experimental agent, discussed below. CY

chose to use EffTox because of the readily-available MD Anderson software[45] with

which to conduct a trial using the EffTox design. Critically, the software performs

simulation studies, allowing trialists to hone parameter choices.

This section details the parameters chosen for EffTox in the Matchpoint trial, the

practical issues we faced and how we surmounted them. A summary of our param-

eter choices appears in Table 2.1. These are discussed further below.

TABLE 2.1: EffTox parameters chosen in the Matchpoint trial. These
are discussed in the main text.

Notation Interpretation Value
N Total number of patients 30
m Cohort size 3
pE Certainty required to infer dose is threshold efficable 0.03
pT Certainty required to infer dose is threshold tolerable 0.05
πE Minimum efficacy threshold 0.45
πT Maximum toxicity threshold 0.40
π∗1,E Required efficacy probability if toxicity is impossible 0.40
π∗2,T Permissible toxicity probability if efficacy guaranteed 0.70

The values pE and pT may seem unconventionally small. Recall that their func-

tion is to define a list of doses appropriate for experimentation. It may be more

intuitive to interpret 1 − p. as the posterior certainty required to omit a dose from

consideration. In their original demonstration, Thall & Cook[92] used values pE =

pT = 0.1.

In Matchpoint, the binary efficacy event is achieved when patients experience

at least a minor cytogenetic response (i.e. <65% Philadelphia chromosome-positive

cells), or haematological response with platelets > 50 × 109/L, neutrophils > 1.0 ×

109/L and blasts< 5% in the peripheral blood and bone marrow. The binary toxicity
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outcome is defined by the occurrence of a range of pre-specified adverse events,

including any grade 3 or 4 clinically significant non-haematological adverse event,

related to ponatinib, that cannot be managed with optimal medical care and likely

to endanger the life of the patient or result in long term effects. Both co-primary

outcomes are assessed over the eight-week period following the commencement of

the first cycle of treatment. The first cycle lasts for 28 to 56 days, depending on how

long it takes for blood counts to recover.

Of practical importance when using a seamless phase I/II design is that the co-

primary outcomes can be assessed over a similar time horizon. It was felt that re-

sponses to treatment could be expected after just one cycle if the treatment could

be successfully administered to patients. If toxicity was frequent and treatment dis-

continuation common, the capacity for response is diminished. In a scenario where

outcomes are assessed over materially different horizons, the trial would proceed at

the speed determined by the outcome with the longest assessment period, increasing

the risk of incomplete data and eroding the scope for operational efficiency.

2.3.1 Parameters

We investigate four doses of ponatinib: 15mg every second day, 15mg daily, 30mg

daily and 45mg daily, referenced as dose-levels 1, 2, 3, 4 respectively, as shown

in Table 2.2. For a tractable analysis, we use y = (7.5, 15, 30, 45), and thus x =

(−0.97,−0.27, 0.42, 0.82).

Generally, the clinicians were comfortable providing their prior beliefs on the

probability of efficacy and toxicity. These were elicited by CY and JK. The clinicians

believed a-priori that all doses would be tolerable. There was some debate about

the extent to which the probability of efficacy would improve when moving from

the third to the highest dose. On balance, it was felt that efficacy would be low at

the lowest doses, increase with dose throughout but begin to level-off at the highest

dose. This yielded the priors shown in Table 2.2.

The clinicians were also comfortable specifying πE and πT . Conventional chemother-

apy regimens like FLAG-IDA can induce complete cytogenetic responses in 20-40%

of patients who have progressed to blastic phase[97]. Cortes et al.[29] gave 45mg of

ponatinib daily as a monotherapy to CML patients and observed major cytogenetic
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TABLE 2.2: Doses under investigation in Matchpoint and the investi-
gators’ prior beliefs on rates of efficacy and toxicity. Note, the pona-
tinib dose labelled 7.5mg per day is actually 15mg every other day.

Dose-level Daily ponatinib dose (mg) Prior Pr(Eff), ηE Prior Pr(Tox), ηT
1 7.5 0.2 0.025
2 15 0.3 0.05

3 (start dose) 30 0.5 0.1
4 45 0.6 0.25

response in 23% of 62 patients in blast transformation phase. They also observed

very good response rates in chronic phase patients. By combining the treatments,

we hope to observe a response rate in excess of 45% so we used πE = 0.45. It was

the clinicians’ prior belief that only the highest two doses would exceed the mini-

mum efficacy threshold. To achieve this level of efficacy, it was felt that a toxicity

rate up to 40% would be acceptable thus we set πT = 0.40.

The first cohort will receive dose-level 3 (30mg) because this is the lowest dose

believed a-priori to be sufficiently active. From here, there is scope to escalate or

de-escalate dose as the outcomes dictate.

The values of pE and pT in (2.6) and (2.7) determine the posterior confidence

required to admit the doses as worthy of investigation. Low values are chosen so

that even relatively weak beliefs will render doses worthy of investigation in this

early phase clinical trial. CY and JK initially proposed using the values pE = pT =

0.05 but later, after the author (KB) became involved in this trial, this was altered this

to pE = 0.03. The process of refining these values is described in Section 2.3.2.6.

In contrast, the clinicians found it rather more challenging to specify (π∗1,E , 0) and

(1, π∗2,T ) because of the practical impossibility of a treatment where efficacy is guar-

anteed or toxicity impossible. Instead, KB and CY elicited (π∗3,E , π
∗
3,T ), (π∗4,E , π

∗
4,T )

and (π∗5,E , π
∗
5,T ), three points in the general efficacy-toxicity space (i.e. not at the ex-

tremes) such that the points had equal utility. Using an Lp norm to fit a curve like

(2.5) to these points requires u(π∗3,E , π
∗
3,T ) = u(π∗4,E , π

∗
4,T ) = u(π∗5,E , π

∗
5,T ) = 0. Thus,

we have three simultaneous, non-linear equations with three unknown values:et:

π∗1,E , π∗2,T and p. We used the multi-variate solver multiroot in the R[76] package

rootSolve[84] to find the simultaneous solution to these equations. The curve fit-

ted to the elicited points (50%, 40%), (45%, 30%) and (70%, 60%) intercepts the axes
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FIGURE 2.1: Utility contours in the Matchpoint trial. The neutral util-
ity contour in bold joins (0.4, 0) to (1.0, 0.7). Points inside this contour

have positive utility, increasing as they approach (1.0, 0.0).

at (39.6%, 0%) and (100%, 67.9%). We rounded to take π∗1,E = 0.40 and π∗2,T = 0.70.

The revised curve actually intersects the points (50%, 40%), (45%, 29.3%) and (70%,

61.4%), as illustrated in Figure 2.1.

Finally, the value of ESS was chosen by trial-and-error. Thall, Cook and Estey[93]

advise a value in the range (0.5, 1.5). Increasing ESS generally improves the per-

formance of the design in scenarios that broadly agree with the prior beliefs, and

vice-versa. Statisticians and investigators should, however, be mindful of the neces-

sity for the data to override the prior in the event that the priors are wrong. This

advocates exercising caution when using inflated ESS values. We arrived at ESS=1.3

because it yielded attractive simulated operating characteristics and sensible dose
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transitions, as described in the following sections.

2.3.2 Trial Conduct

2.3.2.1 Nomenclature for Describing Outcomes in Phase I/II Trials

To expedite the discussion of phase I/II clinical trial conduct, we introduce some

nomenclature, created by KB for succinct interim reporting. Each patient may expe-

rience one of four specific outcomes: efficacy without toxicity (E); toxicity without

efficacy (T); both (B); or neither (N). Let us string these symbols behind a numerical

dose-level to denote the outcomes of cohorts of patients. For instance, 2EET denotes

a cohort of three patients that were given dose-level 2, two of whom experienced

efficacy only and one who experienced toxicity. These strings can be concatenated

to describe the outcomes of several cohorts consecutively. For example the path

2EET 3EBB extends our previous scenario. After the first cohort, the trial escalated

to dose-level 3. The next cohort of three were treated at this dose and all three pa-

tients experienced efficacy. Unfortunately, two of them also experienced toxicities.

Using our notation, this information is unambiguously and efficiently conveyed in

8 characters.

In phase I/II, it is inadvisable to reduce patients’ outcomes to simple tallies of ef-

ficacy and toxicity events because of the complication that patients may experience

both events or neither. For instance, the design may recommend a different dose

after observing NTE than it would after observing NNB, even though both cohorts

contain a single efficacy event and a single toxicity event. In the first example, the

events are experienced by different patients whereas in the latter, they are experi-

enced by the same patient. The distinction is especially pertinent in EffTox because

the ψ parameter models the association between efficacy and toxicity.

The described notation combines simple codification of dose-levels and patient

outcomes to succinctly and unambiguously describe pathways through phase I/II

dose-finding trials. We use it in the next section to define dose transition pathways,

and in following sections to discuss the potential problems of outcome ambiguity

and dose ambivalence, and to aid trial planning.
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2.3.2.2 Dose Transition Pathways

We found it greatly beneficial to prospectively analyse how our dose-finding design

would behave with respect to cohorts by supposing each feasible set of future patient

outcomes and calculating the model advice in each. From a given starting point, we

look to identify the conditions under which the design would escalate dose, stay at

a dose, de-escalate dose, or recommend that the trial stops.

Dose-transition pathways (DTPs) were introduced by Yap et al.[108] in the context

of traditional phase I trials with DLT outcomes. A DTP is a single feasible pathway

through a dose-finding trial. It reflects the dose selections that a model would make

in response to given hypothetical future outcomes. We introduce here the novel

extension of Yap et al.’s idea to phase I/II trials with efficacy and toxicity outcomes.

The example in Table 2.3 shows the complete set of DTPs for cohort 2 having ob-

served 3TTT in cohort 1. We see that after observing 3TTT, the design unsurprisingly

TABLE 2.3: DTPs after observing 3TTT in cohort 1. Cohort 2 is recom-
mended to receive dose-level 2. The dose recommended for cohort 3

depends on the outcomes in cohort 2, as depicted by this table.

Cohort 2 Outcomes Dose for Cohort 3
2NNN 3
2NNE 1
2NNT Stop trial
2NNB 1
2NEE 1
2NET 1
2NEB 1
2NTT Stop trial
2NTB 1
2NBB 1
2EEE 1
2EET 1
2EEB 1
2ETT 1
2ETB 1
2EBB 1
2TTT Stop trial
2TTB 1
2TBB 1
2BBB 1

de-escalates to dose-level 2. If a mix of only N and T events is observed in cohort

2, or three T events, the design recommends no dose for cohort 3, choosing to stop
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the trial due to excess toxicity and lack of efficacy. If 2NNN is observed, the design

chooses to re-escalate. In contrast to toxicity-only dose-finding methods, observing

no change is a bad outcome, and the lack of response motivates escalation. In every

other path, the design chooses to de-escalate to dose-level 1 in cohort 3. The EffTox

design is prevented from skipping doses. The effect of the level of toxicity observed

in cohort 1 endures to warrant further de-escalation in the majority of paths to seek

a tolerable dose. After 3TTT 2NNN, the design has simultaneously observed excess

toxicity and a complete absence of response. It is torn between the completing claims

of seeking efficacy and avoiding toxicity. In this particular path, the design chooses

to re-escalate to dose-level 3. After observing 3TTT, even before commencing cohort

2, we know from Table 2.3 that if the trial makes proceeds to cohort 3, it will probably

be at dose-level 1.

Table 2.3 shows DTPs for a single future cohort but that need not be a constraint.

We use DTPs in Matchpoint to analyse every feasible outcome of the next few co-

horts. DTPs can be calculated for several subsequent cohorts, or even an entire trial.

However, the number of possible paths grows geometrically with the number of co-

horts being considered. Each evaluable patient will experience exactly one of E, T, N

or B, independent of the other patients. With cohorts of three, the number of distinct

outcomes for a single cohort is 20, as shown in Table 2.3, hence the number of feasi-

ble DTPs for the next two and three cohorts are 202 and 203 respectively. Thus, the

limitation of what can be depicted on printed pages tends to limit our DTP analysis

to no more than the next two cohorts of three patients.

Our frequent use of DTPs contributed to the efficient conduct of the Matchpoint

trial. We were particularly interested to learn the outcomes that would have to man-

ifest to change dose or stop the trial and DTPs allowed us to make timely prepa-

rations. Furthermore, the method allowed us to convey to investigators and the

monitoring committee the behaviour of our design in many hypothetical scenarios,

emulating the familiar transparency of rule-based designs like 3+3.
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2.3.2.3 Outcome Ambiguity

Patients in the blastic transformation phase of CML under study in the Matchpoint

trial are particularly sick. The FLAG-IDA regimen is toxic and the addition of pona-

tinib only increases the potential for toxic adverse events. Periodic dose-selection

meetings are a feature of dose-finding studies, where early safety and efficacy out-

comes are reviewed and a new dose for the next patient or cohort is selected. Some-

times, because of the frail nature of the patients, efficacy assessments might be tem-

porarily delayed. This outcome ambiguity presents a challenge for dose-selection be-

cause the decision seemingly requires that full patient outcomes be available. How-

ever, we have already seen that this is not necessarily the case. From Table 2.3, we

know that at least one E or B event in cohort 2 is enough to know with certainty that

the trial will proceed to cohort 3 using dose-level 1. If one of the patients experiences

E or B in cohort 2, the dose-decision is independent of the other two patients so it

does not matter, purely from a dose-decision perspective, if some of the outcome

information is temporarily missing for the other patients in cohort 2.

Naturally, this phenomenon does not always occur and there are many occasions

when every patient’s outcomes will be required promptly to know the course of ac-

tion in the subsequent cohort. Furthermore, it is important that outcomes for cohort

2 are finalised before trying to establish doses for cohorts after cohort 3, for example,

because all patient outcomes affect the dosing decision in model-based dose-finding

designs. The described method merely offers short-term respite in some occasions if

a small number of data-points are temporarily missing.

2.3.2.4 Posterior Utility

Thall & Cook work with utility as a function of the mean posterior efficacy and toxic-

ity probabilities of the doses. In contrast, we consider here the posterior distribution

of utility scores. For example, the posterior mean utility of dose x is

û(πE(x,θ), πT (x,θ))|D) =

∫
u(πE(x,θ), πT (x,θ))L(θ|D)f(θ)dθ∫

L(θ|D)f(θ)dθ
(2.8)

whereL is the likelihood function given in EffTox[92] and f(θ) is the parameter prior

distribution.

23



Chapter 2. Implementing EffTox in the Matchpoint Trial

(A) After 3 patients with outcomes 3NTE

(B) After 15 patients with outcomes 2NNN 3ENN 4EBE 3TEE 4NEE

FIGURE 2.2: Posterior densities of utility at dose-levels 3 and 4. After
only three patients, the densities largely occupy the same space and
dose ambivalence is likely. However, after 15 patients, they are quite

distinct and dose ambivalence is much less likely.
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The posterior utility density curves in Figure 2.2 demonstrates the difficulty a

utility-maximising design like EffTox faces when few patient outcomes have been

observed and two doses have very similar utility scores. Figure 2.2a depicts the pos-

terior beliefs on the utilities of dose-levels 3 and 4 after observing 3NTE in cohort

1. For clarity in illustration, dose-levels 1 and 2 are not shown. Figure 2.2a shows

that the distribution for dose 4 has slightly greater variability but that the two utili-

ties have approximately equal mode. When the posterior utilities for the two doses

are so similar, it is difficult for the design to reliably choose between them and dose

ambivalence (expanded below) is the likely result. Figure 2.2b shows similar curves

after 15 patients with outcomes 2NNN 3ENN 4EBE 3TEE 4NEE. In contrast, the pos-

terior utilities are now quite distinct and a consistent dose decision is almost guar-

anteed. The EffTox implementation in the trialr[16] package offers functionality

to plot posterior utility densities.

2.3.2.5 Dose Ambivalence

The EffTox probability model has six parameters for which prior distributions are

specified. After patient outcomes are observed, posterior estimates of efficacy and

toxicity come from evaluating a six-dimensional integral, one dimension for each

parameter. Such integrals are approximated numerically rather than solved analyt-

ically and this leads to estimation error. Typically, early phase clinical trials do not

use a large number of patients so the amount of information in the trial will usually

be quite low, i.e. the number of patients divided by the number of parameters be-

ing estimated will be lower than a typical phase II or III trial. The combined effect

of these two sources of variability is that the EffTox outputs are subject to quite a

lot of uncertainty, especially in early cohorts. An unwelcome consequence of this

uncertainty is that the model can make different dose recommendations based on

the same patient outcomes. This is obviously undesirable in a clinical trial where a

categorical course of action is sought. KB identified this phenomenon and named it

dose ambivalence.

Consider, for example, our Matchpoint parameterisation and the posterior util-

ities depicted in Figure 2.2a. After observing outcomes 3NTE in the first cohort,

the design sometimes recommends dose-level 3 for the next cohort, and sometimes
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dose-level 4. This ambiguity manifests because the two doses are both admissible,

have similar utility scores, and the Bayesian update integral is imperfectly calcu-

lated. This happens when using the MD Anderson implementation of the EffTox

software[45] that uses the spherical radial method of Monahan and Genz[65] to es-

timate the posterior integrals, and our own implementation that uses Monte Carlo

Markov Chain methods.

It is possible to calculate the integral more precisely by increasing the number

of posterior samples or integration points but this risks missing an important mes-

sage. If the dose-recommendation is not consistent when calculated to a reasonable

numerical precision, the design is telling us that it is difficult to pick between the

doses. It could be that several doses have similar utility scores, as we have seen. Al-

ternatively, it could be that a dose is very close to the boundary for inclusion in the

admissible set. For instance, purely by chance, repeated invocations of the imperfect

statistical analysis may alternatively include or exclude a dose from the admissible

set. In the former, the dose is available for selection. In the latter, it is not. In these

circumstances, the dose recommended is likely to vary. When the design is ambiva-

lent about a dose, rather than rely on one invocation of the dose update decision,

it is more appropriate in our opinion to calculate the dose recommendation many

times (say, 1,000) using reasonable precision and analysing the distribution of the

selections. This presents the uncertainty of the dose recommended.

We give a further example in Table 2.4. Our design with pE = 0.05 was ambiva-

lent on the preferred action after observing 3TTT in the first cohort. This uncovered

a flaw in our design. In that particular instance, the reticence to take the logical

action and de-escalate motivated us to re-parameterise the model to pE = 0.03, as

described in the following section.

2.3.2.6 Changing pE to avoid premature stopping

We commenced the trial with both pE and pT set to 0.05 so that the design only had to

be at least 5% sure that a dose was efficacious and safe to include it in the admissible

set.

Table 2.4 summarises the decision in two dose transition scenarios for the first
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TABLE 2.4: Outcomes of 1,000 replicates for two possible dose-paths
in the first cohort receiving dose-level 3, calculated using EffTox pa-
rameterisations with different values for pE . Pr(Stop) is the probabil-
ity that the design recommends stopping and Pr(i) is the probability
that the design recommends selecting dose-level i for the next cohort.
Decision is the dose level most frequently recommended for the next

cohort in the replicates.

Using pE = 0.05 Using pE = 0.03
Path Pr(Stop) Pr(1) Pr(2) Pr(3) Pr(4) Decision Pr(Stop) Pr(1) Pr(2) Pr(3) Pr(4) Decision
3NEE 0.00 0.00 0.00 0.00 1.00 4 0.00 0.00 0.00 0.00 1.00 4
3TTT 0.45 0.00 0.18 0.37 0.00 Stop 0.09 0.00 0.85 0.06 0.00 2

Matchpoint cohort using two slightly different parameterisations of the EffTox de-

sign. The columns on the left show the behaviour of a design with pE = 0.05; the

right a design with pE = 0.03. Each row summarises 1,000 replicates of the dose-

transition decision. Pr(Stop) is the probability that the design recommends stopping

and Pr(i) is the probability that the design recommends selecting dose-level i for the

next cohort. Decision is the dose level most frequently recommended for the next

cohort in the replicates.

TABLE 2.5: EffTox posterior beliefs after observing 3TTT in cohort 1.
The values for pE and pT determine the admissible doses.

Dose 1 Dose 2 Dose 3 Dose 4
Utility -0.489 -0.534 -0.777 -0.817

Pr(πE > πE) 0.079 0.037 0.060 0.200
Pr(πT < πT ) 0.919 0.758 0.051 0.005

Admissible under pE = 0.05, pT = 0.05 1 0 1 0
Admissible under pE = 0.03, pT = 0.05 1 1 1 0

After observing 3NEE, both designs recommend escalating to dose-level 4 in all

iterations. This is sensible and consistent behaviour. In contrast, after observing

3TTT, the designs take different courses. The design using pE = 0.05 seems unsure

of its preferred behaviour. In approximately half of the iterations, it recommends

stopping and in the other half, it proposes to select dose-level 2 or 3. This is another

manifestation of the ambivalence previously described. The design using pE = 0.03

is rather more consistent because it recommends de-escalating to dose-level 2 in the

great majority of replicates.

Output from the official EffTox software in Table 2.5 reveals the cause. Having

observed three toxicities at dose-level 3, all doses are believed to be unattractive,

hence the negative utility scores. The most attractive dose is actually dose-level 1,
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so the design would like to de-escalate. However, the design cannot go straight to

dose-level 1. The restriction to not skip untried doses requires that dose-level 2 is

tested first. The software does not allow this feature to be turned off. However, with

pE = 0.05, dose-level 2 is actually inadmissible so the design cannot de-escalate.

The problem is potentially exacerbated by the fact that Pr(πT < πT ) is very close

to the value pT = 0.05 for dose-level 3. If this probability is estimated to be slightly

less than 0.05, as is possible with just 3 data-points and a six-dimensional Bayesian

integral solved numerically, then dose-level 3 becomes inadmissible also. Under

these circumstances, with dose-level 4 inadmissible too on account of excess toxicity,

the design cannot recommend a dose so it advocates stopping. This accounts for the

relatively large probability of stopping under pE = 0.05 in Table 2.4.

By reducing pE to 0.03, we made it much more reliable that the design would

de-escalate after 3TTT rather than stop. Observing three toxicities in the first three

patients is clearly a grave situation. However, we should be mindful of the play of

chance and the extent of our knowledge on the event rates. The lower bound of the

95% confidence interval for a binomial proportion having observed three events in

three trials is 29.2% using the exact method, and 43.9% using the Wilson method.

This implies that the true toxicity rate could plausibly be much lower than the 100%

rate observed with 3TTT. Also, we have no direct knowledge of the toxicity rates

at the other dose-levels, only the information extrapolated by our model from the

toxicities observed at dose-level 3. To stop the trial before even trying the lower dose-

levels seems hasty and wasteful. We had not noted the restriction of no-skipping,

and its implications, until we examined the DTPs more closely. We chose pE = 0.03

over pE = 0.05 so that our design would be more willing to de-escalate at early

trial stages when toxicities are observed. We advise fellow trialists to study DTPs

routinely, especially in early cohorts, to spot undesirable behaviour.

In the scenario in question, it is sensible to ask why we are tweaking a parameter

that pertains to efficacy when toxicity is the problem. The succinct answer is that

it was the posterior prediction of efficacy that rendered the doses inadmissible after

invocation of (2.6). In addition to observing the presence of toxicity, the design si-

multaneously observed the absence of response. Decreasing pE was one solution but

was likely not the only one. The same ends could have perhaps been achieved by

28



2.3. EffTox in the Matchpoint trial

increasing the effective sample size to give more weight to our priors, thus overrid-

ing the low efficacy and high toxicity rates observed. This seemed a less satisfactory

alteration to us.

It is important that investigators are aware of the circumstances under which

their design would recommend stopping because the official EffTox software (v4.0.12)

will not allow further patients to be added once the stop point has been reached. If

investigators are relying on this software, they could find themselves constrained

by a hitherto unknown feature of their design. It is better to address these issues in

set-up rather than when the trial is in progress. Nevertheless, KB developed an open

source implementation of EffTox[16]for research purposes only that will continue to

accept new patient outcomes even after the stop point has been reached.

This section has described a flaw in our EffTox parameterisation that was not ini-

tially evident to us, that could have led to undesirable behaviour and disruption in

our trial, that we discovered through novel analysis of dose transition pathways and

repeated simulation, and resolved via a minor adjustment to the parameterisation.

Efficient trial conduct is maintained when flaws like this are uncovered before they

become critical, or avoided altogether.

2.3.3 Operating Characteristics

Once a complete set of parameters has been proposed, we learn how the design

performs by simulation.

Blastic transformation phase CML is relatively rare. It was felt that 30 patients

was the feasible limit to recruit in a reasonable time frame. The trialists, including CY

and JK but not KB, selected 30 patients as the target sample size. This was chosen to

maximise the expected probability of identifying the optimal dose. The trialists also

chose to use cohorts of three, thus re-evaluating the recommended dose after every

third patient. Evaluating dose after every patient would allow maximum capacity

for adaptation. However, it would also require the maximum number of interim

analyses. Under the procedures of the trials unit, each analysis would be associated

with a monitoring visit, data cleaning and a meeting of the independent data moni-

toring committee. It was hoped that 10 dose decisions (i.e. cohorts of three) would

provide enough opportunity for dose adaptation whilst not coercing an undesirable
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administrative burden on those persons running and monitoring the trial. We inves-

tigated by simulation study the operating performance that could be expected with

30 patients treated cohorts of three.

The EffTox software provides the ability to simulate the outcome of thousands of

trials using the chosen design and some assumed true efficacy and toxicity curves.

In practice, of course, the true curves are unknown. We choose a variety of scenarios

for simulation that will provide pertinent information on the behaviour of the design

in real usage.

Trialists should assess performance in a set of clinically relevant scenarios. One

of the scenarios should closely resemble the investigators’ prior beliefs, as this repre-

sents the anticipated outcome. We would expect the probability of correctly selecting

the best dose to be high in the scenario that matches the investigators’ priors. The

setting for any clinical trial is that we are unsure of the truth so the range of scenarios

in which our design performs well should reflect our ignorance. We considered how

the design would perform if adverse circumstances prevailed. To these ends, we ad-

vocate analysing performance when (i) no doses are tolerable, and (ii) no doses are

efficacious. In these scenarios, the desirable behaviour is to stop. As the clinical sce-

nario dictates, we might also advocate analysing scenarios where the true efficacy

and toxicity curves are not monotonically increasing.

In Table 2.6 we analyse in six indicative scenarios the performance of our chosen

EffTox model in Matchpoint, labelled ESS=1.3. We have also given the performance

of two other models with priors on θ recalibrated using the EffTox software to give

ESS set to 0.5 and 1.5, being the recommended lower and upper limits on ESS ad-

vised by Thall & Cook[92]. These convey the feasible range of performance, holding

all other parameters constant. In every other regard, the three models are exactly the

same. 10,000 replicates were simulated for each model in each scenario. The Monte

Carlo standard error for probabilities estimated by simulation with this number of

replicates is up to
√

0.5× 0.5/10000 = 0.5% so that selection probabilities that differ

by more than 1% probably differ by more than can be regarded merely as simulation

error.

We naturally seek a design that selects the optimal dose most reliably. The op-

timal selection is shown in bold in Table 2.6. However, the design must reliably
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TABLE 2.6: Final dose-selection and stopping probabilities of EffTox
designs with 30 patients in cohorts of 3 and ESS=0.5, 1.3 and 1.5. In
rows pertaining to design performance, the optimal decision is in
bold and the admissible decisions are underlined. The EffTox soft-

ware gives selection probabilities to the nearest whole percent.

Scenario Dose 1 Dose 2 Dose 3 Dose 4 Stop

1

Pr(Eff) 0.20 0.30 0.50 0.60
Pr(Tox) 0.03 0.05 0.10 0.30
Utility -0.33 -0.17 0.16 0.22

ESS=0.5 0.01 0.01 034 0.63 0.01
ESS=1.3 <0.01 <0.01 0.22 0.76 <0.01
ESS=1.5 <0.01 <0.01 0.22 0.77 <0.01

2

Pr(Eff) 0.40 0.60 0.75 0.79
Pr(Tox) 0.10 0.25 0.55 0.60
Utility -0.01 0.25 0.12 0.08

ESS=0.5 0.06 0.59 0.32 <0.01 0.03
ESS=1.3 0.03 0.60 0.35 <0.01 0.01
ESS=1.5 0.03 0.57 0.39 <0.01 0.01

3

Pr(Eff) 0.25 0.40 0.60 0.60
Pr(Tox) 0.10 0.20 0.38 0.42
Utility -0.26 0.04 0.15 0.12

ESS=0.5 0.03 0.10 0.70 0.13 0.04
ESS=1.3 0.01 0.10 0.73 0.13 0.02
ESS=1.5 0.01 0.09 0.73 0.15 0.02

4

Pr(Eff) 0.50 0.60 0.70 0.80
Pr(Tox) 0.20 0.20 0.20 0.20
Utility 0.12 0.28 0.43 0.57

ESS=0.5 0.02 0.03 0.61 0.34 <0.01
ESS=1.3 <0.01 0.02 0.47 0.50 <0.01
ESS=1.5 <0.01 0.01 0.47 0.51 <0.01

5

Pr(Eff) 0.05 0.08 0.20 0.25
Pr(Tox) 0.05 0.08 0.12 0.14
Utility -0.58 -0.54 -0.34 -0.26

ESS=0.5 0.06 0.03 0.01 0.37 0.53
ESS=1.3 0.06 0.07 0.02 0.34 0.51
ESS=1.5 0.07 0.08 0.02 0.36 0.48

6

Pr(Eff) 0.05 0.08 0.12 0.25
Pr(Tox) 0.60 0.65 0.70 0.80
Utility -0.78 -0.78 -0.76 -0.67

ESS=0.5 0.09 0.01 0.01 0.01 0.88
ESS=1.3 0.06 0.01 0.01 0.01 0.91
ESS=1.5 0.04 0.01 0.01 0.01 0.93

stop when no dose satisfies (2.6) and (2.7). When stopping is the correct decision,

the stopping probability is shown in bold. Sometimes, there will be many admissible
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Chapter 2. Implementing EffTox in the Matchpoint Trial

doses that satisfy (2.6) and (2.7), irrespective the fact that one generally dominates all

others by our utility metric. Admissible decisions are underlined in Table 2.6. When

stopping is the correct decision, stopping is the only admissible decision.

Scenarios 1 and 4 show the benefit of a modestly more informative prior. Through

the addition of prior information approximately equivalent to one patient (i.e. in-

creasing the effective sample size of the prior from 0.5 to 1.3 or 1.5), the probability

that the design selects the optimal dose is increased by up to 17%. Investigators will

naturally ponder the existence of the opposite effect, i.e. an increased propensity to

do the wrong thing when the prevailing scenario disagrees with the prior. Scenario 3

shows that this is not necessarily the case. The designs with more informative priors

actually perform slightly better, despite a shape of efficacy curve that disagrees with

the prior.

TABLE 2.7: Mean probabilities of performing the optimal decision in
the scenarios presented in Table 2.6.

Design variant Mean Pr(Optimal decision)
ESS=0.5 0.612
ESS=1.3 0.668
ESS=1.5 0.650

Table 2.7 shows the mean probability that each design variant identifies the op-

timal decision, given the six scenarios in Table 2.6. We see that our design is the

superior of the three presented. The variant with ESS=0.5 has inferior performance,

mostly for the reasons discussed. The variant with ESS=1.5 is only modestly inferior

but provides no reason to be preferred to our design.

We investigated by simulation the larger sample size n = 60. The extra patients

greatly improve performance in some scenarios. In scenario 2, the probability of se-

lecting dose 2 increases by 20% to 80%. Similarly, the chances of correctly stopping

early in scenario 5 increase by 27% to 78%. In many clinical scenarios, recruiting a

higher number of patients is warranted in a phase I-II trial because of the associ-

ated improvement in performance and the presence of efficacy assessment that may

abrogate a further traditional phase II trial. Phase I-II trials are an opportunity to op-

timise the delivery of a new agent. In the Matchpoint scenario, unfortunately, higher

recruitment was simply not feasible because of the rarity of BP-CML.
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We also investigated the impact of using pE = pT = 0.1. The chances of stop-

ping in scenario 5 are improved by 30%. As expected, the reciprocal effect is that

the design stops slightly more frequently in scenarios like 3 where an optimal dose

exists.

As well as their propensity to make the correct decision, we also discriminate

designs on how they allocate doses to patients. A design that always makes the

correct decision but treats every patient at an over dose would not desirable, or

indeed ethical. Table 2.8 gives the mean number of patients allocated to each dose

in the scenarios presented in Table 2.6.

Of the three designs presented, our chosen design uses the fewest patients in

scenarios 5 and 6, where the correct decision is to stop the trial. On the four re-

maining scenarios, our chosen design allocates the most patients on average to the

optimal dose in two scenarios. We see this as further reason to prefer the design with

ESS=1.3.

In summary, we have shown by simulation that our selected EffTox parameter-

isation performs well in six scenarios. We have demonstrated that it stops reliably

in situations where all doses are too toxic or inefficacious. We have also shown it to

perform well in a scenario that broadly matches our prior, and in scenarios that de-

part from our prior. Lastly, we have demonstrated that our chosen parameterisation

with effective sample size set to 1.3 is superior to alternatives with ESS set to 0.5 and

1.5, in terms of probability of making the correct decision, and in the allocation of

patients to favourable doses.

2.4 Discussion

Finalising an EffTox design is generally an iterative process. The inferences from

analysing dose transition pathways and simulations will naturally lead to re-parameterisation

and further testing.

It is our general preference to first hone the dose transitions. For the reasons

described, we pay particular attention to the earliest circumstances under which

the trial would stop. The investigators should agree that these circumstances are

dire enough to warrant closing the trial. We also look for any sign that the design
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TABLE 2.8: Mean numbers of patients allocated to each dose, and in
total, in the six scenarios and three EffTox variants presented in Table
2.6. Sum 6= 30 when the trial stops early. Patients allocated to the

optimal dose are given in bold and admissible doses underlined.

Scenario Dose 1 Dose 2 Dose 3 Dose 4 Sum

1

Pr(Eff) 0.20 0.30 0.50 0.60
Pr(Tox) 0.03 0.05 0.10 0.30
Utility -0.33 -0.17 0.16 0.22

ESS=0.5 0.7 0.6 12.1 16.4 29.8
ESS=1.3 0.2 0.2 9.8 19.6 29.8
ESS=1.5 0.1 0.1 9.5 20.1 29.8

2

Pr(Eff) 0.40 0.60 0.75 0.79
Pr(Tox) 0.10 0.25 0.55 0.60
Utility -0.01 0.25 0.12 0.08

ESS=0.5 1.5 11.5 16.0 0.4 29.4
ESS=1.3 0.8 11.6 16.9 0.6 29.9
ESS=1.5 0.7 10.3 18.2 0.7 29.9

3

Pr(Eff) 0.25 0.40 0.60 0.60
Pr(Tox) 0.10 0.20 0.38 0.42
Utility -0.26 0.04 0.15 0.12

ESS=0.5 1.1 2.8 21.8 3.7 29.4
ESS=1.3 0.5 2.5 22.2 4.4 29.6
ESS=1.5 0.4 2.0 22.1 5.2 29.7

4

Pr(Eff) 0.50 0.60 0.70 0.80
Pr(Tox) 0.20 0.20 0.20 0.20
Utility 0.12 0.28 0.43 0.57

ESS=0.5 0.5 1.0 19.3 9.2 30.0
ESS=1.3 0.1 0.7 15.9 13.3 30.0
ESS=1.5 0.1 0.3 15.9 13.7 30.0

5

Pr(Eff) 0.05 0.08 0.20 0.25
Pr(Tox) 0.05 0.08 0.12 0.14
Utility -0.58 -0.54 -0.34 -0.26

ESS=0.5 2.4 2.4 4.7 14.1 23.6
ESS=1.3 1.5 1.9 4.7 15.3 23.4
ESS=1.5 1.4 1.7 4.5 16.0 23.6

6

Pr(Eff) 0.05 0.08 0.12 0.25
Pr(Tox) 0.60 0.65 0.70 0.80
Utility -0.78 -0.78 -0.76 -0.67

ESS=0.5 2.6 3.0 4.0 0.9 10.5
ESS=1.3 1.1 2.8 5.2 0.8 9.9
ESS=1.5 1.0 2.8 5.3 0.9 10.0

seems reluctant to select a dose. This could suggest unsuitable priors or inappro-

priate parameter choices. It should be stressed, however, that EffTox exists to guide

our sequential selection of doses based on patient outcomes. The trialists should
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2.4. Discussion

not stipulate every conceivable dose path and select parameters that replicate their

choices. This approach would preclude the use of a model at all. Rather, in our

opinion, the parameters should be selected for generally acceptable behaviour, with

particular consideration given to the extremes.

Once an acceptable parameterisation has been proposed, the performance of the

design should be assessed by simulation under a broad range of scenarios. The de-

sign should stop sufficiently early and reliably when all doses are too toxic. In sce-

narios where optimal and/or acceptable doses exist, the design should select those

with acceptable probability. Refinements to the parameterisation here will likely re-

quire the trial designer to consider how they affect the behaviour of the design in

dose transition, and thus the circularity of the challenge is illustrated.

We have considered even steeper contours, as stressed by Thall et al.[94] and

Yuan et al.[111]. They did not lead to superior performance in the particular sce-

narios we have chosen. This is likely due to the fact that our contours are steep for

efficacy probabilities as high as 70%, which we consider to be the clinically plausible

scenario in BP-CML. However, the point remains that trade-off contours should be

steep to motivate the design to accept higher probabilities of efficacy for acceptably

higher probabilities of toxicity.

EffTox is a powerful yet underused statistical design for seamless phase I/II

dose-finding clinical trials. Model-based designs are becoming more important as

trialists and funders move away from so-called “up-and-down” designs[59] like 3+3.

This trend will be further driven as investigators research treatments for which the

maximum-tolerated dose is unlikely to coincide with the most effective dose. We have

described our approach to overcoming some of the obstacles we faced in implement-

ing EffTox in Matchpoint.

We were able to choose EffTox because our co-primary outcomes efficacy and

toxicity were assessed over a similar time-frame. EffTox and other dose-finding de-

signs with co-primary outcomes would not have been suitable if one had required a

longer assessment period.

A key reason for selecting EffTox was the readily available, free software pro-

vided by the MD Anderson Cancer Center for performing dose calculations and sim-

ulations of trial operating characteristics. With the many time pressures that come
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with working in an academic clinical trials unit, it was a tremendous advantage to

have reliable software with which to design and run this trial. One of the drawbacks

of using compiled software was our inability to alter or add certain behaviours. For

instance, we might have suppressed the no-skipping in de-escalation rule, had that

been possible. The desire to routinely calculate dose-transition pathways led us

to developing an open-source implementations of EffTox in clintrials[15] and

trialr[16].

2.5 Conclusion

Joint phase I/II clinical trials will likely become more common in coming years as

we investigate non-cytotoxic treatments and streamline the drug approval process.

EffTox is an important trial design because it addresses both of these goals. The

Matchpoint trial will yield data on the efficacy and toxicity of the optimum dose

of ponatinib to be given with FLAG-IDA chemotherapy. It will allow the research

community to decide whether there is sufficient promise to warrant a pivotal trial,

effectively shortening the pathway to approval by removing the need for a separate

phase II trial. This efficiency is important in a relatively rare disease like BP-CML.

However, EffTox presents its challenges. It requires parameterisation and pre-

liminary calculation. Choices for parameters can potentially have undesirable con-

sequences, and without care the efficiency gains can be eroded. The process of final-

ising an EffTox design is inherently iterative. We have described our experiences in

the hope that it helps trialists implement this design successfully.

We have discussed the parameters we chose and how we selected them. We have

stressed the need to look at the dose transition pathways, particularly in the early

stages when few outcomes are observed, and at the circumstances that would lead

to the trial’s termination. We have highlighted the problem of dose ambivalence,

illustrated graphically, and suggested a pragmatic solution. We have described the

problem of outcome ambiguity, and how dose-transition pathways can mitigate the

problem in the short term, allowing the dose-finding trial to proceed whilst clinical

evaluation is ongoing. Finally, we have advised on the simulation scenarios that
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2.5. Conclusion

should be considered. We hope this paper will help other investigators implement

this important dose-finding clinical trial design.

We used version 4.0.12 of the official EffTox software, available from the MD

Anderson Centre website at

https://biostatistics.mdanderson.org/SoftwareDownload/.
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Chapter 3

Development of an Adaptive

Dose-Finding Design

Background: Wages and Tait introduced a method for phase I/II dose-finding

as an alternative to established designs like EffTox, described in the previous

chapter. Their method uses a simpler probability model than EffTox, and adap-

tive randomisation to preferably allocate patients to doses estimated to be tol-

erable and effective. Adaptive randomisation potentially brings an operational

cost to clinical trials units if the randomisation probabilities must be indepen-

dently validated before use. With frequent analyses, as in a dose-finding trial,

this administrative burden threatens to impact efficient trial progress.

Notable methods in this chapter: We introduce a hybrid trial design that bor-

rows Wages and Tait’s probability model, whilst abrogating the need for ran-

domisation by implementing the utility contours used in EffTox. We compare

nine variants of the three designs in a simulation study, seven of which do

not use randomisation, comparing them using a novel measure borrowed from

quantitative finance.

The implications on efficiency: A version of Wages & Tait’s design that does

not use randomisation showed superior statistical performance. This design

achieved our operational efficiency objective without compromising statistical

efficiency. Our hybrid design achieved the same operational objective but of-

fered slightly inferior statistical performance and greater heterogeneity, whilst

allocating marginally fewer patients at attractive doses.
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3.1 Symbols used

Table 3.1 contains a list of the symbols used in this chapter.

3.2 Introduction

This chapter builds on the last by considering alternative designs for phase I/II dose-

finding trials. The clinical motivations for conjoining phases I and II were discussed

in Chapter 2. For decades, chemotherapy has been one of the cornerstones of can-

cer treatment and the dose-finding objective has typically been to identify the MTD.

However, modern therapies increasingly challenge the validity of the cytotoxic as-

sumption. An immunotherapy example is developed in this thesis at length in Chap-

ter 5. A very brief review of phase I/II methodologies was presented in Chapter 2

and we elaborate on that now.

An early design in this area came from O’Quigley et al.[68] conducting dose-

finding studies in HIV retroviral therapies, extending the Continual Reassessment

Method (CRM)[69] by using relatively simple functions to model the probabilities of

efficacy and toxicity at discrete doses. They use a trinomial outcome with categories

Toxicity, No Response and Response, and consider situations where efficacy is not,

in general, monotonically increasing in dose.

Braun[12] introduced a bivariate generalisation of CRM (bCRM) with competing

outcomes for toxicity and response. In their setting, the ‘dose’ being studied is the

amount of time after a stem-cell transplant (SCT) to wait before tapering immuno-

suppressive (IS) therapy and beginning donor leukocyte infusions (DLI) intended to

incite a graft-versus-leukaemia (GVL) effect. If IS therapy is tapered too soon, there

is a risk of acute graft-versus-host disease (aGVHD), a common and potentially fatal

complication with SCTs. In contrast, if DLI are given too late, there is a risk of dis-

ease progression. Treating occurrence of aGVHD as the toxicity event and absence

of disease progression as the efficacy event, it is clear that a trade-off between the

two events must be sought to provide the best outcome for patients. They model

the probabilities of efficacy and toxicity using independent logit models. The two
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Symbol Definition
di for i = 1, ..., n a dose, e.g. 10 might represent 10mg
g(β) prior distribution for β
h(θ) prior distribution for θ
n the number of doses under investigation
i index of doses
j index of patients
k index of efficacy skeletons
k∗ index of efficacy skeleton with greatest posterior probability
pi prior probability of toxicity at dose i
pE , pT certainties required that efficacy / toxicity rate is acceptable
qik prior probability of efficacy at dose i under skeleton k
u(πE , πT ) utility function
w(k,Dj) posterior probability of efficacy skeleton k in WT and WATU
xj dose allocated to patient j
yj toxicity variable for patient j, 1 meaning tox; 0 meaning no tox
zj efficacy variable for patient j, 1 meaning eff; 0 meaning no eff
D the set of doses, di
Dj trial data up to and including patient j
ET EffTox
F (d, β) toxicity link function in WT and WATU
Gk(d, θ) efficacy link function using efficacy skeleton k in WT and WATU
Xj random variable for dose allocated to patient j
Yj random variable for toxicity presence in patient j
Zj random variable for efficacy presence in patient j
WT Wages and Tait
WATU Wages and Tait with Utility
αE significance for deficient efficacy at optimal dose in WT
αT significance for excess toxicity at lowest dose in WT
β toxicity curve parameter in WT and WATU
β̂j posterior estimate of β using data for j patients
βE,1 slope term for dose in EffTox efficacy logit
βE,2 slope term for dose-squared in EffTox efficacy logit
βT slope term in EffTox toxicity logit
δi for i = 1, ..., n transformed dose, used in EffTox
δ vector of transformed doses in EffTox, δi
θ vector of parameters in EffTox model
θ efficacy curve parameter in WT and WATU
θ̂jk posterior estimate of θ using efficacy skeleton k and data for j patients
λ curvature parameter in efficacy-toxicity contours
µT intercept term in EffTox toxicity logit
πE , πT probability functions for efficacy and toxicity
π̂E , π̂T posterior probabilities of efficacy / toxicity in WT and WATU
π∗1,E , π∗1,T , etc probabilities of efficacy / toxicity at notable points
πE lower threshold for efficacy rate
πT upper threshold for toxicity rate
τ(k) weight assigned to efficacy skeleton k
ψ association parameter in EffTox model
ω random draw from a normal distribution

TABLE 3.1: Symbols used in this chapter, in alphabetical order.

outcomes are then combined into a joint likelihood model with an association pa-

rameter to handle the tendency for events to co-occur.
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Thall and Cook[92] introduced EffTox in 2004. We covered this design in great

detail in the previous chapter so no further elaboration is warranted here.

Yin et al.[110] introduce another dose-finding method for co-primary efficacy and

toxicity. Unlike EffTox, they do not specify any functional form for the dose-response

curve. Instead, they use a novel class of priors to impose a monotonic constraint on

the probabilities of toxicity at increasing doses. The efficacy curve is free from con-

straint and they choose amongst doses by trading-off the efficacy-to-toxicity odds

ratios at the investigated doses.

Wang & Day[99] introduce another Bayesian approach for co-primary efficacy

and toxicity dose-finding. They model the patient-level thresholds at which events

occur using bivariate log-normal distributions and, like EffTox, select amongst doses

for individuals using utility functions. This allows patients and clinicians to poten-

tially influence the delivered dose by reflecting the extent to which toxicity will be

risked in pursuit of efficacy.

Zhang et al.[112]. introduced a model-based trivariate CRM (TriCRM) design.

It uses a continuation ratio logit models to partition the bivariate efficacy and tox-

icity outcome space into three exclusive and exhaustive outcomes: response with

no toxicity; no response and no toxicity; and toxicity (irrespective response). Wang

& Day[99] are critical of this approach, pointing out that toxicity with response is

clearly preferable to toxicity with no response and that this should be reflected in

the model.

Recently, Shimamura et al.[82] introduced a two-stage approach for combina-

tions of two agents in phase I/II trials. Their first stage is for identifying the ‘most

admissible toxicity zone’ by varying doses of treatments in the combination. In their

second stage, they use adaptive randomisation to collect outcomes under the admis-

sible combinations.

Further, Ananthakrishnan et al.[3] extended the modified Toxicity Probability

Interval (mTPI) design of Ji & Wang[49] and Toxicity Equivalence Range design

(TEQR) of Blanchard & Longmate[9] to include a binary efficacy outcome. They

apply isotonic regression to the observed toxicity and efficacy outcomes considering

a range dose-response curves to determine the optimal dose.

One of the focuses of this chapter is the method introduced by Wages and Tait[98]
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(that we will refer to as WT) for seamless phase I/II dose-finding trials. Their design

uses a latent CRM to continually model the probabilities of toxicity. To model the

rates of efficacy, they choose amongst pre-specified efficacy skeletons, simple sparse

efficacy curves that reflect the plausible shapes of the general dose-efficacy curve.

They choose the skeleton that best fits the observed efficacy curve using Bayes fac-

tors. The method of choosing amongst these skeletons is described in Section 3.3.

The vertical location of the dose-efficacy curve is allowed to vary using a single

parameter, much like the common empiric CRM model[24]. Overall, their method

requires two parameters, a prior estimate of the dose-toxicity curve and the specifi-

cation of the efficacy skeletons. They provide guidance in their paper for specifying

the recommended (2n− 1) skeletons in a trial that investigates n doses.

WT conducts a dose-finding study in two stages. In the first stage, patients

are adaptively randomised amongst the doses believed to be tolerable, with prob-

abilities proportional to the estimated chances of efficacy. Adaptive randomisation

creates potential friction within a trials unit where standard operating procedures

likely require that randomisation probabilities must be independently validated be-

fore use. Conducted infrequently, this is not a great hindrance. However, when a

model is updated after each small cohort, as is common in a dose-finding trial, the

validation requirement stands to become arduous. If the model is updated after ev-

ery patient, as Wages & Tait themselves investigated, the validation burden could

become prohibitive.

Our pre-occupation in this thesis is an examination of methods that promote

trial efficiency. WT is attractive because its probability model is relatively simple,

building upon methods used in CRM that are now well understood and widely

implemented in software[16, 24, 86]. However, its operational efficiency could be di-

minished by the use of adaptive randomisation. In this chapter, we propose a fusion

of WT and Thall & Cook’s EffTox (ET) that removes the randomisation requirement.

In Section 3.3, we describe the statistical aspects of WT and our motivation for com-

bining this design with ET. We introduce the hybrid method that we call Wages And

Tait with Utility (WATU) in Section 3.4. In Section 3.5, we compare the performance

of the three methods in a simulation study. Finally in Section 3.6, we close with a

discussion.
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3.3 Wages & Tait

The EffTox model was detailed in Chapter 2. In this section we introduce the WT

design, after establishing some notation.

We are studying seamless phase I/II dose-finding clinical trials with joint binary

efficacy and toxicity outcomes. We denote D = {d1, ..., dn} to be the set of n doses

under investigation. Each patient will be treated at exactly one dose level and will

yield binary outcomes for efficacy and toxicity. Let Xj be the random variable rep-

resenting the dose allocated to patient j, taking values xj ∈ D . Let Yj and Zj be the

random variables representing binary toxicity and efficacy events respectively for

patient j, taking values yj , zj ∈ {0, 1}, where 1 denotes the event occurred and 0 that

it did not.

Wages and Tait’s[98] method estimates the toxicity curve by delegating to the

univariate Bayesian variant of the Continual Reassessment Method (CRM)[69]. Let p

represent the trialists’ prior beliefs on the rate of toxicity at each dose. In a monotonic

dose-toxicity scenario, we have 0 < p1 < ... < pn < 1. We will denote the single

parameter in the toxicity model β and assume it has prior distribution g(β). Wages &

Tait choose the same β ∼ N(0, 1.34) prior used by O’Quigley & Shen[70]. Using trial

data for the first j patients Dj = {(x1, y1, z1), ..., (xj , yj , zj)} and toxicity probability

function F (d, β), the likelihood for β is

L(β|Dj) =

j∏
l=1

{F (xl, β)}yl {1− F (xl, β)}(1−yl) , (3.1)

the posterior density for β is

P (β|Dj) =
L(β|Dj)g(β)∫∞

−∞ L(β|Dj)g(β)dβ
(3.2)

and the posterior mean1 is

β̂j =

∫ ∞
−∞

βP (β|Dj)dβ (3.3)

1Note that in contrast to more common usage, the hat symbol here denotes the posterior mean and
not the maximum likelihood estimate.
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For instance, using the empiric link function F (di, β) = p
exp (β)
i , the posterior

estimate of the dose-toxicity curve is

π̂T (di) = F (di, β̂j) = p
exp (β̂j)
i (3.4)

The authors use the values of π̂T (di) to define an acceptable set of doses, an object

analogous to the admissible set in ET. Henceforth, we will use the term admissible

throughout for consistency. A dose is admissible in WT if the estimated rate of toxic-

ity is less than the maximum acceptable rate. More formally, the admissible set after

evaluation of patient j is:

Aj = {di : π̂T (di) < πT ; i = 1, ..., n} (3.5)

where πT is the maximum acceptable toxicity rate.

To model the efficacy probabilities, they use order restricted inference and Bayesian

model selection by specifying a set of working models, or skeletons, that describe

the plausible shapes of the dose-efficacy curve and iteratively choosing the skeleton

that best fits the observed efficacy data. The authors describe a general method for

identifying 2n − 1 skeletons when the dose-efficacy curve might be monotonically

increasing, unimodal (i.e. initially increasing and then decreasing) or plateaued.

Naturally, if the situation demands it, more or fewer skeletons could be consid-

ered. A monotonically increasing efficacy curve would have πE(d1) < ... < πE(dn).

In contrast, an efficacy curve that plateaus at the penultimate dose would have

πE(d1) < ... < πE(dn−1) = πE(dn).

Let K denote the number of efficacy skeletons under consideration in a trial.

For skeleton k, let the probabilities of efficacy at the n doses be (q1k, ..., qnk) for k =

1, ...,K. Under skeleton k, the authors model πE(di) = Pr(Zj = 1|di) ≈ Gk(di, θ) =

q
exp (θ)
ik . Once again, the empiric link function is used.

The parameter θ controls the vertical location of the efficacy curve. Let θ have

prior distribution h(θ). After j patients have been treated and assessed on the study,
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the likelihood under model k is

Lk(θ|Dj) =

j∏
l=1

{Gk(xl, θ)}zl {1−Gk(xl, θ)}(1−zl) , (3.6)

the posterior density for θ is

Pk(θ|Dj) =
Lk(θ|Dj)h(θ)∫∞

−∞ Lk(θ|Dj)h(θ)dθ
(3.7)

and the posterior mean under skeleton k is

θ̂jk =

∫ ∞
−∞

θPk(θ|Dj)dθ (3.8)

At each dose-update decision, the authors select the skeleton with the highest

posterior probability. Their method allows investigators to express their prior be-

liefs on which skeletons are more likely via a weight function τ(k), scaled so that∑K
k=1 τ(k) = 1. If the investigators believe the skeletons to be equally likely, they set

τ(k) = 1
K for k = 1, ...,K. Then, the posterior model probabilities are

w(k|Dj) =
τ(k)

∫∞
−∞ Lk(θ|Dj)h(θ)dθ∑K

k=1 τ(k)
∫∞
−∞ Lk(θ|Dj)h(θ)dθ

(3.9)

and the skeleton chosen to model the dose-efficacy curve at the dose-update deci-

sion, k∗, is that with greatest posterior model probability, i.e.

k∗ = arg max
k

w(k,Dj) (3.10)

for k = 1, ...,K. As the authors note, “the more the data support model k, the greater

its posterior probability will be”. Having selected the best skeleton, the posterior

probabilities of efficacy are estimated as

π̂E(di) = Gk∗(di, θ̂jk∗) (3.11)

Wages & Tait propose two stages to their design and these differ in the way the

next dose is selected for the next patient or cohort.

During the first stage, the so-called randomisation stage, the next dose is randomly
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selected from the admissible set with probability proportional to π̂E(di) so that doses

with the high estimated efficacy are preferably selected. The adaptive randomisation

probability of dose i in Aj is

Ri =
π̂E(di)∑

di∈Aj
π̂E(di)

(3.12)

During the second stage, the admissible dose with maximal π̂E(di) is selected.

This is called the maximisation stage. At each stage, dose transition may be restricted

to avoid skipping untried doses in escalation and/or de-escalation. If at either stage

the admissible set is empty, the trial proposes no dose and the trial stops.

The trialists can set the size of the stages, or even choose to only use one partic-

ular stage by setting the size of the other to 0, an option we explore below. Wages &

Tait investigate different mixes and show that a 50:50 split works quite well.

As with ET, there are stopping rules in WT. The safety stopping rule is applied

at each dose update decision. The exact binomial quantile is calculated for the ob-

served rate of toxicity at the lowest dose, d1 using significance αT . If the lower bound

exceeds the maximum acceptable toxicity rate, πT , the treatment is understood to be

too toxic at all doses and the trial is stopped. If the lowest dose has not been given,

the lower bound for the confidence interval is effectively 0 and the safety rule does

not fire. Wages & Tait advocate using αT = 0.05.

There is also a futility stopping rule to stop investigators pursuing a treatment un-

duly when the observed efficacy rate is too low. This rule is applied at dose update

decisions only in the maximisation stage. It is not invoked during the randomisation

stage. This rule uses a similar method, calculating the exact binomial confidence in-

terval for the observed rate of efficacy at the proposed dose using significance αE . If

the upper bound is less than the minimum acceptable efficacy rate, πE , the treatment

is understood to be inefficacious at all doses and the trial is stopped. Wages & Tait

use αE = 0.05.

3.3.1 The Rationale for Combining WT and ET

EffTox is a powerful yet complicated trial design. It requires the specification of

many parameters and a degree of familiarity to ensure that those parameters work

47



Chapter 3. Development of an Adaptive Dose-Finding Design

harmoniously to yield an effective trial design. We demonstrated this in Chapter 2.

The Bayesian update integral is six-dimensional, a not-inconsiderable challenge

that must be resolved at each dose decision. MD Anderson provides software for

conducting and simulating EffTox[45] trials but not source-code. Naturally, some

desirable features may be missing. We wrote an implementation of EffTox to pro-

duce dose-transition pathways for future cohorts. This was instrumental in our in-

vestigation into dose-ambivalence. To our knowledge, we have published the only

open-source EffTox implementations, in the Python package clintrials[15] and the R

package trialr[16].

Wages & Tait’s design is simpler and has several benefits. It delegates to a well-

known design in CRM to perform a key trial role. The method for modelling efficacy

is intuitive and tractable. At dose decisions, the method requires only that one-

dimensional integrals be solved. It is not particularly onerous to implement the

design in a new programming language.

In our opinion, WT has potential drawbacks too. The design randomises be-

tween doses in the first stage. This requires that the trialists be willing to give any

dose selected. Wages & Tait recommend that the design be constrained to avoid

skipping untested doses in escalation. In a similar vein, the design could select a

low dose that the trialists believe to be sub-therapeutic. To combat this, it would

be relatively simple to prevent skipping in de-escalation too. However, whilst it is

the job of clinical trials to provide objective evidence that may confirm or refute tri-

alists’ beliefs, we feel that in some scenarios, investigators might prefer a method

that changes doses deterministically rather than randomly. It is possible in WT to

skip the randomisation mechanism by moving straight to the maximisation stage.

We investigate this option in the simulation study.

Our main motivation to alter WT however is to remove the adaptive randomi-

sation component. Under the present operating procedures of our trials unit, ran-

domisation methods must be validated by the trial statistician. If the randomisation

mechanism changes, it has to be validated again. In the case of WT, this would at

least necessitate that each set of randomisation probabilities is independently repli-

cated. We believe this requirement would be present under the standard procedures
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of many trials units. Small but frequent hurdles such as this will reduce the opera-

tional efficiency of the method and could make it less attractive.

We feel that WT has many advantages that should be available to trialists in all

dose-finding scenarios that require the joint consideration of efficacy and toxicity,

particularly ease of use. In this spirit, we seek to adapt Wages & Tait’s design to

transition dose using the ET principle of utility maximisation, rather than adaptive

randomisation.

All seamless phase I/II methods can be considered efficient because they per-

form two trial functions at once. The efficiency of a dose-finding method could be

inferred from its performance. A design that identifies the optimum dose to a given

threshold reliability using fewer patients can be considered more efficient. To these

ends, we investigate the performance of WT, ET and their hybrid with a simulation

study.

3.4 WATU - A Hybrid Model

We introduce in this section a hybrid of Wages & Tait’s design and EffTox, named

Wages And Tait with Utility (WATU)2 The following design was conceived by Christina

Yap (CY) and Kristian Brock (KB) on a train journey, returning home from an early

phase trials workshop.

Our starting point is to mimic the probability models for both efficacy and tox-

icity in Wages & Tait. We advocate using a Bayesian CRM model to continually es-

timate the dose-toxicity curve. This requires the trialists’ prior beliefs on the rate of

toxicity at each dose, pi for i = 1, ..., n in a study of n doses. Using a one-parameter

CRM model with empiric link function, the posterior probabilities of toxicity are

given by (3.4). Other parameterisations and link functions are possible[24].

We also use Wages & Tait’s method of choosing amongst efficacy skeletons to

estimate the dose-efficacy curve. The posterior probabilities of efficacy are given by

(3.11).
2According to Wiktionary, watu is a Quechua word, meaning clothesline or spell. It seems appro-

priate to this author that a dose-finding trial design would be named at the intersection of support
structure and incantation.
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At this juncture, we depart from Wages & Tait. For calculating the admissible set

of doses, we mirror EffTox in equations (2.6) and (2.7) by admitting doses that are

threshold efficacious and tolerable according to their posterior distributions. A dose

d is admissible in WATU after observing trial data Dj if

Pr {πE(d) > πE |Dj} > pE (3.13)

and

Pr {πT (d) < πT |Dj} > pT (3.14)

Equation (3.3) gives the posterior mean for β. The posterior variance is

var(βj) =

∫ ∞
−∞

β2P (β|Dj)dβ − β̂2j (3.15)

and the posterior distribution for β after j patients have been observed will be ap-

proximately N(β̂j ,var(βj)). It is simpler to sample from this specification of the

posterior distribution than from (3.2). We can estimate Pr {πT (d) < πT |Dj} and thus

resolve (3.14), for example, by randomly sampling ω1, ..., ωM from the normal distri-

bution N(β̂j ,var(βj)) for suitably large M , and calculating

Pr {πT (di) < πT |Dj} ≈
1

M

M∑
m=1

I(F (di, ωm) < πT ) (3.16)

for each dose. Here I(A) is the indicator function taking value 1 when event A is

true, else 0. We infer that dose di is tolerable if the quantity on the right-hand side of

(3.16) is greater than pT . We can perform a similar calculation to resolve (3.13).

As with ET, the investigators must provide values for πE , πT , pE and pT . If no

dose is admissible, the trial stops. The admissible set is recalculated at the end of

each cohort.

A further departure from WT comes in the way the next dose is selected. We

explained our preference for a similar design to WT that does not randomly assign

doses. Having reappropriated in WATU the probability models from WT to estimate
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the posterior probabilities of efficacy and toxicity, we can mimic Thall & Cook’s ap-

proach in EffTox of selecting the admissible dose with the greatest utility. The equa-

tion for calculating dose utility is given in (2.5). The process of identifying an Lp

norm is the same as that described in Section 2.2 and Thall et al[93]. CY had the idea

of porting EffTox’s utility contours to abrogate the need for randomisation in WT.

A dose di is admissible if it satisfies (3.13) and (3.14). Additionally, the trialists

may choose to refine the admissible set by preventing the design from skipping un-

tried doses in escalation and/or de-escalation. Given our preference for determinis-

tic dose-transition and the nature of dose-finding under the competing moderators

efficacy and toxicity, we believe it is preferable to avoid skipping untried doses in

both escalation and de-escalation. At the dose update decision, WATU will select

the most attractive dose from the admissible set. What determines ‘most attractive’

changes in WATU according to the stage of the trial.

3.4.1 Trial Conduct - Stage One

The aim of the first stage is to gather information on which doses are safe. We en-

visage starting at a low dose, albeit not necessarily the lowest dose, and escalating

though the doses in a sequential fashion, all the while mindful to not allocate a dose

that is believed to be too toxic. To achieve these ends, we propose that dose be

guided by the underlying CRM model in the first stage. CRM is calibrated with a

target rate of toxicity and iteratively recommends the dose that it believes to have

associated toxicity rate closest to the target. The design forecasts the rate of toxicity

at each dose by combining observed trial outcomes with prior information. The tox-

icity target will be set as the clinical situation dictates but will naturally be less than

πT . For instance, in the Matchpoint setting (introduced below), we believe a priori

that efficacy will initially increase with dose (and toxicity) but then begin to level off.

Hence, we use a toxicity target slightly below πT when we use WATU in Matchpoint

scenarios.

The following pseudo-code describes the dose-update decision in the first trial

stage:

1. Select each dose in turn, ordered from estimated closest to
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furthest from toxicity target:

2. If the dose is admissible:

3. If the dose does not violate a no-skipping rule:

4. Select this as the recommended dose

5. Exit

6. If no dose is selected, stop the trial.

3.4.2 Trial Conduct - Stage Two

Stage two seeks to allocate to the optimal dose by trading the probability of toxic-

ity against the probability of efficacy. Each dose is allocated an attractiveness score

using the method of Thall & Cook[92], as described. Doses with high attractiveness

scores will offer a relatively high rate of efficacy for the rate of toxicity that must be

endured.

The following pseudo-code describes the dose-update logic in the second trial

stage:

1. Select each dose in turn, from highest to lowest utility:

2. If the dose is admissible:

3. If the dose does not violate a no-skipping rule:

4. Select this as the recommended dose

5. Exit

6. If no dose is selected, stop the trial.

3.4.3 Sizes of Stage One & Two

Trialists can set the sizes of the stages as they see fit. Stage one allows the design

to step through doses and collect efficacy and toxicity information when trial data

is very limited and safety is paramount. Naturally, the size of stage one could be

set to zero to suppress the CRM-only allocation stage. Stage one need not even be

of fixed size. Trialists might prefer stage one to end when some pre-defined event

happens, like the moment the first (or nth) efficacy event is observed, for instance.

We investigate different sizes for stage one below.
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3.5 Comparing the Designs by Simulation

In this section we compare the performance of ET, WT and WATU in simulations

motivated by the Matchpoint scenario, described in Chapter 2. The trial uses an

ET design although it could feasibly have used another joint phase I/II design like

WT or WATU. Once again, we codify the doses under investigation as 7.5mg, 15mg,

30mg and 45mg each day. The trial and hence our simulations will recruit up to 30

patients in cohorts of three. We will start each iteration of each design at dose-level

3, as we did in the actual study. The doses under investigation and our prior beliefs

on efficacy and toxicity are given in Table 2.2.

3.5.1 Designs Under Investigation

The main objective of the simulation study is to compare the general performance of

the three competing designs, ET, WT and WATU in a real trial situation. However,

it is important to consider that each of the designs may be configured in different

ways to promote or inhibit certain behaviour. There is no uniquely correct parame-

terisation in any case. Trialists will naturally use all available levers to get the most

desirable behaviour from their design. It is likely that a design could be configured

is such a way as to replicate the desirable behaviour of another. For instance, WT

provides a mechanism for suppressing adaptive randomisation by simply setting the

size of the randomisation stage to 0. As such, a secondary objective of the simulation

study is to compare the performance of variations of the designs.

Naturally, it is infeasible to analyse all design variants. Specifically, we are in-

terested in how reliably the designs pick the optimum dose. Further to this, we

will investigate how the designs perform in monotonic scenarios, where the dose-

efficacy curve broadly concurs with our prior beliefs. Additionally, we will analyse

performance in non-monotonic efficacy scenarios, where the prior beliefs must be

overruled by the designs to accurately model the prevailing clinical scenario. To

these ends, we propose to investigate two instances of EffTox (ET1, ET2), three in-

stances of Wages & Tait (WT1, WT2, and WT3) and three instances of Wages And Tait

with Utility (WATU1, WATU2 and WATU3), as described in the following sections.
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3.5.2 Parameterising the Designs

Each of the designs under study requires parameters. These determine the be-

haviour of the methods and will naturally be selected by the trialists to reflect their

expectations and objectives in the clinical trial. We discuss how our expectations on

efficacy and toxicity inform the parameterisation below.

In a phase I/II dose-finding setting, trial designs may either select a dose for fur-

ther study or recommend that the trial stop early with no dose being selected. A trial

may be stopped for lack of efficacy or excess toxicity. Highly divergent propensities

to stop hinder the comparison of designs. For instance, the performance of a design

that never stops will look artificially superior in scenarios where the correct decision

is to not stop. The indecision on whether to stop is a burden that must be carried

by all designs. ET, WT and WATU use different methods to infer dose admissibility.

After discussing efficacy and toxicity parameterisation below, we describe a system-

atic method for parameterising designs so that they stop with approximately equal

probability in a given benchmark scenario. Neutralising this important source of

variation aids comparison of the designs in general scenarios.

Our prior estimates for the rates of efficacy and toxicity at the four doses are

given in Table 2.2 in the previous chapter. The CRM models in WT and WATU

both use these prior toxicity probabilities. Each uses the empiric link function and a

N(0, 1.34) prior for β.

ET requires normal priors on the six elements of θ. In ET1, we use an effective

sample size of 1.3 to match the choice we made in the real Matchpoint trial. The

EffTox software produces the normal priors shown in Table 3.2. Under parameteri-

sation ET2 we have inflated the standard deviation hyperparameter for βE,2 fivefold

to 1.0, whilst leaving the other elements unchanged, to facilitate non-linearity and

turning points in the dose-efficacy curve.

To give validity to the choice of 1.0 as a suitable value for the standard deviation

of βE,2, consider the following example. In Matchpoint, the unimodal efficacy curve

(0.17, 0.44, 0.50, 0.40) is fitted by the parameter values µE = 0, βE,1 = 0.5 and

βE,2 = −1.2. Under the ET1 priors, this value of βE,2 is 6 prior standard deviations

away from the prior mean. Under the ET2 priors, however, this value is only 1.2
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TABLE 3.2: Normal priors for the elements of the EffTox parameter
vector θ in the Matchpoint setting. Priors in ET1 are calculated using

the MD Anderson EffTox software with ESS = 1.3.

ET1 ET2
Parameter Mean St Dev Mean St Dev
µT -5.4317 2.7643 -5.4317 2.7643
βT 3.1761 2.7703 3.1761 2.7703
µE -0.8442 1.9786 0.8442 1.9786
βE,1 1.9857 1.9820 1.9857 1.9820
βE,2 0 0.2 0 1
ψ 0 1 0 1

prior standard deviations away. This change increases the probability that ET2 will

fit unimodal efficacy curves. Unfortunately, the EffTox software does not reveal the

effect of inflating the prior standard deviation of βE,2 on ESS.

To create the efficacy skeletons in WT and WATU, we permuted the prior efficacy

rates, as demonstrated in Table 3.3. It does not matter that skeleton 7, for example,

plateaus at a high efficacy probability that we do not necessarily expect to manifest

because the θ parameter adjusts the average height of the curve to best fit the ob-

served efficacy rates. Rather, the ordering of the nodes is important. The efficacy

models in WT and WATU use a N(0, 1.34) prior for θ.

TABLE 3.3: Efficacy skeletons for WT and WATU in the Matchpoint
trial setting. We consider monotonic, unimodal and plateau skele-

tons.

k q1k q2k q3k q4k
1 0.6 0.5 0.3 0.2
2 0.5 0.6 0.5 0.3
3 0.3 0.5 0.6 0.5
4 0.2 0.3 0.5 0.6
5 0.3 0.5 0.6 0.6
6 0.5 0.6 0.6 0.6
7 0.6 0.6 0.6 0.6

In WT1, we allocate 15 patients to the randomisation stage, and 15 to the maximi-

sation stage, to give the design equal opportunity to explore the doses and identify

the optimal dose. Furthermore, in WT1 we equally weight the efficacy skeletons

with τ(k) = 1/7 for k = 1, .., 7 so that each efficacy scenario is equally likely, a priori.

We parameterise WT2 the same as WT1, with the exception that efficacy skeleton

4 is weighted twice as likely as the other skeletons, to reflect the anticipation of a
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monotonic dose-efficacy curve, i.e.

τ(k) =


1/4, for k = 4

1/8, for k = 1, 2, 3, 5, 6, 7

(3.17)

We parameterise WT3 the same as WT2 with the exception that the randomisation

stage size is set to 0, i.e. WT3 is inclined towards the monotonically-increasing

efficacy skeleton and proceeds immediately with the maximisation stage of dose-

allocation without randomisation, keeping maximum sample size fixed at 30.

In WATU1, we allocate 15 patients to the first stage and 15 patients to the second

stage, as described in Sections 3.4.1 and 3.4.2. In this configuration, the design has

equal opportunity to escalate through the doses safely and identify the optimal dose.

We also uniformly weight the efficacy skeletons, as with WT1.

In WATU2, we bias the model to prefer the monotonically increasing efficacy

skeleton using (3.17), as in WT2. In every other regard, WATU2 matches WATU1.

Lastly, we parameterise WATU3 the same as WATU2, with the exception that the size

of stage one is set to zero so that the design proceeds immediately with identifying

the optimal dose, without the initial CRM-driven safety stage,

We require utility measures for the ET and WATU designs. Following the ex-

ample in Thall et al[92, 93], we selected neutral utility points (π∗1,E , 0) = (0.4, 0),

(1, π∗2,T ) = (1, 0.7) and (π∗3,E , π
∗
3,T ) = (0.5, 0.4), yielding a family of utility curves

with p = 2.07. We calculate the utility of doses using (2.5). These match the utility

curves we used in Matchpoint.

The design parameterisations we consider in our simulation study are summarised

in Table 3.4.

3.5.3 Simulation method

To compare the general performance of the designs in Table 3.4, we conducted a

simulation study using a wide range of scenarios. Patient outcomes were randomly

sampled according to assumed true efficacy and toxicity probabilities, with the events

assumed to be independent. In each scenario, we simulate 10,000 trial outcomes us-

ing up to 30 patients in each iteration with doses being given in cohorts of three. For
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TABLE 3.4: Parameterisations of all designs under study. Only the pa-
rameters that vary are shown. Common parameters are given in the
text. The efficacy skeleton that is upweighted in WT2, WT3, WATU2
and WATU3 is the one representing a monotonic dose-efficacy curve.

Design Parameterisation
ET1 βE,2 ∼ N(0, 0.2)

pE = 0.15
pT = 0.16

ET2 βE,2 ∼ N(0, 1.0)
pE = 0.16
pT = 0.16

WT1 First stage (randomisation) size = 15
efficacy skeleton weights = (1,1,1,1,1,1,1)
αE = 0.3
αT = 0.3

WT2 First stage (randomisation) size = 15
efficacy skeleton weights = (1,1,1,2,1,1,1)
αE = 0.3
αT = 0.3

WT3 First stage (randomisation) size = 0
efficacy skeleton weights = (1,1,1,2,1,1,1)
αE = 0.32
αT = 0.32

WATU1 First stage (CRM) size = 15
efficacy skeleton weights = (1,1,1,1,1,1,1)
pE = 0.2
pT = 0.2

WATU2 First stage (CRM) size = 15
efficacy skeleton weights = (1,1,1,2,1,1,1)
pE = 0.2
pT = 0.2

WATU3 First stage (CRM) size = 0
efficacy skeleton weights = (1,1,1,2,1,1,1)
pE = 0.22
pT = 0.22
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each design in each iteration, dose decisions were made at the end of each simulated

cohort of three and the next cohort treated at the recommended dose, or the trial

stopped, as the design advised. ET, WT and WATU were constrained from skip-

ping doses in escalation and de-escalation, as described for each design above. All

simulated trials started at dose-level 3, as Matchpoint did.

3.5.4 Parameters for Dose Admissibility

We have discussed the concept of dose admissibility and how this is handled in the

different designs. An inadmissible dose is not considered for allocation to a cohort

of patients. The sets of admissible and inadmissible doses will change as the trial

progresses and outcomes are collected. Designs will stop the trial when no dose is

admissible.

ET, WT and WATU use different methods to infer admissibility and this will

affect performance because a decision to stop is simultaneously a decision to recom-

mend no dose. For instance, a design that stops one third of the time and recom-

mends the correct optimal dose two thirds of the time will look inferior to another

design that never stops, selects the optimal dose 70% of the time and a sub-optimal

dose 30% of the time. However, if the stopping probability is calibrated in the first

design, it is likely that superior performance will be attained. Although this illus-

trative example is contrived, our early attempts at conducting simulation studies

to compare the designs using the original authors’ recommended stopping parame-

ters yielded such disparate stopping probabilities that performance was essentially

non-comparable. Calibration was necessary.

The aim of this section is to describe a systematic method of parameterising the

admissibility components of the designs so that each stops with similar probability

in a particular baseline scenario. The choice of baseline scenario will be important

and it is expository to consider the process of arriving at a recommendation to stop.

ET, WT and WATU use different statistical methods to model the dose-efficacy

and dose-toxicity curves, as described in Sections 2.2, 3.3 and 3.4. As with every sta-

tistical model, each is subject to estimation error and this is pertinent to the decision

to stop. For instance, when a design recommends stopping, it could have correctly

identified a scenario where all doses truly are too toxic. Alternatively, it could have
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misclassified a scenario where at least some doses are tolerable. In this instance,

the misclassification will stem from imperfect estimation of the dose-toxicity curve.

Generally in phase I/II trials, estimates of the efficacy and toxicity curves will have

bearing on the decision to stop. When calibrating designs to stop with similar prob-

ability, we remove this source of uncertainty using the following simple method.

In the baseline stopping scenario, we assume the toxicity and efficacy curves are

flat by setting the probability of efficacy and toxicity to be the same at every dose.

This removes the variation stemming from their imperfect estimation of the event

curves because any dose selected yields the same event probabilities. The partic-

ular dose selected does not affect the decision to stop. Rather, the act of choosing

any dose forgoes the opportunity to stop. The decision to stop is focussed as much

as possible on the mechanism explicitly introduced to govern stopping and not on

imprecise estimation of the dose-toxicity or dose-efficacy curves. We tweak the stop-

ping parameters in the designs until each stops with a pre-determined probability

in the baseline scenario.

In Matchpoint, we seek a dose with at least 45% efficacy and at most 40% toxicity

thus we set πE = 0.45 and πT = 0.4 in each design. These values are chosen for their

clinical relevance. WATU requires a toxicity target in the first stage. We set this to be

0.35, slightly below the toxicity limit. WT does not use a toxicity target in its CRM

component.

In our baseline stopping scenario we set the true efficacy to 45% throughout so

that each dose is borderline sufficiently efficacious. In contrast, we set toxicity to

50% at each dose. At this 10% margin over the maximum allowable toxicity rate,

we require that each design stop with 60% probability. Achieving an exact stopping

probability is not a realistic goal. At a practical level, we sought a parameterisation

that yielded a stopping probability between 60% and 62% in each design. Where

this was not possible, the parameterisation giving stopping probability closest to

60% was retained. Using the metric described in the previous section, the utility of

the point (πE , πT ) = (0.45, 0.5) is -0.15. In summary, in our four dose trial setting,

the baseline stopping scenario has true efficacy curve (0.45, 0.45, 0.45, 0.45) and true

toxicity curve (0.5, 0.5, 0.5, 0.5).
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Having fixed the threshold values for the acceptable maximum toxicity and min-

imum efficacy, stopping is governed in ET by the parameters pE and pT . We adjust

these until the requisite stopping probability is achieved in the baseline scenario.

Our preference is to have similar values for pE and pT because we have no particular

motivation to prioritise one source of error. In ET1, a modest amount of trial-and-

error lead to pE = 0.15 and pT = 0.16, yielding a design that stops 60%3 of the time

in 10,000 iterations. Likewise, the values pE = 0.16 and pT = 0.16 lead to stopping

in 61% of iterations in ET2. We must stress at this juncture that the values we have

derived are greater than: i) those used by the original authors; and ii) those used in

the Matchpoint trial described in Chapter 2. Thall & Cook use in their example[92]

the slightly lower values pE = pT = 0.1. Compared to their parameterisation and

our Matchpoint design, our ET1 and ET2 will less readily find a dose admissible and

thus will stop more often.

The stopping mechanism in WATU is similar to ET and requires values for the

same two parameters. The pair pE = 0.2 and pT = 0.2 lead to a stopping probability

of 61.3% in WATU1 using 10,000 iterations. Despite the similarity in the stopping

rules between ET and WATU, the specific values for pE and pT are different, hinting

at the role played by the methods of modelling the dose-event curves. In WATU2,

the same pair pE = 0.2 and pT = 0.2 lead to stopping 60.2% of the time. In WATU3,

pE = 0.22 and pT = 0.22 lead to stopping 60.9% of the time.

The probability of WT stopping can be modified via the αE and αT parameters

in the safety and futility stopping rules. Greater significance values will lead to

narrower confidence intervals and a greater chance of stopping. In WT1, αE = 0.3

and αT = 0.3 gives a stopping probability of 61.5% in 10,000 simulations of the

baseline scenario. In WT2, the same pairingαE = 0.3 andαT = 0.3 stops 60.8% of the

time. In WT3, the pair αE = 0.32 and αT = 0.32 stops 58.8% of the time. Although

fractionally less than 60%, this pair was chosen over αE = 0.33 and αT = 0.33, which

stopped 63.2% of the time.

Once again, we note that αE = 0.3 and αT = 0.3 in WT are far from the values

proposed by Wages & Tait[98]. This reflects that we have asked the designs to be

3The EffTox software published by the MD Anderson Centre gives stopping and dose selection
probabilities rounded the nearest whole percent
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Pr(Tox) ET1 ET2 WT1 WT2 WT3 WATU1 WATU2 WATU3
0.1 0.21 0.23 0.032 0.033 0.118 0.127 0.122 0.151
0.2 0.23 0.24 0.051 0.059 0.131 0.136 0.123 0.163
0.3 0.29 0.31 0.131 0.141 0.183 0.181 0.171 0.196
0.4 0.42 0.44 0.314 0.314 0.323 0.328 0.317 0.327
0.5 0.60 0.61 0.615 0.608 0.588 0.613 0.602 0.609
0.6 0.79 0.79 0.885 0.876 0.859 0.871 0.873 0.858
0.7 0.91 0.91 0.987 0.986 0.980 0.982 0.982 0.977

TABLE 3.5: Stopping probabilities under increasing, flat toxicity rates.
In each case, the probability of efficacy is 45% at each dose. The
probability of toxicity is 10% at each dose in the first row, increas-
ing in further rows. The baseline stopping scenario, where all design
should stop with probability approximately 60%, is shown in bold.
The EffTox software reports outcomes to the nearest whole percent.

quite willing to stop when toxicity is a fairly modest 10% greater than the threshold

value. We will see how this affects the performance of the designs in non-toxic sce-

narios in subsequent sections. Despite choosing values different to those proposed

by their authors, we do not expect a priori that this exercise favours any particular

design because the methods have been calibrated to behave similarly in a neutral

scenario.

The stopping parameterisations are summarised in Table 3.4.

3.5.5 Horizon Stopping Probabilities

Having calibrated the designs to stop with common probability at (πE , πT ) = (0.45, 0.5),

we examined how the designs varied in their stopping probabilities in similar sce-

narios with flat efficacy and toxicity curves.

In Table 3.5, we kept the probability of efficacy at dose i equal to 0.45 for i =

1, .., 4. We then analysed the stopping probabilities of all designs in scenarios with

increasing levels of uniform toxicity. For example, in the first row, we set the prob-

ability of toxicity equal to 0.1 at all doses and analysed how reliably the designs

advocated stopping. We did this for toxicity probabilities 0.1, ..., 0.7. It is preferable

that the designs do not stop when the toxicity rate is less than the upper threshold

of 0.4 and they should show an increasing propensity to stop as the toxicity rate

increases above 0.4.

WT is the design least likely to stop when the toxicity rate is 40% and below. At

toxicity rates 50% and above, however, WT is the most likely to stop. ET is much
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Pr(Eff) ET1 ET2 WT1 WT2 WT3 WATU1 WATU2 WATU3
0.15 0.98 0.97 0.972 0.963 0.981 0.993 0.989 0.995
0.25 0.90 0.91 0.790 0.797 0.852 0.888 0.867 0.888
0.35 0.70 0.71 0.515 0.517 0.577 0.605 0.578 0.607
0.45 0.42 0.43 0.314 0.312 0.323 0.328 0.317 0.327
0.55 0.20 0.22 0.227 0.218 0.190 0.198 0.187 0.182
0.65 0.10 0.10 0.213 0.192 0.149 0.152 0.152 0.120
0.75 0.06 0.06 0.207 0.194 0.136 0.147 0.141 0.113

TABLE 3.6: Stopping probabilities under increasing, flat efficacy rates.
In each case, the probability of toxicity is 40% at each dose. The prob-
ability of efficacy is 15% at each dose in the first, increasing in further
rows. The EffTox software reports outcomes to the nearest whole per-

cent.

more likely to stop than the other designs when toxicity is as low as 10%. Generally,

WATU stops with probability between that of ET and WT. Looking within model,

the different ET variations do not stop materially differently. In WT and WATU,

suppressing the first stage in each model (WT3 and WATU3) increases the chances

of stopping when toxicity is low, notably so in WT. The first stage exists to explore

doses and learn about the dose-event probabilities. It is intuitive that removing it

increases the probability of stopping even when treatment is tolerable and effective.

We perform a similar exercise in Table 3.6 to analyse stopping over a horizon of

efficacy probabilities. In this analysis, the probability of toxicity is held constant at

0.4 at dose i for i = 1, ..., 4 in every scenario, being the threshold maximum that

we would accept. In the first row of Table 3.6, the probability of efficacy is 0.15 at

each dose. We look at efficacy probabilities 0.15, 0.25, ..., 0.75, being increments of

0.1 from the minimum efficacy threshold, 0.45. Once again, the efficacy and toxicity

curves in each scenario are flat. Here, the designs should stop when the efficacy rate

is less than 45% but they should show a decreasing propensity to stop as the efficacy

rate increases above 45%.

All designs stop quite reliably when efficacy is very low, at 15%. ET is the design

most likely to stop with modest efficacy at 25% and 35%. WT is the least likely to

stop at low efficacy. A pertinent aspect of the WT design is that it only stops for

low efficacy in its second stage, the maximisation stage. WT3 has a larger second

stage than WT1 and WT2, so it follows that it stops more frequently for low efficacy.

Once again, WATU sits between ET and WT, in the main. At high efficacy, ET is least

likely to stop. The stopping probability in WT barely changes as efficacy increases
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from 55% to 75%, and only falls modestly in WATU.

In summary, the described method has yielded parameterisations that stop with

60% probability in the baseline stopping scenario. Tables 3.5 and 3.6 show that the

designs stop with broadly similar probabilities over efficacy and toxicity horizons.

However, despite this systematic calibration, some heterogeneity persists.

3.5.6 General Simulation Study

The simulations presented above were about calibration. In this section, we investi-

gate by simulation the performance of the designs in scenarios that are more likely

to manifest in a trial situation, with efficacy and toxicity rates that vary by dose.

The scenarios under consideration are given in Table 3.7. Scenarios 1 to 5 have

monotonically increasing efficacy and toxicity curves. The optimal dose differs in

scenarios 1 to 3. In Scenario 4, efficacy escalates rapidly up to the highest dose. In

Scenario 5, toxicity escalates rapidly up to the highest dose. Scenarios 6 and 7 show

plateau efficacy curves. Scenarios 8 and 9 show unimodal efficacy curves. In sce-

nario 10, all doses are inefficacious. Finally, in scenario 11, all doses are excessively

toxic.

The selection probabilities of each of the designs are also given in Table 3.7. An

admissible dose is one that has associated probability of efficacy greater than 45%

and probability of toxicity less than 40%. Each scenario has exactly one optimal

decision, be it to select the best admissible dose or to stop the trial where no dose

is admissible. Where there are several admissible doses, the optimal dose is the one

with the highest utility score, as determined by 2.5. Where there is no admissible

dose, the optimal and admissible decisions are to stop the trial. In each row, the

optimal decision is in bold text and the admissible decisions are underlined.

3.5.6.1 Results

Scenario 1 is evidently one where it is easy to select an admissible dose but relatively

difficult to select the optimal dose. Testament to this is that seven of the eight designs

pick the true optimum dose less than half of the time. The efficacy curve is mono-

tonically increasing and performance in WT and WATU is convincingly improved

by tilting the models towards the monotonic efficacy skeleton. In contrast, ET2 loses
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TABLE 3.7: Simulated selection probabilities. The probabilities of ef-
ficacy and toxicity are given at each dose, and utilities determined by
(2.5). The optimal dose is shown in bold and acceptable doses are
underlined. The EffTox software gives selection probabilities to the

nearest whole percent.

Scenario Dose 1 Dose 2 Dose 3 Dose 4 Stop

1

Pr(Eff) 0.21 0.46 0.58 0.69
Pr(Tox) 0.11 0.16 0.24 0.30
Utility -0.32 0.07 0.23 0.34

ET1 0.00 0.02 0.50 0.44 0.04
ET2 0.00 0.02 0.52 0.41 0.05
WT1 0.029 0.212 0.545 0.174 0.040
WT2 0.013 0.122 0.445 0.392 0.028
WT3 0.003 0.060 0.336 0.565 0.037

WATU1 0.005 0.078 0.579 0.249 0.089
WATU2 0.003 0.031 0.500 0.383 0.082
WATU3 0.001 0.024 0.515 0.372 0.088

2

Pr(Eff) 0.21 0.49 0.55 0.61
Pr(Tox) 0.05 0.32 0.53 0.69
Utility -0.32 0.04 -0.05 -0.17

ET1 0.02 0.36 0.23 0.00 0.39
ET2 0.02 0.36 0.22 0.00 0.40
WT1 0.041 0.521 0.294 0.002 0.142
WT2 0.029 0.488 0.344 0.003 0.136
WT3 0.046 0.544 0.216 0.000 0.194

WATU1 0.026 0.336 0.348 0.001 0.289
WATU2 0.028 0.248 0.392 0.002 0.332
WATU3 0.033 0.223 0.338 0.001 0.404

3

Pr(Eff) 0.21 0.52 0.64 0.77
Pr(Tox) 0.08 0.17 0.32 0.53
Utility -0.32 0.17 0.25 0.16

ET1 0.00 0.08 0.81 0.05 0.06
ET2 0.00 0.08 0.81 0.06 0.06
WT1 0.017 0.225 0.675 0.059 0.025
WT2 0.009 0.136 0.691 0.144 0.021
WT3 0.007 0.122 0.729 0.106 0.037

WATU1 0.006 0.127 0.792 0.018 0.058
WATU2 0.005 0.047 0.865 0.024 0.059
WATU3 0.002 0.031 0.870 0.026 0.070

4

Pr(Eff) 0.04 0.15 0.32 0.63
Pr(Tox) 0.07 0.12 0.19 0.31
Utility -0.60 -0.43 -0.16 0.25

ET1 0.00 0.00 0.08 0.73 0.19
ET2 0.00 0.00 0.08 0.71 0.20
WT1 0.001 0.013 0.162 0.442 0.382
WT2 0.001 0.007 0.118 0.581 0.293
WT3 0.000 0.003 0.092 0.648 0.257

WATU1 0.003 0.005 0.082 0.433 0.476
WATU2 0.002 0.002 0.069 0.533 0.395
WATU3 0.003 0.001 0.070 0.534 0.391

5

Pr(Eff) 0.21 0.37 0.51 0.58
Pr(Tox) 0.07 0.16 0.28 0.52
Utility -0.32 -0.07 0.10 -0.01

ET1 0.00 0.02 0.66 0.12 0.20
ET2 0.00 0.02 0.65 0.12 0.21
WT1 0.045 0.194 0.566 0.083 0.112
WT2 0.026 0.121 0.590 0.174 0.088
WT3 0.009 0.085 0.638 0.140 0.129

WATU1 0.017 0.084 0.586 0.112 0.201
WATU2 0.016 0.045 0.583 0.179 0.177
WATU3 0.014 0.039 0.571 0.174 0.201

Scenario Dose 1 Dose 2 Dose 3 Dose 4 Stop

6

Pr(Eff) 0.37 0.51 0.51 0.51
Pr(Tox) 0.04 0.11 0.28 0.38
Utility -0.05 0.17 0.10 0.03

ET1 0.02 0.04 0.51 0.26 0.17
ET2 0.00 0.06 0.53 0.23 0.17
WT1 0.175 0.408 0.339 0.053 0.025
WT2 0.118 0.304 0.375 0.177 0.027
WT3 0.046 0.192 0.442 0.250 0.070

WATU1 0.070 0.247 0.443 0.137 0.103
WATU2 0.063 0.156 0.385 0.297 0.099
WATU3 0.056 0.119 0.389 0.298 0.138

7

Pr(Eff) 0.22 0.37 0.51 0.51
Pr(Tox) 0.04 0.11 0.28 0.38
Utility -0.30 -0.06 0.10 0.03

ET1 0.01 0.01 0.42 0.42 0.15
ET2 0.00 0.02 0.46 0.37 0.15
WT1 0.052 0.194 0.534 0.118 0.103
WT2 0.030 0.131 0.509 0.261 0.070
WT3 0.011 0.085 0.518 0.275 0.111

WATU1 0.018 0.097 0.514 0.164 0.206
WATU2 0.015 0.062 0.421 0.319 0.183
WATU3 0.014 0.052 0.404 0.309 0.222

8

Pr(Eff) 0.37 0.51 0.4 0.27
Pr(Tox) 0.04 0.11 0.28 0.38
Utility -0.05 0.17 -0.07 -0.32

ET1 0.08 0.04 0.25 0.07 0.55
ET2 0.02 0.09 0.26 0.06 0.57
WT1 0.220 0.521 0.192 0.013 0.055
WT2 0.181 0.467 0.233 0.043 0.077
WT3 0.101 0.350 0.236 0.054 0.259

WATU1 0.150 0.396 0.190 0.022 0.242
WATU2 0.152 0.351 0.169 0.066 0.261
WATU3 0.133 0.323 0.140 0.066 0.337

9

Pr(Eff) 0.22 0.51 0.59 0.33
Pr(Tox) 0.04 0.11 0.20 0.35
Utility -0.30 0.17 0.26 -0.21

ET1 0.04 0.05 0.53 0.14 0.25
ET2 0.00 0.09 0.62 0.08 0.21
WT1 0.028 0.293 0.621 0.036 0.023
WT2 0.022 0.275 0.564 0.117 0.022
WT3 0.010 0.315 0.460 0.120 0.095

WATU1 0.014 0.332 0.523 0.033 0.098
WATU2 0.018 0.319 0.403 0.126 0.134
WATU3 0.015 0.286 0.384 0.125 0.190

10

Pr(Eff) 0.04 0.15 0.24 0.32
Pr(Tox) 0.04 0.11 0.20 0.35
Utility -0.60 -0.42 -0.29 -0.23

ET1 0.00 0.01 0.02 0.19 0.77
ET2 0.00 0.02 0.03 0.17 0.79
WT1 0.003 0.021 0.125 0.154 0.697
WT2 0.003 0.024 0.098 0.222 0.654
WT3 0.002 0.008 0.071 0.173 0.746

WATU1 0.021 0.006 0.037 0.070 0.866
WATU2 0.024 0.006 0.020 0.120 0.829
WATU3 0.017 0.006 0.012 0.108 0.857

11

Pr(Eff) 0.21 0.37 0.51 0.58
Pr(Tox) 0.47 0.55 0.62 0.69
Utility -0.47 -0.30 -0.19 -0.20

ET1 0.02 0.12 0.06 0.00 0.80
ET2 0.03 0.11 0.06 0.00 0.80
WT1 0.045 0.028 0.003 0.000 0.924
WT2 0.047 0.026 0.005 0.000 0.921
WT3 0.052 0.030 0.007 0.000 0.912

WATU1 0.020 0.060 0.033 0.000 0.886
WATU2 0.022 0.052 0.038 0.000 0.888
WATU3 0.027 0.044 0.036 0.000 0.894
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relatively little using a much vaguer prior on βE,2 to facilitate an efficacy curve that

initially increases and then decreases as dose is increased. WT1 and WATU1 per-

form quite poorly compared to ET1 and ET2, however, WT3 performs the best in

this scenario. The chances of choosing the optimum dose with WT and WATU in

this scenario seem to be sensitive to choosing the right parameterisation, a feat that

is very difficult prior to experimentation. Notably, no design is likely to do anything

highly undesirable like stopping or selecting the lowest dose. Each dose selects an

admissible dose with probability at least 90%.

The challenge with scenario 2 is that dose 2 is the only admissible dose. Gener-

ally, WT performs much better than ET and WATU. All designs show a predilection

for dose 3, allowing a little too much toxicity when looking for superior efficacy.

Scenario 2 demonstrates the increased risk of stopping when only one dose is ad-

missible, especially in ET and WATU here. Surprisingly, the performances of WT2

and WATU2 have been hindered by biasing the models towards the monotonic (i.e.

correct) efficacy skeleton.

In scenario 3, toxicity ramps up at the highest dose. All designs perform well,

correctly picking dose 3 as optimal with high probability. The performance of WT

slightly lags that of ET and WATU. All designs avoid doses 1 (for inactivity) and 4

(for excess toxicity) very well.

In scenario 4, efficacy escalates rapidly at the highest dose, with the first three

doses being inefficacious. ET most reliably identifies dose 4 as the optimum. WT

and WATU only identify the correct dose in the majority of cases once they have been

inclined towards the monotonic efficacy scenario. All designs stop quite frequently.

In scenario 5, efficacy is high at the top two doses but toxicity is also high at dose

4. Dose 3 is the optimum dose and the only admissible dose. All designs are 56%-

66% likely to correctly recommend dose 3. Once again, ET outperforms WT and

WATU.

Scenario 6 is the first of two scenarios where the efficacy curve plateaus, in this

instance at dose 2. Doses 2, 3 and 4 are all admissible but dose 2 is optimal. ET

identifies the true optimal dose less than 10% of the time, opting for the admissible

but inferior doses 3 & 4 more frequently. ET2 performs similarly poorly, suggesting

that the obstacle in this scenario is not surmounted by tweaking the prior for βE,2
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alone. WT1 performs relatively well and is the only method more likely to choose

dose 2 than 3. As might be imagined, WATU has performance between that of ET

and WT. Performance in WT and WATU diminishes understandably as the models

are biased towards the monotonic efficacy prior. It diminishes further still as the first

stage is suppressed, suggesting that both methods benefit from their exploratory

stages when biased towards an incorrect efficacy skeleton.

Efficacy plateaus again in Scenario 7, with dose 3 being the optimal and doses 3

& 4 admissible. WT is slightly superior to ET and WATU here. As with the previous

scenario, WATU is harmed by inclining towards the monotonic efficacy skeleton.

Interestingly, WT scarcely is.

Scenario 8 is the first of two unimodal efficacy curves. Dose 2 is the single admis-

sible dose, and thus the optimal dose. Once again, WT is the superior design and

WT1 shows the best performance. ET is very unlikely to select the best dose. The

performance of ET, and to a lesser extent, WATU, is compromised by a propensity

to stop too often. This suggests that idiosyncrasies in stopping behaviour persist,

despite the calibration exercise.

Scenario 9 is another unimodal example. The optimal dose is dose 3 but dose

2 is also admissible. Once again, WT1 is the best performing design. ET performs

much better in this scenario than in scenario 8, however, it still retains a tendency to

stop too often. This is the first example where the vague prior for βE,2 in ET2 has

materially improved model performance. Consistent with this, WT2 and WATU2

both suffer from the inclination towards the monotonic efficacy skeleton.

Scenarios 10 and 11 both call for stopping and selecting no dose. Overall, all

designs do this quite reliably, with overall better performance from WATU. Despite

the exercise to calibrate stopping probabilities, there is reasonable heterogeneity in

scenario 10, with the lowest probability (WT2) more than 20% less than the greatest

probability (WATU1). WT designs are the least likely to stop here. This is slightly

surprising given the extent to which we promoted stopping by choosing parame-

ters such as αE = αT = 0.3 rather than the αE = αT = 0.05 proposed by Wages &

Tait[98]. In contrast, WT designs are most likely to stop in scenario 11. This ques-

tions the success of our stopping calibration exercise and highlights the difficulty in

parameterising stopping mechanisms.
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TABLE 3.8: Probabilities of each design making optimal and admissi-
ble selections in the scenarios listed in Table 3.7, plus summary statis-
tics. Information ratio (IR) is calculated as Mean / StDev. In each

column, the best score is bolded.

Pr(Optimal) All Scenarios Scenarios 1-9
1 2 3 4 5 6 7 8 9 10 11 Mean StDev IR Mean StDev IR

ET1 0.44 0.36 0.81 0.73 0.66 0.04 0.42 0.04 0.53 0.77 0.80 0.509 0.281 1.8 0.448 0.275 1.6
ET2 0.41 0.36 0.81 0.71 0.65 0.06 0.46 0.09 0.62 0.79 0.80 0.524 0.271 1.9 0.463 0.264 1.8
WT1 0.174 0.521 0.674 0.442 0.566 0.408 0.534 0.521 0.621 0.697 0.924 0.553 0.189 2.9 0.496 0.146 3.4
WT2 0.392 0.488 0.691 0.581 0.590 0.304 0.509 0.467 0.564 0.654 0.921 0.560 0.164 3.4 0.509 0.115 4.4
WT3 0.565 0.544 0.729 0.648 0.638 0.192 0.518 0.350 0.460 0.746 0.912 0.573 0.198 2.9 0.516 0.164 3.1

WATU1 0.249 0.336 0.792 0.433 0.586 0.247 0.514 0.396 0.523 0.866 0.887 0.530 0.232 2.3 0.453 0.174 2.6
WATU2 0.383 0.248 0.865 0.533 0.583 0.156 0.421 0.351 0.403 0.829 0.888 0.514 0.251 2.0 0.438 0.206 2.1
WATU3 0.372 0.223 0.870 0.534 0.571 0.119 0.404 0.323 0.384 0.857 0.894 0.505 0.268 1.9 0.422 0.218 1.9

Pr(Admissible) All Scenarios Scenarios 1-9
1 2 3 4 5 6 7 8 9 10 11 Mean StDev IR Mean StDev IR

ET1 0.96 0.36 0.89 0.73 0.66 0.81 0.84 0.04 0.58 0.77 0.80 0.676 0.267 2.5 0.652 0.292 2.2
ET2 0.95 0.36 0.89 0.71 0.65 0.82 0.83 0.09 0.71 0.79 0.80 0.691 0.252 2.7 0.668 0.276 2.4
WT1 0.931 0.521 0.899 0.442 0.566 0.800 0.652 0.521 0.913 0.697 0.924 0.715 0.186 3.8 0.694 0.193 3.6
WT2 0.958 0.488 0.827 0.581 0.590 0.856 0.770 0.467 0.839 0.654 0.921 0.723 0.174 4.2 0.708 0.179 4.0
WT3 0.961 0.544 0.851 0.648 0.638 0.885 0.793 0.350 0.775 0.746 0.912 0.737 0.180 4.1 0.716 0.190 3.8

WATU1 0.906 0.336 0.919 0.433 0.586 0.827 0.679 0.396 0.855 0.866 0.887 0.699 0.224 3.1 0.660 0.231 2.9
WATU2 0.915 0.248 0.912 0.533 0.583 0.838 0.740 0.351 0.722 0.829 0.888 0.687 0.230 3.0 0.649 0.239 2.7
WATU3 0.911 0.223 0.901 0.534 0.571 0.806 0.712 0.323 0.670 0.857 0.894 0.673 0.238 2.8 0.628 0.241 2.6

In a real trial situation, we pick one design that we trust will perform well in

all (or most) scenarios. That trust is motivated by analysing performance over an

indicative range of scenarios, as we have done here. The probabilities of each design

selecting the optimal and admissible doses are shown in Table 3.8 for each scenario.

We can crudely estimate broad model performance across the range of scenarios

by taking the mean probability of each design selecting the optimal or admissible

dose. Likewise, we can estimate the variability of performance by calculating the

standard deviation. A smaller standard deviation reflects greater homogeneity in

performance. Means and standard deviations are included in Table 3.8. We have

also calculated the information ratio (IR) for each design. In finance, IR is a metric

used to appraise the risk-adjusted performance of a security or fund, defined as the

expected value of a set of returns (potentially less some risk-free or benchmark rate)

divided by the standard deviation of those returns, defined in equation 3.18.

IR (x1, ..., xn) =
Mean (x1, ..., xn)

SD (x1, ..., xn)
(3.18)

A high IR is better, signifying high average value for relatively low variability.

We have used the measure here to compare dose selection strategies across the sce-

narios, defined as the mean probability of selection divided by standard deviation

of those probabilities. We seek a design that performs well on average in many sce-

narios with relatively little variability, and IR scores allow us to measure this. For

67



Chapter 3. Development of an Adaptive Dose-Finding Design

instance, a design that selects the best dose 50% of the time in scenarios A and B is

preferable to one that selects the best dose with probability 100% in A and 0% in B.

In this contrived example, the two strategies have the same selection probability but

the first strategy has better risk-adjusted performance and greater IR.

The designs in the WT family offer the highest average selection percentages, the

lowest standard deviations and naturally, the greatest IRs. Table 3.8 shows that WT

does this when all scenarios are grouped, and when scenarios 1-9, the non-stopping

scenarios, are considered. The IRs are smallest in this particular study for the ET de-

signs. The WATU designs sit in between WT and ET. This is perhaps to be expected,

given the fact that WATU combines elements from WT and ET.

Table 3.9 shows the average number of patients allocated by each design to each

dose.

WT uses more patients in scenarios 10 & 11 where the correct decision is to stop.

WT1 and WT2 use considerably more in scenario 10 where the doses are ineffective

but tolerable. This is partly because WT designs do not stop for futility in the ran-

domisation stage. WT3 sets the randomisation stage size to 0 and is able to stop for

toxicity or futility at each dose decision. As such, it uses fewer patients than WT1

and WT2. In non-stopping scenarios, there is considerable heterogeneity in alloca-

tions.

Table 3.10 summarises the allocations to optimal and admissible doses. In sce-

narios 10 and 11, the desired action is to stop without allocating many patients so

in these two scenarios we have instead provided the number of patients left unal-

located, i.e. 30 minus the numbers allocated to doses 1, ...., 4. The IR statistics are

again provided as a measure of risk-adjusted performance.

ET treats the greatest number of patients at optimal and admissible doses, on

average. However, ET also has the greatest variability in allocation. Notably, in sce-

nario 8 it allocates only a single patient on average to the single admissible dose. WT

generally provides the lowest average allocation to attractive doses. This is under-

standable given its use of randomised allocation in the first half of the trial. Note for

example that WT3, the variant with no randomisation, has allocation figures that are

more comparable to the other designs. As we might expect by now, WATU provides

performance between the two.
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TABLE 3.9: Mean numbers of patients allocated to each dose. Figures
for the optimal dose is shown in bold and acceptable doses are un-
derlined. For stopping scenarios, the total is bolded and underlined.

Scenario Dose 1 Dose 2 Dose 3 Dose 4 Total

1

Pr(Eff) 0.21 0.46 0.58 0.69
Pr(Tox) 0.11 0.16 0.24 0.30
Utility -0.32 0.07 0.23 0.34

ET1 0.1 0.6 16.5 11.9 29.1
ET2 0.0 0.6 16.9 11.3 28.8
WT1 4.9 8.6 13.2 2.9 29.6
WT2 4.1 7.0 12.9 5.8 29.8
WT3 0.9 2.4 11.8 14.4 29.5

WATU1 0.9 2.6 15.1 9.7 28.3
WATU2 0.7 1.5 13.7 12.5 28.4
WATU3 0.6 0.9 16.0 10.8 28.2

2

Pr(Eff) 0.21 0.49 0.55 0.61
Pr(Tox) 0.05 0.32 0.53 0.69
Utility -0.32 0.04 -0.05 -0.17

ET1 0.4 7.2 13.9 0.9 22.4
ET2 0.4 7.1 13.7 0.9 22.1
WT1 7.0 12.2 9.6 0.2 29.0
WT2 6.6 11.6 10.5 0.3 29.0
WT3 4.4 12.1 10.9 0.8 28.2

WATU1 3.4 8.2 13.5 0.9 25.9
WATU2 3.1 6.1 15.1 1.0 25.3
WATU3 2.7 4.8 15.5 1.2 24.1

3

Pr(Eff) 0.21 0.52 0.64 0.77
Pr(Tox) 0.08 0.17 0.32 0.53
Utility -0.32 0.17 0.25 0.16

ET1 0.1 2.1 23.0 3.7 28.9
ET2 0.0 1.9 23.1 3.6 28.6
WT1 5.1 9.0 14.2 1.5 29.8
WT2 4.6 7.7 14.5 3.0 29.8
WT3 1.5 4.2 18.1 5.7 29.5

WATU1 1.1 4.4 19.0 4.4 28.9
WATU2 0.9 2.6 20.5 4.9 28.9
WATU3 0.6 1.2 23.6 3.2 28.7

4

Pr(Eff) 0.04 0.15 0.32 0.63
Pr(Tox) 0.07 0.12 0.19 0.31
Utility -0.60 -0.43 -0.16 0.25

ET1 0.0 0.1 7.4 18.8 26.3
ET2 0.0 0.1 7.4 18.8 26.3
WT1 3.7 6.2 10.6 6.4 26.9
WT2 2.6 4.9 10.9 9.1 27.5
WT3 0.5 0.9 8.0 18.0 26.4

WATU1 1.7 1.4 7.6 10.0 20.6
WATU2 1.4 0.4 6.5 13.2 21.5
WATU3 1.3 0.3 6.5 13.4 21.5

5

Pr(Eff) 0.21 0.37 0.51 0.58
Pr(Tox) 0.07 0.16 0.28 0.52
Utility -0.32 -0.07 0.10 -0.01

ET1 0.1 0.7 19.3 6.1 26.2
ET2 0.0 0.7 19.4 6.0 26.1
WT1 5.4 8.5 13.3 2.0 29.2
WT2 4.3 7.2 14.1 3.8 29.4
WT3 1.3 3.5 16.8 6.8 28.4

WATU1 1.7 3.5 16.0 5.6 26.8
WATU2 1.4 2.1 15.9 7.6 26.9
WATU3 1.3 1.3 16.9 7.0 26.6

Scenario Dose 1 Dose 2 Dose 3 Dose 4 Total

6

Pr(Eff) 0.37 0.51 0.51 0.51
Pr(Tox) 0.04 0.11 0.28 0.38
Utility -0.05 0.17 0.10 0.03

ET1 0.4 1.0 16.4 8.8 26.6
ET2 0.1 1.2 17.1 8.0 26.4
WT1 7.2 10.4 10.7 1.5 29.8
WT2 5.6 8.6 11.8 3.8 29.8
WT3 2.0 4.9 13.6 8.7 29.2

WATU1 2.7 5.7 13.8 6.2 28.4
WATU2 2.2 3.7 12.8 9.6 28.4
WATU3 2.4 2.6 13.8 9.0 27.8

7

Pr(Eff) 0.22 0.37 0.51 0.51
Pr(Tox) 0.04 0.11 0.28 0.38
Utility -0.30 -0.06 0.10 0.03

ET1 0.3 0.4 14.1 12.4 27.2
ET2 0.0 0.5 15.1 11.3 26.9
WT1 5.3 8.4 13.0 2.5 29.2
WT2 4.2 7.1 13.4 4.8 29.5
WT3 1.2 3.6 14.8 9.0 28.6

WATU1 1.7 3.9 14.6 6.6 26.8
WATU2 1.4 2.6 13.1 9.8 26.9
WATU3 1.5 1.8 13.8 9.3 26.4

8

Pr(Eff) 0.37 0.51 0.4 0.27
Pr(Tox) 0.04 0.11 0.28 0.38
Utility -0.05 0.17 -0.07 -0.32

ET1 1.4 1.0 11.5 5.6 19.5
ET2 0.4 1.5 12.1 5.0 19.0
WT1 8.3 11.5 8.9 0.9 29.6
WT2 6.7 10.1 10.3 2.3 29.4
WT3 3.4 7.7 10.6 5.0 26.7

WATU1 5.0 7.9 10.5 3.2 26.7
WATU2 4.8 6.5 9.7 5.4 26.4
WATU3 5.4 6.3 8.2 5.4 25.3

9

Pr(Eff) 0.22 0.51 0.59 0.33
Pr(Tox) 0.04 0.11 0.20 0.35
Utility -0.30 0.17 0.26 -0.21

ET1 1.2 1.3 15.9 7.4 25.8
ET2 0.1 1.8 18.3 5.8 26.0
WT1 4.6 9.4 13.9 2.0 29.9
WT2 3.8 8.5 13.3 4.3 29.9
WT3 0.8 8.0 12.6 7.5 28.9

WATU1 1.0 7.6 13.4 6.4 28.4
WATU2 1.1 6.8 11.4 8.9 28.1
WATU3 1.4 6.6 12.3 7.2 27.4

10

Pr(Eff) 0.04 0.15 0.24 0.32
Pr(Tox) 0.04 0.11 0.20 0.35
Utility -0.60 -0.42 -0.29 -0.23

ET1 0.1 0.3 5.4 9.8 15.6
ET2 0.0 0.3 5.7 9.1 15.1
WT1 4.0 6.8 10.0 4.0 24.8
WT2 2.8 5.4 10.5 6.5 25.2
WT3 0.9 2.4 7.9 9.6 20.8

WATU1 2.9 2.0 6.1 4.0 15.1
WATU2 2.7 1.2 5.1 6.2 15.3
WATU3 2.8 1.2 4.2 6.4 14.6

11

Pr(Eff) 0.21 0.37 0.51 0.58
Pr(Tox) 0.47 0.55 0.62 0.69
Utility -0.47 -0.30 -0.19 -0.20

ET1 0.7 4.6 9.2 0.6 15.1
ET2 0.8 4.4 9.2 0.5 14.9
WT1 11.7 2.7 3.7 0.1 18.2
WT2 11.7 2.7 4.0 0.1 18.5
WT3 8.5 2.5 4.9 0.4 16.3

WATU1 4.6 4.4 5.9 0.4 15.3
WATU2 4.2 3.5 6.9 0.4 15.1
WATU3 3.6 2.5 8.4 0.7 15.3

We further discuss model performance and mitigating factors in the next section.
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TABLE 3.10: Mean number of patients that each design allocates to
optimal and admissible doses, plus summary statistics. Information
ratio (IR) is calculated as Mean / StDev. Scenarios 10 & 11 show mean
patients left unallocated. The best score in each column is bolded.

Full data is listed in Table 3.9.

Mean treated at optimal dose
1 2 3 4 5 6 7 8 9 10 11 Mean StDev IR

ET1 11.9 7.2 23.0 18.8 19.3 1.0 14.1 1.0 15.9 14.4 14.9 12.9 7.1 1.8
ET2 11.3 7.1 23.1 18.8 19.4 1.2 15.1 1.5 18.3 14.9 15.1 13.3 7.2 1.8
WT1 2.9 12.2 14.2 6.4 13.3 10.4 13.0 11.5 13.9 5.2 11.8 10.4 3.8 2.7
WT2 5.8 11.6 14.5 9.1 14.1 8.6 13.4 10.1 13.3 4.8 11.5 10.6 3.3 3.2
WT3 14.4 12.1 18.1 17.0 16.8 4.9 14.8 7.7 12.6 9.2 13.7 12.8 4.1 3.1

WATU1 9.7 8.2 19.0 10.0 16.0 5.7 14.6 7.9 13.4 15.0 14.7 12.2 4.1 3.0
WATU2 12.5 6.1 20.5 13.2 15.9 3.7 13.1 6.5 11.4 14.8 15.0 12.1 4.9 2.5
WATU3 10.8 4.8 23.6 13.4 16.9 2.6 13.8 6.3 12.3 15.4 14.8 12.2 6.0 2.1

Mean treated at admissible dose
1 2 3 4 5 6 7 8 9 10 11 Mean StDev IR

ET1 29.0 7.2 25.1 18.8 19.3 26.2 26.5 1.0 17.2 14.4 14.9 18.1 8.6 2.1
ET2 28.8 7.1 25.0 18.8 19.4 26.3 26.4 1.5 20.1 14.9 15.1 18.5 8.5 2.2
WT1 24.7 12.2 23.3 6.4 13.3 22.6 15.5 11.5 23.3 5.2 11.8 15.4 7.0 2.2
WT2 25.7 11.6 22.2 9.1 14.1 24.2 18.2 10.1 21.8 4.8 11.5 15.8 7.0 2.3
WT3 28.6 12.1 22.3 17.0 16.8 27.2 23.8 7.7 20.6 9.2 13.7 18.1 7.0 2.6

WATU1 27.4 8.2 23.4 10.0 16.0 25.7 21.2 7.9 21.0 15.0 14.7 17.3 6.9 2.5
WATU2 27.7 6.1 23.1 13.2 15.9 26.1 22.9 6.5 18.2 14.8 15.0 17.2 7.2 2.4
WATU3 27.7 4.8 24.8 13.4 16.9 25.4 23.1 6.3 18.9 15.4 14.8 17.4 7.5 2.3

3.6 Discussion

We proposed a fusion of the EffTox and Wages & Tait methods to create a new seam-

less phase I/II trial design that we call WATU. Our primary motivation was to re-

move the need for adaptive randomisation in WT for situations where frequent ad-

justments to a randomisation algorithm could lead to operational inefficiency. We

also examined by way of comparison a WT variant that also abrogates randomisa-

tion. We described a systematic method of calibrating designs to control for dis-

parate stopping probabilities and used this method to calibrate eight phase I/II de-

signs with a common stopping probability in a baseline case. We then conducted a

broad simulation study, inspired by a real trial that used an EffTox design, to anal-

yse performance of these designs. We used a novel approach to compare designs,

borrowing a measure from finance to identify the design that provided the best risk-

adjusted performance. In summary, we generally found that WT has superior per-

formance in this setting in terms of determining the optimal doses, but not in terms

of optimal allocation to doses. We found that on average, WATU performs similarly

to ET.

Despite our exercise to calibrate stopping across the designs, we noted material
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heterogeneity. For instance, Table 3.7 shows that the WT designs are on average

much less likely to stop than ET and WATU in scenarios 1-10. This naturally makes

us question the value of calibration exercise and ponder whether we are truly com-

paring like-for-like. Calibration could have been conducted differently. Instead of

setting the prevailing efficacy equal to the threshold rate 45% at all doses, we could

have chosen 100% to completely remove the estimation of efficacy as a source of

variability in stopping.

Of our 11 simulation scenarios, two required stopping, five had an optimal dose

in a monotonic efficacy curve, two used a plateau efficacy curve, and two an uni-

modal curve. Instead of taking the uniformly-weighted mean of selection probabil-

ities, as we have in Table 3.8, we might have weighted the performance numbers

by the scenario importance or prior likelihood. However, our counts of stopping,

monotonic, plateau and unimodal scenarios broadly match our prior beliefs on the

shape of the dose-efficacy curve. Thus, the scenarios have already been implicitly

weighted in our situation.

Our simulation study investigates only a small number of the practically infinite

possible scenarios. Different scenarios might have provided different conclusions.

The scenarios we have chosen are motivated by a genuine clinical trial situation.

They do not cover all eventualities but reflect those that are plausible and pertinent

in this setting.

When randomly sampling efficacy and toxicity outcomes in simulations, we have

assumed that the two events are independent. In a real trial, it is natural to consider

that efficacy and toxicity might be dependent. For instance, a patient that ceases

treatment early because of toxicity has less opportunity to receive the therapeu-

tic benefit of treatment and is, presumably, less likely to achieve an efficacy event.

The EffTox software offers the ability to sample dependent efficacy and toxicity out-

comes, as does Wages’ implementation of the WT design. It remains an exercise

for further study to verify whether the conclusions we have made from this work

persist in scenarios where efficacy and toxicity occurrences are associated.

It should be stressed that WT does not maximise utility so it may (legitimately)

favour a different dose to ET and WATU. Trialists will appraise designs on their abil-

ity to select a dose with attractive qualities. In trial settings that explicitly quantify
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utility using a metric, this can sensibly be interpreted as the dose with the highest

utility or any dose with positive utility. In a setting that does not quantify util-

ity, however, any dose satisfying efficacy and toxicity criteria may be attractive. As

such, comparing the probability of selecting the optimal dose is not necessarily fair

because ‘optimal’ is not uniquely defined. It is arguably fairer to compare the prob-

ability of designs selecting an admissible dose. Nevertheless, WT outperformed the

two utility-maximising designs so the putative hindrance has not comparatively im-

paired the design in this study.

Our motivation for analysing different parameterisations of the three designs

was to assess the extent to which performance might vary in our trial setting. For

instance, ET2 has a much vaguer prior than ET1 on the coefficient of the squared-

term in the efficacy logit model. In the monotonic efficacy scenarios (1-5), this vague

prior reduces performance by 1-3%. In the plateau scenarios (6-7), performance im-

proves marginally, and in the unimodal scenarios (8-9), performance improves 5-9%.

IRs improve from 1.8 to 1.9 and 2.5 to 2.7, suggesting a slight model improvement

overall in this setting. Naturally, if there was strong prior evidence to suspect a non-

monotonic dose-efficacy curve, different efficacy priors would be used. We reiterate

that the prior for βE,2 is fixed by default to be N(0, 0.2) in the MD Anderson EffTox

implementation[45] but can be changed to suit.

The extent of variation within the WT family of designs is more noteworthy. In

the monotonic scenarios, there are material improvements in the chances of picking

the optimal dose in scenarios 1 and 4 for WT2 compared to WT1. With WT3, there

is further benefit, between 3 and 18 percentage points, to suppressing the adaptive

randomisation stage. On average, WT3 is 14.9% better than WT1 at selecting the op-

timal dose in the monotonic scenarios. In the non-monotonic scenarios, comparing

WT2 to WT1 and WT3 to WT2, the probability of selecting the optimum falls with

each model change. In scenarios 6-9, WT3 is 14.1% on average less likely to pick the

optimum dose than WT1. Although we have only considered a modest number of

scenarios, it appears that WT2 and WT3 are better than WT1 in monotonic scenarios

and worse in non-monotonic scenarios, as expected. Naturally, the model used will

be parameterised to match the investigators’ prior beliefs on efficacy and toxicity.
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This, however, suggests that it is difficult to improve on WT1 without prior informa-

tion on the prevailing efficacy and toxicity scenarios, which is unlikely to be known

with confidence in a situation where a dose-finding clinical trial was deemed neces-

sary. Similar, albeit less pronounced, effects can be observed in the WATU family of

designs.

We sought to remove randomisation from WT in pursuit of operational efficiency.

Over the scenarios presented, the mean performance penalty to using WATU1 over

WT1 in selecting the optimal dose is approximately 2.3%. This can be interpreted

as the expected cost of using WATU1 over WT1. Notional operational efficiency

might have been achieved but statistical efficiency, in this situation the probability of

making the correct decision with a given set of resources, has marginally diminished.

Whether the trade-off is acceptable depends on the prevailing trial situation.

Part of the performance difference will stem from removing randomisation. Ran-

domisation in WT provides a facility to assess outcomes at different doses. This in-

formation is useful in estimating the dose-event curves. If randomisation is to be

removed, as may or may not be desirable, the challenge is to remove it in the way

with least loss. There will be trial scenarios when a modest performance penalty

is an acceptable price to pay. However, in this study, it would have been supe-

rior to simply implement WT3, another design that avoids randomisation. WT3 has

higher average performance and lower variability than each of the WATU designs

we studied. Comparisons between WT3 and WATU2 or WATU3 are natural because

each is biased towards the monotonic efficacy skeleton and avoids randomisation.

WT3 outperforms WATU2 in making the optimal choice by 5.8 percentage points

on average and performs better in eight of eleven scenarios. We did not consider a

non-randomising variant of WT with uniform values for τ(k).

The conclusion from our simulation study is that WT3 abrogates the need for ran-

domisation, thus achieving our operational efficiency objective, whilst offering supe-

rior performance, thus maintaining statistical efficiency. Our hybrid design WATU

achieves the same operational objective but offers slightly inferior mean statistical

performance, has greater heterogeneity in performance, and allocates marginally

fewer patients at attractive doses.

In completing this research, we have gained a lot of experience working with
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ET and WT. If designing a phase I/II trial from fresh, speaking purely in a per-

sonal capacity, the author would start with the WT design. The underlying proba-

bility models are simpler so it is easier to select parameters and to calculate the next

dose. Our simulation study has suggested that WT has superior performance in non-

monotonic efficacy scenarios. This would presumably be important where a phase

I/II trial design was deemed preferable. If adaptive randomisation is operationally

tolerable, we would use half of the patients in the first stage, as recommended by

Wages & Tait.

These phase I/II trial designs are so-called because they perform tasks typical of

phase I and II clinical trials. They are considered efficient because they potentially

reduce the number of trials required to approve a treatment. However, they do not

repeal the potential need for randomised phase II studies, where an experimental

treatment is compared to a control to assess whether a likely large and expensive

phase III trial is warranted. Retaining randomisation in WT’s design actually offers

an opportunity to further increase efficiency in the clinical trial pathway by addition-

ally achieving the objective of these randomised phase II trials. In situations where

a treatment can be ethically compared to a placebo, or can be offered adjunctly with

a standard of care, it is possible to include the comparator in WT as a zero-dose con-

trol arm. This effectively prepends d0 onto the list of ordered doses d1, ..., dn under

investigation. Patients can be randomised to d0 or one of the admissible non-zero-

doses and the randomisation probabilities would need to be adjusted to incorporate

the new arm and provide a reasonable allocation of control patients throughout the

trial. Depending on the clinical scenario, the stopping criteria would scrutinise tox-

icity at d1 rather than d0, the ‘lowest’ dose. As before, if there are no admissible

non-zero doses, the trial would end with no dose being selected. At the culmina-

tion of the trial, the efficacy outcomes yielded by the optimal dose level could be

compared to those yielded by d0, achieving the goal of a randomised phase II trial.

This complex design has the alluring potential to provide a genuine single-trial so-

lution before phase III, achieving toxicity- and efficacy-oriented dose-finding and a

randomised comparison with a legitimate control arm. A trial designed by the au-

thor is currently in set-up at the Cancer Research UK Clinical Trials Unit that seeks

to implement this design.
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Chapter 4

Design of a practice-changing

clinical trial in an ultra-rare

condition

Background: Wolfram syndrome is an ultra-rare neurological condition in chil-

dren and young adults. One of the symptoms is progressive loss of visual acuity.

Many clinical trials that analyse visual acuity as a primary outcome have taken

place but none in Wolfram syndrome.

Notable methods in this chapter: We use mixed effects models, simulation,

and consider several patterns of data-missingness to prospectively estimate the

power of a clinical trial of sodium valproate. Our motivation to consider this

level of detail is the severely constrained feasible sample size in this rare dis-

ease. Our literature review shows that this approach is novel in clinical trials of

visual acuity.

The implications on efficiency: We demonstrate that clinical trials in ultra-rare

diseases that achieve conventional error rates are feasible. Key to achieving

this in our situation was using a repeated measures analysis to make use of

all outcome information. Furthermore, using simulation allowed us to verify

that randomisation favouring the experimental treatment could be used whilst

maintaining a defensible design.
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4.1 Introduction

The previous chapters were concerned with dose-finding clinical trials. In this chap-

ter, we focus on a randomised efficacy study in a rare disease.

4.1.1 Wolfram Syndrome

Wolfram Syndrome (WS) is an ultra-rare, neurodegenerative disorder of children

and young adults. It was first described in 1938 by Wolfram & Wagener[107], who

reported on a family of nine siblings. Four of the siblings were affected with child-

hood onset diabetes mellitus, progressive optic atrophy leading to blindness, sen-

sorineural deafness, and diabetes insipidus.

Wolfram Syndrome is caused by homozygous or compound heterozygous mu-

tation of the WFS1 gene that encodes wolframin. It is registered in the Online

Mendelian Inheritance in Man (OMIM) database with identifier 222300. The syn-

drome is also known as DIDMOAD, for Diabetes Insipidus, Diabetes Mellitus, Op-

tic Atrophy and Deafness. The natural history typically involves diabetes mellitus

in the first decade of life together with progressive optic atrophy. Deafness, neu-

ropathic bladder and cranial diabetes insipidus appear in the second decade. The

minimum criteria for diagnosis are diabetes mellitus and optic atrophy in an indi-

vidual under 16 years of age.

The diagnosis of Wolfram syndrome is devastating for the affected person and

their family or carers, as it virtually guarantees progressive sensory, motor, auto-

nomic and mental faculty loss, and reduced life expectancy. The median age of

death in patients is around 30 years and usually arises from respiratory failure as

a result of brain stem atrophy[7]. Thankfully, Wolfram Syndrome is very rare, hav-

ing a prevalence of approximately 1 in 770,000[8]. Using a population size of 64

million, being the estimated UK population in 2013 by the World Bank, this suggests

there are approximately 83 affected patients in the UK.

There is no pharmaceutical treatment for Wolfram Syndrome. Instead, current

therapies focus on the clinical management of symptoms. Being a multisystemic

syndrome, different treatments exist to manage the different elements.
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Treatments for diabetes mellitus aim to control metabolism by maintaining gly-

caemic targets. Interventions may include insulin injections, blood glucose and ke-

tone testing, exercise, nutrition and smoking avoidance, and management of dia-

betic ketoacidosis (DKA) and hypoglycaemia. After the onset of diabetes insipidus,

patients may receive desmopressin to treat bed-wetting. Vision loss may lead to

cataract surgery or correction of refractive error, as appropriate. Hearing loss may

lead to the use of hearing aids or cochlear implants. Neuropathic bladder may re-

quire clean intermittent self-catheterisation.

Reduction in the amount or activity of wolframin is associated with the death

of neurons. At present, there are no known methods to prevent the neurodegener-

ation observed in Wolfram syndrome. Nagy et al.[67] showed that the re-entry of

neurons into the cell cycle may be a step on the pathway to apoptosis in neurode-

generation. They also showed that p21cip1 acts as an anti-apoptotic molecule. Sig-

nificant down-regulation of p21cip1 was seen in wolframin-depleted cells compared

with controls. Those cells that retained p21cip1 expression had much lower levels of

apoptosis compared to those cells without. This led to the hypothesis that increased

p21cip1 expression may prevent neuronal death even in Wolframin-depleted cells.

4.1.2 Sodium Valproate

Nagy and colleagues at the University of Birmingham conducted a screen of 1,040

US Food and Drug Administration-approved drugs and short-listed 22 drugs that:

• are known to increase expression of p21cip1;

• would likely be tolerable in children for chronic administration.

Five drugs were identified that showed clear evidence for protecting nerve cells

from death in a Wolfram syndrome disease model. Sodium valproate, the sodium

salt of valproic acid, was one of these drugs. It is classed as an anticonvulsant and

currently approved in the treatment of epilepsy and bipolar disorder. It is known

to cross the blood-brain barrier. Sodium valproate was selected for further study

in Wolfram syndrome because it has been used for decades in children as an ap-

proved medicinal product and thus has an established safety profile. In patients

with Wolfram syndrome, we expect sodium valproate to increase p21cip1 expression

77



Chapter 4. Practice-changing RCT in an ultra-rare condition

levels, increase wolframin expression, and ultimately to diminish neurodegenera-

tion. There have been no clinical trials of sodium valproate in Wolfram syndrome to

date.

4.1.3 The TreatWolfram Trial

We propose a randomised clinical trial to test the hypothesis that sodium valproate

reduces the rate of neurodegeneration in patients with Wolfram syndrome. An early

version of this trial was proposed by Lucinda Billingham and the lead clinical inves-

tigator, Timothy Barrett (TB). After feedback from the regulator advising against the

use of Bayesian statistics, the trial underwent a complete redesign by Kristian Brock

(KB) and TB. From this point, all aspects of a statistical nature were led by KB.

The treatment will be considered successful with respect to an outcome if it is

associated with a significant, clinically relevant reduction in the rate of degradation.

Naturally, improvements in symptoms would be very welcome but we do not nec-

essarily expect this. There are many symptoms mentioned in the previous section

that generally degrade over time. Knowing that the sample size of our trial would be

severely constrained by the rarity of the syndrome, it would be important to identify

the outcomes that are most conducive to study. Notwithstanding the fundamental

requirement that outcomes are relevant and important to patients, we specifically

seek outcomes with maximal information content. That is, we would like to identify

outcomes associated with disease progression that typically see large changes over

time with relatively low variability. To these ends, we were incredibly appreciative

that Professor Tamara Hershey of the Wolfram Syndrome Research Clinic, Wash-

ington University in St Louis, USA, provided longitudinal data on 26 patients with

Wolfram syndrome from her clinical cohort, collected under grant NIH HD070855,

“Tracking Neurodegeneration in Early Wolfram Syndrome".

The remainder of this chapter proceeds as follows. In Section 4.2, we elaborate

in detail on the St Louis dataset. We systematically search for a primary outcome

measure that will promote an efficient analysis, conduct some preliminary regres-

sion modelling of the candidate outcome variable, and calculate sample sizes for

hypothesis-testing trials, appraising these in light of the severely constrained feasi-

ble size of accrual. In Section 4.3, we apply the inferences from the St Louis dataset to
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describe an experimental design for the TreatWolfram trial and a proposed method

of analysis. We investigate the efficiency of our efforts through a simulation study,

including considerations for missing data. In Section 4.4, we demonstrate by de-

tailed literature review the novelty of our simulation-based approach incorporating

different schemes for missing data to study a visual acuity outcome. In Section 4.5

we provide some discussion and in Appendix B, we appraise our efforts using the

recently-published framework on randomised trials in small populations by Parmar

et al.[72]. Finally, we conclude in Section 4.6.

4.2 The St Louis Cohort

The St Louis dataset contains observations over a period of six years on 26 patients

with Wolfram syndrome of the Washington University Wolfram Syndrome Research

Clinic. These patients would be candidates for the TreatWolfram trial because many

meet the inclusion criteria. Data were assessed approximately annually. Figure 4.1

shows the frequency of the assessment times, relative to the first visit for each pa-

tient. We see that there is less long-term data than short-term data. The study re-

cruited 11 patients in its first year and added between three and seven new patients

each year in its second to fifth years. There has been very little drop-out. The de-

creasing number of observations in Figure 4.1 is consistent with the staggered re-

cruitment times and patients passing through the follow-up schedule. Most obser-

vations times fall close to the anniversary of the initial visit, but there are a small

number of assessment times that occur part way through the year.

The dataset contains up to six measurements per patient for each of the variables

listed in Table 4.1. We will give sodium valproate to Wolfram patients under the

expectation that it will diminish the rate of progression, rather than reverse their

symptoms. The patients on trial will be children and young adults, with potentially

very different baseline values. Furthermore, WS is a lifelong condition characterised

by chronic deterioration of performance. Our primary interest in this dataset will

be to characterise the typical rate of change in the clinical symptoms associated with

WS. In Table 4.1 under n, we have listed the number of year-on-year change values.

Much more data is provided for visual acuity than balance, for instance. We have
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FIGURE 4.1: Assessment times of patients in the St Louis cohort.
There are a small number of observations not near an anniversary

of the initial visit.

Variable NumObs NumPats StdEff
Visual acuity 68 24 0.6
Colour vision 59 23 0.5
Ventral pons volume 61 21 0.4
Brainstem volume 61 21 0.4
Balance 22 13 0.3
Upsit (smell) 66 24 0.2
RNFL 62 22 0.2
Humphrey visual field, mean defect 41 17 < 0.1
Humphrey visual field, pattern standard deviation 41 17 < 0.1

TABLE 4.1: Volume of information for variables in the St Louis
dataset. NumObs is the number of observed year-on-year differences.
NumPats is the number of patients that contributed at least one year-
on-year difference, i.e. two consecutive values. StdEff is the absolute
value of the mean of the year-on-year differences, divided by their

standard deviation.
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also presented the absolute value of the standardised effect size, being the mean

year-on-year difference divided by the standard deviation of the differences. We use

the absolute value because the direction of change is not pertinent to quantifying the

volume of information.

Variables with higher standardised effect sizes are more conducive to study be-

cause the variability of the change is small relative to the mean. This makes it easier

to observe a trend amidst the noise. By this measure, the variables most conducive

to study are visual acuity, colour vision, ventral pons volume, and brainstem vol-

ume. These variables broadly cluster as measures of vision and brain size. Primary

outcomes in clinical trials should be important to patients and conducive to study.

Visual acuity is the most important of these variables to patients and their carers

so it is extremely fortuitous that it ranks highest by our information measure. Any

treatment that ameliorates the loss of vision will be welcome, for obvious reasons.

Colour vision is understandably regarded as less important. Based on this, we in-

vestigate visual acuity as the potential primary outcome of our clinical trial. In the

next section, we provide a detailed examination of this variable.

4.2.1 Visual Acuity

Visual acuity (VA) is measured on the LogMAR scale in clinics using Early Treatment

Diabetic Retinopathy Study (ETDRS) charts. Patients read letters from a set distance

and the scores reflect the number of letters correctly identified. In best corrected

VA, patients wear glasses to correct for refraction disorders. Values are taken for

each eye and generally range from 0, which represents perfect vision, to +2.0, which

represents near blindness. Thus, increases in LogMAR represent deterioration. A

LogMAR score of 0 is also referred to as “20/20”, reflecting that a person can at 20

feet read letters that most humans will also be able to read at 20 feet. On this scale,

LogMar 2.0 is expressed as 20/2000, to reflect that the person can read at 20 feet

what most others could read at 2000 feet, making quite tangible the paucity of visual

acuity in a patient with LogMAR 2.0. Values less than 0 are also possible, reflecting

that the patient can read at distances greater than 20 feet what most others could

read at 20 feet.
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FIGURE 4.2: Visual acuity in 26 patients with Wolfram syndrome in
the St Louis cohort.

Figure 4.2 shows VA of the 26 patients in the St Louis dataset. We took VA to be

the average of the LogMAR scores in the left eye and right eye in 95 complete pairs

of data. We use the simple mean because it is preferable to maintain vision in each

eye and neither takes precedence over the other. For analysis, the mean of scores is

an equivalent statistic to their sum in binocular patients and can be interpreted as a

measure of the overall quality of vision. In the discussion, we consider a model that

analyses eyes separately.

Figure 4.3 shows a scatter plot and locally estimated scatterplot smoothing (loess)

line of the concurrent left-eye and right-eye assessments. Loess is an example of

local regression, fitting simple regression models to small localised subsets of the

data. The fits from these local models are combined to produce a smooth non-linear

overall model.

Differences of up to 0.4 are observed between eyes but the average relationship

showed by the blue line follows the line y = x for x ∈ (0, 1.5). There are two obser-

vations with very large VA values where this relationship breaks down. These relate

to a single individual that experienced rapid progression in symptoms.

At one assessment, this same patient yielded a VA measurement in one eye only.

Figure 4.4 shows two methods we considered for imputing an average value on this
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FIGURE 4.3: Left-eye vs right-eye visual acuity in the St Louis cohort.

(A) Assume same score (B) Assume same year-on-year change

FIGURE 4.4: Two methods for dealing with a missing VA value in one
eye to create combined VA score.
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occasion. There are values for the right eye at all periods but no observation for the

left eye at Time = 4. In both methods, the combined values at Time = 0-3 are the

simple arithmetic means. In Figure 4.4a, the combined value at Time = 4 is taken to

be the single value provided in the right eye, effectively assuming the same score

in each eye. We see that this is inappropriate because it artificially suggests that the

patient experienced an overall improvement. In truth, the patient’s vision had de-

teriorated over each period in each eye. In Figure 4.4b, the combined value at Time

= 4 is created by imputing that the left eye deteriorated at the same rate as the right

eye, and then taking the arithmetic mean. We used this method to impute the sin-

gle missing value because it conveys deterioration at all periods and pragmatically

makes use of all available data.

Including the imputed value, we have 96 observations for VA in total, an average

of 3.7 observations per patient. The ages of patients at time 0 ranged from 5.4 to 25.8

years. The mean VA score at time 0 was 0.59 LogMAR units (range, 0.0 to 1.3).

Figure 4.2 demonstrates many noteworthy characteristics. We see that VA gen-

erally increases over time but is subject to a reasonable amount of natural variation.

Patients appear to progress at a similar rate, irrespective of age and VA level. There

is a stark outlier series that we have already identified. The patient with a LogMAR

score of approximately 1.1 at age 13 progresses more rapidly than the rest of the pa-

tients, albeit from a high starting value. This demonstrates the types of progression

that can occur, perhaps in a relative minority of cases. We will address the implica-

tions of this series with respect to modelling and hypothesis testing in later sections.

4.2.1.1 Classical sample size calculations

Let us briefly consider conducting a standard parallel-groups randomised controlled

trial (RCT), where patients are assigned to receive either sodium valproate or placebo.

Let our primary outcome be change in VA. In a so-called analysis of change scores,

VA would be assessed in all patients at baseline, again after a period of treatment,

and changes calculated as the latter minus the former. The mean changes in each

group would be compared using a two-sample t-test (for approximately normally-

distributed data) or Mann-Whitney-U test (for non-normal data) to assess whether

the rate of progression significantly differed. A persistent therapeutic benefit is
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sought. Let us assume for elucidation that a 0.04 LogMAR units reduction in the rate

of progression per annum is a meaningful treatment effect. Below we demonstrate

using hierarchical regression models that the annual average progression in VA is

approximately 0.08 units LogMAR. Thus, an annual difference between groups of

0.04 units would represent a treatment effect that halved natural progression. Here,

we power tests to detect a difference of 0.04 in mean annual change in VA. We revisit

effect sizes later in this chapter.

To estimate required sample sizes, we require estimates of the mean and vari-

ability of changes in VA. There are 68 one-year changes in VA in the St Louis dataset,

with mean 0.067 and standard deviation 0.110 units LogMAR. We assume that the

standard deviation of one-year changes is 0.110 in each arm. To achieve 80% power

at a 5% significance level using a one-tailed t-test to detect a difference of 0.04 re-

quires 95 patients per arm, thus a total sample size of 190. We perform this calcu-

lation using the software provided with the book by Machin & Campbell[61]. The

required sample size vastly exceeds the number of patients in the UK. The sample

size for a two-tailed test would be larger still. Greater efficiency is needed.

VA scores are not perfectly correlated so the standard deviation of two-year

changes is less than twice the standard deviation of one-year changes. Perhaps in-

creasing the assessment period will lead to a feasible sample size. There are 46 two-

year changes in VA, with mean 0.157 and standard deviation 0.164 units LogMAR.

To detect a 0.08 difference in the average two-year change with 80% power at a 5%

significance level using a one-tailed t-test requires 53 patients per arm, or a total of

106. This too, is infeasible.

There are 28 three-year changes in VA, with mean 0.240 and standard deviation

0.224 units LogMAR. To detect a 0.12 difference in the mean three-year change with

80% power at a 5% significance level using a one-tailed t-test requires 44 patients

per arm, or 88 in total. For this sample size to be feasible, we would have to recruit

every patient in the UK. This is unrealistic.

The above power calculations are based on two-sample t-tests. This requires

the changes to be approximately normally distributed. Non-parametric tests would

require further increases in sample size to achieve the same power. We have estab-

lished that an RCT using an analysis of change scores requires an infeasibly high
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sample size. To achieve defensible power with a feasible sample size, it will require

a more efficient approach to suit this particular situation. The series in Figure 4.2

seem amenable to repeated measures analysis. To these ends, we investigate mod-

elling VA using mixed-effects regression models.

4.2.1.2 Characterising VA through time

We note that the majority of the series in Figure 4.2 appear to progress at a similar

rate over multi-year periods. There are instances where VA increases and decreases

in consecutive years. This may be a manifestation of measurement error or reversion

to the mean. This supports the use of longitudinal analysis to distinguish the multi-

year trend from the short-term noise.

We also note the presence of outliers. For the purpose of assessing the treatment

in a controlled experiment, we seek to estimate the average rate of change and out-

liers present a challenge. A single period analysis that compares VA scores before

and after treatment in different groups would generally be more at risk of being af-

fected by outliers than a longitudinal analysis, which has the opportunity to smooth

out outliers if regression to the mean is subsequently observed.

We seek to characterise the dynamics of VA in Wolfram patients using linear

mixed effects models. This hierarchical approach lets us reflect that repeated mea-

sures are nested within individuals through time.

There is evidently a population-level effect in time, because VA deteriorates as

practically all patients age. We can immediately see from Figure 4.2 that patient-level

intercepts are warranted because the series start at different values, irrespective of

age.

Figure 4.5 shows the relationship of one-year forward changes in VA with A)

age; and B) VA at the start of the period. For example, VA = 0.4 in an 11-year old at

t = 0, increasing to VA = 0.6 one year later in the same individual would appear in

plot 4.5a as the point (11, 0.2) and in plot 4.5b as (0.4, 0.2). Figure 4.5a provides no

reason to believe that changes in VA systematically vary by age.

Figure 4.5b suggests that changes in VA can reasonably be assumed to be in-

dependent of the level of VA for VA < 1.5. However, there is a suggestion that

outcomes increase more rapidly at higher values. This remains just a suspicion,
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(A) Age (B) VA

FIGURE 4.5: Forward one-year change in VA vs age and VA at the
start of the period. The blue lines shows the loess mean and the grey
shaded regions the 95% uncertainty interval of the mean. The dashed

orange lines show the mean one-year change in VA.

however, because both VA values greater than 1.5 in this dataset are yielded by the

single aforementioned individual. Symptoms could deteriorate more rapidly when

disease and symptoms are already well-developed. The World Health Organisation

defines blindness to be best-corrected VA worse (i.e. scores greater) than 1.3 Log-

MAR[96]. It is plausible that the accuracy of visual acuity measurements decreases

as blindness becomes more comprehensive. Alternatively, rapid progression might

be a characteristic of this particular individual. The St Louis dataset does not allow

us to distinguish amongst these scenarios because only one patient is seen at such

levels. Patients with baseline LogMAR less than or equal to 1.6 are eligible for the

TreatWolfram trial, so we may encounter patients with high values and thus strongly

prefer a model that will handle outcome heterogeneity. As much as possible, we re-

sist the temptation to remove this patient from the modelling.

Let τij be the age in years of patient i at VA observation j, for i = 1, ..., 26 and

j = 0, ..., 5. Let tij = τij − τi0 so that tij is the time after baseline of observation j

for patient i. The tij are continuous values, not integers or factors. This is desirable

because, as Figure 4.1 demonstrates, assessments are not always conducted on an-

niversaries of the first visit. We see that ti0 = 0 ∀ i. Let yij be the VA observation

for patient i at time tij .
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We consider the hierarchical model

yij = α+ ai + βtij + eij eij ∼ N(0, σ2), ai ∼ N(0, σ2a) (4.1)

Here, α is the fixed-effect intercept, interpretable as the average baseline VA score;

ai is the random intercept adjustment for patient i, assumed normally distributed

with mean 0; and β is the fixed effect for mean change in VA per annum, assumed

constant in time and uniform across patients. We call this the random intercepts

model.

Using the nlme[74] package in R[76], the estimated parameters are α = 0.567

(s.e. 0.080) and β = 0.082 (s.e. 0.010), both with p < 0.001. In this cohort, this model

estimates the mean annual increase in VA to be 0.082 LogMAR units per annum.

This estimate differs from the simple mean period-on-period change of 0.067 given

in Section 4.2.1.1 for two reasons: (i) the regression model has adjusted for some

sources of variability to produce a better estimate of the change in VA attributable

to the passage of time; and (ii) some of the period-on-period changes did not strictly

cover periods of one-year, as demonstrated by Figure 4.1. The estimates of the stan-

dard deviations are σ = 0.125 (95% CI, 0.106 - 0.147) and σa = 0.382 (95% CI, 0.287

- 0.508). We have reported standard errors for coefficients but confidence intervals

for standard deviations to reflect the summary statistics provided by the nlme pack-

age. The model was fit using general positive-definite structure for the variance-

covariance matrix.

This model yields the fitted values shown in Figure 4.6a. Overall, we see that

the fitted values are close to those observed for VA scores up to approximately 1.75.

There are two values observed greater than 2 that are not fit particularly well. These

values relate to the same individual noted above with rapid progression at high VA

scores, suggesting the benefit in accounting for heterogeneity in gradients. First,

however, we consider further population-level terms.

Seeking to improve the model fit, particularly at high VA values, we consider

non-linear functions of time. We investigate alternative models that use the square

of tij

yij = α+ ai + βtij + γt2ij + eij eij ∼ N(0, σ2), ai ∼ N(0, σ2a) (4.2)
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(A) Random intercepts (B) Random gradients

FIGURE 4.6: Fitted and observed VA values under the two models.
Each was fit using the nlme package using REML.

and the square-root of tij

yij = α+ ai + βtij + ζ
√
tij + eij eij ∼ N(0, σ2), ai ∼ N(0, σ2a) (4.3)

as additional fixed effects. The incremental benefit of each of these models is as-

sessed by testing the nested models via likelihood ratio test using the anova.lme

function in nlme[74]. As recommended by Pinheiro & Bates[73], these models and

the comparator (4.1) were fit using maximum likelihood (ML) because testing nested

models with different fixed effects structures is invalid under restricted maximum like-

lihood (REML). The p values are 0.45 and 0.25 respectively. The case for including the

extra variables is not particularly strong. More importantly, neither rectifies the poor

model fit at high VA values. We seek improvements elsewhere.

Our difficulties with the outlier patient have been largely driven by their hetero-

geneous rapid rate of progression. This suggests we extend (4.1) by considering the

following model with patient-specific gradients with respect to time:

yij = α+ ai + (β + bi)tij + eij , (4.4)

eij ∼ N(0, σ2), ai ∼ N(0, σ2a), bi ∼ N(0, σ2b )

We call this the random gradients model. It reflects that individuals will commence
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(A) Random intercepts (B) Random gradients

FIGURE 4.7: Observed (dark grey) VA series and those estimated by
the two mixed effects models (red).

our study under different levels of visual acuity and that through repeated measures

in time, each will experience their own rate of progression. It yields the fitted values

shown in Figure 4.6b. We see that allowing heterogeneity in gradients improves

model fit at high VA values. A likelihood ratio test of the nested random intercepts

and random gradients models yields p < 0.001, confirming that this model is very

likely superior for modelling the St Louis data. For this test, models (4.4) and (4.1)

were fit by REML. As described in Pinheiro & Bates[73], tests of nested models fit by

REML that differ only in random effects are valid. Furthermore, the ML method of

fitting mixed models has an undesirable tendency to underestimate the size of the

variance components, a flaw rectified by fitting by REML.

The plots in Figure 4.7 clearly demonstrate how including random gradients im-

proves model fit. They show the fitted (red) series superimposed on the observed

(dark grey) VA series for each patients using the random intercepts (left) and ran-

dom gradients (right) models. The random intercepts model is surprisingly good for

the majority of patients. However, it does not model at all well those that progress

quickly. These patients still progress approximately linearly, albeit at a much faster

rate. The random gradients model facilitates this.

The random gradients model yields estimates α = 0.571 (s.e. 0.072), β = 0.070

(s.e. 0.017), σ = 0.074 (95% CI, 0.061 - 0.090), σa = 0.356 (95% CI, 0.266 - 0.477) and
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FIGURE 4.8: Raw residuals of the random gradients model. The solid
black line shows a Gaussian kernel smoother to estimate the distribu-

tion.

σb = 0.071 (95% CI, 0.049 - 0.103). The estimated mean annual progression is 0.012

LogMAR units lower when we allow heterogeneity in gradients. This reflects the

reduced influence of the patient with rapid progression.

Figure 4.8 shows the distribution of the “raw” residuals, i.e. the observed values

less the fitted values, of the random gradients model. We see that they are approxi-

mately normal, as required.

Figure 4.9 shows the distributions of the random parameters, both also assumed

normal in (4.4). Figure 4.9a shows that the random intercepts are indeed approxi-

mately normal. In contrast, Figure 4.9b also shows clear central tendency, but also

shows a large positive outlier in the random gradients. Perhaps unsurprisingly, the

outlier is the patient with very large VA values. The result is that the estimate above

for σ2b is possibly inflated by the data for this single patient. All else being equal, this

would overestimate the variability of outcomes and dictate an inflated sample size

for a given power. We return to this in following sections.

Figure 4.10 shows two further diagnostic plots. Figure 4.10a shows that residu-

als are centred at zero for each assessment point, and that their variance is approxi-

mately constant through time. Finally, we consider the autocorrelation of residuals.

Figure 4.10b shows the auto-correlation function for the residuals, produced using
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(A) intercepts (B) gradients

FIGURE 4.9: Distributions of the patient-specific parameters from the
random gradients model, assumed normal. The solid black lines

show Gaussian kernel smoothers.

(A) Skedasticity of residuals (blue crosses).
Loess smoother demonstrates the mean.

(B) Auto-correlation function, with 1% signif-
icance bounds.

FIGURE 4.10: Further diagnostic plots of residuals from the random
gradients model.
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the ACF command in nlme[74]. Mirroring Pinheiro & Bates[73, p. 241], we add sig-

nificance bounds (blue lines) at the 1% level. Assuming the observations are taken

at points equally-spaced through time, which Figure 4.1 demonstrates to be over-

whelmingly the case, we see from Figure 4.10b that the residuals at lags 1 and 2

years do not show significant autocorrelation. In contrast, the residuals are appar-

ently significantly autocorrelated at lags 3 and 5 years. Two factors motivate us to

cautiously interpret this finding as chance. The first is the lack of material autocor-

relation at lower lags. If the residual process retained information from previous

observations, for instance via an auto-regressive moving average (ARMA) process,

we would expect to see significant autocorrelation at short lags too. Secondly, there

are very few pairs of observations at these long lags.

Of our two candidate models for fitting VA in the St Louis data, the random-

gradients model is clearly superior. We consider further embellishments to this

model by testing two other population-level effects. We have demonstrated that

VA is related to age. Time is already included as a population-level effect and is per-

fectly correlated with age, so age at each assessment point is not a sensible covariate

to add. However, age at baseline could add marginal information. Testing the addi-

tion of this covariate via nested models estimated by ML yields p = 0.77. The data

are largely consistent with the additional effect associated with this variable being

zero. This is perhaps not surprising because the information contained in baseline

VA is already reflected in the model by the patient-level intercepts, ai.

Lastly, we consider a population-level effect with respect to sex. Again, a test via

nested models yields p = 0.46 and no strong case for inclusion.

We have demonstrated in figures above that the fit of our random gradients

model is good and that errors are reasonably independent. The model has valid-

ity because it maps to the research question we seek to answer and incorporates

effects that are intuitive and biologically plausible. The assumption of additive ef-

fects is reasonable given the small number of terms that combine to essentially yield

patient-specific straight lines. The one modelling assumption that is questionable

is normality of the random terms. Gelman & Hill[38] identify this as the least im-

portant of the modelling assumptions. Nevertheless, it is a topic we repeatedly visit

in subsequent sections when we use the random gradients model to simulate and
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analyse VA paths.

4.3 TreatWolfram Statistical Design

We present our design for an international, double-masked, randomised, placebo-

controlled trial of sodium valproate versus control in patients with Wolfram syn-

drome. This design was conceived and developed by KB. There is currently no phar-

maceutical treatment for Wolfram syndrome so the control arm will be a placebo,

manufactured to match the appearance of sodium valproate.

A severe constraint in designing a pivotal clinical trial in an ultra-rare disease is

the limited sample size. We have already noted above that a conventional experi-

mental design requires infeasibly high accrual. A more efficient analysis is required

to achieve conventional error rates with our restricted sample size.

In this chronic disease setting, we are able to measure the outcome variable many

times. In fact, the treatment is only likely to materially improve the lives of patients

if it demonstrates prolonged efficacy. In the following sections, we calculate the re-

quired sample size for the TreatWolfram trial assuming a repeated measures analysis

of the candidate primary outcome, VA. The sample size analysis will be informed by

the St Louis cohort.

A key component of a repeated measures is the frequency with which the out-

comes are measured. All else held constant, more frequent assessments yield more

information and a more powerful analysis.

VA is measured in clinics using standardised charts. The assessment is not costly

nor invasive and the frequency of assessment is constrained only by how often it is

reasonable to expect patients to attend clinic. We propose to measure this outcome

at baseline and every six months for three years, giving the seven assessment times

tVA = (0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0).

We are keen to maximise the chances that each patient will experience therapeu-

tic benefit on the trial. Given the absence of a standard treatment, we will investi-

gate the feasibility of randomisation that favours the experimental arm. However,

the most efficient allocation is equal-sized groups. We will tolerate modest deterio-

ration in efficiency arising from non-equal randomisation if it achieves the patients’
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stated preference to increase the chances of receiving the experimental drug. We

investigate this via simulation.

As with any clinical trial, we expect to collect less than complete outcomes as

some assessments may not be performed as planned, or some patients may drop out

of the study. Less than complete data collection reduces the efficiency of analysis.

Furthermore, the pattern in which data is missing is potentially pertinent in longitu-

dinal analyses. We present three methods for simulating missing data and analyse

their effects on statistical efficiency.

4.3.1 Sample size for longitudinal analysis

We propose a longitudinal analysis because it will use more information and be

more efficient than a single post-baseline comparison. We showed in section 4.2.1.2

that VA series are amenable to analysis by mixed effects models. We investigate in

this section whether we can achieve conventional clinical trial error rates using our

limited sample size.

We follow the example of Diggle et al.[31, p. 30] to calculate the required sample

size for a test by repeated measures model of a continuous outcome. Using equal-

sized arms, for a two-tailed test with power P and significance α, Diggle gives the

required per-arm sample size to be

N =
2(zα + zQ)2σ2(1− ρ)

ns2td
2

(4.5)

where Q = 1 − P ; zα and zQ are quantiles from the unit normal distribution; σ2 is

residual variance discussed below; ρ = Corr(yij , yik) for all j 6= k; d is the difference

in slope coefficients to be detected; s2t =
∑

j(tj − t̄)2/n is the within-subject variance

of the explanatory variables, t; and n is the number of assessments times in t. For a

two-arm trial, the total sample size is 2N .

Diggle et al. estimate the variability of residuals, σ2, using an ordinary least

squares regression model

yij = α+ βtij + eij eij ∼ N(0, σ2) (4.6)
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TABLE 4.2: Serial correlations of VA in the St Louis dataset, at baseline
(VA0) and years 1-3.

VA0 VA1 VA2 VA3

VA0 1
VA1 0.949 1
VA2 0.923 0.978 1
VA3 0.867 0.970 0.980 1

for i = 1, ..., 2N and j = 1, ..., n. This model is used only to estimate σ2. It is not

the proposed analysis model. Model (4.6) fit to the St Louis data yields the estimate

σ2 = 0.164.

We will initially investigate α = 0.05 and power ≥ 80% to comply with con-

ventional clinical trial error rates. Where possible, we prefer to increase power. We

estimate the required parameters using the St Louis dataset. The correlation param-

eter in (4.5) is assumed to be the same at all lags. Smaller values for ρ demand larger

sample sizes because previous response values contain less information about future

values. Thus, to avoid the risk of under-powering the study, we seek to estimate the

lower bound of ρ.

The serial correlations in VA at baseline and years 1-3 years, chosen to match the

time-frame over which we will analyse this outcome in TreatWolfram, are shown in

Table 4.2. We see that the serial correlation values are at least 0.867. For conservative

sample size estimation and the reasons explained above, we assume ρ = 0.867.

With assessment times tVA (defined above), we have s2tV A
= 1.0 and n = 7. As

before, we power to detect a reduction of 0.04 LogMAR units in the rate of increase

in VA per annum. Using these values, by (4.5) we require N = 25 patients per

arm to achieve 80% power to detect the specified difference at a 5% significance

level. Similarly, we require N = 29 to achieve 85% power and N = 34 to achieve

90% power. These represent marked improvements over the sample sizes in Section

4.2.1.1 and ably demonstrate the boost to efficiency that comes from using a repeated

measures analysis.

Paradoxically, one of the distinct benefits of designing a clinical trial in a con-

dition as rare as Wolfram syndrome is that many feasible patients can be identified

before the trial has commenced. Many countries, including the United Kingdom,
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have registries of patients and/or patient and carer support groups. Patients at-

tend routine clinics for monitoring and management of symptoms. Patient groups

and clinical leads have been consulted in several European countries to estimate

the likely number of patients that can be recruited. Thus, in a disease where trial

recruitment will be highly constrained, we can say with reasonable confidence the

exact number of patients that are feasible to recruit. In the UK, the lead investigator

predicts they can recruit 48 patients. Sites in France, Spain and Poland indicate that

they will be able to recruit 11, 6 and 5 patients respectively, leading to a maximum

feasible sample size of 70 patients. Further recruitment would require many centres

with low potential recruitment and this would contribute materially to the trial cost.

In the proceeding sections, we treat 70 patients as the maximum feasible accrual.

We have shown above that power up to 90% can be expected to detect an annual

difference in progression of 0.04 LogMAR units if all data is collected. We investigate

the sensitivity of efficiency to this last assumption in coming sections.

4.3.2 Measuring statistical performance using simulation

The sample sizes in the previous section are feasible given the expected number

of patients in the UK and our European neighbour countries. Those sample sizes

assume 1:1 randomisation. Given the dearth of pharmaceutical treatments for Wol-

fram syndrome, the fact that it afflicts children, and the fact that symptoms generally

progress continuously, we and our funders are highly motivated to use randomisa-

tion that allocates more patients to the experimental treatment. Equation (4.5) above

assumes equal-sized arms. Diggle et al.[31] do not give a version for general ran-

domisation ratios, and we could not find one in the literature. We use simulation

to investigate the feasibility of unequal arms by estimating statistical power at var-

ious allocation ratios in favour of sodium valproate. Furthermore, it is inevitable

in a longitudinal analysis that some data will be missing. Simulation allows us to

easily incorporate various patterns for data loss and assess their impact on statistical

efficiency.

We describe in the next section our methods for sampling patient outcomes. In

Section 4.3.2.2, we describe three schemes for simulating missing data. In Sections
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4.3.3 and 4.3.4, we investigate the power of two proposed models, including sce-

narios with missing data. Finally, we summarise the benefits of using simulation in

Section 4.3.5.

4.3.2.1 Methods for simulating VA paths

To make inference by simulation, we require a method of randomly sampling patient

VA paths. We desire that these paths mirror the statistical characteristics of those

observed in the St Louis dataset under the belief that the patients we recruit will be

similar. We achieve this using two methods of path generation, each inspired by the

random gradients model described in Section 4.2.1.2. We will refer to these as the

parametric method and the parametric bootstrap method.

In both methods, we sample VA path starting values to be uniformly distributed

on (0.0, 1.6), to reflect the patients we will recruit on trial. Patients with VA greater

than 1.6 are ineligible.

The rate of increase in VA per annum is assumed to have a fixed component,

common to all patients, and a patient-specific component. In each method, the fixed

component for patients allocated to the control treatment is 0.07 LogMAR units, to

match β, the estimated fixed effect with respect to time in (4.4). In the parametric

method, the patient-specific gradient components, bi, are randomly drawn from a

N(0, σ2b ) distribution, with σb = 0.071 to match the estimates yielded by the random

gradients model.

Figure 4.10a shows the skedasticity of the residuals from the REML random gra-

dients model derived in Section 4.2.1.2. The raw residuals are shown as blue crosses

and a loess smoother with confidence intervals is overlaid. The residuals are dis-

tributed about zero with some modest outliers. They could reasonably be described

as homoskedastic for t ∈ (0, 4) where the width of the confidence interval is approx-

imately constant. The variability in year 5 appears to be slightly larger, but there

are very few observations at this point. As such, random errors εij for each VA as-

sessment are assumed time-invariant and sampled from a N(0, 0.0742) distribution.

Once again, these fixed values are chosen to match the result of fitting model (4.4) to

the St Louis data.

With each of these components, the paths are calculated using tV A and (4.4).
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(A) Parametric method (B) Bootstrap method

FIGURE 4.11: Three-hundred simulated VA series (grey lines) pro-
duced using the methods described. The overplotted black lines

show the actual 26 St Louis patients.

TABLE 4.3: Correlation matrix of 300 3-year VA paths simulated using
the parametric method.

VA0 VA0.5 VA1 VA1.5 VA2 VA2.5 VA3

VA0 1
VA0.5 0.96 1
VA1 0.95 0.96 1
VA1.5 0.93 0.94 0.96 1
VA2 0.91 0.92 0.95 0.96 1
VA2.5 0.87 0.89 0.93 0.95 0.96 1
VA3 0.86 0.87 0.91 0.94 0.96 0.97 1

Figure 4.11a shows 300 paths simulated using the parametric method. Overlaid

in black are the paths observed in the St Louis cohort. The rapidly progressing in-

dividual is simple to identify. We see that the parametric method yields paths that are

generally less extreme in high values than the St Louis paths. For instance, none of

them progresses as rapidly as the patient in the St Louis cohort. Table 4.3 shows the

serial correlation matrix for these paths. These broadly match the serial correlations

observed in the St Louis cohort in Table 4.2.

A reasonable theoretical flaw of the parametric method is that the random gra-

dients are not strictly normally distributed, as shown in Figure 4.9b. They are pos-

itively skewed by the single, rapidly-progressing individual. To investigate perfor-

mance under non-normal random progression, in the parametric bootstrap method of
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TABLE 4.4: Correlation matrix of 300 3-year VA paths simulated using
the parametric bootstrap method.

VA0 VA0.5 VA1 VA1.5 VA2 VA2.5 VA3

VA0 1
VA0.5 0.98 1
VA1 0.98 0.98 1
VA1.5 0.97 0.98 0.98 1
VA2 0.95 0.96 0.97 0.98 1
VA2.5 0.94 0.95 0.97 0.98 0.99 1
VA3 0.92 0.94 0.95 0.97 0.98 0.99 1

path generation, we sample with replacement random gradients from the 26 values

calculated on the St Louis dataset, depicted in Figure 4.9b. Likewise, we re-sample

errors εij from the model residuals in Figure 4.8. All other aspects remain the same

as the parametric method and the components are combined using (4.4).

Three hundred paths by this method are shown in Figure 4.11b. We see that the

simulations now yield paths as extreme as the St Louis cohort. Analysis of paths

generated by this method will provide a valuable measure of the sensitivity of our

statistical design to modest departures from the Gaussian assumptions. The serial

correlations of these paths are shown in Table 4.4. These paths have generally greater

serial correlation that those generated by the parametric method.

In both methods, paths for patients allocated to the experimental treatment are

simulated in a similar way. The single difference is that the fixed effect gradient β is

assumed to be 0.07 − λ, for some treatment effect λ. The random gradients are not

adjusted, nor are the starting values or the measurement errors.

We expect some data to be missing on trial. Having described our way of simu-

lating repeated measures data, in the next section we describe ways to obscure some

data to estimate the power of our statistical test when data coverage is less than

100%.

4.3.2.2 Missing data

Some data loss is practically unavoidable in TreatWolfram so it is conservative to

factor this into the power estimation, especially when sample size is so severely

constrained and the efficiency of the design is so critical. For n assessments of m

patients, the full dataset should contain mn data points.
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DefineRij to be a data presence indicator variable that takes the value 1 if the out-

come yij is observed, else 0 if it is missing. Data are said to be Missing Completely

At Random (MCAR) if P (Rij = 1) is constant over patients and time-horizons. This

is not likely in a multi-year longitudinal analysis where later observations are natu-

rally more likely to be missing for a variety of reasons, e.g. people move home. Data

are said to be Missing At Random (MAR) if P (Rij = 1) is a function of the value or

presence of previous observations or contemporaneous covariates. Critically, data-

missingness is independent of the current outcome, yij under MAR. If P (Rij = 1) is

a function of yij , the data are said to be Missing Not At Random (MNAR).

Mixed effects models assume that data is MAR. Analysing MCAR or MAR data

using mixed effects models does not result in bias but does lead to a loss of precision

compared to an analysis of the complete dataset. Notably, analysing MNAR data

using mixed effects models results in bias and a loss of precision. A distinct compli-

cation is that “distinguishing between MAR and MNAR is not trivial and relies on

fundamentally untestable assumptions”[30]. We revisit this in the Discussion.

We investigate three methods for simulating missing data, illustrated in Figure

4.12. In the method depicted in 4.12a (that we will refer to as missingness 1), a number

of series are assumed to be completely missing. All other series are fully observed.

This naturally leads to the interpretation that it is the patients, rather than the ob-

servations, that go missing. The percentage of missing patients is equal to the per-

centage of missing data points. This method maximises the number of completely

observed series.

Under missingness 2 in 4.12b, all data points are missing with equal probability,

unaffected by whether other data are available for that patient.

Under missingness 3 in 4.12c, patient discontinuation points are randomly sam-

pled iteratively until a threshold amount of missing information has been achieved.

Once discontinued, a patient yields no further data. Some patients provide full data

series, some provide no data, and some provide truncated series. To simulate this

method, we used the following algorithm:

While target level of data loss is not yet reached:

• Select a patient at random;
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(A) Whole series are missing

(B) Points are missing completely at random

(C) Discontinuation points are randomly sampled

FIGURE 4.12: Three methods of simulating missing outcome data.
The orange cells represent missing observations.
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• Select a time point t∗, at random;

• Remove all observations for that patient with t ≥ t∗;

• Loop.

Under missingness 2, responses are MCAR. Under missingness 1 and 3, responses

are MAR because missingness is dependent on the presence of the trailing obser-

vation: once an observation in a series is missing, no subsequent observations are

made.

4.3.3 Power of the random intercepts model

In the TreatWolfram setting with experimental and control treatment arms, the ran-

dom intercepts model generalises to

yij = α+ ai + (β + γzi)tij + eij eij ∼ N(0, σ2), ai ∼ N(0, σ2a) (4.7)

where zi = 1 if patient i is allocated to the experimental treatment, else 0. The param-

eter γ estimates the mean adjustment in annual progression in VA associated with

receiving the experimental drug compared to control. The presence of a treatment

effect is assessed by testing the null hypothesis H0 : γ = 0 against the alternative

HA : γ 6= 0. The other parameters maintain the roles previously described in Section

4.2.1.2.

Our test of H0 entails a test of a fixed effect. As advised by Pinheiro & Bates[73,

p. 87-90], we test the marginal significance of γ not by likelihood ratio test, which

is “sometimes quite badly anticonservative” but by the conditional t-test statistics

provided in the standard table of regression output. We use a significance level of

5% so that p-values < 0.05 lead to rejection of the null hypothesis. This test is two-

sided although only values of γ < 0 indicate efficacy, i.e. a reduction in progression.

In a randomised controlled trial, a difference would be interpreted as having been

caused by the difference in treatments.

The power of this analysis at various sample sizes with patients allocated equally

between the arms is shown in Figure 4.13. We see that 70 patients provides approx-

imately 88% power when no data is lost, and at least 80% power when up to 15%
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FIGURE 4.13: Power using the random intercepts model to detect a
0.04 unit decrease in the annual rate of increase in VA, with all data
observed and under the three methods for removing 15% of outcomes
described in Figure 4.12. 10,000 trial iterations were simulated in each
scenario. VA outcomes were sampled using the parametric method.
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Power Diggle et al. Random intercepts model
80% 50 51
85% 58 61
90% 68 76

TABLE 4.5: Total sample size required with equal sized arms to detect
a difference of 0.04 LogMAR units per annum. The Diggle et al. esti-
mates are derived in the text. The estimates for the random intercepts

model are interpolated from Figure 4.13.

(A) 1:1 randomisation (B) 2:1 randomisation

FIGURE 4.14: Power at various effect sizes using the random inter-
cepts model, with all data observed and under the three methods for
removing 15% of outcomes. 10,000 trial iterations were simulated
in each scenario. VA outcomes were sampled using the parametric

method.

of data is lost, irrespective the pattern of missingness. Table 4.5 shows that when no

data is lost, power estimated by the simulation method is close to that implied by

the calculations using Diggle et al.’s method in Section 4.3.1.

The overwhelming problem with this model is that the type I error is vastly in-

flated, as demonstrated in Figure 4.14. Even when the true treatment effect is zero,

there is approximately 33% probability of incorrectly approving the treatment. Ap-

proval probabilities are a few percent lower under 2:1 randomisation. This is because

the model misinterprets any chance imbalance in patient-specific gradients as treat-

ment effect. This is further demonstration that random gradients are necessary in

our analysis model.

105



Chapter 4. Practice-changing RCT in an ultra-rare condition

FIGURE 4.15: Power to detect with the random gradients model a 0.04
unit decrease in the annual rate of increase in VA, with all data ob-
served and under the three methods for removing 15% of outcomes.
10,000 trial iterations were simulated in each scenario. VA outcomes

were sampled using the parametric method.

4.3.4 Power of the random gradients model

We demonstrated that the random gradients mixed effects model fits the St Louis

data better than the random intercepts model. As before, with two treatment arms,

the model generalises to

yij = α+ ai + (β + bi + γzi)tij + eij (4.8)

where bi ∼ N(0, σ2b ) are the random gradients with respect to time and all other

parameters retain their previous definitions.
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(A) 1:1 randomisation (B) 2:1 randomisation

FIGURE 4.16: Power at various effect sizes using the random gradi-
ents model, and different values for σ2

B . We assume that 15% of data
is lost under missingness method 3. 10,000 trial iterations were sim-
ulated in each scenario. VA outcomes were sampled using the para-
metric method (solid lines) and parametric bootstrap method (dotted

purple line).

The power of this proposed analysis using 1:1 randomisation is shown in Figure

4.15. The random gradients model requires much larger sample sizes to achieve the

same level of power as the random intercepts model. To achieve 80% power when

no data is lost, we would expect to require about 110 patients, a material increase on

the random intercepts model.

It is noteworthy that under the random gradients model, power is similar un-

der missingness methods 1 and 3. It is intuitive to think that a regression model

would be adept at dealing with data missing completely at random as in missing-

ness method 2 because the model simply interpolates using the points on either side.

Figure 4.15 shows that losing sequences of points is more detrimental to power in

this scenario.

Figure 4.16 shows that the type I error rate is under control, as required. It also

shows that 70 patients randomised 2:1 in favour of valproate yields roughly 80%

power to detect a 0.06 LogMAR unit treatment effect when 15% of data is missing

by method 3 and σb = 0.071. Under 1:1 randomisation, the same power would be

available to detect an effect size of approximately 0.056, showing a modest perfor-

mance penalty to using non-equal arms. Figure 4.16 also makes plain the sensitivity
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of power to σb. The red line shows estimated power when σb = 0.036. This is the

value estimated by the random gradients model fit to the St Louis data when the en-

tire series for the rapidly-progressing patient is removed, i.e. the standard deviation

approximately halves. We see that 80% power is now estimated to be achieved at a

treatment effect between 0.035 and 0.040 LogMAR units with 2:1 randomisation.

The green series in Figure 4.16 shows power when σb = 0.0535, being the value

halfway between the two extreme values. Notably (and unexpectedly), this series is

very close to the line depicting power estimated using the random gradients model

on outcomes simulated by the parametric bootstrap method (dotted purple line).

This makes plain the uncertainty surrounding power and the role played by the

variability of the patient-specific gradients. If rapid patient-specific progression is

relatively common, we could expect our true, notional power curve to resemble the

blue line with σb = 0.071. We highlighted when developing the random gradients

model the large positive outlier in the random gradients, and how this value over-

states σb. We have seen that the distribution of patient gradients is not normally

distributed with mean 0 and standard deviation of 0.071. Instead, it is more like a

combination of two distributions: a normal distribution with mean 0 and standard

deviation of 0.036; and a single heterogeneous case. Thus, we expect the simulations

using bootstrapped outcomes to be more indicative of what we may see on trial. The

best outcome we could reasonably expect is represented by the red line where there

is no rapid progression.

There is one additional qualitative explanatory factor that is exhibited by our

single rapidly progressing patient, and this variable will be used on trial to maintain

statistical efficiency. We expand on this in the Discussion.

4.3.5 Benefits of simulation

In previous sections, we described a method for simulating VA paths that statisti-

cally resemble those observed in the St Louis cohort. We also defined three methods

for simulating data missingness. We then used these methods with mixed effects

model analysis, and used computer simulation to infer statistical performance of our

clinical trial design. The resulting power estimates reflect the implications of reason-

ably punitive data loss. It was important for us to understand the effect of data loss
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and the various patterns of missingness that may manifest in our scenario where the

size of feasible recruitment cohort is so severely constrained. Similarly, it was impor-

tant for us to be able to measure the effect of non-equal randomisation. Simulation

afforded us the flexibility to measure the simultaneous effect of these different com-

plications. Furthermore, we learned from simulation that, whilst power under the

random intercepts model was close to that suggested by the Diggle method, power

under the random gradients model is lower because of the extra source of variabil-

ity. We conducted this with the eventual goal of testing the effect of a treatment on

a visual acuity outcome. A literature review follows in the next section of methods

for estimating required sample size in trials that assess visual acuity.

4.4 Literature Review

We seek to demonstrate the novelty of our method for prospectively calculating the

required sample size of a longitudinal analysis of visual acuity by simulation, in-

cluding the effect of various patterns of data missingness. For brevity, we will refer

to this as “our method” in the remainder of this section.

Appendix B.1 describes how a literature search of “visual acuity sample size

trial” yielded ninety manuscripts for review, summarised in Table 4.6.

Primarily, manuscripts concerned trials, but there were many pertaining to re-

views and cohort studies as well. Despite the search terms, it was relatively common

that studies did not identify visual acuity as an outcome.

Despite being a continuous outcome measure, it was quite common that sam-

ple size estimation was conducted using a dichotomisation, e.g. defining response

to be change from baseline of at least x. Testing differences by t-test was relatively

common, as were ANOVA and ANCOVA (or their repeated measures analogues).

Reporting of sample size methodology was frequently quite vague, making it impos-

sible to identify exactly what method was used. In seven instances, it was possible to

determine only that the researchers had not used simulation or repeated measures.

These have been enveloped under the category Other in Table 4.6.

Methods using simulation or repeated measures were relatively rare, with only

five manuscripts identifying either and only one manuscript identifying both.
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Manuscripts
Manuscript type
Clinical trial 57

Randomised groups 47
Non-randomised groups 6
Single arm 2
Design not clear 2

Review 16
Cohort study 11
Statistical methodology 4
Survey 2
Identified VA as outcome
Yes 68
No 16
Not applicable 6
Sample size method
Given 39

Dichotomised response 10
t-test 9
Simulation or repeated measures 5
Other 15

Not given 51
Adjust sample size for missingness
Yes 10

Linear inflation 10
No, or not applicable 80
Overall 90

TABLE 4.6: Summary of manuscripts examined in literature review
of the approach used in TreatWolfram to estimate statistical perfor-
mance by simulation of repeated measures VA whilst incorporating

missing data.
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Data missingness was also mentioned very infrequently. Only ten manuscripts

mentioned adjustment of the sample size to account for missing data. Each of these

appeared to use a basic method of linearly inflating the calculated sample size. None

gave evidence of having considered further how the data might be missing.

Of particular note were four manuscripts that described using mixed effects

models for analysis, or simulation for calculating a sample size. Lambertus et al.[56]

performed a retrospective cohort study in patients with Stargardt disease, a form of

macular degeneration. Instead of modelling the level of visual acuity as we seek to

do, they analysed the time to degeneration to a given threshold. Linear mixed mod-

els were used to analyse other variables. They used simulation to estimate sample

size for an outcome other than visual acuity. They did not include loss-to-follow-up

as a factor when estimating sample size.

Wiley et al.[106] present a randomised crossover trial of bevacizumab vs ranibizumab

in patients with diabetic macular oedema. They analyse mean changes in visual acu-

ity using linear mixed effects models. However, they did not model the manner in

which longitudinal observations may be missing.

Lam et al.[55] presented the natural history of patients with a type of hereditary

optic neuropathy to design a trial of gene therapy. They used mixed effects models

to analyse outcomes but calculated sample size for a non-controlled study. They do

not consider the effect of missing data.

Finally, Yeh et al.[109] present a study of the effects of acupressure and multi-

media on the visual health of school children in Taiwan. They used a longitudinal

method to calculate sample size using the “G Power” software, but no further de-

tails of the method are given. They apparently adjusted their sample size by 20% in

anticipation of drop-out, but further details are not given.

In summary, we found evidence that other researchers have used mixed effects

models to analyse visual outcomes, and have used simulation to calculate sample

size. We found little evidence of complexity in simulating data missingness. Over-

all, we found no evidence that any researchers have previously used simulation to

prospectively calculate a sample size for a longitudinal analysis of visual acuity

whilst incorporating assumed patterns of data missingness. The manuscripts that

came closest to our proposal are those of Wiley et al.[106] and Yeh et al.[109].
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The reasons for focusing on visual acuity are clear but we believe that this serves

as an example of methodologies typically used in studies with repeated numerical

measures as outcomes. The results of the review for visual acuity are likely to be

generalisable to other types of numerical outcome measured over time.

4.5 Discussion

Throughout this chapter, we have demonstrated statistical power to detect a treat-

ment effect using the threshold 0.04 units p.a. LogMAR. The misidentification of a

line of five letters on an ETDRS chart adds 0.1 to the LogMAR score, so that a score

of 0.04 equates to two letters. Under a treatment that reduces annual average pro-

gression by 0.04 units, we would expect a patient to be able to read an extra line and

an extra letter (i.e. six letters) after three years, compared to if they had not received

the treatment. This makes clear the value of 0.04 units as a treatment effect. Trials

that have used visual acuity as a primary outcome have sought larger differences

in diseases where greater sample sizes are possible. In this chronic setting where

sight progressively diminishes, any positive treatment effect would be of value be-

cause it lengthens the time a patient has vision. Clinical acceptability is generally a

trade-off between efficacy and toxicity. Sodium valproate is not without side effects

so we expect to see some adverse reactions in patients. We would potentially be in-

terested in the treatment if it was demonstrated to be associated with a mean annual

effect of 0.035 units that is statistically unlikely to have arisen by chance, and the

incidence of adverse reactions was low and events were generally manageable. We

anticipate that patients would too. A project supplementary to the trial will analyse

patient-reported outcomes with respect to efficacy and toxicity, and seek to clarify a

patient-oriented threshold. The difference of 0.04 units LogMAR does not constitute

a hard threshold for approving the drug.

The foundation of our simulation study has been the outcomes observed in the

St Louis cohort. Wolfram syndrome is a monogenic condition commonly observed

in siblings, as in the original description by Wolfram & Wagener[107]. Other unob-

served genetic or environmental traits could dictate that the outcomes we observe

in the European trial differ from those in the American cohort study. The possibility
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that European or British patients progress more slowly on average would be detri-

mental to our notional power. Nevertheless, the use of randomisation in the trial

will promote a fair comparison.

We have made frequent reference to the rapidly progressing patient in the St

Louis cohort and the difficulties that this introduced into the analysis. We have

resisted the temptation to simply remove the patient because we may observe pro-

gression of this ilk in TreatWolfram. There was 1-in-26 in the St Louis cohort so there

could be several in our larger cohort. Our model should be able to analyse outcomes

from patients like these and provide robust inference. Additional explanatory infor-

mation pertaining to rapid progressors exists, however.

The highest LogMAR value provided by EDTRS charts is 1.98, where only a sin-

gle letter is correctly identified. How then, do we have values greater than 2 in Fig-

ure 4.2? Ophthalmologists have developed methods to ascribe so-called “off-chart”

LogMAR scores to those who fail to read a single letter[57]. If a patient can correctly

count fingers held up by the ophthalmologist, they are given a LogMAR score of 2.0.

If they can correctly identify the presence of hand waving, they score 2.3. If they can

correctly perceive the presence of light, they score 2.6.

These methods were used by the ophthalmologist assessing the St Louis patients

and have been used in a published RCT e.g. [52, 53]. They provide pragmatic in-

formation on outcomes when patients can no longer be measured by the desired

tool. Simply removing these points would understate the average disease progres-

sion. However, using off-chart outcomes presents a challenge for analysis because

they introduce a discontinuity on an otherwise continuous scale. How do we know

that progression assessed by off-chart methods belongs in the same distribution as

that assessed on-chart? If we know which VA measures have been recorded us-

ing off-chart methods, we will be able to analyse progression under both on-chart

and off-chart regimes. For instance, if off-chart measurements become common-

place, a simple method could analyse the on-chart and off-chart subsets separately,

estimating the average progression whilst allowing for random patient-specific per-

turbations in intercepts and gradients in the manner we have demonstrated in this

chapter. However, separate models are unlikely to provide the most efficient analy-

sis. We did not do this when modelling the St Louis data because of the very small
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number of off-chart measurements. Leaving the patient with rapid progression in

the analysis set and allowing shrinkage of regression parameters by attaching prob-

ability distributions seemed the most conservative solution.

We investigated age and initial VA as prognostic variables and found that they

did not improve our multi-level models. However, in the trial dataset, those same

covariates could be predictive of treatment effect. That is, the age or initial VA value

of a patient may in part determine the efficacy of the treatment. We will consider

this when specifying the statistical analysis plan.

We used computer simulation to gauge the combined effect of non-equal ran-

domisation and missing data on statistical efficiency. Guo et al.[42] introduced soft-

ware to estimate required sample size in parallel groups studies with repeated mea-

sures. The method they present applies to complete cases. They acknowledge that

missing data is a distinct complication in repeated measures studies. Furthermore,

they describe how “validated power and sample size methods exist only for a lim-

ited class of mixed models...are based on approximations, and make simple assump-

tions about the study design”. They advocate computer simulations as a general

method to obtain reliable sample size estimates when formulae are not available.

More generally, Lu et al.[60] introduce a framework for estimating sample sizes in

repeated measures analyses with missing data. They assume “monotone” missing-

ness for simplicity, akin to our method in Figure 4.12c. In contrast, our missingness

method in Figure 4.12b contravenes their assumption that the number of data-points

at any given time never exceeds that at each earlier time. Nevertheless, their method

for estimating the inflation factors required to compensate for missing data is valu-

able for gaining insight into our scenario. Applying their method to the St Louis cor-

relations in Table 4.2 and the expected data presence at each time given 70 patients

and 15% missing data under the method shown in Figure 4.12c, yields inflation fac-

tor estimates of 1.05 when part-year correlations are linearly interpolated, and 1.07

when only year-end data are used. Thus, even though we expect 15% of data-points

to be missing, the sample size need be inflated by less than 15% to compensate and

regain power. This is driven by the high expected correlation values.

We have used mixed models but alternative analysis methodologies exist. If

assessment times were uniform across all patients, analysis by ANOVA would be
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possible. Even though we intend to collect outcome assessments at set times, we

would be foolish to expect that they never differ from schedule. The St Louis dataset

contains some assessments that were not conducted near an anniversary of the first

visit. We prefer a method that allows the time variable to be continuous rather than

categorical. This naturally suggests using ANCOVA. However, ANCOVA does not

allow the specification of random effects and these have demonstrably improved our

modelling of the St Louis outcomes. Furthermore, the multi-level model approach

allows the specification of generalised variance-covariance structures. Although we

have not needed to use those here, they could well become necessary in the proposal

below.

The experimental unit has hitherto been the individual: we have analysed the

mean of left and right eye visual acuities for each individual through time. We also

described an isolated incident where a measurement was only available in one eye

and the care we had to take when imputing the effective “mean” value. An ap-

proach to abrogate this complication, and potentially increase statistical efficiency,

is to analyse the eyes separately. This is possible in our setting because symptoms

affect both eyes. Here, the experimental unit would be eyes rather than individuals,

and we would have approximately double the number of series to analyse. How-

ever, care would have to be taken to handle the association between eyes. Figure

4.3 shows that contemporaneous left- and right-eye measurements are highly cor-

related. For this reason, double the number of experimental units would yield less

than double the effective sample size. Multilevel models are flexible enough to han-

dle this. Firstly, eyes are nested within individuals. For example, each patient may

take their own visual acuity intercept to reflect their general baseline quality of vi-

sion, and also eye-specific intercepts to reflect the chance baseline disparity between

the two eyes. A similar specification will be possible for random gradients. Multi-

level models can specify these types of nested effects: observations are nested within

eye through time, and eyes are nested within individuals, all subject to overarching

population-level effects. Furthermore, they facilitate covariance structures to model

heteroskedasticity and serial correlation in residuals, should they arise.

This potential lift to efficiency and power would be very welcome. It would

provide some insurance against a potential decrease in power that would arise if our

115



Chapter 4. Practice-changing RCT in an ultra-rare condition

repeated measures have a lower serial correlation than those in the St Louis dataset.

Analysing series within eye within patient would actually be expected to slightly

increase serial correlation as a source of variability, eyes within patient, would have

been removed.

A more prosaic option to increase the amount of information is to assess out-

comes every three months, for example, rather than every six months, effectively

increasing the size of tV A from 7 to 13. Primarily, this would help the model more

accurately estimate σ and increase power. However, variability across patients is

also important. In our random gradients model, more accurate estimation of σa and

σb requires more patients, not just more assessments of the patients.

In Section 4.3.2.2 we considered missing data. It is customary under some analy-

sis methods to impute missing values. Imputation unavoidably makes assumptions

about the distribution of unobserved values. Last Observation Carried Forward

(LOCF) is a popular method, where missing values are assumed to take the value

that was last observed for a patient. This would be highly inappropriate in Treat-

Wolfram because symptoms demonstrate a tendency to deteriorate through time, as

demonstrated by Figure 4.2. LOCF is sometimes justified as a conservative assump-

tion. However, assuming no change here assumes the symptom ceases to deteriorate

and this is clearly an optimistic assumption. An analysis using LOCF would show

bias in favour of the trial arm with the most drop-out.

Another method is multiple imputation (MI), where likely values for missing

observations are calculated from observed outcomes and covariates. However, this

requires a model for imputation and if the imputation model is the same as the anal-

ysis model, the inference of the analysis using MI will match the inference from

fitting a mixed effects model to just the observed data [104]. Thus to improve on our

scenario in TreatWolfram, we would need to incorporate auxiliary information like

treatment compliance or alternative outcomes. One of the considerable strengths of

mixed effects models is that they do not mandate imputation; the model is simply

fit to the available data. There is no requirement for us to impute, so we do not.

We cited the impossibility of distinguishing MAR from MNAR. An accepted

pragmatic solution is to use sensitivity analyses to distinguish how the inferences

of an analysis change if the assumption of MAR is violated [105]. We propose to
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do this. Furthermore, we will ask patients why outcomes are not reported. If, for

instance, patients stop attending visual acuity clinics because their vision has deteri-

orated to the extent that they do not feel comfortable travelling, then the assumption

of MAR would clearly be violated. In circumstances like this, we would analyse the

outcomes using a method that incorporates informative dropout like pattern mix-

ture models.

In Appendix B, we describe our search strategy for identifying papers concern-

ing clinical trials that use a visual acuity outcome and describe a method of calcu-

lating sample size. We also compare the methods we used to arrive at a feasible

randomised clinical trial design in this rare disease to the framework on designing

randomised trials in small populations by Parmar et al.[72]. They recommend steps

in three sequential categories: increase what is feasible; explore commonly-considered ap-

proaches to reducing sample size; and explore less common approaches to reducing sample

size. We found high fidelity with the steps we took and the recommendations in their

first two categories.

4.6 Conclusion

We have succeeded in specifying a defensible clinical trial design with conventional

statistical error rates in an ultra-rare disease. Instrumental to this was our ability to

select outcomes amenable to repeated measures analysis. We selected parameters

for hypothesis testing and simulated frequentist operating performance of our de-

sign using the St Louis dataset provided by Prof. Hershey. Using a standard pre-

and post-treatment analysis of two groups would have required a sample size ex-

ceeding the disease population in the UK. Analysing repeated measures solved this

problem. In our ultra-rare disease setting, this boost to efficiency was the critical fac-

tor that made the described trial feasible. Simulation allowed us to make informed

judgements on preferential allocation to the experimental arm that has proved so

important to patients and their carers.
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Chapter 5

A Phase II Stratified Medicine Trial

with Efficacy and Toxicity

Outcomes and Predictive Variables

Background: PePS2 is a phase II trial of the efficacy and safety of pembrolizumab

in performance status 2 non-small-cell lung cancer patients. Previous studies

have shown that the chances of clinical response are correlated with baseline

covariates, particularly the extent to which PD-L1 is expressed by the cells in a

tumour biopsy. There are few clinical trial designs that test co-primary efficacy

and toxicity outcomes in phase II, and fewer still that allow the incorporation of

stratifying baseline variables.

Notable methods in this chapter: The design of Thall, Nguyen and Estey is one

such design but it has been scarcely used in actual trials. Furthermore, their

model incorporates terms to conduct a dose-finding study. This aspect is not

required in PePS2 because an effective and safe dose has already been identi-

fied in a closely-related population. We introduce a novel simplification of their

design suitable for use in phase II that focuses on testing efficacy and toxicity at

a fixed dose whilst adjusting for baseline cohort effects.

The implications on efficiency: The method allows sharing of information

across cohorts. Using a total of 60 patients to test the treatment in six distinct

cohorts, we can expect error rates typical of those used in phase II trials. Our

simulations show it is far more efficient than a method that analyses cohorts

individually.
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5.1 Introduction

There is a relative dearth of phase II clinical trial designs that incorporate predictive

patient covariates to assess efficacy and toxicity. Thall et al.[89] introduced a family

of methods that perform dose-finding trials guided by binary efficacy and toxicity

outcomes whilst accounting for baseline patient covariates. This enables dose rec-

ommendations tailored to individual patients. Our motivation is PePS2, a phase II

trial of pembrolizumab in non-small cell lung cancer patients of performance status

2. PePS2 is not a dose-finding trial. Instead, it seeks to estimate the probabilities of

efficacy and toxicity at a dose of pembrolizumab previously demonstrated to be safe

and effective in performance status 0 and 1 patients. In this chapter we introduce a

novel implementation of a simplified version of Thall et al.’s method. We remove the

dose-finding components but retain aspects to study co-primary efficacy and toxic-

ity outcomes that are associated with baseline covariates. In Section 5.2, we describe

the trial setting and review existing clinical trial designs for analysing both efficacy

and toxicity. In Section 5.3, we present our proposed alteration to Thall et al.’s model.

In Section 5.4, we simulate performance in PePS2 and compare it to that of simple

Bayesian beta-binomial conjugate models. We discuss some limitations of the model

and potential further development in Section 5.5. Finally in Section 5.6 we finish

with some conclusions.

5.2 Background

5.2.1 The PePS2 Trial

PePS2 is a phase II trial of pembrolizumab in non-small cell lung cancer (NSCLC)

patients with Eastern Cooperative Oncology Group (ECOG) performance status 2

(PS2). A patient with PS2 is ambulatory and capable of taking care of themselves

but typically too ill to work. Critically, it is doubtful that a PS2 patient could tolerate

the toxic side effects of chemotherapy.

The joint primary outcomes of the trial are (i) toxicity, defined as the occurrence of
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a treatment-related dose delay or treatment discontinuation due to adverse event re-

lated to pembrolizumab; and (ii) efficacy, defined as the occurrence of a complete re-

sponse (CR), partial response (PR), or stable disease (SD), without prior progressive

disease (PD) as measured by RECIST v1.1[35], at or after the second scheduled CT

scan that is detailed in the protocol to occur at 18 weeks. For instance, if the second

scheduled scan is missed, potentially for reasons of illness, but a subsequent scan

confirms absence of progression with respect to baseline, then this will be treated as

efficacy. The primary objective of the trial is to learn if the treatment is associated

with sufficient efficacy with acceptably low toxicity to approve for further research

in performance status 2 patients.

Pembrolizumab inhibits the programmed cell death 1 (PD-1) receptor via the

programmed death-ligand 1 (PD-L1) protein. In a phase I study with 495 patients,

Garon et al.[37] showed pembrolizumab to be active and tolerable in performance

status 0 & 1 patients. Overall, 19.4% of patients had an objective response (OR),

defined as the occurrence of PR or CR, and 9.5% experienced an adverse event of

grade 3 or higher. The rate of toxicity compares favourably to those typically seen in

advanced NSCLC patients using chemotherapy [10, 79]. With few treatment options

available for PS2 patients, it seemed worthwhile to investigate if similar rates of

efficacy and toxicity could be achieved in a PS2 population and thus we hope to

show that pembrolizumab is a viable treatment in this specific patient population.

TABLE 5.1: Objective response rate (ORR), where OR = CR or PR, in
PD-L1 score cohorts for the 204 patients in the validation sample of

Garon, et al.[37] with evaluable PD-L1 status.

Pretreated PD-L1 Cohort PD-L1 Criteria n ORR%, (95% CI)
Yes Low PD-L1 < 1% 22 9.1 (1.1, 29.2)
Yes Medium 1% ≤ PD-L1 < 50% 77 15.6 (8.3, 25.6)
Yes High PD-L1 score ≥ 50% 57 43.9 (30.7, 57.6)
No Low PD-L1 score < 1% 6 16.7 (0.4, 64.7)
No Medium 1% ≤ PD-L1 score < 50% 26 19.2 (6.6, 39.4)
No High PD-L1 score ≥ 50% 16 50.0 (24.7, 75.3)
All Low PD-L1 score < 1% 28 10.7 (2.3, 28.2)
All Medium 1% ≥ PD-L1 score < 50% 103 16.5 (9.9, 25.1)
All High PD-L1 score ≥ 50% 73 45.2 (33.5, 57.3)

Garon et al. introduce the PD-L1 proportion score biomarker, defined as the per-

centage of neoplastic cells with staining for membranous PD-L1, hitherto referred
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to as PD-L1 score. In the nomenclature of Buyse et al.[20], they demonstrate PD-L1

to be a valid and predictive biomarker of pembrolizumab activity. They use the hold-

out method to identify subgroups based on PD-L1 thresholds, using distinct training

and validation subsets of their overall trial population. Efficacy outcomes for the

204 patients in their validation group are shown in Table 5.1. Objective responses

are observed in all cohorts and the probability of response generally increases with

PD-L1 score.

Based on this information, we expect PD-L1 score to be predictive of response

in our PS2 population. Additionally, we expect a mix of patients that have and

have not previously received treatment for their cancer. In the Garon trial, 24.8% of

treatment-naive (TN) patients achieved a response, whereas only 18.0% did in the

pre-treated (PT) patients. A chi-squared test of association between pretreatedness

and response yielded a p-value of 0.166. A patient with recently diagnosed disease

such that no therapy has yet been given could be quite different to a patient that

has received previous lines and progressed. Pretreatedness represents a potentially

small but important effect that should be considered when testing the treatment.

The PePS2 chief investigator, Gary Middleton (GM), and the lead biostatistician,

Lucinda Billingham (LB), proposed a single arm phase II trial that investigates drug

in the six cohorts formed by jointly stratifying by: the three Garon PD-L1 classifica-

tions; and the PT or TN statuses. Each patient in PePS2 will belong to one of these

six cohorts. The trial aims to recruit over one year.

Being a phase II trial, there is strong motivation to deliver findings quickly to

inform potential phase III research in a timely manner. It is felt that recruitment in

the region of 60 patients within one year would be feasible but that recruitment ma-

terially higher would be prohibitive. Given the relative dearth of treatments for PS2

patients and the prior evidence of activity and tolerability in all NSCLC subgroups,

GM felt it important to offer a trial aimed at all-comers and not limit the target pop-

ulation by our covariates. Pembrolizumab has not been investigated in PS2 patients

so the clinical scenario requires a trial design that tests efficacy and toxicity. Given

the evidence that PD-L1 score and previous treatment status are associated with the

likelihood of response to this drug in NSCLC patients, it is highly desirable to use a

clinical trial design that incorporates these potentially predictive variables to tailor

122



5.2. Background

the treatment approval decision in specific patient subgroups. In the next section,

we describe our search for a clinical trial design that achieves these objectives.

5.2.2 Review of Competing Trial Designs

The trial statistician, Kristian Brock (KB) sought a clinical trial design that admits

explanatory variables to study joint primary outcomes efficacy and toxicity at phase

II. The results of our search are summarised in Table 5.2.

Reference Design Co-primary Covariates Phase II
Braun[12] BCRM Yes No No
Ivanova[46] Yes No No
Zhang et al.[112] TriCRM Yes No No
Wang & Day[99] Yes No No
Thall et al.[27, 92, 93] EffTox Yes No No
Ghebretinsae et al.[40] Yes No Yes
Cook & Farewell [28] Yes No Yes
Brutti et al.[18] Yes No Yes
Bouckaert & Mouchart[11] Yes No Yes
Bryant & Day[19] Yes No Yes
Conaway & Petroni[25, 26] Yes No Yes
Thall, Simon & Estey[87, 90] Yes No Yes
Thall & Sung[91] Yes No Yes
Wathen et al.[103] No Yes Yes
Thall, Nguyen & Estey [89] TNE Yes Yes No

TABLE 5.2: Results of literature review seeking a design for PePS2.
Covariates reflects inclusion of baseline data without further adapta-

tion. Phase II reflects original intent.

Using PubMed, KB searched for publications under the MeSH major topic ‘clin-

ical trials’ that are categorised with the MeSH Terms ‘Drug-Related Side Effects and

Adverse Reactions’ and ‘Models, Statistical’. Efficacy was not made explicit in our

search because establishing efficacy is such a common motivation for trials. We ex-

pected the presence of a toxicity outcome to be a more effective discriminator. On

5-Aug-2015, this query returned 67 documents whose collective focus was primarily

statistical clinical trial methodology in scenarios where toxicity is a key outcome.

Forty-eight of the papers were discarded because they focused on a univariate

outcome: forty-four focused primarily on toxicity alone and a further four focused

on efficacy alone. Four papers were reviews or advisory in nature and did not con-

tain specific model proposals. One paper was discarded because it was in Danish

with no English translation.
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This left fourteen papers for further consideration. Naturally, given the subject

matter, these papers concerned a preponderance of dose-finding and early phase

trials. With cytotoxic treatments, dose-finding has typically sought to find the maxi-

mum tolerable dose under the assumption that efficacy and toxicity increase in lock

step as dose is increased. In so-called cytostatic treatments, disease may be con-

trolled without reducing the overall tumour burden and the probability of efficacy

may not be an increasing function of dose. As such, in cytostatic treatments, effi-

cacy and toxicity can be jointly scrutinised to find the optimal dose rather than just

the maximal dose. The growth of targeted therapies and immunotherapies is asso-

ciated with a growing focus on methods that jointly model efficacy and toxicity for

dose-finding purposes. These have been already reviewed in Chapters 2 and 3.

Eight of the papers in our search describe dose-finding methods for cytostatic

treatments. Although these works detail designs that address a different trial objec-

tive (i.e., finding a dose), they are pertinent to our problem because they potentially

use probability models that could be redeployed for our purposes. We consider

those briefly now.

Braun[12] introduced a bivariate extension of the Continual Reassessment Method

(CRM) to two competing outcomes, toxicity and disease progression, where the two

events are associated. CRM itself was originally published by O’Quigley et al.[69]

with the purpose of conducting dose-finding trials under the cytotoxic assump-

tion. Ivanova[46] presented a rule-based up-and-down design that seeks to max-

imise the number of subjects allocated in the neighbourhood of the optimal dose.

Zhang, Mandrekar and Sargent[63, 112] introduced TriCRM, another extension of

CRM that considers the ordinal trinary outcome: no response and no serious toxic-

ity; efficacy without serious toxicity; and toxicity so serious that it precludes efficacy.

Wang & Day[99] present a method where response and toxicity outcomes occur ac-

cording to bivariate log-normally distributed patient thresholds. They allocate the

next dose to maximise patient-oriented expected utility. Finally, Thall et al.[27, 92,

93] present EffTox, the Bayesian adaptive dose-finding design that is the focus of

Chapter 2. Generally in dose-finding models, as with EffTox, dose (or transformed

dose) is used as the sole explanatory variable that determines outcome probabilities.

This provides opportunities to use other explanatory variables in a non-dose-finding
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setting.

Five papers present models for efficacy and toxicity in a non-dose-finding set-

ting. Ghebretinsae et al.[40] present a method for modelling non-gaussian contin-

uous outcomes from assay data. This is not applicable to our scenario because our

outcomes are not continuous. In the single arm setting, Cook & Farewell [28] present

a sequential design to analyse correlated bivariate efficacy and toxicity events, ac-

counting for multiple analyses over time. Jin[50] presents a two-stage method ac-

counting for the trade-off between efficacy and toxicity. Brutti et al.[18] present a

two-stage Bayesian method to compare the overall toxicity rate and the true efficacy-

and-safety rate to pre-specified target thresholds. None of these methods explicitly

include predictive variables, although that is not to say they could not be adapted to

use them.

In the two-arm setting, Bouckaert & Mouchart[11] present a model to analyse a

two arm randomised controlled trial from the view that trial outcomes can be at-

tributed to therapeutic effects and toxic effects. They also do not explicitly consider

predictive variables but their model uses binary variables to denote arm member-

ship so it is sensible to conclude that this specification could be generalised to in-

clude arbitrary explanatory variables.

Finally, our PubMed search returned Bryant & Day[19]. This is perhaps the

best known and widely used phase II trial design for studying efficacy and toxic-

ity. Theirs is a two-stage method that offers a chance to reject a treatment for being

inactive or excessively toxic at an interim stage. The design takes threshold values

for the probabilities of efficacy and toxicity that are acceptable and unacceptable and

returns the minimum number of efficacy events and maximum number of toxicity

events that should be observed to approve the treatment for further study. For given

levels of statistical significance and power, the threshold event counts define the op-

timal trial of the competing outcomes of efficacy and toxicity. Their method consid-

ers different levels of association between efficacy and toxicity events and chooses

an optimal design. The design implicitly assumes that the patient population is ho-

mogeneous thus it does not use predictive variables.

Using a Bryant & Day optimal design to contrast efficacy rates of 10% and 30%

and toxicity rates of 10% and 30%, with efficacy and toxicity significance of 10%
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and overall power of 80%, requires the final analysis to use 27 patients. If we were

to use this design in each PePS2 cohort, we would require 6 × 27 = 162 patients,

an infeasibly high number. Even if we were to ignore the potentially important

information in the pretreatment variable and analyse three PD-L1 cohorts, we would

still require 81 patients using parallel Bryant & Day designs. Analysing the cohorts

separately in this way is inefficient. At this juncture, our preference was for a model-

based design that could increase power by incorporating predictive information.

Not included in our PubMed search but frequently cited in similar work is Conaway

& Petroni[25, 26]. They present sequential designs for phase II trials with bivariate,

associated activity and toxicity outcomes. In each case, their emphasis is on the de-

velopment of stopping rules rather than the incorporation of predictive information.

To further supplement our search, we studied review articles of biomarker-guided

clinical trial designs. Table 2 in Buyse et al.[20] lists the targeted (or selection) design

(as used in the ToGA trial[6]) and Bayesian adaptive design (as used in the BATTLE

trial[51], amongst others) as potential designs for validated, predictive biomarkers

of an experimental treatment. These are multi-arm designs, randomly allocating

patients to treatments, conditional on biomarker status. Neither of these designs

analyse toxicity as a co-primary outcome, although naturally safety would be an

important secondary outcome in trials that use either. Freidlin & Korn[36] review

randomised designs that can be used to develop or validate biomarkers. Our set-

ting is non-randomised and concerns studying the treatment modification effect of

a biomarker that has already been validated in a closely related patient population.

More recently, Antoniou et al.[5] described in detail the adaptive biomarker-guided

clinical trial designs they encountered in a review that covered 171 papers and 14,436

candidate abstracts. None of the eight designs they describe explicitly incorporates

a co-primary outcome.

We were also aware of other pertinent publications through knowledge of the

field. Thall, Simon & Estey[87, 90] and Thall & Sung’s[91] work on monitoring mul-

tiple outcomes (commonly, efficacy and toxicity) using Dirichlet-multinomial mod-

els and stopping boundaries in single arm phase II trials. These methods do not use

predictive information. Wathen et al.[103] published a method that uses predictive

patient data to study efficacy in patient subgroups, but their method does not study

126



5.2. Background

toxicity.

Finally, Thall, Nguyen & Estey (TNE)[89] introduce an extension of EffTox[92]

that adds baseline patient covariates to the analysis of co-primary efficacy and toxic-

ity outcomes at different doses. Theirs is a Bayesian design that uses uninformative

priors on dose-effects and informative priors justified by historic data on the co-

variate effects. The objective achieved by their design is to recommend a personal

dose of an experimental agent that is estimated to offer sufficient probability of effi-

cacy and acceptable probability of toxicity, after taking into consideration predictive

baseline covariates.

In an example demonstrating their design in AML, TNE use age as a continuous

covariate, and a three-level ordinal variable reflecting prognosis with respect to cy-

togenetic subtype. They conducted a search of previously untreated AML patients

aged less than 60 that were then treated with chemotherapy at MD Anderson Cancer

Center between January 2000 and December 2004. They found 693 patients treated

with three general classes of chemotherapy and tabulated the frequencies of efficacy

and toxicity using their covariates, age and cytogenetics. They demonstrated that

efficacy decreases and toxicity increases with age. Similarly, they demonstrated that

efficacy decreases and toxicity increases as cytogenetic category worsens from good,

to intermediate and ultimately poor. In the marginal efficacy and toxicity models they

used quadratic terms with respect to dose-level to handle non-linearity, and associ-

ated these using a Gaussian copula with probit link.

On 05-Dec-2017, we identified 16 manuscripts listed on PubMed that cite TNE[89].

Of these, 10 were further methodology papers, each concerned with dose-finding.

None of these works sought to adapt the design for use in the typical phase II

scenario of investigating efficacy and toxicity at a single dose. Three papers were

methodological reviews, citing TNE as a potential method. Another was a sys-

tematic review of thrombolysis for acute ischaemic stroke that cited TNE but made

no explicit reference to it in the main body. A manuscript by Konopleva et al.[54]

uses TNE in a dose-finding study of PR104 in relapsed or refractory AML and acute

lymphoblastic leukaemia (ALL). The final paper was an expert panel recommenda-

tion [32] on the diagnosis and management of AML. It referred to TNE simply as a
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method that incorporated covariates when dose-finding in contrast to standard de-

signs like 3+3. This literature search suggests that TNE’s method has only been used

in blood cancer and only for the purposes of dose-finding. We found no suggestion

that the method had been adapted for the non-dose-finding context.

The Konopleva study[54] identified above used TNE in a dose-finding study of

17 AML and ALL patients. This study investigated doses of the hypoxia-activated

prodrug PR104, ranging from 1.1 to 4 g/m2. A further 8 patients were then treated at

selected doses (i.e. not guided by the design), and a further 25 patients were used in

an expansion phase. The manuscript mentions that “3 prognostic covariates” were

used in the dose-finding study but does not explicitly define them. We sought to

identify the covariates. An online supplement is referred to in the manuscript but

was not available at the Haematologica website on 3-Apr-2018. We contacted the lead

author by email but received no response.

PePS2 is not a dose-finding trial. Previous studies of pembrolizumab using col-

lectively over 1,000 PS0/1 NSCLC patients[37, 44] showed that response and adverse

event outcomes are not materially affected by dose changes in the range 2 mg/kg to

10 mg/kg. For this reason, subsequent trials of pembrolizumab, including PePS2,

used a flat dose of 200mg not adjusted for weight.

We sought a design that: i) studied associated co-primary binary outcomes; ii)

and admitted explanatory covariates; iii) at a single common dose. We resolved to

remove the dose-finding elements of TNE and retain the model that uses covari-

ates to study correlated co-primary outcomes and tailor the trial decision to each

covariate-determined cohort. Of all the candidate designs that could be adapted to

achieve these ends, we selected TNE for two reasons. The first was our familiarity

with the underlying probability model having used EffTox in the Matchpoint trial,

as described in Chapter 2. The second motivation was that TNE offers more than

we require, and it is generally easier to simplify something by taking unnecessary

elements away than it is to extend something by adding extra complexity. This is the

focus of the next section.
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5.3 A Design for Co-Primary Efficacy and Toxicity Outcomes

and Covariates

In this section, we describe novel adaptations to the TNE design to arrive at a model

that studies associated, co-primary probabilities of efficacy and toxicity of an exper-

imental agent, adjusted for baseline predictive covariates. We refer to our phase

II version of the TNE design as P2TNE. In the following section, we describe the

probability model, retaining the elements to incorporate covariates but removing

the elements that perform dose-finding tasks.

5.3.1 Probability Model in P2TNE

TNE present the marginal probability models of an experimental treatment

logitπk(τ, x,θ) = fk(τ,αk) + βkx+ τγkx (5.1)

for k = E, T denoting efficacy and toxicity, respectively. Here, τ is the given

dose; x is a vector of covariates; θ is the vector of model parameters to be estimated;

the fk(τ,αk) characterise the dose effects; βk is the vector of covariate effects; and

γk is a vector of dose-covariate interactions. They also introduce analogous models

for the events under historical treatments where covariate effects are present.

As with EffTox[92], let Y = (YE , YT ) be indicators of binary efficacy and toxicity

events. Let πa,b(τ, x, θ) = Pr(YE = a, YT = b|τ, x, θ) for a, b ∈ {0, 1}. The authors

associate the marginal probabilities of efficacy and toxicity in a joint model with

association parameter ψ:

πa,b = πa,b(πE , πT , ψ) (5.2)

One possibility for this joint model is that used in EffTox (2.4), sometimes referred to

as the Gumbel model.

In P2TNE, we can simplify this if we have no motivation to investigate different

doses by removing the terms that pertain to dose-effects.

In our model description for P2TNE, let x denote the baseline covariate infor-

mation for a given patient. The marginal probabilities of efficacy and toxicity are
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estimated using the logit models:

logitπE(x,θ) = g(x,θ) (5.3)

and

logitπT (x,θ) = h(x,θ) (5.4)

where θ is the vector of all parameters in the model. The exact specifications of g and

h are left for the trialists to specify to reflect the perceived relationships of x with the

probabilities of efficacy and toxicity. Generally, as with all statistical models, g and

h should be both plausible and parsimonious. We present our choices for the PePS2

trial in the next section.

Let patient i have covariate vector xi, and let ai = 1 if they experience efficacy,

else 0; and bi = 1 if they experience toxicity, else 0. For trial data

X = {(x1, a1, b1), ..., (xn, an, bn)} (5.5)

the aggregate likelihood function is

L(θ|X) =
n∏
i=1

πai,bi(πE(xi,θ), πT (xi,θ), ψ) (5.6)

where ψ is a member of θ. Let θ have prior distribution function f(θ). For patients

with predictive variable vector x, the posterior expectation of the probability of effi-

cacy under the treatment is

E(πE(x,θ)|X) =

∫
πE(x,θ)f(θ)L(θ|X)dθ∫

f(θ)L(θ|X)dθ
(5.7)

and the posterior probability that the probability of efficacy exceeds π∗E is

Pr(πE(x,θ) > π∗E |X) =

∫
I(πE(x,θ) > π∗E)f(θ)L(θ|X)dθ∫

f(θ)L(θ|X)dθ
(5.8)

where I(A) is again the indicator function.
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Similarly, the posterior probability of toxicity is

E(πT (x,θ)|X) =

∫
πT (x,θ)f(θ)L(θ|X)dθ∫

f(θ)L(θ|X)dθ
(5.9)

and the posterior probability that the probability of toxicity is less than π∗T is

Pr(πT (x,θ) < π∗T |X) =

∫
I(πT (x,θ) < π∗T )f(θ)L(θ|X)dθ∫

f(θ)L(θ|X)dθ
(5.10)

The posterior expectation of the parameter vector is

θ̂ = E(θ|X) =

∫
θf(θ)L(θ|X)dθ∫
f(θ)L(θ|X)dθ

(5.11)

The number of dimensions in the integrals (5.7) to (5.11) is equal to the number

of elements in θ. The difficulty in solving such integrals increases with dimension,

although modern Markov chain Monte Carlo (MCMC) methods like Stan[22] make

it relatively simple to sample from the posterior distribution.

Further taking the lead from TNE[89] and Thall & Cook[92], we propose the

treatment be approved in patients with predictive variable vector xi when it is suffi-

ciently likely that the associated efficacy probability exceeds some minimum thresh-

old, π∗E , and toxicity probability is less than some maximum threshold, π∗T . The

acceptance criteria are:

Pr(πE(xi, θ) > π∗E |X) > pE

Pr(πT (xi, θ) < π∗T |X) > pT

(5.12)

where pE and pT are determined using clinician input and simulation. Naturally,

π∗E , π∗T , pE and pT can vary by patient cohort. We could, for example, set the efficacy

hurdle lower in PT patients if a dearth of feasible alternatives dictates that a lower

efficacy hurdle is nevertheless clinically relevant.

The tests in (5.12) can be invoked at any time during the trial with different values

for π∗E , π
∗
T , pE and pT , making it simple to incorporate interim analyses in a clinical

trial, exploiting the flexibility offered by Bayesian cumulative learning. We revisit

this in the Discussion.

131



Chapter 5. Phase II Efficacy &Toxicity with Predictive Variables in PePS2

5.3.1.1 Practical Steps for Implementation

Trialists should assess the operating performance of a design like P2TNE in the-

oretical scenarios using computer simulation. At the very least, we conduct sim-

ulations to estimate the probability that a design will incorrectly approve a poor

treatment (similar to the notion of significance in frequentist trial designs) and cor-

rectly approve a good treatment (essentially, statistical power). Simulated trials are

conducted by randomly sampling outcomes for notional patients and invoking the

acceptance decision determined by (5.12) at the final (and potentially also interim)

stages. In general, prior to simulating performance, we:

1. Specify forms for the marginal efficacy and toxicity models (5.3) and (5.4).

2. Specify a form for the joint model.

3. Specify f(θ), the prior distribution for θ.

4. Specify efficacy and toxicity thresholds, π∗E , π∗T based on clinical rationale.

These may vary by cohort or they may be common, as the clinical scenario

dictates.

With this information, we simulate trial data sets, Xj for j = 1, ..., J and infer the

decision of the design on each. Values for pE and pT need not be specified before

simulations are run. Instead, it is more flexible to record the value of (5.8) and (5.10)

in simulated iterations for each distinct value of xi. Then, we adjust the performance

of the design by considering different values for pE and pT , inferring the operating

characteristics of the pair by invoking (5.12) on the simulated output.

In summary, the values for π∗E , π∗T are based on clinical rationale and set at run-

time. In contrast, the values of pE and pT need not be, so it is easier to tweak model

operating characteristics by varying pE and pT . We invoke this algorithm below.

5.3.2 P2TNE in PePS2

GM selected π∗E = 0.1 and π∗T = 0.3 for all cohorts because these represent the

thresholds beyond which the treatment would be considered not sufficiently active

or too toxic.
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We define the predictive variables used in PePS2. Let patient i have x1i = 1 if

they have been pretreated, else x1i = 0. For the primary analysis, we will allocate

patients to exactly one of the three PD-L1 groups presented in Table 5.1. Let patient

i have x2i = 1 and x3i = 0 if they belong to the Low PD-L1 cohort; x2i = 0 and

x3i = 1 if they belong to the Medium PD-L1 cohort; and x2i = 0 and x3i = 0 if they

belong to the High PD-L1 cohort. Thus, x2i and x3i are dummy variables that wholly

determine membership to the three groups Low, Medium and High PD-L1 1. The

cohorts and values for xi = (x1i, x2i, x3i) are shown in Table 5.3.

Cohort Treatment status PD-L1 category xi
1 Treatment naive Low (0,1,0)
2 Treatment naive Medium (0,0,1)
3 Treatment naive High (0,0,0)
4 Pretreated Low (1,1,0)
5 Pretreated Medium (1,0,1)
6 Pretreated High (1,0,0)

TABLE 5.3: Cohorts used in the PePS2 trial. xi shows the covariate
vector for each patient in that cohort.

Using these variables, we propose that the marginal probabilities of efficacy and

toxicity be described by logit-models so that, for a patient with predictive data xi:

logitπE(xi,θ) = α+ βx1i + γx2i + ζx3i

logitπT (xi,θ) = λ

(5.13)

and associate πE and πT using the Gumbel model (2.4 ). In the PePS2 protocol, the

toxicity outcome includes occurrence of adverse events that lead to treatment cessa-

tion. If patients discontinue treatment, it naturally hinders their ability to gain ther-

apeutic benefit from the treatment and makes response less likely. In contrast, those

patients that stay on treatment give themselves the best opportunity for response if

the treatment does have a therapeutic effect. As such, it is sensible to facilitate that

efficacy and toxicity would be associated. Including ψ to model the association, our

parameter vector θ = (α, β, γ, ζ, λ, ψ) has six elements.

Under (5.13), the expected probability of efficacy is different for each distinct ar-

rangement of xi. Furthermore, the log-odds of efficacy for TN patients in the three

PD-L1 categories are assumed to be a common linear shift of those for PT patients
1Using three dummy variables and an intercept would yield a singular design matrix
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in the same PD-L1 cohorts, determined by β. Figure 5.1 shows the log-odds of ob-

jective response with uncertainty bars by cohort for the validation subgroup of the

Garon study. The model we propose effectively assumes that the equivalent lines in

our study using our definition of efficacy will be piecewise parallel. We see that this

assumption is broadly supported by the small amount of data reported by Garon.

The assumption is perhaps modestly violated in the Low cohort, but the estimates

are fairly uncertain, particularly in the low PD-L1 groups. A more complicated al-

ternative specification could remove the parallelism assumption by incorporating

interaction terms for PD-L1 cohort and pretreatment status. This alternative model

would require two extra parameters to handle interactions between x1i and x2i, and

x1i and x3i, respectively, a topic we develop in the next chapter.

FIGURE 5.1: Log-odds of objective response and 95% uncertainty in-
terval, by cohort of the validation sample (n = 204) of the Garon et al.

study.

Figure 5.1 suggests that parallel lines is not an implausible working model. With

accrual anticipated to reach 60 patients, the prospect of using six parameters instead

of eight is attractive, so we proceed with the six-parameter model. Nevertheless,

with only three data-points per line, we remain mindful to not reach conclusions

unmerited by the limited data. In Section 5.4 we simulate performance in a scenario

where there is a modest interaction between PD-L1 and pretreatment status, similar

to that depicted in Figure 5.1.

In contrast, the probability of toxicity is assumed constant across all cohorts.
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Garon, et al.[37] do not report in the main paper or supplementary appendix any

difference in toxicity in the different PD-L1 or pretreatment groups. Furthermore,

no heterogeneity with respect to adverse events is reported by Herbst et al[44] in the

phase III study of pembrolizumab in NSCLC. However, another topic of the next

chapter is an embellishment of our P2TNE model that allows toxicity to vary by

PD-L1 and pre-treatedness.

5.3.3 Priors in PePS2

We specify normal priors for the elements of θ. In their AML example, TNE use

informative priors on parameters that represent covariate effects on outcomes, re-

flecting historic published data. In contrast, they use uninformative priors on the

dose-effects. Their objective is to identify the optimal dose of an experimental agent

whilst controlling for baseline heterogeneity. They have deployed uninformative

priors on the parameters that are the primary subject of investigation, and informa-

tive priors on those that they concede to be “nuisance parameters...for the purposes

of dose-finding”[89]. They describe an algorithm for establishing hyperparameters

of normal priors. To establish prior means, they elicit expected event rates for at least

two dose-levels and solve for the expected values of the dose coefficients α in (5.1)

after assuming that dose-covariate parameters γ have expected value zero. They

also describe a potential algorithm for establishing prior variances. This method

controls the effective sample size (ESS) by equating the first two moments of the

πk(τ,Z,θ) to beta distributions and exploiting the fact that the ESS of a beta(a, b)

distribution is a + b. They advocate that each of the a + b should be small to reflect

the limited prior knowledge about dose-effects.

Our primary objective is to estimate the efficacy and toxicity of a treatment in

each distinct cohort of patients. Thus, the covariates in our setting are rather more

than nuisances because they determine these groups. Having observed data in the

Garon[37] and Herbst[44] trials, we naturally anticipate that those with higher PD-

L1 scores will more likely achieve our efficacy outcome. Likewise, we anticipate that

PT patients will be modestly less likely to have the efficacy event.
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5.3.3.1 Informative priors

We could develop an analogue of TNE’s method described above to establish priors

in our setting. Instead, however, we consider different priors based on the event

rates they generate. Gelman et al.[39] encourage us to think “generatively” in our se-

lection of priors, explaining that “a prior is generative if the prior predictive distribu-

tion generates only data deemed consistent with our understanding of the problem.”

In this spirit, we are motivated to select informative priors on model parameters so

that the expected efficacy rate in high PD-L1 patients exceeds that of medium pa-

tients, which in-turn exceeds that of low patients; and that TN patients are slightly

more likely to experience efficacy than PT patients. Furthermore, we may reflect in

our priors, information not reported in the Garon and Herbst studies, like the log-

ical expectation that previously treated patients who are further down the disease

pathway, may be more likely to experience toxicity because they are more vulnera-

ble than TN patients. We discriminate the priors not by their notional ESS but by the

event rates they generate and the associated uncertainty intervals they provide.

Our efficacy outcome in PePS2, repeated here for convenience, is the occurrence of

CR, PR or SD, without prior PD, assessed by RECIST v1.1[35], at or after the second sched-

uled CT scan expected to occur at 18 weeks. This outcome is essentially a dichotomisa-

tion of progression-free survival (PFS), an outcome used in many cancer trials. We

can inform our expectations of our efficacy outcome by analysing PFS reported by

PD-L1 and pretreatment status by Garon et al.[37]. They do not explicitly report PFS

rates at 18 weeks, but in their Figure 3, they show Kaplan-Meier curves that allow

us to interpolate values. Their plot of PFS in PT patients includes approximately 300

patients at risk at time = 0, so we expect that the estimates will be relatively pre-

cise. In the PT subset, PFS at 18 weeks is approximately 36% in low, 37% in medium

and 55% in high PD-L1 patients, as shown in Table 5.4. We expect outcomes in the

PS2 population to be similar to PS0/1 but the lower overall level of health suggests

considering a modest penalty. To identify prior mean efficacy probabilities in PT pa-

tients that reflect a modest penalty, we subtract 15% from the PD-L1-matched PS0/1

groups, as demonstrated in column B of Table 5.4.
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Column A B C D E
Derivation Garon et al.[37] A - 15 B + 5 B ±2 C ±2
Interpretation PT (PS 0/1) PT (PS2) TN (PS2) PT target TN target
Low PD-L1 36 21 26 19-23 24-28
Medium PD-L1 37 22 27 20-24 25-29
High PD-L1 55 40 45 38-42 43-47

TABLE 5.4: Derivation of prior mean efficacy rates to motivate in-
formative parameter priors. We start in column A with the PS0/1
efficacy rate observed by Garon et al. in PT patients. We subtract 15%
from this in column B to reflect that we expect PS2 PT patients to be
weaker and have worse chances of efficacy than PS0/1 PT patients. In
column C we add 5% to B to reflect that we expect PS2 TN patients to
do slightly better than PS2 PT patients. In columns D and E, we create
target ranges for the expected efficacy rates by adding and subtract-
ing 2% to B and C, knowing that we will not obtain parameter priors
that yield efficacy means that exactly match B and C. Parameters in
Table 5.5 were chosen so that the expected efficacy rates fell in the

ranges in D and E. Numbers are %.

Garon et al.’s subset of TN patients is much smaller, however, with only 62 sub-

jects at time = 0 split between the three subgroups. The Kaplan-Meier plot for TN

patients shows large decreases in PFS for each single event, with large changes in

the survival curve being associated with small changes in time. This prohibits read-

ing off accurate values. We can see from the summary statistics they report that TN

patients generally do slightly better than PD-L1-matched PT patients. To identify

suitable prior efficacy estimates, we instead estimate the TN efficacies to be a mod-

est improvement on the PT efficacies. We increase the PD-L1-matched PT estimates

by 5%, as shown in column C. These coarse adjustments are intended only to iden-

tify plausible expected values. Neighbouring efficacy rates will be facilitated by the

uncertainty parameters in our normal parameter priors.

TABLE 5.5: Informative normal prior distributions on θ.

µ σ2

α -0.3 4
β -0.7 4
γ -2.0 4
ζ -2.0 4
λ -2.2 2.9
ψ 0 1

Having identified candidate prior mean efficacy rates in each cohort, we add

and subtract 2% from each to generate a target range, as shown in columns D and E.

We then select by trial-and-error hyperparameters that achieve means in the target
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FIGURE 5.2: Informative prior distributions on the parameters.

range. We have described this logic to give transparent justification to the prior mean

efficacy probabilities generated by our informative priors. We feel transparency is

important here given how contentious informative priors are.

Our chosen hyperparameters for our informative priors are shown in Table 5.5

and the prior parameter densities are shown in Figure 5.2. The event rates they

generate with credible intervals (CI) are shown in Table 5.6. The upper case L and U

adorn the 90% CI and lower case letters adorn the 50% CI. The variability parameters

were selected to yield 50% and 90% prior predictive CIs that felt appropriate. For

instance, efficacy probabilities over 40% are possible in TN low and medium PD-L1

patients, but not particularly likely. Likewise, we would not want to rule out an

efficacy probability in high PD-L1 patients that exceeds 70%, but it is much more
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likely to be lower.

Treatment status PD-L1 EffL Effl Eff Effu EffU
TN Low 0.00 0.01 0.24 0.40 0.91
TN Med 0.00 0.01 0.25 0.40 0.91
TN High 0.03 0.16 0.46 0.74 0.95
PT Low 0.00 0.00 0.22 0.34 0.94
PT Med 0.00 0.00 0.22 0.34 0.94
PT High 0.00 0.05 0.38 0.72 0.97
Treatment status PD-L1 ToxL Toxl Tox Toxu ToxU
TN/PT Low-High 0.01 0.03 0.18 0.26 0.64

TABLE 5.6: Credible intervals for events rates drawn from the prior
predictive distribution of the informative priors in Table 5.5. Eff and
Tox show the probability of efficacy and toxicity, respectively. Lower-
case l and u show the central 50% credible interval and upper-case L

and U show the central 90% credible interval.

We now consider priors on our toxicity outcome, again repeated for convenience:

treatment delay or discontinuation caused by an adverse event related to pembrolizumab.

Garon et al.[37] refer to only a solitary incident of treatment discontinuation after

an infusion reaction. Although they do not report treatment delays arising from

pembrolizumab-emergent adverse events, it is likely that they occurred. In stark

contrast, Herbst et al[44] report that 34 / 345 (9.9%) of patients allocated to pem-

brolizumab 2 mg/kg and 32 / 346 (9.2%) of patients allocated to pembrolizumab

10 mg/kg discontinued due to an adverse event. These events may have mani-

fested primarily because of treatment or disease. We are not told which but, for the

purposes of forming prior beliefs on our toxicity outcome, it is sensible to assume

that some are down to disease and some down to treatment. Once again, treatment

delays are not explicitly described or quantified but will almost certainly have oc-

curred. With three-weekly administrations in sick patients, treatment-related delays

could be very common. For example, it is highly likely that treatment delays will oc-

cur in patients that do not eventually discontinue. Our priors should reflect this level

of ignorance. We expect a toxicity rate approximately twice that reported by Herbst

but admit that the rate could plausibly be higher. Our hyperparameter choices for

the sole parameter in our toxicity model are shown in Table 5.5 and the generated

toxicity rates and CIs, assumed the same in each cohort, are shown in Table 5.6.

For illustration, the predictive event densities under our informative priors are
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FIGURE 5.3: Prior predictive distributions of the probabilities of effi-
cacy and toxicity in all cohorts under our informative priors.

shown in Figure 5.3. Contrast the high PD-L1 cohorts to the others. The efficacy dis-

tribution for the TN, high PD-L1 cohort, for instance, relocates a lot of the probabil-

ity mass along the entire range of estimates, producing a quasi-uniform distribution

that admits the potential for very high efficacy rates. There is much more probabil-

ity mass in the left-hand tail at the lower efficacy rates in the other cohorts, leading

to lower estimated means. We describe two further sets of priors in the following

sections.
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5.3.3.2 Regularising priors

Informative priors have the benefit of encapsulating beliefs based on some body of

knowledge. However, they can be contentious in clinical trial settings, and else-

where, because of their ability to influence posterior beliefs in ways not reflected in

the data. The PePS2 results will ultimately be published in a journal for the benefit

of the medical community. Reviewers will have to be satisfied that the data have

been analysed and reported in a fair way and in this regard, informative priors may

hinder publication. We anticipate resistance and provide alternative analyses under

different prior schemes.

TABLE 5.7: Regularising normal prior distributions for the elements
of θ.

µ σ2

α -2.2 4
β -0.5 4
γ -0.5 4
ζ -0.5 4
λ -2.2 4
ψ 0 1

As a measure against the charge of providing a favourable analysis, we consider

in this section regularising priors, chosen to prevent over-fitting. Listed in Table 5.7

and shown in Figure 5.4, these priors anticipate the same efficacy and toxicity event

rates of approximately 20% in each cohort. This efficacy rate is close to that seen in

the overall population in Garon et al and the toxicity rate is slightly higher. These

priors could be interpreted as being sceptical with respect to the effect of our co-

variates, anticipating no benefit to having a higher PD-L1 score or being TN. These

priors generate fairly wide credible intervals, as shown in Table 5.8.

These priors generate the types of outcomes we expect when all patients are anal-

ysed together without adjustment for covariates, so can only be considered generative

under certain circumstances. However, they do not bias the analysis towards accept-

ing the treatment in high PD-L1 cohorts, for instance, by assuming a high efficacy

rate.

Figure 5.5 shows that the priors support a wide range of outcomes, evocative
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FIGURE 5.4: Regularising prior distributions on the parameters.

of so-called spike-and-slab and horseshoe priors. There is a large probability mass al-

located to low event rates, reflecting the sceptical belief that most treatments are

ineffective. However, the relatively flat, wide right tail of the prior facilitates the pos-

sibility of high event rates if the data are strong enough to overcome the prior scep-

ticism. Regularising priors dissuade the model from over-fitting to small, chance

events, but do not categorically rule out large effects. In our situation, we expect

the priors to allow baseline effects like association of high efficacy with high PD-L1

scores to manifest through the data via the likelihood.
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Treatment status PD-L1 EffL Effl Eff Effu EffU
TN Low 0.00 0.01 0.21 0.31 0.87
TN Med 0.00 0.01 0.21 0.31 0.87
TN High 0.00 0.03 0.20 0.30 0.75
PT Low 0.00 0.00 0.21 0.30 0.92
PT Med 0.00 0.00 0.21 0.30 0.92
PT High 0.00 0.01 0.21 0.32 0.87
Treatment status PD-L1 ToxL Toxl Tox Toxu ToxU
TN/PT Low-High 0.00 0.03 0.20 0.30 0.75

TABLE 5.8: Credible intervals for events rates drawn from the prior
predictive distribution of the regularising priors in Table 5.7. Eff and
Tox show the probability of efficacy and toxicity, respectively. Lower-
case l and u show the central 50% credible interval and upper-case L

and U show the central 90% credible interval.

5.3.3.3 Diffuse priors

Despite the encouragement for researchers to use priors that truly reflect their be-

liefs, it is still fairly common for diffuse priors to be used. This could be motivated

by the desire that the data should speak for themselves. To convey the performance of

our P2TNE model with very diffuse prior information, we also consider the prior

parameters listed in Table 5.9 and shown in Figure 5.6.

TABLE 5.9: Diffuse normal prior distributions on θ.

µ σ2

α 0 100
β 0 100
γ 0 100
ζ 0 100
λ 0 100
ψ 0 100

The notable flaw with such diffuse priors is that they rarely reflect the researchers’

beliefs. The statement X ∼ N(0, σ2) generates the inference that Prob(|X| > σ
2 ) >

Prob(|X| < σ
2 ). In the context of the priors in Table 5.9, this implies that the absolute

value of each parameter is more likely to exceed 5 than to reside in the interval (-5,

5). The phenomenon is exacerbated with larger values of σ.

This folly is illustrated by the generated CIs in Table 5.10 and the prior predic-

tive densities shown in Figure 5.7. The prior predictive distributions are horseshoe-

shaped. The interaction of the normal prior with very wide tails, and the logit like-

lihood, which maps continuous real numbers to (0, 1), puts an inordinate amount of
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FIGURE 5.5: Prior predictive distributions of the probabilities of effi-
cacy and toxicity in all cohorts under our regularising priors.

prior mass at the extremes. For each event rate in each cohort, 40% of the probability

mass resides in the extremely narrow intervals very close to 0 and 1. Ultra-diffuse

priors may sometimes be described as uninformative, but this example shows that the

name is a misnomer when a sigmoidal link function is used. These priors absolutely

do not reflect our genuine prior expectations.

In the next section, we detail how we came to choose pE and pT using the method

described in 5.3.1.1.
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FIGURE 5.6: Diffuse prior distributions on the parameters.

5.4 Simulation Study

We conduct simulation studies to assess the operating characteristics of P2TNE im-

plementations. The parameters chosen will affect performance so they should be

driven by the clinical scenario, wherever possible. Sample size will naturally play

a large part in determining performance. Increasing the number of patients is the

typical method for providing more information to a clinical trial design with which

to appraise treatments. In PePS2, the sample size is fixed at 60 patients because

that is felt to be the most we could feasibly recruit in one year, so we demonstrate

simulations at that level of accrual. However, we demonstrate further model embel-

lishments and higher sample sizes in the following chapter.

At the very minimum in a simulation study, we are interested in estimating the
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Treatment status PD-L1 EffL Effl Eff Effu EffU
TN Low 0.000 0.000 0.499 1.000 1.000
TN Med 0.000 0.000 0.500 1.000 1.000
TN High 0.000 0.001 0.500 0.999 1.000
PT Low 0.000 0.000 0.501 1.000 1.000
PT Med 0.000 0.000 0.502 1.000 1.000
PT High 0.000 0.000 0.501 1.000 1.000
Treatment status PD-L1 ToxL Toxl Tox Toxu ToxU
TN/PT Low-High 0.000 0.001 0.498 0.999 1.000

TABLE 5.10: Credible intervals for events rates drawn from the prior
predictive distribution of the diffuse priors in Table 5.9. Eff and Tox
show the probability of efficacy and toxicity, respectively. Lower-case
l and u show the central 50% credible interval and upper-case L and

U show the central 90% credible interval.

probability that a design will correctly approve a treatment in a favourable scenario

(analogous to power in a frequentist analysis) and incorrectly approve a treatment

in an adverse scenario (analogous to statistical significance). Building on this mini-

mum, we will be interested to estimate the performance of a design over a range of

scenarios appropriate for the clinical setting.

5.4.1 Simulating cohort membership and outcomes

In the PePS2 trial, patients will belong to one of the six cohorts enumerated 1,..,6 in

Table 5.3. For brevity and clarity, when discussing the parameterisation of cohorts,

we present parameters that have different values for each cohort in that order. For

example, a true efficacy vector (0.1, 0.2, 0.3, 0.4, 0.5, 0.6) represents an efficacy rate of

0.2 in cohort 2, the cohort of patients that have not previously received treatment

and have a medium PD-L1 score.

In our simulations, we will randomly sample cohort membership and this re-

quires estimates of the cohort prevalences. In Table S9 of the supplementary in-

formation to Garon et al.[37], 39% of the 824 patients screened with evaluable tu-

mour sample had low PD-L1 expression, 38% medium and 23% high. Amongst TN

patients, these percentages were 31%, 44% and 25%. Amongst PT patients, they

were 41%, 36% and 23%. Testing for association between the two categories by chi-

squared test yields p = 0.049, so there is reasonable evidence to suspect that PD-L1

expression level is not identically distributed for TN and PT patients. Low PD-L1

scores appear to be less prevalent amongst TN patients.
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FIGURE 5.7: Prior predictive distributions of the probabilities of effi-
cacy and toxicity in all cohorts under our diffuse priors.

The chief investigator of PePS2 expects approximately 50% of patients to have

been previously treated, based on their experience with the patient population. Scal-

ing the PD-L1 prevalences observed by Garon et al. in the TN and PT groups, we

expect cohort membership probabilities

ρ̃ = (0.157, 0.218, 0.124, 0.207, 0.180, 0.114)

For iteration j, we randomly sampled cohort membership probabilities, ρj ∼ Dirichlet(ρ̂),

for j = 1, ..., J , where ρ̂ = (15.7, 21.8, 12.4, 20.7, 18.0, 11.4) and J is the number of

simulated trial iterations. In Appendix C.1, we investigate the effect of alternative

cohort prevalences.
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This yielded 95% confidence intervals for ρj given in Table 5.11. For each j,

patient-level allocations to cohorts 1, ..., 6 were randomly sampled from multinomial

distributions with probability vector ρj . The mean cohort sizes and 95% confidence

intervals are also shown in Table 5.11. These statistics are based on 100,000 random

samples. The distribution of these cohort sizes approximately concurred with our

expectations.

ρ Num patients
Cohort 95% CI Mean 95% CI

1 (0.093, 0.234) 9.4 (3, 17)
2 (0.143, 0.304) 13.1 (6, 17)
3 (0.067, 0.195) 7.4 (2, 14)
4 (0.134, 0.291) 12.4 (5, 21)
5 (0.111, 0.261) 10.8 (4, 19)
6 (0.060, 0.182) 6.8 (2, 14)

TABLE 5.11: Simulated cohort prevalences and cohort sizes, based on
100,000 replicates.

The variance of Dirichlet random variables is determined by the size of the ele-

ments of the parameter vector, ρ. To consider alternatives and verify that we were

using approximately the correct order of magnitude of randomness in our cohort al-

locations, we repeated the same exercise with Dirichlet parameter vectors ρ̂/10 and

10ρ̂. The vector ρ̂/10 yielded cohort sizes that were too wide, e.g. cohort sizes of zero

were observed too frequently. The vector 10ρ̂ yielded cohort sizes that exhibited less

variation, but looked plausible nonetheless. It is conservative to prepare for more

variability rather than less, so we resolved to use ρ̂.

A simulation scenario requires the specification of true efficacy and toxicity prob-

abilities in each cohort, and the level of association between efficacy and toxicity

events. In each scenario, we simulated J = 10, 000 iterations. In each iteration,

we randomly sampled N = 60 patients belonging to the six PePS2 cohorts using

the method described above. We then randomly sampled binary efficacy and tox-

icity events with probabilities driven by the cohort memberships. We simulated

correlated efficacy and toxicity events mirroring the method used in the R package

binarySimCLF [21], itself based on the work of Qaqish[75]. The level of association

is measured by odds-ratio. At the null value 1.0, efficacy is no more or less likely in

the presence of toxicity. With values less than 1, the events are negatively associated,
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i.e. the presence of one event makes the other event less likely.

5.4.2 Using simulation to select pE and pT

We desire that the design approve the treatment in each cohort: (i) with at least

80% probability in each cohort in a benchmark favourable scenario where πE = 0.3

and πT = 0.1 throughout; and (ii) with no more than 5% probability in any cohort

in a benchmark adverse scenario where πE = 0.1 and πT = 0.3 throughout. To

demonstrate the process of choosing pE and pT for use in (5.12), Table 5.12 shows

the combinations of pE and pT that we considered using the regularising priors.

Parameters Scenario 1 2 3 4 5 6
pE = 0.7, pT = 0.7 Favourable 0.90 0.92 0.91 0.91 0.91 0.89

Adverse 0.06 0.06 0.07 0.06 0.06 0.07
pE = 0.7, pT = 0.8 Favourable 0.90 0.92 0.91 0.91 0.91 0.89

Adverse 0.04 0.05 0.05 0.04 0.04 0.05
pE = 0.7, pT = 0.9 Favourable 0.90 0.92 0.91 0.91 0.91 0.89

Adverse 0.02 0.03 0.03 0.02 0.02 0.02

TABLE 5.12: Probabilities of approving treatment in two key bench-
mark scenarios under different values for pE and pT using the regu-
larising priors, based on 10,000 simulated trial runs. The favourable

and adverse scenarios eventually became 1 & 2 in Table 5.13.

Initially, we tried pE = pT = 0.7. In the favourable scenario, the design reli-

ably approves in all cohorts with a margin of at least 9% above our required prob-

ability of 80%. However, in the adverse scenario, the design does not reject often

enough. PePS2 is an early-phase study and patients are potentially near end-of-life

so we wanted to be quite confident when we say a treatment is tolerable. We can be

slightly less stringent in our choice of pE because of the relative dearth of alternative

treatments. To systematically arrive at an acceptable pair, we held one of pE and

pT fixed, and adjusted the other. We increased pT to 0.8 so that the design would

be more demanding when it infers the treatment is tolerable, and held pE constant.

This reduced the probability of wrongly accepting in the adverse scenario to approx-

imately 5% in all cohorts and did not perceptibly change the probability of accept-

ing in the favourable scenario. The apparent ability to improve the probability in the

adverse scenario without impacting the favourable scenario motivated investigation

of a further increase in pT to 0.9, yielding the final two rows in Table 5.12. Again,

probabilities in the favourable scenario did not change using 2 decimal places. With
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pE = 0.7 and pT = 0.9, the design rejects in all cohorts in the adverse scenario at

least 97% of the time, and approves in all cohorts in the favourable scenario at least

89% of the time. This was deemed a desirable compromise that addresses the two

competing goals represented by the two scenarios.

The different sets of priors required their own values for pE and pT . Similar

processes showed that those same values would achieve the same under the diffuse

priors; and that a small adjustment to pE = 0.7 and pT = 0.95 would achieve the

same under the informative priors. Even though pE and pT took different values for

different priors, the values for πE and πT were the same throughout.

In the next section, we assess performance over a wider range of scenarios. The

favourable scenario above became scenario 1 and the adverse scenario became sce-

nario 2 in the broad simulation study described below.

5.4.3 Main simulation study

Table 5.13 shows simulated performance in six scenarios. The scenarios chosen

broadly reflect our expectations, driven by the Garon study, and the range of sce-

narios over which the design should perform well. The simulated mean number of

patients, and efficacy and toxicity events, are presented for each cohort. The proba-

bilities of approving treatment using P2TNE models under the informative, regular-

ising, and diffuse priors are shown.

In scenarios 1 - 3, the rates of efficacy and toxicity are uniform across the cohorts.

Scenario 1 is our benchmark favourable scenario. It shows that if the true probabil-

ity of efficacy is 30% and toxicity is 10%, we can expect all designs to approve the

treatment with at least 80% probability in all cohorts, irrespective the priors used.

The cohorts have different approval probabilities because the average cohort sizes

are different. Under the diffuse priors, cohorts 3 and 6 have the smallest approval

probabilities because they have the fewest patients. In contrast, those same proba-

bilities are very high under the informative priors because the observed data concur

with the prior expectation, confirming that efficacy is good throughout. A key bene-

fit of the P2TNE design is the sharing of information across cohorts via the Bayesian

regression model. For instance, designs will quite reliably approve the treatment in

scenario 1 in cohorts 3 and 6, even though they each only receive approximately 7
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Sc Coh PrEff PrTox Odds N Eff Tox Inf Reg Diffuse BetaBin
1 1 0.300 0.1 1.0 9.3 2.8 0.9 0.883 0.896 0.878 0.540

2 0.300 0.1 1.0 13.1 3.9 1.3 0.906 0.920 0.905 0.658
3 0.300 0.1 1.0 7.5 2.3 0.8 0.980 0.909 0.816 0.473
4 0.300 0.1 1.0 12.5 3.7 1.2 0.875 0.912 0.896 0.635
5 0.300 0.1 1.0 10.8 3.2 1.1 0.873 0.909 0.890 0.590
6 0.300 0.1 1.0 6.8 2.0 0.7 0.959 0.893 0.819 0.459

2 1 0.100 0.3 1.0 9.3 0.9 2.8 0.012 0.025 0.019 0.035
2 0.100 0.3 1.0 13.1 1.3 3.9 0.013 0.028 0.023 0.032
3 0.100 0.3 1.0 7.5 0.8 2.3 0.038 0.029 0.021 0.034
4 0.100 0.3 1.0 12.5 1.2 3.7 0.009 0.024 0.021 0.034
5 0.100 0.3 1.0 10.8 1.1 3.2 0.009 0.024 0.022 0.032
6 0.100 0.3 1.0 6.8 0.7 2.0 0.027 0.025 0.019 0.041

3 1 0.300 0.1 0.2 9.3 2.8 0.9 0.884 0.897 0.879 0.562
2 0.300 0.1 0.2 13.1 3.9 1.3 0.906 0.920 0.904 0.667
3 0.300 0.1 0.2 7.5 2.3 0.8 0.981 0.909 0.818 0.494
4 0.300 0.1 0.2 12.5 3.7 1.2 0.877 0.913 0.897 0.652
5 0.300 0.1 0.2 10.8 3.2 1.1 0.874 0.908 0.889 0.605
6 0.300 0.1 0.2 6.8 2.0 0.7 0.960 0.893 0.820 0.478

4 1 0.167 0.1 1.0 9.3 1.5 0.9 0.408 0.451 0.398 0.293
2 0.192 0.1 1.0 13.1 2.5 1.3 0.651 0.690 0.633 0.432
3 0.500 0.1 1.0 7.5 3.8 0.8 0.993 0.981 0.974 0.622
4 0.091 0.1 1.0 12.5 1.1 1.3 0.208 0.277 0.215 0.131
5 0.156 0.1 1.0 10.8 1.7 1.1 0.405 0.493 0.419 0.298
6 0.439 0.1 1.0 6.8 3.0 0.7 0.961 0.930 0.931 0.581

5 1 0.167 0.3 1.0 9.3 1.5 2.8 0.027 0.063 0.039 0.071
2 0.192 0.3 1.0 13.1 2.5 3.9 0.046 0.099 0.066 0.084
3 0.500 0.3 1.0 7.5 3.8 2.3 0.071 0.141 0.102 0.159
4 0.091 0.3 1.0 12.5 1.1 3.7 0.014 0.037 0.021 0.028
5 0.156 0.3 1.0 10.8 1.7 3.2 0.030 0.071 0.045 0.065
6 0.439 0.3 1.0 6.8 3.0 2.0 0.070 0.135 0.099 0.163

6 1 0.167 0.1 0.2 9.3 1.5 0.9 0.408 0.451 0.396 0.308
2 0.192 0.1 0.2 13.1 2.5 1.3 0.651 0.689 0.633 0.447
3 0.500 0.1 0.2 7.5 3.8 0.8 0.993 0.981 0.974 0.627
4 0.091 0.1 0.2 12.5 1.1 1.3 0.208 0.278 0.212 0.139
5 0.156 0.1 0.2 10.8 1.7 1.1 0.402 0.493 0.415 0.313
6 0.439 0.1 0.2 6.8 3.0 0.7 0.962 0.929 0.930 0.589

TABLE 5.13: A summary of simulated trials. Sc is scenario number
and Coh the cohort number. Patient cohorts are defined in Table
5.3. PrEff and PrTox are the true probabilities of efficacy and toxicity.
Odds denotes the ratio of odds of efficacy in patients that experience
toxicity to those that do not. Odds=1 corresponds to no association;
values less than one convey that efficacy is less likely when toxicity
is observed; and vice-versa. N is the mean number of patients in a
cohort; Eff and Tox the mean number of events. Inf is the probabil-
ity the treatment is approved by the P2TNE model using informative
priors; Reg and Diffuse are probabilities of approval under the regu-
larising and diffuse priors. BetaBin is the approval probability using
cohort-specific beta-binomial models. 10,000 iterations were used in

each scenario.
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patients who experience 2 efficacies. The high efficacy rate observed in other cohorts

informs the posterior inference.

To give measure to the benefit of information sharing in P2TNE, we also present

in the final column in Table 5.13 the approval probabilities under cohort-specific

beta-binomial Bayesian conjugate models that assume the efficacy and toxicity events

are independent. With prior π ∼ Beta(α, β), the posterior beliefs are π|r, n ∼

Beta(α + r, β + n − r) where n is the number of patients in a cohort and r is the

number of events observed. Inferences are made on the posterior distribution. Re-

implementing the same decision criteria, the beta-binomial models approve the treat-

ment in a given cohort if Pr(πE > 0.1|rE , n) > 0.7 and Pr(πT < 0.3|rT , n) > 0.9.

Diffuse Beta(0.001, 0.001) priors on the rates of efficacy and toxicity were used. The

beta-binomials models make decisions in each cohort singly and do not share infor-

mation. Comparing the performances of the P2TNE model with diffuse priors to the

beta-binomial models shows the benefit to sharing information.

In scenario 1, for instance, the P2TNE model with diffuse priors outperforms the

beta-binomial model by at least 25% in each cohort. The beta-binomial model would

approve the treatment less than 50% of the time in cohort 3 in scenario 1. With ex-

actly 7 patients, being the median size of this cohort, the beta-binomial model must

observe at least rE = 2 efficacy events and exactly rT = 0 toxicities to conclude that

the treatment is acceptable. With event probabilities 0.3 and 0.1 respectively, the joint

probability of this occurring is 0.32 using exact binomial probabilities, assuming in-

dependence. The individual cohorts are simply too small with the overall sample

size n = 60 to achieve in a cohort-by-cohort analysis error rates typically used in

clinical trials. However, information sharing can have adverse consequences too.

The chances of erroneously approving in subgroups with poor efficacy will be in-

flated when positive effects are observed in other subgroups. We demonstrate an

example of this in scenario 4 below.

Scenario 2 is our benchmark adverse scenario, where toxicity is 30% and efficacy

is 10% in all cohorts. The designs should reject because the efficacy probability is

undesirably low and the toxicity probability is undesirably high. As required, we

see that all designs are very likely to reject. This was ensured by the selection of pE

and pT , as described above. Once again, it is revealing to compare P2TNE to the
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FIGURE 5.8: Performance of the P2TNE model in scenario 4 under
informative priors.

beta-binomial alternative. Despite leveraging information to approve the treatment

with small cohort sizes when performance is good, it does not show a predisposi-

tion to approve the treatment when outcomes are poor. In fact, the P2TNE design

is generally more likely than the cohort-specific beta-binomial models to reject the

treatment in scenario 2, irrespective the priors, because it uses information from all

60 patients.

One of the features of P2TNE is that it models the association between efficacy

and toxicity. Scenario 3 shows performance when efficacy events are highly neg-

atively associated with toxicity. Here, the ability of patients to achieve efficacious

outcomes are strongly hindered if they experience a toxicity event. In every other

regard, the parameterisation of scenario 3 is the same as scenario 1. We see that per-

formance barely differs. This calls into question the benefit of modelling associated

co-primary outcomes, a topic we return to in the Discussion and investigate further

in the next chapter.

Scenario 4 uses efficacy probabilities that match the response rates observed in

Garon et al.[37], with a uniform toxicity probability of 10%. This reflects the type of

scenario we expect to observe in PePS2. A notable aspect is the apparent interaction

yielded by simultaneous low PD-L1 and pre-treated status so that the PD-L1-efficacy

curves are not piecewise-parallel, as depicted in Figure 5.1. Performance is shown

in Figure 5.8 under the informative priors. Our design is overwhelmingly likely to
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approve treatment in cohorts 3 and 6 where efficacy is high.

Cohort 2 in scenario 4 is an intermediate case. Whilst the toxicity rate is manage-

able at only 10%, the efficacy rate of 19.2% is attractive. However, 30% is the efficacy

rate that we would not like to miss, so we do not necessarily demand that the designs

offer 80% approval probabilities here. We see that the P2TNE designs are 60-70%

likely to approve treatment here, an improvement over the beta-binomial model of

at least 20%. P2TNE manages this, despite an average cohort size of 13.1 patients

and efficacy rate only 9.2% above the 10% threshold by leveraging the information

observed in other cohorts. Naturally, the opposite effect occurs too. The design is

20-30% likely to approve in cohort 4, and 7-15% more likely than the beta-binomial

analyses, even though the true efficacy probability is insufficient. The model has in-

flated expectations of the efficacy probability because of the good efficacy observed

in other cohorts. The natural solution to this flaw is to introduce interaction terms

between the independent variables, a topic we develop in the next chapter

Scenario 5 shows the same efficacy probabilities as scenario 4 combined with a

high toxicity probability of 30%. All approaches are now much less likely to approve

the treatment. All analyses except the P2TNE method with informative priors show

approval probabilities in excess of 10% in cohorts 3 and 6 where efficacy is highest.

Here, the methods are overwhelmingly inclined to accept the treatment from an

efficacy stance, but lack sufficient information on toxicity in a noteworthy percentage

of simulations to correctly reject the treatment. This can be addressed by using the

informative priors.

Finally, scenario 6 shows the same efficacy and toxicity rates as scenario 4, where

the events are now strongly negatively associated. Once again, we see that perfor-

mance under P2TNE barely changes, challenging the benefit of modelling associated

co-primary outcomes in this trial. We see from Figure 5.9 that the estimation of ψ

adapts to the prevailing scenario. For instance, the estimates are clustered around

zero when efficacy and toxicity are genuinely independent in scenario 4, but over-

whelming negative in scenario 6. We revisit this in the next chapter.

The trial design yields simple dichotomous decisions on whether there exists

sufficient evidence to warrant further study. To make this decision, the underlying

statistical model produces estimates of the probabilities of efficacy and toxicity in
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FIGURE 5.9: Simulated end-of-trial estimates of ψ in scenarios 4 & 6.

each cohort. In simulations, we know the underlying values that generated the hy-

pothetical trial outcomes so it is possible to assess the numerical performance of the

model. The following definitions are adapted from Morris et al.[66].

For estimates θ̂1, ..., θ̂K of estimand taking true value θ, the bias of the estimator

process is

1

K

K∑
k=1

θ̂k − θ (5.14)

Bias measures whether the estimator targets the true value, on average, and an

unbiased estimator has bias equal to zero. Let θ̄ be the sample mean of the θ̂k. The

empirical standard error is

√√√√ 1

K − 1

K∑
k=1

(θ̂k − θ̄)2 (5.15)

and measures the standard deviation of the estimates.

Finally, the coverage of an estimator reflects the percentage of iterations in which

an uncertainty interval of given width contains the true value. Let the equal-tailed

90% credible interval of estimate θ̂k have lower bound θ̂low,k and upper bound θ̂upp,k.

Then, the coverage is estimated by

1

K

K∑
k=1

I(θ̂low,k ≤ θ ≤ θ̂upp,k) (5.16)
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By our definition, we expect coverage values of 90%.

Scenario Cohort EffBias EffEmpSE EffCov ToxBias ToxEmpSE ToxCov
1 1 -0.006 0.113 0.882 0.001 0.037 0.910

2 -0.008 0.104 0.879 0.001 0.037 0.910
3 -0.004 0.108 0.912 0.001 0.037 0.910
4 -0.007 0.107 0.884 0.001 0.037 0.910
5 -0.004 0.109 0.882 0.001 0.037 0.910
6 0.001 0.116 0.905 0.001 0.037 0.910

2 1 0.004 0.069 0.865 -0.006 0.058 0.894
2 0.001 0.063 0.864 -0.006 0.058 0.894
3 0.015 0.063 0.951 -0.006 0.058 0.894
4 -0.007 0.064 0.827 -0.006 0.058 0.894
5 -0.004 0.065 0.834 -0.006 0.058 0.894
6 0.012 0.070 0.909 -0.006 0.058 0.894

3 1 -0.007 0.113 0.882 0.000 0.037 0.913
2 -0.009 0.104 0.879 0.000 0.037 0.913
3 -0.004 0.107 0.912 0.000 0.037 0.913
4 -0.008 0.106 0.885 0.000 0.037 0.913
5 -0.005 0.109 0.883 0.000 0.037 0.913
6 0.000 0.116 0.905 0.000 0.037 0.913

4 1 -0.008 0.085 0.866 0.001 0.037 0.908
2 0.009 0.089 0.892 0.001 0.037 0.908
3 -0.072 0.126 0.867 0.001 0.037 0.908
4 0.030 0.066 0.902 0.001 0.037 0.908
5 0.007 0.082 0.887 0.001 0.037 0.908
6 -0.075 0.132 0.844 0.001 0.037 0.908

5 1 -0.008 0.085 0.864 -0.005 0.058 0.892
2 0.009 0.089 0.892 -0.005 0.058 0.892
3 -0.072 0.126 0.867 -0.005 0.058 0.892
4 0.030 0.066 0.901 -0.005 0.058 0.892
5 0.007 0.082 0.887 -0.005 0.058 0.892
6 -0.075 0.132 0.842 -0.005 0.058 0.892

6 1 -0.009 0.084 0.866 0.001 0.037 0.911
2 0.009 0.088 0.893 0.001 0.037 0.911
3 -0.072 0.126 0.867 0.001 0.037 0.911
4 0.030 0.066 0.903 0.001 0.037 0.911
5 0.007 0.082 0.886 0.001 0.037 0.911
6 -0.075 0.132 0.842 0.001 0.037 0.911

TABLE 5.14: The prefixes Eff and Tox denote the estimates of the
probability of efficacy and toxicity under regularising priors. The suf-
fix Bias denotes bias; EmpSE denotes the empirical standard error;

and Cov denotes 90% credible interval coverage.

The bias, empirical standard error and coverage of the P2TNE estimators of the

probabilities of efficacy and toxicity under our regularising, informative and diffuse

priors are given in Tables 5.14, 5.15 and 5.16. Furthermore, Table 5.17 summarises

the mean performance by each measure for each model.
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Firstly, we observe that the bias in the estimated probabilities of toxicity are low,

the empirical standard errors are relatively low, and the coverages are close to 90%

throughout. This is not particularly surprising given that the toxicity probabilities

do not vary by group and the analysis model uses only an intercept parameter. That

single parameter is estimated well with n = 60 and there is no cohort heterogeneity

to contend with.

Under the regularising priors, Table 5.14 shows noteworthy negative bias in the

estimation of πE in scenarios 4-6 in the high PD-L1 cohorts, i.e. the model esti-

mates efficacies in cohorts 3 and 6 that are habitually lower than the underlying

truth. Correspondingly, we see under-coverage in these cohorts. As we saw in Table

5.13, however, this does not adversely impair the approval probabilities. In contrast,

the model with regularising priors correctly approves with high probability in these

cohorts in scenario 4 despite the negative bias, and correctly rejects in scenario 5.

Downward bias in cohorts 3 and 6 in scenarios 4-6 is associated with modest upward

bias in the efficacy estimate in cohort 4. This stems from the absence of interaction

terms in the efficacy sub-model. We investigate this further in the next chapter. Table

5.14 shows that the other cohorts are largely unaffected. The regularising priors an-

ticipated efficacy probabilities of 20% in all cohorts. The shrinkage in cohorts 3 and 6

demonstrates an attractive aspect of regularisation. The model is dissuaded from fit-

ting values that diverge substantially from the population mean, particularly when

sample sizes are small, as a conservative measure to guard against over-fitting. We

see that the overall analysis objective is not impaired by this shrinkage

Table 5.15 essentially shows the complementary phenomenon that arises from

using our informative priors. Here, there is little bias in the estimation of efficacy

in scenario 4-6. There is, however, material upward bias in the high PD-L1 cohorts

in scenarios 1-3, as the observed efficacy rates diverge from those generated by the

priors. Once again, Table 5.13 confirms that this does not adversely affect operat-

ing performance, with the error rates in the desired range in attractive and adverse

scenarios.

Table 5.16 shows numerical performance under the diffuse priors. We see that

bias is typically low throughout. Comparing to Tables 5.14 and 5.15, the standard

errors are greater with less prior information available to keep the estimates in the
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Scenario Cohort EffBias EffEmpSE EffCov ToxBias ToxEmpSE ToxCov
1 1 -0.012 0.113 0.876 0.001 0.036 0.911

2 -0.014 0.104 0.873 0.001 0.036 0.911
3 0.073 0.115 0.889 0.001 0.036 0.911
4 -0.026 0.105 0.859 0.001 0.036 0.911
5 -0.023 0.107 0.861 0.001 0.036 0.911
6 0.062 0.123 0.892 0.001 0.036 0.911

2 1 -0.001 0.068 0.843 -0.008 0.058 0.885
2 -0.004 0.062 0.846 -0.008 0.058 0.885
3 0.078 0.078 0.897 -0.008 0.058 0.885
4 -0.019 0.060 0.769 -0.008 0.058 0.885
5 -0.017 0.060 0.782 -0.008 0.058 0.885
6 0.056 0.086 0.910 -0.008 0.058 0.885

3 1 -0.012 0.113 0.877 0.000 0.036 0.915
2 -0.015 0.104 0.873 0.000 0.036 0.915
3 0.072 0.114 0.890 0.000 0.036 0.915
4 -0.026 0.105 0.859 0.000 0.036 0.915
5 -0.024 0.107 0.862 0.000 0.036 0.915
6 0.061 0.122 0.893 0.000 0.036 0.915

4 1 -0.017 0.085 0.841 0.001 0.036 0.909
2 0.002 0.089 0.883 0.001 0.036 0.909
3 0.010 0.127 0.917 0.001 0.036 0.909
4 0.015 0.063 0.887 0.001 0.036 0.909
5 -0.010 0.079 0.852 0.001 0.036 0.909
6 -0.020 0.137 0.894 0.001 0.036 0.909

5 1 -0.017 0.085 0.839 -0.007 0.058 0.885
2 0.002 0.089 0.884 -0.007 0.058 0.885
3 0.010 0.127 0.915 -0.007 0.058 0.885
4 0.015 0.063 0.886 -0.007 0.058 0.885
5 -0.010 0.079 0.852 -0.007 0.058 0.885
6 -0.020 0.137 0.893 -0.007 0.058 0.885

6 1 -0.017 0.084 0.839 0.001 0.036 0.912
2 0.002 0.089 0.885 0.001 0.036 0.912
3 0.010 0.126 0.918 0.001 0.036 0.912
4 0.015 0.063 0.886 0.001 0.036 0.912
5 -0.010 0.078 0.852 0.001 0.036 0.912
6 -0.021 0.137 0.894 0.001 0.036 0.912

TABLE 5.15: The prefixes Eff and Tox denote the estimates of the
probability of efficacy and toxicity under informative priors. The suf-
fix Bias denotes bias; EmpSE denotes the empirical standard error;

and Cov denotes 90% credible interval coverage.

expected ranges. Given the low bias, we might be surprised to see that coverage

of the efficacy probabilities is typically lowest under the diffuse priors. Reasons for

under-coverage are given by Morris et al.[66], with the applicable explanation here

being the excess variability in the estimates.

These general observations are reflected in the mean measures presented in Table
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Scenario Cohort EffBias EffEmpSE EffCov ToxBias ToxEmpSE ToxCov
1 1 0.002 0.125 0.866 0.001 0.039 0.898

2 -0.002 0.113 0.866 0.001 0.039 0.898
3 0.003 0.140 0.861 0.001 0.039 0.898
4 -0.002 0.114 0.873 0.001 0.039 0.898
5 0.001 0.119 0.867 0.001 0.039 0.898
6 0.004 0.142 0.861 0.001 0.039 0.898

2 1 0.004 0.085 0.785 0.000 0.060 0.890
2 -0.000 0.074 0.804 0.000 0.060 0.890
3 0.005 0.095 0.734 0.000 0.060 0.890
4 -0.003 0.076 0.787 0.000 0.060 0.890
5 0.003 0.081 0.790 0.000 0.060 0.890
6 0.008 0.099 0.748 0.000 0.060 0.890

3 1 0.000 0.123 0.869 -0.000 0.038 0.901
2 -0.004 0.112 0.869 -0.000 0.038 0.901
3 0.001 0.139 0.864 -0.000 0.038 0.901
4 -0.004 0.113 0.875 -0.000 0.038 0.901
5 -0.001 0.117 0.870 -0.000 0.038 0.901
6 0.002 0.141 0.862 -0.000 0.038 0.901

4 1 -0.017 0.098 0.803 0.000 0.039 0.898
2 0.005 0.099 0.863 0.000 0.039 0.898
3 0.009 0.162 0.867 0.000 0.039 0.898
4 0.014 0.071 0.841 0.000 0.039 0.898
5 -0.005 0.090 0.834 0.000 0.039 0.898
6 -0.016 0.163 0.860 0.000 0.039 0.898

5 1 -0.017 0.098 0.803 0.000 0.060 0.889
2 0.005 0.100 0.860 0.000 0.060 0.889
3 0.009 0.163 0.865 0.000 0.060 0.889
4 0.014 0.072 0.839 0.000 0.060 0.889
5 -0.005 0.090 0.831 0.000 0.060 0.889
6 -0.016 0.163 0.857 0.000 0.060 0.889

6 1 -0.018 0.097 0.805 0.000 0.039 0.901
2 0.004 0.098 0.864 0.000 0.039 0.901
3 0.007 0.161 0.871 0.000 0.039 0.901
4 0.013 0.071 0.843 0.000 0.039 0.901
5 -0.006 0.089 0.834 0.000 0.039 0.901
6 -0.018 0.161 0.863 0.000 0.039 0.901

TABLE 5.16: The prefixes Eff and Tox denote the estimates of the
probability of efficacy and toxicity under diffuse priors. The suffix
Bias denotes bias; EmpSE denotes the empirical standard error; and

Cov denotes 90% credible interval coverage.

5.17. The diffuse priors produce the most variable estimates and coverage suffers

as a result. Bias is greater under our regularising and informative priors, but only

noteworthy in an isolated number of instances. The cases of noteworthy bias can be

understood with reference to the priors or the sub-model forms.
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Priors EffBias EffEmpSE EffCov ToxBias ToxEmpSE ToxCov
Sceptical -0.010 0.096 0.881 -0.001 0.044 0.905
Informative 0.004 0.097 0.871 -0.002 0.043 0.903
Diffuse -0.001 0.113 0.840 0.000 0.046 0.896

TABLE 5.17: Means of numerical performance measures from Tables
5.14, 5.15 and 5.16 to 3 d.p.

5.5 Discussion

The proposed P2TNE design has many benefits.

Firstly, it makes efficient use of the available information because the predictive

variables contribute to the modelling of the trial outcomes and ultimately to the ap-

proval decision. The effect of each variable is refined by regression. By adjusting

for these sources of variability that are predictive of patient outcomes, the trial anal-

ysis gains in accuracy. We see this when comparing the P2TNE model to a simple

beta-binomial alternative that makes decisions cohort by cohort.

Another key feature is that this design allows an acceptance / rejection deci-

sion for each permutation of the predictive variables via (5.12). Thus, it is feasible

to approve the treatment in only the cohorts where it is shown to work. Without

this facility, the undesirable risk is that the treatment is approved in cohorts where

it is not appropriate or the treatment is rejected universally because the poor per-

formance in some cohorts obscures the good performance in others. For instance,

Thatcher [95] studied the effect on survival of Gefitinib in non-small cell lung cancer

patients. Overall, they found that the treatment was not associated with a significant

improvement in survival in the general population but that there was pronounced

heterogeneity in survival in patient subgroups. In particular, there was evidence of

benefit in patients of Asian origin and in those that have never smoked. Ultimately,

it was determined that EGFR mutation was the factor that predicted benefit of the

drug. If these predictive factors are known or even just suspected a priori, it is ad-

vantageous to be able to incorporate this information and retain the ability to tailor

the acceptance / rejection decision using predictive variables. P2TNE provides this

facility.

P2TNE explicitly models the association between the efficacy and toxicity out-

comes. In real trials, as with PePS2, it is too simplistic to assume that efficacy and
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toxicity are independent because severe toxicity partially precludes the scope for

therapeutic benefit. In a model with co-primary outcomes of efficacy and toxicity, it

is desirable that this important relationship be modelled. Asserting that there is no

relationship (either explicitly or implicitly) risks spurious inference. We saw that the

performance of P2TNE does not degrade when efficacy and toxicity are associated.

We should stress that the level of association in our model is assumed to be constant

amongst the cohorts. A more general (and complicated) model might allow each

cohort to have its own association parameter but we do not consider that scenario

here. In the next chapter, we look at removing the association parameter.

P2TNE is Bayesian and thus admits prior information. In a clinical trial, we

usually want the data to speak for itself. However, in phase II trials with limited

time and patients, we can gain efficiency by incorporating prior information. We

saw here the benefit to using informative priors because overall the performance

of the design was enhanced compared to the regularising and diffuse alternatives.

However, each of the priors considered was sufficiently weak to be overwhelmed by

the information in the data when the trial decision was clear as in scenarios 1 and 2.

Efficacy is seen in Garon to increase with PD-L1 score. It is a limitation of our

analysis that we have implemented PD-L1 status as a categorical variable rather

than an ordinal one. There are a number of ways that an ordinal PD-L1 variable

could have been used in our model, each amounting to fixing the sign of coefficients

in the efficacy sub-model. The signs of parameters can be fixed using exponential

transforms or priors. For instance, a Gamma prior does not admit negative values,

effectively guaranteeing a positive posterior estimate. We do not investigate this

further here. More generally, we investigate the use of continuous PD-L1 in the next

chapter.

In PePS2, we have not sought to model how the rate of toxicity might vary from

cohort to cohort. We have omitted this potential complexity because we do not ex-

pect it to manifest in our clinical setting and expect no reward for the extra computa-

tional burden. However, the labels “efficacy" and “toxicity" are arbitrary so cohort-

varying toxicity could easily be achieved in the same manner we have analysed ef-

ficacy here. In general, the principle of parsimony suggests not including too many

parameters in θ. However, cohort-varying toxicity could easily be incorporated via

161



Chapter 5. Phase II Efficacy &Toxicity with Predictive Variables in PePS2

extra terms in (5.13) and θ in a more fully-specified model. In the following chapter,

we consider a fully-specified model that allows cohort-varying efficacy and toxicity

and how a Bayesian information criterion can be used to choose amongst our default

‘modestly-specified‘ model and the fully-specified model.

We have not considered an interim analysis in the simulation study because it is

not required in our trial. The expected cohort size at final analysis is already small

at 60 / 6 = 10 patients. Nevertheless, the P2TNE design easily facilitates an arbi-

trary number of interim analyses by repeated invocations of (5.12), potentially with

different values for π∗E , π
∗
T , pE and pT . Indeed, in a larger trial than we have con-

sidered, interim analyses would be preferable to allow early rejection of treatments

that are inactive or excessively toxic in certain cohorts. If interim analyses are used,

the statistician should choose values of pE and pT mindful of the effect of repeated

testing, that lead to attractive operating characteristics overall.

Naturally, this design presents its challenges too. In some scenarios, the shar-

ing of information could lead to questionable behaviour. For instance, when the

P2TNE model specified observes requisite efficacies across the cohorts, it some-

times approves the treatment in a cohort that happened to observe zero efficacy

events. When this happens in cohort l, the number of responses observed in cohorts

i = 1, .., 6, i 6= l compensate the lack of efficacy in l to nevertheless yield a view that

the true efficacy rate in l is probably greater than π∗E = 0.10. This is less likely to

occur for larger values of π∗E . If we wish to avoid this behaviour, we can use more

stringent criteria than (5.12). For example, we could additionally require that the

number of efficacies in a cohort must be greater than zero for the treatment to be

approved.

Our P2TNE model is implemented in the Bayesian statistical language Stan[22]

and made available in the trialr package[16] of Bayesian clinical trial designs. It uses

Hamiltonian Monte Carlo to obtain samples from the posterior distributions. The

calculations are reasonably demanding and a computer simulation takes approxi-

mately 3-4 hours to perform 10,000 iterations. More complicated specifications with

more parameters will likely take longer.

It is problematic that there is no way to determine the required sample size with-

out running computer simulations. A pragmatic solution to this specific problem is
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to calculate a initial estimate of sample size using something like a Bryant & Day de-

sign or simple beta-binomial models and refining as the situation demands. Sample

size, pE and pT are chosen to achieve acceptable operating characteristics. If truly

predictive variables are introduced, the performance of P2TNE should be superior

to the beta-binomial method, as demonstrated, and this will improve the statistical

efficiency for the selected sample size..

When considering the predictive variables to include, there might appear to be a

problem of circularity. It could be considered unreasonable to expect trialists to have

knowledge of predictive variables at the start of a trial. Whilst this is sometimes

true, often it is not. Trials are inherently sequential, each building on what is already

known. P2TNE is a phase II design and phase II trials build on the results garnered

in other early phase trials. For instance, we believe PD-L1 score to be predictive in

PePS2 because it was demonstrated so by Garon et al.[37] in a closely-related patient

population. However, this remains to be demonstrated in the PS2 population and

this is the purpose of our trial.

Lastly, selecting sensible, modestly-informative joint priors is not a trivial task.

Thall et al.[94] provide a general method for equating the amount of information

in a multivariate normal prior to an hypothetical equivalent number of patient ob-

servations, a quantity they call the effective sample size. Priors can be as informative

as the existing data allows, but sufficiently vague to justify the clinical trial under

consideration.

In summary, we feel that the many benefits provided by P2TNE are attractive

enough to warrant the effort to overcome the challenges, as we have in PePS2.

5.5.1 Further Development

Our predictive variables in PePS2 are binary. We have not considered a continu-

ous predictive variable in PePS2 but the method described here needs only minimal

changes to accommodate it. This makes sense in scenarios like PePS2 where the ma-

jor predictive variable is a categorised mapping of an underlying continuous vari-

able, PD-L1 score. It is likely that information is lost in the dichotomisation process

and that using the continuous PD-L1 variable in 5.3 enhances the performance of the

design. As with the binary variables, the effect of a continuous predictive variable x.i
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would be governed by coefficient η, for instance, in θ. The posterior mean of exp (η)

would be the odds ratio for an event given a one unit increase in x.i. One potential

complication is that (5.12) would need to be resolved for each distinct value of x.i.

For a truly continuous explanatory variable, this would be the same as the number

of patients. Although this may sound prohibitively costly, the posterior parameter

samples provided by Stan make this trivial. We develop this idea in the following

chapter.

We have presented P2TNE in a single arm setting but there is no reason why

it could not be immediately applied in a multi-arm trial using dummy variables in

(5.3) and (5.4) to reflect allocation to treatment arms. We have discussed the problem

of having many components in θ and adding variables for treatment arms would

seem to exacerbate that problem. However, the inclusion of randomisation would

abrogate the need for some other explanatory markers. For instance, if PePS2 were

a randomised trial, we would have less need to include pre-treatment status as a

predictive variable because the proportions of previously treated patients would be

broadly balanced between the treatment arms. In a randomised controlled trial, the

decision criteria (5.12) would instead accept the experimental treatment if it is likely

that efficacy and/or toxicity are superior (or not-inferior) to the reference treatment,

a posteriori.

Lastly, P2TNE uses a binary efficacy outcome that is dichotomised from the un-

derlying continuous tumour size ratio variable. Wason et al.[100–102] have shown

that the efficiency of clinical trials can be significantly increased by using all the in-

formation in a continuous response variable. In place of RECIST[35], a preferable

design would use tumour size ratio and binary variables for non-shrinkage failures

(e.g. the appearance of new lesions) to measure efficacy. This would require an

analogue of (2.4) in the continuous setting.

5.6 Conclusions

It is a tremendous advantage to be able to tailor the clinical trial decision to patient

cohorts where there is evidence that efficacy and/or toxicity is associated with pre-

dictive variables, especially when separate trials in cohorts are infeasible. This is
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one of the primary goals of stratified medicine. The design presented, P2TNE, satis-

fies an unmet need by incorporating predictive information to jointly model efficacy

and toxicity and selectively approve a treatment only in the patient cohorts where

it is shown to be efficacious and tolerable, a posteriori. We demonstrate the method

in the context of PePS2, a phase II trial of pembrolizumab in performance status 2

patients with non-small cell lung cancer. Our predictive variables are PD-L1 expres-

sion level and pretreatment status. The model described is flexible enough to admit

arbitrary binary and continuous predictive variables. We demonstrate that model

performance is good across a wide range of scenarios. Key to this is that P2TNE

shares information across related cohorts to improve statistical performance. In con-

trast, benchmark beta-binomial designs that operate on cohorts singly perform rel-

atively poorly because they use the available information less efficiently. In PePS2,

P2TNE has allowed us to avoid the unappealing prospect of running parallel trials

in cohorts. The main limitation of our method is that it is computationally intensive.

The P2TNE phase II design provides researchers with an early opportunity to eval-

uate potentially predictive variables for stratified medicine that can be important to

better inform phase III trials and future treatments for patients.
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Chapter 6

Further Embellishments to the

Statistical Design in PePS2

Background: We noted various assumptions in our P2TNE efficacy and toxicity

sub-models used in Chapter 5 that had the potential to yield poor inferences.

Furthermore, we observed that our model could potentially be simplified by re-

moving the association parameter.

Notable methods in this chapter: We investigated various adaptations to the

models proposed for PePS2, including more complexity in the efficacy model,

and the facility of cohort-varying toxicity.

The implications on efficiency: We learned that additional parameters in the ef-

ficacy and toxicity sub-models require greater trial sample size to maintain the

statistical performance presented in Chapter 5. Competing goals exist to con-

duct trials quickly and accurately, and the motivation to meet the extra resource

burden of a more complex model should be appraised in the clinical context, in

light of existing information and alternative treatments. In PePS2, the modest

enhancement to inference in peripheral areas is unlikely to warrant recruiting at

least 40 extra patients and materially delaying the dissemination of trial results.

6.1 Introduction

In the previous chapter, we presented a novel adaptation of the TNE trial design[89]

for studying associated co-primary binary outcomes in the presence of predictive

covariates. We did this in the context of PePS2, a phase II trial of pembrolizumab in
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performance status 2 non-small-cell lung cancer patients. Our co-primary outcomes

were efficacy and toxicity. Our predictive variables were PD-L1 score (Low, Medium

or High) and pre-treatment status (TN or PT), each categorical in nature. We demon-

strated that the P2TNE method with predictive baseline covariates was far more ef-

ficient than a model-free technique that used a conjugate beta-binomial approach in

cohorts separately. Overall, we demonstrated that typical phase II error rates were

possible in six cohorts using only 60 patients in total. Nevertheless, we noted a num-

ber of limitations in our chosen model specifications, (5.13). Specifically, our efficacy

model lacked interactions and our toxicity model was very simplistic, containing

only an intercept term. Our model choices were motivated by the published data,

and sought a balance of efficiency and realism. We anticipate that more elaborate

models with extra parameters will be more flexible but will require greater sample

sizes. In this chapter, we consider the impact of embellishments to the model forms,

specifically with respect to the trade-off between performance and sample size.

The lack of interactions in the efficacy model in (5.13) effectively assumes that the

log-odds of efficacy in each PD-L1 cohort for PT patients was a common linear shift

of that for TN patients, an assumption we referred to as piecewise parallelism. This

assumption was pertinent because the data presented by Garon et al.[37] suggested

that the log-odds of objective response in a closely-related patient population were

perhaps not strictly piecewise parallel with respect to these covariates, as shown in

Figure 5.1. In Section 6.2, we relax this assumption by adding interaction terms to

our efficacy model.

Our toxicity model too was simplistic in that it assumed a common probabil-

ity of toxicity in all cohorts, despite the acknowledgements that efficacy varied and

toxicity and efficacy were plausibly associated. Our justification, again, was the pub-

lished data[37, 44], collectively reporting the outcomes of over 1,000 NSCLC patients

on pembrolizumab monotherapy, without noting toxicity that varied with pretreat-

edness or PD-L1 status. This does not, however, rule out heterogeneity in toxicity in

the lower performance status population in PePS2. Furthermore, in other trial sce-

narios, the information to anticipate homogeneity in toxicity may not be available.

In Section 6.3, we examine the effect on overall design performance by allowing tox-

icity to vary across cohorts by adding extra terms to the toxicity model.
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6.2. Interaction-terms in the efficacy model

TNE use a bivariate model that associates efficacy and toxicity outcomes. They

consider the Gumbel model and a Gaussian copula. We use the Gumbel model (2.4)

with association parameter ψ. We demonstrated in Table 5.13 that model perfor-

mance barely differs when comparing scenarios that vary only in the presence of a

strong negative association between efficacy and toxicity. This questions the useful-

ness of the association parameter. In Section 6.4, we examine the effect of removing

it.

Finally, we have hitherto treated PD-L1 as a categorical variable because the three

PD-L1 cohorts were defined and validated in Garon et al.[37]. This is perhaps regret-

table, given that PD-L1 proportion score, the variable that determines PD-L1 cate-

gory, is effectively continuous on [0, 1]. Dichotomising a continuous variable leads

to loss of efficiency in analysis[2]. In this regard, we are motivated to research how

the continuous PD-L1 proportion score, hitherto referred to as PD-L1 score, can be

used in place of the categorised alternative variable to further enhance efficiency in

the PePS2 setting. This ongoing work is introduced in Appendix D.

6.2 Interaction-terms in the efficacy model

Adding interaction terms for PD-L1 and pre-treatedness to the marginal efficacy

model yields:

logitπE(xi,θ) = α+ βx1i + γx2i + ζx3i + ηx1ix2i + κx1ix3i

logitπT (xi,θ) = λ

(6.1)

As before, x1i, ..., x3i are the baseline covariates for patient i as described in Table

5.3, and θ is the vector of all parameters in the model. Here, θ = (α, β, γ, ζ, η, κ, λ, ψ),

and (2.4) is used to model the joint probability of πE and πT .

We refer to this as model 611, because there are 6 parameters in the efficacy model,

one in the toxicity model, and a single extra parameter for association in the joint

model. Using this nomenclature, the model in the previous chapter is model 411.

Table 6.1 shows the operating performance of model 611 in our previous scenar-

ios 1, 4 and 5, with increasing sample size, hitherto italicised and referred to simply
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Sc TotN Coh PrEff PrTox N Eff Tox Diffuse EffBias EffEmpSE EffCov ToxBias ToxEmpSE ToxCov
1 60 1 0.300 0.1 9.3 2.8 0.9 0.754 0.001 0.162 0.836 0.000 0.039 0.892

2 0.300 0.1 13.1 3.9 1.3 0.839 -0.002 0.132 0.856 0.000 0.039 0.892
3 0.300 0.1 7.5 2.3 0.8 0.716 0.006 0.171 0.839 0.000 0.039 0.892
4 0.300 0.1 12.5 3.7 1.2 0.826 -0.002 0.136 0.862 0.000 0.039 0.892
5 0.300 0.1 10.8 3.2 1.1 0.797 -0.000 0.147 0.852 0.000 0.039 0.892
6 0.300 0.1 6.8 2.0 0.7 0.683 0.003 0.185 0.816 0.000 0.039 0.892

1 80 1 0.300 0.1 12.6 3.8 1.2 0.829 -0.001 0.138 0.856 0.000 0.034 0.866
2 0.300 0.1 17.4 5.2 1.7 0.904 0.001 0.114 0.875 0.000 0.034 0.866
3 0.300 0.1 9.9 3.0 1.0 0.788 0.003 0.151 0.856 0.000 0.034 0.866
4 0.300 0.1 16.5 4.9 1.7 0.886 -0.001 0.118 0.871 0.000 0.034 0.866
5 0.300 0.1 14.4 4.3 1.4 0.859 -0.003 0.127 0.861 0.000 0.034 0.866
6 0.300 0.1 9.1 2.7 0.9 0.753 0.001 0.161 0.843 0.000 0.034 0.866

1 100 1 0.300 0.1 15.6 4.7 1.6 0.879 0.000 0.123 0.865 0.001 0.030 0.898
2 0.300 0.1 21.9 6.5 2.2 0.936 -0.001 0.101 0.878 0.001 0.030 0.898
3 0.300 0.1 12.4 3.7 1.3 0.833 0.002 0.137 0.862 0.001 0.030 0.898
4 0.300 0.1 20.7 6.2 2.1 0.927 -0.001 0.105 0.877 0.001 0.030 0.898
5 0.300 0.1 18.0 5.4 1.8 0.906 0.002 0.113 0.873 0.001 0.030 0.898
6 0.300 0.1 11.4 3.4 1.1 0.808 0.001 0.144 0.859 0.001 0.030 0.898

4 60 1 0.167 0.1 9.3 1.5 0.9 0.406 0.000 0.130 0.751 0.000 0.039 0.890
2 0.192 0.1 13.1 2.5 1.3 0.560 -0.001 0.112 0.847 0.000 0.039 0.890
3 0.500 0.1 7.5 3.8 0.8 0.929 -0.003 0.190 0.854 0.000 0.039 0.890
4 0.091 0.1 12.5 1.1 1.3 0.175 0.001 0.083 0.646 0.000 0.039 0.890
5 0.156 0.1 10.8 1.7 1.1 0.408 0.001 0.114 0.773 0.000 0.039 0.890
6 0.439 0.1 6.8 3.0 0.7 0.863 -0.005 0.202 0.840 0.000 0.039 0.890

4 80 1 0.167 0.1 12.6 2.1 1.3 0.469 0.001 0.110 0.810 0.000 0.033 0.866
2 0.192 0.1 17.4 3.4 1.7 0.640 0.002 0.098 0.855 0.000 0.033 0.866
3 0.500 0.1 9.9 5.0 1.0 0.962 -0.003 0.167 0.869 0.000 0.033 0.866
4 0.091 0.1 16.5 1.5 1.6 0.176 0.001 0.072 0.738 0.000 0.033 0.866
5 0.156 0.1 14.4 2.2 1.4 0.444 -0.000 0.100 0.826 0.000 0.033 0.866
6 0.439 0.1 9.1 4.0 0.9 0.917 -0.003 0.177 0.856 0.000 0.033 0.866

4 180 1 0.167 0.1 28.4 4.7 2.8 0.637 0.001 0.073 0.864 0.000 0.022 0.875
2 0.192 0.1 39.3 7.5 3.9 0.819 -0.000 0.065 0.879 0.000 0.022 0.875
3 0.500 0.1 22.3 11.2 2.2 0.999 -0.001 0.112 0.879 0.000 0.022 0.875
4 0.091 0.1 37.2 3.4 3.7 0.189 0.000 0.049 0.856 0.000 0.022 0.875
5 0.156 0.1 32.2 5.0 3.2 0.595 0.000 0.066 0.869 0.000 0.022 0.875
6 0.439 0.1 20.6 9.1 2.0 0.991 -0.001 0.116 0.880 0.000 0.022 0.875

4 300 1 0.167 0.1 47.5 7.8 4.7 0.749 -0.002 0.053 0.903 -0.000 0.018 0.868
2 0.192 0.1 65.6 12.6 6.5 0.934 -0.000 0.047 0.898 -0.000 0.018 0.868
3 0.500 0.1 36.7 18.4 3.7 1.000 0.001 0.091 0.872 -0.000 0.018 0.868
4 0.091 0.1 62.0 5.6 6.2 0.157 -0.000 0.036 0.884 -0.000 0.018 0.868
5 0.156 0.1 53.9 8.5 5.4 0.738 0.002 0.050 0.889 -0.000 0.018 0.868
6 0.439 0.1 34.4 15.0 3.3 1.000 -0.003 0.092 0.886 -0.000 0.018 0.868

5 60 1 0.167 0.3 9.3 1.5 2.8 0.041 0.000 0.130 0.752 0.000 0.060 0.887
2 0.192 0.3 13.1 2.5 3.9 0.059 -0.001 0.112 0.844 0.000 0.060 0.887
3 0.500 0.3 7.5 3.8 2.3 0.099 -0.003 0.190 0.849 0.000 0.060 0.887
4 0.091 0.3 12.5 1.1 3.7 0.018 0.001 0.084 0.648 0.000 0.060 0.887
5 0.156 0.3 10.8 1.7 3.2 0.044 0.001 0.115 0.772 0.000 0.060 0.887
6 0.439 0.3 6.8 3.0 2.0 0.093 -0.005 0.202 0.836 0.000 0.060 0.887

5 180 1 0.167 0.3 28.4 4.7 8.5 0.071 0.001 0.073 0.864 -0.000 0.034 0.891
2 0.192 0.3 39.3 7.5 11.8 0.092 -0.001 0.065 0.878 -0.000 0.034 0.891
3 0.500 0.3 22.3 11.2 6.7 0.111 -0.001 0.113 0.876 -0.000 0.034 0.891
4 0.091 0.3 37.2 3.4 11.2 0.022 0.000 0.049 0.854 -0.000 0.034 0.891
5 0.156 0.3 32.2 5.0 9.6 0.066 0.000 0.066 0.868 -0.000 0.034 0.891
6 0.439 0.3 20.6 9.1 6.2 0.110 -0.001 0.116 0.877 -0.000 0.034 0.891

TABLE 6.1: Operating performance of model 611 in selected scenarios
from Chapter 5 using increasing total sample sizes, TotN . Columns
Sc to Tox have the same definitions as Table 5.3. Diffuse shows ap-
proval probability under diffuse priors. Columns EffBias to ToxCov

have the same definitions as Table 5.14.

asN . For parsimony, we do not show performance in all scenarios. Scenario 1 shows

performance in our benchmark scenario analogous to an analysis of power. Scenar-

ios 4 and 5 illustrate performance in plausible efficacy scenarios where toxicity is

acceptable and not, respectively. Scenarios 3 and 6 were excluded because Table 5.13

revealed that they add little beyond scenarios 1 and 4. Scenario 2 was excluded for
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brevity but simulations revealed that the false approval rate was not increased. Co-

hort memberships are simulated using the same method described in Section 5.4.1.

Diffuse N(0, 102) priors on each element of θ were used in Table 6.1. We did this

so that the performance mainly reflects the observed data and the specified model

forms, and not the prior information. As such, we compare to the ‘Diffuse’ perfor-

mance under model 411 in Table 5.13. This is purely to aid comparison. Were we

to use model 611 in a trial, we would specify prior distributions less diffuse than

N(0, 102).

We see in Table 6.1 that the two extra parameters are associated with a reduction

in the probability of approving the treatment with N = 60. The probabilities of

approval fall to 68.3 - 83.8% in scenario 1. These are absolute reductions of 6 - 13%

compared to model 411, but still compare favourably to the performance of the beta-

binomial analyses with n = 60 in Table 5.13. The extra parameters have reduced

performance because there are now more ways the model can err when fitting the

data. There is also less opportunity to borrow information across cohorts in the

efficacy model. We see that bias is not generally a problem. However, comparing

to Table 5.16, efficacy coverage of the 90% CIs has now fallen below 85% in three of

the six cohorts. Furthermore, empirical standard error has increased in each cohort

by approximately 2 to 4%, in absolute terms. Standard error of efficacy estimates is

particularly high in the small high-PD-L1 cohorts.

Generally, models that estimate more parameters require a greater sample size

than models that estimate few parameters. As N increases to 100 in scenario 1, the

probability of approval is generally within a few percent of that under model 411

and N = 60, with performance slightly better in some cohorts and slightly worse in

others. The performance of the beta-binomial models also improves as n increases

(data not shown), but the performance of 611 is always superior. Likewise, the em-

pirical standard errors of efficacy estimates have fallen to approximately the same

levels, and coverages are now all between 85% and 90%. These qualities were not

achieved withN = 80. We may regard the extra 40 patients required by model 611 as

the approximate cost of supporting 2 extra parameters in the efficacy model in this

scenario and maintaining a similar level of operating performance and accuracy.

In scenario 4, the efficacy probabilities show a more plausible relationship with
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the baseline covariates. The observations highlighted above are again evident. At

N = 60, the probabilities of approval have generally fallen because the model is

under-informed. The efficacy coverages are particularly low in the small cohorts.

Once again, approval probabilities and coverages improve as N increases. To match

the approval probability of model 411 in the medium and high PD-L1 cohorts, a

sample size of N = 80 is approximately sufficient in this scenario. However, even

with this increase in N , we see that efficacy coverage is still poor.

As Figure 5.1 shows, Scenario 4 contains an interaction between PD-L1 and pre-

treatedness. The correct decision in cohort 4 is to reject the treatment because the

efficacy rate is marginally below the minimum threshold, 10%. The 411 model in-

correctly approved with probability 21.5%. We attributed some of this failure to the

high efficacy seen in other cohorts and the lack of interaction terms required to pre-

cisely estimate efficacy in this particular cohort. The approval rate is only slightly

lower in model 611 with the interaction terms. Increasing N from 60 to 180, we see

that the approval probability actually increases from 17.5% to 18.9% despite the fact

that coverage improves from 64.6% to 85.6% and empirical standard error falls. The

interaction terms in 611 have not overcome one of the notable shortcomings of model

411, even with triple the sample size. Increasing sample size further to N = 300, the

90% efficacy coverage moves to over 88%, the variability of estimates falls, and the

approval probability in cohort 4 falls to 15.7%. However, the benefits are very small.

The approval decision is made with reference to the model-estimated rates of effi-

cacy and toxicity using (5.12). With the interaction terms included, those efficacy

and toxicity rates are estimated by (6.1).

Other authors have highlighted the great demands in sample size to estimate in-

teraction effects. Schmoor et al.[80] demonstrate that at least four times the sample

size is required to detect a prognostic effect via interaction of a binary covariate in

a two-arm trial with a time-to-event outcome analysed by Cox model. The exact

multiplier is affected by the nature and prevalence of the covariate, but this gen-

eral result offers an insight into why model 611 performs relatively poorly despite a

greatly-increased sample size.

In scenario 5, we see that model 611 correctly rejects approximately as often as

model 411 with N = 60. However, coverage is particularly poor in some cohorts
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and this is rectified by increased N . With sample size as high as N = 180, coverage

is above 85% in all cohorts.

The unifying theme from these simulations is that greater sample size is required

to estimate the extra parameters in model 611 and to have confidence in the inference

it yields. We saw that 20 - 40 additional patients would allow this model to perform

similarly to model 411 in scenarios 1 and 4. However, merely replicating what we

had before will not provide justification. We saw that far more patients would be

required for model 611 to provide sufficient additional accuracy to materially im-

prove the extent to which the analysis makes the correct decision in cohort 4. The

potential to justify this drives at the heart of this thesis. The biological plausibility

of the interaction efficacy model is far from clear, and the data represented in Figure

5.1 support piecewise parallelism as a reasonable working assumption. In PePS2,

the extra time, money and effort that would be required to recruit these patients in

a phase II clinical trial would almost certainly not be warranted given the need to

conduct trials quickly to give patients a chance of tolerable and effective treatments.

Rather than increase the sample size fivefold, when efficacy under a targeted ther-

apy can be so profoundly associated with a biomarker, it would clearly be preferable

to run multiple trials of modest size in a wide variety of treatments.

In each of the scenarios considered hitherto, the toxicity coverage has been stable

and accurate. However, there are no variables beyond an intercept in the toxicity

model and there is no heterogeneity by cohort. We demand more from the toxicity

model in the next section.

6.3 Covariate terms in the toxicity model

The extra terms in the efficacy model in the previous section did not materially im-

prove operating performance but did incur material penalty in terms of greater re-

quired sample size. In this section, we revert to a four parameter efficacy model and

add parameters to the toxicity model so that it has the same freedom to estimate a

different toxicity rate in each cohort:
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FIGURE 6.1: Posterior mean estimates of Prob(Tox) with 90% CIs for
cohort 6 in scenario 1 using models 411 and 441 and a total N = 60.
The red intervals exclude the true value, 10%, shown by purple dot-

ted line.

logitπE(xi,θ) = α+ βx1i + γx2i + ζx3i

logitπT (xi,θ) = λ+ µx1i + νx2i + ξx3i

(6.2)

In this model that we will refer to as model 441, we are effectively assuming that

the log-odds of efficacy and toxicity are each piecewise parallel across the cohorts.

Once again, an indicative subset of scenarios is shown and to aid comparability,

diffuse N(0, 102) priors on each element of θ were used.

Table 6.2 shows that, as with model 611, the extra terms in model 441 have eroded

operating performance when N = 60 such that we can no longer expect at least 80%

approval probabilities in scenario 1. Operating performance improves with 40 extra

patients but not enough to attain 80% approval in all cohorts. Performance still

lags in the high PD-L1 cohorts, where the empirical standard error of the estimated

efficacy probabilities is highest.

Coverage is particularly poor in the estimated toxicity probabilities. The extra

terms in the toxicity model have increased the opportunity for the model to overfit
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Sc TotN Coh PrEff PrTox N Eff Tox Diffuse EffBias EffEmpSE EffCov ToxBias ToxEmpSE ToxCov
1 60 1 0.300 0.1 9.3 2.8 0.9 0.677 0.002 0.125 0.868 0.006 0.087 0.776

2 0.300 0.1 13.1 3.9 1.3 0.762 -0.002 0.113 0.865 -0.001 0.074 0.799
3 0.300 0.1 7.5 2.3 0.8 0.611 0.003 0.140 0.860 0.005 0.093 0.740
4 0.300 0.1 12.5 3.7 1.2 0.752 -0.002 0.114 0.873 -0.002 0.076 0.786
5 0.300 0.1 10.8 3.2 1.1 0.721 0.001 0.119 0.866 0.002 0.080 0.790
6 0.300 0.1 6.8 2.0 0.7 0.597 0.004 0.142 0.864 0.007 0.097 0.745

1 100 1 0.300 0.1 15.6 4.7 1.6 0.853 0.000 0.094 0.882 0.003 0.064 0.847
2 0.300 0.1 21.9 6.5 2.2 0.913 -0.001 0.086 0.887 -0.000 0.057 0.845
3 0.300 0.1 12.4 3.7 1.3 0.785 0.001 0.108 0.876 0.003 0.072 0.822
4 0.300 0.1 20.7 6.2 2.1 0.906 -0.001 0.088 0.881 -0.002 0.058 0.839
5 0.300 0.1 18.0 5.4 1.8 0.884 0.002 0.091 0.880 0.001 0.061 0.840
6 0.300 0.1 11.4 3.4 1.1 0.770 0.002 0.109 0.882 0.004 0.074 0.819

2 100 1 0.100 0.3 15.6 1.6 4.7 0.029 0.003 0.064 0.846 0.001 0.095 0.877
2 0.100 0.3 21.9 2.2 6.6 0.025 -0.002 0.056 0.849 0.001 0.088 0.875
3 0.100 0.3 12.4 1.2 3.7 0.029 0.003 0.071 0.816 0.002 0.108 0.874
4 0.100 0.3 20.7 2.1 6.2 0.030 -0.000 0.059 0.837 -0.001 0.088 0.881
5 0.100 0.3 18.0 1.8 5.4 0.028 0.002 0.061 0.842 0.002 0.091 0.882
6 0.100 0.3 11.4 1.2 3.5 0.031 0.004 0.073 0.819 0.004 0.109 0.879

4 60 1 0.167 0.1 9.3 1.5 0.9 0.310 -0.017 0.098 0.803 0.005 0.086 0.783
2 0.192 0.1 13.1 2.5 1.3 0.531 0.005 0.099 0.861 -0.000 0.074 0.801
3 0.500 0.1 7.5 3.8 0.8 0.727 0.009 0.162 0.864 0.005 0.092 0.744
4 0.091 0.1 12.5 1.1 1.3 0.179 0.014 0.071 0.841 -0.003 0.076 0.786
5 0.156 0.1 10.8 1.7 1.1 0.339 -0.005 0.090 0.831 0.002 0.081 0.788
6 0.439 0.1 6.8 3.0 0.7 0.681 -0.016 0.162 0.860 0.006 0.096 0.751

4 110 1 0.167 0.1 17.3 2.9 1.7 0.460 -0.018 0.071 0.826 0.003 0.061 0.846
2 0.192 0.1 24.0 4.6 2.4 0.763 0.006 0.073 0.878 -0.001 0.054 0.850
3 0.500 0.1 13.7 6.8 1.4 0.871 0.013 0.120 0.875 0.001 0.067 0.830
4 0.091 0.1 22.8 2.1 2.3 0.239 0.015 0.051 0.874 -0.002 0.055 0.841
5 0.156 0.1 19.8 3.1 2.0 0.504 -0.006 0.066 0.854 0.001 0.057 0.853
6 0.439 0.1 12.5 5.5 1.2 0.851 -0.014 0.120 0.871 0.002 0.069 0.825

4 180 1 0.167 0.1 28.4 4.7 2.8 0.587 -0.019 0.055 0.836 0.002 0.047 0.867
2 0.192 0.1 39.3 7.5 3.9 0.897 0.006 0.057 0.882 -0.000 0.042 0.868
3 0.500 0.1 22.3 11.2 2.2 0.956 0.013 0.093 0.879 -0.000 0.052 0.854
4 0.091 0.1 37.2 3.4 3.7 0.282 0.015 0.040 0.874 -0.001 0.043 0.868
5 0.156 0.1 32.2 5.0 3.2 0.621 -0.008 0.051 0.863 0.001 0.045 0.866
6 0.439 0.1 20.6 9.1 2.0 0.949 -0.016 0.093 0.875 0.000 0.053 0.857

5 60 1 0.167 0.3 9.3 1.5 2.8 0.059 -0.017 0.098 0.802 0.002 0.125 0.868
2 0.192 0.3 13.1 2.5 3.9 0.093 0.005 0.099 0.863 -0.000 0.114 0.870
3 0.500 0.3 7.5 3.8 2.3 0.144 0.009 0.162 0.867 0.003 0.138 0.861
4 0.091 0.3 12.5 1.1 3.7 0.032 0.014 0.072 0.841 -0.003 0.115 0.868
5 0.156 0.3 10.8 1.7 3.2 0.061 -0.005 0.090 0.833 0.002 0.119 0.867
6 0.439 0.3 6.8 3.0 2.0 0.144 -0.016 0.162 0.860 0.004 0.141 0.862

5 110 1 0.167 0.3 17.3 2.9 5.2 0.066 -0.018 0.071 0.826 0.003 0.090 0.880
2 0.192 0.3 24.0 4.6 7.2 0.099 0.006 0.072 0.878 -0.000 0.082 0.885
3 0.500 0.3 13.7 6.8 4.1 0.132 0.013 0.120 0.874 0.000 0.102 0.879
4 0.091 0.3 22.8 2.1 6.9 0.032 0.015 0.051 0.874 0.001 0.085 0.879
5 0.156 0.3 19.8 3.1 5.9 0.067 -0.006 0.066 0.855 0.002 0.088 0.881
6 0.439 0.3 12.5 5.5 3.8 0.133 -0.014 0.120 0.872 0.001 0.103 0.878

7 60 1 0.167 0.1 9.3 1.5 0.9 0.332 -0.017 0.098 0.805 0.005 0.075 0.822
2 0.192 0.1 13.1 2.5 1.3 0.553 0.005 0.099 0.864 0.000 0.068 0.825
3 0.500 0.1 7.5 3.8 0.8 0.765 0.009 0.162 0.864 0.006 0.082 0.808
4 0.091 0.3 12.5 1.1 3.7 0.035 0.014 0.071 0.839 -0.003 0.125 0.864
5 0.156 0.3 10.8 1.7 3.2 0.066 -0.005 0.090 0.832 0.001 0.132 0.860
6 0.439 0.3 6.8 3.0 2.0 0.150 -0.016 0.162 0.861 0.002 0.160 0.844

7 110 1 0.167 0.1 17.3 2.9 1.7 0.478 -0.018 0.071 0.826 0.002 0.053 0.859
2 0.192 0.1 24.0 4.6 2.4 0.778 0.006 0.073 0.878 -0.001 0.049 0.859
3 0.500 0.1 13.7 6.8 1.4 0.906 0.013 0.120 0.875 0.003 0.060 0.853
4 0.091 0.3 22.8 2.1 6.9 0.034 0.015 0.051 0.874 0.001 0.092 0.881
5 0.156 0.3 19.8 3.1 5.9 0.068 -0.006 0.066 0.853 0.002 0.097 0.878
6 0.439 0.3 12.5 5.5 3.8 0.142 -0.014 0.120 0.872 -0.000 0.118 0.870

TABLE 6.2: Operating performance of model 441 in selected scenarios
from Chapter 5, and the new scenario 7. Diffuse shows probability of
approval under diffuse priors. Bias, SE and coverage columns retain

the definitions already given.

chance occurrences at small sample sizes. Figure 6.1 illustrates this. The dots show

the posterior mean probability of toxicity in cohort 6 of scenario 1 and the horizon-

tal lines show 90% credible intervals. For clarity, we show only estimates from the

first 100 simulated iterations. The vertical purple dotted lines show the true toxicity
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probability, 10%, and the orange dashed lines show the mean of the posterior mean

estimates. The blue intervals contain the true value but the red intervals do not.

The left-hand panel shows those estimates by model 411 and the right-hand panel

model 441. For model 411, the orange and purple lines are so close as to be barely

distinguishable but there is a small amount of bias visible for model 441.

We see that the intervals for model 411 are generally narrower. This is not sur-

prising because each uses the full sample size of 60 patients to estimate only the

intercept parameter. In contrast, the extra parameters in model 441 admit much

more uncertainty at this modest sample size. Incongruously, even though the CIs

are generally wider in the 441 model, they are less likely to contain the true toxicity

value. We see a relative abundance of very low estimates with unduly narrow CIs.

The tenth iteration from the bottom is an extreme example. Having observed 0 tox-

icities in cohorts 4, 5 and 6 with sizes 14, 9 and 9 respectively, the posterior mean

toxicity estimates are very low. The posterior mean probabilities of toxicity in these

cohorts are all estimated to be less than 1% and 95th percentiles are each less than

4%. Faced with a chance occurrence, the model has produced parameter estimates

that are not only erroneous, but also unjustifiably precise.

The priors are partly to blame. The horseshoe-shaped prior distributions on the

event probability similar to those demonstrated in Figure 5.7, generated by the dif-

fuse parameter priors, are having an excessively adverse effect. In the chance neg-

ative example identified above, the data agree strongly with the large prior mass

placed close to the probability zero, pinning undue posterior mass to that boundary.

The combined effect of the priors and logit likelihood is to have removed too much

uncertainty from the posterior estimate. In contrast, a regularising effect could have

been provided by modestly informative priors, like our regularising priors in Chap-

ter 5, that prevent the model from over-fitting to chance events[64]. Unfortunately,

this particular example illustrates how diffuse priors can be inadvertently informa-

tive, and reflects what a misnomer ‘uninformative’ can be.

Whilst the example highlighted above leads to an erroneously low estimate of

toxicity, an error that Figure 6.1 shows is relatively common in model 441 compared

to model 411 under diffuse priors, we see from the locations and frequency of the

red lines that erroneously high estimates of toxicity are relatively common too. It
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is the coverage and variability of the toxicity estimates that have become impaired,

rather than the introduction of bias.

An alternative to changing the priors, naturally, is that we may recruit so many

patients that our posterior beliefs are dominated by the likelihood. However, once

again we are mindful that this thesis concerns itself with efficiency in clinical tri-

als. It is expedient to see priors as part of the overall model, chosen with similar

motivation as the likelihood function and the explanatory variables, to provide the

best inference possible. Priors that promote pathological behaviour like that demon-

strated above are a detriment to efficiency because they necessitate patients, who

themselves necessitate time and money, in order to counteract the misleading infor-

mation endowed in the posterior. Clinical trials provide a rare but costly opportu-

nity to make a decision that will impact the lives of many patients. It is preferable

to use priors that help the analysis to achieve its objectives. This does not mean

forcing the model to produce estimates that we expect a-priori. It means producing

estimates from the trial data that contain appropriate uncertainty, and stopping the

model from over-fitting.

It is interesting in scenario 2 to examine the coverages of estimates. In this sce-

nario, efficacy is low and toxicity is high in every cohort, and the correct decision is

to reject throughout. Coverage is now relatively poor for efficacy and acceptable in

toxicity. This is the opposite of what we saw in scenario 1, even though each sub-

model uses four parameters in each scenario. This suggests that bias is a greater risk

in logistic models when the true event rate is close to 0 or 1, as contraction in the

credible interval will occur at the boundary. As discussed above, this is exacerbated

by the diffuse priors.

In scenario 4, we see that performance is again relatively poor at N = 60. In

this scenario, raising N as high as 110 yields approval probabilities at least as high

as model 411 in cohorts 1, 2, 4 and 5. However, model 441 remains less likely to

approve in the high PD-L1 cohorts, 3 and 6. The toxicity coverage remains low in

these cohorts despite the comparatively high sample size. Overall sample size of the

order of N = 180 is required to restore the approval probabilities in these cohorts

close to those seen in model 411.
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In scenario 5 with N = 60, model 441 inflates the probability of incorrectly ap-

proving in cohorts 3 and 6 by approximately 4%. Even with sample size as high as

N = 110, this flaw is not completely rectified.

In Table 6.2, we have also added a new scenario 7 to test the discriminatory

power of the toxicity model. It uses the same efficacy probabilities as scenarios 4

and 5, but the rate of toxicity is low in TN patients and high in PT patients. We see

that the model is now very unlikely to approve in cohorts 4, 5, and 6, despite the

high efficacy in cohort 6. We see that N = 60 does not yield our desired approval

probability of 80% in cohort 3 but N = 110 raises the approval probability above

90%.

Overall, we have demonstrated that extra terms in the toxicity model will im-

prove inference as expected when toxicity varies by cohort. However, the extra pa-

rameters demand a greater sample size. To reproduce in scenarios 1-6 the operating

performance seen with model 411, up to N = 180 patients may be required. Once

again, the appetite for satisfying this burden will be driven by the clinical scenario.

Given the data already presented on pembrolizumab in a related patient group, the

motivation will not exist in PePS2 to triple the sample size to use model 441.

The previous two sections have concerned adding parameters in the effort to

produce a better model. Keeping all else constant, we saw that adding parameters

increases the amount of uncertainty in a model and reduces the statistical efficiency

of the method, a situation that can be rectified by recruiting more patients. This

forces us to contemplate that fewer parameters might be appropriate if it increases

statistical efficiency. We investigate that in the next section.

6.4 Removing the association between efficacy and toxicity

In the previous chapter, we saw evidence that questioned the benefit of modelling

associated co-primary outcomes. Scenarios 3 and 6 in Table 5.13 simulated efficacy

and toxicity events that were strongly negatively associated. These mirrored scenar-

ios 1 and 4 respectively in every other regard with the exception that the outcomes in

scenarios 1 and 4 were not associated, on average. Comparing scenario 1 to 3 and 4

to 6 in Table 5.13, model performance is practically unchanged. Here we investigate
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further the benefit of ψ in the joint model by considering an alternative model with

no association parameter:

logitπE(xi,θ) = α+ βx1i + γx2i + ζx3i

logitπT (xi,θ) = λ

πa,b(πE , πT ) = πaE(1− πE)(1−a)πbT (1− πT )(1−b)

(6.3)

Once again, a takes the value 1 for a patient if the efficacy event happened, else

0, and b plays the equivalent role for the toxicity event. This joint model assumes the

two events are independent. In Table 6.3, we simulate the effect of this assumption.

To provide comparability, we have once again used diffuse N(0, 102) priors on each

element of θ in Table 6.3.

Sc Coh PrEff PrTox Odds N Eff Tox Diffuse EffBias EffEmpSE EffCov ToxBias ToxEmpSE ToxCov
1 1 0.300 0.100 1.0 9.3 2.8 0.9 0.877 0.002 0.125 0.867 0.001 0.039 0.901

2 0.300 0.100 1.0 13.1 3.9 1.3 0.904 -0.002 0.113 0.866 0.001 0.039 0.901
3 0.300 0.100 1.0 7.5 2.3 0.8 0.816 0.002 0.140 0.859 0.001 0.039 0.901
4 0.300 0.100 1.0 12.5 3.7 1.2 0.897 -0.003 0.114 0.876 0.001 0.039 0.901
5 0.300 0.100 1.0 10.8 3.2 1.1 0.890 0.000 0.119 0.868 0.001 0.039 0.901
6 0.300 0.100 1.0 6.8 2.0 0.7 0.818 0.003 0.142 0.862 0.001 0.039 0.901

2 1 0.100 0.300 1.0 9.3 0.9 2.8 0.019 0.004 0.085 0.785 0.000 0.060 0.892
2 0.100 0.300 1.0 13.1 1.3 3.9 0.023 -0.001 0.074 0.806 0.000 0.060 0.892
3 0.100 0.300 1.0 7.5 0.8 2.3 0.021 0.005 0.094 0.737 0.000 0.060 0.892
4 0.100 0.300 1.0 12.5 1.2 3.7 0.021 -0.002 0.075 0.789 0.000 0.060 0.892
5 0.100 0.300 1.0 10.8 1.1 3.2 0.023 0.003 0.080 0.792 0.000 0.060 0.892
6 0.100 0.300 1.0 6.8 0.7 2.0 0.018 0.007 0.098 0.746 0.000 0.060 0.892

3 1 0.300 0.100 0.2 9.3 2.8 0.9 0.878 0.002 0.125 0.867 0.000 0.039 0.905
2 0.300 0.100 0.2 13.1 3.9 1.3 0.904 -0.002 0.113 0.868 0.000 0.039 0.905
3 0.300 0.100 0.2 7.5 2.3 0.8 0.817 0.002 0.140 0.861 0.000 0.039 0.905
4 0.300 0.100 0.2 12.5 3.7 1.2 0.897 -0.003 0.114 0.877 0.000 0.039 0.905
5 0.300 0.100 0.2 10.8 3.2 1.1 0.890 0.000 0.119 0.868 0.000 0.039 0.905
6 0.300 0.100 0.2 6.8 2.0 0.7 0.817 0.003 0.142 0.863 0.000 0.039 0.905

4 1 0.167 0.100 1.0 9.3 1.5 0.9 0.397 -0.017 0.098 0.806 0.000 0.039 0.900
2 0.192 0.100 1.0 13.1 2.5 1.3 0.635 0.005 0.099 0.864 0.000 0.039 0.900
3 0.500 0.100 1.0 7.5 3.8 0.8 0.974 0.009 0.162 0.869 0.000 0.039 0.900
4 0.091 0.100 1.0 12.5 1.1 1.3 0.214 0.014 0.071 0.842 0.000 0.039 0.900
5 0.156 0.100 1.0 10.8 1.7 1.1 0.417 -0.005 0.090 0.833 0.000 0.039 0.900
6 0.439 0.100 1.0 6.8 3.0 0.7 0.930 -0.017 0.162 0.861 0.000 0.039 0.900

5 1 0.167 0.300 1.0 9.3 1.5 2.8 0.038 -0.017 0.098 0.807 0.000 0.060 0.891
2 0.192 0.300 1.0 13.1 2.5 3.9 0.064 0.005 0.099 0.864 0.000 0.060 0.891
3 0.500 0.300 1.0 7.5 3.8 2.3 0.100 0.009 0.162 0.867 0.000 0.060 0.891
4 0.091 0.300 1.0 12.5 1.1 3.7 0.020 0.014 0.071 0.842 0.000 0.060 0.891
5 0.156 0.300 1.0 10.8 1.7 3.2 0.043 -0.005 0.090 0.833 0.000 0.060 0.891
6 0.439 0.300 1.0 6.8 3.0 2.0 0.098 -0.017 0.162 0.863 0.000 0.060 0.891

6 1 0.167 0.100 0.2 9.3 1.5 0.9 0.396 -0.017 0.098 0.806 0.001 0.039 0.902
2 0.192 0.100 0.2 13.1 2.5 1.3 0.633 0.005 0.099 0.866 0.001 0.039 0.902
3 0.500 0.100 0.2 7.5 3.8 0.8 0.974 0.009 0.162 0.869 0.001 0.039 0.902
4 0.091 0.100 0.2 12.5 1.1 1.3 0.214 0.014 0.071 0.841 0.001 0.039 0.902
5 0.156 0.100 0.2 10.8 1.7 1.1 0.417 -0.005 0.090 0.831 0.001 0.039 0.902
6 0.439 0.100 0.2 6.8 3.0 0.7 0.929 -0.017 0.162 0.861 0.001 0.039 0.902

TABLE 6.3: Operating performance of model 410 in scenarios from
Chapter 5 with total sample size 60. Diffuse shows probability of ap-
proval under diffuse priors. Bias, SE and coverage columns retain the

definitions already given.

Comparing Table 6.3 to Tables 5.13 and 5.16, we see that performance is virtually
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identical. The differences in approval probabilities are of the order of 0.1%. Likewise,

the coverages of the 90% CIs are practically identical, as are the estimates of bias and

standard error. When appraising the model by its ability to correctly approve or

reject a treatment, there is no benefit in estimating the association parameter. We

note that ψ does not appear in either of the marginal models for πE or πT (6.3),

and thus does not determine the marginal probability of either event or affect the

approval determined by (5.12). However, as we noted above, performance is driven

not naively by the number of parameters, but by the scope for borrowing and how

this is impacted by the arrangement of parameters. We know from Figure 5.9 that

model 411 received information on the prevailing association between efficacy and

toxicity and adapted its estimation of ψ.

The ψ parameter appears in the general joint-likelihood (2.4) and thus also in the

conditional density of πE given πT , for instance. In the remainder of this section, we

demonstrate how ψ would affect inference on unobserved efficacy after confirmed

presence or absence of toxicity.

Imagine a trial scenario where a set of complete patient outcomes X has been

observed. Suppose also that the toxicity status for a further patient with baseline

covariate vector xi is known but their efficacy status is not. Let T be a Bernoulli

random variable taking values ∈ {0, 1}, representing the patient’s toxicity outcome.

Using the identity that links conditional and joint probability for events A and

B:

Pr(A|B) =
Pr(A ∩B)

Pr(B)
(6.4)

we can estimate the posterior conditional probability of efficacy for this patient

given that toxicity occurred as:

πE(xi,θ|X, T = 1) =
π1,1(πE(xi,θ|X), πT (xi,θ|X), ψ)

πT (xi,θ|X)
(6.5)

and given that toxicity has not occurred as:

πE(xi,θ|X, T = 0) =
π1,0(πE(xi,θ|X), πT (xi,θ|X), ψ)

1− πT (xi,θ|X)
(6.6)

To illustrate this, we sampled a single trial dataset with N = 60 using event rates
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6.4. Removing the association between efficacy and toxicity

FIGURE 6.2: Posterior conditional Prob(Eff) under two models using
diffuse priors, where toxicity status is categorically observed but effi-
cacy is unknown. The wider observed dataset that forms the posterior

distributions is described in the text.

and associations from scenario 6 in Table 6.3, i.e. efficacy is very likely with high

PD-L1, but efficacy and toxicity are strongly negatively associated.

In our simulated data, there were 3 efficacy events from 5 patients in cohort 3, the

cohort of TN patients with high PD-L1, so the observed efficacy rate slightly exceeds

the underlying true rate of 50%. This dataset was then fit using models 411 and 410,

each using their sets of diffuse priors.

Suppose that we wish to perform inference on an extra patient that has covariate

vector that would put them in cohort 3. A posteriori, model 411 estimates the effi-

cacy rate to be 63% and model 410 estimates it to be 64% in cohort 3. The posterior

densities for the probability of efficacy conditional on the confirmed presence and

absence of toxicity using both models are shown in Figure 6.2.

As expected, the densities under model 410 are identical because this model lacks

the association parameter and cannot reflect the partial information. The expected

probability of efficacy in this scenario is 64%, irrespective the observed toxicity out-

come.

In contrast, the posterior density for the efficacy probability is shifted to the left

under model 411 if toxicity is observed. This accurately reflects the underlying real-

ity that efficacy and toxicity are negatively correlated, so efficacy is less likely when

toxicity is observed. Here, the expected efficacy probability has fallen by 14% to 49%.
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When the absence of toxicity is observed, the expected efficacy probability increases

very modestly to 65%. The probability has increased to correctly reflect the nega-

tive association. However, the increase is relatively small because toxicity is rare -

the true underlying rate is 10%. Confirmation of the absence of toxicity provides

relatively little additional information on efficacy.

In Chapter 2 we introduced the notion of outcome ambiguity where only one of

the two co-primary outcomes is known. Our motivation then was dose selection but

this method of conditional inference is useful for making judgements when one of

the outcomes is missing.

We see that ψ performs a useful role in model 411 that will improve inference in

situations with partially observed outcomes. Table 6.3 shows that performance is not

improved by removing the parameter so it seems natural to retain it in the model.

However, it is important that performance of the model is appraised to carry out the

intended inference. If it is desired that conditional inference be reliable, simulations

should be used to assess the performance of the model at this particular task. For

instance, the sample size and the priors need to be sufficiently informative to iden-

tify ψ and provide reliable conditional inference. We stress this because with small

sample sizes, chance spurious associations could adversely impact inference. In this

situation, a regularising prior on ψ would likely be beneficial. This was not desired

in PePS2 and further investigation of parameterisation for reliable conditional infer-

ence is beyond the scope of this thesis.

We advocate retaining the association parameter.

6.5 Discussion

In this chapter, we have considered notable embellishments to the P2TNE model pre-

sented for PePS2 in Chapter 5. These embellishments all sought to alter the model

forms. By adding interaction terms to the efficacy sub-model to abrogate the piece-

wise parallel assumption, and terms to the toxicity sub-model to handle heterogene-

ity therein, we showed that more discriminative inference is possible. However, we

saw that materially greater sample size is required to inform estimation of the ex-

tra parameters and maintain the sought level of overall statistical performance. A
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unifying conclusion to these experiments in the context of PePS2 is that the poten-

tial inferential benefits were not particularly valuable and did not warrant greater

accrual and a longer trial.

The incremental information to estimate the extra parameters could have come

from the priors rather than the outcomes. In the examples presented in this chapter,

we used very diffuse priors for comparability. The information these priors and the

diffuse priors in the previous chapter contain can be legitimately said to be minimal,

allowing us to ascribe difference in performance to the model specifications. This

satisfies the objective of this chapter. If used in a real trial situation, we would use

more informative priors that generate outcomes that genuinely reflect our expecta-

tion.

Having observed the cost of parameters to performance, we then considered

whether our model could be improved by removing the association parameter that

appeared to provide little benefit. We found that performance did not improve when

this parameter was removed. Furthermore, we demonstrated how this parameter

could be used to improve conditional inference when the co-primary outcome mea-

sures were partly observed. In these circumstances, it is natural to retain the associ-

ation parameter.

An undesirable curiosity of the categorical model is that it offers the same ap-

proval probabilities to patients with PD-L1 equal to 50% and 100%. In ongoing work

in Appendix D, we explore the use of continuous PD-L1 as a baseline covariate, in

place of the categorical variable.
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Chapter 7

Conclusion

In this thesis, we have considered methods that enhance efficiency in clinical trials

with limited sample size. These methods have been operational and statistical, fa-

cilitating efficient clinical trial conduct and analysis. They broadly imply two over-

arching goals: i) use more outcomes to answer questions in trials; and ii) use all

available information. We provide concluding remarks below.

7.1 Use more outcomes to answer questions in trials

Seamless phase I/II designs like EffTox[92] allow us to add efficacy to the typical

toxicity outcome when selecting doses. This could be necessary if there is doubt

about the monotonicity of the dose-efficacy relationship. By additionally evaluating

short-term efficacy, a dose-finding trial can address the traditional phase I objective

of identifying a dose suitable for further research, and an objective typical of phase II

trials in assessing whether there is sufficient activity to warrant a randomised study.

It is likely that achieving both of these objectives in a single clinical trial will be faster

and cheaper than running separate trials.

In Chapter 2, we gave an in-depth account of our use of EffTox in Matchpoint.

Since writing the chapter, this work has been published by Brock et al.[17]. Based on

our experience implementing this infrequently-used design, we advocated practical

measures such as phase I/II dose transition pathways (DTPs) to check in advance

that a parameterisation behaves in a desirable and consistent way, and gave an il-

lustration of latent undesirable behaviour in our original parameterisation. We in-

troduced the phenomena of dose ambivalence, where different doses can be recom-

mended in response to identical outcomes because of the uncertainty inherent in the
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analysis and the imperfect calculation method. We overcame this challenge with re-

peated calculation of the dose decision. We also introduced the challenge presented

by outcome ambiguity and how it can be overcome using DTPs. Phase I/II trials

are efficient because they allow the objectives of two trial phases to be addressed

at once. However, the described phenomena can erode that efficiency by allowing

sub-optimal doses to be selected and causing delays in trial conduct. The methods

we introduce show how those complications can be managed and overcome.

In Chapter 3, we introduced a novel hybrid of EffTox and Wages & Tait’s (WT)

design for phase I/II trials[98]. We compared the hybrid to variants of EffTox and

WT in a simulation study. A version of WT that does not use randomisation showed

superior statistical performance, achieving our operational efficiency objective with-

out compromising statistical efficiency. Our hybrid achieved the same operational

objective but offered slightly inferior statistical performance and greater heterogene-

ity, whilst allocating marginally fewer patients at attractive doses.

We remarked that additional innovation of WT would allow further streamlining

of the trial objectives. In phase I/II trials, we already require that efficacy and tox-

icity can be evaluated over a similar, acceptable time horizon. In situations where

randomisation to either a trivial or non-trivial dose is ethical, the zero-dose cohort

may serve as a control arm. This potentially elevates a dose-finding trial to ran-

domised controlled trial status, thus facilitating causal inference. In such scenarios,

a single large dose-finding trial could be used to find the most promising dose of

an experimental treatment and provide a randomised comparison to a control, thus

achieving the objectives of phases I and II, requiring only a subsequent phase III trial

to compare long term clinical efficacy. This takes to the extreme the potential bene-

fits of answering more questions in clinical trials. Potential applications include where

an experimental agent is optionally added to the standard of care. Crucially, giv-

ing an experimental treatment instead of a standard therapy is unlikely to be ethical

when efficacy evidence exists for the latter but not the former. Thus, this method is

unlikely to yield a comparison of a novel therapy to a completely distinct standard

therapy.

These examples are part of a wider trend to combine the traditional phases in

search of efficiency. Beyond this thesis, multi-arm multi-stage (MAMS) designs[77]
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allow researchers to conduct seamless phase II/III trials. Further so-called platform

trials, such as basket trials that assess a single treatment in many diseases, and um-

brella trials that assess many treatments in a single disease, are becoming increasingly

common. These elaborate different aspects of the traditional Patient, Intervention,

Comparator, Outcome (PICO) paradigm that has formed the foundation of innumer-

able historic clinical trials. The innovations reflect the desire to answer more ques-

tions under one protocol, augment traditional trial methods to accommodate the

abundance of potential treatments and molecular stratifiers, and conduct trials that

accommodate the likely biological nature of contemporary experimental treatments.

7.2 Use all available information

The second of our overarching conclusions advocates the use of all available infor-

mation to maximise statistical efficiency.

In Chapter 4, we presented a design to conduct a pivotal randomised clinical

trial in an ultra-rare disease. We demonstrated by simulation that we could expect

to achieve conventional error rates using 70 patients assessed seven times through-

out the trial. Critical to our parameterisation of the simulations and our proposal to

analyse the repeated outcome measures by hierarchical model was the data on the

cohort of patients with Wolfram syndrome from St Louis. We were able to specify

a model that would plausibly test the presence of a treatment effect based on the St

Louis outcomes, and investigate the impact of longitudinal missing data on statis-

tical efficiency. We did not incorporate any information from the St Louis data into

the model, via priors, for example, because the trial seeks to be pivotal.

Efficiency was a factor in the choice of analysis method in TreatWolfram. We

demonstrated that an analysis of final visual acuity values alone was inefficient, re-

quiring an infeasibly high sample size. We expect to conduct a trial that will achieve

acceptable power with our constrained sample size by using a hierarchical model

to analyse the repeated measures data. We learned that patient-specific intercepts

and gradients would likely be required to account for patient heterogeneity. That

the outcome measures are subject to modest variability and are likely to be highly
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correlated within patient means that inflation factors to account for missing data are

relatively low, promoting an efficient analysis if up to 15% of data is missing.

There are other examples of structured outcomes that arise in clinical trials be-

yond repeated measures. Outcomes nested within individuals arise in crossover tri-

als, and in scenarios where randomisation can be conducted on experimental units

within individuals. Examples of the latter include trials of topical treatments like

dressings, drops, and ointments that can be randomly allocated to wounds, burns,

or diseased eyes within patients. Experimental designs that facilitate within-patient

randomisation are particularly efficient because they control for a practically un-

bounded and uncountable number of potential confounding variables. For instance,

lifestyle and environmental factors, concomitant medications, and every known and

unknown gene expression are generally controlled by comparing outcomes within in-

dividual. We noted that there was further opportunity to increase expected power in

TreatWolfram by analysing the repeated visual acuity outcomes within eye, nested

within individuals. This scenario does not permit within patient randomisation be-

cause the oral medication is systemic. However, it will generate approximately twice

the number of series, and increase statistical power. The expected gain will be much

less than that notionally generated by doubling the sample size however, because of

the anticipated high correlation between each individual’s eyes.

Efficient use of the available information was also the theme of Chapter 5. We in-

troduced a novel refinement of Thall, Nguyen & Estey’s dose-finding design[89] that

we called P2TNE. This design incorporates baseline covariates to assess co-primary

binary efficacy and toxicity outcomes. Our motivation was PePS2, a trial of pem-

brolizumab in performance status 2 non-small-cell lung cancer patients. Based on

the information reported in previous trials[37, 44] of the same treatment in closely-

related patient groups, we anticipate that PD-L1 expression and pretreatedness will

be predictive of efficacy but not toxicity in the PS2 patient population. We demon-

strated that including the baseline predictive variables in the analysis model im-

proved performance considerably compared to separate cohort-specific inferences

provided by beta-binomial models. This improvement was apparent under diffuse,

regularising and informative priors. We noted several assumptions implicit in our

marginal model forms that had the potential to bias conclusions. By considering
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more complex model specifications in Chapter 6, we learned that covariate terms

in the toxicity sub-model and interaction terms in the efficacy sub-model required

substantial increases in sample size. This was considered unjustifiable given the out-

comes suggested by previous trials and the potential benefit to the PS2 population

of conducting a fast phase II trial. This illustrates a restriction of statistical analysis

pertinent to efficiency that is felt particularly strongly in clinical trials. The perfect

analysis1 does not exist: Inference can practically always be improved by collect-

ing more data. However, trials are expensive, arduous and numerous. Achieving

the trial objective in the agreed time-frame and avoiding the diversion of subsidiary

questions and elaborate flourishes is instrumental in a successful trial.

Another important source of information in the P2TNE example was our pa-

rameter priors. It is a pervasive belief in biostatistics that priors should be diffuse to

avoid biasing an analysis with external information. This view is seen to be question-

able when we consider the opportunity for influence stemming from investigator

degrees of freedom, like experimental design, choice of likelihood function, inclu-

sion and exclusion of explanatory variables, choice of statistical test, and method of

dealing with missing data. We demonstrated that the diffuse priors provided poor

posterior coverage and empirical standard error of estimated event rates, particu-

larly when the models contained many terms or underlying event rates were very

low. Our statistical model was more efficient under our regularising and informa-

tive priors. We advocate that priors are seen as any other part of an analysis that is

chosen to promote accuracy and efficiency, and requires justification in light of the

alternatives.

In Chapter 6, we demonstrated the role played by the association parameter in

conditional inference on partially observed outcomes in the EffTox, TNE and P2TNE

models. This further reiterated the benefit of using all available information.

In Appendix D, we considered the underlying continuous PD-L1 covariate in-

stead of the categorisation presented in [37]. We expected the continuous covariate

to be more efficient and yield superior inference because it can discriminate between

more cases than the categorisation. For instance, the continuous covariate can reflect

that a PD-L1 score of 40% is superior to a score of 5%, but the categorical variable

1also, the perfect thesis
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treats these as equal. Whilst we did improve inference using continuous PD-L1 in

some scenarios, we noted the care needed when specifying the model form and pri-

ors to avoid inadvertently coercing undesirable information that is detrimental to

analytical efficiency.

A topic largely absent from Chapters 5 and 6 is the potential benefit for the re-

sponse variables to be continuous rather than binary. Efficacy is naturally continuous

when we consider that tumour size underlies the response categories defined by

RECIST[35]. The toxicity outcome may seem more naturally dichotomous in that

a specific event either occurs or does not. However, methods have been proposed

that analyse the total toxicity burden, informed by the frequency and severity of all

adverse events sustained by patients. Evidence of the dominant culture treating effi-

cacy as categorical or binary is that the novel methods in this thesis are refinements

of previous methods[89, 92, 98] and that the RECIST[35] paper has been cited over

11,000 times (according to Google Scholar at 05-Sep-2018). Nevertheless, methods

have been introduced by Wason et al.[100–102] that demonstrate the benefit to ef-

ficiency from retaining the continuous tumour measurements. More recently, joint

modelling methods have been proposed[14] that use two-level hierarchical structure

to analyse the repeated measurements of tumour lesions nested within individual

(i.e. the constituent parts of the RECIST calculation) through time as an ongoing

mediator of the hazard of some time-to-event endpoint like death. These methods

present a desirable future direction for the methods presented herein in the pursuit

of further efficiency.

7.3 Final conclusion

This thesis has demonstrated that efficiency in clinical trials comes from a blend

of operational and statistical choices. Investigators seeking to improve efficiency

should consider how they may use multiple outcomes to address the objectives of

trials; and how they may use all available information, be that structured patient

data, association in outcome measures, baseline covariates or priors. The settings

for the contained methodological work have been the Matchpoint, TreatWolfram
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and PePS2 trials of the University of Birmingham’s Cancer Research UK Clinical

Trials Unit.

The Matchpoint trial started recruiting patients in 2015. Shortly after it opened,

the design parameterisation was slightly altered, as described in Section 2.3.2.6. Al-

most from the start, dose-transition pathways and repeated invocations of the dose-

update decision were used to detect dose ambivalence and routinely reported to the

data monitoring committee to help justify dose selections. By late 2018, the trial had

evaluated 17 patients and remained open to recruitment.

The TreatWolfram trial opened in the UK at the beginning of 2019 and imme-

diately started randomising patients. It seeks to recruit 70 patients and these are

being randomised to sodium valproate or placebo at a ratio of 2:1. The team intends

to open European sites in France, Spain and Poland in 2019. The primary outcome

measure is visual acuity and assessments are being taken at baseline and then every

six months for three years. The intended analysis model will use population-level ef-

fects for time and the interaction of time and treatment allocation, with patient-level

terms for intercepts and gradients with respect to time.

PePS2 opened for recruitment at the beginning of 2017 and recruited 63 patients

between then and February 2018. Baseline pretreatedness and PD-L1 status were

sought at registration for all patients. The intended primary analysis will use the

411 model using categorical PD-L1 and the Gumbel association function, expanded

at length in Chapter 5. This will be used to present the evidence on efficacy and

toxicity in the six cohorts in Table 5.3. Sensitivity analyses may be conducted using

the 611 and 441 models from Chapter 6. The association parameter is performing

an important role in allowing the trialists to study the association between joint out-

comes.
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Published form of Chapter 2

The paper appears overleaf.
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Supplementary material for

Chapter 4

B.1 Literature review search strategy

On 08-March-2017, we searched PubMed with the search phrase “visual acuity sam-

ple size trial”. The PubMed search engine generalised this search string to be:

(“visual acuity”[MeSH Terms] OR (“visual”[All Fields] AND “acu-

ity”[All Fields]) OR “visual acuity”[All Fields]) AND (“sample size”[MeSH

Terms] OR (“sample”[All Fields] AND “size”[All Fields]) OR “sample

size”[All Fields]) AND (“clinical trials as topic”[MeSH Terms] OR (“clin-

ical”[All Fields] AND “trials”[All Fields] AND “topic”[All Fields]) OR

“clinical trials as topic”[All Fields] OR “trial”[All Fields])

The search returned 109 results.

Abstracts were reviewed for all results and full-texts were sought in all cases.

25 manuscripts were not immediately available through the University of Birming-

ham’s package of journal subscriptions. Of these 25, it was evident from the content

of the abstract alone in eight instances that the manuscript would not replicate our

method. This was because the abstract identified another method for calculating

sample size (n = 3), described a systematic review that did not require a prospec-

tive sample size estimate (n = 2), identified a non-longitudinal analysis method

(n = 2) or listed outcomes but omitted visual acuity (n = 1). In the remaining 17

cases, 16 were found to be listed on ResearchGate and a full-text copy was requested
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directly from the author(s). Six full-text manuscripts were obtained from Research-

Gate in this way and formed part of the review described below. We resigned that

the residual eleven manuscripts would remain unavailable but did not envisage that

it would impact the generalisability of our results. Ninety full-text manuscripts were

obtained and reviewed, summarised in Table 4.6.

B.2 Grading our efforts by framework of Parmar et al.

Whilst the TreatWolfram trial was being designed, Parmar et al.[72] published guid-

ance on sequential steps that may be taken to arrive at a defensible trial using a

feasible sample size when conducting randomised controlled trials in rare diseases.

Those steps, with the pertinent choice in TreatWolfram, are listed in Table B.1. We

discuss the most noteworthy of those points now.

We addressed each item listed under the objective of increasing what is feasible.

It became obvious relatively early on that repeated measures analysis and interna-

tional recruitment would be necessary to increase the information content. Widening

the eligibility criteria was not an option because the syndrome is genetically defined.

We also addressed most of the commonly considered approaches. As described, we

sought the outcomes with the highest information content. It was perhaps fortuitous

that the key outcome of visual acuity saw relatively large changes through time with

relatively modest variability, making it conducive to study. The trial and intended

analysis should have power of least approximately 80% to detect a treatment effect

of approximately 50% in VA.

Having reached a feasible and defensible design, we had no reason to explore

any of the less common approaches. It is reassuring to see that the decisions we took to

arrive at a feasible design bear a high affinity for the advice of Parmar et al.[72]
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Item Wolfram
1. Increase what is feasible
Increase accrual and / or follow-
up time

We increased trial to 3 years and
repeated measures to reach a
feasible experiment.

Broaden eligibility criteria This is not an option as the syn-
drome is monogenic

Extend collaboration nationally We will recruit nationally in the
UK

Extend collaboration interna-
tionally

We will use international sites

2. Explore commonly-considered approaches to reducing sample size
Identify experimental arm
which starkly differs from
control arm

We only had one experimental
arm

Change outcome to one that is is
more information-heavy

VA & VPV were selected for
maximal information content.

Define target difference that is
realistic and worthwhile, which
might be larger

Targeting a 50% treatment effect
in VA was deemed worthwhile.
Slightly larger effect had to be
used in VPV considering the in-
vasive nature of frequent assess-
ment.

Relax power by a small amount Power stands at approximately
80%

3. Explore less common approaches to reducing sample size
Relax α a small amount We managed to retain the con-

ventional 5%
Move from two- to one-sided ef-
fects

For this pivotal study, conven-
tional two-sided test used. We
had no need to use a one-sided
test.

Include covariate information We considered some patient
characteristics in this chapter
but they appeared to yield little
benefit. No further prognostic
factors are known.

Re-randomise patients The duration of the trial was al-
ready quite long.

Use external information We had no need.

TABLE B.1: Our choices on TreatWolfram summarised according to
the framework published by Parmar et al.[72].
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The following sections are included because they address potential questions that

the reader might have about the methods in the main text.

C.1 Alternative cohort prevalences in P2TNE simulations

In all of the simulations presented in the main body, we use the parameter vector

ρ̂ = (15.7, 21.8, 12.4, 20.7, 18.0, 11.4) to sample cohort memberships, for the reasons

described. For clarity in this section, we refer to that set of prevalences derived for

the PePS2 trial as ρ̂P . We investigate the sensitivity of our P2TNE implementation to

the prevalences used by comparing performance under the alternative vector ρ̂A =

(16.67, 16.67, 16.67, 16.67, 16.67, 16.67), labelled with subscript A to denote it as an

alternative. Under ρ̂A, patients are uniformly distributed amongst the six cohorts

and the expected size of each is 10 patients.

Table C.1 compares the performance of P2TNE designs using cohort prevalences

ρ̂P and ρ̂A in scenario 8 of our simulations in the main text. Once again, scenario 8

was chosen for its representativeness and variety. The first thing to note is that the

probability of approving treatment has changed by no more than 4% in any cohort.

In all cohorts except one, the probability of accepting treatment has increased where

N has increased, and vice-versa. This is what we would expect.

Somewhat curiously, the performance in cohort 4 has actually improved with

199



Appendix C. Supplementary material for Chapter 5

TABLE C.1: Comparison of P2TNE performance in scenario 4 of
Table 5.13 using the cohort prevalences derived in the main body
and alternative, uniform prevalences. N is the expected cohort size.
Pr(Approve) is the probability of the P2TNE design approving the

treatment.

Scenario 8 ρ̂P ρ̂A
Cohort Pr(Eff) Pr(Tox) N Pr(Approve) N Pr(Approve)

1 0.167 0.1 9.5 0.457 10.0 0.483
2 0.192 0.1 13.1 0.681 10.0 0.654
3 0.500 0.1 7.4 0.979 10.0 0.989
4 0.091 0.1 12.4 0.299 10.0 0.330
5 0.156 0.1 10.8 0.493 10.0 0.511
6 0.439 0.1 6.8 0.924 10.0 0.961

fewer patients. This might seem counter-intuitive. However, in P2TNE, the prob-

ability of accepting a treatment in a cohort is affected by the outcomes in other co-

horts. By transitioning from ρ̂P to ρ̂A, we have effectively allocated more patients to

the high PD-L1 cohorts, specifically the cohorts with the highest response rates. This

has raised the expected baseline rate of response, i.e. efficacy is believed more likely

in all cohorts. This is felt most sensitively in the cohort with the lowest response

rate, namely cohort 4.

In the main text we showed via simulation that the P2TNE design has good op-

erating characteristics in a wide range of scenarios. All these simulations used a

common assumed set of cohort prevalences. In some trial scenarios where recruit-

ment is stratified by the predictive variables, there will be no uncertainty about the

realised cohort sizes. In “all-comers" trials like PePS2, where the cohort sizes will

be randomly determined, Table C.1 shows that P2TNE is robust to reasonable devi-

ations from the assumed cohort prevalences.
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D.1 Continuous PD-L1 as a covariate

The process of categorisation throws away information. This is familiar to statisti-

cians[2]. For instance, with respect to a continuous outcome measure, the values for

individual patients can be ordered from smallest to largest. When this measure is

categorised to some scheme of ordered disjoint sets (e.g. “0-10”, “10-20”, etc), ties,

where two or more patients have the same score, are necessarily more common. For

instance, patients with scores 2 and 8 can be distinctly and unambiguously ordered

with respect to the continuous measure, but are treated as equal in a categorisation

scheme containing the set “0-10”. This inability to resolve ties is the essence of infor-

mation loss, and degrades the efficiency of a statistical analysis.

Much of the information that informed the design of PePS2 came from the KEYNOTE-

001 study published by Garon et al[37]. We have hitherto used the three-level cate-

gorical PD-L1 variable that they introduced and validated. However, it would theo-

retically benefit us to eschew the categorisation in favour of the underlying continu-

ous PD-L1 proportion, bounded on [0, 1].
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PD-L1 score Screened Treated

Limits (%) Mid-point (%) Prevalence Prob(OR)

k lk − uk mk N ρk N ωk

1 0 0 323 0.392 87 0.081

2 1-24 12.5 255 0.310 147 0.129

3 25-49 37 55 0.067 27 0.194

4 50-74 62 71 0.086 39 0.296

5 75-100 87.5 120 0.146 72 0.454

Total 824 372

TABLE D.1: Distribution of PD-L1 scores in screened patients and
probabilities of objective response (OR) in treated patients, repro-
duced from Figure S4 of the supplementary information of Garon et
al.[37]. The authors label the lowest category as “< 1”. For the pur-

poses of modelling, we have interpreted this as 0.

In the supplementary appendix, Garon et al. provide the prevalence information

in Table D.1, showing the distribution of the PD-L1 scores for all screened patients.

It is more granular than the data in the main paper, using k = 5 categories instead

of three. We infer from the boundaries that PD-L1 score is recorded to the nearest

whole percent, else it would be ambiguous to which category a score of 24.5% would

belong, for instance. For the purposes of modelling, we have given the mid-point of

the PD-L1 categories, mk in Table D.1.

The PD-L1 frequencies are plotted in Figure D.1. We see that the distribution of

scores is bimodal, non-normal and asymmetric. The most common category is the

biomarker-negative cohort, PD-L1 < 1%. There is another local peak in the category

PD-L1 > 75%, and relatively few patients in the third and fourth cohorts.

Garon et al. also present the observed probabilities of objective response (OR) in

those same PD-L1 categories. These are given in Table D.1 and plotted in Figure D.2.

As in the previous chapter, we see that the probability of response is convincingly

associated with PD-L1 score.

Garon et al. do not provide patient-level PD-L1 scores and responses. If they did,

we could fit a generalised linear model (GLM) using PD-L1 score as an independent

variable to explain the chances of OR. With the resulting model, we could infer the
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FIGURE D.1: Count of screened patients by PD-L1 score, reproduced
from Figure S4 of the supplementary information of Garon et al.[37].

FIGURE D.2: Probability of objective response by PD-L1 score, re-
produced from Figure S4 of the supplementary information of Garon
et al.[37]. The orange dots are the values estimated by the model in

(D.1).
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probability of OR at any PD-L1 score. Instead, we will improvise with the data we

have. The orange dots in Figure D.2 show the fitted values according to the GLM

with a logit link function given by

logitωk | mk = α+ βmk, k = 1, ..., 5

= −2.29 + 2.40mk

(D.1)

when fit using the glm function in R, where ωk andmk are given in Table D.1. We

see from Figure D.2 that the resulting fit is good, and that interpreting the probability

of response as a continuous function of PD-L1 is a plausible working model. There

are errors on the probability scale of approximately 1% in cohorts 1, 2 and 4, and very

small errors in cohorts 3 and 5. The intercept coefficient says that the probability of

OR when PD-L1 = 0 is logit−1 (−2.292) = expit(-2.292) = 9.2%. The slope coefficient

says that the odds of OR are scaled by exp (0.01× 2.40) = 1.024, i.e. increases by

2.4%, for each 1% absolute increase in PD-L1 score.

In following sections, we use a similar method of regressing response probabili-

ties against PD-L1 category mid-points, mk, to produce data-generating models that

match our simulation scenarios used hitherto.

D.1.1 P2TNE models to use continuous PD-L1 in PePS2

In this section, we consider models that facilitate the analysis of PePS2 outcomes

with continuous PD-L1 and binary pre-treatment status as baseline covariates. The

general P2TNE model presented in the previous chapter used logit models for the

marginal probabilities of efficacy and toxicity:

πE(x,θ) = g(x,θ) and πT (x,θ) = h(x,θ) (D.2)

We will use that general form again to investigate models with different choices

for g and h and re-use our shorthand to identify models by the number of parameters

in the three model components.

Once again, let us use x1i to designate pre-treatment status, with x1i = 1 sig-

nifying that patient i has been previously treated, else x1i = 0. Again, we refer to
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those patients with x1 = 0 as TN for treatment naive, and those with x1 = 1 as PT for

pre-treated. In the previous chapter, we used dummy variables x2i and x3i that deter-

mined membership of the high, medium and low PD-L1 categories. Henceforth, let

us redefine x2i to be PD-L1 score for patient i, taking values on [0, 1].

We demonstrated previously that overall approval probability of the ensemble

model does not depend on the association parameter ψ. However, we identified

theoretical benefits and no evidence of detriment to performance, so we retain ψ

and use the association model (2.4).

We use the following marginal models:

logitπE(xi,θ) = α+ βx1i + γx2i + ζx1ix2i (D.3)

and

logitπT (xi,θ) = λ (D.4)

There is an interaction between pretreatedness and PD-L1 in the efficacy model.

Toxicity is assumed uniform. We refer to this as model 411c, with the suffix c reflect-

ing that the use of continuous PD-L1.

The posterior quantities (5.7) to (5.11), and the approval criteria (5.12) are re-used

in this study. Posterior sampling is again performed using Stan[22].

D.1.2 Randomly sampling covariates

Randomly sampling PD-L1 scores will allow us to assess the performance of our

models on unseen data. We will sample PD-L1 scores to mimic the distribution

presented in Table D.1 because we expect that this will reflect the distribution of

scores in the PePS2 population. We only have frequencies in five categories, and no

further information on the distribution of the individual scores. However, this is

enough to create a functional and plausible method for simulating PD-L1 data. We

propose to sample n PD-L1 scores that mimic the distribution in Table D.1 using the

following algorithm:
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FIGURE D.3: Two examples of n = 824 simulated PD-L1 samples
using the algorithm described above.

FIGURE D.4: Two examples of n = 60 simulated PD-L1 samples using
the algorithm described above.

1. Sample cohort sizes n1, n2, n3, n4, n5 from a multinomial distribution with prob-

ability parameter ρ = (ρ1, ..., ρ5), so that
∑5

i=1 ni = n;

2. Sample nk PD-L1 scores assumed to be uniformly distributed on [lk, uk], for

k = 1, ..., 5.

The values for ρk, lk and uk are given in Table D.1. PD-L1 scores in cohort 1 are taken

simply to be 0.

Figure D.3 shows two samples of n = 824 PD-L1 scores simulated by this algo-

rithm. The sample size was fixed to match that in Figure D.1. Many similarities and

some modest differences are immediately recognisable. Two further examples are

given in Figure D.4 with n = 60. Much more variability is now apparent.

Pretreatedness is sampled as a Bernoulli random variable with success parameter

0.5.
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D.1.3 Sampling efficacy and toxicity events

In simulations in Chapter 5, we assumed true probabilities of efficacy and toxicity in

each of the six cohorts. With continuous PD-L1 scores, that simplicity is no longer

present1. Instead, we now assume that models determine the probabilities of efficacy

and toxicity from PD-L1 score and pre-treatment status. We refer to these as event

generating models (EGMs). Generating events in this way presents a methodological

challenge. The EGMs should be realistic in order to provide useful inferences on

performance of the analysis model on unseen data. However, we should be mindful

of the degree of similarity between the model used to simulate events and that used

to analyse them. If the two models are unjustifiably similar, simulations will make

the analysis method appear artificially good.

We address this potential hazard by using as EGMs saturated generalised linear

regression models that exactly match the event probabilities for a PD-L1 score in the

centre of the cohort range in the categorised setting. For example, the probability

of efficacy for a PT patient with PD-L1 score of 75% will match that of a patient in

cohort 6 in Chapter 5. The event probabilities at the other PD-L1 scores are interpo-

lated by the model. This approach has the benefit of allowing us to compare model

performance under categorised and continuous PD-L1.

Scenario Efficacy EGM Toxicity EGM Chapter 5 scenario

1c πE = 0.3 πT = 0.1 1

2c πE = 0.1 πT = 0.3 2

4c logitπE = −1.61− 0.69x1 − 0.05x2 + 2.93x22 + 2.36x1x2 − 2.35x1x
2
2 πT = 0.1 4

5c logitπE = −1.61− 0.69x1 − 0.05x2 + 2.93x22 + 2.36x1x2 − 2.35x1x
2
2 πT = 0.3 5

TABLE D.2: Simulation scenarios used in Section D.1. Coefficients are
expressed to two decimal places. Scenario descriptions are given in

the text.

The simulation scenarios are summarised in Table D.2. Scenarios 1c and 2c mimic

the benchmark favourable and adverse scenarios used to calibrate pE and pT with

the categorical model in Section 5.4.2. Again, the suffix c is for continuous PD-L1.

1Measured to the nearest percent, we could regard the integer-valued PD-L1 scores as forming
a stratification over the PD-L1 space with 101 mutually-exclusive and -exhaustive cohorts, but that
would be an unfortunate way to address this problem, not least because the efficacy model would
require more than 100 parameters.
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The parameters for the efficacy EGM in Scenario 4c were calculated by fitting the

following GLM model

logitπE = θ1 + θ2x1 + θ3x2 + θ4x
2
2 + θ5x1x2 + θ6x1x

2
2

= −1.61− 0.69x1 − 0.05x2 + 2.93x22 + 2.36x1x2 − 2.35x1x
2
2

(D.5)

to the six points in Table D.3 using the glm function in R. The model uses 6

parameters to fit six points so that a perfect fit is guaranteed, as shown in Figure

D.5. The orange dots represent the binding values in Table D.3. We see that in this

scenario, efficacy in patients with high PD-L1 scores is highly likely, especially in TN

patients.

Pre-treatment status PD-L1 score Prob(Eff) Prob(Tox)

x1 x2 πE πT

0 0 0.167 0.1

0 25 0.192 0.1

0 75 0.500 0.1

1 0 0.091 0.1

1 25 0.156 0.1

1 75 0.439 0.1

TABLE D.3: Efficacy probabilities in scenario 4c were fit to intersect
these 6 points from scenario 4 in the Chapter 5.
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FIGURE D.5: Efficacy probabilities as functions of PD-L1 score in sce-
nario 4c. The curves were fit to the points in scenario 4 from Chapter

5, reproduced in Table D.3.

Scenario 5c is similar to 4c, albeit with high toxicity.

D.1.4 Simulations Analysing Continuous PD-L1

TABLE D.4: Regularising normal prior distributions for the elements
of θ.

µ σ2

α -2.2 4.8
β -0.5 4
γ -0.5 4
ζ -0.5 4
λ -2.2 4
ψ 0 1

Regularising priors are shown in Table D.4 and the events rates that they gener-

ate are summarised in Table D.5. We see that the expected event rates and credible
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intervals are similar to those generated by the regularising priors in the categorical

model in Table 5.8 with only modest differences. Figure D.6 shows the prior predic-

tive densities for TN patients with PD-L1 = 75%, chosen to allow comparison to the

analogous cohort under the categorical specification, shown in Figure 5.5. The prior

predictive distributions are very similar.

PreTreat PDL1 ProbEffL ProbEffl ProbEff ProbEffu ProbEffU
TN 0 0.00 0.02 0.22 0.33 0.80
TN 0.25 0.00 0.02 0.21 0.31 0.80
TN 0.75 0.00 0.01 0.21 0.32 0.86
PT 0 0.00 0.01 0.22 0.34 0.90
PT 0.25 0.00 0.01 0.20 0.29 0.89
PT 0.75 0.00 0.00 0.20 0.27 0.93
PreTreat PDL1 ProbToxL ProbToxl ProbTox ProbToxu ProbToxU
TN 0 0.00 0.03 0.20 0.30 0.75
TN 0.25 0.00 0.03 0.20 0.30 0.75
TN 0.75 0.00 0.03 0.20 0.30 0.75
PT 0 0.00 0.03 0.20 0.30 0.75
PT 0.25 0.00 0.03 0.20 0.30 0.75
PT 0.75 0.00 0.03 0.20 0.30 0.75

TABLE D.5: Credible intervals for events rates drawn from the prior
predictive distribution of the regularising priors in Table D.4. Lower-
case l and u show the central 50% credible interval and upper-case L

and U show the central 90% credible interval.

FIGURE D.6: Prior predictive distributions of the probabilities of effi-
cacy and toxicity in TN patients with PD-L1 = 75% under regularising

priors.

Table D.6 shows operating characteristics for model 411c with n = 60 patients.
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Sc PreTreat PDL1 PrEff PrTox Reg EffBias EffEmpSE EffCov ToxBias ToxEmpSE ToxCov

1c 0 0.00 0.300 0.1 0.974 -0.002 0.086 0.910 0.001 0.037 0.909

0 0.25 0.300 0.1 0.977 -0.010 0.081 0.889 0.001 0.037 0.909

0 0.50 0.300 0.1 0.952 -0.010 0.093 0.899 0.001 0.037 0.909

0 0.75 0.300 0.1 0.883 -0.003 0.114 0.917 0.001 0.037 0.909

0 1.00 0.300 0.1 0.792 0.008 0.136 0.929 0.001 0.037 0.909

1 0.00 0.300 0.1 0.959 0.005 0.095 0.894 0.001 0.037 0.909

1 0.25 0.300 0.1 0.963 -0.013 0.085 0.872 0.001 0.037 0.909

1 0.50 0.300 0.1 0.899 -0.018 0.103 0.877 0.001 0.037 0.909

1 0.75 0.300 0.1 0.792 -0.012 0.130 0.888 0.001 0.037 0.909

1 1.00 0.300 0.1 0.684 -0.001 0.157 0.891 0.001 0.037 0.909

2c 0 0.00 0.100 0.3 0.029 0.009 0.051 0.921 -0.004 0.057 0.903

0 0.25 0.100 0.3 0.025 -0.003 0.046 0.896 -0.004 0.057 0.903

0 0.50 0.100 0.3 0.020 -0.004 0.051 0.893 -0.004 0.057 0.903

0 0.75 0.100 0.3 0.020 0.002 0.064 0.913 -0.004 0.057 0.903

0 1.00 0.100 0.3 0.021 0.014 0.081 0.936 -0.004 0.057 0.903

1 0.00 0.100 0.3 0.027 0.005 0.057 0.892 -0.004 0.057 0.903

1 0.25 0.100 0.3 0.017 -0.013 0.047 0.830 -0.004 0.057 0.903

1 0.50 0.100 0.3 0.014 -0.016 0.054 0.829 -0.004 0.057 0.903

1 0.75 0.100 0.3 0.016 -0.006 0.072 0.845 -0.004 0.057 0.903

1 1.00 0.100 0.3 0.017 0.011 0.096 0.871 -0.004 0.057 0.903

4c 0 0.00 0.167 0.1 0.650 0.002 0.062 0.921 0.001 0.037 0.909

0 0.25 0.192 0.1 0.921 0.049 0.075 0.852 0.001 0.037 0.909

0 0.50 0.289 0.1 0.975 0.051 0.101 0.872 0.001 0.037 0.909

0 0.75 0.500 0.1 0.981 -0.048 0.132 0.899 0.001 0.037 0.909

0 1.00 0.780 0.1 0.981 -0.224 0.155 0.703 0.001 0.037 0.909

1 0.00 0.091 0.1 0.226 0.017 0.051 0.928 0.001 0.037 0.909

1 0.25 0.156 0.1 0.638 0.013 0.067 0.899 0.001 0.037 0.909

1 0.50 0.268 0.1 0.882 0.002 0.104 0.883 0.001 0.037 0.909

1 0.75 0.439 0.1 0.928 -0.038 0.149 0.878 0.001 0.037 0.909

1 1.00 0.642 0.1 0.938 -0.115 0.182 0.870 0.001 0.037 0.909

5c 0 0.00 0.167 0.3 0.083 0.002 0.063 0.920 -0.004 0.057 0.901

0 0.25 0.192 0.3 0.121 0.049 0.075 0.850 -0.004 0.057 0.901

0 0.50 0.289 0.3 0.129 0.051 0.101 0.870 -0.004 0.057 0.901

0 0.75 0.500 0.3 0.130 -0.048 0.132 0.900 -0.004 0.057 0.901

0 1.00 0.780 0.3 0.130 -0.224 0.155 0.704 -0.004 0.057 0.901

1 0.00 0.091 0.3 0.028 0.017 0.051 0.927 -0.004 0.057 0.901

1 0.25 0.156 0.3 0.081 0.013 0.067 0.900 -0.004 0.057 0.901

1 0.50 0.268 0.3 0.117 0.002 0.104 0.885 -0.004 0.057 0.901

1 0.75 0.439 0.3 0.122 -0.038 0.149 0.878 -0.004 0.057 0.901

1 1.00 0.642 0.3 0.124 -0.115 0.182 0.871 -0.004 0.057 0.901

TABLE D.6: Operating performance of continuous PD-L1 model 411
in the scenarios in Table D.2 with total sample size 60. PreTreat re-
flects x1 and PDL1 x2. Reg shows approval probability under the
regularising priors. Eff and Tox are abbreviations for efficacy and
toxicity. EmpSE is empirical standard error and Cov is coverage of

90% posterior credible intervals.

In scenario 1c, we see that approval probability is unacceptable in some cohorts.
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FIGURE D.7: Probability of approval in scenario 4 under the 411 mod-
els that analyse continuous and categorical PD-L1.

Performance degrades as the two covariates take values further from zero. In gen-

eral, approval probability is always lower in PT (where PreTreat = 1) than TN pa-

tients (where PreTreat = 0) for matched PD-L1 and underlying event probabilities.

Furthermore as PD-L1 increases in scenario 1c, the approval probabilities fall, de-

spite the underlying event rates remaining constant. We revisit this below.

In scenario 2c, the model correctly disregards the treatment with high probability.

It is in scenario 4c that we see the real benefit of using continuous PD-L1. Fig-

ure D.7 shows the approval probability as a function of PD-L1 for models 411c and

411, the categorical model in Chapter 5. For model 411, the approval probabilities

increase in steps, as reflected by the coarse categorisation scheme. For instance, as

PD-L1 increases from 49% to 50%, the estimated probability of approval jumps by

approximately 40% in PT patients under the categorical model. This is clearly un-

desirable because it fails to reflect the underlying biological reality. In contrast, the

approval probability under the continuous model is a smooth increasing function of

PD-L1, which mirrors that efficacy is a smooth function of PD-L1 score, as demon-

strated in Figure D.2.

The PT cohort shows that the continuous model does not indiscriminately ap-

prove. Recall from Table D.6 that when PD-L1 is zero, the true efficacy probability is
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FIGURE D.8: Simulated posterior mean parameter estimates of model
411c in scenario 1c.

only 9.1% so it is incorrect to approve here. Model 411c is less likely to approve than

model 411. When PD-L1 is zero in TN patients, the efficacy probability is 16.7% and

it is acceptable to approve here.

There is notable negative bias in the estimations of efficacy at PD-L1 ≥ 75% in

scenarios 4c and 5c. This is because the analysis model is less complex than the EGM,

and the efficacy probability is underestimated at high PD-L1 values. Irrespective, the

approval probabilities are not unduly impaired.

The continuous model performs very similarly in scenario 5c as model 411 per-

formed in scenario 5, correctly rejecting with high probability.

Returning to scenario 1c, Figure D.8 illustrates why approval falls in PD-L1. It

shows the distribution of the final parameter estimates over the simulated trial iter-

ations. The expected values for β, γ & ζ are zero, as required. However, the distribu-

tions for γ & ζ are relatively wide. These are the two coefficients in (D.3) for terms

that contribute to the gradient with respect to PD-L1 score. If they are estimated to

be negative, which happens relatively frequently, the approval probability will de-

crease as PD-L1 increases. Nevertheless, the bias values are low throughout and the

coverage values close to the theoretical 90%.

A natural temptation is to use a prior that take only positive values, like beta
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or half-normal distributions. This would reflect our belief that efficacy is positively

associated with PD-L1. However, when regularising half-normal priors are used,

undesirable biases manifest elsewhere. In particular, material inflation occurs in the

estimated efficacy rate and approval probability when PD-L1 is 0% and the under-

lying true efficacy rate is only 9.1%.
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